

1 **The transcriptional landscape of Venezuelan equine encephalitis virus (TC-83) infection**

2

3 **Short title: Single-cell transcriptional dynamics of alphavirus infection**

4

5 Zhiyuan Yao^{1, 2, ¶}, Fabio Zanini^{3, 4, ¶, *}, Sathish Kumar^{1, 2}, Nuttada Panpradist^{1, 2, 3, 5}, Avery Muniz^{1, 2},

6 Stephen R. Quake^{3, 6, 7}, and Shirit Einav^{1, 2, *}

7

8 ¹Department of Microbiology and Immunology, Stanford University School of Medicine,

9 Stanford, CA

10 ²Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford

11 University School of Medicine, Stanford, CA, USA

12 ³Department of Bioengineering, Stanford University, Stanford, CA, USA

13 ⁴Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia

14 ⁵Department of Bioengineering, University of Washington, Seattle, WA, USA

15 ⁶Chan Zuckerberg Biohub, San Francisco, CA, USA

16 ⁷Department of Applied Physics, Stanford University, Stanford, CA, USA

17

18 *Corresponding authors: Shirit Einav (email: seinav@stanford.edu) and Fabio Zanini

19 (fabio.zanini@unsw.edu.au)

20

21 ¶: these authors contributed equally

22

23

24

25

26 **Abstract**

27 Venezuelan Equine Encephalitis Virus (VEEV) is a major biothreat agent that naturally causes
28 outbreaks in humans and horses particularly in tropical areas of the western hemisphere, for
29 which no antiviral therapy is currently available. The host response to VEEV and the cellular
30 factors this alphavirus hijacks to support its effective replication or evade cellular immune
31 responses are largely uncharacterized. We have previously demonstrated tremendous cell-to-cell
32 heterogeneity in viral RNA (vRNA) and cellular transcript levels during flaviviral infection using
33 a novel virus-inclusive single-cell RNA-Seq approach. Here, we used this unbiased, genome-
34 wide approach to simultaneously profile the host transcriptome and vRNA in thousands of single
35 cells during infection of human astrocytes with the live-attenuated vaccine strain of VEEV. Host
36 transcription was profoundly suppressed, yet “superproducer cells” with extremely high vRNA
37 abundance emerged during the first viral life cycle and demonstrated an altered transcriptome
38 relative to both mock-infected cells and cells with high vRNA abundance harvested at later time
39 points. Additionally, cells with increased structural-to-nonstructural transcript ratio exhibited
40 upregulation of intracellular membrane trafficking genes at later time points. Loss- and gain-of-
41 function experiments confirmed pro- and antiviral host factors among the products of transcripts
42 that positively or negatively correlated with vRNA abundance, respectively. Lastly, comparison
43 with single cell transcriptomic data from other viruses highlighted common and unique pathways
44 perturbed by infection across evolutionary scales. This study provides a high-resolution
45 characterization of the VEEV-host interplay, identifies candidate antiviral targets, and establishes
46 a comparative single-cell approach to study the evolution of virus-host interactions.

47

48

49

50 **Author Summary**

51 Little is known about the host response to Venezuelan Equine Encephalitis Virus (VEEV) and
52 the cellular factors this alphavirus hijacks to support effective replication or evade cellular
53 immune responses. Monitoring dynamics of host and viral RNA (vRNA) during viral infection at
54 a single-cell level can provide insight into the virus-host interplay at a high resolution. Here, a
55 single-cell RNA sequencing technology that detects host and viral RNA was used to investigate
56 VEEV-host interactions during the course of infection of human astrocytes. Virus abundance and
57 host transcriptome were heterogeneous across cells from the same culture. Subsets of
58 differentially expressed genes, positively or negatively correlating with vRNA abundance, were
59 identified and subsequently validated as proviral and antiviral factors, respectively. In the first
60 replication cycle, “superproducer” cells exhibited rapid increase in vRNA abundance and unique
61 gene expression patterns. At later time points, cells with increased structural-to-nonstructural
62 transcript ratio demonstrated upregulation of intracellular membrane trafficking genes. Lastly,
63 comparing the VEEV dataset with published datasets on other RNA viruses revealed unique and
64 overlapping responses across viral clades. Overall, this study improves the understanding of
65 VEEV-host interactions, reveals candidate targets for antiviral approaches, and establishes a
66 comparative single-cell approach to study the evolution of virus-host interactions.

67

68

69

70

71

72

11

12

73 **Introduction**

74 For more than a century, Venezuelan Equine Encephalitis Virus (VEEV), a member of the
75 *Alphavirus* genus, has been the causative agent of outbreaks of febrile neurological disease in
76 both animals and humans in Central and South America (1,2). The incidence of VEEV infection
77 is underestimated since early symptoms are non-specific (2). While typically transmitted via a
78 mosquito bite, VEEV is also infectious as an aerosol, hence it is considered a major bioterrorism
79 threat (3). To date, no US FDA approved drugs or vaccines against VEEV are available. A
80 deeper understanding of VEEV biology in human cells is required to advance the development of
81 effective countermeasures against VEEV.

82

83 Because VEEV is a biosafety level 3 pathogen, TC-83, a live-attenuated vaccine strain, is
84 commonly used for research purposes (4). Although attenuated, VEEV TC-83 replicates rapidly:
85 viral protein production is observed as early as 6 hours postinfection (hpi) of human astrocytoma
86 cells (U-87 MG) at multiplicity of infection (MOI) of 2, and over 10^{10} copies of intracellular viral
87 RNA (vRNA) can be detected by 24 hpi (5). It remains unknown, however, whether a large
88 number of cells, each producing a small number of virions, or a few “superproducer” cells drive
89 this effective virus production. Productive replication is associated with profound shutdown of
90 host gene transcription (6). Nevertheless, since the virus relies on cellular machineries, it is
91 important to identify which host factors are “spared” from this shutdown, as they may represent
92 essential factors for effective viral replication.

93

94 The genome of VEEV is an ~11.5 kb single-stranded positive-sense RNA. The genomic RNA
95 contains two domains. The 5' two-thirds of the genome constitutes the first open reading frame
96 (ORF), which encodes the nonstructural (ns) proteins required for viral RNA synthesis (nsP1-4).

15

16

97 The 3' one-third of the genome is the structural protein domain. The structural proteins (capsid,
98 envelope glycoproteins E1-3, 6k, and transframe (TF) protein) are translated from a second ORF
99 that is expressed through the production of a subgenomic mRNA from an internal promoter in
100 the negative-strand RNA replication intermediate and function in the assembly of new virions
101 and their attachment and entry into cells (7). While the stoichiometry of the genomic and
102 subgenomic transcripts in the setting of VEEV infection has not been characterized, the
103 transcription of the subgenomic RNA of a related alphavirus, Sindbis virus (SINV), was shown
104 to be ~3-fold higher than the genomic RNA during late stages of the viral lifecycle (8,9),
105 supporting a switch towards increased synthesis of structural proteins required for virion
106 formation over nonstructural proteins required primarily for viral RNA replication (10,11).

107

108 The understanding of the alphavirus life cycle is largely based on studies conducted with the
109 non-pathogenic SINV and Semliki forest virus (SFV). Alphaviruses enter their target cells via
110 clathrin-mediated endocytosis and release their nucleocapsid into the cytoplasm via fusion with
111 endosomal membranes, followed by translation and processing of the nonstructural polyprotein
112 (12). Viral RNA replication occurs within membrane invaginations called spherules that are
113 thought to be derived from the plasma membrane, endoplasmic reticulum and late endosomes
114 and are subsequently incorporated into type 1 cytopathic vacuoles (CPV)-I composed of
115 modified endosomes and lysosomes (13–16). Production of genomic RNA and subsequently
116 subgenomic RNA are followed by polyprotein translation and processing. The current model of
117 infectious alphavirus production suggests that the genomic RNA is packaged by the capsid in the
118 cytoplasm, and that the viral glycoproteins traffic via membrane structures, presumed to be
119 *trans*Golgi-derived (CPV-II), to budding sites on the plasma membrane, followed by membrane
120 curving and scission, facilitating envelopment of the nucleocapsid (16–18).

121

122 Although VEEV is predicted to extensively interact with cellular factors to effectively replicate
123 and evade cellular immune responses, like other small RNA viruses, little is known about these
124 interactions. A recent small interfering RNA (siRNA) screen revealed a requirement for actin-
125 remodeling pathway proteins including ARF1, RAC1, PIP5K1- α , and ARP3 in VEEV infection
126 and specifically in promoting viral glycoprotein transport to the plasma membrane (19). Various
127 other cellular factors, such as DDX-1 and -3 (20), have been reported to have proviral functions,
128 whereas IFITM3 (21) and members of the PARP protein family (22), were shown to be antiviral
129 factors. Nevertheless, to the best of our knowledge, the interplay between VEEV and the human
130 host has not been studied to date via an unbiased, genome-wide approach.

131

132 Single cell RNA sequencing (scRNA-Seq) has demonstrated utility for understanding the
133 heterogeneity of both viral and cellular transcriptome dynamics at a high resolution. We have
134 recently developed virus-inclusive single-cell RNA-Seq (viscRNA-Seq), an approach to
135 simultaneously profile host and viral gene expression in thousands of single cells (23). The
136 studies we and others have conducted in cell lines infected with dengue (DENV), Zika (ZIKV),
137 influenza A (IAV) (24,25) and West Nile (WNV) viruses (26) and our results in samples from
138 DENV-infected patients (27) revealed a tremendous cell-to-cell heterogeneity in both vRNA
139 abundance and levels of host factors that support or restrict infection. Moreover, we have
140 demonstrated the utility of this approach in identifying novel cellular factors that support or
141 restrict viral infection (23). We have therefore hypothesized that studying VEEV (TC-83)
142 transcriptome dynamics at a single cell resolution may overcome challenges related to the high
143 viral replication rate, thereby highlighting specific transcriptomic signatures above the
144 suppressed transcriptional landscape and identifying novel cellular factors that support or restrict
145 VEEV replication.

146

147 We conducted a longitudinal study of virus-host cell interactions across 24 hours of VEEV
148 infection in U-87 MG cells via viscRNA-Seq. We detected extreme heterogeneity in vRNA
149 abundance and host transcriptome across cells from the same culture. To overcome the challenge
150 presented by this uneven and rapid viral replication, we stratified cell populations based on
151 vRNA abundance rather than time postinfection and correlated cellular gene expression with
152 both (i) total vRNA and (ii) the ratio of total (genomic + subgenomic) to genomic vRNA. These
153 approaches enabled identification of genes whose expression is altered during VEEV infection,
154 many of which were then confirmed via loss-of-function and gain-of-function experiments to
155 have pro- and antiviral roles, respectively. Moreover, we revealed a small population of
156 “superproducer cells” that drives the rapid increase in vRNA in the first replication cycle and a
157 cell population that harbors excess of the structural over nonstructural viral ORFs at late stages
158 of viral infection, both associated with distinct host gene expression patterns. Lastly, comparison
159 of the VEEV dataset with published data on other RNA viruses revealed unique and overlapping
160 host gene responses across viral clades, highlighting the utility of comparative single-cell
161 transcriptomics.

162

163 **Materials and methods**

164 **Cells**

165 U-87 MG and BHK-21 cell lines were obtained from ATCC (Manassas, VA). Cells were grown
166 in Dulbecco's Modified Eagle's medium (DMEM, Mediatech, Manassas, VA), supplemented
167 with 1% Penicillin-Streptomycin solution, 1% L-glutamine 200 mM (Thermo Fisher Scientific,
168 Waltham, MA) and 10% Fetal Bovine Serum (FBS, Omega Scientific, INC, Tarzana, CA). Cells
169 were maintained in a humidified incubator with 5% CO₂ at 37 °C. Cells were tested negative for
170 mycoplasma by the MycoAlert mycoplasma detection kit (Lonza, Morristown, NJ).

171

172 **Plasmids and virus constructs**

173 The plasmids encoding infectious VEEV TC-83 with a GFP reporter (VEEV TC-83-Cap-eGFP-
174 Tav, hereafter VEEV-TC-83-GFP) or a nanoluciferase reporter (VEEV TC-83-Cap-nLuc-Tav,
175 hereafter VEEV-TC-83-nLuc), were a gift from Dr. William B. Klimstra (Department of
176 Immunology, University of Pittsburgh) (28). Open reading frames (ORFs) encoding 11 hits were
177 selected from the Human ORFeome library of cDNA clones (Open Biosystems) (29) and
178 recombined into a FLAG (for FLAG tagging) vector using Gateway technology (Invitrogen).

179

180 **Virus production**

181 Viral RNA (vRNA) (VEEV-TC-83-GFP or nLuc) was transcribed *in vitro* from cDNA plasmid
182 templates linearized with MluI via MegaScript Sp6 kit (Invitrogen #AM1330) and electroporated
183 into BHK-21 cells. VEEV was harvested from the supernatant 24 hours postelectroporation,
184 clarified from cell debris by centrifugation, and stored at -80 °C. Virus stock titers were
185 determined by standard BHK-21 cell plaque assay, and titers were expressed as PFU/ml.

