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ABSTRACT 

Differentially DNA methylated regions (DMRs) inform on the role of epigenetic changes in cancer. We 

present Rocker-meth, a computational method exploiting a heterogeneous hidden Markov model to 

detect DMRs across multiple experimental platforms. Its application to more than 6,000 methylation 

profiles across 14 tumor types provides a comprehensive catalog of tumor type-specific and shared 

DMRs, also amenable to single-cell DNA-methylation data. In depth integrative analysis including 

orthogonal omics shows the enhanced ability of Rocker-meth in recapitulating known associations, 

further uncovering the pan-cancer relationship between DNA hypermethylation and transcription factor 

deregulation depending on the baseline chromatin state.  

 

BACKGROUND 
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DNA methylation is an essential player of gene regulation and therefore one of the most studied 

epigenetic mechanisms [1–5]. It is considered to be a surrogate of chromatin accessibility and, 

especially when in the proximity of regulatory regions, alterations of DNA methylation status may 

correlate positively or negatively to the binding of key transcription factors (TFs), resulting in altered 

transcriptional programs [6–8]. Alterations of DNA methylation have been associated with a wide range 

of diseases, including cancer. Landscape integrative studies from The Cancer Genome Atlas (TCGA) 

consortium have highlighted marked associations between DNA methylation and other genomic layers. 

For instance, the Prostate Adenocarcinoma (PRAD) group of TCGA reported that unsupervised 

analysis of DNA methylation levels naturally recapitulated the distinct molecular subclasses of primary 

prostate cancer, originally defined by the presence of mutually exclusive recurrent molecular alterations 

including Single Nucleotide Variants (SNVs), Somatic Copy Number Alterations (SCNAs) and gene 

fusions [9]. Similar results have been observed for multiple tumor types [10–14]. Furthermore, DNA 

methylation has recently gained substantial attention in the setting of liquid biopsy for early detection 

and for monitoring of disease evolution [15–18], further eliciting the need for robust and reliable 

biomarker detection approaches. 

To date, the majority of studies on DNA methylation focused on the characterization of single CpG sites, 

despite the recognition that concomitant changes spanning entire genomic regions, referred to as 

Differentially Methylated Regions (DMRs), are common in cancer tissues with respect to benign cells 

[19–21]. The hypo-methylation (compared to matched normal tissue) of large contiguous stretches of 

repetitive DNA sequences is considered to be a common hallmark of cancer initiation and indicative of 

chromatin and genomic instability [22,23]. Similarly, tumor cells often exhibit hyper-methylation of 

promoter CpG islands of tumor suppressor genes that may be associated to their inactivation and 

consequent tumor cell proliferation [24,25].  

Initial studies on the identification of DMRs used strategies based on grouping of Differentially 

Methylated Sites (DMSs) into a-priori defined regions, such as CpG islands, followed by the application 

of a statistical test (i.e., a Fisher Exact Test) to define statistically significant DMRs [26–28]. More 

recently, a series of computational methods were specifically designed to identify DNA regions showing 

differential methylation status between two phenotypes (i.e., cancer versus adjacent tissue). These 

include both methods originally developed for microarray data, such as Bumphunter [29]  and DMRcate  

[30] and bisulfite sequencing (BS) based methods, such as DSS [31], DMRseq [32], Metilene [33] and 

others [34–36]. While a multitude of array based cancer DNA methylation data, such as TCGA [37,38], 

can serve as comparative sets, the use of genome-wide and targeted sequencing-based methylation 

studies is increasing, particularly in the context of low signal to noise ratios as in the patients’ circulation. 

For these reasons, computational tools amenable and benchmarked for both platforms and able to 

detect DMRs without a-priori constraints neither on the magnitude of the differential signal nor on the 

spanned genomic size are desirable to allow for the establishment of harmonized catalogs for 

downstream biological studies. 

Here we report on a new computational method to identify DMRs in both array and BS data. We show 

that our newly developed approach based on receiver operating characteristic curve analyzer of DNA 
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methylation, Rocker-meth, allowed for the unbiased detection of DMRs spanning a range of genomic 

sizes, from few Kilobase-pairs (Kbp) to Megabase-pairs (Mbp). By a comprehensive synthetic study, 

we demonstrate its superiority compared to state-of-the-art methods. The application of Rocker-meth 

to whole-genome BS (WGBS) and HM450 array TCGA datasets allowed us to compile an accurate 

catalog of DMRs, representing the full characterization of differential methylation in 14 TCGA datasets 

including about 6,000 tumor samples. In addition, we show the utility of our catalog in the analysis of 

single-cell DNA methylation datasets. Rocker-meth recapitulates both well-known and previously 

underappreciated associations between DNA-methylation and genomic features, gene expression, and 

chromatin states validating its accuracy and allowing us to refine the functional and regulatory role of 

DNA methylation in human cancers.  

RESULTS 

Rocker-meth and its application to multiple synthetic and cancer datasets  

Rocker-meth (Receiver operating characteristic curve analyzer of DNA methylation data, Figure 1A) 

consists of four main modules: 1) computation of Area Under the Curve (AUC) values from Receiver 

operating characteristic (ROC) Curve analysis of methylation levels (i.e., beta values) in tumor versus 

normal samples; CpG sites with AUC value toward either 1 or 0 capture hyper-methylation and hypo-

methylation events, respectively; 2) segmentation of AUC values by a tailored heterogeneous Hidden 

Markov Model (HMM); 3) estimation of the statistical significance of AUC segments by Wilcoxon-Mann-

Whitney (WMW) test on beta values of tumor versus normal samples; 4) identification of sample specific 

DMRs by Z-score statistics. Details are reported in Methods section.  

We first carried out a comprehensive simulation study to evaluate the performance of the segmentation 

algorithm of Rocker-meth while varying the values of its parameters (details in the Methods section). 

The results of this analysis are reported in Supplementary Materials, Figures S1-S3. Next, to assess 

its overall performance, we carried out an extensive comparative study on multiple synthetic datasets 

emulating increasing levels of signal-to-noise ratio (class 1-5) and platforms (i.e., HM450, RRBS, 

WGBS) (details in Table S1 and methods) against five state-of-art-methods, including three 

sequencing-based tools, Metilene [33], DSS [31] and DMRseq [32], one array-based tool Bumphunter 

[29], and DMRcate [30] that can be applied to both data types. Figure S4 shows the distribution of the 

average beta values of tumor versus normal samples for differentially methylated sites in TCGA 

datasets, estimated as those sites with AUC < 0.2 (hypo-methylation) or AUC > 0.8 (hyper-methylation). 

For illustration, overlaid bars referring to the range (estimated by mean ± standard deviation) of the beta 

difference emulated by the different synthetic datasets are reported. Importantly, class 4 and 5 can 

recapitulate about 34% and 21% of all differential methylated events respectively, corresponding to a 

total of 41% (partial overlap between the two classes) (Figure S4 and Table S1). We used the precision, 

recall, and F1 score statistics (i.e., the harmonic mean of precision and recall statistics) to evaluate the 

performance of the methods and, following the benchmark strategy described in Jühling et al. 2016 [33], 

we evaluated both site-wise and segment-wise statistics. The dot chart reported in Figure 1B (left) and 

data reported in Table S2 summarize the segment-wise statistical measures of all methods in correctly 
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identifying DMRs for the different synthetic WGBS datasets. While in the high and middle signal-to-

noise ratio datasets (class 1-3), all tools showed good to excellent performance, in the datasets with 

the lowest signal-to-noise-ratio (classes 4 and 5) Rocker-meth outperformed the other methods, 

demonstrating markedly higher precision and recall than both sequencing and array-based methods. 

For all methods the decrease in terms of F1 was due to a decrease in recall statistics (i.e., the ability to 

detect true positive events). Nonetheless, in class 5 datasets Rocker-meth was still able to identify 

about 32% of events, followed by Metilene (7.5%), DMRcate (5%), and DMRseq (3%). Similar results 

were obtained for site-wise statistics, summarized in Figure 1B (right). Interestingly, Bumphunter shows 

good performance in terms of precision also for class 3. Comparable results related to synthetic RRBS 

and HM450 data are also reported (Tables S3- Table S4, Figure S5-S6). In terms of specificity, all 

methods showed excellent performance. In particular, Rocker-meth obtained specificity >0.99 in all the 

synthetic datasets. In terms of computational performance, Bumphunter was the most efficient, followed 

by Metilene and Rocker-meth (Figure S7). 

