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Abstract

Rhythms of the brain are generated by neural oscillations across multiple frequencies,
which can be observed with multiple modalities. Following the natural log linear law of
frequency distribution, these oscillations can be decomposed into distinct frequency
intervals associated with specific physiological processes. This perspective on neural
oscillations has been increasingly applied to study human brain function and related
behaviors. In practice, relevant signals are commonly measured as a discrete time series,
and thus the sampling period and number of samples determine the number and ranges
of decodable frequency intervals. However, these limits have been often ignored by
researchers who instead decode measured oscillations into multiple frequency intervals
using a fixed sample period and numbers of samples. One reason for such misuse is the
lack of an easy-to-use toolbox to implement automatic decomposition of frequency
intervals. We report on a toolbox with a graphical user interface for achieving local and
remote decoding rhythms of the brain system (DREAM) which is accessible to the
public via GitHub. We provide worked examples of DREAM used to investigate
frequency-specific performance of both neural (spontaneous brain activity) and
neurobehavioral (in-scanner head motion) oscillations. DREAM analyzed the head
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motion oscillations and found that younger children moved their heads more than older
children across all five frequency intervals whereas boys moved more than girls in the
age interval from 7 to 9 years. It is interesting that the higher frequency bands contains
more head movements, and showed stronger age-motion associations but the weaker
sex-motion interactions. Using the fast functional magnetic resonance imaging data
from the Human Connectome Project, DREAM mapped the amplitude of these neural
oscillations into multiple frequency bands and evaluated their test-retest reliability. A
novel result indicated that the higher frequency bands exhibited more reliable amplitude
measurements, implying more inter-individual variability of the amplitudes for the
higher frequency bands. In summary, these findings demonstrated the applicability of
DREAM for frequency-specific human brain mapping as well as the assessments on their
measurement reliability and validity.

Keywords: brain oscillations, slow frequency, reliability, head motion

1 Introduction

Rhythms of the brain are generated by neural oscillations occurring across multiple
frequencies [5]. The natural logarithm linear law (N3L) offers a theoretical framework
for parcellating these brain oscillations into multiple frequency intervals linking to
distinct physiological roles [22]. Remarkably, when graphed on the natural logarithm
scale, the centers of each frequency interval fall on adjacent integer points. Thus,
distances between adjacent center points are isometric on the natural logarithm scale,
resulting in a full parcellation of the whole frequency domain where each parcel of the
frequencies is fixed in theory, namely frequency intervals. These frequency intervals
have been repeatedly observed experimentally [6]. This characteristic suggests that
distinct physiological mechanisms may contribute to distinct intervals. Functional
magnetic resonance imaging (fMRI), a non-invasive and safe technique with an
acceptable trade-off between spatial and temporal resolution, has the potential to
contribute to the study of certain neural oscillations in the human brain in vivo. In
early fMRI studies of the human brain, researchers tended to treat oscillations across
different frequencies without differentiation. Low-frequency oscillations measured by
resting-state fMRI (rfMRI) have been assessed primarily in the frequency range of 0.01

to 0.1 Hz, a range in which spontaneous brain activity has high signal amplitude [4}20].

While such efforts have been somewhat informative, treating this broad frequency range
in a unitary manner may conceal information carried by different frequency intervals.
To address this issue, an early study decomposed the rfMRI signals into multiple
frequency intervals using the N3L theory (Slow-5: 0.01 - 0.027 Hz, Slow-4: 0.027 - 0.073
Hz, Slow-3: 0.073 - 0.198 Hz, Slow-2: 0.198 - 0.25 Hz) [47]. This exploration
demonstrated the feasibility of mapping distributional characteristics of oscillations’
amplitude in both space and time across multiple frequency intervals in the brain.
Since then, an increasing number of rfMRI studies have employed such methods by
directly applying these frequency intervals, and have detected frequency-dependent
differences in brain oscillations in patients. Specifically, these differences were mostly
evident between Slow-4 and Slow-5 amplitudes |141[16}[19,[21}[28}[42]. Such
frequency-dependent phenomena have also been explored using other rfMRI metrics

including regional homogeneity detected in the Slow-3 and Slow-5 frequency ranges [34].

While the lower and upper bounds of the frequency intervals are fixed in theory, their
highest and lowest detectable frequencies and frequency resolution are determined by
the sampling parameters (e.g., rate and duration) in computational practice. However,
the above-mentioned studies applied the frequency intervals from earlier studies [8}/47]
rather than to use those matching their actual sampling settings. To address this
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situation, we developed an easy to use toolbox to decode the frequency intervals by
applying the N3L theory. This toolbox, named DREAM, is based on MATLAB with a
graphical user interface (GUI). Here, we introduce the N3L algorithm and its DREAM
implementation. Neural oscillations reflected by the human brain spontaneous activity
measured with resting-state functional MRI and head motion data during mock MRI
scans were employed as two worked examples to demonstrate the use of DREAM to
perform frequency analyses.

