

Impact of low-frequency coding variants on human facial shape

Dongjing Liu¹, Nora Alhazmi^{2,3}, Harold Matthews^{4,5}, Myoung Keun Lee⁶, Jiarui Li⁷, Jacqueline T. Hecht⁸, George L. Wehby⁹, Lina M. Moreno¹⁰, Carrie L. Heike¹¹, Jasmien Roosenboom⁶, Eleanor Feingold^{1,12}, Mary L. Marazita^{1,6}, Peter Claes^{4,7}, Eric C. Liao¹³, Seth M. Weinberg^{1,6*}, John R. Shaffer^{1,6*}

¹ Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

² Department of Oral Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America

³ King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

⁴ Department of Human Genetics, KU Leuven, Leuven, Belgium

⁵ Medical Imaging Research Center, UZ Gasthuisberg, Leuven, Belgium

⁶ Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

⁷ Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium

⁸ Department of Pediatrics, University of Texas McGovern Medical Center, Houston, Texas, United States of America

⁹ Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, United States of America

¹⁰ Department of Orthodontics, University of Iowa, Iowa City, Iowa, United States of America

¹¹ Department of Pediatrics, Seattle Children's Craniofacial Center, University of Washington, Seattle, Washington, United States of America

¹² Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

¹³ Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Shriners Hospital, Boston, Massachusetts, United States of America

* Corresponding author

E-mail: smwst46@pitt.edu (SMW)

E-mail: john.r.shaffer@pitt.edu (JRS)

Abstract

The contribution of low-frequency variants to the genetic architecture of normal-range facial traits is unknown. We studied the influence of low-frequency coding variants (MAF < 1%) on multi-dimensional facial shape phenotypes in 2329 healthy Europeans. We used MultiSKAT o scan the exome for face-associated low-frequency variants in a gene-based manner. Seven genes (*AR*, *CARS2*, *FTSJ1*, *HFE*, *LTB4R*, *TELO2*, *NECTIN1*) were significantly associated with shape variation of the cheek, chin, nose and mouth areas. These genes displayed a wide range of phenotypic effects, with some impacting the full face and others affecting localized regions. The missense variant rs142863092 in *NECTIN1* had a significant effect on chin morphology, and was predicted bioinformatically to be deleterious. *NECTIN1* is an established craniofacial gene that underlies a human syndrome that includes a mandibular phenotype. We further showed that *nectin1a* mutations can affect zebrafish craniofacial development, with the size and shape of the mandibular cartilage altered in mutant animals. These Findings highlighted the role of low-frequency coding variants in normal-range facial variation.

1 **Introduction**

2
3 Significant progress has been made in elucidating the genetic basis of human facial traits
4 (Richmond, Howe, Lewis, Stergiakouli, & Zhurov, 2018; Weinberg, Cornell, & Leslie, 2018;
5 Weinberg et al., 2019). Genome-wide association studies (GWASs) have identified and
6 replicated numerous common genetic variants associated with normal-range facial morphology
7 (Adhikari et al., 2016; Cha et al., 2018; Claes et al., 2018; Cole et al., 2016; Crouch et al., 2018;
8 M. K. Lee et al., 2017; F. Liu et al., 2012; Paternoster et al., 2012; Shaffer et al., 2016); yet these
9 variants cumulatively explain only a small fraction of the heritable phenotypic variation. Based
10 on large-scale genomic studies of other complex morphological traits such as height (D. J. Liu et
11 al., 2017; Lu et al., 2017; Marouli et al., 2017), we hypothesized that functional variants at
12 hundreds or perhaps thousands of loci have yet to be discovered. While we expect that common
13 variants, with a minor allele frequency (MAF) greater than 1%, account for most of the heritable
14 variation in facial morphology, low frequency (MAF<1%) genetic variants may also play an
15 important role. An exome-wide study of human height, for example, discovered 29 low-
16 frequency coding variants with large effects of up to 2 centimeters per allele (Marouli et al.,
17 2017).

18
19 Our previous GWAS in a modestly sized cohort of healthy individuals identified 1932 common
20 genetic variants associated with facial variation at 38 loci, 15 of which were independently
21 replicated (Claes et al., 2018). The success of this GWAS was attributed in part to an innovative
22 data-driven phenotyping approach, in which the 3D facial surfaces were partitioned into
23 hierarchically organized regions, each defined by multiple axes of shape variation. This
24 approach allows for testing of genetic variants on facial morphology at multiple levels of scale –
25 from the entire face (global) to highly localized facial regions (local). Extending this global-to-
26 local analysis of facial traits to the analysis of low-frequency variants requires an appropriate and
27 scalable statistical framework capable of accommodating the multivariate nature of the facial
28 shape variables. A recently developed statistical approach, MultiSKAT (Dutta, Scott, Boehnke,
29 & Lee, 2019), was designed for this purpose and showed desirable performance in its original
30 development.

31
32 In this study, we evaluated the influence of low frequency coding variants, captured by the
33 Illumina HumanExome BeadChip, on normal-range facial morphology in 2,329 individuals. We
34 applied multivariate gene-based association testing methods to multi-dimensional facial shape
35 phenotypes derived from 3D facial images. The results of our analyses pointed to novel genes,
36 including at least one involved in orofacial clefts and several others with no previously described
37 role in craniofacial development or disorders. We provided experimental evidence of our genetic
38 association results through expression screening and knockout experiments in a zebrafish model.
39 These results enhance our understanding of the genetic architecture of human facial variation.

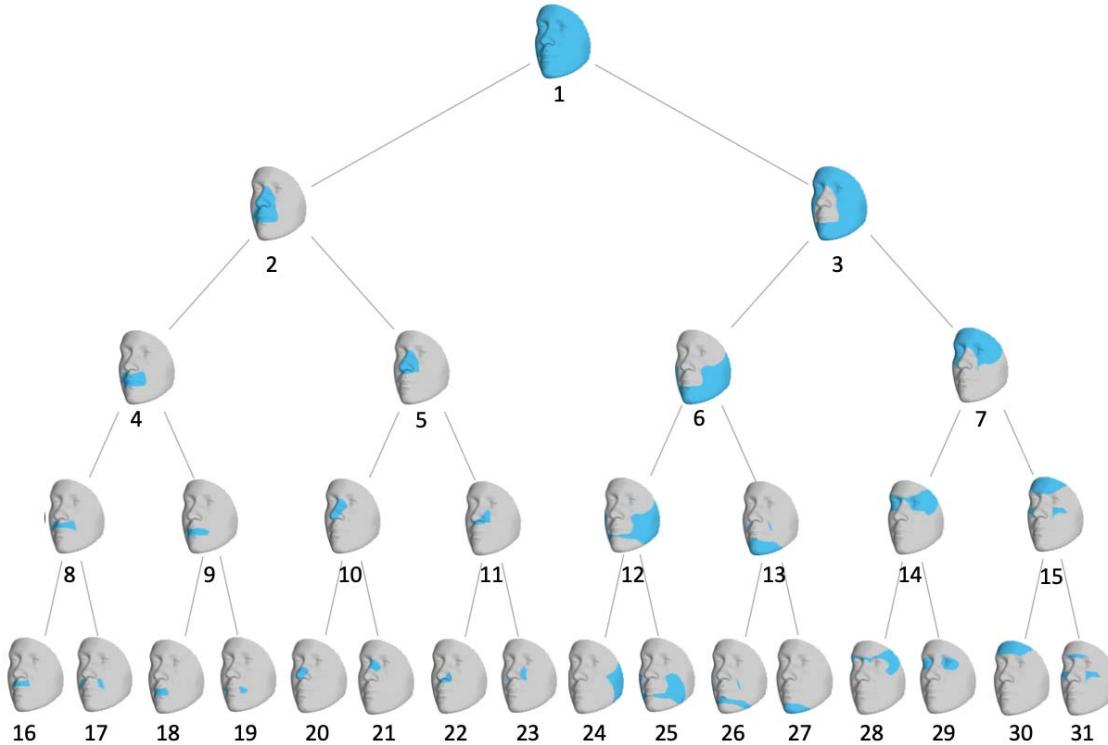
40

41 Materials and Methods

42

43 Ethics statement

44 Institutional ethics (IRB) approval was obtained at each recruitment site and all subjects gave
45 their written informed consent prior to participation (University of Pittsburgh Institutional
46 Review Board #PRO09060553 and #RB0405013; UT Health Committee for the Protection of
47 Human Subjects #HSC-DB-09-0508; Seattle Children's Institutional Review Board #12107;
48 University of Iowa Human Subjects Office/Institutional Review Board #200912764 and
49 #200710721).


