

1

2

3

4

5

6 **Title:**

7 QuickFigures: a tool to quickly transform microscope images into quality figures

8

9 **Short Title:**

10 QuickFigures: a tool to quickly transform microscope images into quality figures

11

12 **Author names and affiliations:**

13 ***Gregory Mazo**, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

14 *Corresponding Author

15 **Abstract:**

16 Publications involving fluorescent microscopy generally contain many panels with split
17 channels, merged images, scale bars and label text. Assembling and editing these figures with
18 even spacing, consistent font, text position, accurate scale bars and other features can be tedious
19 and time consuming. In order to save time and streamline the process I have created a toolset
20 called [QuickFigures](#).

21 Introduction, Results, Discussion

22 Microscopy intensive scientific manuscripts often include figures with large numbers of
23 fluorescent microscope images often split by channel into separate panels. A major publication
24 can contain over 200 image panels! (1) To create a professional looking publication one must
25 have consistent format within and between figures. However, commercial softwares do not
26 provide quick ways to split channels and organize panels to generate figures without scores of
27 error prone and repetitive mouse drags. Furthermore, major edits to figures like these are
28 troublesome whether using Adobe Illustrator or Photoshop. For example, cropping or reordering
29 over a dozen identically sized panels in Photoshop without mistakes or accidental changes in
30 panel spacing cannot be done conveniently nor quickly. Although some tools for creating and
31 formatting scientific figures have been created (2,3), we found that these did not suit our needs
32 because they did not save time on many irksome but important steps. Therefore, I created
33 QuickFigures, a set of tools that 1) can produce figures of sufficient quality for any journal, 2) is
34 user friendly and easy to learn, 3) can save hours of time, 4) can export files into popular
35 softwares like Adobe Illustrator, Microsoft Powerpoint, and Inkscape 5) is versatile enough to
36 generate any conceivable style, layout, variation or format of figure, 6) is used as a free PlugIn
37 for ImageJ, making adoption easy for researchers already familiar with ImageJ.

38 I have also created complete video tutorials (See Supplemental Materials, and [link](#)) as a
39 guide to help first time users. This series of videos also clearly demonstrates the usefulness of
40 QuickFigures. Below is a description of the figure production process.

41 After installing QuickFigures into ImageJ, new toolbars appear (**Figure 1**, see red
42 arrows). Users can create a figure simply by first opening a multidimensional image stack in
43 ImageJ, and then clicking the “Quick Figure” button that is visible on the Object Tools toolbar of
44 Quickfigures (**Figure 1**, see purple arrow). This one click creates a figure with a series of split

45 channel images, merged image, channel labels and scale bar. The user can edit every part of this
46 figure. QuickFigures automates and facilitates mundane tasks that arise naturally during the
47 editing process. Changes in panel spacing or panel order can be quickly applied to figures with
48 dozens of panels. Insets can be created and edited easily with the Inset Tool (**Figure 1**, see
49 Orange arrow and Movie S1). When one resizes an image panel, scale bars appropriately adjust.
50 Text signifying each channel is colored and aligned automatically. Image resolution can be
51 changed as needed. When a user adjusts the Min/Max of one channel, QuickFigures alters every
52 image panel that contains that channel (Merge and Split) ensuring consistency of all adjustments
53 across groups of multichannel images. Importantly, a user can set a default or “template” for
54 figures to ensure that a single consistent format is automatically applied to newly created figures
55 (Templates can also be applied to existing figures). In aggregate, several slow, or complex tasks
56 are made fast and simple.

57 QuickFigures was designed to feel familiar and logical to anyone who has used
58 Powerpoint, Photoshop, Illustrator or any commercial software. Every item in QuickFigures is an
59 editable object that can be clicked on, moved, resized, rotated, hidden, deleted, aligned, edited or
60 duplicated (**Figure 1**, see green arrows). A simplistic set of menus and toolbars allows the user to
61 add an unlimited number of items such as text, images, drawings, arrows, layers, plots, shapes
62 and additional multichannel images. Right clicking and double clicking on items reveals popup
63 menus and options dialogs for the clicked item. With minimal instruction, any researcher can
64 understand the software and feel comfortable using it. The specialized features of QuickFigures
65 are designed to require mere minutes explanation while saving time and providing convenience.
66 After a user has created work in QuickFigures, a single click can generate the same figure in
67 Adobe Illustrator. QuickFigures can also export files into Powerpoint (.ppt) or Scaleable vector
68 graphic (.svg), a format that can be opened by many popular softwares including Adobe
69 Illustrator. Exported figures are then suitable for further editing, presentation or publication.