186

187 **Infection assays**

188 U-87 MG cells were infected with VEEV-TC-83-GFP at various MOIs (0, 0.1, and 1) and
189 harvested at various time points postinfection. For the functional screens, U-87 MG cells were
190 infected with VEEV-TC83-nLuc in 8 replicates at MOI of 0.01. Overall infection was measured
191 at 18 hpi via a nanoluciferase assay using a luciferin solution obtained from the hydrolysis of its
192 O-acetylated precursor, hikarazine-103 (prepared by Dr. Yves Janin, Pasteur Institute, France)
193 as a substrate (30,31).

194

195 **Loss-of-function assays**

31

32

196 siRNAs (1 pmol) were transfected into cells using lipofectamine RNAiMAX transfection reagent
197 (Invitrogen) 96 hours prior to infection with VEEV-TC-83-nLuc at MOI of 0.01. Custom
198 Cherry-Pick ON-TARGETplus siRNA library against 11 genes was purchased from Dharmacon
199 (see Supplementary Table 1 for gene and siRNA sequence details).

200

201 **Gain-of-function assays**

202 Individual plasmids encoding 11 human genes or empty control vector were transfected
203 individually into U-87 MG cells with lipofectamine-3000 (Invitrogen) 48 hours prior to infection
204 with VEEV-TC-83-nLuc at MOI of 0.01.

205

206 **Viability assays**

207 Viability was measured using alamarBlue reagent (Invitrogen) according to the manufacturer's
208 protocol. Fluorescence was detected at 560 nm on an Infinite M1000 plate reader (Tecan).

209

210 **Detection of infected cells using VEEV-specific capture oligo**

211 To optimize the viscRNA-Seq protocol for a wide dynamic range of vRNA amount per VEEV-
212 infected cells, we designed and screened eight oligo capture (**S1 Table**).

213 To screen these capture oligo, we first generated cDNA from VEEV-infected cells in the
214 presence of each or combinations of VEEV-specific capture oligo. Specifically, 30 pg of both
215 vRNA and cellular RNA purified from VEEV-infected cells was reverse-transcribed to cDNA in
216 a reaction containing SuperScript™ IV reverse transcriptase, 1X First Strand buffer (Invitrogen),
217 5 mM DTT, 1 M betaine, 6 mM MgCl₂, 1 μM oligo dT and each or combinations of 100 nM
218 reverse VEEV oligo capture. Subsequently, cDNA underwent 21-cycle PCR amplification using
219 ISPCR primers. cDNA was then purified using Ampure XP beads (Beckman Coulter) at the ratio
220 of 0.8 and eluted in 15 μL EB buffer. Fragments of purified, concentrated cDNA were visualized

35

36

221 and quantified using bioanalyzer (DNA High Sensitivity kit, Agilent Technologies). To quantify
222 the amount of vRNA captured by each or combinations of oligo capture, these purified cDNA
223 were also subjected to qPCR (Hot-start OneTaq (New England Biolabs), 1x Standard Taq buffer,
224 1x Evagreen (Biotium), forward primer: ATTCTAAGCACAAAGTATCATTGTAT and reverse
225 primer: TTAGTTGCATACTTATACAATCTGT located upstream of all the capture oligos.
226 VEEV_1 and VEEV_2 yielded the highest copies of viral cDNA and did not generate significant
227 primer dimers. Therefore, this combination of the capture oligo was selected for downstream
228 experiments.

229

230 **Single cell sorting**

231 At each time point, cells were trypsinized for 10 min, spun and resuspended in 1 mL fresh media.
232 Within 15 min, cells were pelleted again and resuspended in 2 ml 1X phosphate-buffered saline
233 (PBS) buffer at a concentration of 10^6 cells per ml. Cells were filtered through a 40 μ m filter into
234 a 5 ml FACS tube and sorted on a Sony SH800 sorter using SYTOXTM Blue dead cell stain
235 (ThermoFisher) to distinguish living cells from dead cells and debris. VEEV harboring cells
236 were sorted based on GFP signal. Cells were sorted into 384-well PCR plates containing 0.5 μ l
237 of lysis buffer using ‘Single cell’ purity mode. A total of 12 384-well plates of single cells were
238 sorted for the VEEV time course.

239

240 **Lysis buffer, reverse transcription, and PCR**

241 To capture and amplify both mRNA and vRNA from the same cell, the Smart-seq2 protocol was
242 adapted (Picelli et al., 2014). All volumes were reduced by a factor of 12 compared to the
243 original protocol to enable high-throughput processing of 384-well plates. ERCC spike-in RNA
244 was added at a concentration of 1:10 of the normal amount. The lysis buffer contained 100nM of

245 oligo-dT primer, 100 mM of virus specific capture oligo mix (i.e. VEEV_1 and VEEV_2) to
246 capture the positive-stranded virus RNA.

247

248 Other virus-specific primers and higher primer concentrations were tested but resulted in a large
249 fraction of primer dimers. In order to reduce interference between the virus-specific primer and
250 the Template Switching Oligo (TSO) used to extend the RT products, a 5'-blocked biotinylated
251 TSO was used at the standard concentration. Reverse transcription (RT) and PCR of the cDNA
252 were performed in a total volume of 1 μ l and 2.5 μ l for each well respectively. The resulting
253 cDNAs were amplified for 21 cycles. Lambda exonuclease was added to the PCR buffer at a
254 final concentration of 0.0225 U/ μ l and the RT products were incubated at 37 °C for 30 min
255 before melting the RNA-DNA hybrid (as it was observed that this reduced the amount of low-
256 molecular weight bands from the PCR products). The cDNA was then diluted 1 to 7 in EB buffer
257 for a final volume of 17.5 μ l. All pipetting steps were performed using a Mosquito HTS robotic
258 platform (TTP Labtech).

259

260 **cDNA quantification**

261 To quantify the amount of cDNA in each well after PCR, a commercial fluorometric assay was
262 used (ThermoFisher Quant-It™ Picogreen). Briefly, 1 μ l of cDNA and 50 μ l of 1:200 dye-buffer
263 mix were pipetted together into a flat-bottom 384-well plate (Corning 3711). For each plate, six
264 wells were used as standard wells. 1 μ l dd H₂O was added into one standard well as blank. The
265 standard solutions were diluted into 5 concentrations (0.1, 0.2, 0.4, 0.8, 1.6 ng/ μ l) and added 1 μ l
266 into the remaining 5 standard wells. The plate was vortexed for 2 min, centrifuged, incubated in
267 the dark for 5 min, and measured on a plate reader at wavelength 550 nm. cDNA concentrations
268 were calculated via an affine fit to the standard wells.

269

270 **Library preparation and sequencing**

271 For each time point, one plate was sent for library preparation and sequencing. In total, 6 plates
272 (2304 cells) were prepared. Sequencing libraries were prepared using the illumina Nextera XT
273 kit according to the manufacturer's instructions, with the following exceptions: (1) we used a
274 smaller reaction volume (around 1 μ l per cell); (2) we chose a slightly higher cDNA
275 concentration (0.4 ng/ μ l) as input, to compensate for the lack of bead purification upstream; (3)
276 we used the commercial 24 i7 barcodes and the 64 new i5 barcode sequences. We noticed a low
277 level of cross-talk between these barcodes, indicated by up to five virus reads found in a few
278 uninfected cells. However, considering that a sizeable fraction of cells in the same sequencing
279 run (late infected and high MOI) had thousands of virus reads, the amount of cross-talk between
280 barcodes appears to be of the order of 1 in 10,000 or less. We used Illumina Novaseq sequencer
281 for sequencing.

282

283 **Bioinformatics pipeline**

284 Sequencing reads were mapped against the human GRCh38 genome with supplementary ERCC
285 sequences and TC-83-VEEV-GFP genome using STAR Aligner (32) . Genes were counted using
286 htseq-count (33). The Stanford high performance computing cluster Sherlock 2.0 was used for
287 the computations. Once the gene/virus counts were available, the downstream analysis was
288 performed on laptops using the packages Seurat (34) and singlet ([https://github.com/iosonofabio/
289 singlet](https://github.com/iosonofabio/singlet)), as well as custom R and Python scripts. Ggplot2 (35), matplotlib (36) and seaborn (37)
290 were used for plotting.

291

292 For the mutational analysis, all reads mapping to VEEV were extracted from all cells with a
293 unique identifier of the cell of origin, and all four possible alleles at each nucleotide were

294 counted by custom scripts based on pysam (<https://github.com/pysam-developers/pysam>) and
295 wrapped in an xarray Dataset (38). The analysis was restricted to infected cells with an average
296 of 100 or more reads per viral genomic site to reduce shot noise.

297

298 Comparison with flaviviruses was performed as follows. First, host genes with similar expression
299 (within a factor of 10) in counts per millions (cpm) were identified. Within that class,
300 correlations with vRNA for VEEV, DENV, ZIKV were computed separately. Host factors with
301 the highest discrepancies between pairs of viruses were identified. For Figs 5A-C, a gene was
302 chosen from the most discrepant genes exemplifying the different behaviors observed and the
303 cells were scattered using vRNA abundance and gene expression axes, and colored by virus. For
304 Fig 5D, the host counts for each gene from all three experiments (in cpm) were added and
305 fractions belonging to each experiment were computed. Because the sum is constrained to be
306 100%, ternary plots could be used for plotting the three different fractions in two dimensions.
307 For figs 5E-F, for each gene shown we computed its percentile in correlation with DENV and
308 ZIKV vRNA, i.e. the percentage of other host genes with a correlation less than this focal gene.
309 This transformation emphasizes the top correlates/anticorrelates against batch effects and
310 different multiplicities of infection in the DENV and ZIKV experiments. For figs 5G-I,
311 published tables of counts and metadata were downloaded from links present in each publication,
312 normalized to counts per millions, and filtered for low-quality cells. We computed the
313 correlation of host gene expression and vRNA in each experiment, then features were selected
314 that had a high rank in at least one virus and the selected correlation coefficients were centered
315 and normalized between -1 and 1 for each virus to enable meaningful cross-experiment
316 comparison. Principal Component Analysis (PCA), UMAP, similarity graphs, and Leiden
317 clustering (Traag et al. 2019) were computed and plotted.

318

319 **Cell selection and normalization**

320 The criteria to select cells were as follows: total reads > 300,000, gene counts > 500 and a ratio
321 of ERCC spike-in RNA to total reads ratio < 0.05. Based on these criteria, 2004 out of 2301 cells
322 were selected for downstream analysis. Due to the high viral copies of VEEV in cells infected
323 for 12 and 24 hrs (more than 10%), traditional normalization (dividing by total reads) caused a
324 bias which underestimated the expression of host genes. To avoid this, we normalized gene
325 counts to ERCC total reads, since these are not affected by the virus. Each gene count column
326 (including virus reads) was thus divided by ERCC total reads and then log transformed.

327

328 **Data and code availability**

329 The single cell RNA-Seq data for this study is available on GEO at submission number:
330 GSE145815 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145815>). The code used
331 in the computational analyses can be found at https://github.com/saberyzy/VEEV-single_cell.
332 Processed count and metadata tables are also available on FigShare at
333 https://figshare.com/articles/Untitled_Item/11874198.

334

335 **Results**

336 **viscRNA-Seq reveals cell-to-cell heterogeneity in VEEV and host gene expression.**

337 To characterize the relation between viral and host cell transcriptional dynamics over the course
338 of VEEV infection, human astrocytoma cells (U-87 MG) (39) were infected with VEEV (TC-83,
339 attenuated vaccine strain) conjugated to GFP (28) at MOIs of 0.1 and 1 or mock infected, and
340 harvested at six time points: 0.5, 1.5, 4, 6, 12, and 24 hpi (**Fig 1A**). Single cells were then
341 isolated and processed by viscRNA-Seq, as described previously (23). Since the VEEV RNA is
342 polyadenylated, it can be captured by the standard poly-T oligonucleotide that hybridizes with

343 host transcripts. Nevertheless, to improve vRNA capture and ensure coverage at the 5' end of the
344 viral genome, two specific viral capture oligonucleotides, at positions 352 and 1,742 of the
345 VEEV genome, were added to the reaction (see Methods). In total, 4608 cells were processed, of
346 which 2301 cells were sequenced with approximately 1 million reads/cell (**S1A Fig**). 2004 cells
347 passed quality controls and were analyzed (see Methods).

