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Abstract

Venezuelan Equine Encephalitis Virus (VEEV) is a major biothreat agent that naturally causes 

outbreaks in humans and horses particularly in tropical areas of the western hemisphere, for 

which no antiviral therapy is currently available. The host response to VEEV and the cellular 

factors this alphavirus hijacks to support its effective replication or evade cellular immune 

responses are largely uncharacterized. We have previously demonstrated tremendous cell-to-cell 

heterogeneity in viral RNA (vRNA) and cellular transcript levels during flaviviral infection using

a novel virus-inclusive single-cell RNA-Seq approach. Here, we used this unbiased, genome-

wide approach to simultaneously profile the host transcriptome and vRNA in thousands of single

cells during infection of human astrocytes with the live-attenuated vaccine strain of VEEV. Host 

transcription was profoundly suppressed, yet “superproducer cells” with extremely high vRNA 

abundance emerged during the first viral life cycle and demonstrated an altered transcriptome 

relative to both mock-infected cells and cells with high vRNA abundance harvested at later time 

points. Additionally, cells with increased structural-to-nonstructural transcript ratio exhibited 

upregulation of intracellular membrane trafficking genes at later time points. Loss- and gain-of-

function experiments confirmed pro- and antiviral host factors among the products of transcripts 

that positively or negatively correlated with vRNA abundance, respectively. Lastly, comparison 

with single cell transcriptomic data from other viruses highlighted common and unique pathways

perturbed by infection across evolutionary scales. This study provides a high-resolution 

characterization of the VEEV-host interplay, identifies candidate antiviral targets, and establishes

a comparative single-cell approach to study the evolution of virus-host interactions.
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Author Summary

Little is known about the host response to Venezuelan Equine Encephalitis Virus (VEEV) and 

the cellular factors this alphavirus hijacks to support effective replication or evade cellular 

immune responses. Monitoring dynamics of host and viral RNA (vRNA) during viral infection at

a single-cell level can provide insight into the virus-host interplay at a high resolution. Here, a 

single-cell RNA sequencing technology that detects host and viral RNA was used to investigate 

VEEV-host interactions during the course of infection of human astrocytes. Virus abundance and

host transcriptome were heterogeneous across cells from the same culture. Subsets of 

differentially expressed genes, positively or negatively correlating with vRNA abundance, were 

identified and subsequently validated as proviral and antiviral factors, respectively. In the first 

replication cycle, “superproducer” cells exhibited rapid increase in vRNA abundance and unique 

gene expression patterns. At later time points, cells with increased structural-to-nonstructural 

transcript ratio demonstrated upregulation of intracellular membrane trafficking genes. Lastly, 

comparing the VEEV dataset with published datasets on other RNA viruses revealed unique and 

overlapping responses across viral clades. Overall, this study improves the understanding of 

VEEV-host interactions, reveals candidate targets for antiviral approaches, and establishes a 

comparative single-cell approach to study the evolution of virus-host interactions.
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Introduction

For more than a century, Venezuelan Equine Encephalitis Virus (VEEV), a member of the 

Alphavirus genus, has been the causative agent of outbreaks of febrile neurological disease in 

both animals and humans in Central and South America (1,2). The incidence of VEEV infection 

is underestimated since early symptoms are non-specific (2). While typically transmitted via a 

mosquito bite, VEEV is also infectious as an aerosol, hence it is considered a major bioterrorism 

threat (3). To date, no US FDA approved drugs or vaccines against VEEV are available. A 

deeper understanding of VEEV biology in human cells is required to advance the development of

effective countermeasures against VEEV.

Because VEEV is a biosafety level 3 pathogen, TC-83, a live-attenuated vaccine strain, is 

commonly used for research purposes (4). Although attenuated, VEEV TC-83 replicates rapidly: 

viral protein production is observed as early as 6 hours postinfection (hpi) of human astrocytoma

cells (U-87 MG) at multiplicity of infection (MOI) of 2, and over 1010 copies of intracellular viral

RNA (vRNA) can be detected by 24 hpi (5). It remains unknown, however, whether a large 

number of cells, each producing a small number of virions, or a few “superproducer” cells drive 

this effective virus production. Productive replication is associated with profound shutdown of 

host gene transcription (6). Nevertheless, since the virus relies on cellular machineries, it is 

important to identify which host factors are “spared” from this shutdown, as they may represent 

essential factors for effective viral replication.

The genome of VEEV is an ~11.5 kb single-stranded positive-sense RNA. The genomic RNA 

contains two domains. The 5’ two-thirds of the genome constitutes the first open reading frame 

(ORF), which encodes the nonstructural (ns) proteins required for viral RNA synthesis (nsP1-4). 
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The 3’ one-third of the genome is the structural protein domain. The structural proteins (capsid, 

envelope glycoproteins E1-3, 6k, and transframe (TF) protein) are translated from a second ORF 

that is expressed through the production of a subgenomic mRNA from an internal promoter in 

the negative-strand RNA replication intermediate and function in the assembly of new virions 

and their attachment and entry into cells (7). While the stoichiometry of the genomic and 

subgenomic transcripts in the setting of VEEV infection has not been characterized, the 

transcription of the subgenomic RNA of a related alphavirus, Sindbis virus (SINV), was shown 

to be ~3-fold higher than the genomic RNA during late stages of the viral lifecycle (8,9), 

supporting a switch towards increased synthesis of structural proteins required for virion 

formation over nonstructural proteins required primarily for viral RNA replication (10,11). 

The understanding of the alphavirus life cycle is largely based on studies conducted with the 

non-pathogenic SINV and Semliki forest virus (SFV). Alphaviruses enter their target cells via 

clathrin-mediated endocytosis and release their nucleocapsid into the cytoplasm via fusion with 

endosomal membranes, followed by translation and processing of the nonstructural polyprotein 

(12). Viral RNA replication occurs within membrane invaginations called spherules that are 

thought to be derived from the plasma membrane, endoplasmic reticulum and late endosomes 

and are subsequently incorporated into type 1 cytopathic vacuoles (CPV)-I composed of 

modified endosomes and lysosomes (13–16). Production of genomic RNA and subsequently 

subgenomic RNA are followed by polyprotein translation and processing. The current model of 

infectious alphavirus production suggests that the genomic RNA is packaged by the capsid in the

cytoplasm, and that the viral glycoproteins traffic via membrane structures, presumed to be 

transGolgi-derived (CPV-II), to budding sites on the plasma membrane, followed by membrane 

curving and scission, facilitating envelopment of the nucleocapsid (16–18).  
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Although VEEV is predicted to extensively interact with cellular factors to effectively replicate 

and evade cellular immune responses, like other small RNA viruses, little is known about these 

interactions. A recent small interfering RNA (siRNA) screen revealed a requirement for actin-

remodeling pathway proteins including ARF1, RAC1, PIP5K1-α, and ARP3  in VEEV infection 

and specifically in promoting viral glycoprotein transport to the plasma membrane (19). Various 

other cellular factors, such as DDX-1 and -3 (20), have been reported to have proviral functions, 

whereas IFITM3 (21) and members of the PARP protein family (22), were shown to be antiviral 

factors. Nevertheless, to the best of our knowledge, the interplay between VEEV and the human 

host has not been studied to date via an unbiased, genome-wide approach. 