50

51 Sample and Phenotyping

52 The study cohort comprised 2,329 unrelated, healthy individuals of European ancestry aged 3 to
53 40 years. Participants were eligible if they had not experienced facial trauma, major surgery,
54 congenital facial anomalies that could potentially affect their natural facial structure. 3D images
55 of each participant's resting face were captured via digital stereophotogrammetry using the
56 3dMD face camera system. The data-driven phenotyping approach has been described in detail
57 in a previous work (Claes et al., 2018). Briefly, approximately 10,000 points—"quasi-
58 landmarks"—were automatically placed across the facial surface, by a non-rigid registration of a
59 standard facial template onto each surface. The result is that each quasi-landmark represents the
60 same facial position across all participants (White et al., 2019). The configurations were then co-
61 aligned to their mean using generalized Procrustes analysis (GPA). The quasi-landmarks were
62 then clustered into groups of co-varying component points in order to partition the full face into
63 two segments. GPA was repeated within each of the two segments, and the process was
64 continued for a total of four iterations to generate a hierarchy of 31 facial segments (which we
65 call modules) comprising overlapping groups of quasi-landmarks. The hierarchical structure is
66 illustrated in Fig 1, where modules formed successive levels representing the shift from more
67 globally integrated to more locally focused morphology. Shape variation within each module
68 was represented by the 3D coordinates of all quasi-landmarks contained therein. To reduce the
69 dimensionality, principal components analysis and parallel analysis were performed on the quasi-
70 landmarks. The result was a set of 31 multivariate phenotypes made up of 8 to 50 principal
71 components (PCs) that jointly captured near complete shape variance. The effects of sex, age,
72 height, weight, facial size and genetic ancestry were corrected for at the phenotyping stage.
73 These facial module phenotypes were successfully used in our previous GWAS of common
74 variants (Claes et al., 2018), which demonstrated a clear advantage of this data-driven
75 multivariate modeling approach for gene-mapping studies over the traditional utilization of *a*
76 *priori* (Shaffer et al., 2016) and univariate (M. K. Lee et al., 2017) facial traits.

77

78

79
80 **Fig 1. Hierarchical clustering of facial shape.**

81 Global-to-local facial segmentation obtained using hierarchical spectral clustering. Segments are
82 colored in blue. The highest-level segment representing the full face was split into two sub-
83 segments, and this bifurcation process was repeated until a five-level hierarchy comprising 31
84 segments was formed.

85
86
87 In addition to the phenotype quality control process described in (Claes et al., 2018), we further
88 examined the phenotypic distribution of each module for extreme outlier faces, as phenotypic
89 outliers may adversely impact low-frequency variant tests (Auer, Reiner, & Leal, 2016). To
90 accomplish this, we looked at both the joint and the pairwise distribution of all PCs underlying
91 each module. We visualized quantile-quantile (Q-Q) plots of chi-squared quantiles versus robust
92 squared Mahalanobis distances to identify outliers that deviated from the rest of the sample.
93 Mahalanobis distance is a metric measuring how far an observation is to the center of the joint
94 distribution (centroid equivalent in a multivariate space). We identified one individual who was
95 an outlier for several PCs in module 27 (chin), and revisited the associated facial images to
96 confirm data validity and sample eligibility. This individual was excluded from any subsequent
97 analysis involving module 27.

98
99 **Genotyping**

100 Participants were genotyped by the Illumina OmniExpress + Exome v1.2 array, which included
101 approximately 245,000 coding variants in the exome panel. Standard data cleaning and

102 imputation procedures were implemented. Imputed genotypes with a certainty above 0.9 were
103 used to fill in any sporadic missingness among genotype calls of the directly genotyped variants.
104 We did not include any wholly unobserved, imputed SNPs in this analysis. Ancestry PCs based
105 on common LD-pruned SNPs were constructed and regressed out from the multivariate traits to
106 adjust for population structure.

107

108 **MultiSKAT**

109 MultiSKAT (Dutta et al., 2019) was specifically developed for testing sets of variants, in this
110 case coding variants within genes, for association with a multivariate trait. Testing low-
111 frequency variants in aggregate can improve power compared to individual tests of each variant.
112 The tool is flexible in relating multiple variants collectively to multiple phenotypes through the
113 use of several choices of kernels, and includes an omnibus test to obtain optimal association p-
114 values by integrating results across different kernels via Copula. This capability of
115 accommodating multivariate phenotypes fits well with our analysis of facial modules, as each
116 module was composed of several independent PCs. MultiSKAT can be applied to both common
117 and rare variants, although our analysis considered low-frequency variants exclusively.

118

119 MultiSKAT uses a phenotype kernel to model how one variant affects multiple traits, and a
120 separate genotype kernel to specify how multiple variants influence one trait. In reality, these
121 effects are often not known *a priori*, and the true relationship can be a mixture of different
122 effects. We used the heterogeneous and homogeneous phenotype kernels, which are appropriate
123 when the set of traits analyzed are orthogonal PCs. We used the Sequence Kernel Association
124 Test (SKAT) and burden test as the genotype kernel, and performed the omnibus test in
125 MultiSKAT to aggregate results across the 2×2 kernel combinations.

126

127 **Gene-level analysis**

128 Genome-wide coding variants with $MAF < 1\%$ were aggregated into genes. Per the developer's
129 suggested practice for using the MultiSKAT method, we filtered out variants with three or fewer
130 minor alleles to ensure that there is no inflation in MultiSKAT test statistics. We excluded genes
131 with less than two qualified variants, leading to 31347 variants in 8091 genes being tested. When
132 grouping multiple variants into a gene, MultiSKAT assigns larger weights to rarer variants. We
133 applied a Bonferroni threshold to declare significance. To account for the correlation among
134 partially overlapping facial modules, we used a procedure based on eigenvalues as proposed by
135 Li and Ji (Li & Ji, 2005) and computed that the effective number of independent modules was 19.
136 The threshold for significance was therefore set as $p < 3.3 \times 10^{-7}$ (i.e., $0.05/(8091 \times 19)$). The
137 phenotypic effects of identified genes on face were visualized by creating and comparing the
138 average facial morphs in individuals who had variants in a certain gene and those who do not
139 carry any variants.

140

141 Gene-set enrichment analysis was carried out using GREAT (McLean et al., 2010), FUMA
142 (Watanabe, Taskesen, van Bochoven, & Posthuma, 2017) and ToppFun (Chen, Bardes, Aronow,
143 & Jegga, 2009). Expression of genes were looked up in the GTEx database (GTEx Consortium,
144 2013). Following our hypothesis that genes influencing typical facial presentation may also be
145 involved in facial anomalies, we examined whether any genes identified by MultiSKAT were
146 associated with non-syndromic cleft palate with or without cleft lip (NSCL/P) by retrieving
147 association p-values from a past study of our group, where we performed a gene-based low-
148 frequency variant association scan on NSCL/P (Leslie et al., 2017).

149

150 **Variant-level analysis**

151 For genes highlighted by MultiSKAT, we scrutinized the quality of genotype calls by inspecting
152 allele intensity cluster plots. We further performed association tests of individual SNPs using
153 MultiPhen (O'Reilly et al., 2012). MultiPhen works by finding the linear combination of PCs
154 that is mostly associated with the genotypes at each SNP, and is robust when variants with low
155 frequencies are tested against non-normal phenotypes. Variant level functional prediction was
156 performed using CADD (Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019). CADD is a
157 comprehensive metric that weights and integrates diverse sources of annotation, by contrasting
158 variants that survived natural selection with simulated mutations. The scaled CADD score
159 expresses the deleteriousness rank in terms of order of magnitude. A score of 10, for instance, is
160 interpreted as ranking in the top 10% in terms of the damaging degree amongst reference
161 genome SNPs, and a score of 20 refers to 1%, 30 to 0.1%, etc. Variant identifiers and
162 chromosomal locations are indicated according to the hg19 genome build. Individual variants
163 were searched in literature and PhenoScanner (Kamat et al., 2019) for existing human phenotype
164 associations.

165

166 We quantified the magnitude of phenotypic effect of individual low-frequency variants by the
167 difference between averaged faces of variant carriers (those who were heterozygotes; there was
168 no homozygotes for the low-frequency variants tested) and non-carries, which was further
169 compared with the effects of significant common variants identified in the prior GWAS of the
170 same multidimensional traits (Claes et al., 2018). Specifically, the centroids of the
171 multidimensional space defined by PCs in a certain module were computed separately for people
172 carrying the variant and people who do not carry the variant. Then the Euclidean distance
173 between the two centroids was calculated as a measure of variant effect size.