70

71 **Materials and Methods.**

72 QuickFigures was written in Java, the same language as ImageJ. Existing ImageJ code was used
73 for several key processes including 1) keeping track of an images spatial scale and units, 2) the
74 assembly of channels into a merged image based on channel colors and display range, 3) scaling
75 and rotating images (Using the bilinear interpolation algorithm), 4) keeping track of channel
76 colors, channel order and metadata about channel names, exposure times 5) Serializing/saving
77 ImageJ's multichannel images. Since several complex processes could be performed using
78 ImageJ, this eliminated the need to devise and implement new algorithms. However, the
79 connection between QuickFigures core components and ImageJ was designed with an interface-
80 based architecture such that ImageJ could be replaced by another package if future needs demand
81 it. The user interface for QuickFigures was written using java foundation classes and can
82 function on any operating system (Tested on Window and MacOsX). The QuickFigures package
83 can also be reused to construct other softwares.

84 **Import and Export:** The best (and most popular) tool for importing proprietary microscopy file
85 formats into ImageJ is the **Bio-Formats Importer** created by the OME consortium (4) (See
86 Movie S5 for use instructions and demonstration). This Importer also reads important metadata
87 regarding spatial scale and channel names/channel colors. Assuming that a .Zvi, .Czi, .Lif or
88 other microscopy format file is opened using Bio-Formats, QuickFigures will use the metadata as
89 a basis for the initial channel labels within a figure. In order to test the accuracy of channel
90 names, a series of example images stained with known markers in known colors was opened;
91 QuickFigures' channel labels were consistent with the channel names given by Bio-Formats.

92 In order to export figures to '.ppt' and '.svg' file formats, two toolkits created by the
93 Apache Foundation were used as libraries (POI for Powerpoint, <https://poi.apache.org/> and Batik

94 for SVG, <https://xmlgraphics.apache.org/batik/>). Instructions on how to install these libraries are
95 included in the tutorial videos (Movie S5). To test the export, I created example figures with all
96 types of objects including Images, Text, Scale Bars, multiple colors, arrows and other shapes.
97 Exported figures resembled originals with matching details such as PPI of image panels, fonts,
98 colors, width of lines etc.

99 **Other Testing.** QuickFigures includes scores of objects, windows, menus, and components.
100 Although most features could be tested simply by using them on multiple example figures, a few
101 functions of QuickFigures demanded methodical testing. Of these, accuracy of scale bars was the
102 most crucial feature. Since ImageJ maintains information on the spatial scale of images, that
103 information is used by QuickFigures's Image panel objects and scale bar objects. To test the
104 accuracy, appropriate scale bar sizes for several images were first calculated manually and then
105 compared to the sizes of QuickFigures scale bar objects. Subsequently, ImagePanels were
106 resized to make sure that the scale bar objects appropriately changed size. Next, the units and
107 spatial scale of the ImageJ Image was changed to make sure that the scale bar changed
108 appropriately. In order to test complex features like the figure format menu commands, every
109 possible type of figure edit was performed on a single figure and that figure's format was saved.
110 That saved format was then applied to a series of figures to confirm that the details of a saved
111 figure format was indeed reflected in the target figure.

112 **Practical Use Test:** After creation of an early version, QuickFigures was used constantly for
113 preparation of figures for presentations for a period 3-5 years. Every format, layout and style of
114 figure was generated for various scientific projects. During that time any irregularities, error
115 messages and limitations that appeared were also fixed. Because of this practical testing, one can
116 be confident that QuickFigures is suitable for widespread use.

117 **Installation:** QuickFigures may be downloaded from [here](#). QuickFigures can be installed into
118 ImageJ simply by placing file into plugins folder of ImageJ. (see Movie S5)

119 **Acknowledgements:** We acknowledge Professor Bryan Tsou. Images used for the
120 demonstration videos and testing were taken using the microscopes within the Tsou Lab. We
121 also acknowledge Dr. Brian O'Rourke who provided advice regarding this manuscript.
122 **Competing interests:** Authors declare that NO conflicting interests exist.

