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ABSTRACT
Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene
function and regulation. Although TEs comprise the majority of the maize genome and affect
important phenotypes, genome wide patterns of TE polymorphisms in maize have only been
studied in a handful of maize genotypes, due to the challenging nature of assessing highly
repetitive sequences. We implemented a method to use short read sequencing data from 509
diverse inbred lines to classify the presence/absence of 445,418 non-redundant TEs that were
previously annotated in four genome assemblies including B73, Mol17, PH207, and W22.
Different orders of TEs (i.e. LTRs, Helitrons, TIRs) had different frequency distributions within
the population. LTRs with lower LTR similarity were generally more frequent in the population
than LTRs with higher LTR similarity, though high frequency insertions with very high LTR
similarity were observed. LTR similarity and frequency estimates of nested elements and the
outer elements in which they insert revealed that most nesting events occurred very near the
timing of the outer element insertion. TEs within genes were at higher frequency than those
that were outside of genes and this is particularly true for those not inserted into introns. Many
TE insertional polymorphisms observed in this population were tagged by SNP markers.
However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs
(R? < 0.5) that potentially represent information that has not been well captured in previous
SNP based marker-trait association studies. This study provides a population scale genome-
wide assessment of TE variation in maize, and provides valuable insight on variation in TEs in

maize and factors that contribute to this variation.
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INTRODUCTION

Transposable elements (TEs) are present in all eukaryotic genomes (BENNETZEN 2000; WICKER et
al. 2007). In maize, 65% of the genome is made up of intact TEs (Jiao et al. 2017), and another
20% is comprised of fragmented TEs (SCHNABLE et al. 2009). There are many examples of
phenotypic effects of TEs from null mutations, such as maize kernel color (SELINGER AND CHANDLER
2001), white wine grapes (CADLE-DAvIDSON AND OWENS 2008), and color variation in the common
morning glory (CLEGG AND DURBIN 2000). TE insertions can also positively or negatively affect
gene regulatory functions, such as insertion of a long terminal repeat LTR retrotransposon into
the promoter region of the Ruby gene in oranges that leads to red fruit flesh of blood oranges
(BUTELLI et al. 2012), and an LTR retrotransposon that is associated with red skin color in apples
(ZHANG et al. 2019). TE insertions in maize have also been associated with genes that are
upregulated in response to abiotic stress (MAKAREVITCH et al. 2015).

TEs are classified into two classes depending on how they replicate and from there into
superfamilies and families by sequence similarity (Wicker et al. 2007). Class | elements, or
retrotransposons, replicate via an RNA intermediate (BENNETzEN 2000; LiscH 2013). Long
terminal repeat retrotransposons (LTR) are the most abundant type of retrotransposons in
maize (BENNETZEN 2000) and intact elements account for over half of the maize genome by
sequence length (ANDERsON et al. 2019; Stitzer et al. 2019). Class Il elements, or DNA
transposable elements, replicate via a DNA intermediate, and the two largest orders are
terminal inverted repeat (TIR) and Helitron elements. TIRs are defined by terminal inverted
repeat sequences at both ends of the TE (Wicker et al. 2007) and intact TIRs make up around

3% of the maize genome (ANDERSON et al. 2019). Helitrons are defined by their ‘rolling circle’
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replication mechanism (LiscH 2013) and intact Helitrons make up around 4% of the maize
genome (ANDERSON et al. 2019). TEs are found throughout the maize genome, they can be found
near and even within genes, can be anywhere from a few hundred base pairs to >10 kb in
length (BENNETZEN 2000), and range in age from very recent insertions to >2 million years old
insertions (STITzER et al. 2019).

Studies done on TEs in maize have shown extensive variation in TE insertion
presence/absence patterns at specific loci across maize inbred lines (SANMIGUEL et al. 1996; Fu
AND DOONER 2002; MORGANTE et al. 2005; DooNer et al. 2019). Early work on the bronze locus in
multiple maize lines found that different lines differed in not only the gene order and content
but also in TE content (Fu AND DOONER 2002). More recent work on mutations in the same region
found that not only were high mutation rates due to TE insertions, but that different TEs were
inserting in different maize lines (DooNEr et al. 2019). Whole genome analysis of four maize
genomes with de novo TE annotations revealed extensive TE polymorphism between maize
lines on a whole genome scale (ANDERSON et al. 2019). On average, about 500 Mb of TE
sequence, or ~20% of the maize genome, was variable between the four inbred lines (B73,
Mo17, PH207 and W22). Another 1.6 Gb of TE sequence was only shared between two or three
of the lines.

Genome-wide TE presence/absence polymorphism at a population scale in crop species
has recently been investigated using short reads whole genome resequencing data in a number
of species. For example, by sequencing 602 cultivated and wild tomato accessions, Dominguez
et al identified at least 40 TE polymorphism that were not tagged by SNPs, and were associated

with traits such as fruit color (DomINGUEZ et al. 2020). Another example is the resequencing of
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3,000 Asian rice varieties, which identified polymorphic TEs at low frequency that were
associated with rice domestication (CARPENTIER et al. 2019). Despite the widespread prevalence
and polymorphism of TEs in the maize pan-genome, as well as many examples connecting TE
insertions to functional phenotypic variation, there have been very few scans of specific TE
insertion frequencies in divergent maize populations. The analysis of the frequency of TE
insertions can provide insights into the level of variability for TEs and help understand the
presence/absence of common and rare TE variants. To understand patterns of TE
polymorphism on a genome-wide scale, we utilized short read sequencing of 509 diverse maize
lines to score the presence/absence of 445,418 non-redundant TEs that were annotated in four
reference genome assemblies (B73, Mo17, PH207, and W22). This study provides a genome-
wide analysis of TE presence/absence polymorphism across a large panel of diverse maize
genotypes as we continue to try to understand how TEs contribute to phenotypic variation and

adaptation within the species.