174

175 **Expression screen of candidate genes in zebrafish**

176 The whole-mount RNA in situ hybridization (WISH) for *ar*, *cars2*, *ftsj1*, *hfe*, *ltb4r*, *telo2*,
177 *nectin1a* and *nectin1b* was performed on wild type zebrafish embryos at 24 hpf and 48 hpf as
178 described by Thisse et al. (C. Thisse & Thisse, 2008). All wild type embryos were collected
179 synchronously at the corresponding stages and fixed in 4% paraformaldehyde (PFA) overnight.

180 T7 RNA polymerase promoter was added to the reverse primers and was synthesized with
181 antisense DIG-labeled probe in order to generate antisense RNA probe. The probe primers for *ar*
182 are: forward 5'- GTCCTACAAAGAACGCCAACG-3' and reverse 5'-
183 GGTACAGACTTGGAAAGGG-3' at 59°C. The *cars2* probe primers are: forward 5'-
184 ATCTGGGTCATGCGTGTCA-3' and reverse 5'- GGATTCCCTGTGGTGCTTGGT at 59°C.
185 The *ftsj1* probe primers are: forward 5'- GGCGAGAAGTGCCTCAAAC-3' and reverse 5'-
186 AGTCGTGCTTGTGTCTGGTT-3' and *hfe* probe primers are: forward 5'-
187 GGGGATGGATGCTTCTACGA-3' and reverse 5'- CGCGCACACAAAATCATCAC-3' at
188 59°C. The *ltb4r* probe primers are: forward 5'-GACGGTGCATTACCTGTGC-3' and reverse
189 5'-AGTCTTGTCCGCCAAGGTC-3' at 58°C. The primers for *telo2* are: forward 5'-
190 GCTCCACTGGTGAGAGTGAG-3' and reverse 5'-GTCAGCTGAGGAGAGTCTGCG-3'. The
191 primers for *nectin1a* probe are: forward 5'-AACACCCAGGAGATCAGCAA-3' and reverse 5'-
192 CCTCCACCTCAGATCCGTAC-3' at 57°C and the *nectin1b* probe primers are: forward 5'-
193 TGCTAACCCAGCATTGGGAG-3' and reverse 5'-GGTTCTGGGCATTGGAGGA-3' at
194 59°C. Embryos were mounted using glycerol and imaged using Nikon AZ100 multizoom
195 microscope.

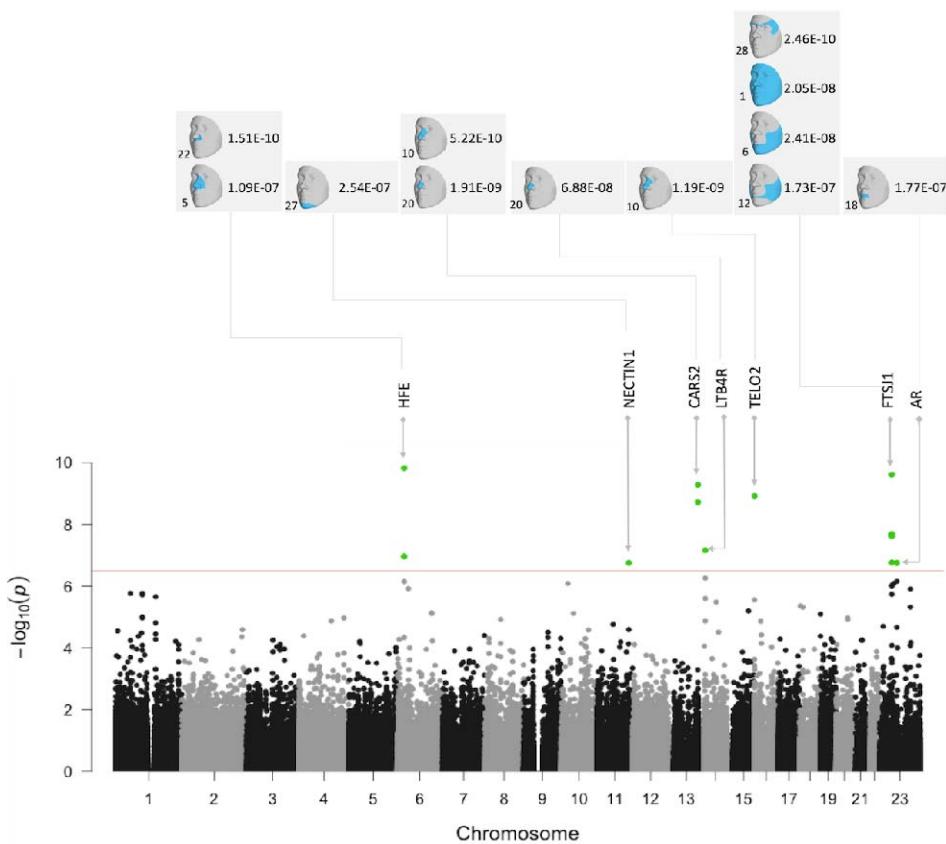
196

197 **Phenotype of mutant zebrafish**

198 Zebrafish adults and embryos were obtained and maintained as described by Kimmel et al. (C. B.
199 Kimmel, Ballard, Kimmel, Ullmann, & Schilling, 1995). Zebrafish *nectin1a* mutants were
200 generated by transgene insertion Tg(Nlacz-GTvirus) in Chr 21: 21731876 - 21731886 (Zv9), and
201 obtained from Zebrafish International Resource Center, allele Ia021885Tg (ZIRC catalog ID:
202 ZL6899.07). The retroviral-mediated insertional mutagenesis inserts a molecular tag in the DNA
203 and isolates the allele of interest. Therefore, this will induce a frameshift and probably causing
204 either nonsense-mediated mRNA decay or a truncated protein (Amsterdam & Hopkins, 2003;
205 Sivasubbu, Balciunas, Amsterdam, & Ekker, 2007). The PCR genotyping primers for *nectin1a*
206 are: forward 5'-TTAGACCAAGCCCACCTCA-3' and reverse 5'-
207 AATATGAAATAGCGCCGTTGTG-3' at 62°C.

208

209 Alcian blue staining was performed as described by Walker et al. (Walker & Kimmel, 2007).
210 The craniofacial cartilages were dissected and flat-mounted and then imaged using Nikon AZ100
211 multizoom microscope. After imaging, each embryo tail was placed in a PCR tube for
212 genotyping. The protocol was used as described by (Westerfield, 1994) with modification of
213 using fresh embryos without fixation.