2 Methods and Algorithms

Neuronal brain signals are temporally continuous but they are almost always measured
as discrete data for practical reasons. The characteristics of the sampled data should
meet the criterion of the sampling theorem proposed by American electrical engineers
Harry Nyquist and Claude Shannon. The core algorithm to determine the frequency
boundaries of measured neuronal signals in DREAM is based on the Nyquist-Shannon
sampling theorem. Specifically, per the theorem, sampling frequency and sampling time
determine the highest and lowest frequencies that can be detected and reconstructed.
Sampling data retains most of the information contained in the original signals if the
sampling frequency is at least twice the maximum frequency of the continuous signals.
As for neuronal signals, the highest frequency that could be detected and reconstructed
is determined by the sampling frequency, or by the sampling interval which is equal to
the reciprocal of the sampling frequency, as shown in formula (1)

1
fmaa: = ﬂ (1)

where f,q: represents the highest frequency that could be detected in the neuronal
signal and Tk represents the sampling interval.

The lowest frequency in neuronal signals that could be detected depends on the
sampling time. As shown in formula (2), in order to distinguish the lowest frequency in
neuronal signals, the sampling time should be equal to or larger than the reciprocal of
two times the lowest frequency

T> 1
o 2fmzn
where T represents the sampling time, and f,,;, represents the lowest frequency in
neuronal signals that could be distinguished.

Since the sampling time is equal to the number of samples multiplied by the

sampling interval, the lowest frequency can be calculated by formula (3):

(2)

1

Smin = OINTH (3)

where N represents the number of samples.

According to the N3L theory, neural oscillations in mammalian brain formed a linear
hierarchical organization of multiple frequency bands when regressed on a natural
logarithmic scale. The center of each band would fall on each integer of the natural
logarithmic scale (Fig. 1-1). Thus, adjacent bands have constant intervals that equals to
one, which correspond to the approximately constant ratios of adjacent bands on the
linear scale (Fig. 1-2). With the highest and lowest frequencies reconstructed, N3L can
derive the number of decoded frequencies and the boundaries of each frequency interval
(Fig. 1-3). Accordingly, when graphed on the natural log scale, the center of each
decoded frequency is an integer. Thus, adjacent center points on the natural log scale
are equidistant, which corresponds to the same proportion of adjacent center points’
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Figure 2] DREAM Flash

values on the linear scale. Based upon this theorem, after performing a linear regression
analysis for the highest and lowest frequencies acquired previously, we can determine
the central frequencies, as well as the number frequency intervals that can be decoded.
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Figure 1. The flowchart on the DREAM algorithm. (1) N3L theory defines an
oscillator with a length-one frequency band centered at n, i.e., OSC(n), in the natural
log space. (2) In original frequency space, it expands the frequency band (e" =95, en*0-5)
Hz. (3) This frequency band can be discretized with a sampling procedure with N points
and T rate in terms of the classical signal theory. (4) This computational frequency
band is for a band-pass filtering process to extract the OSC(n) from the raw time series.

Finally, the decoding process integrated in DREAM performs band-pass filtering
with the frequency intervals provided by DREAM in the previous steps (Fig. 1-4). This
is implemented by the MATLAB built-in function fft and ifft to perform direct and
inverse time-frequency transformation on the signals for individual decoded frequency
intervals, respectively. All the above steps are illustrated as the flowchart in Figure 1.

Interface and Usage

DREAM

has been shared and released
with the Connectome
Computation System [36].
After downloading

the package at \GitHub, users
will need to add the directory
where the package is stored
into the MATLAB path. The
package can then be launched
by entering “DREAM”

in the MATLAB command
line. DREAM integrates

its GUI (two buttons)

into its flash screen (Fig. 2).
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Program Interface

Figure [3 DREAM DirTree
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Data

Data
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Users should enter or organize their
data into the predefined directory
structure (Fig. 3) before start
processing the data. The work
directory is where the subject
directories are stored (full path).
Individual data should be stored

in each subject directory or a
sub-folder inside (data directory).
DREAM has a main interface

(Fig. 4) for setting up the structure
(the left side) and previewing

the plots of time series from

the data selected (the right side).

GUI Usage

We introduce how to use the graphical interface step by step in below. The circled
numbers in Figure 4 correspond to the analyzing steps in this section.