MATERIALS AND METHODS
Whole genome resequencing: A subset of 509 lines from the Wisconsin Diversity Panel (HANSEY
et al. 2010; HirscH et al. 2014; MAzaHERI et al. 2019) was used for this study (Table S1). For 57
genotypes, available short-read sequence data was downloaded from the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA; Table S1). These samples
ranged in theoretical coverage of 10-55x sequencing depth based an estimated genome size of
2.4 Gb. For 454 genotypes, plants were grown under greenhouse conditions (27C/24C

day/night and 16 h light/8 h dark) with five plants of a single genotype per pot. Plants were
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grown in Metro-Mix 300 (Sun Gro Horticulture) with no additional fertilizer. Tissue was
harvested for DNA extractions at the Vegetative 2 developmental stage. The newest leaf of
each seedling in the pot was collected and immediately flash frozen in liquid nitrogen. Tissue
was ground in liquid nitrogen using a mortar and pestle. DNA was extracted using a standard
cetyltrimethylammonium bromide (CTAB) DNA extraction protocol (SAGHAI-MAROOF et al. 1984),
and treated with 25 ulL of PurelLink RNase A (Invitrogen) at 39°C for 30 minutes. Genomic DNA
for each genotype was submitted to Novogene (Novogene Co., Ltd., Beijing, China) for whole
genome sequencing with 150 base pair paired end reads generated on a HiSeq X Ten
sequencing machine. For each genotype at least 20x theoretical sequencing depth was

achieved.

Read Alignment and processing: Quality control analysis of the sequence data was conducted
using fastqc version 0.11.7 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Adapter sequence and low-quality base trimming was done using cutadapt version 1.18 (MARTIN
2011) and sickle version 1.33 (https://github.com/najoshi/sickle) both with default parameters.
Sequence reads were aligned to the B73 v4 (Jiao et al. 2017), Mo17 v1 (SuN et al. 2018), PH207
vl (HirscH et al. 2016), and W22 v1 (SPRINGER et al. 2018) genome assemblies. Alignment of
reads was conducted using SpeedSeq version 0.1.2 (CHIANG et al. 2015), which efficiently
parallelizes bwa mem (LI AND DURrBIN 2009), with read groups labelled separately for each FASTQ.
Alignments were subsequently filtered to require a minimum mapping quality of 20 using
samtools view (L et al. 2009). To assess sample integrity, single nucleotide polymorphisms

(SNPs) were called relative to the B73 v4 genome assembly using Platypus v 0.8.1 (RIMMER et al.
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2014) with default parameters. A subset of 50,000 random bi-allelic SNPs with less than 50%
missing data and less than 10% heterozygosity was used to calculate Nei’s pairwise genetic
distances using StAMPP version 1.5.1 and a neighbor joining tree was generated with nj() in ape
version 5.3 all using R version 3.6.2 (R DEVELOPMENT CORE TEAM 2020). Three samples with
discordance to known pedigree relationships were removed from downstream analysis to

result in the 509 genotypes included in Table S1.

Transposable element identification in the Wisconsin Diversity Panel: Transposable element
(TE) annotations for the B73, Mo17, PH207, and W22 genome assemblies were obtained from
https://mcstitzer.github.io/maize_TEs. Mean coverage over the 10 bp window internal to the
start and end of each TE was calculated using multicov within bedtools version 2.29.2 (QUINLAN
AND HALL 2010) (Figure S1). Binary alignment map (BAM) files for B73, Mo17, PH207, and W22
short reads aligned to each genome assembly were down sampled to 15x and 30x coverage
using sambamba version 0.8.0 (TARAsoV et al. 2015) for model training. If coverage was at or
below either of these thresholds no down sampling was performed (Table S2). The caret
package in R version 3.6.3 (R DEVELOPMENT CORE TEAM 2020) was used to train a random forest
model using the rf function and validated with 10 fold cross validation repeated three times.
The training set consisted of counts from resequencing data from three of the four genomes
aligned to all four reference genome assemblies and the test set consisted of the counts from
resequencing data from the fourth genome mapped to all for reference genome assemblies.
The mean coverage over the 10 bp at the start of the TE, mean coverage over the 10 bp at the

end of the TE, and the TE order were used as predictors to train the model. Separate models
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were trained for realized coverage of 30x and realized coverage of 15x using the down sampled
BAM files described above. Each model was trained with 500,000 features that were selected
from the full set of features due to computational limitations. These features were selected to
have approximately 50% present features and 50% absent features so as not to bias the model
accuracy for presence or absence. A non-redundant set of TEs with presence/absence scores
based on whole-genome comparisons of B73, Mo17, PH207, and W22 was used as previously
reported (ANDERSON et al. 2019) for analysis of the true positive, true absent, false positive, and
false absent rates of the short read based presence/absence calls.