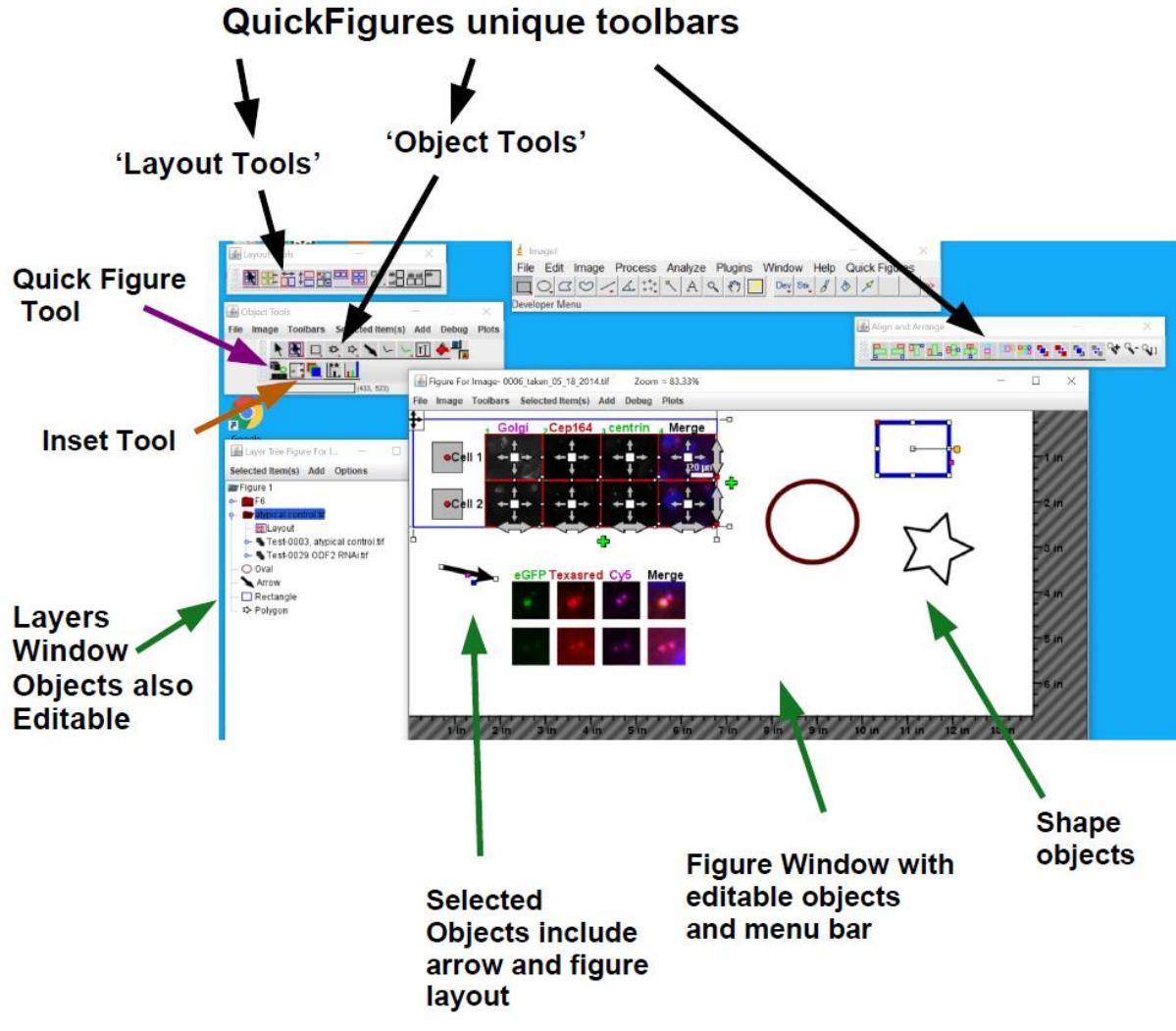


Figure 1: Appearance of ImageJ with QuickFigures installed. Key features of QuickFigures user interface are shown including the Figure, Toolbars and Layers Window.

123

124

125 **References:**

126 1. Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MFB. Spatial Control of Primary
127 Ciliogenesis by Subdistal Appendages Alters Sensation-Associated Properties of Cilia.
128 Dev Cell [Internet]. 2016;39(4):424–37. Available from:
129 <http://dx.doi.org/10.1016/j.devcel.2016.10.006>

130 2. Aigouy B, Mirouse V. ScientiFig: A tool to build publication-ready scientific figures. Nat
131 Methods. 2013;10(11):1048.

132 3. Mutterer J, Zinck E. Quick-and-clean article figures with FigureJ. J Microsc. 2013 Jul
133 26;252.

134 4. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al. Metadata
135 matters: Access to image data in the real world. J Cell Biol. 2010;189(5):777–82.

136

137