We then assessed the performance of Rocker-meth and the other two array-based methods considered 

in this study (Bumphunter and DMRcate) in the analysis of real DNA methylation data on a total of 712 

normal and 5,623 cancer samples across 14 tumor types from TCGA. As no gold standard dataset 

exists, we studied the ability of the methods in recapitulating well-known features of DNA methylation 

in human cancers. As reported in Figure S8, compared to Bumphunter and DMRcate Rocker-meth 

predicts higher enrichment of hyper-DMRs in promoters and 5’ associated with gene under-expression, 

higher enrichment of hyper-DMRs versus hypo-DMRs in CpG islands and higher enrichment of hypo-

DMRs versus hyper-DMRs in intergenic regions.  

To exploit Rocker-meth potential (Figure 1C), we next applied it to multiple independent cancer 

datasets generated using a variety of assays, including HM450 arrays from TCGA, WGBS [39] and 

single-cell DNA-methylation [40] and further evaluated its capability of capturing biologically relevant 

features using orthogonal omics data, such as multiple genomic features, matched gene expression 

data from TCGA, and ENCODE chromatin states [4,41]. 

Application of Rocker-meth to 6 WGBS TCGA datasets 

We applied Rocker-meth to WGBS data of 27 cancer samples from 6 tumor types (BLCA, BRCA, COAD, 

LUAD, LUSC and UCEC), both per tumor-type and pan-cancer. A median the across the datasets of 

127,218 loss-of-methylation and of 16,316 gain-of-methylation regions were identified (Figure 2A), with 

a median of 31.4% and 0.71% of the cancer genome (for gain-of-methylation and loss-of-methylation 

regions, respectively) characterized by differential methylation. The highest DMR burden (i.e, the 

fraction of cancer genome within DMRs) was observed for BLCA (Figure 2B), where DMRs span 70.5% 

of the genome. All tumor types showed similar levels of gain-of-methylation burden, with values ranging 

from 0.18% to 1.12%.  Overall, we observed that loss-of-methylation regions were significantly larger 

than gain-of-methylation ones (Figure S9, WMW p-value < 2.2e−16); while the distribution of the length 

of gain-of-methylation regions was not dependent from the genomic annotation (maximum around 

10Kb), loss-of-methylation regions tended to be larger when affecting intergenic regions (Figure 2C, p-
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value < 2.2e−16), thus impacting on the overall size difference. Based on these observations on WGBS 

data, thus well representing the entire genome space, we implemented the following operative 

classification for DMR states with respect to the reference normal samples by distinguishing wide from 

short/modest regions demonstrating loss of methylation: i) Hyper: a gain-of-methylation region of any 

size, ii) Hypo: a loss-of-methylation region with length ≤ 10 Kbp, iii) Hypoway: a loss-of-methylation 

region with length > 10 Kbp. 

Relevant to this operative distinction, multiple studies showed evidence of large portions of the genome 

particularly prone to stochastic hypo-methylation, usually termed Partially Methylated Domains (PMDs). 

These regions are generally intergenic, with genomic sizes as large as 10 Mb [26], and exhibit increased 

demethylation as a tissue ages, with the most prominent demethylation level in cancer [39,42]. We 

studied the association between hypoways and a recent catalog of PMDs [39] and found an extremely 

significant overlap between these two classes of events (Figure 2D, p-val < 2.2e-16). Of note, Highly 

Methylated Domains (HMD) (i.e., highly methylated regions that are conserved in normal and cancer 

cells) correspond to regions identified as not-differentially methylated by Rocker-meth, demonstrating 

the high specificity of our tool also on WGBS data. Importantly, Rocker-meth nominates hypoways that 

are tumor-type specific, further refining the current knowledge of PMDs state in cancer.  

A harmonized catalog of DMRs across 14 TCGA tumor types 

We applied Rocker-meth to a wide set of 5,623 cancer samples across 14 TCGA tumor types data, 

comparing tumor samples with normal matching tissues (712 adjacent tissue samples, requiring >=10 

normal samples per tumor type). First, upon selection of common tumor types, we compared the 

methylation values at overlapping DMRs obtained in the TCGA WGBS data with the larger array based 

set and observed high concordance in terms of their delta beta values for barely all tumor types (Figure 

3A), despite the remarkably different sample sizes. LUAD discrepant behavior was likely due to lack in 

the WGBS dataset of CIMP-High samples, a common highly methylated subtype found in the original 

TCGA-LUAD description [43]. Of note, despite the different characteristics of data (i.e., array versus 

WGBS), we observed comparable DMR burden for hypo-methylated events in all tumor types, indicating 

that large demethylation events (hypoways) detected by Rocker-meth are not affected by the different 

characteristics of the platforms (Figure S10).  

Altogether, Rocker-meth identified a total of 16,423 hypo and 16,761 hyper DMRs in 14 tumor types 

dataset, with a median of 1,352 hyper and of 1,171 hypo DMRs across the datasets (Figure S11). 

DMRs have a range of abundance per dataset with extreme values for LIHC (largest number of DMRs) 

and THCA (no DMRs; dataset excluded from downstream analyses). The latter resulted in similar 

findings by applying Bumphunter to the same datasets, where the number of DMRs in THCA (n=148) 

corresponded to only 6% of the median of the number of DMRs detected in all the other datasets 

(n=2,908) and include 95% (141/148) of DMRs that were supported by less than 6 sites (default 

threshold for DMR catalog inclusion). This data is in line with the TCGA-THCA study confirming that 

most samples have a methylation profile highly resembling the matching normal tissue [44].  
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Focusing on the 13 tumor types, we estimated that a median of 12.2% of cancer genome is 

characterized by DMRs (11.5% and 0.6% for hypo and hyper DMRs, respectively); the highest DMR 

burden (i.e, the fraction of cancer genome within DMRs) was observed for LIHC and BLCA, where 

DMRs span more than 30% of the genome (Figure S12). All tumor types but LIHC showed 

approximately concordant levels of hyper DMR burden, with values ranging from 0.1% to 1.2% 

(median=0.62%)[45]. The full catalog of DMRs is reported in Table S5. Altogether, these analyses also 

demonstrated the reliability of the Rocker-meth’s algorithm and the robustness of the reported cancer-

specific DMR catalog, enabling the inference of genome-wide methylation states, including large 

demethylation, from techniques with limited CpG coverage such as HM450.  

Inter and intra tumor type characterization of the TCGA DMR catalog 

In order to study the inter- and intra-tumor type DMR status heterogeneity, we performed a pan-cancer 

comparative analysis. The 13 tumor specific DMR sets were collapsed into one comprehensive set, that 

was further refined with a strict quality control procedure (see Methods and Table S6). Interestingly, we 

found a relevant number of DMRs shared in more than half of the tumor types, with the highest 

recurrence observed for hypoways (42%), followed by hyper (30%) and hypo (24%) DMRs (Figure 3B). 

Conversely, DMSs reach a lower level of prevalence: we observed that about 10% of DMSs (AUC<0.2 

for hypo-methylation or AUC>0.8 for hyper-methylation, lenient threshold) were shared in more than 

half of the tumor types, while this value drops to 2% when a more stringent threshold was used to call 

differential methylation (AUC<0.1 or AUC>0.9, stringent threshold). Interestingly, we estimated that 

tumor type-specific events correspond to about 20% for both hypo and hyper DMRs and 10% for 

hypoways. On the other hand, tumor type-specific signal for DMSs was markedly higher, reaching up 

to 57% for stringent hyper-DMS events. Principal component analysis based on the integrated DMR 

atlas showed that the two first two components were associated with the per-sample burden of positive 

and negative differential methylation (Figure S13, computed as PSFSE, see methods). After removing 

the first two components, we applied UMAP analysis [46] and observed clear segregation of samples 

based on the difference of the beta values with respect to matched normal tissue (Figure 3C). Of note, 

at the tumor type level, we observed cluster proximity depending on the organ of origin (KIRP, KIRC, 

and LUAD, LUSC) and female hormone-dependent tumors (BRCA, UCEC). Interestingly, we verified 

that the two distant clusters for ESCA reflected the two major subtypes [47] (Figure S14), one proximal 

to gastrointestinal cancers, and the other similar to squamous epithelial cancers. Similar observations 

on subtypes are also reported for BRCA and KIRP (Figure S15). Taken together, this confirms a clear 

influence of the cell of origin in shaping the DNA methylation changes that characterize tumorigenesis, 

in line with previous report [38]. Interestingly, we observed that the most recurrent DMRs in each tumor 

type were also those showing on average higher prevalence across tumor types (Figure S16).  