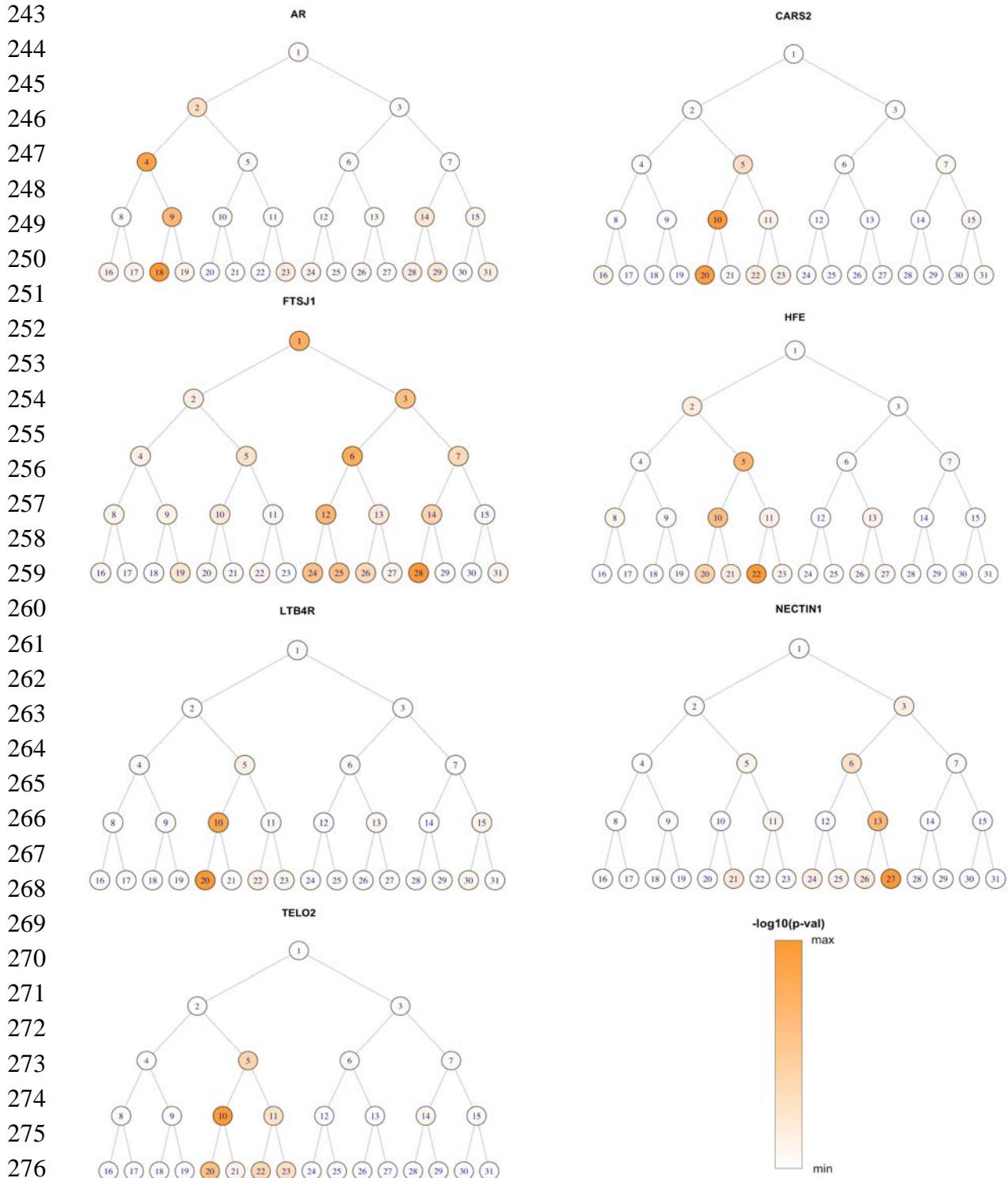

214

215

216 **Results**

217

218 In the gene-based test of exome-wide low-frequency variants, seven genes were significantly
219 associated with one or more facial modules (*HFE*, *NECTIN1*, *CARS2*, *LTB4R*, *TELO2*, *AR*, and
220 *FTSJ1*; Fig 2 and Table 1). Three of them showed associations with more than one module. Fig 3
221 and S1 Table show the results of these genes in multiple modules. Fig 3 shows the association
222 signals propagating along the branching paths from the more global segments to the more local
223 segments. Four genes (*HFE*, *CARS2*, *LTB4R*, and *TELO2*) were associated with nose-related
224 modules, and the others were associated with the shape of chin, mouth, and cheek. *FTSJ1* had
225 broad associations in the full face as well as in local regions, while the effects of other genes
226 were more confined to only local modules. We observed well-calibrated test statistics and little
227 evidence of inflation as shown in the Q-Q plots (Fig S1).



228
229 **Fig 2. Composite Manhattan plot showing results across 31 facial modules.**
230 Manhattan plot showing the position of genes on the x axis and MultiSKAT p-values on the y
231 axis. A total of 31 points are plotted for each gene, representing their p-values in each of the 31
232 modules. The red horizontal line indicates the significance threshold (3.3×10^{-7}). The associated
233 facial modules and the corresponding p-value for each gene that surpassed the threshold are
234 shown above the Manhattan plot. The numbers to the bottom left of the facial images indicate the
235 module identifiers in Fig 1.

236 Table 1. Single variant association and functional prediction for variants contributing to the gene-level significance

Chr	Gene	Gene Info	Gene-level association		Variant-level association							
			Module ^a	MultiSKAT P-value ^a	SNP	Pos (hg19)	Ref/Alt ^b	Function ^c	CADD score ^d	MAF	Module ^e	MultiPhen P-value ^e
6	<i>HFE</i>	Homeostatic iron regulator, binds to transferrin receptor (TFR) and reduces its affinity for iron-loaded transferrin	5, 22	1.51E-10	rs149342416	26087686	G/C	Arg6Ser	15.3	0.09%	22	0.07
					rs143662783	26087718	C/G	Thr17Ile	13.4	0.09%	5	0.87
11	<i>NECTIN1</i>	Nectin 1, cell adhesion molecule	27	2.54E-07	rs142863092	119548369	G/A	Arg210His	25.2	0.09%	27	1.08E-03
					rs137991779	119549425	G/A	Gly44Ser	29.2	0.11%	27	0.15
13	<i>CARS2</i>	Cysteinyl-tRNA synthetase 2, mitochondrial	10, 20	5.22E-10	rs151097801	111296817	C/T	Pro138Leu	22.4	0.09%	20	0.12
					rs117788141	111357899	G/A	Val69Ile	28	0.09%	10	0.01
14	<i>LTB4R</i>	Leukotriene B4 receptor 1, receptor for extracellular ATP > UTP and ADP	20	6.88E-08	rs143666989	24780865	A/G	Gln332Arg	16.6	0.11%	20	0.11
					rs148153989	24780915	A/T	Met349Leu	12.5	0.09%	20	0.59
16	<i>TELO2</i>	Telomere length regulation protein homolog, regulate DNA damage response	10	1.19E-09	rs140903666	1544313	G/A	Ala11Thr	6.3	0.22%	10	8.21E-04
					rs144863771	1544314	C/A	Ala11Asp	10.7	0.22%	10	8.21E-04
23	<i>AR</i>	Androgen receptor, steroid hormone receptors	18	1.77E-07	rs142280455	66905875	A/G	Ser598Gly	22.4	0.13%	18	0.81
					rs137852591	66941751	C/G	Gln267Glu	25	0.13%	18	3.91E-03
23	<i>FTSJ1</i>	Putative tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase	1, 6, 12, 28	2.46E-10	rs142932029	48341118	G/A	Ser161Asn	7.4	0.08%	28	1.59E-14
					rs201095751	48341414	C/T	Splice site	0.1	0.11%	12	0.1


237 ^a For genes associated with multiple facial modules, the most significant module is in bold and only its p-value is shown238 ^b Alleles are listed as alternative/reference alleles on the forward strand of the reference genome239 ^c For missense variant, amino acid substitution is given240 ^d Bioinformatic prediction of variant effect, higher score indicates greater damaging effect241 ^e Variants were tested against all module(s) with gene-level significance, and for genes associated with multiple modules, only the module yielding the smallest p-value in the variant-level test is shown

Fig 3. Module-wide association results for significant genes.

For each gene, the $-\log_{10}$ p-value is shown as color shades ranging from min to max, for 31 facial segments arranged the same way as Fig 1. The global-to-local phenotyping enabled the discovery of genetic effects at different scales.

282 To visualize the effects of these genes on facial shape, we created the average module shape in
283 non-carriers of the low-frequency variants for each gene, and a corresponding morph showing
284 the change in shape from non-carriers to carriers (Fig 4). Blue and red indicate a local shape
285 depression and protrusion, respectively, due to carrying any low-frequency variants. As an
286 example, panel B in Fig 4 shows that *NECTIN1* variants shape the chin into a sharper and more
287 protruding structure.

288
289 **Fig 4. Phenotypic effect of the seven identified genes in their top associated module.**
290 Blue and red indicate a local shape depression and protrusion, respectively, due to carrying the
291 low-frequency variants in the gene. A) First column shows gene effect on a representative

292 module placing on the full face; middle column shows the lateral view of the average shape of
293 the corresponding module among people who do not carry any variant in the gene; right column
294 shows the change in the shape of the same module, from non-carrier to carrier, multiplied by a
295 constant (7), to make the changes more visibly distinctive. B) For *NECTIN1* gene, we show both
296 lateral (top) and frontal (bottom) view of its effect on chin shape. *NECTIN1* variant carriers on
297 average displayed a sharper, more protruding chin.

298

299

300 We employed various bioinformatics tools to explore the functions associated with the set of
301 identified genes. Enrichment was detected for a variety of biological processes (Fig S2),
302 especially ion-, metabolism-, transport- and regulation-related processes. Enriched gene ontology
303 (GO) molecular functions included signaling receptor and protein binding activity. Two genes
304 with relatively well characterized functions (*HFE* and *AR*) contributed a lot to these enrichment
305 results. In the GTEx database, these seven genes showed measurable expression level in adipose,
306 skin and muscle-skeletal tissue (Fig S3), among which the strongest expression was seen for
307 *NECTIN1* in skin.