4 Dreas
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Figure 4. The main interface of DREAM.

e Step 1 - select the data type: Click the drop-down box to choose the data type
to be analyzed.

e Step 2 - set up the work directory: Click the path selection button to set the
work directory in the dialog box that pops up.

e Step 3 - batch process: Select the subject list file in the popped-up dialog box
by clicking the file selection button.
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e Step 4 - set up sampling rate: Enter the sampling interval in seconds (Tg) in 1
the input box (in some cases, this can be automatically extracted from the header 1
information). 129

e Step 5 (optional) - data directory: If the data are stored in a sub-folder inside 130
the subject directory, type the name of the data directory in the input box. 131

After all the above parameters are set up, data meeting the requirement will appear 13
in the list-box (Fig. 4-6), from where the user can remove unwanted data by selecting 133
the file name and clicking the Remove button. Finally, by clicking the Divide button, 13
a user can start the decoding program. The outputs contain a set of decoded files and a 135
csv file that records the boundary frequencies of each decoded band. The outcomes can 13
be directly used for subsequent analyses. 137

3 DREAMI1: Frequency-dependent oscillations of 130
in-scanner head motion in 3-16 years-old children ..

In-scanner head motion has been treated as a confound in fMRI studies, especially in 140
studies of children and patients with psychiatric disorders. Many studies have shown 141
the effects of motion on fMRI results such as increases of short-distance correlations and 1
decreases of long-distance correlations in rfMRI-derived connectivity metrics [23,/27,38]. 14
Researchers have proposed various methods to correct motion effects in fMRI studies. 1
In contrast, studying head motion as a neurobehavioral trait has long been overlooked s
(see an exception in [41]), especially in children. Here, we use DREAM to quantify head 1

motion data acquired from preschool and school children in a mock scanner using a 147
novel multi-frequency perspective. We hypothesized that: 1) head motion is a 148
behavioral trait associated with age; 2) there are sex differences in head motion in 149
children; and 3) the head motion effects are frequency-dependent. 150
Participants and Data Acquisition 151
We recruited 94 participants (47 females) between 3 to 16 years of age as part of the 152
Chinese Color Nest Project| [39,48], a long-term (2013-2022) large-scale effort on 153
normative research for lifespan development of mind and brain (CLIMB)) [9]. All 154
participants were from groups visiting during the Public Science Open Day of the 1
Chinese Academy of Sciences, with the approval of at least one legal guardian. 156

The experiment was performed in a mock MRI scanner at the site of the MRI Research 157
Center of the Institute of Psychology, Chinese Academy of Sciences. The mock scanner —1ss
was built by PST (Psychology Software Tools, Inc.) using a 1:1 model of the GE MR750 15
3T MRI scanner in use at the institute. It is used for training young children to lie still 10
in a scanner before participating the actual MRI scanning session. It is decorated with 1«

cartoon stickers to provide a children-friendly atmosphere. Head motion data were 162
acquired with the MoTrack Head Motion Tracking System (PST-100722). The system 163
consists of three components: a MoTrack console, a transmitter and a sensor. The 164
sensor is worn on the participant’s head and provides the position of the head relative 16
to the transmitter. For each participant, head motion is displayed on the computer 166

screen in real-time. The original sampling rate of the system is 103 Hz. The averaging 1
buffering size is 11 samples, which results in a recording sampling rate of 9.285 Hz. The 168
participants were instructed to rest quietly on the bed of the mock scanner for around 10
three and half minutes without moving their heads or bodies. They were watching a 170
cartoon film inside the scanner during the “scanning” to simulate movie-watching 7
scanning. The data acquisition period was designed to resemble the real MRI scanning 1
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environment, with a recording of scanning noises of the real MRI machine played as the
background noise.

Data Analysis

Head motion data are recorded in text files consisting of six parameters for each time
point, three translation (millimeters) and three rotation (degrees) measures. The first
three parameters are displacements in the superior, left and posterior directions,
respectively. The last three parameters are rotation degrees in the three cardinal
rotational directions. We converted the original data into frame-wise displacement (FD),
a single parameter scalar quantity representing head motion proposed by Power and
colleagues [23]. To correct for spikes caused by sudden movements, which may bias
mean FD values, we applied the AFNI 3dDespike command (version 17.3.06) to the
FD time series. Data without this preprocessing was also analyzed and supported
reproducible patterns. Then time-windows were determined and applied before feeding
the data into DREAM. We retained 1672 sampling points from the zeroed time point
(time point when the original six parameters were set to zero), which equaled a duration
of three minutes. After preprocessing, we used DREAM to decode the data. Of note,
the original FD values were all positive. After decoding, the time series of decoded
bands were demeaned, which means the average values of all decoded time series were
very near to zero. Thus, we took the absolute value of decoded frequency intervals to
calculate mean FD values, which were used in subsequent statistical analyses. Inspired
by many human growth curves modeled by exponential function and the scatter plots
on the head motion data, we first converted the head motion data using the natural
logarithm transformation and then assess the relationship between FD and age by using
linear regression models to fit the FD data in each frequency interval with age. We
conducted this regression for boys and girls, respectively, and tested whether the slopes
and intercepts are significantly different between boys and girls. Of note, this method is
equivalent to an Analysis of Covariance (ANCOVA) [29]. These analyses were also

applied to the standard deviation of FD time series to test the stability of head motion.