Single cell RNA sequencing (scRNA-Seq) has demonstrated utility for understanding the 

heterogeneity of both viral and cellular transcriptome dynamics at a high resolution. We have 

recently developed virus-inclusive single-cell RNA-Seq (viscRNA-Seq), an approach to 

simultaneously profile host and viral gene expression in thousands of single cells (23). The 

studies we and others have conducted in cell lines infected with dengue (DENV), Zika (ZIKV), 

influenza A (IAV) (24,25) and West Nile (WNV) viruses (26) and our results in samples from 

DENV-infected patients (27) revealed a tremendous cell-to-cell heterogeneity in both vRNA 

abundance and levels of host factors that support or restrict infection. Moreover, we have 

demonstrated the utility of this approach in identifying novel cellular factors that support or 

restrict viral infection (23). We have therefore hypothesized that studying VEEV (TC-83) 

transcriptome dynamics at a single cell resolution may overcome challenges related to the high 

viral replication rate, thereby highlighting specific transcriptomic signatures above the 

suppressed transcriptional landscape and identifying novel cellular factors that support or restrict 

VEEV replication. 
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We conducted a longitudinal study of virus-host cell interactions across 24 hours of VEEV 

infection in U-87 MG cells via viscRNA-Seq. We detected extreme heterogeneity in vRNA 

abundance and host transcriptome across cells from the same culture. To overcome the challenge

presented by this uneven and rapid viral replication, we stratified cell populations based on 

vRNA abundance rather than time postinfection and correlated cellular gene expression with 

both (i) total vRNA and (ii) the ratio of total (genomic + subgenomic) to genomic vRNA. These 

approaches enabled identification of genes whose expression is altered during VEEV infection, 

many of which were then confirmed via loss-of-function and gain-of-function experiments to 

have pro- and antiviral roles, respectively. Moreover, we revealed a small population of 

“superproducer cells” that drives the rapid increase in vRNA in the first replication cycle and a 

cell population that harbors excess of the structural over nonstructural viral ORFs at late stages 

of viral infection, both associated with distinct host gene expression patterns. Lastly, comparison 

of the VEEV dataset with published data on other RNA viruses revealed unique and overlapping 

host gene responses across viral clades, highlighting the utility of comparative single-cell 

transcriptomics. 

Materials and methods   

Cells

U-87 MG and BHK-21 cell lines were obtained from ATCC (Manassas, VA). Cells were grown 

in Dulbecco’s Modified Eagle's medium (DMEM, Mediatech, Manassas, VA), supplemented 

with 1% Penicillin-Streptomycin solution, 1% L-glutamine 200 mM (Thermo Fisher Scientific, 

Waltham, MA) and 10% Fetal Bovine Serum (FBS, Omega Scientific, INC, Tarzana, CA). Cells 

were maintained in a humidified incubator with 5% CO2 at 37 ˚C. Cells were tested negative for 

mycoplasma by the MycoAlert mycoplasma detection kit (Lonza, Morristown, NJ).
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Plasmids and virus constructs 

The plasmids encoding infectious VEEV TC-83 with a GFP reporter (VEEV TC-83-Cap-eGFP-

Tav, hereafter VEEV-TC-83-GFP) or a nanoluciferase reporter (VEEV TC-83-Cap-NLuc-Tav, 

hereafter VEEV-TC-83-nLuc), were a gift from Dr. William B. Klimstra (Department of 

Immunology, University of Pittsburgh) (28). Open reading frames (ORFs) encoding 11 hits were

selected from the Human ORFeome library of cDNA clones (Open Biosystems) (29) and 

recombined into a FLAG (for FLAG tagging) vector using Gateway technology (Invitrogen).

Virus production

Viral RNA (vRNA) (VEEV-TC-83-GFP or nLuc) was transcribed in vitro from cDNA plasmid 

templates linearized with MluI via MegaScript Sp6 kit (Invitrogen #AM1330) and electroporated

into BHK-21 cells. VEEV was harvested from the supernatant 24 hours postelectroporation, 

clarified from cell debris by centrifugation, and stored at -80 °C. Virus stock titers were 

determined by standard BHK-21 cell plaque assay, and titers were expressed as PFU/ml.

Infection assays

U-87 MG cells were infected with VEEV-TC-83-GFP at various MOIs (0, 0.1, and 1) and 

harvested at various time points postinfection. For the functional screens, U-87 MG cells were 

infected with VEEV-TC83-nLuc in 8 replicates at MOI of 0.01. Overall infection was measured 

at 18 hpi via a nanoluciferase assay using a luciferin solution obtained from the hydrolysis of its 

O-acetylated precursor, hikarazine-103  (prepared by Dr. Yves Janin, Pasteur Institute, France) 

as a substrate (30,31).  

Loss-of-function assays
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siRNAs (1 pmol) were transfected into cells using lipofectamine RNAiMAX transfection reagent

(Invitrogen) 96 hours prior to infection with VEEV-TC-83-nLuc at MOI of 0.01. Custom 

Cherry-Pick ON-TARGETplus siRNA library against 11 genes was purchased from Dharmacon 

(see Supplementary Table 1 for gene and siRNA sequence details).

Gain-of-function assays

Individual plasmids encoding 11 human genes or empty control vector were transfected 

individually into U-87 MG cells with lipofectamine-3000 (Invitrogen) 48 hours prior to infection

with VEEV-TC-83-nLuc at MOI of 0.01.

Viability assays

Viability was measured using alamarBlue reagent (Invitrogen) according to the manufacturer’s 

protocol. Fluorescence was detected at 560 nm on an Infinite M1000 plate reader (Tecan).

 

Detection of infected cells using VEEV-specific capture oligo

To optimize the viscRNA-Seq protocol for a wide dynamic range of vRNA amount per VEEV-

infected cells, we designed and screened eight oligo capture (S1 Table). 

To screen these capture oligo, we first generated cDNA from VEEV-infected cells in the 

presence of each or combinations of VEEV-specific capture oligo. Specifically, 30 pg of both 

vRNA and cellular RNA purified from VEEV-infected cells was reverse-transcribed to cDNA in 

a reaction containing SuperScript™ IV reverse transcriptase, 1X First Strand buffer (Invitrogen),

5 mM DTT, 1 M betaine, 6 mM MgCl2, 1 µM oligo dT and each or combinations of 100 nM 

reverse VEEV oligo capture. Subsequently, cDNA underwent 21-cycle PCR amplification using 

ISPCR primers. cDNA was then purified using Ampure XP beads (Beckman Coulter) at the ratio

of 0.8 and eluted in 15 µL EB buffer. Fragments of purified, concentrated cDNA were visualized
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and quantified using bioanalyzer (DNA High Sensitivity kit, Agilent Technologies). To quantify 

the amount of vRNA captured by each or combinations of oligo capture, these purified cDNA 

were also subjected to qPCR (Hot-start OneTaq (New England Biolabs), 1x Standard Taq buffer,

1x Evagreen (Biotium), forward primer: ATTCTAAGCACAAGTATCATTGTAT and reverse 

primer: TTAGTTGCATACTTATACAATCTGT located upstream of all the capture oligos. 

VEEV_1 and VEEV_2 yielded the highest copies of viral cDNA and did not generate significant

primer dimers. Therefore, this combination of the capture oligo was selected for downstream 

experiments.

Single cell sorting

At each time point, cells were trypsinized for 10 min, spun and resuspended in 1 mL fresh media.

Within 15 min, cells were pelleted again and resuspended in 2 ml 1X phosphate-buffered saline 

(PBS) buffer at a concentration of 106 cells per ml. Cells were filtered through a 40 µm filter into

a 5 ml FACS tube and sorted on a Sony SH800 sorter using SYTOX™ Blue dead cell stain 

(ThermoFisher) to distinguish living cells from dead cells and debris. VEEV harboring cells 

were sorted based on GFP signal. Cells were sorted into 384-well PCR plates containing 0.5 µl 

of lysis buffer using ‘Single cell’ purity mode. A total of 12 384-well plates of single cells were 

sorted for the VEEV time course.

