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Abstract  
 
Genomic regions subject to purifying selection are 
more likely to carry disease causing mutations. Cross 
species conservation is often used to identify such 
regions but has limited resolution to detect selection 
on short evolutionary timescales such as that 
occurring in only one species. In contrast, intolerance 
looks for depletion of variation relative to expectation 
within a species, allowing species specific features to 
be identified. When estimating the intolerance of 
noncoding sequence methods strongly leverage 
variant frequency distributions. As the expected 
distributions depend on demography, if not properly 
controlled for, ancestral population source may 
obfuscate signals of selection. We demonstrate that 
properly incorporating demography in intolerance 
estimation greatly improved variant classification 
(13% increase in AUC relative to comparison 
constraint test, CDTS; and 9% relative to 
conservation). We provide a genome-wide intolerance 
map that is conditional on demographic history that 
is likely to be particularly valuable for variant 
prioritization.   
 
Introduction 
 

Understanding the functional impact of 
noncoding sequence on protein coding sequence is 
one of the largest challenges in human genomics.  
Our ability to call variation in noncoding sequence 
has greatly outpaced our ability to interpret that 
variation and, currently, even studies employing 
whole genome sequencing (WGS) often restrict 
analyses to coding sequence. Previously, cross-

species conservation has been used to identify 
genomic regions of likely importance. These 
methods are effective at identifying genomic 
regions that retain their functional importance 
across different species,1–4 but  are not effective at 
identifying genomic regions that have emerged as 
important in a given species.5 However,  emerging 
WGS datasets present an opportunity to address this 
problem as they provide a mechanism for detecting 
signatures of purifying selection within noncoding 
sequence by looking for intolerance in large 
standing human populations,6,7 where up until 
recently this has been difficult to detect due to 
relatively small sample sizes.  

Methods for estimating genetic intolerance 
have previously been applied to noncoding 
sequence by either by comparing the observed local 
distribution of variation to expectation under 
neutrality given a sequence context informed 
mutation rate,6 or by comparing local sequence 
context dependent distributions of variation to 
genome-wide sequence context dependent 
distributions.7 One such method, Orion,6  was 
shown to be highly discriminative of known classes 
of regulatory elements and in a recent machine 
learning based classifier8, it was shown to be the 
most informative feature of variant pathogenicity 
among a set of features that characterize intolerance, 
conservation, 3D structure, expression, and other 
combined metrics. Here, we improve upon existing 
methods in several ways. First, instead of 
comparing the observed SFS to that expected under 
neutrality, we compute the expectation empirically, 
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by stochastically sampling from putatively neutral 
regions making the method less sensitive to 
demographic factors that may distort the SFS, as 
these factors will affect both the observed SFS and 
its neutral expectation. Second, we stratify the 
analysis by ancestry, computing both the observed 
SFS and its expectation within each ancestry and 
then combining these contrasts into the final 
Population Conditional Intolerance Test (PCIT). It 
is well known that genetic diversity varies across 
ancestries and natural selection drives population  

differences in disease response.9 By 
stratifying the analysis on ancestry we effectively 

eliminate variability in genetic diversity between 
human subpopulations in estimating intolerance, 
leading to  

greater precision, as we demonstrate below.   
 
Results 
Differences in Neutral SFS Across Ancestry  

We begin by investigating whether the 
neutral SFS varies across ancestry. Since our 
approach contrasts the observed SFS within a region 
to an empirical estimate of the neutral SFS, if there 
are differences in the neutral SFS across ancestry 
groups, stratifying on ancestry could eliminate an 

 

 
 
Fig. 1 Characterizing cross population shifts in the site frequency spectrum.  Understanding cross population shifts in 
site frequency spectrum, first is an illustrative diagram a) adapted from Sawyer and Hartl 1992 Genetics (remove Hartl 
version and put in ours) showing how negative selection is expected to effect the SFS. Then an empirical sample of b) the 
cumulative SFS for million intergenic bases taken across the two largest populations in gnomAD and the combined 
cumulative SFS. In the lower plot is c) a heatmap of the average over a thousand random permutations of half a million 
intergenic positions in one population versus another half a million intergenic positions from another population.  	
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important source of variability leading to increased 
power. To this end, we used 15,708 whole genome 
sequenced samples from the genome aggregation 
database (gnomAD)  across 8 different ancestries,10 
including: African, American Latino/Admixed 
American, Ashkenazi Jewish, East Asian, Finnish, 
Non-Finnish European, South Asian, and other.  