348

349 To identify a proper cutoff for defining infected cells, we analyzed both GFP signal and vRNA
350 reads. During cell sorting (the first step of viscRNA-seq) the GFP signal was recorded using the
351 fluorescein (FITC) gate, enabling measurement of cellular GFP expression levels. The GFP
352 signal was comparable in cells harboring 1 to 1000 viral reads, yet it sharply increased in cells
353 harboring over 1000 viral reads (**Fig 1B**). The lower sensitivity of GFP signal relative to viral
354 reads is likely due to the lag of protein expression after RNA synthesis, and indicates that virus
355 reads can be used as an effective indicator for VEEV infection. Next, we sought to define a
356 cutoff to distinguish infected from bystander cells (uninfected but derived from the sample that
357 was exposed to the virus). We set multiple cutoffs between 1 and 100 viral reads, selected only
358 cells with viral read number greater than these cutoffs, and calculated the correlation coefficient
359 between GFP expression and viral reads (**S1B Fig**). The correlation between GFP expression and
360 viral reads first increased with the cutoffs and then stabilized once the cutoff reached 10 viral
361 reads, with correlation coefficients greater than 0.8 via both Spearman's and Pearson
362 correlations. We therefore defined the presence of 10 or more viral reads as the cutoff to
363 distinguish VEEV-infected from bystander cells. Similar findings were observed upon plotting
364 the relationship between GFP expression and virus/total reads ratio (vs. raw viral reads) (**S1C**
365 **Fig**), indicating that the selected threshold of 10 viral reads (or 0.00001 virus/total reads) is not
366 affected by differences in sequencing depth between cells.

367

368 The fraction of VEEV-infected cells increased with both time and MOI and saturated at 12 and
369 24 hpi with MOI 1 and 0.1, respectively (**Fig 1C**). A rapid increase in the ratio of both viral/total
370 reads and GFP expression was observed within single cells over time (**Fig 1D**). Notably, the
371 distributions of virus/total reads and GFP expression were particularly wide at 12 hpi when
372 analyzing either the entire infected cell population or infected cells separated by the two MOIs
373 (**S1D and S1E Figs**). At 24 hpi, the observed increase in vRNA reads was associated with a
374 decline in cellular transcripts. The normalized cellular mRNA reads (calculated by dividing the
375 absolute number of reads by the sum of External RNA Controls Consortium (ERCC) spike-in
376 reads) declined in the infected cell group at 24 hpi relative to the corresponding mock infected
377 cell group and the same infected cell group at 12 hpi (**Fig 1E**). To avoid an artificial decline in
378 host gene reads in cells with high vRNA abundance, rather than normalizing cellular gene reads
379 by the total reads, we normalized by ERCC reads for most downstream analyses. This
380 transformation is akin to an estimate of the actual number of mRNA molecules for each gene (up
381 to a constant factor).

382

383 **Altered expression of cellular factors and pathways during VEEV infection.**

384 The wide distributions of virus/total reads observed at 12 hpi suggested that to more precisely
385 characterize the phenotype of cells from VEEV-infected samples, cells should be divided based
386 on the virus/total read content rather than time postinfection or MOI. To identify host genes
387 whose expression is altered during VEEV infection, we integrated differential gene expression
388 and correlation analyses. First, we combined cells harvested at different time points. Since the
389 GFP signal started to increase significantly with a virus/total read ratio greater than 0.001 (**S1C**
390 **Fig**), we divided cells into the following three groups based on this cutoffs: infected cells with
391 high vRNA (>0.001 virus/total reads), infected cells with low vRNA (<0.001 virus/total reads),
392 and mock-infected controls (**S2A Fig**). Since GFP expression and viral reads correlated well in

393 the high vRNA group, we focused on differences between the high vRNA cell group and the
394 mock-infected group. Computing differential expression at the distribution level (Mann-Whitney
395 U test) revealed 1734 host genes, whose expression level significantly differed between the high
396 vRNA group and the mock-infected group. To test the robustness of the population division, we
397 applied a set of cutoffs (ranging from 0.0001 virus/total reads to 0.01 virus/total reads) and
398 computed differential expression between the high vRNA group and the mock-infected controls
399 based on each of these cutoffs (**S2B Fig**). The number of differentially expressed genes (DEGs)
400 identified increased up to a cutoff of 0.001 virus/total reads and then plateaued. Moreover, DEGs
401 identified by a cutoff of 0.001 largely overlapped (over 90%) with those detected with higher
402 cutoffs, confirming that the cutoff of 0.001 is robust in distinguishing between infected cells with
403 high and low vRNA abundance. We predicted that differential expression of some genes might
404 be related to time effect resulting from differences in incubation duration rather than from viral
405 infection. To control for such confounders, we calculated Spearman's correlation coefficients
406 between gene expression and time postinfection. Genes whose expression was similarly altered
407 over time between infected and mock-infected cells were thought to represent time effect. 1707
408 of the 1734 DEGs between the high vRNA and mock-infected groups passed this additional filter
409 (**Fig 2A**).
410

411 In parallel, we computed Spearman's rank correlation coefficients between gene expression and
412 vRNA abundance across all cells, as done previously for flaviviruses (23). Our data indicate that
413 the majority of host genes are negatively correlated with vRNA abundance (**S2C Fig**).
414 Stratifying host genes by expression level in mock-infected cells indicated a stronger negative
415 correlation for highly expressed genes with vRNA abundance (**S2D Fig**), suggesting that cellular
416 functions relying on highly expressed genes are more vulnerable to VEEV infection. To identify
417 genes that are both differentially expressed between infected and mock-infected cells and

418 correlated with vRNA, we computed the intersection between the 1707 DEGs with the top 600
419 genes that either positively (n=300) or negatively (n=300) correlated with vRNA. 263
420 overlapping genes emerged from this analysis (**Fig 2A**).

421

422 Gene Ontology (GO) enrichment analysis of these 263 genes via metascape (40) highlighted
423 metabolism of RNA as the most enriched molecular function term (**Fig 2A**). Shown in **Figs 2B**,
424 **2C** and **S2E** are representative genes that were overexpressed in high vRNA cells vs. mock-
425 infected and low vRNA and positively correlated with vRNA (TNFAIP3), underexpressed and
426 negatively correlated with vRNA (TAF7), or not differentially expressed and were uncorrelated
427 with vRNA (COPZ2). The expression level of these genes did not change over time in mock-
428 infected cells, supporting that their altered levels represent actual differences between the groups
429 rather than a time effect (**S2F Fig**).

430

431 **Early infected “superproducer” cells show distinct patterns of host gene expression.** During
432 cell processing, we noticed that 2% of the cells infected with an MOI of 1 at 6 hpi, the duration
433 of a single cycle of VEEV replication (7,41), showed stronger GFP signals (FITC gate readout >
434 1000) than the remaining cells in the same condition. To probe the relevance of this unexpected
435 finding, we specifically sorted these cells. In correlation with their GFP expression, the majority
436 of these cells harbored ~100-fold higher virus/total reads ratio than the remaining cells in the
437 same condition, suggesting that once initiated, viral replication proceeded extremely fast in these
438 “superproducer” cells (**Fig 3A**). 11 cells were defined as “superproducer” cells based on the
439 following criteria: harboring > 0.001 vRNA/total reads and GFP readout > 1000 at 6 hpi (MOI =
440 1) (**Fig 3A**). To elucidate whether these “superproducer” cells exhibit a distinct gene expression
441 pattern, we conducted differential gene expression analysis (Mann-Whitney U test) between
442 these 11 cells and mock-infected cells as well as low vRNA harboring cells, both harvested at the

443 same time point (6 hpi). A total of 16 DEGs were identified showing a distinct expression pattern
444 only in these “superproducers”, with representative overexpressed and underexpressed genes
445 shown in **Fig 3B and Fig 3C**. Notably, these genes were also differentially expressed between
446 the “superproducer” cells and high vRNA cells harvested at 24 hpi, suggesting that they do not
447 represent a general response to high vRNA abundance, but rather a unique feature of this cell
448 population. Among the overexpressed genes were SYTL3, a protein that directly binds to
449 Rab27A to regulate Rab27-dependent membrane trafficking; KDM3B, a lysine demethylase;
450 SNX29, a member of the sorting nexin family; and COG5, a component of Golgi-localized
451 complex that is essential for Golgi function. Among the underexpressed genes were ZMAT5, an
452 RNA-binding protein belonging to the CCCH zinc finger family of proteins implicated in
453 antiviral immune regulation (42); VPS37A, a component of the ESCRT-I protein complex; and
454 AC087343.1, a ribosomal protein L21 pseudogene. These findings provide evidence that a small
455 subset of “superproducer” cells largely drives VEEV replication during the first viral life cycle
456 and demonstrates a distinct gene expression pattern. These results also point to SYTL3, KDM3B,
457 SNX29 and COG5 as candidate proviral factors, and to ZMAT5, VPS37A and AC087343.1 as
458 potential antiviral factors.

459

460 **The expression of genes involved in intracellular membrane trafficking correlates with the**
461 **ratio of 3' to 5' vRNA reads.**

462 By including both a poly-T and a 5'-end specific capture oligonucleotides in the viscRNA-Seq,
463 good read coverage at both ends of the VEEV genome was obtained (**Fig 4A**). We defined 5'
464 RNA reads as those corresponding to the first 1,700 bases (encoding nonstructural proteins), and
465 thus derived from the genomic vRNA only, and 3' RNA reads as those corresponding to the last
466 third of the genome (encoding structural proteins), derived from both the genomic and
467 subgenomic vRNAs (**Fig 4B**). The stoichiometry of the 3' and 5' RNAs was highly

468 heterogeneous between cells. While at early stages of infection, the 3' to 5' (structural to
469 nonstructural) vRNA read ratio (3'/5' read ratio), as defined by these genomic regions, was
470 below or around 1, at late stages, it reached up to 4 and was correlated with total vRNA
471 abundance (**Fig 4C**). In contrast, the read ratio between two segments we selected as internal
472 controls at the 5' end of the vRNA (5'a/5'b read ratio) and between two segments at the 3' end
473 (3'a/3'b read ratio) did not correlate with the cellular vRNA abundance (**Figs 4D-E**). To test the
474 hypothesis that differences in vRNA stoichiometry are associated with distinct host responses,
475 we measured the Spearman's correlation coefficients of all host genes with the 3'/5' read ratio in
476 the same cell. The resulting histogram distribution curve revealed a tail of host genes whose
477 expression increased with the 3'/5' read ratio (**Fig 4F**), in contrast to the distribution of host
478 genes in correlation with the total vRNA reads (**S2C Fig**). Positively correlated genes were
479 mostly involved in various aspects of intracellular trafficking and included factors previously
480 reported to be required for VEEV infection via an siRNA screen including ARP3 (19), RAC2, a
481 paralog of RAC1⁽¹⁹⁾, and DDX5, a member of the DEAD box family of RNA helicases (20).
482 Novel factors among the positively correlated genes included factors involved in late endosomal
483 trafficking (RAB7A (43), the accessory ESCRT factor (BROX) (44), and the SNARE protein
484 VAMP7 (45)), ER to Golgi trafficking (SEC22B) (46), regulation of secretion (PIP4K2A) (47),
485 lysosome function and autophagy (LAMP2) (48), actin polymerization (PFN2) (49), and
486 acidification of intracellular organelles for protein sorting (ATP6V1B2) (50) (**Fig 4G**).
487 Accordingly, pathway analysis on the top 300 correlated genes identified macroautophagy,
488 regulated exocytosis, membrane trafficking and vesicle organization as the highly enriched
489 functions (**Fig 4H**). Notably, these genes were only positively correlated with the 3'/5' read
490 vRNA ratio and not with the total vRNA reads. These findings indicate that the late stages of
491 VEEV infection are characterized by heterogeneous stoichiometry of structural (3') and
492 nonstructural (5') vRNAs and upregulation of intracellular trafficking pathways previously

493 implicated in assembly and egress of various RNA viruses in cells with an excess of structural
494 vRNA. Moreover, these results highlight the unique opportunity to discover candidate proviral
495 factors for VEEV infection by correlating gene expression with specific viral genome
496 stoichiometry via viscRNA-Seq.

497

498 In addition to enabling quantification of the 5' and 3' vRNA reads, the high coverage of the viral
499 genome provided by viscRNA-Seq revealed rare structural viral read variants. The most common
500 among these variants was a 36-base gap within the coding region of the 6K protein, whose
501 presence was predicted to form a stable hairpin structure (**S1 Text and S3 Fig**). While the
502 biological relevance of this finding remains to be elucidated, and we cannot currently exclude
503 that this gap could be a result of polymerase errors during library preparation, stable RNA
504 structures play essential roles in viral replication and tropism across multiple viruses.

505

506 **Validation of candidate proviral and antiviral factors.** Next, we probed the functional
507 relevance of 11 genes that either strongly or moderately correlated with vRNA abundance for
508 viral infection. We first conducted loss-of-function screens by measuring the effect of siRNA-
509 mediated depletion of these 11 individual genes on VEEV infection and cellular viability in U-87
510 MG cells (**Figs 5A and S4**). Depletion of CXCL3, ATF3, TNFAIP3, and CXCL2, four out of
511 five genes tested that positively correlated with vRNA abundance via viscRNA-Seq (orange
512 bars), reduced VEEV infection by more than 40%, respectively, as measured by luciferase assays
513 18 hpi with a nano-luciferase reporter TC-83 virus and normalized to cellular viability in two
514 independent screens, suggesting that they are proviral factors. In contrast, depletion of 3 of 6
515 genes tested that negatively correlated with vRNA (grey bars) enhanced VEEV infection,
516 suggesting that these proteins may function as antiviral factors. Suppression of PPP2CA
517 demonstrated no effect on VEEV infection, suggesting that it is either non-essential or not

518 restricting (possibly due to redundancy in host factors requirement) or that the level of
519 knockdown was insufficient to trigger a phenotype.