Sample specific support of DMRs informs on patient specific alterations 

Rocker-meth’s catalog refers to tumor type-specific DMRs. To estimate the extent to which each sample 

supported tumor type-specific DMRs, we implemented a strategy based on Z-score statistics that allows 

Rocker-meth to perform a single sample-wise analysis (Rocker-meth sample score) and applied this 
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module to each of the TCGA cancer samples considered in this study. Figure 3D reports the distribution 

of Per Sample Fraction of Supporting Events (PSFSE) across the 13 tumor types, using the cancer 

specific catalog. Both for hyper and hypo DMRs, we observed that the majority (median 63%) of 

differential methylation signal was shared among all samples of a specific tumor type, with extreme 

values for some datasets such as 0 (PRAD) and 95% (LUAD and KIRC) for hyper-methylation events 

and 0.07% (LIHC) and >99% (LUSC) for hypo-methylation events.  

Next, we performed unsupervised analysis via hierarchical clustering of the median beta values of 

DMRs calculated at the sample level. We focused on two datasets characterized in TCGA genomic 

landscape studies by the presence of molecular subtypes with distinct DNA methylation patterns, PRAD 

and BRCA. Notably, in both cases, the DMRs detected by Rocker-meth were informative to segregate 

samples based on their molecular subtypes. In the prostate adenocarcinoma dataset (Figure 3E) two 

main clusters were identified, one enriched for samples harboring mutations in SPOP or FOXA1 

(SPOP|FOXA1mut) (hyper-geometric test p-value < 2.2e-16, recall = 100%) and one enriched for 

samples characterized by the fusion transcript TMPRSS2-ERG (ERG+) (p-value < 2.2e-16, recall = 

96%). Within the SPOP|FOXA1mut cluster, we observed a sub-cluster enriched for samples 

characterized by fusion transcripts involving ETV (ETV+) (p-value < 10-7, recall = 79%). In the breast 

cancer dataset, the tumor type-specific DMRs detected by Rocker-meth were informative to partially 

segregate PAM50 molecular subtypes, but the Normal-like one (Figure S17). In particular, we observed 

three main clusters characterized by the enrichment of luminal A (p-value < 10-7, recall = 68%), luminal 

B (p-value < 10-3, recall = 43%) and Basal (p-value <2.2e-16, recall = 81%) samples. We also obtained 

a sub-cluster enriched for Her2 samples (p-value < 10-7, recall = 43%). Figure S18 exemplifies the 

Rocker-meth sample scores for one DMR on 22q13.32 that is hypo-methylated in SPOP|FOXA1mut 

PRAD samples and barely ever in ERG+ samples. Further, Rocker-meth sample score indicates 

methylation event clonality at the locus that is significantly higher than in the SPOP|FOXA1mut group 

(median score < -30) than all the other subtypes.  

As we observed a substantial overlap between hypoways and PMD, we studied the possibility to exploit 

sample-wise hypoways burden (hypoways’ PSFSE) as a proxy to the PMD-HMD score, recently 

developed to estimate cancer hypomethylation and found associated to mitotic cell division in cancer 

[39]. We found significant concordance between hypoways burden and PMD-HMD score (Figure S19, 

R=-0.62, p-value < 2.2e-16). Altogether, these analyses demonstrate that the sample-based module of 

Rocker-meth also provides information indicative of patient-specific tumor features that is not redundant 

with the genomics. 

Gene wise and chromatin wise analysis reveal distinct features of each DMR class 

We sought to characterize the functional role of hyper and hypo DMRs. First, we observed that the 

distributions of hyper and hypo DMRs around the closest Transcription Starting Sites (TSS) were 

markedly different (Figure 4A). Considering DMRs within 10Kb from a TSS, both distributions showed 

a clear maximum in the proximity of the TSS; hyper-DMRs shows a relevant fraction of events (52%) 

mapping within 1Kb around TSS, while 29% of hypo-DMRs mapped around the TSS. Conversely, 
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hypoways were more broadly distributed around TSS with only 2% of events within ± 1Kb of the TSS, 

in line with their mostly intergenic localization. We then studied the genic localization of DMRs. Figure 

4B reports the genomic annotation of hyper and hypo DMRs across tumor types (see Table S7 for 

details). As expected, all the genomic features were differently represented in the three classes of 

DMRs: hyper and hypo DMRs were characterized by a prevalence of promoter-TSS and exon; 5’ UTR 

was markedly represented in hyper DMRs, while Transcription Termination Site and 3’UTR (p-value < 

3*10-2) were more represented in hypo-DMRs. For hypoways, we found a prevalence of intergenic and 

intron and intergenic regions. As repetitive DNA sequences and transposable elements (Repetitive 

Elements, REs) are often aberrantly methylated in human cancers [48,49], we investigated the 

enrichment of REs mapping to the three classes of DMRs across all tumor types. Overall, we found a 

markedly different representation of RE classes within the classes of DMRs (Figure S20). Transposon 

associated elements such as Long Interspersed Nuclear elements (LINE) and Long Terminal Repeats 

(LTR) were more represented in hypoways; Low Complexity and Simple Repeats elements that include 

CpG islands were prevalent in hyper-DMRs. A relevant fraction of hypo-DMRs maps to Short 

interspersed nuclear elements (SINEs). To further investigate the differential functional role of DMRs, 

we mapped DMRs to the 15 chromatin states defined by the ENCODE consortium in available matched 

normal tissues [4,41] (See method section). We observed a similar representation of chromatin states 

across the different tumor types for the three classes of DMRs (Figure S21). A selection of 

representative chromatin states and their distribution across the three DMR classes is reported in 

Figure 4C (the distribution for all states is reported in Figure S22). Hyper and hypo DMRs show 

significantly higher overlap with Active and Flanking Active Transcription Starting Sites (TssA, TssAFlnk) 

compared to hypoways. Hypo-DMRs show distinctive over-representation of Enhancers (Enh) 

compared to hyper-DMRs, while hyper-DMRs show specific enrichment of Bivalent Enhancers (EnhBiv) 

and Repressed Polycomb (ReprPC) states, in agreement with previous reports [50,51]. Furthermore, a 

region-based analysis using LOLA [52] highlighted a conserved enrichment of the cistrome of EZH2 -  

the catalytic subunit of Polycomb Repressive Complex 2 (PRC2) that operates H3K27me3 deposition 

- from embryonic stem cells in hyper DMRs (Figure S23). In addition, we found that shared hyper-

DMRs confirmed their evident co-localization with the EZH2 cistrome (Fisher Exact Test p-value <2.2e-

16, OR=7.0) [51]. Finally, hypoways displayed specific over-representation of structural-related terms, 

including Heterochromatin (Het) and Quiescent (Quies) states, supporting the choice of using 10Kbp to 

approximately discriminate between functional and structural events. 

Integrative analysis of DMRs and gene expression 

To study the role of DMRs associated with altered transcriptional programs, we performed an integrative 

pan-cancer analysis of DMRs detected by Rocker-meth and gene expression data from TCGA. Given 

that the function of DNA methylation depends on the genomic context [5,53,54], we decided to analyze 

the association between DMRs and differential expressed genes segregating DMRs based on their 

genic annotation. Figure 4D and Table S8 reports the results of the association analysis between 

DMRs and differentially expressed genes across the 13 tumor types (full analysis including hypoways 

is reported in Figure S24). As expected, we were able to confirm a strong enrichment of under-
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expressed genes for hyper-DMRs affecting their promoter/TSS regions (Fisher Exact Test, OR=3.6, p-

value <2.2e-16, statistically significant in 11 out 13 of tumor types). Further, we found strong 

associations for hyper-DMRs in 5’ UTR (OR=4.4, p-value <2.2e-16, 11/13), and intron (OR=1.2, p-value 

<2.2e-16, 11/13) regions. For over-expressed genes, less marked yet significant associations were 

found. Top associations were found for hypo-DMRs in promoter-TSS (OR=2.7, p-value <2.2e-16, 9/13) 

and Intron (OR=2.1, p-value <2.2e-16, 6/13). Notably, we observed expected negative associations for 

hyper-DMRs in strong regulatory regions, such as promoter-TSS (OR=0.83) and 5’ UTR (OR=0.68). 

We then studied the associations observed between differential expression of a gene and the presence 

of concordant DMR (i.e., hyper for under and hypo for over-expression) affecting its regulatory genic 

regions. For this and downstream integrative DNA-methylation/gene expression analyses PAAD was 

excluded due to the low number of differentially expressed genes (n=308), probably due to the low 

purity of tumor samples (median 38% by PAMES [55]). We observed that hyper-DMRs directly 

explained a median of 4.1% of all under-expressed genes, while hypo-DMRs explained a median of 

0.39%. The highest fractions of hyper-methylated and under-expressed genes were observed in COAD 

(7.3%), ESCA (5.6%), and PRAD (5.2%) (Figure S25). For all tumor types, hyper-DMRs in 

promoter/TSS contributed the most to the fraction of hyper-methylated and under-expressed genes with 

median values of 1.6%. For hypo-DMRs, introns contributed the most to the fraction of hypo-methylated 

and over-expressed genes with median values of 0.13%. Interestingly, comparable fractions were 

observed also for hyper-methylated and over-expressed genes (median 1.9%, Figure S25B) and hypo-

methylated and under-expressed genes (0.27%, Figure S25C). In summary, we observed that i) 

alterations in DNA-methylation affect a small fraction of concordantly differentially expressed genes, 

and ii) a not-negligible number of less characterized associations between DNA methylation and gene 

expression events exist.  

