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Abstract

Genomic regions subject to purifying selection are
more likely to carry disease causing mutations. Cross
species conservation is often used to identify such
regions but has limited resolution to detect selection
on short evolutionary timescales such as that
occurring in only one species. In contrast, intolerance
looks for depletion of variation relative to expectation
within a species, allowing species specific features to
be identified. When estimating the intolerance of
noncoding sequence methods strongly leverage
variant frequency distributions. As the expected
distributions depend on demography, if not properly
controlled for, ancestral population source may
obfuscate signals of selection. We demonstrate that
properly incorporating demography in intolerance
estimation greatly improved variant classification
(13% increase in AUC relative to comparison
constraint test, CDTS; and 9% relative to
conservation). We provide a genome-wide intolerance
map that is conditional on demographic history that
is likely to be particularly valuable for variant
prioritization.

Introduction

Understanding the functional impact of
noncoding sequence on protein coding sequence is
one of the largest challenges in human genomics.
Our ability to call variation in noncoding sequence
has greatly outpaced our ability to interpret that
variation and, currently, even studies employing
whole genome sequencing (WGS) often restrict
analyses to coding sequence. Previously, cross-

species conservation has been used to identify
genomic regions of likely importance. These
methods are effective at identifying genomic
regions that retain their functional importance
across different species,M but are not effective at
identifying genomic regions that have emerged as
important in a given species.” However, emerging
WGS datasets present an opportunity to address this
problem as they provide a mechanism for detecting
signatures of purifying selection within noncoding
sequence by looking for intolerance in large
standing human populations,*” where up until
recently this has been difficult to detect due to
relatively small sample sizes.

Methods for estimating genetic intolerance
have previously been applied to noncoding
sequence by either by comparing the observed local
distribution of variation to expectation under
neutrality given a sequence context informed
mutation rate,” or by comparing local sequence
context dependent distributions of variation to
genome-wide  sequence  context  dependent
distributions.” One such method, Orion,® was
shown to be highly discriminative of known classes
of regulatory elements and in a recent machine
learning based classifier®, it was shown to be the
most informative feature of variant pathogenicity
among a set of features that characterize intolerance,
conservation, 3D structure, expression, and other
combined metrics. Here, we improve upon existing
methods in several ways. First, instead of
comparing the observed SFS to that expected under
neutrality, we compute the expectation empirically,
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by stochastically sampling from putatively neutral
regions making the method less sensitive to
demographic factors that may distort the SFS, as
these factors will affect both the observed SFS and
its neutral expectation. Second, we stratify the
analysis by ancestry, computing both the observed
SFS and its expectation within each ancestry and
then combining these contrasts into the final
Population Conditional Intolerance Test (PCIT). It
is well known that genetic diversity varies across
ancestries and natural selection drives population
differences in disease response.” By
stratifying the analysis on ancestry we effectively
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eliminate variability in genetic diversity between
human subpopulations in estimating intolerance,
leading to

greater precision, as we demonstrate below.

Results
Differences in Neutral SFS Across Ancestry

We begin by investigating whether the
neutral SFS varies across ancestry. Since our
approach contrasts the observed SFS within a region
to an empirical estimate of the neutral SFS, if there
are differences in the neutral SFS across ancestry
groups, stratifying on ancestry could eliminate an
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Fig. 1 Characterizing cross population shifts in the site frequency spectrum. Understanding cross population shifts in
site frequency spectrum, first is an illustrative diagram a) adapted from Sawyer and Hartl 1992 Genetics (remove Hartl
version and put in ours) showing how negative selection is expected to effect the SF'S. Then an empirical sample of b) the
cumulative SF'S for million intergenic bases taken across the two largest populations in gnomAD and the combined
cumulative SFS. In the lower plot is ¢) a heatmap of the average over a thousand random permutations of half a million
intergenic positions in one population versus another half a million intergenic positions from another population.
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important source of variability leading to increased
power. To this end, we used 15,708 whole genome
sequenced samples from the genome aggregation
database (gnomAD) across 8 different ancestries,"
including: African, American Latino/Admixed
American, Ashkenazi Jewish, East Asian, Finnish,
Non-Finnish European, South Asian, and other.

We estimate the neutral SFS by sampling
variation from an intergenic sequence not annotated
to be functional (see Quality Control, Defining
Intergenic Regions, and Annotations). To test
whether a given subpopulation’s neutral SFS differs
significantly from another subpopulation we
employ the following approach: begin by randomly
sampled a million positions from neutral sequence
and then randomly assigned a given position to be
part of the SFS estimation for one of the two
subpopulations being compared. This gives half a
million positions on which to estimate the neutral
SFS for each subpopulation, then quantify the
difference between the two distributions using the
log-rank test. This process was repeated a thousand
times, the subpopulation label was then randomly
shuffled at each site and the log rank test was
recalculated after assignment. This gives us a null
distribution of SFS differences between
subpopulation. This was done with each pairwise
ancestry, within each ancestry, and using the entire
combined gnomAD population (Fig. 1c).