520

521 Next, we conducted gain-of-function screens by ectopically expressing the same 11 individual
522 gene products in U-87 MG cells followed by VEEV infection (**Fig 5B**). Using a cutoff of greater
523 than 40% change in viral infection normalized to cell viability in two independent screens,
524 overexpression of most genes resulted in an inverse effect to that observed with the siRNA, i.e. if
525 knockdown inhibited viral infection, overexpression enhanced it and vice versa. Overexpression
526 of CXCL3, ATF3, TNFAIP3 and CXCL2 increased VEEV infection, indicating rate limitation
527 associated with these candidate proviral factors. In contrast, overexpression of the majority of the
528 antiviral gene products reduced VEEV infection, consistent with an antiviral phenotype.

529

530 While the transcriptional level of TRMT10C and EIF4A3 antiviral correlated with vRNA abundance,
531 their gene products demonstrated a proviral phenotype. This may either result from regulation of
532 these genes at the translational level or from downstream effects of these multifunctional genes.

533 ARRDC3, a member of the arrestin family (51), was positively correlated with vRNA
534 abundance, yet its depletion increased infection and its overexpression decreased infection, in
535 contrast with the other four positively correlated genes tested. To probe this discrepancy, we
536 measured the correlation of ARRDC3 expression with the 5' and 3' vRNA reads separately.

537 Notably, ARRDC3 reads positively correlated with the 3' vRNA reads but negatively correlated
538 with the 5' vRNA reads. In contrast, the other four proviral candidates positively correlated with
539 both the 5' and 3' vRNA reads (**Fig 5C**). This finding suggests that ARRDC3 might have a dual
540 function during VEEV infection. Together, these findings highlight the utility of viscRNA-Seq in
541 identifying candidate proviral and antiviral factors.

542

543 **Comparative viscRNA-Seq analysis across five RNA viruses reveals distinct and common**
544 **cellular pathways affected by viral infection.**

545 To define which elements of the host response are unique to VEEV and which are common
546 across multiple viruses, we first compared the VEEV dataset with our previously published
547 viscRNA-Seq data on human hepatoma (Huh7) cells infected with DENV and ZIKV (23). Since
548 the baseline gene expression levels in astrocytes (VEEV) are different from those in hepatocytes
549 (DENV, ZIKV), we limited the analysis to genes that were similarly expressed (within a 10-fold
550 change) in uninfected Huh7 and U-87 MG cells. We selected cells with greater than 2 vRNA
551 reads per million joint (viral + host) reads and monitored how the expression of host genes
552 changes with increasing vRNA abundance across the three infections. In all three viral
553 infections, the majority of host genes were not correlated with vRNA abundance. Nevertheless, a
554 number of host genes exhibited correlations with one or more viruses. Three robust patterns were
555 identified (**Figs 6A-C**): genes, such as HSPA5, that were upregulated in DENV infection and
556 downregulated in ZIKV and VEEV infections (**Fig 6A**); genes like NRBF2 that were
557 upregulated only during ZIKV infection (**Fig 6B**); and genes, such as SERP1, that were
558 downregulated only in VEEV infection (**Fig 6C**). No genes that were upregulated only in VEEV
559 infection could be identified. Beyond these general categories, the resulting patterns of viral and
560 host expression were, however, quite complex.

561
562 To circumvent the masking effect of VEEV transcriptional shutdown, we then compared the
563 genes that positively correlated with the 3'/5' VEEV RNA ratio with those positively or
564 negatively correlating with DENV or ZIKV vRNA (**Fig 6D**). This analysis revealed genes, such
565 as BROX, GEM, and RNF114 that are positively correlated with the respective vRNA in all
566 three viral infections, genes, such as CTSB and SPTLC1 that are positively correlated with 3'/5'
567 VEEV RNA and ZIKV but not DENV vRNA, and genes that are positively correlated with 3'/5'

568 VEEV RNA but negatively correlated with DENV and ZIKV vRNA, such as PFN2 and
569 DPYSL2. In contrast, no large correlations were observed when a comparable number of random
570 genes were similarly analyzed (**Fig 6E**). Pathway analysis on genes that are positively correlated
571 with both the 3'/5' VEEV RNA ratio and the two flaviviral RNAs identified ER processing,
572 glycosylation, SELK (part of Endoplasmic-Reticulum-Associated Degradation), tRNA synthesis,
573 protein folding, virion assembly, and intracellular transport as the highly enriched functions
574 (**S5A Fig**). In contrast, cell cycle and apoptosis regulation were the most highly enriched
575 functions in pathway analysis on genes that were positively correlated with 3'/5' VEEV RNA
576 ratio but negatively correlated with the two flaviviral RNA (**S5B Fig**). These results provide
577 evidence that complex temporal dynamics exist across different RNA viral infections, and
578 highlight both common and unique cellular pathways that are altered by VEEV and flaviviruses.
579

580 Next, we expanded our comparative analysis by including published datasets derived from
581 single-cell transcriptomic studies on different cell lines infected with IAV (24) and WNV (26)
582 generated via 10x Genomics and Smart-seq2, respectively. Because different cell lines were used
583 for different viruses, we calculated the ranks of the correlation coefficients between the
584 expression of each host gene and vRNA for each virus, restricted the selection to the top and
585 bottom 200 genes, and normalized the results between -1 and 1 for each virus. We then
586 calculated the network of similarities between genes (52). Uniform Manifold Approximation and
587 Projection for Dimension Reduction (53) and Leiden clustering (54) of the genes highlighted 8
588 gene clusters with different expression patterns during various viral infections (**Fig 6F**). To
589 understand the meaning of these clusters, we performed double hierarchical clustering and
590 observed that clusters 2, 4, 0, and 3 were upregulated, while clusters 7, 5, 1, and 6 were mostly
591 downregulated during viral infection (**Fig 6G**). DENV and ZIKV shared clusters for both
592 upregulation and downregulation, as expected from their evolutionary proximity. The

593 dendrogram of the five viruses was qualitatively consistent with the known phylogeny as derived
594 from viral genomic sequences, which could indicate ancestral phenotypic signatures.

595

596 Overall, our analysis indicates that although comparing single cell viral infection data across
597 species, cell lines, and technologies still presents challenges, this approach is informative in
598 highlighting host genes and pathways that are commonly affected across very different viral
599 families.

600

601 **Discussion**

602 We and others have recently characterized the cellular response in virally infected cell lines
603 (23,24), primary cells (26,55) and patient samples (27) via single-cell RNA-seq approaches.
604 Moreover, we reported unique and overlapping determinants in the host response to two related
605 flaviviruses at a single cell resolution (23). Nevertheless, the host transcriptomic response to
606 infection by alphaviruses, which induces a profound transcriptional shutdown of host genes, has
607 not been previously characterized at a single cell level, and the single-cell transcriptomic
608 responses of unrelated viruses have not been compared. By applying viscRNA-Seq to study the
609 temporal infection dynamics of VEEV (TC-83) in human astrocytes, we revealed large cell-to-
610 cell heterogeneity in VEEV and host gene expression, transcriptomic signatures in distinct cell
611 subpopulations, and candidate proviral and antiviral factors, some of which we then validated.
612 Additionally, we established a role for viscRNA-Seq in comparative evolutionary virology by
613 demonstrating structural variants within the VEEV genome as well as unique and overlapping
614 host gene responses across multiple RNA viral clades. These findings provide insights into the
615 virus-host determinants that regulate VEEV infection and highlight the utility of virus-inclusive
616 RNA-seq approaches and comparative single-cell transcriptomics.

99
100

617

618 A prominent feature of VEEV infection is a profound suppression of cellular transcription (6).
619 Nevertheless, it remained unknown whether this transcriptional shutdown globally affects all
620 host mRNAs. Computing the distributions of vRNA expression in correlation with 5 groups of
621 genes, distinguished by the level of gene expression in uninfected cells, demonstrated that highly
622 expressed genes are more likely to be negatively correlated with vRNA abundance than genes
623 that are expressed at a lower level. The cellular energy and machinery required to maintain a
624 high level of gene expression likely play a role in increasing the vulnerability of highly
625 expressed cellular genes to VEEV-induced transcriptional shutdown.

626

627 We have previously reported the utility of viscRNA-Seq in discovering functional transcriptomic
628 signatures and candidate pro- and antiviral factors of DENV and ZIKV infections (23,27).
629 Nevertheless, the high replication rate of VEEV and the transcriptional shutdown it induces
630 challenged our ability to detect alterations in gene expression and identify pro- and antiviral
631 factors. To overcome these challenges, we used several strategies. First, since the viscRNA-Seq
632 analysis revealed large differences in vRNA abundance between cells infected with the same
633 MOI and harvested at the same time point, we stratified cell populations based on vRNA
634 abundance rather than time postinfection. Integrating differential gene expression and correlation
635 analyses of vRNA abundance with gene expression across the entire human transcriptome
636 facilitated the discovery of 263 genes that were both differentially expressed between the high
637 and mock infected controls and correlated with total vRNA. siRNA-mediated depletion and
638 overexpression of a subset of these genes revealed that overall, genes involved in cytokine
639 production, plus ATF3, a transcription factor commonly expressed in response to cellular stress,
640 and TNFAIP3, an inhibitor of NF κ B signaling, demonstrated a phenotype consistent with a rate-
641 limiting proviral function, whereas a variety of regulatory genes, such as TAF7, were rate-

103

104

642 limiting antiviral factors. ARRDC3, one of 5 genes that were both differentially expressed and
643 positively correlated with total vRNA, demonstrated a phenotype consistent with antiviral rather
644 than a proviral effect. Interestingly, when studied in correlation with the individual vRNA
645 transcripts, ARRDC3, a signaling arrestin family protein and a cargo-specific endosomal
646 adaptor, was positively correlated with the 3' vRNA but negatively correlated with the 5' vRNA,
647 suggesting that it may have a proviral effect during later stages and an antiviral effect in earlier
648 stages of replication. By capturing such complex dynamics and not relying on averaging signals
649 at distinct time points postinfection for stratification, the viscRNA-Seq approach has an
650 advantage over bulk sample knockdown or knockout approaches in identifying factors required
651 for or restrictive of VEEV infection.

652

653 The high resolution provided by viscRNA-Seq enabled us to further focus on distinct cell
654 populations, which facilitated identification of additional transcriptomic signatures. We
655 discovered a subpopulation of cells demonstrating unusually high viral replication upon
656 completion of a single cycle of viral replication. Importantly, this cell subpopulation is
657 associated with host cell gene expression that is distinct from cells harboring lower vRNA at the
658 same time. It is intriguing to speculate that overexpression of the identified hits involved in
659 intracellular membrane trafficking (such as SYTL3, SNX29 and COG5) concurrently with
660 underexpression of factors implicated in antiviral immune responses (such as ZMAT5) in this
661 cell population drive the rapid increase in viral replication during the first viral lifecycle.

662

663 To further increase the resolution of our analysis, we took advantage of the ability of viscRNA-
664 Seq to detect the two VEEV transcripts. A prior study on IAV has detected different levels of
665 various segments of the viral genome across cells and investigated how this finding relates to
666 successful virion production (24). Similarly, analysis of the stoichiometry of the 5' and 3' RNA

107
108

667 reads of VEEV, a non-segmented virus, revealed a large cell-to-cell heterogeneity. Moreover, the
668 3'/5' vRNA ratio substantially increased at late stages of infection, consistent with a previous
669 report in another alphavirus, SINV (10). Remarkably, the histogram distribution curve of the
670 Spearman's correlation coefficients of all host genes with the 3'/5' read ratio in the same cell
671 revealed a long tail of host genes whose expression increased with the 3'/5' read ratio. Our
672 findings indicate that these changes in stoichiometry of the vRNA transcripts during late stages
673 of VEEV infection are associated with upregulation of distinct genes, particularly those involved
674 in intracellular trafficking pathways. Notably, detection of these factors was only possible by
675 correlating their expression specifically with the 3'/5' vRNA ratio and not the total vRNA reads.
676 The involvement of these factors specifically in cells harboring high 3'/5' vRNA read ratio thus
677 makes it experimentally challenging to further study them via bulk sample approaches.
678 Nevertheless, it is tempting to speculate that some of the discovered late endosomal trafficking
679 and lysosomal proteins (RAB7A (43), BROX (44), VAMP7 (45) and LAMP2 (48)) may be
680 involved in forming the CPV-I composed of modified endosomes and lysosomes in which
681 VEEV RNA replication occurs (13–15,56–59), and that ATP6V1B2 (50) may mediate the
682 acidification of this acidic intracellular compartment (41). Moreover, the positive correlation of
683 proteins involved in ER to Golgi trafficking (SEC22B) (46), regulation of secretion (PIP4K2A)
684 (47), autophagy (LAMP2) (48), actin polymerization (PFN2) (49), and ESCRT machinery
685 (BROX, a Bro1 domain-containing protein like ALIX) (44,60), TSG101 and STAM2) with the
686 3'/5' vRNA read ratio proposes roles for these factors in late stages of the VEEV lifecycle, such
687 as trafficking of the CPV-IIIs to the plasma membrane, virion assembly, and/or budding (16–18).
688 These results propose a model wherein specific genes are upregulated within the profound
689 transcriptional downregulation in a stoichiometry-dependent manner, and further illuminate the
690 utility of viscRNA-Seq in identifying candidate proviral and antiviral factors, including
691 druggable candidates for host-targeted antiviral approaches.