A final model was trained for 15x coverage and 30x coverage using resequencing data
from all four genomes mapped to all four genome assemblies as described above using 500,000
training features with either 15x or 30x coverage. These models were used to estimate the
probability of presence of a TE based on the two internal coverage windows and the TE order
for all of the resequenced genomes. If the realized coverage for a sample was >=25x depth the
30x model was used and if the realized coverage for a sample was <25x depth the 15x model
was used (Figure S2). If the probability of present from the model was >=0.7 a TE was classified
as present in the sample. If the probability of present from the model was <=0.3 a TE was
classified as absent in the sample. All other TEs were classified as ambiguous. For any TE where
the resequencing reads mapped to its cognate genome (e.g. B73 reads mapped to the B73
genome assembly) did not result in a present classification the TE was considered recalcitrant
to accurate calls for short read data and was removed from downstream analysis. Across all
samples mapped to a reference genome assembly if there was greater than 25% ambiguous

data for a TE the TE was removed from downstream. Presence, absence, and ambiguous scores
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for each TE that was retained can be found in File S1 for B73, File S2 for Mo17, File S3 for
PH207, and File S4 for W22.

The non-redundant TE dataset from Anderson et al 2019 was used to combine TE
population frequencies across homologous TEs from the different genome assemblies. The
mean of the population frequency for each TE was calculated between homologous TEs (File S5).
TE metadata (e.g. location relative to the nearest gene or family) for the TE in the reference
genome it was first identified in was used in downstream analyses using a previously described
order for adding in TEs from each of the reference genome assemblies (ANDERSON et al. 2019).

Information about TE family/superfamily size and LTR similarity of LTR retrotransposons
was obtained from the previously published TE annotation gff files (ANDERSON et al. 2019). Gene
annotations from B73 version 4 (JIa0 et al. 2017), Mo17 (SuN et al. 2018), PH207 (HIRscH et al.
2016), and W22 (SPrRINGER et al. 2018) reference genomes were used to identify TE locations
relative to genes. All metadata is included in File S5.

The Kolmogorov-Smirnov test was used to test whether the frequency distributions of
nested and non-nested TEs shown in Figure 1 were different. This test was implemented using

the ks.test function in base R version 3.6.3 (R DEVELOPMENT CORE TEAM 2020).

SNP identification and analysis: Joint SNP calling was performed across all genotypes using
freebayes v1.3.1-17 (GARRISON AND MARTH 2012) for the alignments to the B73 v4 reference
genome assembly with scaffolds removed. Sites with less than 1x average coverage over the
whole population or greater than 2x the population level mean coverage were excluded from

SNP calling. SNP calls were quality filtered using GATK (v4.1.2) (VAN DER AUWERA et al. 2013)
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recommended filters as follows: QualByDepth (QD) less than 2, FisherStrand (FS) greater than
60, root mean square mapping quality (MQ) less than 40, MappingQualityRankSum
(MQRankSum) less than -12.5, or ReadPosRankSum less than -8. If a SNP failed (e.g. MQ < 40)
any one of those filters it was removed from the dataset. Finally, vcftools (v 0.1.13) (DANECEK et
al. 2011) was used to filter sites for a minimum quality score of 30, a minimum allele count of
50 (called in at least 25 homozygotes or 50 heterozygotes) and to filter out genotypes called in
fewer than 90% of the individuals in the population. In total, 3,146,253 SNPs remained after all
of these filtering steps (File S6).

These SNP calls were used to conduct linkage disequilibrium analysis with the TE
presence/absence scores described above. For this analysis, TE presence/absence data from
only the alignments to B73 reference genome assembly were used. Any SNPs located within TEs
were removed. Linkage disequilibrium between SNPs and TEs was calculated using plink
v1.90b6.16 (PURCELL et al. 2007) with the --make-founders option to calculate LD among all
inbred lines, --allow-extra-chr to calculate LD in extra scaffolds, --Id-window-r2 0 to report r? in
the 0 to 1 range (default is 0.2 to 1), --ld-window 1000000 --ld-window-kb 1000 to calculate LD
within 1mb windows, and --r2 dprime with-fregs to report both D’ and r* and to display minor
allele frequencies in the output. If more than one SNP had the same highest LD in either the r
or D’ analysis, the SNP that was physically closest to the SNP was used for downstream analyses.
Principal components analysis of SNPs and TEs were conducted using Plink v1.90b6.18 (PURCELL
et al. 2007) with the -pca option. Pairwise genetic distance matrices for SNPs and TEs were

calculated as 1 minus identity by state (IBS) using TASSEL version 5.2.64 (BRADBURY et al. 2007).
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Data Availability: All sequence data is available on the NCBI SRA (BioProject PRINA661271,

Table S1). Code for this study is available at https://github.com/HirschLabUMN/TE_variation.