Results

Six participants were excluded from further data analysis due to sampling periods less
than three minutes. Another four participants were excluded because their mean FD
values were three standard deviations higher than the mean value of the whole group
(i.e., outliers). Total 42 boys (age: 3 - 14 years, 8.7 & 3.0) and 42 girls (age: 4 - 16 years,
8.4 4 3.1) were included in our final analyses. No significant differences in age were
found between males and females. All the findings derived with the head motion data
without despike preprocessing are highly similar to those of using despike, which are
reported as following. Meanwhile, all the results derived from the linear regression
models are replicated by the ANCOVA model.

Frequency Decomposition

Since all the head motion data have the same sampling frequency and sampling period,
DREAM decoded all the FD time series into the same six frequency intervals named
according to [6] (Slow-4: 0.033 to 0.083 Hz, Slow-3: 0.083 to 0.22 Hz, Slow-2: 0.222 to
0.605 Hz, Slow-1: 0.605 to 1.650 Hz, Delta: 1.650 to 4.482 Hz, Theta: 4.482 to 4.643
Hz). This theta band is too narrow comparing with its full range (up to 10 Hz) to be
reliable for the analyses, and thus not included in our analyses. The full band and the
five frequency bands from an individual child are depicted in Figure 5 and Figure 6.
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Figure 5. A preview of the original FD time series from a participant.
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Figure 6. DREAM decodes FD time series into the five bands.

Age-related Head Motion Changes across Frequencies

Results from the linear regression analysis yielded significant negative correlations

between age and mean FD values across all the five bands for both boys and girls

(df =40, FDR corrected p < 0.05):
e Slow-4: boys, p = 0.018, R? = 0.218; girls, p = 0.034, R? = 0.195

o Slow-3: boys, p = 0.008, R? = 0.249; girls, p = 0.027, R? = 0.203
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e Slow-2: boys, p = 0.001, R? = 0.314; girls, p = 0.017, R = 0.221
e Slow-1: boys, p < 0.001, R? = 0.358; girls, p = 0.013, R = 0.230
e Delta : boys, p < 0.001, R? = 0.380; girls, p = 0.008, R? = 0.250
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Figure 7. Nonlinear age-motion relationship across the five frequency bands.
The plots are based upon the log transformed motion data, indicating the exponential
growth model ymotion = €(%*22etb) The upper-left panel shows the Mock scanning facility
in the Magnetic Resonance Imaging Research Center at the Institute of Psychology,
Chinese Academy of Sciences.

The relationship between age and mean FD values are plotted in Figure 7, indicating
that younger children tend to move more than older ones, and this trait correlation held
in both boys and girls. We also performed a similar linear regression analysis between
the standard deviations of decoded FD values and age, and observed similar outcomes
that the standard deviations were significantly negatively correlated with age across
frequency bands and sexes. This showed older children are more stable with their head
motion than younger children.

We further tested if the two lines are different between boys and girls. Statistical
results revealed no such sex-related effect (df = 80, FDR, corrected p > 0.05):

e Slow-4: slope, p > 0.5, F = 0.383; intercept, p = 0.494, F' = 3.979
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e Slow-3: slope, p > 0.5, F = 0.531; intercept, p = 0.385, F = 4.428
e Slow-2: slope, p > 0.5, F' = 1.177; intercept, p = 0.486, F' = 4.010
e Slow-1: slope, p > 0.5, F = 1.326; intercept, p = 0.849, F' = 3.042
e Delta : slope, p > 0.5, F = 1.222; intercept, p = 0.968, F = 2.822

Inspired by the trend that sex-related differences in mean FD are smaller in higher
frequency bands, especially evident for early stages, we thus divided all the participants
into three age groups (3 to 6 years: 14 boys, 18 girls; 7 to 9 years: 14 boys, 15 girls; 10
to 16 years: 14 boys, 9 girls) and compared mean FD values between males and females
in each age group using two-way (sex and frequency band) ANOVA with repeated
measures. Figure 8 summarized the results of an increasing pattern of head motion from
slow to fast bands for all the age groups (3-6yrs: F(4) = 10.90,p = 1.65 x 10~7; 7-9yrs:
F(4) = 20.62,p = 1.20 x 10712; 10-16yrs: F(4) = 23.95,p = 3.06 x 10~ 13). Meanwhile,
we observed a significant interaction between sex and frequency band in 7 to 9 years old
children (F'(4,1) = 3.22,p = 0.0154) but not for the other groups (3-6yrs:

F(4,1) =0.195,p = 0.940; 10-16yrs: F'(4,1) = 1.065,p = 0.380).
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Figure 8. Sex-frequency interactions on head motion across ages. All the
participants (3 to 16 years old) are divided into three age groups: 3 to 6 years, 7 to
9 years, 10 to 16 years). A two-way (sex and frequency band) ANOVA with repeated
measures compares mean FD values between males and females in each age group.