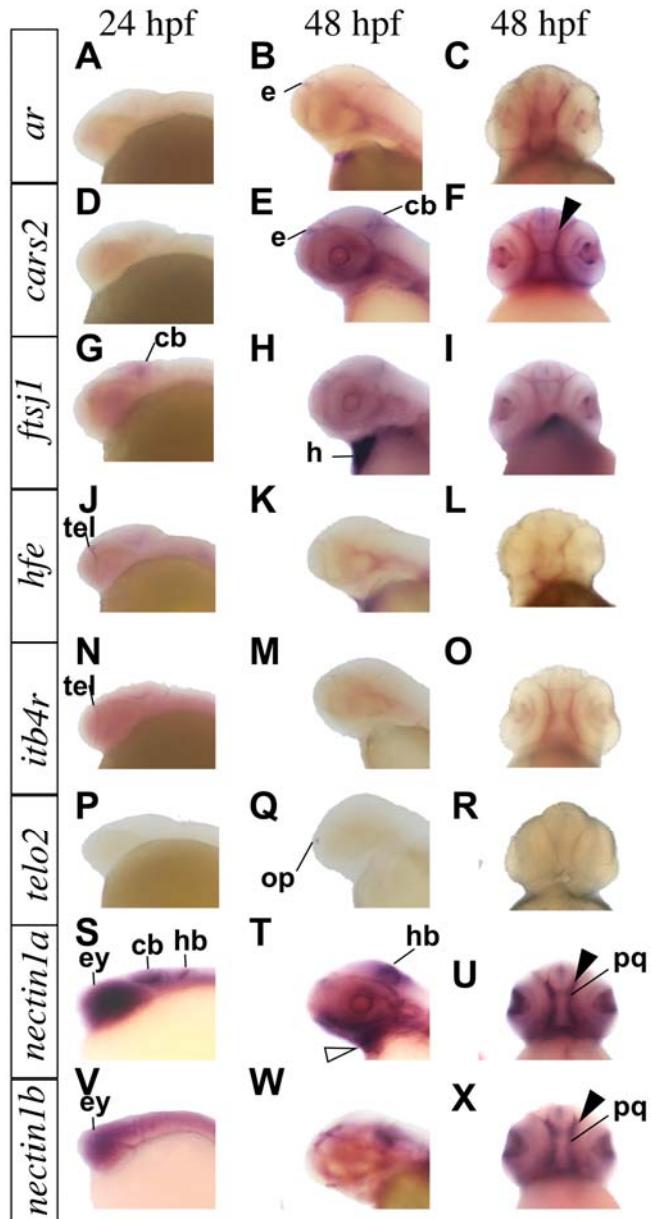
308

309 To explore whether facial genes also affect the risk of orofacial clefts, results of gene-based
310 associations of low-frequency (MAF<1%) variants with NSCL/P were retrieved from Leslie et al.
311 2017. Two out of the seven were not available from that study. S2 Table shows the SKAT and
312 CMC test results for the other five genes in the European, Asian, South American and the
313 combined samples. Two associations passed a Bonferroni corrected threshold for 40 tests (5
314 genes \times 4 populations \times 2 type of tests)— *TELO2* with a CMC p-value = 6.5×10^{-4} , and *HFE*
315 with a CMC p-value = 1.1×10^{-3} , both in the combined population of all ancestry groups.

316

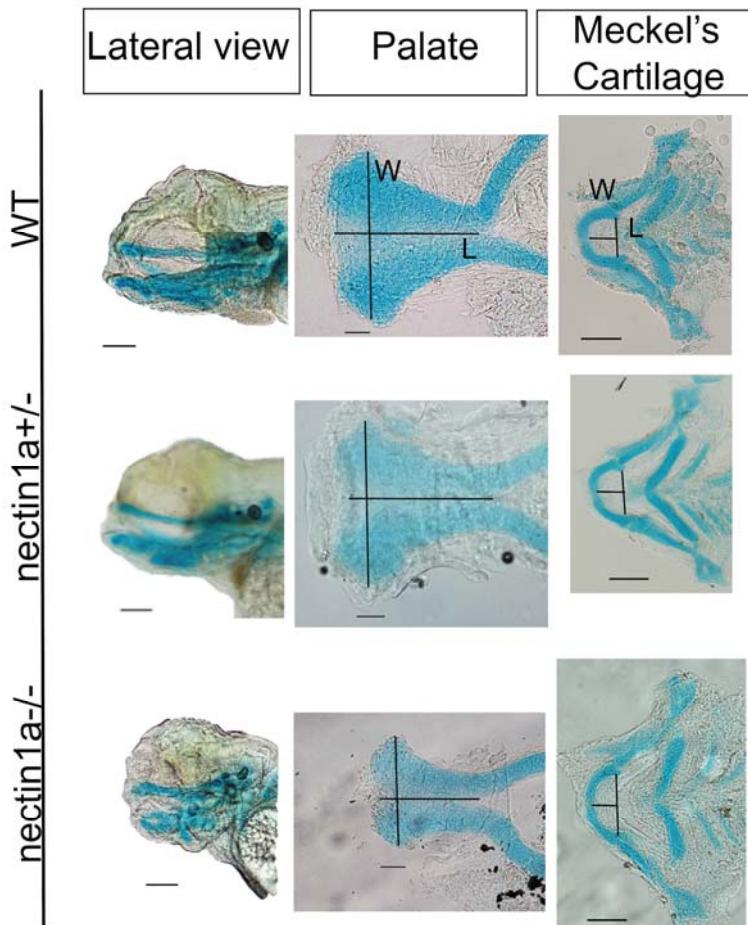
317 Single variants in the genes showing significant associations in the gene-based tests were further
318 tested individually with the corresponding facial modules (Table 1). Six SNPs showed nominal
319 associations (p-value < 0.05) and the top association involved SNP rs142932029 in *FTSJ1* with
320 module 28 (p-value = 1.59×10^{-14}). As shown in S4 Fig, these low-frequency variants had larger
321 effects compared to previously reported common variants (Claes et al., 2018).

322


323 Most of the individual variants appeared at frequencies much lower than 1%, and all encode
324 nonsynonymous substitutions except one splice site SNP in *FTSJ1*. Variants in *NECTIN1*,
325 *CARS2* and *AR* are predicted to be deleterious according to their CADD score (details in S3
326 Table). SNP rs137991779 in *NECTIN1* has a CADD score of 29.2, interpreted as ranking in the
327 top 0.12% in terms of deleteriousness among variants across the whole genome. PhenoScanner
328 linked those variants with a variety of human traits/disorders in previous studies (S4 Table,
329 mostly from UK Biobank), including height, vascular diseases, osteoporosis, neoplasms etc.,

330 suggesting that coding variants influencing facial shape may be pleiotropic and play roles in
331 other biological processes.

332


333 Zebrafish WISH was used to examine *ar*, *cars2*, *ftsj1*, *hfe*, *ltb4r*, *telo2*, *nectin1a* and *nectin1b*
334 expression pattern in the craniofacial region across key developmental stages (Fig 5). At 24
335 hours post fertilization (hpf), *ftsj1* was expressed in the hindbrain, and *hfe* and *ltb4r* were
336 expressed in the forebrain. We detected *nectin1a* and *nectin1b* transcripts in the eyes,
337 diencephalon, midbrain and hindbrain at 24 hpf. At 48 hpf, *ar* expression was detected in the
338 epiphysis, *cars2*, *nectin1a* and *nectin1b* were expressed in the palate (Fig 5 solid arrow), and
339 *nectin1a* was detected in the lower jaw (Fig 5 hollow arrow).

340

341
342 **Fig 5. Whole-mount RNA *in situ* hybridization demonstrating genes expression in zebrafish.**
343 Genes expression pattern in lateral and ventral views at the indicated embryonic stages as hours
344 per fertilization (hpf). *cars2*, *nectin1a* and *nectin1b* are expressed in zebrafish palate (solid
345 arrow). *nectin1a* is expressed in the lower jaw at 48 hpf (hollow arrow). cb: cerebellum, e:
346 epiphysis, ey: eye, h: heart, hb: hindbrain, op: olfactory placode, pq: palate quadrate, tel:
347 telencephalon.
348
349
350 To investigate if *nectin1a* is required for during normal craniofacial development, we analyzed
351 the *nectin1a* mutant allele Ia021885Tg. Breeding of *nectin1a*+/− intercross generated embryos

352 with Mendelian ratio (1 individual homozygous for the wild type allele: 2 heterozygous
353 individuals with one wild type and one mutant allele: 1 individual homozygous for the mutant
354 allele) demonstrating a mutant craniofacial phenotype, characterized by small head
355 structures (Fig 6). Using Alcain blue staining at 120 hpf, *nectin1a* mutants displayed dysmorphic
356 craniofacial development with smaller and distorted palate and abnormal Meckel's cartilage
357 compared to age-matched wild type zebrafish embryos from the same intercross. These results
358 show that *nectin1a* is genetically required for palate and mandible morphogenesis.
359

360
361 **Fig 6. Alcian blue images for *nectin1a* zebrafish mutant compared to wild type at day 5.**
362 Top images: wild type alcian blue lateral view, palate and Meckel's cartilage. Middle images:
363 heterozygous *nectin1a* embryo alcian blue. Bottom images: homozygous *nectin1a* mutant lateral
364 view. The length of the palate was measured from the anterior midpoint to the posterior midpoint
365 of the palate. The width was measured as the maximum distance between the 2 lateral borders at
366 the anterior area. The length of the Meckel's cartilage was measured from the midline of the
367 Meckel's cartilage to the midline of an imaginary line drawn joining the joints between the
368 Meckel's cartilage and the palatoquadrate. The width was measured from the junction of the
369 Meckel's cartilage and the palatoquadrate of one side to the other side. Compared to wild type