The African/African-American (AFR)
SFS does not differ significantly from the
pooled gnomAD SFS sample population
(average logrank across thousand iterations:
0.8: p-value = 0.21), whereas every other
population  demonstrates a  significant
difference in SFS relative to the full population.

It is to be suspected that the AFR population’s
neutral SFS would demonstrate the most
genetic diversity (Fig. 1b). When looking at the
largest ancestries, AFR and Non-Finish
European (NFE) samples, there is a significant
difference in their SFSs (average logrank test -
34: p<le-8). The differences observed between
the neutral SFSs across gnomAD ancestry
groups suggest that conditioning on ancestry in
intolerance estimation may control an important
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We conducted a genome wide scan of regional
intolerance by looking for differences in the SFS
within a given genomic region with an ancestry
specific estimate of the neutral SFS. Specifically,
we estimated the neutral SFS from a million random
intergenic positions that were stochastically
sampled across the genome, within a given ancestry
and across all ancestries. We then compared this
neutral SFS to the SFS distribution estimated from
a given hundred and one base pair window (fifty
bases on each side of the index position) using a
weighted stratified log-rank test. The strata in the
log-rank test are the different ancestries and are
weighted by the inverse of the proportion

of individuals from a given subpopulation in the
gnomad (see online methods) to get the population
conditional intolerance test (PCIT). Using a
stratified test is a natural approach in settings like
this where there are clear categorical groups,
ancestral populations, that need to be controlled for
to more accurately test for association. The
motivation behind weighting the stratum is to reflect
sampling where the various subpopulations are
equally represented and to improve estimation of
variance in the test statistic.'""'* We also conducted
an unadjusted analysis where both the neutral SFS
and the observed SFS within window were
estimated from a pooled sample comprised of all
ancestries. We refer to this as the unadjusted

UCT
— PCIT

0.0

0.4 0.6 0.8

False Positive Rate

0.0 0.2

1.0

source of variability, leading to improved
precision. We investigate this approach in the
next section.

Fig. 2 Predictive utility of population conditional constraint test
relative to other constraint and conservation metrics for ClinVar
non-coding variants. Non-coding ClinVar pathogenic variants
versus a million randomly sampled variants from TOPMed with MAF
greater than 5%.

Ancestry Adjusted Intolerance Estimation
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intolerance test (UIT). We then slide the hundred
base query window to cover every position across
the genome, with the restriction that the regions
considered pass coverage and QC criteria (see
Quality Control, Defining Intergenic Regions, and
Annotations section). To improve computational
efficiency, we take advantage of the fact that as you
move from window to window very little of the data
actually change and thus we can leverage our
previous calculations in updating to a new window,
avoiding the need to reload and recalculate across
all data elements.

We investigated the performance of the
various approaches by looking at how they classify
non-coding ClinVar pathogenic variants versus a

million randomly sampled common variants
(MAF>5%) taken from 62,784 whole genome
Trans-Omics for Precision Medicine (TOPMed
projects) samples. As can be seen from figure 1,
areas under the receiver operator curves (AUCs) are
significantly improved when ancestry is accounted
for (PCIT: AUC=91%) relative to when it is not
(UIT: AUC=81%). PCIT also substantially
outperforms two previously proposed approaches
for measuring constraint and conservation
in noncoding sequence (CDTS: AUC=78% and
GERP: AUC=82%) (Fig. 2). Similar results are seen
in classifying ClinVar coding variants. Specifically,
we found with when ancestry is accounted for
(PCIT: AUC=93%) relative to a similar unadjusted

approach (UIT: AUC=85%). It also
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— _; wa™  proposed approach for classifying noncoding
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(Orion non-coding AUC=78%, coding AUC
=80%). Orion was run using a different quality
control criteria and, as a result, used a
significantly different set of variants. For this
reason, we left it out of the comparisons found
in the main text, but still note it in the
supplementary materials (Supp. Fig. 2).

We next investigated how sequences
showing extreme PCIT scores (in the top 10%)
are distributed across different genomic
regions, such as exons: introns, enhancers,
promotors, etc. by comparing how often
sequence with a given annotation lies in the top
decile of PCIT relative to sequence found in

t

common intergenic regions (details of
CDSWS_— annotations described in Quality Control,
oo 0z o4 05 0 0 Defining Intergenic Regions, and

Fig. 3 Relative constraint across different annotations from

Ensembl”" and other resources.>*>'> Decile break downs of PCIT

scores across different functional annotations from and a million
randomly sampled intergenic variants from TOPMed with MAF

greater than 5%.