 

DMRs associated with transcription factors genes are affected by the underlying chromatin state  

We then performed specific analyses on these sets of differentially methylated and differentially 

expressed genes. First, we observed that for both hyper and hypo DMRs the distribution of the distance 

to TSS was different based on the direction of differential expression of corresponding genes (Figure 

S26). In particular, for hyper DMRs and under-expressed genes we found that methylation essentially 

involved the region around TSS, while a more widespread methylation downstream to the TSS was 

observed for over-expressed genes. For both hyper and hypo DMRs, we found that first intron was 

predominantly affected compared to others (Figure S27), likely due to the enrichment of cis-regulatory 

elements in this genic feature [56]. Interestingly, TFs were significantly enriched in all of these sets of 

tumor-type specific hyper-methylated/differentially expressed genes (Figure 4E, median OR = 7.5 by 

proportion test). For hypo-DMRs, we found significant over-representation of TFs for 7 out of 12 tumor 

types (median OR=2.6). According to previous analysis, also for TFs we observed a marked fraction of 

discordant differentially methylated and expressed genes across all tumor types (Figure S28), in 

particular for hyper-methylated TFs. We therefore exploited chromHMM states to investigate the 

difference between under and over expressed hyper-methylated TFs.  
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Considering tumors’ corresponding normal tissue ENCODE data, we found that the hyper-DMRs 

involving under- and over- expressed TFs were characterized by different patterns of chromatin states 

(Figure 4F, all chromatin states displayed in Figure S29). DMRs associated with under-expressed TFs 

showed enrichment of Active TSS (TssA) compared to over-expressed TFs, indicating that these genes 

were originally active in matched normal tissues, and likely present an over methylation that either 

precede or follows gene downregulation in tumors. On the other hand, DMRs associated with over-

expressed TFs were characterized by the absence of TssA and by the presence of Repressed 

Polycomb (ReprPC) in matched normal tissue, indicating that these genes were originally silenced by 

PCR2 and thus low in DNA methylation. This specific pattern of chromatin states for activated/repressed 

genes through hyper-methylation was found significant for all tumor types with available normal tissue 

data, but KIRP. We then exploited a recent curated annotation of TFs [57] to investigate the difference 

between these two sets of hyper-methylated TFs. Interestingly, we found significantly different 

representation of TF classes between under- and over- hyper-methylated TFs (Figure 4G and Figure 

S30). We observed that under-expressed TFs were largely C2H2 ZF, while over-expressed TFs were 

enriched for the class Homeodomain. These data were statistically validated in 9 and 7 out of 12 tumor 

types for under- and over- expressed hyper-methylated TFs, respectively (Figure S31), suggesting a 

common underlying process. Altogether, those results depict a peculiar association between cancer 

DNA hypermethylation and gene deregulation depending on the baseline chromatin state (normal cells) 

in proximity of key regulatory TFs.  

Application of Rocker-meth to single-cell DNA-methylation dataset from Colorectal Cancer 

Patients 

Finally, to challenge the extent of the DMR catalog utility, we applied it to the single cell DNA-methylation 

(scMeth) data of 1,265 cells from 10 CRC patients [40]. Upon assessment of the concordance of 

average beta difference values (primary tumor vs control) between TCGA-COAD and bulk-wise scMeth 

data (R=0.54 for hyper, R=0.51 for hypo DMRs and hypoways, Figure S32), we applied the Rocker-

meth’s catalog to the scMeth data of 93 normal (NC) and 581 primary tumor (TP) cells and observed 

the expected segregation of cells based on their disease status (Figure 5A). For TP cells, we found 

patient-specific segregation suggesting marked inter-tumoral heterogeneity. This observation was 

confirmed using the top 10% most variable 1Kbp tiling windows (Figure S33). Notably, we observed 

expected patterns of beta values in TP vs NC cells for all classes of DMRs. Following the same strategy 

applied on single samples from the array-based TCGA dataset, we calculated the Per Cell Fraction of 

Supporting Events (PCFSE) and evaluated corresponding distributions in the scMeth dataset (Figure 

5B). Interestingly, we observed a patient-specific prevalence of hyper-DMRs, with CRC11 and CRC01 

patients showing the lower fractions (PCFSE < 0.25) of supported events. However, for 9/10 patients 

we found a limited range for PCFSE, suggesting that most of the primary tumor cells from a given 

patient tend to support the same subset of events, thus indicating a low degree of intra-tumoral 

heterogeneity in most of DMRs. Patient-specific signal and low degree of intra-tumoral heterogeneity 

were also observed for hypo-DMRs. Of the three classes of DMRs, hypoways show the higher values 

of PCFSE suggesting a low degree of intra- and inter- tumoral heterogeneity for this methylation class 
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and their high prevalence across CRC cells, in line with our previous findings and a recent description 

of structural DNA methylation loss [58]. Interestingly, for hypo-DMRs and hypoways in CRC01, we 

observed multimodal distribution for PCFSE, suggesting the presence of multiple methylation clones. 

This result was compatible with findings from the original study [40], where the authors found the 

presence of two lineages characterized by different genomic alterations and levels of genome-wide 

hypo-methylation. Indeed, for all DMR classes we observed different distributions of PCFSE between 

the two lineages, suggesting the utility of this per-cell measure in capturing heterogeneity in scMeth 

assays (Figure 5C). Finally, we investigated the reliability of Rocker-meth’s catalog in providing more 

detailed information about the clonal architecture of CRC01 tumor sample. Notably, UMAP analysis 

applied to beta values was able to segregate CRC01 primary tumor cells based on their sub-lineages, 

originally defined based on different sub-clonal SCNAs (Figure 5D and Figure S34). Of note, the 

catalog reported could aid the interpretation of single cell DNA methylation data, mitigating the sparsity 

of measurements and allowing for comparisons with large scale studies based on other technologies. 

 

DISCUSSION 

Rocker-meth is a computational tool to perform differential analysis of DNA methylation data, focused 

on the detection of DMRs amenable to multiple experimental platforms data. The novelty of the method 

is the use of an ad hoc heterogeneous HMM algorithm to segment AUC values, which, as opposed to 

delta beta, are not dependent on the magnitude of the DNA methylation signal provided suitable sample 

sizes (Figure S35A). Specifically, in the context of small delta beta we observed that using AUC allows 

for a refined definition of DMR boundaries (Fig. S35B). In principle, Rocker-meth enables the detection 

of both focal and large alterations, exploiting the sparseness of DNA methylation sites throughout the 

genome, without imposing artificial boundaries to the DMRs. Through a comprehensive parametric 

study and a wide range of test on synthetic and real data we demonstrated the capability of Rocker-

meth to recapitulate known cancer features and define meaningful segments, obtaining excellent 

performance when compared with state-of-the-art tools. 

Importantly, this comparative result should be interpreted in the light of the lack of universal definition 

of DMR and on the absence of proper gold standards in terms of genome-wide methylation states. It is 

therefore remarkably difficult to properly compare the performance of different tools as often developed 

with different intents. This not only applies in terms of the genomic size and magnitude of differential 

signal of potential DMRs, but also on the establishment of the required biological effect for a DMR to 

be functionally meaningful. For instance, very short differential signal at/around TFBS signal could be 

molecularly meaningful [8,59] but hard to distinguish from noise, therefore requiring orthogonal 

detection approaches and ultimately experimental validation. Relevant to certain applications, Rocker-

meth does not implement covariate analysis, otherwise considered in methodologies such as DMRcate, 

DSS and bumphunter ; similarly, it is not designed for the analysis of Differentially Variable Regions, 

offered by other tools [30,60,61]. All together these considerations elicit the selective use of either one 
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approach based on the biological context or the parallel application of multiple complementary 

strategies.  

By applying Rocker-meth to 6 WGBS cancer datasets, we observed that a large fraction of the cancer 

genome is involved in DNA methylation alterations with high level of consistency across tumor types. 