RESULTS AND DISCUSSION
Using short read sequence data to identify TE presence/absence: For this study, we
implemented an approach for scoring TE presence/absence variation from short read sequence
alignment using the average coverage of windows within the boundaries of previously
annotated TEs in a random forest machine learning model. To assess classification accuracy,
presence/absence scores defined by previous comparison of TE content generated for four
maize genome assembles including B73, Mol7, PH207, and W22 were used as true positive
(ANDERSON et al. 2019). It should be noted that some polymorphisms in this true positive set
might be wrong for reasons described in the publication from which they were generated
(ANDERSON et al. 2019). As such, 100% accuracy in comparison to this set is not possible unless
the same miscalls are generated in two independent methods. Still, this set represents a high
quality set of TE polymorphisms for which to assess the relative accuracy of different
parameters. The average model accuracy observed across the training iterations was 0.88
(SE=0.01) for the model with 15x coverage and 0.89 (SE=0.04) for the model with 30x coverage.
The final model used for prediction had prediction accuracies of 0.88 and 0.89 for 15x, 30x
coverage model, respectively. The threshold for classification of present, absent, or ambiguous
was selected to balance accuracy of the model across the different training sets and the
proportion of TEs in which a non-ambiguous categorization could be assigned (Figure S3). For

both the 15x and 30x models, a cutoff of <=0.3 probability of present to classify a TE as absent

12


https://doi.org/10.1101/2020.09.25.314401
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.314401; this version posted April 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

and a cutoff of >=0.7 probability of present to classify a TE as present was determined to
optimally balance these two metrics.

These models and the subsequent filtering methods (i.e. removing TEs that are
recalcitrant to short read based genotyping (B73 ref: 12.02%, Mo17: 5.60%, PH207: 1.32%, W22:
5.37%) and those with high levels of ambiguous calls (B73 ref: 0.20%, Mo17: 0.24%, PH207:
1.54%, W22: 0.34%)) provide a high quality set of TE presence/absence calls that allowed for
analysis of TE variation on a genome-wide scale in maize. It should be noted, however, that rare
alleles will be under-represented in this set due to the fact that only those TEs that were
previously annotated in at least one of four de novo assembled maize genomes are included in

this study.

TE frequency distribution in a panel of diverse inbred lines: The final models were applied to
short read sequence data from 509 genotypes of the Wisconsin Diversity Panel (HANSEY et al.
2010; HirscH et al. 2014; MAzAHERI et al. 2019) mapped to the B73, Mol17, PH207, and W22
reference genome assemblies. For each annotated TE in these genome assemblies, the
presence/absence frequency of the TE in this panel of diverse inbred lines was determined.
Genetic relationships based on SNPs and TEs were assessed to further validate the quality of
these TE presence/absence calls based on their consistency with other marker types and known
pedigree relationships. Principle component analysis of the SNPs and TEs both revealed
expected population structure based on previous pedigree information and heterotic group
membership (Figure S4A), and pairwise genetic distances between individuals using SNPs and

TEs were highly correlated (Figure S4B). As previously reported, there are a number of shared
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TEs across these four genome assemblies (ANDERSON et al. 2019). The population frequency of
homologous TEs determined from mapping the short read data to the different genome
assemblies were highly correlated (average Pearson’s correlation across the six pairwise
comparisons r? = 0.91 (SE=0.04); Figure S5), demonstrating the consistency of this pipeline, and
enabling classifications to be combined into a non-redundant set of TEs. For downstream
analysis of these redundant TEs, the mean was calculated across frequencies obtained from all
genomes for which a homologous TE was present (Figure 1; File S5).

Different orders of TEs have different mechanisms of replication (Wicker et al. 2007),
and families within these orders have different insertional preferences (SANMIGUEL et al. 1998;
SULTANA et al. 2017; SPRINGER et al. 2018) and different effects on DNA methylation and
chromatin accessibility (EICHTEN et al. 2012; CHOI AND PURUGGANAN 2018; NOsSHAY et al. 2019). As
such, we hypothesized the frequency of TEs in the population would be variable across orders
of TEs and families. For non-nested elements (i.e. those not contained within another TE), a
subset of the TEs were present in all or nearly all of the diverse lines included in this study for
LTRs, Helitrons, and TIRs (Figure 1). However, for all three orders, there was a substantial
number of TEs that were at low (<20%) to moderate (20-80%) frequency in the population. This
proportion was particularly high for the LTRs where 73.57% of non-nested TEs were present in
low to moderate frequency in the population. These polymorphic TEs have the potential to
drive phenotypic variation as has been seen for a number of morphological/developmental
(CHuck et al. 2007; STUDER et al. 2011) and adaptive traits (YANG et al. 2013) in maize. The
demonstrated extent of TE variability on a genome-wide scale across a large number of

individuals that this study provides is critical in furthering our understanding of the contribution
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of variable TEs in producing phenotypic variation within species. Given that only TEs that were
annotated in at least one of only four genomes were included in this study, it is expected that
the proportion of polymorphic TEs at low to moderate frequency would be substantially higher
than what is presented here if all TEs in all genotypes in the population were annotated. In
contrast, the majority of the high frequency TEs were likely already captured from just these
four genome assemblies, and the count of these TEs would remain relatively static if all

genomes were to be de novo assembled and annotated.

LTR retrotransposons with lower similarity of their two LTRs were generally more frequent in
the population than those with higher LTR similarity : A negative relationship between age of
TE insertions approximated by the similarity of their two LTRs and their frequency was
previously demonstrated using a limited number (n=4) of genotypes (ANDERsON et al. 2019). We
sought to test this relationship between similarity of the two LTRs for an insertion and
frequency on our broader set of germplasm, where younger insertions generally have higher
LTR similarity and older insertions generally have lower LTR similarity. For other orders of TEs,
there are not accurate methods to assess age. Thus, these analyses were limited to LTR
retrotransposon insertions. In this maize diversity panel, the LTR similarity was negatively
correlated with population frequency, which suggests that LTRs with low LTR similarity were
generally more frequent in the population than LTRs with high LTR similarity (Figure 2a). It is
worth noting, however, that there were a large number (n=14,509, 36.30% of all high frequency
LTR) of LTR insertions that had moderately LTR similarity (LTR similarity 95-99%; n=12,655) or

high LTR similarity (LTR similarity >99%; n=1,854), and are at high frequency (>80%) in the
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population (Figure 2b), and 180 of the insertions with high LTR similarity were fixed in this
population. Fifteen of the fixed insertions with high LTR similarity were within 5kb of a gene and
may be under selection or linked to other features in the genome under selection that could
have driven their rapid rise to fixation in the population. A number of these genes have been
functionally characterized, such as agpll2 (HUANG et al. 2014), as well as trps4 (ZHou et al. 2014),
which may be important for tolerance to different stress conditions.