Annotations). We found that ultra-conserved
regions have a 34.81 fold enrichment of
extreme PCIT scores relative to common
intergenic regions (Fig. 3). Exons showa 21.31
fold enrichment;24.40 for UTRs; 23.58 for
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introns; 23.25 for enhancers; and 22.93 for Hi-C
experimental data that was taken from di lulio used
to validate CDTS’  (Supp Table 1). Non-coding
RNA clements also showed an enrichment of
intolerance relative to common intergenic regions
(Fig. 3): miRNA showed a 23.07 fold enrichment;
and a 22.41 fold enrichment for lincRNA (Fig. 3).
We then looked at how the intolerance of
regulatory elements correlates with the genic
intolerance of the genes they regulate. We began by
connecting specific enhancer regions to the genes
they regulate in various tissue types using Roadmap
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(http://www.biolchem.ucla.edu/labs/ernst/roadmap
linking/)."*"> As the PCIT is a nucleotide level
score, we took the average of such scores across
each enhancer, to create a single score per enhancer.
Using the roadmap links for a given cell line, we
linked a target gene for each enhancer. We binned
the intolerance scores for enhancers targeting genes
in a given gene set into 20 equal sized bins and took
the median enhancer score within each bin. We also
computed median RVIS score for the genes being
targeted by the enhancers within each bin. Finally,
we correlated the bins’ median enhancer and
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Fig. 4 Genic intolerance to variation relative to PCIT constraint percentile of associated enhancers. Gene enhancer pairs
were defined using Roadmap links,'>"'* then the average SFS test constraint levels across enhancers where binned for every
5% then plotted versus the median RVIS scores. The top row corresponds to: (A-B) OMIM genes restricting to Roadmap A.)
brain cells (Brain group) then B.) neurosphere cells, (C-D) haploinsufficient genes restricting to Roadmap C.) brain cells
(Brain group) then D.) neurosphere cells, and finally (E-F) neurodevelopmental autosomal dominant genes restricting to
Roadmap C.) brain cells (Brain group) then D.) neurosphere cells.
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median target gene RVIS scores (Fig. 4).
Consistent patterns of correlation between genic
intolerance and regional regulatory intolerance were
seen in OMIM genes (Fig. 4A-B correlation brain =
0.90 , neurosphere 0.77),  haploinsufficient
genes (Fig. 4C-D correlation brain =0.65 ,
neurosphere  0.51), and neurodevelopmental
autosomal dominant genes (Fig. 4E-F correlation
brain = 0.41, neurosphere 0.12). ).

The strong correlations seen in the OMIM
gene sets for brain and neurosphere linked
enhancers were also seen when linked through other
cell types with very strong correlations being seen
when enhancers were linked via Epithelial
(correlation =0.96) and muscle (muscle correlation
= 0.93 and Myosat correlation = 0.90, ) (Supp. Fig.
3).

Discussion

Clear patterns of correlation were observed
between intolerant regulatory elements and the
genic intolerance scores of the target genes those
elements regulate. The difference in more recent
constraint captured using PCIT relative to
conservation, as captured by GERP, appears to be
larger in the context of non-coding variation as
opposed to coding variation (Fig 2 and Supp. Fig.
1-2) which is consistent with recent findings that
GERP may miss over half of non-coding mutations
under purifying selection'’. However, since there is
limited known non-coding pathogenic variation
more investigation needs to be performed.

Sample size is a key factor in being able to
precisely identify intolerant regions. Given the
current limited number of publicly available whole
genome sequences, some ancestries are under-
represented in this sample. For example, there are
only 151 Ashkenazi Jewish individuals represented
in the current analysis. However, with emerging
population-based sequencing programs such as All
of Us'® and the UK biobank" we expect the number
of sequences to increase dramatically in the coming
years and to better represent diverse ancestries.
This, in turn, will allow more precise regional
intolerance estimation of smaller and smaller
subunits of the genome. In the current study a
sliding window of 100 bases was chosen to capture
enough variation to precisely estimate intolerance
while also balancing the localization of the scores.
With larger and larger samples sizes, smaller
windows will provide the same precision while

better identifying finer and finer local structure in
intolerance signal.

An alternative to the sliding window
approach is to use predefined regional definitions
based on known biology, e.g., enhancers,
promotors, exons, introns, etc. However, the sizes
of such regions can vary dramatically and, as a
result, the precision of intolerance estimates will
vary dramatically as well, with smaller regions’
intolerance often being very poorly estimated. A
possible solution to this is to develop hierarchical
models in this context that allow borrowing of
information across similar regions, potentially
stabilizing estimates. Such an approach has been
successfully applied to intolerance estimation of
subregions in coding sequence.”’