We estimate the neutral SFS by sampling 
variation from an intergenic sequence not annotated 
to be functional (see Quality Control, Defining 
Intergenic Regions, and Annotations). To test 
whether a given subpopulation’s neutral SFS differs 
significantly from another subpopulation we 
employ the following approach: begin by randomly 
sampled a million positions from neutral sequence 
and then randomly assigned a given position to be 
part of the SFS estimation for one of the two 
subpopulations being compared. This gives half a 
million positions on which to estimate the neutral 
SFS for each subpopulation, then quantify the 
difference between the two distributions using the 
log-rank test.  This process was repeated a thousand 
times, the subpopulation label was then randomly 
shuffled at each site and the log rank test was 
recalculated after assignment. This gives us a null 
distribution of SFS differences between 
subpopulation. This was done with each pairwise 
ancestry, within each ancestry, and using the entire 
combined gnomAD population (Fig. 1c).   
  The African/African-American (AFR) 
SFS does not differ significantly from the 
pooled gnomAD SFS sample population 
(average logrank across thousand iterations: 
0.8: p-value = 0.21), whereas every other 
population demonstrates a significant 
difference in SFS relative to the full population. 
It is to be suspected that the AFR population’s 
neutral SFS would demonstrate the most 
genetic diversity (Fig. 1b).  When looking at the 
largest ancestries, AFR and Non-Finish 
European (NFE) samples, there is a significant 
difference in their SFSs (average logrank test -
34: p<1e-8). The differences observed between 
the neutral SFSs across gnomAD ancestry 
groups suggest that conditioning on ancestry in 
intolerance estimation may control an important 
source of variability, leading to improved 
precision. We investigate this approach in the 
next section.   
 
Ancestry Adjusted Intolerance Estimation 

We conducted a genome wide scan of regional 
intolerance by looking for differences in the SFS 
within a given genomic region with an ancestry 
specific estimate of the neutral SFS. Specifically, 
we estimated the neutral SFS from a million random 
intergenic positions that were stochastically 
sampled across the genome, within a given ancestry 
and across all ancestries. We then compared this 
neutral SFS to the SFS distribution estimated from 
a given hundred and one base pair window (fifty 
bases on each side of the index position) using a 
weighted stratified log-rank test. The strata in the 
log-rank test are the different ancestries and are 
weighted by the inverse of the proportion  
of individuals from a given subpopulation in the 
gnomad (see online methods) to get the population 
conditional intolerance test (PCIT). Using a 
stratified test is a natural approach in settings like 
this where there are clear categorical groups, 
ancestral populations, that need to be controlled for 
to more accurately test for association. The 
motivation behind weighting the stratum is to reflect 
sampling where the various subpopulations are 
equally represented and to improve estimation of 
variance in the test statistic.11,12 We also conducted 
an unadjusted analysis where both the neutral SFS 
and the observed SFS within window were 
estimated from a pooled sample comprised of all 
ancestries. We refer to this as the unadjusted 

 
Fig. 2 Predictive utility of population conditional constraint test 
relative to other constraint and conservation metrics for ClinVar 
non-coding variants. Non-coding ClinVar pathogenic variants 
versus a million randomly sampled variants from TOPMed with MAF 
greater than 5%. 	
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intolerance test (UIT). We then slide the hundred 
base query window to cover every position across 
the genome, with the restriction that the regions 
considered pass coverage and QC criteria (see 
Quality Control, Defining Intergenic Regions, and 
Annotations section).  To improve computational 
efficiency, we take advantage of the fact that as you 
move from window to window very little of the data 
actually change and thus we can leverage our 
previous calculations in updating to a new window, 
avoiding the need to reload  and recalculate across 
all data elements.   