692

693 Comparative evolutionary virology is an ideal application for single cell technologies because of
694 the degree of genomic and functional diversity of infections. As a proof of concept, we compared
695 the effect of unrelated human RNA viruses on the host cell in permissive cell lines. To address
696 the confounding effect of different cell line backgrounds, we restricted the analyses in **Figs 6A-F**
697 to genes with a similar baseline expression level across cell lines. We compared genes that
698 positively correlated with the 3'/5' VEEV RNA ratio with those correlating with DENV or ZIKV
699 vRNA and found concordant signal for genes involved in protein processing and transport,
700 whereas some cell cycle and apoptosis genes appeared to be specific to VEEV. When comparing
701 data on five different viruses derived using different cell lines and technologies, we observed that
702 while the closely related flaviviruses DENV and ZIKV affect a highly overlapping set of genes
703 in both up and downregulation, more distant evolutionary relationships between the viruses lead
704 to essentially distinct lists of dysregulated host genes. Moreover, the “correct” viral phylogeny
705 grouping all three flaviviruses as a monophyletic group could be recovered purely from the host
706 transcriptome perturbations, i.e. without using viral genomic information, which is intriguing.
707 More viruses across the viral phylogeny should be assessed to evaluate whether this signal is the
708 result of conserved ancestral function or, alternatively, of convergent functional evolution.

709

710 Overall, our study uncovered global and gene-specific host transcriptional dynamics during
711 VEEV (TC-83) infection at single cell resolution and presented a novel approach to elucidate the
712 evolution of virus-host interactions.

713

714

115
116

715 **Acknowledgements**

716 This work was supported by HDTRA11810039 from the Defense Threat Reduction Agency
717 (DTRA)/Fundamental Research to Counter Weapons of Mass Destruction, by the Chan
718 Zuckerberg Biohub, and by a Stanford Bio-X Interdisciplinary Initiative Program Award. ZY
719 was supported by the Maternal and Child Health Research Institute, Lucile Packard Foundation
720 for Children's Health). NP was supported by the University of Washington School of Medicine
721 Guy Tribble and Susan Barnes Graduate Discovery Fellowship. We thank investigators who
722 have provided plasmids (see Methods). The opinions, interpretations, conclusions, and
723 recommendations are those of the authors and are not necessarily endorsed by the U.S. Army or
724 the other funders.

725

726 **Competing interests:** The authors declare that no competing interests exist.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

119
120

752 **References:**

- 753 1. Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of
754 Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development [Internet].
755 Vol. 11, *Viruses*. 2019. p. 164. Available from: <http://dx.doi.org/10.3390/v11020164>
- 756 2. Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC.
757 Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue
758 umbrella. *Future Virol*. 2011;6(6):721–40.
- 759 3. Hawley RJ, Eitzen EM Jr. Biological Weapons—a Primer for Microbiologists [Internet].
760 Vol. 55, *Annual Review of Microbiology*. 2001. p. 235–53. Available from:
761 <http://dx.doi.org/10.1146/annurev.micro.55.1.235>
- 762 4. Berge TO, Banks IS, Tigert WD, Others. Attenuation of Venezuelan Equine
763 Encephalomyelitis Virus by *in vitro* Cultivation in Guinea-Pig Heart Cells. *Am J Hyg*.
764 1961;73(2):209–18.
- 765 5. Keck F, Kortchak S, Bakovic A, Roberts B, Agrawal N, Narayanan A. Direct and indirect
766 pro-inflammatory cytokine response resulting from TC-83 infection of glial cells [Internet].
767 Vol. 9, *Virulence*. 2018. p. 1403–21. Available from:
768 <http://dx.doi.org/10.1080/21505594.2018.1509668>
- 769 6. Garmashova N, Atasheva S, Kang W, Weaver SC, Frolova E, Frolov I. Analysis of
770 Venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular
771 transcription. *J Virol*. 2007 Dec;81(24):13552–65.
- 772 7. Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution.
773 *Microbiol Rev*. 1994 Sep;58(3):491–562.
- 774 8. Shirako Y, Strauss JH. Cleavage between nsP1 and nsP2 initiates the processing pathway of
775 Sindbis virus nonstructural polyprotein P123. *Virology*. 1990 Jul;177(1):54–64.
- 776 9. Lemm JA, Rümenapf T, Strauss EG, Strauss JH, Rice CM. Polypeptide requirements for
777 assembly of functional Sindbis virus replication complexes: a model for the temporal
778 regulation of minus- and plus-strand RNA synthesis [Internet]. Vol. 13, *The EMBO Journal*.
779 1994. p. 2925–34. Available from: <http://dx.doi.org/10.1002/j.1460-2075.1994.tb06587.x>
- 780 10. Raju R, Huang HV. Analysis of Sindbis virus promoter recognition *in vivo*, using novel
781 vectors with two subgenomic mRNA promoters. *J Virol*. 1991 May;65(5):2501–10.
- 782 11. Levis R, Schlesinger S, Huang HV. Promoter for Sindbis virus RNA-dependent subgenomic
783 RNA transcription. *J Virol*. 1990 Apr;64(4):1726–33.
- 784 12. Kielian M, Chanel-Vos C, Liao M. Alphavirus Entry and Membrane Fusion. *Viruses*. 2010
785 Mar 26;2(4):796–825.
- 786 13. Spuul P, Balistreri G, Kaariainen L, Ahola T. Phosphatidylinositol 3-Kinase-, Actin-, and
787 Microtubule-Dependent Transport of Semliki Forest Virus Replication Complexes from the
788 Plasma Membrane to Modified Lysosomes [Internet]. Vol. 84, *Journal of Virology*. 2010. p. 7543–57. Available from: <http://dx.doi.org/10.1128/jvi.00477-10>

790 14. Grimley PM, Berezesky IK, Friedman RM. Cytoplasmic structures associated with an
791 arbovirus infection: loci of viral ribonucleic acid synthesis. *J Virol.* 1968 Nov;2(11):1326–
792 38.

793 15. Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L. Biogenesis of the
794 Semliki Forest virus RNA replication complex. *J Virol.* 2001 Apr;75(8):3873–84.

795 16. Garoff H, Wilschut J, Liljestrom P, Wahlberg JM, Bron R, Suomalainen M, et al. Assembly
796 and entry mechanisms of Semliki Forest virus. *Arch Virol Suppl.* 1994;9:329–38.

797 17. Griffiths G, Quinn P, Warren G. Dissection of the Golgi complex. I. Monensin inhibits the
798 transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster
799 kidney cells infected with Semliki Forest virus. *J Cell Biol.* 1983 Mar;96(3):835–50.

800 18. Soonsawad P, Xing L, Milla E, Espinoza JM, Kawano M, Marko M, et al. Structural
801 evidence of glycoprotein assembly in cellular membrane compartments prior to Alphavirus
802 budding. *J Virol.* 2010 Nov;84(21):11145–51.

803 19. Radoshitzky SR, Pegoraro G, Chi XO, D Ng L, Chiang C-Y, Jozwick L, et al. siRNA
804 Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection. *PLoS*
805 *Pathog.* 2016 Mar;12(3):e1005466.

806 20. Amaya M, Brooks-Faulconer T, Lark T, Keck F, Bailey C, Raman V, et al. Venezuelan
807 equine encephalitis virus non-structural protein 3 (nsP3) interacts with RNA helicases
808 DDX1 and DDX3 in infected cells. *Antiviral Res.* 2016 Jul;131:49–60.

809 21. Gupta P, Sharma A, Han J, Yang A, Bhomia M, Knollmann-Ritschel B, et al. Differential
810 host gene responses from infection with neurovirulent and partially-neurovirulent strains of
811 Venezuelan equine encephalitis virus. *BMC Infect Dis.* 2017 Apr 26;17(1):309.

812 22. Atasheva S, Akhrymuk M, Frolova EI, Frolov I. New PARP gene with an anti-alphavirus
813 function. *J Virol.* 2012 Aug;86(15):8147–60.

814 23. Zanini F, Pu S-Y, Bekerman E, Einav S, Quake SR. Single-cell transcriptional dynamics of
815 flavivirus infection. *Elife* [Internet]. 2018 Feb 16;7. Available from:
816 <http://dx.doi.org/10.7554/eLife.32942>

817 24. Russell AB, Trapnell C, Bloom JD. Extreme heterogeneity of influenza virus infection in
818 single cells. *Elife* [Internet]. 2018 Feb 16;7. Available from:
819 <http://dx.doi.org/10.7554/eLife.32303>

820 25. Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJW, Bloom JD. Single-Cell Virus
821 Sequencing of Influenza Infections That Trigger Innate Immunity. *J Virol* [Internet]. 2019
822 Jul 15;93(14). Available from: <http://dx.doi.org/10.1128/JVI.00500-19>

823 26. O’Neal JT, Upadhyay AA, Wolabaugh A, Patel NB, Bosinger SE, Suthar MS. West Nile
824 Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I
825 Interferon Response within Single Cells. *J Virol* [Internet]. 2019 Mar 15;93(6). Available
826 from: <http://dx.doi.org/10.1128/JVI.01778-18>

827 27. Zanini F, Robinson ML, Croote D, Sahoo MK, Sanz AM, Ortiz-Lasso E, et al. Virus-

828 inclusive single-cell RNA sequencing reveals the molecular signature of progression to
829 severe dengue. *Proc Natl Acad Sci U S A.* 2018 Dec 26;115(52):E12363–9.

830 28. Sun C, Gardner CL, Watson AM, Ryman KD, Klimstra WB. Stable, high-level expression
831 of reporter proteins from improved alphavirus expression vectors to track replication and
832 dissemination during encephalitic and arthritogenic disease. *J Virol.* 2014;88(4):2035–46.

833 29. Rual J-F, Hirozane-Kishikawa T, Hao T, Bertin N, Li S, Dricot A, et al. Human ORFeome
834 version 1.1: a platform for reverse proteomics. *Genome Res.* 2004 Oct;14(10B):2128–35.

835 30. Coutant EP, Goyard S, Hervin V, Gagnot G, Baatallah R, Jacob Y, et al. Gram-scale
836 synthesis of luciferins derived from coelenterazine and original insights into their
837 bioluminescence properties. *Org Biomol Chem.* 2019 Apr 10;17(15):3709–13.

838 31. Coutant EP, Gagnot G, Hervin V, Baatallah R, Goyard S, Jacob Y, et al. Bioluminescence
839 Profiling of NanoKAZ/NanoLuc Luciferase Using a Chemical Library of Coelenterazine
840 Analogues [Internet]. *Chemistry – A European Journal.* 2019. Available from:
841 <http://dx.doi.org/10.1002/chem.201904844>

842 32. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
843 universal RNA-seq aligner. *Bioinformatics.* 2013 Jan 1;29(1):15–21.

844 33. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput
845 sequencing data. *Bioinformatics [Internet].* 2015; Available from: <https://academic.oup.com/bioinformatics/article-abstract/31/2/166/2366196>

847 34. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic
848 data across different conditions, technologies, and species. *Nat Biotechnol.* 2018
849 Jun;36(5):411–20.

850 35. Wickham H. *ggplot2: Elegant Graphics for Data Analysis.* Springer; 2016. 260 p.

851 36. Hunter JD. Matplotlib: A 2D Graphics Environment. *Comput Sci Eng.* 2007 May 1;9(3):90–
852 5.

853 37. Waskom ML, Kumaran D, Gordon AM, Rissman J, Wagner AD. Frontoparietal
854 representations of task context support the flexible control of goal-directed cognition. *J
855 Neurosci.* 2014 Aug 6;34(32):10743–55.

856 38. Hoyer S, Hamman J. xarray: ND labeled arrays and datasets in Python. *Journal of Open
857 Research Software [Internet].* 2017;5(1). Available from:
858 <https://openresearchsoftware.metajnl.com/articles/148/>

859 39. PontÉN JAN, Macintyre EH. Long term culture of normal and neoplastic human glia. *Acta
860 Pathol Microbiol Scand.* 1968;74(4):465–86.

861 40. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape
862 provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat
863 Commun.* 2019 Apr 3;10(1):1523.

864 41. Jose J, Taylor AB, Kuhn RJ. Spatial and Temporal Analysis of Alphavirus Replication and

865 Assembly in Mammalian and Mosquito Cells. *MBio* [Internet]. 2017 Feb 14;8(1). Available
866 from: <http://dx.doi.org/10.1128/mBio.02294-16>

867 42. Fu M, Blackshear PJ. RNA-binding proteins in immune regulation: a focus on CCCH zinc
868 finger proteins. *Nat Rev Immunol*. 2017 Feb;17(2):130–43.