There was a large portion (84.52%) of the fixed insertions with high LTR similarity that
were located within previously defined low recombination regions (Table S3; (SWANSON-WAGNER
et al. 2010; EIcHTEN et al. 2011)). These regions were defined by comparing genetic and physical
maps and defining boundaries to define the high recombination arms and the low
recombination middle of each chromosomes including the centromere and pericentromere.
The fixed insertions with high LTR similarity were enriched (Fisher test with p-value < 0.001;
Figure 2c) for being located within the low recombination regions of the genome relative to the
frequency for all LTRs. However, this enrichment in the low recombination region of the
genome is also observed for all fixed LTRs regardless of their LTR similarity. If we look at other
elements in the families from which these fixed insertions with high LTR similarity are in there is
no significant difference between them and all LTRs or all of the LTR insertions with high LTR
similarity in the genome. Thus, the enrichment of fixed LTRs with high LTR similarity in the
pericentromere is likely a product of their location.

The elements in the high frequency group (not just fixed) with high LTR similarity were
from 494 different families. We sought to test if there was an enrichment within these families

for elements that were at high frequency with high LTR similarity relative to the frequency of
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this class compared to all other LTRs. Indeed, for those families with at least 20 elements in the
family (n=62), 15 had a higher than expected proportion of elements that had high LTR
similarity and were at high frequency in the population (Fisher test with p-value < 0.01; Table
S4). The majority of these enriched families are within the Gypsy superfamily, including
RLGO0001, a large Cinful-Zeon family (SANz-ALFEREZ et al. 2003) with 23,948 copies in the B73
genome that lacks homologs in Sorghum (PATERsSON et al. 2009; Jiao et al. 2017; STiTzerR et al.
2019). Another family of note is RLG0O009. This family was previously documented to be
consistently upregulated under heat stress across genotypes with multiple members of the
family showing increased expression, potentially due to the presence of conserved cis-
regulatory elements within the TE that facilitate stress-responsive expression of this family
(LIANG et al. 2020). The potential importance of this family to stress responsiveness, the
conserved response across members of the family, and the consistency in response across
genotypes are all consistent with, and provide potential explanations for why, this family had
enriched presence in the class of high frequency TEs that also have high LTR similarity.

On the other end of the spectrum, for the class of TEs with low LTR similarity (LTR
similarity <95%), it is expected that some will be common as they have had time to rise in
frequency in the population and other will be rare as they are being lost over time, which was
the case in this population. Within the class of TEs that have low LTR similarity, 14.28% were at
low frequency in the population, 30.92% were at high frequency in the population, and the

remaining 54.80% were at moderate frequency in the population (Figure 2b).
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Most nested TEs insertions occur near the insertion time of the outer element: Nested TEs
exhibited higher levels of moderate frequency (20-80%) and low frequency (<20%) TEs as
compared to the non-nested TEs (Figure 1). In all three orders, the frequency distribution of
nested and non-nested TEs was significantly different (KS test, p-value < 2x10-16). A nested TE
could be the product of an insertion very soon after the outer element inserted or it could be
the product of a spectrum of much younger insertions that happened well after the insertion of
the outer element. Genome-wide we see that nested elements have higher LTR similarity than
non-nested elements (Figure S6).

To further explore the difference in frequency of nested and non-nested elements we
looked at specific nested TEs and the non-nested element into which they inserted. Within
these pairs, the nested insertion should be at the same or lower frequency compared to the
outer element, as the nested insertion cannot exist in a genotype without the outer element.
This was true for 67.38% of the pairs, and an additional 20.33% had less than 5% higher
frequency in the nested element. Overall, there was a strong correlation between the nested TE
frequency and the frequency of the TE into which it was nested (Pearson’s correlation r* = 0.52;
Figure 3a), with 71.5% having frequencies within 5% of each other, and the remaining 28.5% of
pairs having a range of difference in frequencies between the inner and outer elements (Figure
3b).