370 animals. *nectin1a* mutants have smaller and shorter palate, and shorter and wider Meckel's
371 cartilage. L: length, W: width. Scale bar: 10 μ m

372

373

374 Discussion

375

376 This study presented a discovery effort to identify low-frequency coding variants associated with
377 normal-range human facial shape, by undertaking gene-based association tests on a carefully
378 phenotyped human cohort followed by functional experiments of the association results. Overall,
379 we demonstrated that part of the morphological variation of facial shape is attributable to low-
380 frequency coding variants, and pinpointed putative functional genes involved. Seven genes (*AR*,
381 *CARS2*, *FTSJ1*, *HFE*, *LTB4R*, *TELO2* and *NECTIN1*) were identified, with phenotypic effects in
382 the area of cheek, chin, nose and mouth. Notably, *NECTIN1* is known to cause a syndrome
383 characterized by facial dysmorphology. Using a zebrafish model, we confirmed the expression of
384 *nectin1a* and *nectin1b* in the developing head and the abnormal craniofacial phenotype in
385 *nectin1a* mutants, with the affected structures being highly consistent with the associated facial
386 region in the human data analysis. Taken together, these findings support the contribution of
387 low-frequency coding variants to the genetic architecture of normal-range facial shape.

388

389 The seven genes identified by the multivariate approach are for the first time implicated in
390 normal facial morphology. Six of the seven genes (all but *cars2*) were expressed in embryonic
391 craniofacial tissues in zebrafish, demonstrating their potential involvement in craniofacial
392 development. Cellular processes/functions of these genes include metal ion transport (*HFE*),
393 signaling (*AR*, *LTB4R*), tRNA metabolism (*CARS2*, *FTSJ1*), DNA repair (*TELO2*) and cell
394 adhesion (*NECTIN1*). This diversity in their biological function led to a variety of enriched
395 functional pathways/categories in the gene-set enrichment analysis, yet without a strong signal in
396 any particular one, probably due to the small number of genes and the polygenic nature of facial
397 morphology. With the exception of *NECTIN1*, the role of these genes in patterning craniofacial
398 structures is unknown, and further investigation is needed to gain better understanding of how
399 these genes may affect the face.

400

401 Previous GWASs and studies of facial dysmorphology have demonstrated that there are common
402 genetic factors underlying normal-range facial variation and orofacial clefting (Claes et al., 2018;
403 F. Liu et al., 2012; Weinberg et al., 2009). Our findings suggest that low-frequency coding
404 variants may also help explain this relationship. Although none of the other genes implicated
405 here have been shown to be involved in craniofacial development, *NECTIN1* is an established
406 player that has been linked to both syndromic and isolated forms of orofacial clefting (Avila et
407 al., 2006; Sozen et al., 2001; Suzuki et al., 2000). Individuals with cleft lip/palate-ectodermal
408 dysplasia syndrome (OMIM:225060) have distinctive facial features including an

409 underdeveloped lower jaw (Zlotogora, 1994), which is consistent with the facial segment (chin)
410 where the *NECTIN1* association was observed. Although not passing the genome-wide threshold,
411 *NECTIN1* also yielded some signals in modules representing the nose and cheek (Fig 3),
412 additional facial regions affected in this syndrome. Different variants in *NECTIN1* are likely
413 involved in normal-range variation and in craniofacial disorders, which may help explain
414 apparent differences in phenotypic severity. *NECTIN1* protein belongs to the subfamily of
415 immunoglobulin-like adhesion molecules which are key components of cell adhesion junctions
416 and play critical roles in the development of many tissues, including in the fusion of palatal
417 shelves during palatogenesis (Cobourne, 2004). A handful of *NECTIN1* mutations that can
418 potentially disrupt gene function have been documented in non-syndromic cleft patients (Oner &
419 Tastan, 2016; Scapoli et al., 2006; Tongkobpatch, Suphapeetiporn, Siriwan, & Shotelersuk,
420 2008). In the current study, two coding variants in *NECTIN1* contributed to the gene-level
421 significance, both predicted to be deleterious. We performed lookups of the face-associated
422 genes in a previous exome scan of a NSCL/P cohort (Leslie et al., 2017). *NECTIN1* yielded a
423 small p-value of 0.004, although not passing the Bonferroni significance threshold. Two other
424 genes, *TELO2* and *HFE*, did pass that threshold. These results are in line with previous evidence
425 suggesting a role for same genes in normal and abnormal facial development.
426

427 Our zebrafish experiments provided a strong support for the relevance of *nectin1a* in palate and
428 mandible development. The mutants displayed changes in the shape and size of both the palate
429 and the Meckel's cartilage, from which the mandibles evolved. This affected cartilage structure
430 in zebrafish mutants aligns well with the associated human anatomical region (chin and
431 mandible), where the effects of *NECTIN1* were observed in the MultiSKAT test. These findings
432 for the first time demonstrate a role of *NECTIN1* in normal-range facial variation. We highlight
433 the approach of interrogating human candidate genes in a biological context using the zebrafish
434 model, where dynamic gene expression can be assayed in a high throughput fashion. Those
435 candidate genes with spatiotemporal gene expression in the craniofacial domains then can be
436 evaluated in functional studies, were mutants may already be available from large scale
437 mutagenesis projects, or can be generated by CRISPR mediated gene editing.
438

439 With the hierarchical facial segmentation, we were able to identify genetic effects at different
440 scales. For example, the effects of *FTSJ1* were observed globally in the full face, and also locally
441 in specific modules on the side of the face. By contrast, the effect of *NECTIN1* was confined to
442 localized facial parts only. These patterns may help with understanding the mechanisms by
443 which genes act along the growth of facial structure. Our multivariate data-driven phenotyping
444 approach eliminates the need of preselecting traits, captures more variation in the facial shape,
445 and is more effective for gene mapping.
446

447 The current study is an important extension and complement of our prior work on common SNPs
448 (Claes et al., 2018). Here we exclusively focused on coding variants with MAF below 1%, which
449 have been omitted based no standard QC procedure from previous facial GWAS attempts. We
450 compared results from this study to those from our prior GWAS (Claes et al., 2018), and noted
451 that common variants in or near (within 500kb) the seven associated genes showed no evidence
452 of association ($p > 0.001$ for all) with the same facial modules. This indicates that the current
453 study generated distinct, non-overlapping knowledge on facial genetics, although it is possible
454 that there are trans-acting common GWAS SNPs that regulate the expression of the seven
455 identified genes during facial morphogenesis. Low-frequency variants showed larger magnitude
456 of effects compared to common variants in (Claes et al., 2018). It is necessary, however, to point
457 out that this difference could partially or completely be a result of the drastically smaller groups
458 of variant carriers, and we therefore refrain from overinterpreting the comparison.
459

460 Our study demonstrated the power of applying gene-based tests of low-frequency variants that
461 are usually untestable individually. While some significant genes harbor variants with a small p-
462 value in our single-variant association test, others would have been missed if not tested in
463 aggregate. With a moderate sample size of 2329, it is highly desirable to collapse low-frequency
464 variants into putative functional units and perform burden-style tests. In addition to an increase
465 in power, another key benefit with analyzing low-frequency coding variants collectively is the
466 improved biological interpretability compared to GWASs. The gene-centered design of coding
467 variant tests facilities much clearer biological implications and options for experimental follow-
468 up. Our success with the functional validation of *NECTIN1* provides a practical example. We
469 expect future better-powered studies to discover more biological pathways emerging from
470 analyses of low-frequency coding variants.
471

472 Replication of rare and low-frequency variant association signals presents unique challenges.
473 The prominent barrier is the limited sample size. The low numbers or even absence of the
474 carriers in independent populations hindered the replication efforts of our findings. Six out of the
475 seven genes identified were not testable in a separate cohort of 664 participants due to a lack of
476 variant carriers. Given our sample size and the ExomeChip design, this study was not adequately
477 powered to identify genes harboring extra rare variants that may also contribute to facial traits.
478 Although complex traits are not expected to have a large fraction of the heritability explained by
479 rare and private variants, such variants may be influential, predictive, and actionable at the
480 individual level. In this regard, whole exome or whole genome sequencing of large samples
481 holds promise to give deeper insights into the role rare variants in facial morphology.
482

483 Like many other complex traits, research with a focus on uncovering the genetic architecture of
484 facial morphology is confronted with the challenge of missing heritability (Cole et al., 2017;
485 Tsagkrasoulis, Hysi, Spector, & Montana, 2017). Our study has extended the paradigm of

486 genetic factors involved in facial morphology from common to low frequency variants and
487 highlighted novel candidate genes that may lead to encouraging follow-ups. Given that rare and
488 low-frequency genetic variation might be highly specific to certain populations, and facial shapes
489 have distinctive ancestry features, future studies may benefit from extending the discovery of
490 influential low-frequency variants to other ethnic groups.