Lysis buffer, reverse transcription, and PCR

To capture and amplify both mRNA and vRNA from the same cell, the Smart-seq2 protocol was 

adapted (Picelli et al., 2014). All volumes were reduced by a factor of 12 compared to the 

original protocol to enable high-throughput processing of 384-well plates. ERCC spike-in RNA 

was added at a concentration of 1:10 of the normal amount. The lysis buffer contained 100nM of
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oligo-dT primer, 100 mM of virus specific capture oligo mix (i.e. VEEV_1 and VEEV_2) to 

capture the positive-stranded virus RNA.

Other virus-specific primers and higher primer concentrations were tested but resulted in a large 

fraction of primer dimers. In order to reduce interference between the virus-specific primer and 

the Template Switching Oligo (TSO) used to extend the RT products, a 5’-blocked biotinylated 

TSO was used at the standard concentration. Reverse transcription (RT) and PCR of the cDNA 

were performed in a total volume of 1 µl and 2.5 µl for each well respectively. The resulting 

cDNAs were amplified for 21 cycles. Lambda exonuclease was added to the PCR buffer at a 

final concentration of 0.0225 U/µl and the RT products were incubated at 37 ˚C for 30 min 

before melting the RNA-DNA hybrid (as it was observed that this reduced the amount of low-

molecular weight bands from the PCR products). The cDNA was then diluted 1 to 7 in EB buffer

for a final volume of 17.5 µl. All pipetting steps were performed using a Mosquito HTS robotic 

platform (TTP Labtech).

 

cDNA quantification

To quantify the amount of cDNA in each well after PCR, a commercial fluorometric assay was 

used (ThermoFisher Quant-It™ Picogreen). Briefly, 1 µl of cDNA and 50 µl of 1:200 dye-buffer

mix were pipetted together into a flat-bottom 384-well plate (Corning 3711). For each plate, six 

wells were used as standard wells. 1 µl dd H2O was added into one standard well as blank. The 

standard solutions were diluted into 5 concentrations (0.1, 0.2, 0.4, 0.8, 1.6 ng/µl) and added 1µl 

into the remaining 5 standard wells. The plate was vortexed for 2 min, centrifuged, incubated in 

the dark for 5 min, and measured on a plate reader at wavelength 550 nm. cDNA concentrations 

were calculated via an affine fit to the standard wells.
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Library preparation and sequencing

For each time point, one plate was sent for library preparation and sequencing. In total, 6 plates 

(2304 cells) were prepared. Sequencing libraries were prepared using the illumina Nextera XT 

kit according to the manufacturer’s instructions, with the following exceptions: (1) we used a 

smaller reaction volume (around 1 µl per cell); (2) we chose a slightly higher cDNA 

concentration (0.4 ng/µl) as input, to compensate for the lack of bead purification upstream; (3) 

we used the commercial 24 i7 barcodes and the 64 new i5 barcode sequences. We noticed a low 

level of cross-talk between these barcodes, indicated by up to five virus reads found in a few 

uninfected cells. However, considering that a sizeable fraction of cells in the same sequencing 

run (late infected and high MOI) had thousands of virus reads, the amount of cross-talk between 

barcodes appears to be of the order of 1 in 10,000 or less. We used Illumina Novaseq sequencer 

for sequencing.

Bioinformatics pipeline

Sequencing reads were mapped against the human GRCh38 genome with supplementary ERCC 

sequences and TC-83-VEEV-GFP genome using STAR Aligner (32) . Genes were counted using

htseq-count (33). The Stanford high performance computing cluster Sherlock 2.0 was used for 

the computations. Once the gene/virus counts were available, the downstream analysis was 

performed on laptops using the packages Seurat (34) and singlet (https://github.com/iosonofabio/

singlet), as well as custom R and Python scripts. Ggplot2 (35), matplotlib (36) and seaborn (37) 

were used for plotting.

For the mutational analysis, all reads mapping to VEEV were extracted from all cells with a 

unique identifier of the cell of origin, and all four possible alleles at each nucleotide were 
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counted by custom scripts based on pysam (https://github.com/pysam-developers/pysam) and 

wrapped in an xarray Dataset (38). The analysis was restricted to infected cells with an average 

of 100 or more reads per viral genomic site to reduce shot noise.

Comparison with flaviviruses was performed as follows. First, host genes with similar expression

(within a factor of 10) in counts per millions (cpm) were identified. Within that class, 

correlations with vRNA for VEEV, DENV, ZIKV were computed separately. Host factors with 

the highest discrepancies between pairs of viruses were identified. For Figs 5A-C, a gene was 

chosen from the most discrepant genes exemplifying the different behaviors observed and the 

cells were scattered using vRNA abundance and gene expression axes, and colored by virus. For 

Fig 5D, the host counts for each gene from all three experiments (in cpm) were added and 

fractions belonging to each experiment were computed. Because the sum is constrained to be 

100%, ternary plots could be used for plotting the three different fractions in two dimensions. 

For figs 5E-F, for each gene shown we computed its percentile in correlation with DENV and 

ZIKV vRNA, i.e. the percentage of other host genes with a correlation less than this focal gene. 

This transformation emphasizes the top correlates/anticorrelates against batch effects and 

different multiplicities of infection in the DENV and ZIKV experiments. For figs 5G-I, 

published tables of counts and metadata were downloaded from links present in each publication,

normalized to counts per millions, and filtered for low-quality cells. We computed the 

correlation of host gene expression and vRNA in each experiment, then features were selected 

that had a high rank in at least one virus and the selected correlation coefficients were centered 

and normalized between -1 and 1 for each virus to enable meaningful cross-experiment 

comparison. Principal Component Analysis (PCA), UMAP, similarity graphs, and Leiden 

clustering (Traag et al. 2019) were computed and plotted.
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Cell selection and normalization

The criteria to select cells were as follows: total reads > 300,000, gene counts > 500 and a ratio 

of ERCC spike-in RNA to total reads ratio < 0.05. Based on these criteria, 2004 out of 2301 cells

were selected for downstream analysis. Due to the high viral copies of VEEV in cells infected 

for 12 and 24 hrs (more than 10%), traditional normalization (dividing by total reads) caused a 

bias which underestimated the expression of host genes. To avoid this, we normalized gene 

counts to ERCC total reads, since these are not affected by the virus. Each gene count column 

(including virus reads) was thus divided by ERCC total reads and then log transformed. 

Data and code availability

The single cell RNA-Seq data for this study is available on GEO at submission number: 

GSE145815 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145815). The code used 

in the computational analyses can be found at https://github.com/saberyzy/VEEV-single_cell. 

Processed count and metadata tables are also available on FigShare at

https://figshare.com/articles/Untitled_Item/11874198.

Results

viscRNA-Seq reveals cell-to-cell heterogeneity in VEEV and host gene expression. 

To characterize the relation between viral and host cell transcriptional dynamics over the course 

of VEEV infection, human astrocytoma cells (U-87 MG) (39) were infected with VEEV (TC-83,

attenuated vaccine strain) conjugated to GFP (28) at MOIs of 0.1 and 1 or mock infected, and 

harvested at six time points: 0.5, 1.5, 4, 6, 12, and 24 hpi (Fig 1A). Single cells were then 

isolated and processed by viscRNA-Seq, as described previously (23). Since the VEEV RNA is 

polyadenylated, it can be captured by the standard poly-T oligonucleotide that hybridizes with 
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host transcripts. Nevertheless, to improve vRNA capture and ensure coverage at the 5’ end of the

viral genome, two specific viral capture oligonucleotides, at positions 352 and 1,742 of the 

VEEV genome, were added to the reaction (see Methods). In total, 4608 cells were processed, of 

which 2301 cells were sequenced with approximately 1 million reads/cell (S1A Fig). 2004 cells 

passed quality controls and were analyzed (see Methods).