869 43. Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM, et al.
870 Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth
871 type 2B neuropathy. *Am J Hum Genet*. 2003 Mar;72(3):722–7.

872 44. Mu R, Dussupt V, Jiang J, Sette P, Rudd V, Chuenchor W, et al. Two distinct binding
873 modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B.
874 *Structure*. 2012 May 9;20(5):887–98.

875 45. Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A, Sanderson CM, et al. Molecular
876 basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the
877 ArfGAP Hrb. *Cell*. 2008 Sep 5;134(5):817–27.

878 46. Zhang T, Wong SH, Tang BL, Xu Y, Hong W. Morphological and functional association of
879 Sec22b/ERS-24 with the pre-Golgi intermediate compartment. *Mol Biol Cell*. 1999
880 Feb;10(2):435–53.

881 47. Rozenvayn N, Flaumenhaft R. Protein kinase C Mediates Translocation of Type II
882 Phosphatidylinositol 5-Phosphate 4-Kinase Required for Platelet α -Granule Secretion. *J Biol
883 Chem*. 2003 Mar 7;278(10):8126–34.

884 48. Hubert V, Peschel A, Langer B, Gröger M, Rees A, Kain R. LAMP-2 is required for
885 incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. *Biol
886 Open*. 2016 Oct 15;5(10):1516–29.

887 49. Honoré B, Madsen P, Andersen AH, Leffers H. Cloning and expression of a novel human
888 profilin variant, profilin II. *FEBS Lett*. 1993 Sep 13;330(2):151–5.

889 50. Bernasconi P, Rausch T, Struve I, Morgan L, Taiz L. An mRNA from human brain encodes
890 an isoform of the B subunit of the vacuolar H (+)-ATPase. *J Biol Chem*.
891 1990;265(29):17428–31.

892 51. Qi S, O’Hayre M, Gutkind JS, Hurley JH. Structural and biochemical basis for ubiquitin
893 ligase recruitment by arrestin-related domain-containing protein-3 (ARRDC3). *J Biol Chem*.
894 2014 Feb 21;289(8):4743–52.

895 52. Maaten L van der, Hinton G. Visualizing Data using t-SNE. *J Mach Learn Res*.
896 2008;9(Nov):2579–605.

897 53. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection
898 for Dimension Reduction [Internet]. arXiv [stat.ML]. 2018. Available from: <http://arxiv.org/abs/1802.03426>

900 54. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected
901 communities [Internet]. Vol. 9, *Scientific Reports*. 2019. Available from:
902 <http://dx.doi.org/10.1038/s41598-019-41695-z>

903 55. Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, et al. An
904 Immunocompetent Mouse Model of Zika Virus Infection. *Cell Host Microbe*. 2018 May
905 9;23(5):672–85.e6.

906 56. Salonen A, Vasiljeva L, Merits A, Magden J, Jokitalo E, Kääriäinen L. Properly folded
907 nonstructural polyprotein directs the semliki forest virus replication complex to the
908 endosomal compartment. *J Virol*. 2003 Feb;77(3):1691–702.

909 57. Friedman RM, Levin JG, Grimley PM, Berezesky IK. Membrane-associated replication
910 complex in arbovirus infection. *J Virol*. 1972 Sep;10(3):504–15.

911 58. Pietilä MK, van Hemert MJ, Ahola T. Purification of Highly Active Alphavirus Replication
912 Complexes Demonstrates Altered Fractionation of Multiple Cellular Membranes. *J Virol*
913 [Internet]. 2018 Apr 15;92(8). Available from: <http://dx.doi.org/10.1128/JVI.01852-17>

914 59. Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication [Internet].
915 Vol. 234, *Virus Research*. 2017. p. 44–57. Available from:
916 <http://dx.doi.org/10.1016/j.virusres.2017.01.007>

917 60. Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP. Structure of the Bro1 domain
918 protein BROX and functional analyses of the ALIX Bro1 domain in HIV-1 budding. *PLoS*
919 *One*. 2011 Dec 5;6(12):e27466.

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

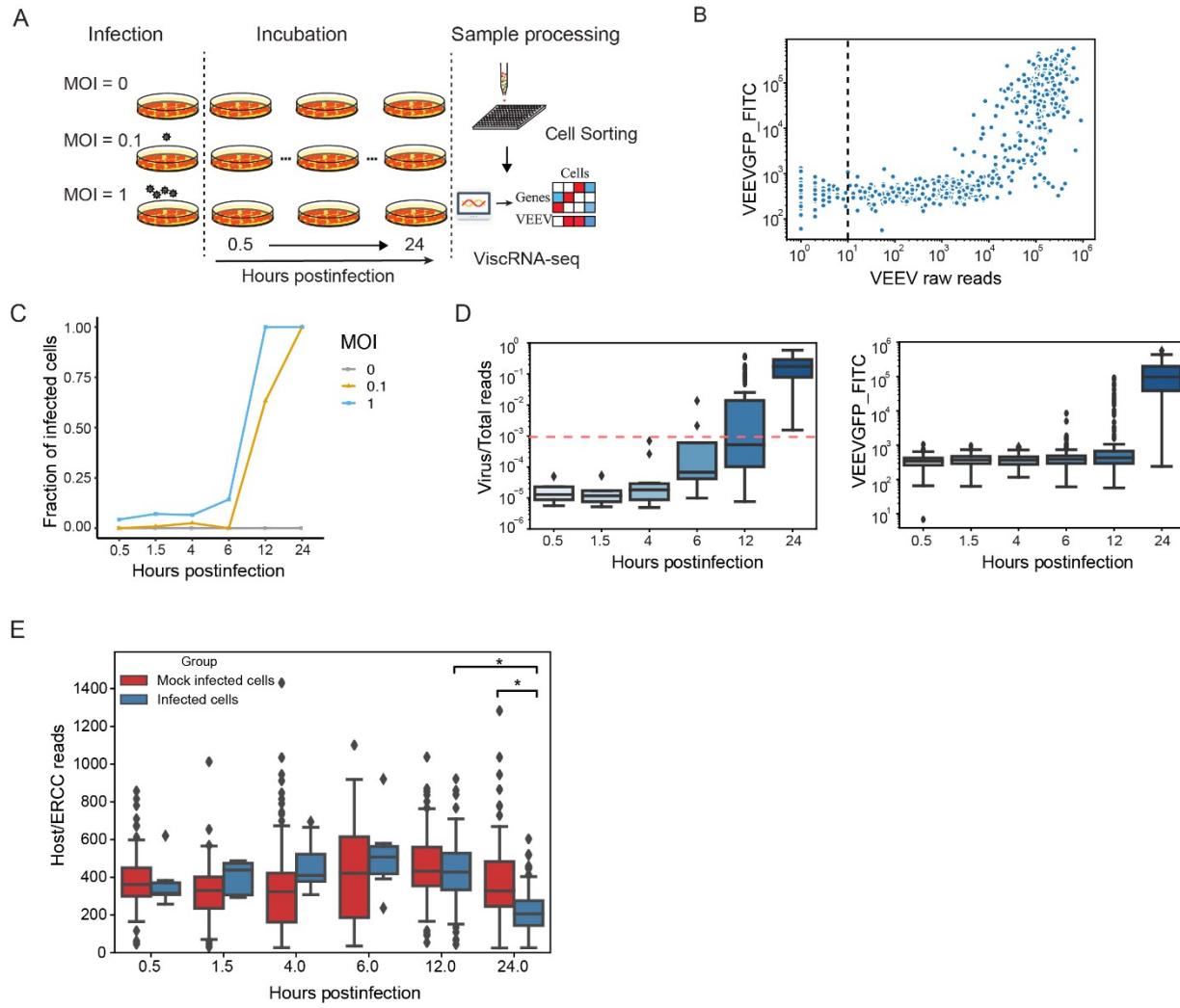
940

941

942

943

944

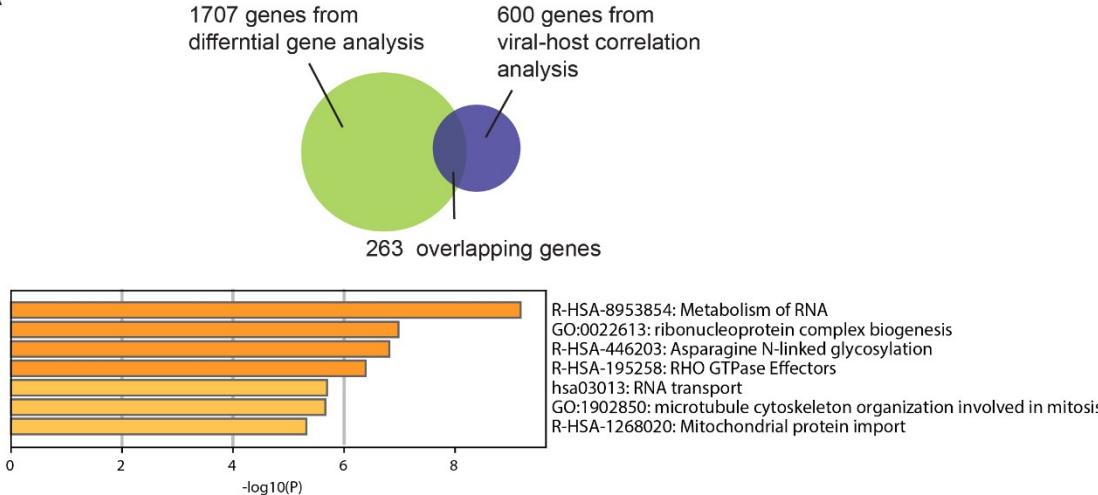

945

139

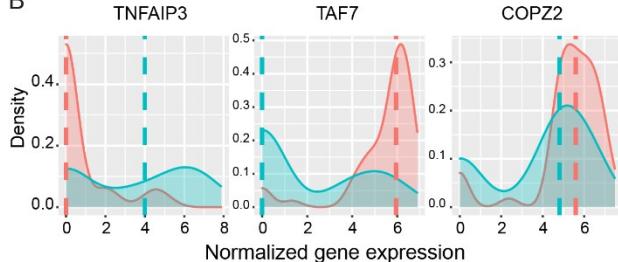
140

946 **Figures and legends**

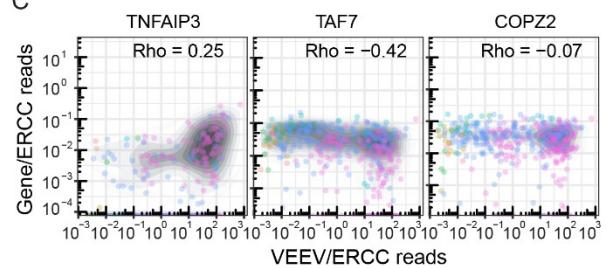
947
948



949
950 **Fig 1. Cell-to-cell heterogeneity during VEEV infection.** (A) Schematic of the experimental
951 setup. (B) A scatter plot showing VEEV cDNA sequencing reads and GFP expression measured
952 via FACS (FITC gate) in cells harboring 1 or more viral reads. The dotted line represents the
953 cutoff of infected cells. Cells harboring more than 10 viral reads are considered infected. (C) The
954 fraction of VEEV-TC-83-infected U-87 MG cells over time for two MOIs. (D) Box plots
955 depicting the ratio of virus to total cDNA reads (left) and GFP expression level (right) over time.
956 The horizontal dotted line represents the threshold dividing cells into “low vRNA” and “high
957 vRNA” harboring cells (see text). (E) Box plots showing host cDNA to ERCC read ratio in
958 infected and mock-infected cells derived from different time points postinfection. *p < 0.05 by
959 Mann-Whitney U test. HPI, hours postinfection; MOI, multiplicity of infection; ERCC, External
960 RNA Controls Consortium.