491
492 **Acknowledgements**
493 The authors thank all the dedicated staff, collaborators, and participants for their contribution to
494 the study.
495

496 **Funding**
497 This study was supported by the National Institute for Dental and Craniofacial Research (NIDCR,
498 (<http://www.nidcr.nih.gov/>) through the following grants: U01-DE020078 to SMW and MLM,
499 R01-DE016148 to SMW and MLM, R01-DE027023 to SMW and JRS, and X01-HG007821 to
500 MLM, SMW, and EF. Funding for initial genomic data cleaning by the University of
501 Washington was provided by contract #HHSN268201200008I from the NIDCR awarded to the
502 Center for Inherited Disease Research (CIDR, <https://www.cidr.jhmi.edu/>). The funders had no
503 role in study design, data collection and analysis, decision to publish, or preparation of the
504 manuscript.

505
506 **Data availability**
507 All of the genotypic markers are available to the research community through the dbGaP
508 controlled-access repository (<https://dbgap.ncbi.nlm.nih.gov/>) at accession phs000949.v1.p1. The
509 raw source data for the phenotypes – the 3D facial surface models – are available for the 3D
510 Facial Norms dataset through the FaceBase Consortium (www.facebase.org). Access to these 3D
511 facial surface models requires proper institutional ethics approval and approval from the
512 FaceBase data access committee. KU Leuven provides the spatially dense facial mapping
513 software, free to use for academic purposes: MeshMonk
514 (<https://github.com/TheWebMonks/meshmonk>).
515
516

517 **Reference**
518
519 Adhikari, K., Fuentes-Guajardo, M., Quinto-Sánchez, M., Mendoza-Revilla, J., Camilo Chacón-
520 Duque, J., Acuña-Alonso, V., et al. (2016). A genome-wide association scan implicates
521 DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. *Nature Communications*, 7(1), 11616. <http://doi.org/10.1038/ncomms11616>
522

523 Amsterdam, A., & Hopkins, N. (2003). Retroviral-Mediated Insertional Mutagenesis in
524 Zebrafish. *Methods in Cell Biology*, 77, 3–20. [http://doi.org/10.1016/S0091-679X\(04\)77001-6](http://doi.org/10.1016/S0091-679X(04)77001-6)

525

526 Auer, P. L., Reiner, A. P., & Leal, S. M. (2016). The effect of phenotypic outliers and non-
527 normality on rare-variant association testing. *European Journal of Human Genetics : EJHG*,
528 24(8), 1188–1194. <http://doi.org/10.1038/ejhg.2015.270>

529 Avila, J. R., Jezewski, P. A., Vieira, A. R., Orioli, I. M., Castilla, E. E., Christensen, K., et al.
530 (2006). PVRL1 variants contribute to non-syndromic cleft lip and palate in multiple
531 populations. *American Journal of Medical Genetics Part A*, 140(23), 2562–2570.
532 <http://doi.org/10.1002/ajmg.a.31367>

533 Cha, S., Lim, J. E., Park, A. Y., Do, J.-H., Lee, S. W., Shin, C., et al. (2018). Identification of
534 five novel genetic loci related to facial morphology by genome-wide association studies.
535 *Bmc Genomics*, 19(1), 481–17. <http://doi.org/10.1186/s12864-018-4865-9>

536 Chen, J., Bardes, E. E., Aronow, B. J., & Jegga, A. G. (2009). ToppGene Suite for gene list
537 enrichment analysis and candidate gene prioritization. *Nucleic Acids Research*, 37(Web
538 Server), W305–W311. <http://doi.org/10.1093/nar/gkp427>

539 Claes, P., Roosenboom, J., White, J. D., Swigut, T., Sero, D., Li, J., et al. (2018). Genome-wide
540 mapping of global-to-local genetic effects on human facial shape. *Nature Genetics*, 50(3), 1–
541 16. <http://doi.org/10.1038/s41588-018-0057-4>

542 Cobourne, M. T. (2004). The complex genetics of cleft lip and palate. *European Journal of
543 Orthodontics*, 26(1), 7–16.

544 Cole, J. B., Manyama, M., Kimwaga, E., Mathayo, J., Larson, J. R., Liberton, D. K., et al.
545 (2016). Genomewide Association Study of African Children Identifies Association of
546 SCHIP1 and PDE8A with Facial Size and Shape. *PLoS Genetics*, 12(8), e1006174.
547 <http://doi.org/10.1371/journal.pgen.1006174>

548 Cole, J. B., Manyama, M., Larson, J. R., Liberton, D. K., Ferrara, T. M., Riccardi, S. L., et al.
549 (2017). Human Facial Shape and Size Heritability and Genetic Correlations. *Genetics*,
550 205(2), 967–978. <http://doi.org/10.1534/genetics.116.193185>

551 Crouch, D. J. M., Winney, B., Koppen, W. P., Christmas, W. J., Hutnik, K., Day, T., et al.
552 (2018). Genetics of the human face: Identification of large-effect single gene variants.
553 *Proceedings of the National Academy of Sciences of the United States of America*, 115(4),
554 E676–E685. <http://doi.org/10.1073/pnas.1708207114>

555 Dutta, D., Scott, L., Boehnke, M., & Lee, S. (2019). Multi-SKAT: General framework to test for
556 rare-variant association with multiple phenotypes. *Genetic Epidemiology*, 43(1), 4–23.
557 <http://doi.org/10.1002/gepi.22156>

558 GTEx Consortium. (2013). The Genotype-Tissue Expression (GTEx) project. *Nature Genetics*,
559 45(6), 580–585. <http://doi.org/10.1038/ng.2653>

560 Kamat, M. A., Blackshaw, J. A., Young, R., Surendran, P., Burgess, S., Danesh, J., et al. (2019).
561 PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations.
562 *Bioinformatics*, 35(22), 4851–4853. <http://doi.org/10.1093/bioinformatics/btz469>

563 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of
564 Embryonic-Development of the Zebrafish. *Developmental Dynamics*, 203(3), 253–310.
565 <http://doi.org/10.1002/aja.1002030302>

566 Lee, M. K., Shaffer, J. R., Leslie, E. J., Orlova, E., Carlson, J. C., Feingold, E., et al. (2017).
567 Genome-wide association study of facial morphology reveals novel associations with
568 FREM1 and PARK2. *PLoS ONE*, 12(4), e0176566–13.
569 <http://doi.org/10.1371/journal.pone.0176566>

570 Leslie, E. J., Carlson, J. C., Shaffer, J. R., Buxó, C. J., Castilla, E. E., Christensen, K., et al.
571 (2017). Association studies of low-frequency coding variants in nonsyndromic cleft lip with
572 or without cleft palate. *American Journal of Medical Genetics Part B: Neuropsychiatric
573 Genetics*, 173(6), 1531–1538. <http://doi.org/10.1002/ajmg.a.38210>

574 Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of
575 a correlation matrix. *Heredity*, 95(3), 221–227. <http://doi.org/10.1038/sj.hdy.6800717>

576 Liu, D. J., Peloso, G. M., Yu, H., Butterworth, A. S., Wang, X., Mahajan, A., et al. (2017).
577 Exome-wide association study of plasma lipids in >300,000 individuals. *Nature Genetics*,
578 49(12), 1758–1766. <http://doi.org/10.1038/ng.3977>

579 Liu, F., van der Lijn, F., Schurmann, C., Zhu, G., Chakravarty, M. M., Hysi, P. G., et al. (2012).
580 A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in
581 Europeans. *PLoS Genetics*, 8(9), e1002932–13. <http://doi.org/10.1371/journal.pgen.1002932>

582 Lu, X., Peloso, G. M., Liu, D. J., Wu, Y., Zhang, H., Zhou, W., et al. (2017). Exome chip meta-
583 analysis identifies novel loci and East Asian–specific coding variants that contribute to lipid
584 levels and coronary artery disease. *Nature Genetics*, 49(12), 1722–1730.
585 <http://doi.org/10.1038/ng.3978>

586 Marouli, E., Graff, M., Medina-Gomez, C., Lo, K. S., Wood, A. R., Kjaer, T. R., et al. (2017).
587 Rare and low-frequency coding variants alter human adult height. *Nature*, 542(7640), 186–
588 190. <http://doi.org/10.1038/nature21039>