To identify a proper cutoff for defining infected cells, we analyzed both GFP signal and vRNA 

reads. During cell sorting (the first step of viscRNA-seq) the GFP signal was recorded using the 

fluorescein (FITC) gate, enabling measurement of cellular GFP expression levels. The GFP 

signal was comparable in cells harboring 1 to 1000 viral reads, yet it sharply increased in cells 

harboring over 1000 viral reads (Fig 1B). The lower sensitivity of GFP signal relative to viral 

reads is likely due to the lag of protein expression after RNA synthesis, and indicates that virus 

reads can be used as an effective indicator for VEEV infection. Next, we sought to define a 

cutoff to distinguish infected from bystander cells (uninfected but derived from the sample that 

was exposed to the virus). We set multiple cutoffs between 1 and 100 viral reads, selected only 

cells with viral read number greater than these cutoffs, and calculated the correlation coefficient 

between GFP expression and viral reads (S1B Fig). The correlation between GFP expression and

viral reads first increased with the cutoffs and then stabilized once the cutoff reached 10 viral 

reads, with correlation coefficients greater than 0.8 via both Spearman’s and Pearson 

correlations. We therefore defined the presence of 10 or more viral reads as the cutoff to 

distinguish VEEV-infected from bystander cells. Similar findings were observed upon plotting 

the relationship between GFP expression and virus/total reads ratio (vs. raw viral reads) (S1C 

Fig), indicating that the selected threshold of 10 viral reads (or 0.00001 virus/total reads) is not 

affected by differences in sequencing depth between cells. 
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The fraction of VEEV-infected cells increased with both time and MOI and saturated at 12 and 

24 hpi with MOI 1 and 0.1, respectively (Fig 1C). A rapid increase in the ratio of both viral/total 

reads and GFP expression was observed within single cells over time (Fig 1D). Notably, the 

distributions of virus/total reads and GFP expression were particularly wide at 12 hpi when 

analyzing either the entire infected cell population or infected cells separated by the two MOIs 

(S1D and S1E Figs). At 24 hpi, the observed increase in vRNA reads was associated with a 

decline in cellular transcripts. The normalized cellular mRNA reads (calculated by dividing the 

absolute number of reads by the sum of External RNA Controls Consortium (ERCC) spike-in 

reads) declined in the infected cell group at 24 hpi relative to the corresponding mock infected 

cell group and the same infected cell group at 12 hpi (Fig 1E). To avoid an artificial decline in 

host gene reads in cells with high vRNA abundance, rather than normalizing cellular gene reads 

by the total reads, we normalized by ERCC reads for most downstream analyses. This 

transformation is akin to an estimate of the actual number of mRNA molecules for each gene (up

to a constant factor). 

Altered expression of cellular factors and pathways during VEEV infection. 

The wide distributions of virus/total reads observed at 12 hpi suggested that to more precisely 

characterize the phenotype of cells from VEEV-infected samples, cells should be divided based 

on the virus/total read content rather than time postinfection or MOI. To identify host genes 

whose expression is altered during VEEV infection, we integrated differential gene expression 

and correlation analyses. First, we combined cells harvested at different time points. Since the 

GFP signal started to increase significantly with a virus/total read ratio greater than 0.001 (S1C 

Fig), we divided cells into the following three groups based on this cutoffs: infected cells with 

high vRNA (>0.001 virus/total reads), infected cells with low vRNA (<0.001 virus/total reads), 

and mock-infected controls (S2A Fig). Since GFP expression and viral reads correlated well in 
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the high vRNA group, we focused on differences between the high vRNA cell group and the 

mock-infected group. Computing differential expression at the distribution level (Mann-Whitney

U test) revealed 1734 host genes, whose expression level significantly differed between the high 

vRNA group and the mock-infected group. To test the robustness of the population division, we 

applied a set of cutoffs (ranging from 0.0001 virus/total reads to 0.01 virus/total reads) and 

computed differential expression between the high vRNA group and the mock-infected controls 

based on each of these cutoffs (S2B Fig). The number of differentially expressed genes (DEGs) 

identified increased up to a cutoff of 0.001 virus/total reads and then plateaued. Moreover, DEGs

identified by a cutoff of 0.001 largely overlapped (over 90%) with those detected with higher 

cutoffs, confirming that the cutoff of 0.001 is robust in distinguishing between infected cells with

high and low vRNA abundance. We predicted that differential expression of some genes might 

be related to time effect resulting from differences in incubation duration rather than from viral 

infection. To control for such confounders, we calculated Spearman’s correlation coefficients 

between gene expression and time postinfection. Genes whose expression was similarly altered 

over time between infected and mock-infected cells were thought to represent time effect. 1707 

of the 1734 DEGs between the high vRNA and mock-infected groups passed this additional filter

(Fig 2A). 

In parallel, we computed Spearman’s rank correlation coefficients between gene expression and 

vRNA abundance across all cells, as done previously for flaviviruses (23). Our data indicate that 

the majority of host genes are negatively correlated with vRNA abundance (S2C Fig). 

Stratifying host genes by expression level in mock-infected cells indicated a stronger negative 

correlation for highly expressed genes with vRNA abundance (S2D Fig), suggesting that cellular

functions relying on highly expressed genes are more vulnerable to VEEV infection. To identify 

genes that are both differentially expressed between infected and mock-infected cells and 
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correlated with vRNA, we computed the intersection between the 1707 DEGs with the top 600 

genes that either positively (n=300) or negatively (n=300) correlated with vRNA. 263 

overlapping genes emerged from this analysis (Fig 2A).

Gene Ontology (GO) enrichment analysis of these 263 genes via metascape (40) highlighted 

metabolism of RNA as the most enriched molecular function term (Fig 2A). Shown in Figs 2B, 

2C and S2E are representative genes that were overexpressed in high vRNA cells vs. mock-

infected and low vRNA and positively correlated with vRNA (TNFAIP3), underexpressed and 

negatively correlated with vRNA (TAF7), or not differentially expressed and were uncorrelated 

with vRNA (COPZ2). The expression level of these genes did not change over time in mock-

infected cells, supporting that their altered levels represent actual differences between the groups 

rather than a time effect (S2F Fig). 

Early infected “superproducer’’ cells show distinct patterns of host gene expression. During

cell processing, we noticed that 2% of the cells infected with an MOI of 1 at 6 hpi, the duration 

of a single cycle of VEEV replication (7,41), showed stronger GFP signals (FITC gate readout > 

1000) than the remaining cells in the same condition. To probe the relevance of this unexpected 

finding, we specifically sorted these cells. In correlation with their GFP expression, the majority 

of these cells harbored ~100-fold higher virus/total reads ratio than the remaining cells in the 

same condition, suggesting that once initiated, viral replication proceeded extremely fast in these

“superproducer” cells (Fig 3A). 11 cells were defined as “superproducer” cells based on the 

following criteria: harboring > 0.001 vRNA/total reads and GFP readout > 1000 at 6 hpi (MOI = 

1) (Fig 3A). To elucidate whether these “superproducer” cells exhibit a distinct gene expression 

pattern, we conducted differential gene expression analysis (Mann-Whitney U test) between 

these 11 cells and mock-infected cells as well as low vRNA harboring cells, both harvested at the
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same time point (6 hpi). A total of 16 DEGs were identified showing a distinct expression pattern

only in these “superproducers”, with representative overexpressed and underexpressed genes 

shown in Fig 3B and Fig 3C. Notably, these genes were also differentially expressed between 

the “superproducer” cells and high vRNA cells harvested at 24 hpi, suggesting that they do not 

represent a general response to high vRNA abundance, but rather a unique feature of this cell 

population. Among the overexpressed genes were SYTL3, a protein that directly binds to 

Rab27A to regulate Rab27-dependent membrane trafficking; KDM3B, a lysine demethylase; 

SNX29, a member of the sorting nexin family; and COG5, a component of Golgi-localized 

complex that is essential for Golgi function. Among the underexpressed genes were ZMAT5, an 

RNA-binding protein belonging to the CCCH zinc finger family of proteins implicated in 

antiviral immune regulation (42); VPS37A, a component of the ESCRT-I protein complex; and 

AC087343.1, a ribosomal protein L21 pseudogene. These findings provide evidence that a small 

subset of “superproducer’’ cells largely drives VEEV replication during the first viral life cycle 

and demonstrates a distinct gene expression pattern. These results also point to SYTL3, KDM3B,

SNX29 and COG5 as candidate proviral factors, and to ZMAT5, VPS37A and AC087343.1 as 

potential antiviral factors.  