Other methods for estimating regional
intolerance consider sequence context variation
rates, either to estimate an expected number of
variants within a given region using a sequence
context mutation rate,'**"** or by comparing a local
rate of variation within a given sequence context to
that observed in that context genome-wide.’” Though
we found that our SFS-based approach
outperformed CTDS, it is clear that two regions that
are subject to the same level of purifying selection
may have very different SFSs simply due to
sequence context mutation rate differences between
the regions. Thus, there is an opportunity to further
refine the PCIT framework by developing sequence
context informed SFS estimates within ancestry
groups and to contrast that with an ancestry specific
sequence context informed neutral SFS.

We do not directly compare to other
methods that aggregate annotations®*2® from other
rich feature sets’” *’; however, we are encouraged
that the approach proposed here will be useful in
this context by the fact that Orion, a previously
proposed SFS-based approach for estimating
genome-wide regional intolerance, was recently
demonstrated to be the most informative feature in
a recent predictive model of variant pathogenicity.®
Improving such predictions, especially for variants
in non-coding sequence, has implications for the
interpretation of variation across genetics studies
from genetic discovery to the diagnostic
interpretation of patient genomes.
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Online Resources

https://github.com/tris-10/PopCondIntol Test
https://macarthurlab.org/2017/02/27/the-genome-
aggregation-database-gnomad/
https://egg?.wustl.edu/roadmap/web_portal/chr_sta
te_learning.html#core 15state
https://www.nhlbi.nih.gov/science/trans-omics-
precision-medicine-topmed-program
http://www.biolchem.ucla.edu/labs/ernst/roadmapli
nking/

Quality Control, Defining Intergenic Regions,
and Annotations

Variants included in SFS calculations for the PCIT
had to meet gnomAD PASS criteria, the test was run
on gnomAD v2.1.1. In addition, indels were
excluded and only autosomal chromosomes were
used. Low coverage regions where all positions in a
window did not have 10X coverage in 70% of
samples, SEGDUP regions, and recent repeat
regions defined as having sequence < 10% diverged
from the consensus in RepeatMasker’’were
removed. Aggarwala and Voight characterized
sequence context and modeled heptamere mutation
rates focusing on intergenic regions to explicitly
avoid the potential impact of negative selection.’
We build on this definition to create an empirical
sample of within ancestry intergenic SFS spectrums
defined as the full set of genomic sequence filtering
out centromeric, telomeric, repetitive regions, gene
deserts of length greater than 2MB, sequence not
present in the combined accessibility mask of 1000
genomes. Additionally, we restricted regions to be
least 1KB away from any gene.

The annotations in Fig. 3 were
predominantly taken from Ensembl” including:
CDS exon, CDS intron, CCCTC-binding factor
(CTCF), promoter flanking regions, open chromatin
regions, transcription factor binding sites (TFBS),
enhancer, promoter, untranslated regions (UTR),
transcript nonsense mediated decay, lincRNA,
miRNA, snoRNA, miscRNA, rRNA, and snRNA.

Additional annotations that were used included:
Human accelerated regions (HAR)*' ultra
conserved elements (UCE)
(https://www.ultraconserved.org/),* Hi-C

experimental data,” DNase I hypersensitive (DHS),"
and a million randomly sampled variants from
TOPMed (https://www.nhlbi.nih.gov/science/trans-

omics-precision-medicine-topmed-program)* with
MATF greater than 5%.Cell specific enhancers were
defined based on Roadmap Core 15-state model (5
marks, 127 epigenomes
https://egg?.wustl.edu/roadmap/web_portal/chr_sta
te_learning.html#core 15state).

Online Methods

We use a weighted and stratified log rank
test to test for differences between the SFS within a
given query window and the SFS estimated from
intergenic neutral sequence across multiple
ancestral populations.

ZFEfw® (0" - E)

AL,
[srwoy

Using P different populations, separating the data
into the different ancestral stratum, indexed by i,
where within stratum we test the two groups (neutral

PCIT =

~N(0,1)

and local window), G, using index j, where Oj(i) is
the observed number of events, Ej(i) the expected

number of events, and V]'.(i) is the variance all using

the ordinary log rank definitions.** The failure
events are taken to be the MAF for a given position
and in this setting there is no right censoring. The
weight, w®, was set to the inverse of the proportion
of individuals from a given ancestry, where the
weight was estimated by the number of individuals
in the ancestral group relative to the total number of
samples. The weighting was chosen looking at
other schemes and verifying inverse proportions
gave the best classification of pathogenic variation.
To estimate the intergenic neutral SFS, we sampled
a million random intergenic positions, and
computed the SFS from the variation at those
positions within each population. Our testing
approach was optimized to take advantage of the
fact that the data is sparse and does not change
dramatically when moving from query window to
query window. Thus, when moving from one
window to another we can avoid fully reloading the
data structures by simply removing the counts from
the old position and then adding those for the new
position. This greatly increases computational
efficiency
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