Within the set of outer elements that were fixed or nearly fixed in the population
(frequency greater than 0.95), there was a continuous range of frequencies for inner elements
that likely represent nested insertions with a range of ages. Using LTR similarity as a proxy to

LTR age, we tested if there is a relationship between the LTR similarity of the nested element
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contained within fixed elements and their frequency in the population. This analysis could only
be done for LTR nested elements as the other orders do not have an accurate metric to
approximate age. As hypothesized, those nested elements that were at lower frequency in the
population had higher LTR similarity than those that were at high frequency in the population
(Figure 3c), and this was observed independent of the order of the outer element (Figure S7).
To further address this question of the timing of nested insertions into outer elements
we focused on the subset of nested-outer element pairs in which both elements were LTRs and
therefore had LTR similarity information. As with frequency, the quality of the LTR similarity
metric was assessed with the expectation that the similarity of the nested insertions should be
higher than that of the outer element. Across the LTR nesting pairs, 84.12% had a higher LTR
similarity for the inner element, indicating an overall high quality of this data (Figure S8). Using
the combination of frequency and LTR similarity we tested the extent to which an outer
element and nested element insertion occurred at a similar time or weather the nested
insertions occur over a range of time based on the LTR similarity (Figure 3d). The majority of
nested-outer element pairs have nearly identical frequencies (Figure 3a,d), but with a range of
LTR similarities. The most likely interpretation of these results is that in these cases the nested
insertion occurred very near the timing of the outer element insertion and that the distribution
of mutation accumulation is different for nested versus outer elements. This could be the result
of methylation that occurs shortly after the initial insertion of the outer element. The paired
outer and nested insertion will then insert as a unit in subsequent insertion events further
perpetuating this relationship. While this finding is true for a large majority of the nested-outer

pairs it should be noted that there are still a substantial number of pairs that have a range of
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frequency differences and LTR similarity differences that likely represent longer periods of time
between the insertion of the outer element and the subsequent insertion of the nested

element (Figure 3d).

Relationship between location of TEs relative to genes and frequency in the population: TEs
that are located in or near genes have the potential to change expression patterns of a gene
(HIRsCH AND SPRINGER 2017) or the product a gene encodes (LiscH 2013). In some cases, these
functional insertions are a substantial distance from the gene, such as a 57kb upstream
Harbinger-like DNA transposable element that represses ZmCCT9 in cis and promotes flowering
under long days (HUANG et al. 2018). Others are much closer, such as a STONER element that
inserted 42 bp upstream of the Cgl transcription start site and results in a chimeric fusion of
the STONER element and the gene impacting the juvenile to adult vegetative transition (CHuck
et al. 2007). Based on these prior studies, we sought to test genome-wide if the frequency and
distribution of TE insertions varies based on their proximity and orientation with respect to
genes in the genome. In order to test this, we first categorized TEs into categories using the
following hierarchical ordering: gene completely within the TE, TE completely within the 5’ UTR,
completely within the 3’ UTR, completely within an exon, completely within an intron,
completely encompassed by a gene, 0-1 kb upstream of a gene, 1-5 kb upstream of a gene, 5-10
kb upstream of a gene, 0-1 kb downstream of a gene, 1-5 kb downstream of a gene, 5-10 kb
downstream of a gene, and intergenic (greater than 10kb from the nearest gene).

There are relatively few gene proximal TEs that are actually within the gene body

(orange in Figure 4a-c). Only 4.34% of LTR proximal TEs (1,640/37,838) and 3.79% of Helitron
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proximal TEs (334/9,056) are actually within the gene, while 11.52% (5,534/48,037) of TIR
proximal TEs are within the gene body. In general those TEs that are within the gene body are
at higher frequency than those that are outside of the gene body, and this is particularly true
for those that not contained within an intron. For LTRs the age of the proximal TEs could also be
evaluated, and those TEs that were within the gene body were also enriched for being younger
based on LTR similarity than those proximal TEs that are outside of the gene body (Figure 4d; p-
value < 0.001). This finding is somewhat unexpected given the potential deleterious functions
that TE insertions could have on the expression of a gene and the integrity of the encoded
protein, and likely indicates a positive effect of these insertions allowing them to rise in
frequency relatively quickly.

TEs that are proximal to a gene, but not contained within a gene, have much lower
frequencies than was observed for TEs within gene bodies (purple and green in Figure 4a-c).
The frequency further decays at increasing distance from the gene in both the 5’ and 3’
directions, and this is consistent across the three orders. Proximal TEs outside of the gene body
also have a relatively higher proportion of insertions with low LTR similarity (older insertions)
relative to those that are within genes (Figure 4d). The final class of proximal TEs, those that
encompass a gene, show similar frequency to TEs that are proximal, but not within a gene, and
are significantly depleted for insertions with high LTR similarity (p-value < 0.001; pink in Figure
4a-d). The genes contained within these TEs are all in the non-syntenic gene space relative to
sorghum and rice. Genes in the non-syntenic gene space account for less phenotypic diversity

than those in the syntenic gene space and are likely under different selective pressures in
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general compared to syntenic genes and TEs contained within syntenic genes (SCHNABLE et al.

2011; BROHAMMER et al. 2018).

Many TE insertional polymorphisms are not tagged by SNP markers: There is a limited number
of plant species in which a species or population level cataloging of TE presence/absence
variation has been conducted at a genome-wide level (QUADRANA et al. 2016; STUART et al. 2016;
CARPENTIER et al. 2019; CHEN et al. 2020; DomINGUEZ et al. 2020). As such, the contribution of TEs
to phenotypic variation, utility for genomic prediction, and other applications linking genotypes
and phenotypes has only been minimally evaluated. In many instances, a linked marker has
been identified as significant and with fine-mapping it is revealed that the causative variant is in
fact a polymorphic TE insertion (e.g. (STUDER et al. 2011)).