Specifically, we estimated that 31.4% and 0.71% of the cancer genome is characterized by gain and 

loss of methylation. When analyzing the characteristics of regions with gain and loss of methylation, we 

observed marked differences in terms of structure and genomic locations, including focal gain of 

methylation and widespread loss of methylation across tumor types. In particular, we found that loss of 

methylation was generally wider when affecting intergenic compared to genic regions. We therefore 

proposed a new operative classification based on region length for loss of methylation regions, terming 

hypoways as DMRs that display loss of methylation regions involving more than 10Kb. We observed 

that hypoways significantly overlap with a recent curated catalog of tissue agnostic PMDs, indicating 

the potential of Rocker-meth to identify PMDs in unsupervised and tissue specific manner. 

While studies have presented pan-cancer characterization of DNA-methylation based on single CpG 

sites [38,62–66], this is the first harmonized pan-cancer catalog based on DMRs built on more than 

6,000 human samples across all TCGA tumor types with available adjacent normal tissue data for 

differential analysis (n≥10). We observed consistent findings between WGBS and array-based data 

analysis in terms of DMR burden, length and beta difference. In line with recent studies [67,68], we 

observed that different tumor types show similar DMR patterns and that a consistent fraction of DMRs 

is shared in more than half of the tested tumor types. Interestingly, we found that hypoways constituted 

the class of DMRs with the highest prevalence, followed by hyper and hypo DMRs. Upon testing our 

method in presence of a small set of controls, we found that Rocker-meth was able to well recapitulate 

original analysis (Supplementary Materials and Figure S36-S39); while we showed consistent results 

with imbalanced sets, we recognize that this depends on the homogeneity of the control set signal and 

that alternative shrinkage-estimator-based methods could be more suitable in case of marked 

heterogeneity or small sample size. Further, the catalog is defined under the assumption that the 

adjacent tissues represent proper controls, thus well capturing the cell-of-origin of corresponding tumors. 

We then demonstrated the reliability of Rocker-meth to perform sample-wise analysis thanks to the 

intrinsic characteristic of DMRs to be extremely recurrent within a given tumor type, in line with our 

previous observation for methylation sites [45] and in contrast to genomic alterations such as Single 

Nucleotide Variants (SNVs) and Somatic Copy Number Variants (SCNAs). DMRs detected by Rocker-

meth were informative in distinguishing the different tumor types and relevant subtypes. Relevant to 

clinical applications and precision oncology, Rocker-meth enables the assessment of DMRs on single 

sample data while identifying subtype-specific methylation events and clonality estimates through Z-

score statistics. Notably, we have already applied successfully the Rocker-meth method to analyze 

plasma cfDNA methylation dynamics of castration resistant prostate cancer patients [18]. As expected, 

analysis of hypoways revealed enrichment for intergenic regions, such as satellite repeats and 

transposable elements, while hyper and hypo DMRs preferentially map to regulatory genic regions, 

mainly within ±1Kb of TSS. Chromatin state annotation analysis showed clearly distinct functional roles 
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between the three classes of DMRs and in particular between hypo-DMRs (regulatory) and hypoways 

(structural), supporting the value of our three-class DMRs’ classification.  

Pan-cancer integrative analysis of DMRs and gene expression recapitulated well-known associations, 

such as the relationship between hyper-methylation in regulatory genic regions and under-expression 

[5]. For instance, hyper DMRs on the 5’UTR, promoter or TSS of a gene associate with gene under-

expression. Similar, but less marked associations were found between hypo-DMRs and over-

expression. Altogether though, about 4% of under-expressed and 0.4% of over-expressed genes can 

be linked to the presence of hyper and hypo DMRs in their regulatory regions (primary regulation). 

Interestingly, non cis regulatory effects of differential methylation in cancer have been recently reported, 

with relevant links to the response to immunotherapy [69] and metastatic potential [70]. While these 

associations were not explored in this work, our PSFSE represents a valuable metric to measure cancer 

specific DMR burdens and might be considered in such studies. 

Next, we found significant enrichment of TFs [71] in differentially methylated and expressed genes, 

supporting the hypothesis that this small set of directly deregulated genes represent a hub of regulation. 

Overall, we observed similar representation of hyper-methylated under and over expressed TFs, 

suggesting that a relevant fraction of TFs can be regulated through context dependent effects. We found 

evidence that these two sets of TFs were characterized by different chromatin states. In particular, 

DMRs associated with over-expressed TFs were enriched for repressed polycomb state in the 

corresponding matched normal tissue, in line with the majority of these genes being members of the 

homeodomain class of TFs. These results are consistent with a recent report that demonstrated the 

interplay between DNA hypermethylation in cancer and de-repression in a subset of genes [72].  

Finally, we demonstrated the utility of our catalog of DMRs for the analysis of scMeth data, 

characterized by sparse and noisy signal. Our analysis recapitulated expected results based on original 

findings and confirmed the reliability of DMRs inferred from TCGA data [40]. Distinguishing cells based 

on their lineage and sub-lineage membership, we also demonstrated that Rocker-meth’s catalog was 

able to capture intra-tumor heterogeneity. 

 

CONCLUSIONS 

We presented Rocker-meth, a new computational method to identify DMRs in both array and 

sequencing based assays. While the focus of the study is on cancer DNA-methylation, we anticipate 

that our method could be applied in other contexts where large numbers of control and test samples 

are available. The comprehensive robust catalogs of DMRs provided here will represent a useful 

resource in two main settings. First, our characterization of DMRs will allow for integration of other 

molecular or phenotypic layers in a functional genomics context, providing a detailed map of DNA 

methylation deregulation in primary tumors. Second, future studies focusing on the development and 

identification of non-invasive cancer biomarkers, such as those describing new DNA-methylation-based 

assays for the analysis of cell-free tumor DNA, would be able to exploit the signal from our refined set 
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of DMRs, starting with a set of relevant features and thus augmenting statistical power for small cohorts 

[15]. We envision that cancer specific and pan-cancer DMRs, either provided here or generated 

applying Rocker-meth to other datasets of interest, could facilitate the development of multi-purpose 

liquid biopsy tests for the early detection of cancer and the monitoring of patients' treatment response. 
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METHODS 

The Rocker-meth tool 

Rocker-meth (Receiver operating characteristic curve analyzer of DNA methylation data, Figure 1) 

consists of four main modules: 1) computation of Area Under the Curve (AUC) values from Receiver 

operating characteristic (ROC) Curve analysis of methylation levels (i.e., beta values) in tumor versus 

normal samples; 2) segmentation of AUC values by a tailored heterogeneous Hidden Markov Model 

(HMM); 3) estimation of the statistical significance of AUC segments by Wilcoxon-Mann-Whitney (WMW) 

test on beta values of tumor versus normal samples; 4) identification of sample-specific DMRs by Z-

score statistics. These steps are described in the following text. 

Computation of AUC values (step 1). DNA methylation status is usually reported as the fraction of alleles 

that are methylated (beta value, ranging from 0 (unmethylated) to 1 (fully methylated)). To identify 

Differentially Methylated Sites (DMSs), we computed the Area Under Curve (AUC) of a Receiver 

Operating Characteristic (ROC) curve for each site in each cancer type. ROC curves display the 

accuracy of a binary classification, which assumes hyper-methylation in tumor samples. Thus, AUC 

scores close to 1 identify optimal segregations between tumor and normal samples with tumor samples 

on average showing beta values greater than normal samples (hyper-methylation). On the contrary, 

AUC scores close to 0 correspond to sites in which tumor samples demonstrate on average lower beta 

values than normal samples (hypo-methylation). 

Segmentation of AUC values (step 2). In order to identify differentially methylated regions (DMRs), we 

exploited a strategy inspired by our previous work on the analysis of Copy Number Alterations and runs 

of homozygosity [73,74]. We modeled AUC values by means of a discrete state hidden Markov model 

(HMM) with continuous output. We model HMM states by Gaussian emission probabilities. 

Supplementary Figure S40 reports normal qq-plot analysis of the AUC scores across the 14 TCGA 

datasets considered in this study. This analysis supports the use of such a model. A discrete HMM with 

continuous output is characterized by the following elements: 

• The number of hidden states, K, in the model. The states are denoted as S = {S1,...,SK} while 

qi denotes the actual state at position i (1 ≤ i ≤ n). 

• The observed data O={O1,...,ON}. 

• The initial state distribution, π, where π1k = P(q1 = Sk). 

• The emission probability distributions bk(i) that is the probability of observing Oi at position i 

given the state Sk: bk(i) = P[Oi|qi = Sk] 

• The transition matrix, A, giving the probability of moving from one state to another, Alm = P(qi+1 

=Sm|qi =Sl) for 1≤ i ≤ n−1 and 1 ≤ l,m ≤K. 
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To model our problem, we used a three-state HMM (K=3) where the hidden states represent hypo-

methylated (S1 = hypo-methylation), not differentially methylated (S2 = no differential methylation) and 

hyper-methylated (S3 = hyper-methylation) states of the genome and the observations are the AUC 

values at each CpG position i (AUCi). 