961
962

963


A

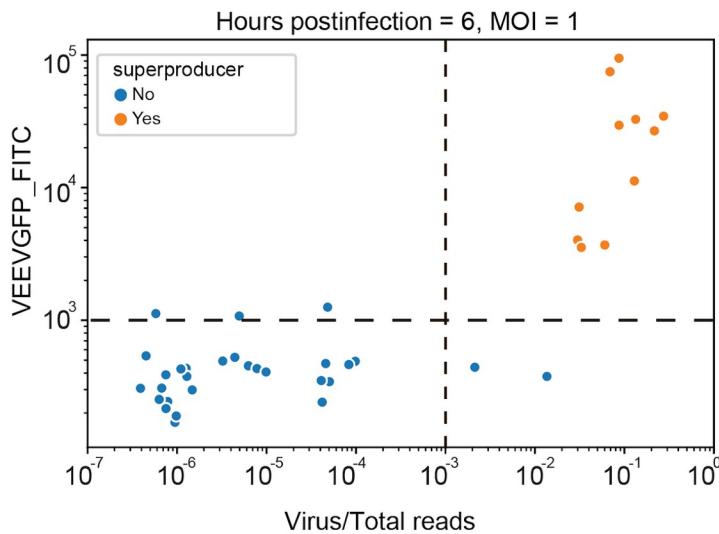
B

C

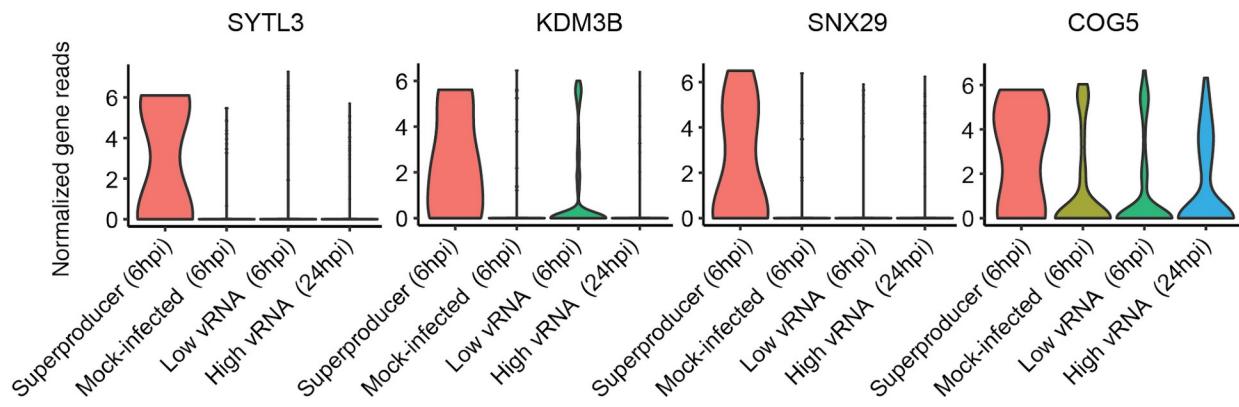
964

965

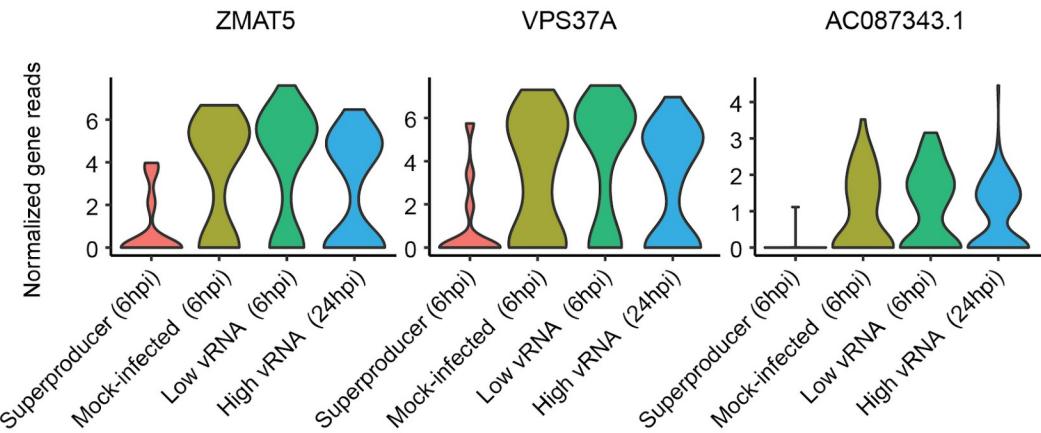
966 **Fig 2. Host genes and pathways are altered during VEEV infection.** (A) A Venn diagram
967 showing the number of unique and overlapping genes that emerged from the differentially gene
968 expression analysis and host RNV/vRNA correlation analysis. Molecular function terms and P
969 values derived from Gene Ontology (GO) enrichment analysis of 263 genes that are both
970 differentially expressed between high vRNA and mock-infected cells and correlated with vRNA.
971 (B) Ridge plots of representative host genes that are differentially expressed between high vRNA
972 and mock-infected cells and a gene (COPZ2) whose level is unaltered. 50 cells from each group
973 were selected for plotting. Dash lines indicate median expression level of the corresponding
974 genes. Gene expression was normalized using the following formula: $\ln((\text{gene counts} /$
975 $\text{ERCC counts}) + 1)$. (C) Representative scatter plots of host gene expression versus vRNA
976 abundance and corresponding Rho Spearman's correlation coefficients. Each dot is a single cell
977 colored by the time postinfection, and the shaded contours indicate cell density (greyscale,
978 darker is higher). HPI, hours postinfection; MOI, multiplicity of infection; ERCC, External RNA
979 Controls Consortium; TNFAIP3, Tumor Necrosis Factor Alpha-Induced Protein 3; TAF7,
980 TATA-Box Binding Protein Associated Factor 7; COPZ2, COPI Coat Complex Subunit Zeta 2.


981

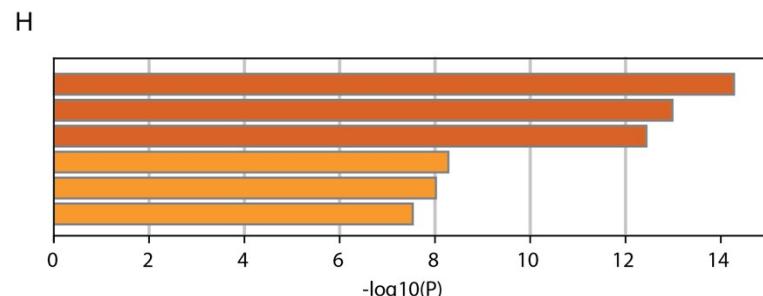
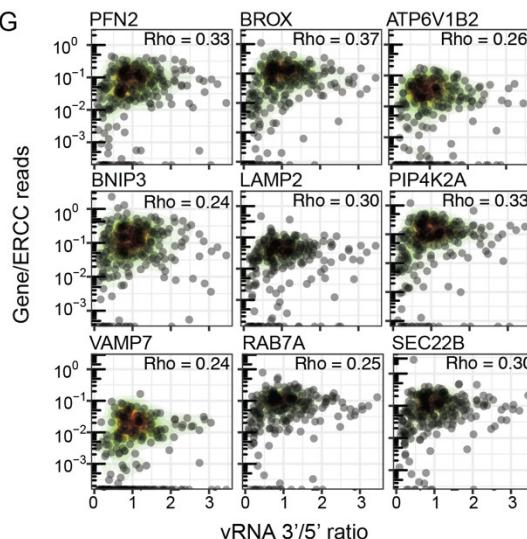
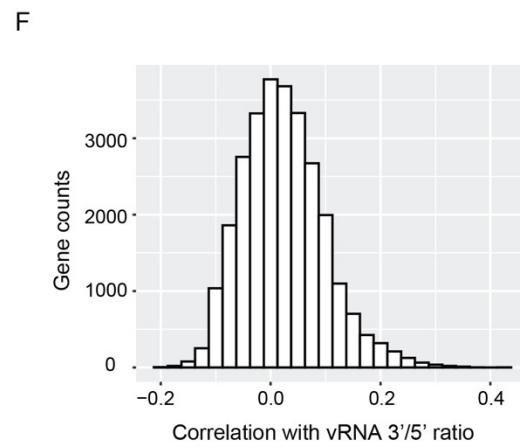
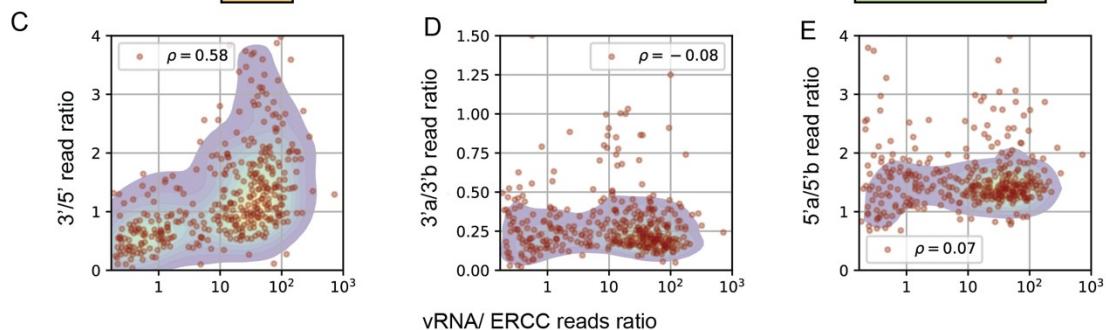
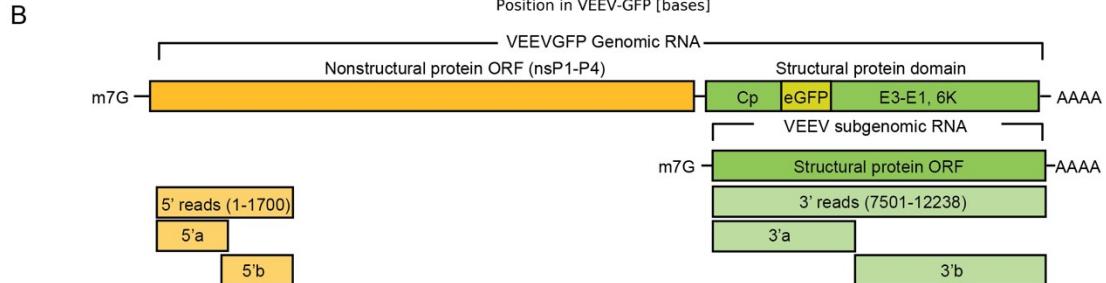
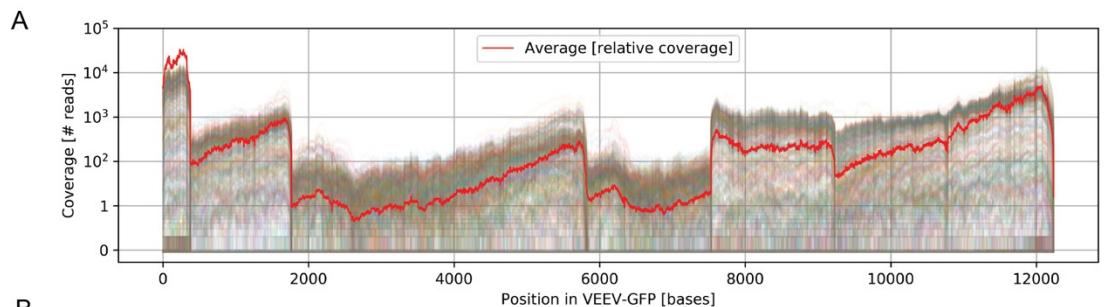
147