4 DREAMZ2: Frequency-dependent spatial ranking
and reliability of low-frequency oscillations

The amplitude of low frequency fluctuation (ALFF) is a common metric used in fMRI
studies that reflects regional amplitude of the signal intensity’s fluctuations in a
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frequency range [40]. Previous studies revealed variations of ALFF in both spatial and
frequency domains in the resting-state brain. From the perspective of spatial
distribution, in the typical resting-state frequency range (e.g., 0.01-0.1 Hz), the neural
oscillations showed higher ALFF in grey matter than white matter [4,32]. It is noted
that ALFF reaches its peaks in visual areas [17], posterior structures along brain
midline [4}/44] and in cingulate and medial prefrontal cortices [12]. In frequency domain,
BOLD oscillations distributed to grey matter were mainly in Slow-4 and Slow-5, while
its white matter oscillations were dominated by Slow-3 and Slow-2 [47]. Specifically,
higher ALFF in Slow-4 was detected in the bilateral thalamus and basal ganglia
whereas the slow-5 oscillators exhibited higher ALFF in the ventromedial prefrontal
cortex, precuneus and cuneus (replicated in [37]). These findings revealed the
frequency-specific characteristics of resting-state ALFF. The previous studies are
limited by their sampling precision (Tr < 2000ms), and studies on the ALFF
distribution across more accurate bands and their reliabilities are still lacking. For
examples, the Slow-2 frequency band derived in [47] has quite small overlap with its
theoretical range and thus may limit both reliability and validity of its findings. Here,
we use DREAM to decompose the fast (Tr = 720ms) rfMRI data from the Human
Connectome Project (HCP) [33] test-retest dataset, to 1) map the ranks of ALFF values
through Slow-1, Slow-2, Slow-3, Slow-4, Slow-5 and Slow-6 bands and 2) evaluate the
test-retest reliability of the ALFF metrics in these different frequency bands.

Participants and Data Acquisition

The test-retest dataset from HCP consisting of 45 subjects were used for this analysis.
All subjects were scanned with an HCP-customized Siemens 3T scanner at Washington
University, using a standard 32-channel receive head coil. Three participants were
excluded from the substantial analyses because their resting-state scan durations were
shorter than others. Forty-two subjects (aged 30.3 & 3.4 years, 29 males) were included
in the present study. Each subject was scanned two times and each scan contained
structural images (T1w and T2w), two rfMRI, seven runs of task fMRI and high
angular resolution diffusion imaging (see details of the imaging protocols from HCP
website). In the present work, we only used the rfMRI data, which consisted of 1200
volumes (Tr = 720 ms; TE = 33.1 ms; flip angle = 52°, 72 slices, matrix = 104 x 90;
FOV = 208 x 180 mm; acquisition voxel size = 2 x 2 X 2 mm). The data were
preprocessed according to the HCP MR preprocessing pipeline [13], resulting in the
preprocessed surface time series data fed to the following DREAM analysis.

Amplitude Analysis

For each rfMRI scan, we first extracted the representative time series for each of the 400
parcels |31] by averaging all the preprocessed time series within a single parcel. DREAM
decomposed the time series into its components across the potential frequency bands.
We performed ALFF analysis for all the bands of each run and each subject according
to [47] implemented by CCS [36]. Subject-level parcel-wise ALFF maps for each
frequency band were standardized into subject-level Z-score maps (i.e., by subtracting
the mean parcel-wise ALFF of the entire cortical surface, and dividing by the standard
deviation). The two standardized ALFF maps in the same session were then averaged,
resulting in two (test versus retest) standardized ALFF maps per frequency band for
each subject. To investigate the test-retest reliability of ALFF across the five frequency
bands, we calculated the parcel-wise intraclass correlation (ICC) based upon the two
ALFF maps [35,/49]. We averaged the two standardized ALFF maps of all the subjects
to obtain the group-level standardized ALFF maps. In order to evaluate the spatial
distribution of the ALFF values for each parcel, we assigned its rank of ALFF values to
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the parcel (from 1 to 400). All the above analyses were done for each of the five
frequency bands, leading to an ALFF ranking map for each frequency band.