The emission distributions are truncated Gaussian densities with the following form: 

• P(AUCi|qi = S1) = 𝑔𝑙
𝑢(AUCi ; θ1) 

• P(AUCi|qi = S2) =  𝑔𝑙
𝑢 (AUCi ; θ2) 

• P(AUCi|qi = S3) =  𝑔𝑙
𝑢 (AUCi ; θ3) 

Where θ1 = (μ1, (1-F)·σTot), θ2 = (μ2, F·σTot) and θ3 = (μ3, (1-F)·σTot) are the means and the variances and 

l and u are the lower and upper bounds (l = 0, u = 1) of the three truncated gaussian densities g. F is a 

parameter used to split the total AUC signal variance in two parts: the variance of not differentially 

methylated state and the variance of differentially methylated states. σTot is estimated by calculating the 

standard deviation of all AUC values. 

Finally, to take into account the distance between consecutive CpG sites d = (d1, d2, ..., dn-1), we decided 

to incorporate them into the transition probabilities matrix Ai defined for 1 ≤ i ≤ n - 1: 

𝐴𝑖 =

(

  
 
1 − 𝑝(1 − 𝑒−𝑓𝑖)

𝑝(1−𝑒−𝑓𝑖)

2

𝑝(1−𝑒−𝑓𝑖)

2

𝑝(1−𝑒−𝑓𝑖)

2
1 − 𝑝(1 − 𝑒−𝑓𝑖)

𝑝(1−𝑒−𝑓𝑖)

2

𝑝(1−𝑒−𝑓𝑖)

2

𝑝(1−𝑒−𝑓𝑖)

2
1 − 𝑝(1 − 𝑒−𝑓𝑖))

  
 

, 

where p represents the probability of moving from one state to another in the homogeneous HMM, 

fi = di/dNorm and dNorm is the distance normalization parameter. The parameter dNorm modulates the effect 

of genomic distance di on the transition probabilities: the larger is dNorm the smaller is the probability to 

jump from one state to another. 

We used μ1, μ3 (the mean of hypo-methylation and hyper-methylation states), p (transition probability) 

as algorithm parameters instead of estimating them with an Expectation-Maximization (EM) algorithm; 

the rationale is they well define the methylation states (μ1 and μ3) and set the resolution of our 

computational method (the capability to detect DMRs of different size, p). Finally, once all the 

parameters have been set, the Viterbi algorithm is exploited to find the best state sequence and 

consequently to associate each AUC value to one of the three states, thus identifying AUC segments. 

Statistical significance of AUC segments (step 3). In our strategy, DMRs are defined as statistically 

significant AUC segments. For each AUC segment, statistical significance is assessed through the 

Wilcoxon-Mann-Whitney test between the averaged beta values in cancer samples and normal samples. 

Resulting p-values are then adjusted by FDR (i.e., Benjamini-Hochberg procedure). 
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Rocker-meth Sample Score (step 4). A tailored Z-score statistics strategy was developed to enable 

sample-wise analysis of DMRs. For each DMR z and tumor sample i Rocker-meth Sample Score 

(𝑅𝑜𝑐𝑘𝑒𝑟𝑆𝑆) is calculated by the following formula: 

𝑅𝑜𝑐𝑘𝑒𝑟𝑆𝑆𝑖𝑧 =
(𝛽𝑖𝑧)−𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝛽𝑗𝑧)

𝑚𝑎𝑑𝑗(𝛽𝑗𝑧)
, 

where j indicates the index over normal samples,(𝛽𝑖𝑧)and (𝛽𝑗𝑧) are the median beta values of CpG 

sites within a DMR z for tumor and normal samples, respectively, and 𝑚𝑒𝑑𝑖𝑎𝑛𝑗  and 𝑚𝑎𝑑𝑗  are the 

median and the maximum absolute deviation of the (𝛽𝑗𝑧) across normal samples j. Expressing beta 

values as the percentage of methylation, to avoid over-estimation of RockerSS in cases for which 

𝑚𝑎𝑑𝑗(𝛽𝑗𝑧) = 0, we set 𝑚𝑎𝑑𝑗(𝛽𝑗𝑧) = 𝑚𝑎𝑥⁡(𝑚𝑎𝑑𝑗(𝛽𝑗𝑧), 1).  

To control for the impact of the sparseness of an assay design on the DMR lengths (as in the case of 

certain arrays), the tool includes a parameter (max_distance) to allow users to intentionally split DMRs 

if adjacent CpG sites are more distant than a user-defined selectable value.  

Rocker-meth was developed as a package for the statistical language R (https://cran.r-project.org/) and 

is freely available under MIT license at https://github.com/cgplab/Rocker-meth. 

 

Synthetic datasets  

We considered 15 synthetic DNA methylation datasets emulating Infinium Human Methylation 450K 

BeadChip (HM450, n=5), reduced bisulfite sequencing (RRBS, n=5) and whole-genome bisulfite 

sequencing (WGBS, n=5) data. In particular, we considered 8 datasets from the Metilene website 

(http://www.bioinf.uni-leipzig.de/Software/metilene/) (class 1 to 4, as in Jühling et al. 2016); 2 datasets 

were generated with the metilene package using the scripts simulate_DMRs_RRBS.R and 

simulate_DMRs_WGBS.R with Mixture Factor c=0.55 to mimic more challenging signal-to-noise ratios 

(here referred to as class 5) (Table S1). To generate the HM450 synthetic datasets, we modified the 

original simulate_DMR_RRBS.R script to simulate synthetic data at HM450 specific CpG sites 

(restricted to chromosome 10). The script is available at the zenodo repository 

http://doi.org/10.5281/zenodo.2586588 (simulate_DMR_450k.R). Given the non-uniform distribution of 

the HM450 probes along the genome (genic vs intergenic), to ensure appropriate coverage of DMRs 

we set the following parameters: min DMR length = 5, max DMR length = 10, number of DMRs = 20 for 

non-promoter regions; min DMR length = 8, max DMR length = 20, number of DMRs = 60 for promoter 

regions. 

Comparison study on synthetic data 

We applied Rocker-meth, Metilene version 0.2-4 [33], DSS version 2.28.0 [31], DMRseq version 1.0.13 

[32], DMRcate version 1.16.0 [30] and Bumphunter version 1.22.0 [29] on the 10 RRBS and WGBS 
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synthetic datasets. For all methods, we used default parameters. For HM450 datasets, we considered 

only array DMR detection tools (i.e., Rocker-meth, bumphunter and DMRcate) and metilene. Rocker-

meth was run with p=0.05, F=0.4, Dnorm=105, mu=0.25 (default parameters). AUC segments with WMW 

p-value (FDR) ≥ 0.05 or comprising less than 6 data points were discarded for downstream analysis. 

The evaluation of the performance of all algorithms was assessed by precision, recall, and F1 statistical 

measures as in Jühling et al. 2016 and specificity. For segment-wise statistics, we required that 

predicted DMRs have an overlap greater than 30% with simulated DMRs. For the computational time, 

we considered the mean of the running times in RRBS and WGBS synthetic datasets.  

Cancer Datasets 

We downloaded DNA methylation data of 14 tumor types of The Cancer Genome Atlas from the GDC 

Legacy Archive (https://portal.gdc.cancer.gov/legacy-archive/search/f); specifically, BLCA (Bladder 

Urothelial Carcinoma), BRCA (Breast invasive carcinoma), COAD (Colon adenocarcinoma), ESCA 

(Esophageal carcinoma), HNSC (Head and Neck squamous cell carcinoma), KIRC (Kidney renal clear 

cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LIHC (Liver hepatocellular carcinoma), 

LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), PAAD (Pancreatic 

adenocarcinoma), PRAD (Prostate adenocarcinoma), THCA (Thyroid carcinoma) and UCEC (Uterine 

Corpus Endometrial Carcinoma). DNA methylation values were originally generated using Illumina 

HumanMethylation450 BeadChip (http://www.illumina.com). These datasets were selected for 

presence of at least 10 normal adjacent tissue samples for each tumor types, in order to provide a 

sufficient number of cases in the control group. Upon exclusion of metastatic tumors and of duplicated 

experimental data, this dataset comprises a total of 5,623 tumor samples and 712 normal samples.. 

Gene expression data were downloaded as raw counts from Recount2 

(https://jhubiostatistics.shinyapps.io/recount/). Upon exclusion of metastatic tumors, this dataset 

comprises a total of 6,719 tumor samples and 643 normal samples. Details about the DNA methylation 

and gene expression datasets are reported in Tables S9 and S10. Beta tables and AUC are also 

available in a zenodo repository (http://doi.org/10.5281/zenodo.2586588). WGBS data from Zhou et al., 

2018 [39] were downloaded from http://zwdzwd.io/trackHubs/TCGA_WGBS/hg19/bw_mindepth5/. For 

Figures 3C-E we considered only cancer samples with available PAMES (cancer-specific thresholds) 

tumor purity estimates > 0.5, as reported in Benelli et al. [45].  