589 McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., et al. (2010).
590 GREAT improves functional interpretation of cis-regulatory regions. *Nature Biotechnology*,
591 28(5), 495–501. <http://doi.org/10.1038/nbt.1630>

592 Oner, D. A., & Tastan, H. (2016). Identification of Novel Variants in the PVRL1 Gene in
593 Patients With Nonsyndromic Cleft Lip With or Without Cleft Palate. *Genetic Testing and
594 Molecular Biomarkers*, 20(5), 269–272. <http://doi.org/10.1089/gtmb.2015.0276>

595 O'Reilly, P. F., Hoggart, C. J., Pomyen, Y., Calboli, F. C. F., Elliott, P., Jarvelin, M.-R., & Coin,
596 L. J. M. (2012). MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in
597 GWAS. *PLoS ONE*, 7(5), e34861–12. <http://doi.org/10.1371/journal.pone.0034861>

598 Paternoster, L., Zhurov, A. I., Toma, A. M., Kemp, J. P., Pourcain, B. S., Timpson, N. J., et al.
599 (2012). Genome-wide Association Study of Three-Dimensional Facial Morphology
600 Identifies a Variant in PAX3 Associated with Nasion Position. *The American Journal of*
601 *Human Genetics*, 90(3), 478–485. <http://doi.org/10.1016/j.ajhg.2011.12.021>
602 Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: predicting
603 the deleteriousness of variants throughout the human genome. *Nucleic Acids Research*,
604 47(D1), D886–D894. <http://doi.org/10.1093/nar/gky1016>
605 Richmond, S., Howe, L. J., Lewis, S., Stergiakouli, E., & Zhurov, A. (2018). Facial Genetics: A
606 Brief Overview. *Frontiers in Genetics*, 9, 462. <http://doi.org/10.3389/fgene.2018.00462>
607 Scapoli, L., Palmieri, A., Martinelli, M., Vaccari, C., Marchesini, J., Pezzetti, F., et al. (2006).
608 Study of the PVRL1 gene in Italian nonsyndromic cleft lip patients with or without cleft
609 palate. *Annals of Human Genetics*, 70(Pt 3), 410–413. <http://doi.org/10.1111/j.1529-8817.2005.00237.x>
610 Shaffer, J. R., Orlova, E., Lee, M. K., Leslie, E. J., Raffensperger, Z. D., Heike, C. L., et al.
611 (2016). Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human
612 Facial Morphology. *PLoS Genetics*, 12(8), e1006149–21.
613 <http://doi.org/10.1371/journal.pgen.1006149>
614 Sivasubbu, S., Balciunas, D., Amsterdam, A., & Ekker, S. C. (2007). Insertional mutagenesis
615 strategies in zebrafish. *Genome Biology*, 8(S1), S9. <http://doi.org/10.1186/gb-2007-8-s1-s9>
616 Sozen, M. A., Suzuki, K., Tolarova, M. M., Bustos, T., Fernández Iglesias, J. E., & Spritz, R. A.
617 (2001). Mutation of PVRL1 is associated with sporadic, non-syndromic cleft lip/palate in
618 northern Venezuela. *Nature Genetics*, 29(2), 141–142. <http://doi.org/10.1038/ng740>
619 Suzuki, K., Hu, D., Bustos, T., Zlotogora, J., Richieri-Costa, A., Helms, J. A., & Spritz, R. A.
620 (2000). Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor,
621 in cleft lip/palate-ectodermal dysplasia. *Nature Genetics*, 25(4), 427–430.
622 <http://doi.org/10.1038/78119>
623 Thisse, C., & Thisse, B. (2008). High-resolution *in situ* hybridization to whole-mount zebrafish
624 embryos. *Nature Protocols*, 3(1), 59–69. <http://doi.org/10.1038/nprot.2007.514>
625 Tongkobpatch, S., Suphapeetiporn, K., Siriwan, P., & Shotelersuk, V. (2008). Study of the
626 poliovirus receptor related-1 gene in Thai patients with non-syndromic cleft lip with or
627 without cleft palate. *International Journal of Oral & Maxillofacial Surgery*, 37(6), 550–553.
628 <http://doi.org/10.1016/j.ijom.2008.01.024>
629 Tsagkrasoulis, D., Hysi, P., Spector, T., & Montana, G. (2017). Heritability maps of human face
630 morphology through large-scale automated three-dimensional phenotyping. *Scientific*
631 *Reports*, 7(1), 1–18. <http://doi.org/10.1038/srep45885>
632 Walker, M. B., & Kimmel, C. B. (2007). A two-color acid-free cartilage and bone stain for
633 zebrafish larvae. *Biotechnic & Histochemistry*, 82(1), 23–28.
634 <http://doi.org/10.1080/10520290701333558>
635

636 Watanabe, K., Taskesen, E., van Bochoven, A., & Posthuma, D. (2017). Functional mapping and
637 annotation of genetic associations with FUMA. *Nature Communications*, 8(1), 1826.
638 <http://doi.org/10.1038/s41467-017-01261-5>

639 Weinberg, S. M., Cornell, R., & Leslie, E. J. (2018). Craniofacial genetics: Where have we been
640 and where are we going? *PLoS Genetics*, 14(6), e1007438.
641 <http://doi.org/10.1371/journal.pgen.1007438>

642 Weinberg, S. M., Naidoo, S. D., Bardi, K. M., Brandon, C. A., Neiswanger, K., Resick, J. M., et
643 al. (2009). Face shape of unaffected parents with cleft affected offspring: combining three-
644 dimensional surface imaging and geometric morphometrics. *Orthodontics & Craniofacial*
645 *Research*, 12(4), 271–281. <http://doi.org/10.1111/j.1601-6343.2009.01462.x>

646 Weinberg, S. M., Roosenboom, J., Shaffer, J. R., Shriver, M. D., Wysocka, J., & Claes, P.
647 (2019). Hunting for genes that shape human faces: Initial successes and challenges for the
648 future. *Orthodontics & Craniofacial Research*, 22 Suppl 1(S1), 207–212.
649 <http://doi.org/10.1111/ocr.12268>

650 Westerfield, M. (1994). A guide for the laboratory use of zebrafish Danio (Brachydanio) rerio.
651 In: University of Oregon Press, Eugene.

652 White, J. D., Ortega-Castrillón, A., Matthews, H., Zaidi, A. A., Ekrami, O., Snyders, J., et al.
653 (2019). MeshMonk: Open-source large-scale intensive 3D phenotyping. *Scientific Reports*,
654 9(1), 6085. <http://doi.org/10.1038/s41598-019-42533-y>

655 Zlotogora, J. (1994). Syndactyly, Ectodermal Dysplasia, and Cleft Lip/Palate. *Journal of*
656 *Medical Genetics*, 31(12), 957–959. <http://doi.org/10.1136/jmg.31.12.957>

657 **Supporting Information**

658

659 **S1 Fig. Q-Q plot of gene-based MultiSKAT tests by facial module**

660 **S2 Fig. FUMA enrichment results**

661 **S3 Fig. GTEx expression of MultiSKAT significant genes in tissues relevant to facial**
662 **morphology.** Dendrogram denotes similarity in expression level. TPM, transcripts per million

663 **S4 Fig. Magnitude of variant effect on facial modules, quantified by the Euclidean distance**
664 **between averaged faces of different genotype groups.** The 95% confidence interval was
665 obtained by 5000 bootstraps. The farther away the blue (common) or red (low-freq) rectangular
666 boxes fall from line $x=0$, the larger the group distances and the greater the magnitude of effects.
667 Common variants that yielded significant GWAS association in the same cohort with the same
668 modules are used as a comparison to low-frequency variants. Genotype groups column indicates
669 the two groups of people of whom the faces were averaged and distance was computed. For
670 example, 0 vs 1/2 means minor allele homozygotes vs the remaining. The following two columns
671 indicate sizes of the two groups in comparison. Low-frequency variants had large effects
672 compared to previously reported common variants, although this could be a result from the much
673 smaller size of carrier group and may not reflect genuine greater effects of low-frequency
674 variants.

675 **S1 Table. Module-wide association results of genes identified by MultiSKAT.** Show modules
676 with a p-value < 10E-4.

677 **S2 Table. SKAT and CMC test results of the association between the seven facial genes and**
678 **NSCL/P, retrieved from a previous exome-wide gene-based association study of NSCL/P**

679 **S3 Table. Functional prediction of individual variants in significant genes by CADD**
680 **GRCh37-v1.4**

681 **S4 Table. PhenoScanner lookups for variants in seven significant genes.** Show existing
682 associations involving these variants with a p value < 10e-4.