Results

Slow-6: 0.007-0.012 Hz Slow-5: 0.012-0.030 Hz Slow-4: 0.030-0.082 Hz

WSSusak
£

ALFF  Rank

0
a

gL ™)
/‘!'

£

Slow-3: 0.082-0.223 Hz Slow-2: 0.223-0.607 Hz Slow-1: 0.607-0.694 Hz

Figure 9. Spatially ranking ALFF across six frequency bands. LH: left hemi-

sphere; RH: right hemisphere; Vis: visual network; SomMot: somatomotor network;
DorsAttn: dorsal attention network; SalVentAttn: salience ventral attention network;
Cont: frontal parietal control network; Default: default network; Limic: limbic network;

see details of |parcel naming at GitHub for the parcellation.

DREAM decomposed the rfMRI timeseries into six frequency bands (Slow-6: 0.007 -

0.012 Hz; Slow-5: 0.012-0.030 Hz; Slow-4: 0.030-0.082 Hz; Slow-3: 0.082-0.223 Hz;
Slow-2: 0.223-0.607 Hz; Slow-1: 0.607-0.694 Hz). Spatial rankings on ALFF are mapped
in Figure 9. It is noticed that ALFF spatially ranked from high in ventral-temporal
areas to low in ventral-occipital areas when the frequency band increased from low to
high, while those in part of parietal and ventral frontal regions were reversed. The

top-10 parcels are listed below:

e Slow-6: LH_Default_pCunPCC_1, LH_Default_PFC_24, RH_Default_ PFCdPFCm_9,

LH_Vis_16, RH_Vis_6, RH_Default_ PFCdPFCm_10, LH_Default_Temp_7,
LH _Default_Temp_6, RH_Default_Par_3, LH_Default_pCunPCC_2

e Slow-5: LH_Default_PFC_24, RH_Default_ PFCdPFCm_9, LH_Default_pCunPCC_1,

LH_Vis_16, RH_Vis_6, LH_Vis_17, LH_Vis_5, RH_Vis_16, RH_Vis_15,
RH_Default_ PFCdPFCm_10

e Slow-4: LH_Vis_16, RH_Default_ PFCdPFCm_9, LH_Default_pCunPCC_1,

LH Default_ PFC_24, LH_Cont_ PFCmp_1, RH_Cont_pCun_2, RH_Cont_pCun_1,

LH_Vis_17, LH_Cont_Cing 2, RH_Vis_17
e Slow-3: LH_Vis_16, RH_Default_ PFCdPFCm_9, LH_Default PFC_24,

RH_Cont_pCun_1, LH_Default_pCunPCC_1, LH_Cont_ PFCmp_1, RH_Cont_Par_4,

RH_Vis_14, LH_Cont_Cing_2, LH_Default_pCunPCC_5
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e Slow-2: LH_Vis_16, RH_Default PFCdPFCm_9, RH_Cont_Par 4,
LH_Default_ PFC_24, RH_Cont_pCun_1, RH_Vis_14, LH_Cont_PFCmp_1,
LH Default_pCunPCC_1, LH_Default_pCunPCC_5, LH_Cont_Cing_2

e Slow-1: LH_Vis_16, RH_Default PFCdPFCm_9, RH_Cont_Par_4,
RH_Cont_pCun_1, LH_Vis_14, LH_Default_ PFC_24, LH_Cont_PFCmp_1,
LH_Default_pCunPCC_1, LH_Default_pCunPCC_5, LH_Cont_Cing_2

Slow-6: 0.007-0.012 Hz Slow-5: 0.012-0.030 Hz Slow-4: 0.030-0.082 Hz
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Figure 10. Test-retest reliability of ALFF across six frequency bands.

Test-retest reliability maps of ALFF are also generated (Fig. 10) by mapping ICC
using the linear mixed models. It is clear that the higher frequency bands, the more
reliable ALFF measurements. The slow-2 (0.223-0.607 Hz) demonstrated the highest
test-retest reliability of ALFF across the six frequency bands. The top-10 most reliable
parcels are listed below:

e Slow-6: RH_Vis_16, RH_Default_pCunPCC_5, RH_Cont_Cing_1,
LH _Default_ PFC_4, LH_Cont_PFCI_1, LH_Vis_14, RH_Vis_19,
RH_Default_Temp_3, RH_Default_Temp_2, RH_Cont_PFC1_6

e Slow-5: RH_Cont_Cing_1, LH_Vis_23, LH_Default_pCunPCC_7,
RH_Default_Temp_2, LH_Cont_OFC_1, RH_Cont_PFCI_15,
RH_Default_pCunPCC_5, LH_Vis_14, RH_DorsAttn_Post_3,
RH_Default_pCunPCC_9