148

150


A

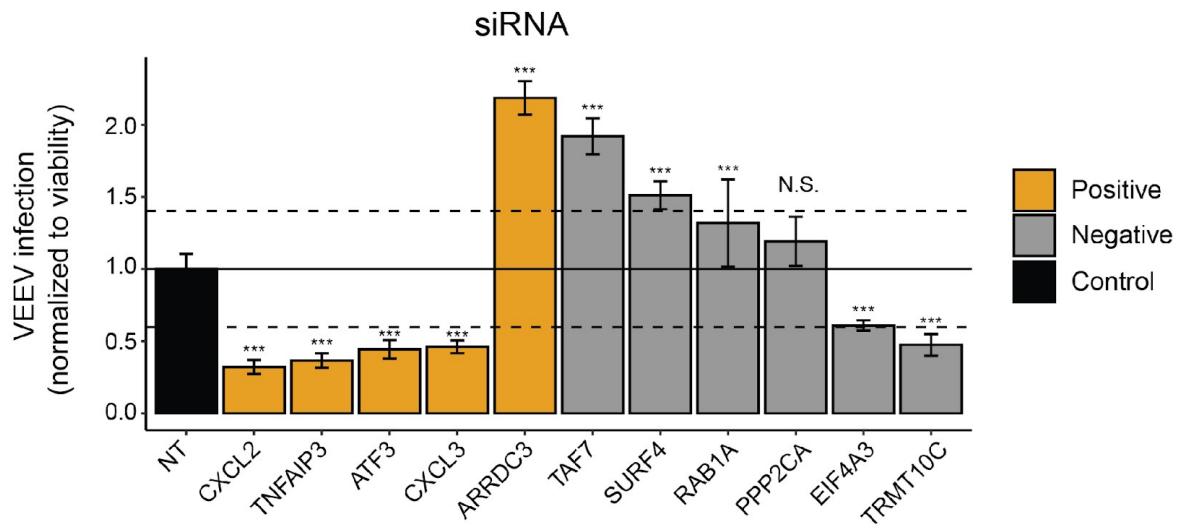
B







C

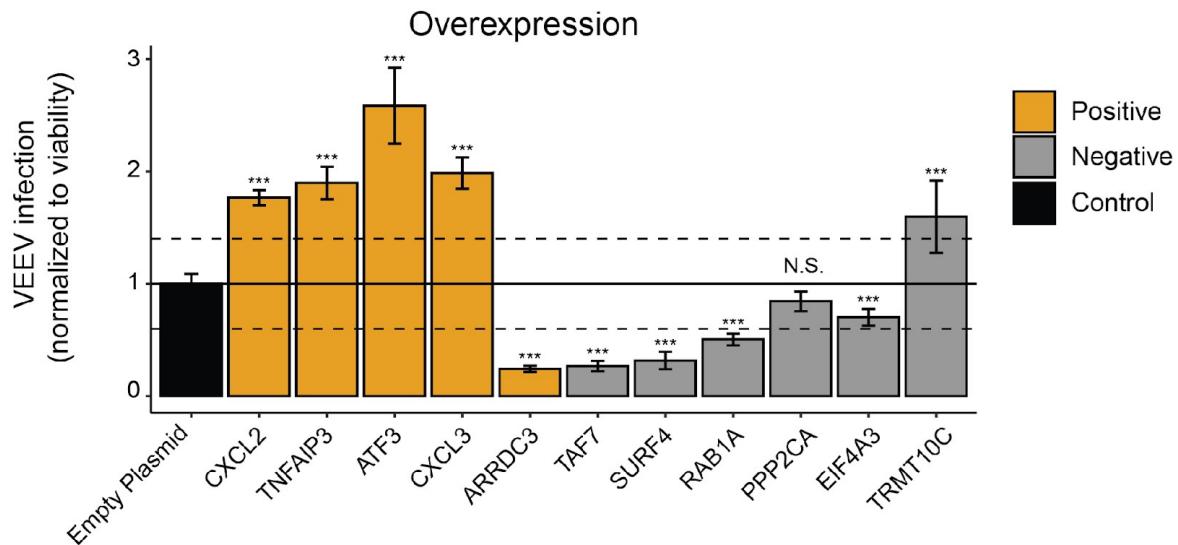
982
983
984
985
986
987
988

151
152

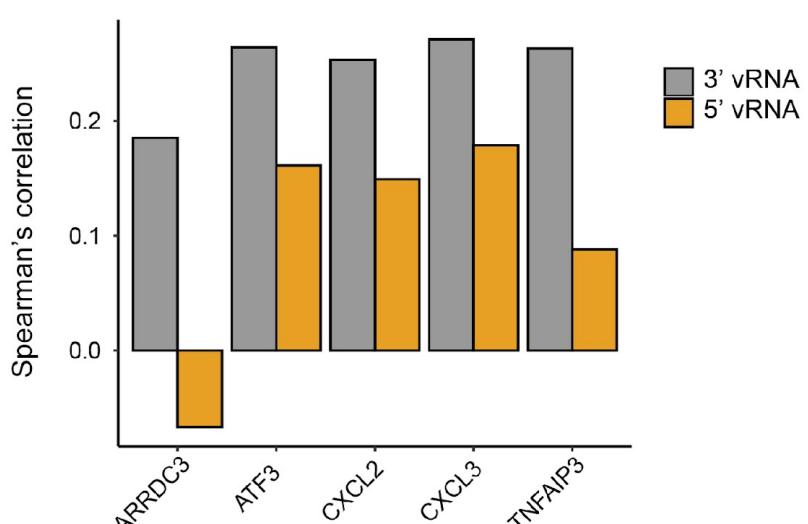
989 **Fig 3. “Superproducers” cells exhibit altered gene expression patterns.** (A) Scatter plot
990 depicting GFP expression level and virus/total reads in cells at 6 hours postinfection with VEEV
991 (TC-83) at an MOI of 1. The horizontal and vertical dash lines indicate the cutoffs of GFP signal
992 and virus/total read ratio, respectively (see text). Each dot represents a cell. Orange, cells with a
993 GFP signal readout that is greater than 1000 and virus/total read ratio greater than 0.001 defined
994 as “superproducers” (n = 11); blue: cells not meeting these criteria. (B and C) Representative
995 violin plots showing genes that are upregulated (B) or downregulated (C) specifically in
996 “superproducers” cells relative to either mock-infected cells, low vRNA cells harvested at 6 hpi
997 or high vRNA cells harvested at 24 hpi. HPI, hours postinfection; MOI, multiplicity of infection.
998 SYTL3, Synaptotagmin Like 3; KDM3B, Lysine Demethylase 3B; SNX29, Sorting Nexin 29;
999 COG5, Component Of Oligomeric Golgi Complex 5; ZMAT5, Zinc Finger Matrin-Type 5;
1000 VPS37A, Vacuolar Protein Sorting-Associated Protein 37A; AC087343.1, Ribosomal Protein
1001 L21 (RPL21) Pseudogene.
1002



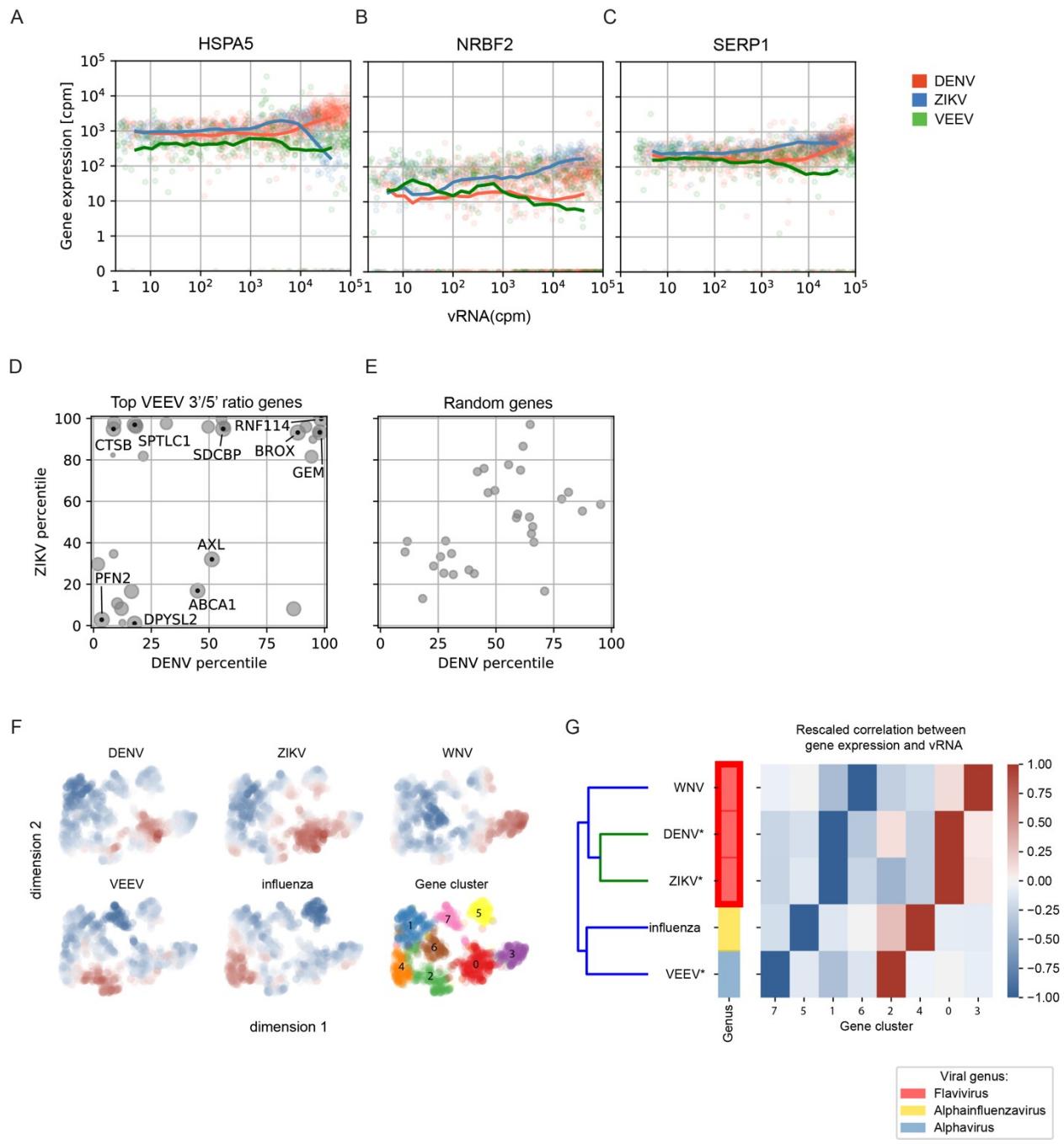
GO:0016236: macroautophagy
 GO:0045055: regulated exocytosis
 R-HSA-199991: Membrane Trafficking
 GO:0016050: vesicle organization
 GO:1903827: regulation of cellular protein localization
 GO:0044257: cellular protein catabolic process


1004 **Fig 4. The expression of genes involved in intracellular membrane trafficking correlates**
1005 **with the ratio of 3' to 5' vRNA reads.** (A) Coverage of viral reads over the entire VEEV
1006 genome. Each line is a cell, and the red line is a scaled average across all cells. (B) Genome
1007 architecture of VEEV highlighting the nonstructural (yellow) and structural (green) protein
1008 domains. (C) Scatter plot showing positive correlation of VEEV 3'/5' read ratio with cellular
1009 vRNA abundance. Each dot is an infected cell. (D-E) Scatter plots showing no correlation
1010 between the 3'a/3'b read ratio (D) and 5'a/5'b read ratio (E) and cellular vRNA abundance. (F)
1011 Histogram of Spearman's correlation coefficients between all host genes and the 3'/5' read ratio.
1012 (G) Representative scatter plots of host gene expression versus vRNA 3'/5' read ratio and
1013 corresponding Rho Spearman's correlation coefficients. Each dot is a cell and contour plots
1014 indicate cell density (low to high, green to red). (H) Gene enrichment analysis of top 300 genes
1015 positively correlated with the 3'/5' read ratio. ORF, opening reading frame; PFN2, Profilin 2;
1016 BROX, BRO1 Domain- And CAAX Motif-Containing Protein; ATP6V1B2, ATPase H+
1017 Transporting V1 Subunit B2; BNIP3, BCL2 Interacting Protein 3; LAMP2, Lysosomal
1018 Associated Membrane Protein 2; PIP4K2A, Phosphatidylinositol-5-Phosphate 4-Kinase Type 2
1019 Alpha; VAMP7, Vesicle Associated Membrane Protein 7; RAB7A, Ras-Related Protein Rab-7a;
1020 SEC22B, SEC22 Homolog B.

1021
1022
1023
1024
1025


A

B


C

1027 **Fig 5. Validation of candidate VEEV proviral and antiviral genes.** VEEV infection relative
1028 to non-targeting (NT) siRNA (A) or empty plasmid (B) controls following siRNA-mediated
1029 knockdown (A) or overexpression (B) of the indicated host factors measured by luminescence
1030 assays at 18 hpi (MOI = 0.01) of U-87 MG cells with VEEV-TC-83-NLuc and normalized to cell
1031 viability. Columns are color-coded based on the correlation of the respective gene with vRNA
1032 abundance via viscRNA-Seq: yellow for genes that are positively correlated with vRNA and
1033 grey for genes that are negatively correlated with vRNA. Both data sets are pooled from two
1034 independent experiments with six replicates each. Shown are means \pm SD; *p < 0.05, **p < 0.01,
1035 ***p < 0.001 relative to the respective control by 1-way ANOVA followed by Dunnett's post
1036 hoc test. The dotted lines represent the cutoffs for positivity. Cellular viability measurements are
1037 shown in S3 Fig. (C) Correlation coefficients between proviral candidates with the 3' (grey) and
1038 5' (orange) vRNA reads.

1039

1040

1041

1042

1043

175

176

1044 **Fig 6. Comparative viscRNA-Seq analysis across five RNA viruses.** (A-C) Scatter plots of
1045 representative host gene expression versus vRNA in single cells during DENV (orange), ZIKV
1046 (blue), and VEEV (green) infection. Dots indicate single cells, lines are running averages at
1047 increasing vRNA abundances. (D, E) Correlation between host gene expression and vRNA
1048 abundance during DENV versus ZIKV infection of the top genes that positively correlate with
1049 the VEEV 3'/5' read ratio (D) or a similar number of random genes (E). Each dot is a gene and
1050 the axis coordinate is the percentage of genes with a correlation with vRNA smaller than the
1051 gene of interest. For (D), size of the dot increases with the correlation with VEEV 3'/5' read
1052 ratio (top correlated gene is largest). (F) UMAP (53)embedding of host genes correlation with
1053 vRNA during infection by 5 individual RNA viruses. Blue and red indicate downregulation and
1054 upregulation during each infection, respectively. Several clusters of genes are observed (0-7).
1055 (G) Hierarchical clustering of host gene clusters highlights that gene upregulation is mostly
1056 virus-specific and is consistent with the known phylogeny. cpm, count per million; WNV, West
1057 Nile virus; IAV, influenza A virus.

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092 **Supporting Information**

1093

1094 **S1 Text.** Rare structural viral read variants correlate with expression of specific host genes.

1095 **S1 Fig.** Quality control and definition of infected cells.

1096 **S2 Fig.** Subgrouping cells based on viral load, representative differentially expressed genes
1097 (DGEs) and correlation analysis.

1098 **S3 Fig.** VEEV gap reads identified via viscRNA-Seq.

1099 **S4 Fig.** Validation of proviral and antiviral factors.

1100 **S5 Fig.** Pathway analysis for genes that positively correlated with VEEV 3'/5' read ratio and
1101 positively (A) or negatively (B) correlated with DENV and ZIKV.

1102 **S1 Table.** DENV capture oligonucleotides.

1103