Application of Rocker-meth and other state-of-the-art methods in TCGA datasets 

We applied Rocker-meth on 14 tumor types for a total of 5,623 tumor samples and 712 normal samples 

using default parameters (p=0.05, F=0.4, mu=0.25, and Dnorm=105). In particular, we applied Rocker-

meth to each tumor type dataset considering the primary tumor samples (TP) as the test set and the 

corresponding normal tissue samples (NT) as the control set. Only DMRs with FDR < 0.05 and 

supported by at least 6 sites were considered for downstream analysis. Bumphunter (version 1.22.0) 

and DMRcate (version 1.16.0) were also applied to the same data using standard parameters. 

Genomic annotation and functional role of DMRs 
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Association of DMRs to different genomic features, assignment of the closest transcript and 

computation of the distance to closest TSS were done by the annotatePeaks function of the HOMER 

package [75], using RefSeq as gene set and hg19 as genome build (Table S11). To calculate the 

association between DMRs and repetitive elements (REs), we downloaded RepeatMasker data from 

UCSC table browser (https://genome.ucsc.edu/cgi-bin/hgTables, June 2017). BEDTools intersect [76] 

with –f 0.99 was used to associate DMR to REs. Encode/Roadmap imputed chromatin states for the 

hg19 genome were downloaded from 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks

/jointModel/final/ ). For each of the analyzed tumor types, we queried the Encode dataset for the 

matched tissue of origin. A total of 10 projects presented a suitable normal tissue profile (BRCA:E119 

- HMEC Mammary Epithelial Primary Cells, LUAD:E096 - Lung, LUSC:E096 - Lung, PAAD:E098 - 

Pancreas, LIHC:E066 - Liver, ESCA:E079 - Esophagus, COAD:E101 - Rectal Mucosa Donor 29, 

KIRP:E086 - Fetal Kidney, KIRC:E086 - Fetal Kidney, UCEC:E097 - Ovary). For each tumor specific 

segmentation of methylation (including neutral segments), the fraction of chromHMM segments that are 

within segments were computed for the 15 chromatin states [4,41]. As a result, each 1Kb chromHMM 

segment was assigned to a differentially methylated state if it was completely within a methylation 

segment. The aggregated fractions of DMR/chromHMM segments are reported as boxplots. To 

calculate the co-localization between hyper-DMRs and EZH2 biding sites, we downloaded the 

ENCODE Regulation 'Txn Factor' track from UCSC database 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/) and 

considered only binding sites supported by more than half of the samples (cell types). Statistical 

significance of the overlap between hyper-DMRs and EZH2 binding sites was assessed by BEDTools 

fisher using –F 0.5. 

Integrative analysis of DMRs and gene expression 

Homogeneous transcriptomic data for the TCGA datasets were obtained from the recount2 resource 

[77]. After count rescaling using the recount R package, differential expression analysis was performed 

using DESeq2 [78] comparing Primary Solid Tumor samples against Solid Tissue Normal samples for 

each tissue type. The pan-cancer analysis of differentially expressed genes is available at 

http://doi.org/10.5281/zenodo.2586588. To associate each DMR to the corresponding gene, the 

annotatePeaks function of the HOMER package [75] was used. For Figure S26, the distance between 

each DMR and TSS was calculated by the sum of the distance to TSS estimated by HOMER and half-

length of the DMR. Transcripts lengths were downloaded from Ensembl Biomart (August 2017) [79]. 

For transcription factors, we used the manually curated list reported in [57]. To nominate the state of 

DMRs associated with transcription factors we queried ENCODE tissue data for a subset of tumor type 

as previously described. In this case we overlapped each DMR with the chromHMM segments and 

obtained a fractional representation of the chromatin states within the same tissue in the matching 

normal samples.  

Comparison study of Rocker-meth, Bumphunter and DMRcate in TCGA datasets 
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To assess the performance of Rocker-meth, Bumphunter and DMRcate on real data, we evaluated the 

ability of each method in recapitulating well-known features of DNA-methylation in human cancers by 

odds-ratios (OR). For the presence of hyper-DMRs in the promoter, TSS or 5’ region of a gene and its 

under-expression, we estimated ORs as the ratio between the proportion of hyper-DMRs being in the 

promoter, TSS or 5’ region of a gene and the proportion of genes being under or over -expressed. For 

CpG islands, we estimated ORs as the ratio between the proportion of DMRs mapping to CpG islands 

being hyper-methylated and the proportion of DMRs mapping to CpG islands being hypo-methylated. 

For intergenic regions, we estimated ORs by the ratio between the proportion of DMRs mapping to 

intergenic regions being hypo-methylated and the proportion of DMRs mapping to intergenic regions 

being hyper-methylated.  

Per sample/cell fraction of supporting events  

To estimate the recurrence of DNA methylation events, we used the following strategy. For each tumor 

type, we considered the hyper- and hypo- DMRs, indicating as 𝑛ℎ𝑦𝑝𝑒𝑟and 𝑛ℎ𝑦𝑝𝑜the total number of 

DMRs identified. We then considered the Rocker-meth sample score (RockerSS) of each DMR z in 

tumor samples i. Per sample fraction of supporting events (PSFSE) were calculated as follows: 

𝑃𝑆𝐹𝑆𝐸𝑖,ℎ𝑦𝑝𝑒𝑟 =
∑ 𝛩𝑧 (𝑅𝑜𝑐𝑘𝑒𝑟𝑆𝑆𝑧𝑖 − 3)

𝑛ℎ𝑦𝑝𝑒𝑟
, 

𝑃𝑆𝐹𝑆𝐸𝑖,ℎ𝑦𝑝𝑜 =
∑ 𝛩𝑧 (−𝑅𝑜𝑐𝑘𝑒𝑟𝑆𝑆𝑧𝑖 + 3)

𝑛ℎ𝑦𝑝𝑜
, 

where 𝛩 is the Heaviside function. The selected threshold (+/- 3) is reasonably defined to minimize 

false positives. 

Analysis of TCGA WGBS dataset 

 
We applied Rocker-meth with default parameters to 6 tumor types (BLCA, BRCA, COAD, LUAD, LUSC 

and UCEC) comprising 6 normal and 27 cancer samples [39]. Normal samples were pooled together 

and used as a reference for each tumor type due to the low sample size. Pancancer set of DMRs was 

retrieved applying Rocker-meth to the 27 cancer samples. DMRs from WGBS were then annotated 

using the annotatePeaks function of the HOMER package and overlapped with the DMRs from the 

Illumina HM450 data using the R package GenomicRanges [80].  

 

Pan-cancer catalog of DMRs 

Starting from significant DMRs obtained for each tumor type, `bedtools --multiinter` clustering [76] was 

used to define shared and private regions of differential methylation across 13 tumor types. After this 

step, further refinement of the integrated DMR set was performed applying the following strategy: 
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• For each tumor type, we compute the average Beta median of each integrated DMR in each 

normal and tumor sample. Consistently with previously applied filters, DMRs with less than 6 

probes are discarded. 

• Median Beta values are tested with Wilcoxon Mann Whitney test (two-sided) comparing normal 

tissues and primary tumors. After applying Benjamini-Hochberg correction, DMRs with FDR < 

0.05 and mean beta difference > 5 were considered significant. 

• In addition, only DMRs with at least 3 sites with concordant differential signals (AUC < .25 for 

hypo, AUC > .75 for hyper) were retained. 

• Last, the threshold of 10kb was used to distinguish short hypomethylated regions and 

hypoways, following the criteria used for tumor-type specific catalogs. 

Those additional checks were designed to guarantee the good quality of pan-cancer segments, given 

the possibility that collapsing the single DMR sets together could generate small regions that might not 

retain the expected signal. The resulting refined pan-cancer DMR catalog contains a total of 8098 

regions (Table S6). For the pan-cancer DMRs analyses of shared and private DMRs, segments that 

were detected in multiple projects but presented no dominant state across projects were discarded.  

 

Dimensionality reduction and clustering 

Starting from the previously defined integrative DMR atlas, for each tumor sample we computed the 

difference between each tumor sample DMR beta and the median beta in normal samples from the 

same cohort. DMRs in chromosome X and Y were excluded to avoid biases due to uneven sex 

distribution. Fast truncated principal component analysis was performed using the ‘irlba’ R package, 

setting the number of components to 50, center = TRUE and scale = FALSE. The first 30 components 

explained more than 95% of the total variance, with the first 2 accounting for nearly 50% of the variance. 