e Slow-4: LH_Cont_OFC_1, RH_Default_pCunPCC_5, RH_Default_pCunPCC_9,
RH_Cont_PFCI1_15, LH_SalVentAttn_Med_1, RH_Cont_Par_5, LH_Cont_PFCI_2,
RH_Cont_PFCv_1, RH_DorsAttn_Post_14, RH_Default_PFCv_1

e Slow-3: RH_SomMot_10, LH_DorsAttn_Post_1, RH_Default_PFCv_1,
LH_Cont_Par_6, LH_-SomMot_22, LH_Default_PFC_7, RH_DorsAttn_Post_14,
RH_Default_pCunPCC_5, RH_DorsAttn_Post_3, LH_SalVentAttn_ParOper_1
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e Slow-2: RH_Default_PFCv_1, LH_DorsAttn_Post_2, RH_Default_Temp_8, 352
RH_Default_pCunPCC_5, LH_Default_pCunPCC_9, RH_Cont_PFCIl 4, 353
RH_Default_pCunPCC_6, RH_Default_pCunPCC_4, LH_Cont_Par_6, 354
RH_Default_pCunPCC_7 355

e Slow-1: RH_Default_ PFCv_1, RH_Default_pCunPCC_4, RH Default_Temp_8, 356
RH_Default_pCunPCC_8, RH_DorsAttn_Post_3, LH_Limbic_TempPole 4, 357
LH_Cont_Par_6, RH_Default_pCunPCC_6, LH_DorsAttn_Post_1, 358
LH_Default_ PFC_6 350

5 Discussion 0

DREAM is a free and publicly available software that can decode oscillation data into  3a
multiple frequency bands. The simple interface was designed to allow all users to easily s
perform multi-band frequency analyses. The computational methods employed in 363
DREAM to calculate the numbers and ranges of decoded frequency bands apply the 364
Nyquist-Shannon sampling theorem and the brain oscillation theory [6]. Such a theory s
has been proven of great potentials to understand the brain dynamics as well as their 366
behavioral correspondences. From a theoretical perspective, the oscillation theory can e
be independent of any modalities (e.g., EEG, MEG, ECoG, TMS, fMRI, fNIRS, eye 368
tracking, etc.) for measuring these oscillations as windows into brain waves [3]. 369
DREAM is thus applicable for multiple forms of discrete sampling data, as long as the sn
data are entered in the supported format. Currently, DREAM can process both NIFTT = sn
formatted neuroimaging data and text file formatted behavioral data while more other s»

formats will be supported in its forthcoming releases. 373

As a demonstration of its utility, the results derived with DREAM for pure 374
behavioral recordings suggest that head motion may be a behavioral feature reflecting 75
both state and trait of individuals. We showed that head movements in the high 376
frequency bands are more evident than those in the low frequency bands. This could be s
a behavioral reflection of the hierarchical organization of brain oscillations for their 378
synchronization at multiple scales in space. Neural oscillations of the higher 379
frequency-bands are related to more local information processing while the lower 380
frequency-bands are for more distant communications in the brain. Our findings are 381
consistent with the previous observation that the head motion had more impacts on the s
short-distance brain connectivity. While the head motion during fMRI scanning has 383
been treated an important confounding factor in the neural signal [27], some recent work — ss
also argued its neurobiological components related to individual traits of the motor 385
behaviors (e.g., |[41L[43]). The current researh offers data for an alternative explanation  sss
on such neurobehavioral trait likely driven by brain systems operating within a 387
multi-band frequency landscape. In the context of development, as we expected, 388
younger children moved more than older children across all the slow frequency bands. s
The stability of head motion during the experiment also varied with age, with head 390
motion becoming less variable or more stable in older children. This is more evident in  sa
higher frequency bands, an implication that more sudden and sharp movements in 302
younger children. Moreover, in a specific age range (7 - 9 years), boys moved more than s
girls across Slow-6 to Slow-1 bands but such differences vanished in the delta 304
frequencies. This age range is a critical period for developing the ability to apply 305

effective cognitive control (i.e., cognitive flexibility during executive function) 1], and s
our findings might reflect the sex differences in the cognitive development. In summary, 3o
our results demonstrate the necessity to study the frequency-specific characteristics of s
head motion, especially a perspective on understanding the neurobiological mechanism s
behind these behavior-related oscillations. This is of great potential to enrich our 400
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knowledge on the lifespan development such as children, the elderly and patients with  sa
neurologic or psychiatric conditions where both distance-related brain and the head 402
motion measurements have been observed to correlate with each other [2}/10,/1130]. 403