We sought to test the extent to which the extensive number of polymorphic TE
insertions that were classified in this study were in linkage disequilibrium (LD) with genome-
wide SNP markers to begin to understand the extent to which phenotypic variation that is
caused by TEs has or has not been accounted for in previous studies that used only SNP
markers. For this analysis, all SNPs within 1Mb plus or minus a TE were evaluated and the SNP
that was in the highest LD was recorded. The majority of TEs were in moderate (r* 0.5-0.9) to
high (r* >0.9) LD with a nearby SNP marker, but there was a subset of 49,382 (19.9%) TEs that
were in low LD (r* < 0.5) with all SNPs within a 1Mb window of the TE (Figure 5a). LTRs had the
highest portion of TEs in high LD with a SNP (58.8%), while TIRs had 45.9% in high LD, and
Helitrons had only 40.5% in high LD (Figure 5b). Of the subset of TEs that had a SNP in high LD

(>0.9), the majority (86.50%) of the SNPs were within 200Kb of the TE (Figure 5c¢). This distance

22


https://doi.org/10.1101/2020.09.25.314401
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.314401; this version posted April 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

to the SNP with the highest LD increased when TEs in all levels of LD with SNPs were included
(Figure S9). TEs that were at very high frequency within the population were generally in low LD
with SNPs, and those that were at moderate frequency in the population were in moderate to
high LD with SNPs (Figure 5d-f). This trend was consistently observed across orders of TEs.

There are many metrics to assess LD and they represent different aspects of LD (FLINT-
GARCIA et al. 2003; SLATKIN 2008). For example, D' measures only recombinational history, and r’
measures both recombinational and mutational history. We assessed LD between SNPs and TEs
using D' as the metric and observed substantially more TEs in near or perfect LD with a SNP
(Figure S10a,b). Only 357 TEs had a D' value of less than 0.9 to a SNP within 1 Mb of the TE, and
a relationship with population frequency was no longer observed. The average distance
between the SNP and TE decreased relative to r* for the SNP in highest LD with a TE (102,838
for r* vs. 50,371 for D'; Figure 5¢ and Figure S10c). This result makes sense as TE insertions
represent different mutational events from the SNPs to which they are being evaluated and this
is not reflected in the D' metric.

Overall, while TE presence/absence patterns generally reflect maize breeding history
(Figure S4), there are TE insertional polymorphisms that are not tagged by SNPs across different
metrics (Figure 5 and Figure S10). These TEs that are not tagged by SNPs may be of important
phenotypic consequence in maize, as has been shown in tomato (DomiNGUEz et al. 2020) and
rice (AKakPO et al. 2020). The high number of TEs in low to moderate LD with SNPs based on ris
particularly important to this point, as r* directly measures how different markers correlate
with each other, and therefore how well a particular SNP would correlate with a potential

causative TE. Including TE insertional polymorphism will likely be important in understanding
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the full complexity of phenotypic trait variation and local adaptation, and developing improved

maize varieties in the future.

Conclusion: TE insertional polymorphisms can play a crucial role in reshaping the phenotype of
plants. In this study, we used the whole genome resequencing data, four high quality reference
genomes with de novo annotated TEs, and random forest machine learning models, to
generate a high-quality set of genome-wide insertional polymorphism data for 509 diverse
maize lines. The majority of TE insertions (both nested and non-nested) were at the low to
moderate frequency in the population. Within the LTR retrotransposon insertions, we observed
a strong negative relationship between the frequency of the insertion in the population and the
LTR similarity within the inserted element. Population frequency information coupled with LTR
similarity also allowed us to determine that the majority of nested insertions (i.e. those
insertions that are within another TE insertion) likely occur near the same time as the insertion
of the outer element. Finally, analysis of LD between genome-wide SNP variants and TE
insertional polymorphisms revealed that over 19.9% of TE insertional polymorphisms are not
well tagged (R2 > 0.5 by nearby SNPs. This result has major implications when interpreting the
results of genome-wide association studies (GWAS) that have been conducting using only SNP
markers. Future work utilizing insertional polymorphism information may shed light into

unexplained phenotypic variation in diverse germplasm such as this population.
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FIGURE LEGENDS
Figure 1. TE frequency distribution of a non-redundant set of TEs annotated in the B73, Mo17,
PH207, and W22 genome assemblies. Short read sequence data from 509 genotypes were
aligned to each genome assembly. Using a random forest machine learning method, TEs were
classified into present (probability present >= 0.7), absent (probably present <=0.3), and all the
other TEs were classified as ambiguous. For homologous TEs that were present in more than
one assembly, the mean frequency across assemblies was calculated for the non-redundant set.
TEs with less than 25% ambiguous calls are included (455,418 TEs). Percentages indicate the

percent of low (<20%), moderate (20-80%), and high (>80%) frequency TEs in each order.

Figure 2. Relationship between TE similarity and frequency in a population of diverse inbred
lines. a) Heatmap of LTR similarity versus frequency where white boxes indicate no TEs present
at a particular frequency-by-LTR similarity. Yellow line is a LOESS curve fit through the data
(n=177,073). b) Relationship of LTR similarity in categories of low similarity (LTR similarity <95%),
moderate similarity (LTR similarity between 95-99%), and high similarity (LTR similarity >99%),
and frequency in categories of low frequency (<20%), moderate frequency (20-80%), and high
frequency (>80%). c) Proportion of different groups of LTRs in the low and high recombination

portions of the genome based on B73 reference (n=108,968).