The expression of genes involved in intracellular membrane trafficking correlates with the 

ratio of 3’ to 5’ vRNA reads. 

By including both a poly-T and a 5’-end specific capture oligonucleotides in the viscRNA-Seq, 

good read coverage at both ends of the VEEV genome was obtained (Fig 4A). We defined 5’ 

RNA reads as those corresponding to the first 1,700 bases (encoding nonstructural proteins), and 

thus derived from the genomic vRNA only, and 3’ RNA reads as those corresponding to the last 

third of the genome (encoding structural proteins), derived from both the genomic and 

subgenomic vRNAs (Fig 4B). The stoichiometry of the 3’ and 5’ RNAs was highly 
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heterogeneous between cells. While at early stages of infection, the 3’ to 5’ (structural to 

nonstructural) vRNA read ratio (3’/5’ read ratio), as defined by these genomic regions, was 

below or around 1, at late stages, it reached up to 4 and was correlated with total vRNA 

abundance (Fig 4C). In contrast, the read ratio between two segments we selected as internal 

controls at the 5’ end of the vRNA (5’a/5’b read ratio) and between two segments at the 3’ end 

(3’a/3’b read ratio) did not correlate with the cellular vRNA abundance (Figs 4D-E). To test the 

hypothesis that differences in vRNA stoichiometry are associated with distinct host responses, 

we measured the Spearman’s correlation coefficients of all host genes with the 3’/5’ read ratio in 

the same cell. The resulting histogram distribution curve revealed a tail of host genes whose 

expression increased with the 3’/5’ read ratio (Fig 4F), in contrast to the distribution of host 

genes in correlation with the total vRNA reads (S2C Fig). Positively correlated genes were 

mostly involved in various aspects of intracellular trafficking and included factors previously 

reported to be required for VEEV infection via an siRNA screen including ARP3 (19), RAC2, a 

paralog of RAC1 (19), and DDX5, a member of the DEAD box family of RNA helicases (20). 

Novel factors among the positively correlated genes included factors involved in late endosomal 

trafficking (RAB7A (43), the accessory ESCRT factor (BROX) (44), and the SNARE protein 

VAMP7 (45)), ER to Golgi trafficking (SEC22B) (46), regulation of secretion (PIP4K2A) (47), 

lysosome function and autophagy (LAMP2) (48), actin polymerization (PFN2) (49), and 

acidification of intracellular organelles for protein sorting (ATP6V1B2) (50) (Fig 4G). 

Accordingly, pathway analysis on the top 300 correlated genes identified macroautophagy, 

regulated exocytosis, membrane trafficking and vesicle organization as the highly enriched 

functions (Fig 4H). Notably, these genes were only positively correlated with the 3’/5’ read 

vRNA ratio and not with the total vRNA reads. These findings indicate that the late stages of 

VEEV infection are characterized by heterogeneous stoichiometry of structural (3’) and 

nonstructural (5’) vRNAs and upregulation of intracellular trafficking pathways previously 
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implicated in assembly and egress of various RNA viruses in cells with an excess of structural 

vRNA. Moreover, these results highlight the unique opportunity to discover candidate proviral 

factors for VEEV infection by correlating gene expression with specific viral genome 

stoichiometry via viscRNA-Seq.

In addition to enabling quantification of the 5’ and 3’ vRNA reads, the high coverage of the viral

genome provided by viscRNA-Seq revealed rare structural viral read variants. The most common

among these variants was a 36-base gap within the coding region of the 6K protein, whose 

presence was predicted to form a stable hairpin structure (S1 Text and S3 Fig). While the 

biological relevance of this finding remains to be elucidated, and we cannot currently exclude 

that this gap could be a result of polymerase errors during library preparation, stable RNA 

structures play essential roles in viral replication and tropism across multiple viruses. 

Validation of candidate proviral and antiviral factors. Next, we probed the functional 

relevance of 11 genes that either strongly or moderately correlated with vRNA abundance for 

viral infection. We first conducted loss-of-function screens by measuring the effect of siRNA-

mediated depletion of these 11 individual genes on VEEV infection and cellular viability in U-87

MG cells (Figs 5A and S4). Depletion of CXCL3, ATF3, TNFAIP3, and CXCL2, four out of 

five genes tested that positively correlated with vRNA abundance via viscRNA-Seq (orange 

bars), reduced VEEV infection by more than 40%, respectively, as measured by luciferase assays

18 hpi with a nano-luciferase reporter TC-83 virus and normalized to cellular viability in two 

independent screens, suggesting that they are proviral factors. In contrast, depletion of 3 of 6 

genes tested that negatively correlated with vRNA (grey bars) enhanced VEEV infection, 

suggesting that these proteins may function as antiviral factors. Suppression of PPP2CA 

demonstrated no effect on VEEV infection, suggesting that it is either non-essential or not 
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restricting (possibly due to redundancy in host factors requirement) or that the level of 

knockdown was insufficient to trigger a phenotype. 

Next, we conducted gain-of-function screens by ectopically expressing the same 11 individual

gene products in U-87 MG cells followed by VEEV infection (Fig 5B). Using a cutoff of greater 

than 40% change in viral infection normalized to cell viability in two independent screens, 

overexpression of most genes resulted in an inverse effect to that observed with the siRNA, i.e. if

knockdown inhibited viral infection, overexpression enhanced it and vice versa. Overexpression 

of CXCL3, ATF3, TNFAIP3 and CXCL2 increased VEEV infection, indicating rate limitation 

associated with these candidate proviral factors. In contrast, overexpression of the majority of the

anticorrelated gene products reduced VEEV infection, consistent with an antiviral phenotype. 

While the transcriptional level of TRMT10C and EIF4A3 anticorrelated with vRNA abundance, 

their gene products demonstrated a proviral phenotype. This may either result from regulation of 

these genes at the translational level or from downstream effects of these multifunctional genes. 

ARRDC3, a member of the arrestin family (51), was positively correlated with vRNA 

abundance, yet its depletion increased infection and its overexpression decreased infection, in 

contrast with the other four positively correlated genes tested. To probe this discrepancy, we 

measured the correlation of ARRDC3 expression with the 5’ and 3’ vRNA reads separately. 

Notably, ARRDC3 reads positively correlated with the 3’ vRNA reads but negatively correlated 

with the 5’ vRNA reads. In contrast, the other four proviral candidates positively correlated with 

both the 5’ and 3’ vRNA reads (Fig 5C). This finding suggests that ARRDC3 might have a dual 

function during VEEV infection. Together, these findings highlight the utility of viscRNA-Seq in

identifying candidate proviral and antiviral factors. 

22

85
86

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

87
88

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.02.18.955393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955393
http://creativecommons.org/licenses/by/4.0/


Comparative viscRNA-Seq analysis across five RNA viruses reveals distinct and common 

cellular pathways affected by viral infection. 