Following the observation that the first two principal components were mainly associated with hyper 

and hypo/hypoway PSFSE (Figure S13), we excluded them and used the next 13 (n = number of 

analyzed tumor types) components to perform a non-linear dimensionality reduction. UMAP analysis 

was performed using the ‘uwot’ R package with normalized laplacian initialization, euclidean distance 

and parameters a = 2, b = 1.6. For BRCA, ESCA and KIRP subtypes, we queried a comprehensive 

annotation using the TCGAbiolinks package [81]. 

PMD/HMD analysis 

Previous definition of partially methylated domains (PMD) and highly methylated domains (HMD) 

regions genome wide for hg19 genome was obtained from https://zwdzwd.github.io/pmd [39]. We 

utilized the stringent definition of PMD/HMD based on Beta standard deviation across samples. Of note, 

the utilized definition has been obtained using a bulk of different cancer types and normal samples. To 
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define pairs of events between WGBS Rocker-meth segmentation and PMD/HMD regions a minimum 

overlap of 30% of the region was required. 

 

Analysis of scTrio DNA methylation dataset 

Single cell DNA methylation values from Bian et al. [40] were downloaded from the GEO repository 

GSE97693. HEp-2 cells were discarded. Genomic-based lineage, sub-lineage and location information 

were obtained from the original work. For each DMR from the COAD catalog (TCGA based) we 

computed the mean Beta value for each cell, removing missing values. This resulted in a matrix with 

columns equal to the number of cells and rows equal to the number of DMRs. The overall Beta 

difference was measured for each DMR based on pooled normal colon cells (NC) and pooled tumor 

primary cells (PT) and compared with results from TCGA-COAD. For heatmap visualization, we filtered 

out cells with more than 10% of missing values across DMRs. Single cell z-scores were computed using 

the previously reported formula and using the pool of normal cells as control. For the z-score analysis 

in Figure 5B, all cells that had more than 50% of missing values within DMRs for at least one class 

were discarded. Even though the aggregation by DMRs greatly reduced the inherent sparsity of data, 

a process of imputation was necessary to allow for further dimensionality reduction analysis. DMRs 

without Beta values were imputed using the `impute.knn` function from the impute package. For the 

analysis focused on patient CRC01 cells, we added also all the cells from available metastatic lineages. 

Dimensionality reduction for  was performed using UMAP [46] on the first 50 principal components with 

parameters a = 2, b = 1.6, norm-laplacian initialization and 1-pearson correlation as distance metric. 

Data Analysis and visualization  

Statistical analyses, data processing and visualization were performed using the R environment (R Core 

Team, http://cran.r-project.org/) and the tidyverse package [82]. 
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MAIN FIGURES 

 

Figure 1. Rocker-meth study design and performance on synthetic datasets. A) The Rocker-meth 

method involves four main steps; 1) computation of Area Under the Curve (AUC) values of methylation 

levels (i.e., beta values) in tumor versus normal samples; 2) segmentation of AUC values by a tailored 

heterogeneous Hidden Markov Model (HMM); 3) estimation of the statistical significance of AUC 

segments by Wilcoxon-Mann-Whitney (WMW) test on beta values of tumor versus normal samples; 4) 

identification of sample specific DMRs by Z-score statistics (optional).  B) Comparative study in 

synthetic DNA methylation datasets. Right: Dot chart summarizing segment-wise (left) and site-wise 

(right) precision (diamonds), recall (triangles) and F1 (filled circles) statistical measures for Bumphunter, 

DMRcate, DMRseq, DSS, Metilene and Rocker-meth in the five RRBS synthetic datasets. Right: 

distribution of the differences of per site percentage of methylation (beta) between tumor and normal 

samples for all differentially methylated sites across 14 tumor types (TCGA datasets). The range of 

beta difference classes is defined on synthetic datasets and termed from class 1 (highest signal-to-

noise ratio) to class 5 (lowest signal-to-noise ratio). The fraction of emulated TCGA data is reported as 

pie chart.  C) To showcase Rocker-meth, we applied it to multiple DNA-methylation cancer datasets, 

generated using array (HM450) and sequencing (WGBS and single-cell DNA-methylation) data. We 

also exploited orthogonal omics data (gene expression data from TCGA and ENCODE chromatin states) 

to evaluate its capability of capturing biologically relevant features. TCGA: the cancer genome atlas, 

PSFSE: per sample fraction of supported events, WGBS: whole genome bisulfite sequencing, HM450: 

Illumina 450k array. 
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Figure 2. Differentially methylated regions from whole genome bisulfite data. A) Lollipop plot 

showing the number of regions with gain (red) and loss (blue) of methylation detected by Rocker-meth 

across 6 tumor types from TCGA. B) Dot plot of the fraction of cancer genome within DMRs (DMR 

burden) for gain and loss of methylation events across the different tumor types. C) Box plot reporting 

the distribution of DMR lengths (base pairs, bp) for gain and loss of methylation events across tumor 

types and genic features. D) Fraction of the overlap between partially methylated domains (PMD) and 

highly methylated domains (HMD) segments and the tumor type-specific hypoways identified by 

Rocker-meth.  
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Figure 3: Catalog of DMRs across 14 TCGA datasets. A) Correlation between average beta 

difference in DMRs detected from WGBS data (y axis) and HM450 data (x axis). Pearson’s correlation 

coefficients (R) and corresponding p-values are reported. B) Fraction of shared differential methylation 

events across tumor types. Solid line: DMRs, dashed line: single CpG sites. Hypo DMSs and Hyper 

DMSs were selected using and AUC below  0.2 and above 0.8 (lenient) or below 0.1 and above 0.9 

(stringent)  C) Uniform manifold approximation (UMAP) of TCGA samples based on the average beta 

difference in each DMRs of the consensus set with respect to matched normal tissue. D) Distribution of 

the per sample fraction of supported events (PSFSE) for each class of DMRs (hyper: top, hypo: middle, 

hypoway: bottom) across tumor types. E) Unsupervised hierarchical clustering of TCGA-PRAD dataset 

based on DMRs z-scores. Molecular subtypes of tumor samples are reported.  
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Figure 4: Functional and regulatory role of DMRs. A) Density plot of hyper (red), hypo (blue) and 

hypoways (green) Differentially Methylated Regions (DMRs) around ±10 Kbp of TSS. B) Box plot 

showing the distribution of the fraction of DMRs across the distinct tumor types annotated to the different 

genic features for hyper-DMRs, hypo-DMRs and hypoways. C) Boxplot of ChromHMM states from 

matched normal tissues. Each dot represents a tumor type, and the fraction of segments within each 

class of DMRs is reported. Neutral refers to the not-differentially methylated genome obtained from the 

Rocker-meth segmentation. Statistical significance is estimated using pairwise Wilcoxon test. D) Dot 

plot showing the Odds-ratio of the pan-cancer enrichment of hyper (red) and hypo (blue) Differentially 

Methylated Regions (DMRs) in under-expressed (left) and over-expressed (right) genes estimated by 

Fisher Exact Test (FET) for different genic annotations. Error bars show the 95% confidence interval. 

E) Lollipop plot reporting the Odds-ratio (OR) of the enrichment (by proportion test) of Transcription 

Factors in the set of differentially expressed genes deregulated by hyper-DMRs (red) and hypo-DMRs 

(blue) in their regulatory regions. The size of the dots associates (inversely) with p-values. F) Fraction 
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of matched ChromHMM states in DMRs associated with transcription factors, grouped by deregulation. 

-1: TF is downregulated, 0: TF is not deregulated. 1 TF is upregulated (FDR < .05 is used to call 

differential expression). G) Bar plots showing the distribution of TF families for the TFs affected by 

DMRs. 

 

Figure 5: Application of DMR catalog to single cell DNA methylation from colorectal cancer 

samples.  A) Heatmap of DMRs beta values in scTRIO cohort. 50 randomly selected regions for each 

class are depicted. For the dendrogram, hierarchical clustering using 1 - Pearson’s correlation was 

applied to all cells having less than 10% of DMRs with missing values. B) Per Cell Fraction of Supported 

Events (PCFSE) for each DMR class among the different patients. Only cells that had less than 50% of 

missing values within DMRs across each one of the DMR classes were considered. Patients are sorted 

based on PCFSE of Hyper DMRs. C) Difference in PCFSE in lineage A and lineage B in CRC01 cells 

for each class of DMRs. Significance is evaluated using two tailed WMW test. D) UMAP dimensionality 

reduction for cells from CRC01, using the beta value in all DMRs as input (missing values were imputed 

using KNN).  
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