Differences in head motion across ages or between cohorts may reflect differences of 40
certain traits, which may co-vary with detected brain signals and behavioral outcomes. s

The different properties of head motion in different frequency bands show that there 406
may be different mechanisms associated with different frequencies. Head motion at a07
higher frequencies varies more with age, and this may reflect that cognitive control 408
associated with higher frequencies develops better with age. Of note, interpolation 409
analyses indicated that this observation is not related to an issue of better 410
signal-to-noise ratio at higher frequencies because there are more events per unit time. n
Within the narrow age range of 7 to 9 years old, boys moved more than girls in most a2
frequency bands, although sex differences were larger at lower frequencies. This may a13

indicate that the development of controlling system associated with lower frequencies a1
may have larger sex-related differences for this age range. The above results lead us to a1
speculate that there may be two control systems that are associated with different 416
frequency bands of head motion which develop differently with age and between boys a7
and girls. More detailed experimental studies deserved to test this postulation in future. as

The strategies of dealing with head motion issues in human brain mapping may also 419
need updates regarding its measurement reliability and validity in terms of the possible 0
neurobiological correlates [35[46L50]. One promising direction is to separate various a1
sources of the head movements by using additional recordings or developing novel a2

motion metrics (e.g., the recent progress in [24426]). These efforts identified seven kinds e
of in-scanner motion in resting-state fMRI scans, and five of them related to respiration. s
Some pseudomotion occurred only in the phase encode direction and was a function of 4
soft tissue mass, not lung volume. Using the Mock scanning experimental design as in s
the present work, together with the aforementioned approaches, could be of high value 7
in further understanding neurobiobehavioral underpins of the human head movements. s

Using fast fMRI from HCP, at the first time, we revealed the spatially configuring 429
pattern of ALFF ranking gradually from low to high frequency bands. This indicates a 0
trend along the two orthogonal axes. Along the dorsal-ventral axis, higher ALFF ranks
were moving from the ventral occipital and the ventral temporal lobe up to regions in 43
the parietal lobe as the frequency increasing. Along the anterior-posterior axis, from 433
lower to higher bands, higher ALFF ranks were walking from the posterior to the a3
anterior regions in the ventral part. This frequency-dependent ALFF pattern is similar a3
to the findings of previous studies on the association between brain structure and gene

expression, which also reported orthogonal gradations of brain organization and the 437
associated genetic gradients [7},/18]. The underlying physiological mechanism and 438
functional significance of the frequency-dependent ALFF patterns deserve further 430
investigations. It is interesting that the frequency-dependent pattern of ICC is quite 440
uniform across the brain and as the frequency increased, its reliability increased aa1
alongside. This observation illustrated that compared with the low frequency bands, 42
higher frequency bands might be more suitable for detecting individual differences in a3
ALFF. Most of the previous studies have adopted ALFF of the lower frequency bands a4
(i.e., Slow-5 and Slow-4 or around 0.01 to 0.1 Hz) where their ICCs rarely met the a5
reliability requirement (IC'C > 0.8) of clinical applications. In contrast, our findings a6

suggest that both Slow-2 and Slow-1 ALFF could be the usable and reliable marker of s
the brain oscillations for these applications. It is noticed that the reliability of Slow-1 = s
ALFTF is slightly lower than those of Slow-2 ALFF, and this may be an indication on a9
the limited Slow-1 band here compared to its theoretical range (around 0.6065 — 1.6487 450
Hz). While studies of the very fast sampled fMRI signals such as HCP are sparse, it is s
quite promising for future studies with multiple neuroimaging modalities (e.g., [3,[15]) to s
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DREAM as an integrative tool across frequencies. An open toolbox such as DREAM is
essential for large-scale projects inspired by the increasing practice of open sciences
coming with more and more fMRI and EEG datasets openly shared as well as their
applications (e.g., [45]).

Information Sharing Statement

The DREAM toolbox is fully open to the public by sharing both the off-line version
(https://github.com/zuoxinian/CCS/tree/master/H3/DREAM) and the light online
version (http://ibraindata.com/tools/dream). To ensure the reproducibility of our
findings, all the codes and head motion data for generating the figures and other results
in the present work are also shared via DREAM and CCS website.

e Connectome Computation System: https://github.com/zuoxinian/CCS
e DREAM: https://github.com/zuoxinian/CCS/tree/master/H3/DREAM

e Visualization Data in DREAM1 (GraphPad):
github.com/zuoxinian/CCS/blob/master/H3/DREAM/DREAM1_demo.pzfx

e ANOVA Codes in DREAM1 (MATLAB):
github.com/zuoxinian/CCS/blob/master/H3/DREAM/DREAM1_repANOVA.m

Please credit both DREAM and CCS work if you use our DREAM in your research.
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