To define which elements of the host response are unique to VEEV and which are common 

across multiple viruses, we first compared the VEEV dataset with our previously published 

viscRNA-Seq data on human hepatoma (Huh7) cells infected with DENV and ZIKV (23). Since 

the baseline gene expression levels in astrocytes (VEEV) are different from those in hepatocytes 

(DENV, ZIKV), we limited the analysis to genes that were similarly expressed (within a 10-fold 

change) in uninfected Huh7 and U-87 MG cells. We selected cells with greater than 2 vRNA 

reads per million joint (viral + host) reads and monitored how the expression of host genes 

changes with increasing vRNA abundance across the three infections. In all three viral 

infections, the majority of host genes were not correlated with vRNA abundance. Nevertheless, a

number of host genes exhibited correlations with one or more viruses. Three robust patterns were

identified (Figs 6A-C): genes, such as HSPA5, that were upregulated in DENV infection and 

downregulated in ZIKV and VEEV infections (Fig 6A); genes like NRBF2 that were 

upregulated only during ZIKV infection (Fig 6B); and genes, such as SERP1, that were 

downregulated only in VEEV infection (Fig 6C). No genes that were upregulated only in VEEV 

infection could be identified. Beyond these general categories, the resulting patterns of viral and 

host expression were, however, quite complex. 

To circumvent the masking effect of VEEV transcriptional shutdown, we then compared the 

genes that positively correlated with the 3’/5’ VEEV RNA ratio with those positively or 

negatively correlating with DENV or ZIKV vRNA (Fig 6D). This analysis revealed genes, such 

as BROX, GEM, and RNF114 that are positively correlated with the respective vRNA in all 

three viral infections, genes, such as CTSB and SPTLC1 that are positively correlated with 3’/5’ 

VEEV RNA and ZIKV but not DENV vRNA, and genes that are positively correlated with 3’/5’ 
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VEEV RNA but negatively correlated with DENV and ZIKV vRNA, such as PFN2 and 

DPYSL2. In contrast, no large correlations were observed when a comparable number of random

genes were similarly analyzed (Fig 6E). Pathway analysis on genes that are positively correlated 

with both the 3’/5’ VEEV RNA ratio and the two flaviviral RNAs identified ER processing, 

glycosylation, SELK (part of Endoplasmic-Reticulum-Associated Degradation), tRNA synthesis,

protein folding, virion assembly, and intracellular transport as the highly enriched functions 

(S5A Fig). In contrast, cell cycle and apoptosis regulation were the most highly enriched 

functions in pathway analysis on genes that were positively correlated with 3’/5’ VEEV RNA 

ratio but negatively correlated with the two flaviviral RNA (S5B Fig). These results provide 

evidence that complex temporal dynamics exist across different RNA viral infections, and 

highlight both common and unique cellular pathways that are altered by VEEV and flaviviruses. 

Next, we expanded our comparative analysis by including published datasets derived from 

single-cell transcriptomic studies on different cell lines infected with IAV (24) and WNV (26)  

generated via 10x Genomics and Smart-seq2, respectively. Because different cell lines were used

for different viruses, we calculated the ranks of the correlation coefficients between the 

expression of each host gene and vRNA for each virus, restricted the selection to the top and 

bottom 200 genes, and normalized the results between -1 and 1 for each virus. We then 

calculated the network of similarities between genes (52). Uniform Manifold Approximation and

Projection for Dimension Reduction (53) and Leiden clustering (54) of the genes highlighted 8 

gene clusters with different expression patterns during various viral infections (Fig 6F). To 

understand the meaning of these clusters, we performed double hierarchical clustering and 

observed that clusters 2, 4, 0, and 3 were upregulated, while clusters 7, 5, 1, and 6 were mostly 

downregulated during viral infection (Fig 6G). DENV and ZIKV shared clusters for both 

upregulation and downregulation, as expected from their evolutionary proximity. The 
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dendrogram of the five viruses was qualitatively consistent with the known phylogeny as derived

from viral genomic sequences, which could indicate ancestral phenotypic signatures.

Overall, our analysis indicates that although comparing single cell viral infection data across 

species, cell lines, and technologies still presents challenges, this approach is informative in 

highlighting host genes and pathways that are commonly affected across very different viral 

families.

Discussion

We and others have recently characterized the cellular response in virally infected cell lines 

(23,24), primary cells (26,55) and patient samples (27) via single-cell RNA-seq approaches. 

Moreover, we reported unique and overlapping determinants in the host response to two related 

flaviviruses at a single cell resolution (23). Nevertheless, the host transcriptomic response to 

infection by alphaviruses, which induces a profound transcriptional shutdown of host genes, has 

not been previously characterized at a single cell level, and the single-cell transcriptomic 

responses of unrelated viruses have not been compared. By applying viscRNA-Seq to study the 

temporal infection dynamics of VEEV (TC-83) in human astrocytes, we revealed large cell-to-

cell heterogeneity in VEEV and host gene expression, transcriptomic signatures in distinct cell 

subpopulations, and candidate proviral and antiviral factors, some of which we then validated. 

Additionally, we established a role for viscRNA-Seq in comparative evolutionary virology by 

demonstrating structural variants within the VEEV genome as well as unique and overlapping 

host gene responses across multiple RNA viral clades. These findings provide insights into the 

virus-host determinants that regulate VEEV infection and highlight the utility of virus-inclusive 

RNA-seq approaches and comparative single-cell transcriptomics. 
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A prominent feature of VEEV infection is a profound suppression of cellular transcription (6). 

Nevertheless, it remained unknown whether this transcriptional shutdown globally affects all 

host mRNAs. Computing the distributions of vRNA expression in correlation with 5 groups of 

genes, distinguished by the level of gene expression in uninfected cells, demonstrated that highly

expressed genes are more likely to be negatively correlated with vRNA abundance than genes 

that are expressed at a lower level. The cellular energy and machinery required to maintain a 

high level of gene expression likely play a role in increasing the vulnerability of highly 

expressed cellular genes to VEEV-induced transcriptional shutdown. 

We have previously reported the utility of viscRNA-Seq in discovering functional transcriptomic

signatures and candidate pro- and antiviral factors of DENV and ZIKV infections (23,27). 

Nevertheless, the high replication rate of VEEV and the transcriptional shutdown it induces 

challenged our ability to detect alterations in gene expression and identify pro- and antiviral 

factors. To overcome these challenges, we used several strategies. First, since the viscRNA-Seq 

analysis revealed large differences in vRNA abundance between cells infected with the same 

MOI and harvested at the same time point, we stratified cell populations based on vRNA 

abundance rather than time postinfection. Integrating differential gene expression and correlation

analyses of vRNA abundance with gene expression across the entire human transcriptome 

facilitated the discovery of 263 genes that were both differentially expressed between the high 

and mock infected controls and correlated with total vRNA. siRNA-mediated depletion and 

overexpression of a subset of these genes revealed that overall, genes involved in cytokine 

production, plus ATF3, a transcription factor commonly expressed in response to cellular stress, 

and TNFAIP3, an inhibitor of NFκB signaling, demonstrated a phenotype consistent with a rate-

limiting proviral function, whereas a variety of regulatory genes, such as TAF7, were rate-
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limiting antiviral factors. ARRDC3, one of 5 genes that were both differentially expressed and 

positively correlated with total vRNA, demonstrated a phenotype consistent with antiviral rather 

than a proviral effect. Interestingly, when studied in correlation with the individual vRNA 

transcripts, ARRDC3, a signaling arrestin family protein and a cargo-specific endosomal 

adaptor, was positively correlated with the 3’ vRNA but negatively correlated with the 5’ vRNA,

suggesting that it may have a proviral effect during later stages and an antiviral effect in earlier 

stages of replication. By capturing such complex dynamics and not relying on averaging signals 

at distinct time points postinfection for stratification, the viscRNA-Seq approach has an 

advantage over bulk sample knockdown or knockout approaches in identifying factors required 

for or restrictive of VEEV infection. 