We investigated the performance of the 
various approaches by looking at how they classify 
non-coding ClinVar pathogenic variants versus a 

million randomly sampled common variants 
(MAF>5%) taken from 62,784 whole genome 
Trans-Omics for Precision Medicine (TOPMed 
projects) samples.  As can be seen from figure 1, 
areas under the receiver operator curves (AUCs) are 
significantly improved when ancestry is accounted 
for (PCIT: AUC=91%) relative to when it is not  
(UIT: AUC=81%). PCIT also substantially 
outperforms two previously proposed approaches  

for measuring constraint and conservation 
in noncoding sequence (CDTS: AUC=78% and 
GERP: AUC=82%) (Fig. 2). Similar results are seen 
in classifying ClinVar coding variants. Specifically, 
we found with when ancestry is accounted for 
(PCIT: AUC=93%) relative to a similar unadjusted 

approach (UIT: AUC=85%). It also 
substantially outperforms a previously 
proposed approach for classifying noncoding 
sequence (CDTS: AUC=81% and GERP: 
AUC=90%) (Supp. Fig. 1).  The same 
comparison was done with Orion, which also 
uses a sliding window approach to compare the 
observed SFS with a theoretical expectation 
under neutrality, computed given the sequence 
context dependent mutation rate found within 
the window.  Orion slightly outperformed 
CDTS but underperformed relative to both the 
new population unadjusted intolerance test and 
the population conditional intolerance test 
(Orion non-coding AUC=78%, coding AUC 
=80%). Orion was run using a different quality 
control criteria and, as a result, used a 
significantly different set of variants. For this 
reason, we left it out of the comparisons found 
in the main text, but still note it in the 
supplementary materials (Supp. Fig. 2).  

We next investigated how sequences 
showing extreme PCIT scores (in the top 10%) 
are distributed across different genomic 
regions, such as exons: introns, enhancers, 
promotors, etc. by comparing how often 
sequence with a given annotation lies in the top 
decile of PCIT relative to sequence found in 
common intergenic regions (details of 
annotations described in Quality Control, 
Defining Intergenic Regions, and 
Annotations).   We found that ultra-conserved 
regions have a 34.81 fold enrichment of 
extreme PCIT scores relative to common 
intergenic regions (Fig. 3). Exons show a  21.31 
fold enrichment;24.40 for UTRs; 23.58 for 

 

 
Fig. 3 Relative constraint across different annotations from 
Ensembl27 and other resources.5,6,31,32  Decile break downs of PCIT 
scores across different functional annotations from and a million 
randomly sampled intergenic variants from TOPMed with MAF 
greater than 5%.  
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introns; 23.25 for enhancers; and 22.93 for Hi-C 
experimental data that was taken from di Iulio used 
to validate CDTS7   (Supp Table 1). Non-coding 
RNA elements also showed an enrichment of 
intolerance relative to common intergenic regions 
(Fig. 3): miRNA showed a 23.07 fold enrichment;  
and a 22.41 fold enrichment for lincRNA (Fig. 3).  

We then looked at how the intolerance of 
regulatory elements correlates with the genic 
intolerance of the genes they regulate. We began by 
connecting specific enhancer regions to the genes 
they regulate in various tissue types using  Roadmap 

(http://www.biolchem.ucla.edu/labs/ernst/roadmap
linking/).13–15 As the PCIT is a nucleotide level 
score, we took the average of such scores across 
each enhancer, to create a single score per enhancer. 
Using the roadmap links for a given cell line, we 
linked a target gene for each enhancer.  We binned 
the intolerance scores for enhancers targeting genes 
in a given gene set into 20 equal sized bins and took 
the median enhancer score within each bin. We also 
computed median RVIS score for the genes being 
targeted by the enhancers within each bin.  Finally, 
we correlated the bins’ median enhancer and  

 

 

 
 
Fig. 4 Genic intolerance to variation relative to PCIT constraint percentile of associated enhancers. Gene enhancer pairs 
were defined using Roadmap links,12–14 then the average SFS test constraint levels across enhancers where binned for every 
5% then plotted versus the median RVIS scores. The top row corresponds to: (A-B) OMIM genes restricting to Roadmap A.) 
brain cells (Brain group) then B.) neurosphere cells, (C-D) haploinsufficient genes restricting to Roadmap C.) brain cells 
(Brain group) then D.) neurosphere cells, and finally (E-F) neurodevelopmental autosomal dominant genes restricting to 
Roadmap C.) brain cells (Brain group) then D.) neurosphere cells.  
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median target gene RVIS scores (Fig. 4). 
Consistent patterns of correlation between genic 
intolerance and regional regulatory intolerance were 
seen in OMIM genes (Fig. 4A-B correlation brain = 
0.90 , neurosphere 0.77), haploinsufficient 
genes (Fig. 4C-D correlation brain =0.65 , 
neurosphere 0.51), and neurodevelopmental 
autosomal dominant genes (Fig. 4E-F correlation 
brain = 0.41, neurosphere 0.12). ).  