Figure 3. Relationship between population frequency of nested elements and the elements in
which they are nested. a) Proportion of genotypes a TE is present in between nested TEs and

the TE in which the element is nested. b) Distribution of the proportion of genotypes the outer
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TE is present in minus proportion of genotypes in which the nested TE is present. ¢) LTR
similarity distributions for nested elements that are nested in TEs that are fixed or nearly fixed
(frequency >0.95) in the population. This plot only contains nested LTRs as LTR similarity
estimates are not available for other orders. d) Relationship between LTR similarity and
frequency for outer elements minus nested elements. Points in the gold quadrant meet
biological expectations that the outer element has a lower LTR similarity and is at higher
frequency than the nested element. This plot only contains instances in which the outer and

nested elements are both LTRs.

Figure 4. Relationship between TE frequency and relative position to the nearest gene.
Helitrons (a), TIRs (b), and LTRs (c) were categorized using the following hierarchy: gene
completely within the TE, TE completely within the 5 UTR, completely within the 3’ UTR,
completely within an exon, completely within an intron, completely encompassed by a gene, 0-
1 kb upstream of a gene, 1-5 kb upstream of a gene, 5-10 kb upstream of a gene, 0-1 kb
downstream of a gene, 1-5 kb downstream of a gene, 5-10 kb downstream of a gene, intergenic
(not shown in figure). d) Proportion of LTRs with low LTR similarity (LTR similarity <95%),
moderate LTR similarity (LTR similarity between 95-99%), and high LTR similarity (LTR

similarity >99%) in each gene proximity category.

Figure 5. Linkage disequilibrium between TEs and SNPs in a panel of diverse inbred lines. a)
Linkage disequilibrium (LD) between TEs and the SNP with the highest LD within 1Mb of the

middle of the TE. b) Proportion of TEs in high (r* > 0.9), moderate (r* 0.5-0.9), and low (r* <0.5)
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LD with SNPs within 1 Mb of the middle of the TE. Category is based on the SNP with the
highest LD in the window. c) Distance between TEs and the SNP with the highest LD to it for TEs
that had a SNP in high (r* > 0.9) LD. Distance is calculated as the middle of the TE to the SNP.
Only SNPs within 1 Mb of a TE were evaluated. d-f) Density plots of population frequencies for
TEs in high, moderate, and low LD with SNPs based on the highest LD within 1Mb of the middle
of the TE for LTRs (d), Helitrons (e), and TIRs (f). Only TEs with less than 25% ambiguous calls are

included in these plots.
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Figure 1. TE frequency distribution of a non-redundant set of TEs annotated in the B73, Mo17, PH207, and W22
genome assemblies. Short read sequence data from 509 genotypes were aligned to each genome assembly. Using a
random forest machine learning method, TEs were classified into present (probability present >= 0.7), absent
(probably present <=0.3), and all the other TEs were classified as ambiguous. For homologous TEs that were present
in more than one assembly, the mean frequency across assemblies was calculated for the non-redundant set. TEs
with less than 25% ambiguous calls are included (455,418 TEs). Percentages indicate the percent of low (<20%),
moderate (20-80%), and high (>80%) frequency TEs in each order.
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Figure 2. Relationship between TE similarity and
frequency in a population of diverse inbred lines. a)
Heatmap of LTR similarity versus frequency where
white boxes indicate no TEs present at a particular
frequency-by-LTR similarity. Yellow line is a LOESS
curve fit through the data (n=177,073). b)
Relationship of LTR similarity in categories of low
similarity (LTR similarity <95%), moderate similarity
(LTR similarity between 95-99%), and high similarity
(LTR similarity >99%), and frequency in categories of
low frequency (<20%), moderate frequency (20-
80%), and high frequency (>80%). c) Proportion of
different groups of LTRs in the low and high
recombination portions of the genome based on B73
reference (n=108,968).
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Figure 3. Relationship between population frequency of nested elements and the elements in which they are nested. a)
Proportion of genotypes a TE is present in between nested TEs and the TE in which the element is nested. b)
Distribution of the proportion of genotypes the outer TE is present in minus proportion of genotypes in which the
nested TE is present. c) LTR similarity distributions for nested elements that are nested in TEs that are fixed or nearly
fixed (frequency >0.95) in the population. This plot only contains nested LTRs as LTR similarity estimates are not
available for other orders. d) Relationship between LTR similarity and frequency for outer elements minus nested
elements. Points in the gold quadrant meet biological expectations that the outer element has a lower LTR similarity
and is at higher frequency than the nested element. This plot only contains instances in which the outer and nested
elements are both LTRs.
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Figure 5. Linkage disequilibrium between TEs and SNPs in a panel of diverse inbred lines. a) Linkage disequilibrium
(LD) between TEs and the SNP with the highest LD within 1Mb of the middle of the TE. b) Proportion of TEs in high
(r2>0.9), moderate (r2 0.5-0.9), and low (r2 <0.5) LD with SNPs within 1 Mb of the middle of the TE. Category is

based on the SNP with the highest LD in the window. c) Distance between TEs and the SNP with the highest LD to it
for TEs that had a SNP in high (r2 > 0.9) LD. Distance is calculated as the middle of the TE to the SNP. Only SNPs within
1 Mb of a TE were evaluated. d-f) Density plots of population frequencies for TEs in high, moderate, and low LD with
SNPs based on the highest LD within 1Mb of the middle of the TE for LTRs (d), Helitrons (e), and TIRs (f). Only TEs
with less than 25% ambiguous calls are included in these plots.
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