The high resolution provided by viscRNA-Seq enabled us to further focus on distinct cell 

populations, which facilitated identification of additional transcriptomic signatures. We 

discovered a subpopulation of cells demonstrating unusually high viral replication upon 

completion of a single cycle of viral replication. Importantly, this cell subpopulation is 

associated with host cell gene expression that is distinct from cells harboring lower vRNA at the 

same time. It is intriguing to speculate that overexpression of the identified hits involved in 

intracellular membrane trafficking (such as SYTL3, SNX29 and COG5) concurrently with 

underexpression of factors implicated in antiviral immune responses (such as ZMAT5) in this 

cell population drive the rapid increase in viral replication during the first viral lifecycle. 

To further increase the resolution of our analysis, we took advantage of the ability of viscRNA-

Seq to detect the two VEEV transcripts. A prior study on IAV has detected different levels of 

various segments of the viral genome across cells and investigated how this finding relates to 

successful virion production (24). Similarly, analysis of the stoichiometry of the 5’ and 3’ RNA 
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reads of VEEV, a non-segmented virus, revealed a large cell-to-cell heterogeneity. Moreover, the

3’/5’ vRNA ratio substantially increased at late stages of infection, consistent with a previous 

report in another alphavirus, SINV (10). Remarkably, the histogram distribution curve of the 

Spearman’s correlation coefficients of all host genes with the 3’/5’ read ratio in the same cell 

revealed a long tail of host genes whose expression increased with the 3’/5’ read ratio. Our 

findings indicate that these changes in stoichiometry of the vRNA transcripts during late stages 

of VEEV infection are associated with upregulation of distinct genes, particularly those involved 

in intracellular trafficking pathways. Notably, detection of these factors was only possible by 

correlating their expression specifically with the 3’/5’ vRNA ratio and not the total vRNA reads. 

The involvement of these factors specifically in cells harboring high 3’/5’ vRNA read ratio thus 

makes it experimentally challenging to further study them via bulk sample approaches. 

Nevertheless, it is tempting to speculate that some of the discovered late endosomal trafficking 

and lysosomal proteins (RAB7A (43), BROX (44), VAMP7 (45) and LAMP2 (48)) may be 

involved in forming the CPV-I composed of modified endosomes and lysosomes in which 

VEEV RNA replication occurs (13–15,56–59), and that ATP6V1B2 (50) may mediate the 

acidification of this acidic intracellular compartment (41). Moreover, the positive correlation of 

proteins involved in ER to Golgi trafficking (SEC22B) (46), regulation of secretion (PIP4K2A) 

(47), autophagy (LAMP2) (48), actin polymerization (PFN2) (49), and ESCRT machinery 

(BROX, a Bro1 domain-containing protein like ALIX) (44,60), TSG101 and STAM2) with the 

3’/5’ vRNA read ratio proposes roles for these factors in late stages of the VEEV lifecycle, such 

as trafficking of the CPV-IIs to the plasma membrane, virion assembly, and/or budding (16–18). 

These results propose a model wherein specific genes are upregulated within the profound 

transcriptional downregulation in a stoichiometry-dependent manner, and further illuminate the 

utility of viscRNA-Seq in identifying candidate proviral and antiviral factors, including 

druggable candidates for host-targeted antiviral approaches. 
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Comparative evolutionary virology is an ideal application for single cell technologies because of 

the degree of genomic and functional diversity of infections. As a proof of concept, we compared

the effect of unrelated human RNA viruses on the host cell in permissive cell lines. To address 

the confounding effect of different cell line backgrounds, we restricted the analyses in Figs 6A-F

to genes with a similar baseline expression level across cell lines. We compared genes that 

positively correlated with the 3’/5’ VEEV RNA ratio with those correlating with DENV or ZIKV

vRNA and found concordant signal for genes involved in protein processing and transport, 

whereas some cell cycle and apoptosis genes appeared to be specific to VEEV. When comparing 

data on five different viruses derived using different cell lines and technologies, we observed that

while the closely related flaviviruses DENV and ZIKV affect a highly overlapping set of genes 

in both up and downregulation, more distant evolutionary relationships between the viruses lead 

to essentially distinct lists of dysregulated host genes. Moreover, the “correct” viral phylogeny 

grouping all three flaviviruses as a monophyletic group could be recovered purely from the host 

transcriptome perturbations, i.e. without using viral genomic information, which is intriguing. 

More viruses across the viral phylogeny should be assessed to evaluate whether this signal is the 

result of conserved ancestral function or, alternatively, of convergent functional evolution. 

Overall, our study uncovered global and gene-specific host transcriptional dynamics during 

VEEV (TC-83) infection at single cell resolution and presented a novel approach to elucidate the

evolution of virus-host interactions.
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Figures and legends

Fig 1. Cell-to-cell heterogeneity during VEEV infection. (A) Schematic of the experimental 
setup. (B) A scatter plot showing VEEV cDNA sequencing reads and GFP expression measured 
via FACS (FITC gate) in cells harboring 1 or more viral reads. The dotted line represents the 
cutoff of infected cells. Cells harboring more than 10 viral reads are considered infected. (C) The
fraction of VEEV-TC-83-infected U-87 MG cells over time for two MOIs. (D) Box plots 
depicting the ratio of virus to total cDNA reads (left) and GFP expression level (right) over time. 
The horizontal dotted line represents the threshold dividing cells into “low vRNA” and “high 
vRNA” harboring cells (see text). (E) Box plots showing host cDNA to ERCC read ratio in 
infected and mock-infected cells derived from different time points postinfection. *p < 0.05 by 
Mann-Whitney U test. HPI, hours postinfection; MOI, multiplicity of infection; ERCC, External 
RNA Controls Consortium. 
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Fig 2. Host genes and pathways are altered during VEEV infection. (A) A Venn diagram 
showing the number of unique and overlapping genes that emerged from the differentially gene 
expression analysis and host RNV/vRNA correlation analysis. Molecular function terms and P 
values derived from Gene Ontology (GO) enrichment analysis of 263 genes that are both 
differentially expressed between high vRNA and mock-infected cells and correlated with vRNA.
(B) Ridge plots of representative host genes that are differentially expressed between high vRNA
and mock-infected cells and a gene (COPZ2) whose level is unaltered. 50 cells from each group 
were selected for plotting. Dash lines indicate median expression level of the corresponding 
genes. Gene expression was normalized using the following the formula: ln ((gene counts / 
ERCC counts) + 1). (C) Representative scatter plots of host gene expression versus vRNA 
abundance and corresponding Rho Spearman’s correlation coefficients. Each dot is a single cell 
colored by the time postinfection, and the shaded contours indicate cell density (greyscale, 
darker is higher). HPI, hours postinfection; MOI, multiplicity of infection; ERCC, External RNA
Controls Consortium; TNFAIP3, Tumor Necrosis Factor Alpha-Induced Protein 3; TAF7, 
TATA-Box Binding Protein Associated Factor 7; COPZ2, COPI Coat Complex Subunit Zeta 2.
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Fig 3. “Superproducers” cells exhibit altered gene expression patterns. (A) Scatter plot 
depicting GFP expression level and virus/total reads in cells at 6 hours postinfection with VEEV 
(TC-83) at an MOI of 1. The horizontal and vertical dash lines indicate the cutoffs of GFP signal 
and virus/total read ratio, respectively (see text). Each dot represents a cell. Orange, cells with a 
GFP signal readout that is greater than 1000 and virus/total read ratio greater than 0.001 defined 
as “superproducers” (n = 11); blue: cells not meeting these criteria. (B and C) Representative 
violin plots showing genes that are upregulated (B) or downregulated (C) specifically in 
“superproducers” cells relative to either mock-infected cells, low vRNA cells harvested at 6 hpi 
or high vRNA cells harvested at 24 hpi. HPI, hours postinfection; MOI, multiplicity of infection. 
SYTL3, Synaptotagmin Like 3; KDM3B, Lysine Demethylase 3B; SNX29, Sorting Nexin 29; 
COG5, Component Of Oligomeric Golgi Complex 5; ZMAT5, Zinc Finger Matrin-Type 5; 
VPS37A, Vacuolar Protein Sorting-Associated Protein 37A; AC087343.1, Ribosomal Protein 
L21 (RPl21) Pseudogene.
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Fig 4. The expression of genes involved in intracellular membrane trafficking correlates 
with the ratio of 3’ to 5’ vRNA reads.  (A) Coverage of viral reads over the entire VEEV 
genome. Each line is a cell, and the red line is a scaled average across all cells. (B) Genome 
architecture of VEEV highlighting the nonstructural (yellow) and structural (green) protein 
domains. (C) Scatter plot showing positive correlation of VEEV 3’/5’ read ratio with cellular 
vRNA abundance. Each dot is an infected cell. (D-E) Scatter plots showing no correlation 
between the 3’a/3’b read ratio (D) and 5’a/5’b read ratio (E) and cellular vRNA abundance. (F) 
Histogram of Spearman’s correlation coefficients between all host genes and the 3’/5’ read ratio. 
(G) Representative scatter plots of host gene expression versus vRNA 3’/5’ read ratio and 
corresponding Rho Spearman’s correlation coefficients. Each dot is a cell and contour plots 
indicate cell density (low to high, green to red). (H) Gene enrichment analysis of top 300 genes 
positively correlated with the 3’/5’ read ratio. ORF, opening reading frame; PFN2, Profilin 2; 
BROX, BRO1 Domain- And CAAX Motif-Containing Protein; ATP6V1B2, ATPase H+ 
Transporting V1 Subunit B2; BNIP3, BCL2 Interacting Protein 3; LAMP2, Lysosomal 
Associated Membrane Protein 2; PIP4K2A, Phosphatidylinositol-5-Phosphate 4-Kinase Type 2 
Alpha; VAMP7, Vesicle Associated Membrane Protein 7; RAB7A, Ras-Related Protein Rab-7a; 
SEC22B, SEC22 Homolog B.
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Fig 5. Validation of candidate VEEV proviral and antiviral genes. VEEV infection relative 
to non-targeting (NT) siRNA (A) or empty plasmid (B) controls following siRNA-mediated 
knockdown (A) or overexpression (B) of the indicated host factors measured by luminescence 
assays at 18 hpi (MOI = 0.01) of U-87 MG cells with VEEV-TC-83-NLuc and normalized to cell
viability. Columns are color-coded based on the correlation of the respective gene with vRNA 
abundance via viscRNA-Seq: yellow for genes that are positively correlated with vRNA and 
grey for genes that are negatively correlated with vRNA. Both data sets are pooled from two 
independent experiments with six replicates each. Shown are means ± SD; *p < 0.05, **p < 0.01,
***p < 0.001 relative to the respective control by 1-way ANOVA followed by Dunnett’s post 
hoc test. The dotted lines represent the cutoffs for positivity. Cellular viability measurements are 
shown in S3 Fig. (C) Correlation coefficients between proviral candidates with the 3’ (grey) and 
5’ (orange) vRNA reads.
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Fig 6. Comparative viscRNA-Seq analysis across five RNA viruses. (A-C) Scatter plots of 
representative host gene expression versus vRNA in single cells during DENV (orange), ZIKV 
(blue), and VEEV (green) infection. Dots indicate single cells, lines are running averages at 
increasing vRNA abundances. (D, E) Correlation between host gene expression and vRNA 
abundance during DENV versus ZIKV infection of the top genes that positively correlate with 
the VEEV 3’/5’ read ratio (D) or a similar number of random genes (E). Each dot is a gene and 
the axis coordinate is the percentage of genes with a correlation with vRNA smaller than the the 
gene of interest. For (D), size of the dot increases with the correlation with VEEV 3’/5’ read 
ratio (top correlated gene is largest). (F) UMAP (53)embedding of host genes correlation with 
vRNA during infection by 5 individual RNA viruses. Blue and red indicate downregulation and 
upregulation during each infection, respectively. Several clusters of genes are observed (0-7). 
(G) Hierarchical clustering of host gene clusters highlights that gene upregulation is mostly 
virus-specific and is consistent with the known phylogeny. cpm, count per million; WNV, West 
Nile virus; IAV, influenza A virus.
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Supporting Information

S1 Text. Rare structural viral read variants correlate with expression of specific host genes.

S1 Fig. Quality control and definition of infected cells.

S2 Fig. Subgrouping cells based on viral load, representative differentially expressed genes 

(DGEs) and correlation analysis.

S3 Fig. VEEV gap reads identified via viscRNA-Seq.

S4 Fig. Validation of proviral and antiviral factors.

S5 Fig. Pathway analysis for genes that positively correlated with VEEV 3’/5’ read ratio and 

positively (A) or negatively (B) correlated with DENV and ZIKV. 

S1 Table. DENV capture oligonucleotides.
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	Fig 4. The expression of genes involved in intracellular membrane trafficking correlates with the ratio of 3’ to 5’ vRNA reads. (A) Coverage of viral reads over the entire VEEV genome. Each line is a cell, and the red line is a scaled average across all cells. (B) Genome architecture of VEEV highlighting the nonstructural (yellow) and structural (green) protein domains. (C) Scatter plot showing positive correlation of VEEV 3’/5’ read ratio with cellular vRNA abundance. Each dot is an infected cell. (D-E) Scatter plots showing no correlation between the 3’a/3’b read ratio (D) and 5’a/5’b read ratio (E) and cellular vRNA abundance. (F) Histogram of Spearman’s correlation coefficients between all host genes and the 3’/5’ read ratio. (G) Representative scatter plots of host gene expression versus vRNA 3’/5’ read ratio and corresponding Rho Spearman’s correlation coefficients. Each dot is a cell and contour plots indicate cell density (low to high, green to red). (H) Gene enrichment analysis of top 300 genes positively correlated with the 3’/5’ read ratio. ORF, opening reading frame; PFN2, Profilin 2; BROX, BRO1 Domain- And CAAX Motif-Containing Protein; ATP6V1B2, ATPase H+ Transporting V1 Subunit B2; BNIP3, BCL2 Interacting Protein 3; LAMP2, Lysosomal Associated Membrane Protein 2; PIP4K2A, Phosphatidylinositol-5-Phosphate 4-Kinase Type 2 Alpha; VAMP7, Vesicle Associated Membrane Protein 7; RAB7A, Ras-Related Protein Rab-7a; SEC22B, SEC22 Homolog B.
	Fig 5. Validation of candidate VEEV proviral and antiviral genes. VEEV infection relative to non-targeting (NT) siRNA (A) or empty plasmid (B) controls following siRNA-mediated knockdown (A) or overexpression (B) of the indicated host factors measured by luminescence assays at 18 hpi (MOI = 0.01) of U-87 MG cells with VEEV-TC-83-NLuc and normalized to cell viability. Columns are color-coded based on the correlation of the respective gene with vRNA abundance via viscRNA-Seq: yellow for genes that are positively correlated with vRNA and grey for genes that are negatively correlated with vRNA. Both data sets are pooled from two independent experiments with six replicates each. Shown are means ± SD; *p < 0.05, **p < 0.01, ***p < 0.001 relative to the respective control by 1-way ANOVA followed by Dunnett’s post hoc test. The dotted lines represent the cutoffs for positivity. Cellular viability measurements are shown in S3 Fig. (C) Correlation coefficients between proviral candidates with the 3’ (grey) and 5’ (orange) vRNA reads.
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