The strong correlations seen in the OMIM 
gene sets for brain and neurosphere linked 
enhancers were also seen when linked through other 
cell types with very strong correlations being seen 
when enhancers were linked via Epithelial 
(correlation =0.96) and muscle (muscle correlation 
= 0.93 and Myosat correlation = 0.90, ) (Supp. Fig. 
3).  

 
Discussion 

Clear patterns of correlation were observed 
between intolerant regulatory elements and the 
genic intolerance scores of the target genes those 
elements regulate. The difference in more recent 
constraint captured using PCIT relative to 
conservation, as captured by GERP, appears to be 
larger in the context of non-coding variation as 
opposed to coding variation (Fig 2 and Supp. Fig. 
1-2) which is consistent with recent findings that 
GERP may miss over half of non-coding mutations 
under purifying selection17. However, since there is 
limited known non-coding pathogenic variation 
more investigation needs to be performed.  

Sample size is a key factor in being able to 
precisely identify intolerant regions. Given the 
current limited number of publicly available whole 
genome sequences, some ancestries are under-
represented in this sample. For example, there are 
only 151 Ashkenazi Jewish individuals represented 
in the current analysis. However, with emerging 
population-based sequencing programs such as All 
of Us18 and the UK biobank19 we expect the number 
of sequences to increase dramatically in the coming 
years and to better represent diverse ancestries. 
This, in turn, will allow more precise regional 
intolerance estimation of smaller and smaller 
subunits of the genome. In the current study a 
sliding window of 100 bases was chosen to capture 
enough variation to precisely estimate intolerance 
while also balancing the localization of the scores. 
With larger and larger samples sizes, smaller 
windows will provide the same precision while 

better identifying finer and finer local structure in 
intolerance signal.  

An alternative to the sliding window 
approach is to use predefined regional definitions 
based on known biology, e.g., enhancers, 
promotors, exons, introns, etc. However, the sizes 
of such regions can vary dramatically and, as a 
result, the precision of intolerance estimates will 
vary dramatically as well, with smaller regions’ 
intolerance often being very poorly estimated. A 
possible solution to this is to develop hierarchical 
models in this context that allow borrowing of 
information across similar regions, potentially 
stabilizing estimates. Such an approach has been 
successfully applied to intolerance estimation of 
subregions in coding sequence.20  

Other methods for estimating regional 
intolerance consider sequence context variation 
rates, either to estimate an expected number of 
variants within a given region using a sequence 
context mutation rate,10,21,22 or by comparing a local 
rate of variation within a given sequence context to 
that observed in that context genome-wide.7 Though 
we found that our SFS-based approach 
outperformed CTDS, it is clear that two regions that 
are subject to the same level of purifying selection 
may have very different SFSs simply due to 
sequence context mutation rate differences between 
the regions. Thus, there is an opportunity to further 
refine the PCIT framework by developing sequence 
context informed SFS estimates within ancestry 
groups and to contrast that with an ancestry specific 
sequence context informed neutral SFS.  

We do not directly compare to other 
methods that aggregate annotations8,23–26  from other 
rich feature sets27–29; however, we are encouraged 
that the approach proposed here will be useful in 
this context by the fact that Orion, a previously 
proposed SFS-based approach for estimating 
genome-wide regional intolerance,  was recently 
demonstrated to be the most informative feature in 
a recent predictive model of variant pathogenicity.8   
Improving such predictions, especially for variants 
in non-coding sequence, has implications for the 
interpretation of variation across genetics studies 
from genetic discovery to the diagnostic 
interpretation of patient genomes. 
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Online Resources 
 
https://github.com/tris-10/PopCondIntolTest 
https://macarthurlab.org/2017/02/27/the-genome-
aggregation-database-gnomad/ 
https://egg2.wustl.edu/roadmap/web_portal/chr_sta
te_learning.html#core_15state 
https://www.nhlbi.nih.gov/science/trans-omics-
precision-medicine-topmed-program 
http://www.biolchem.ucla.edu/labs/ernst/roadmapli
nking/ 
 
Quality Control, Defining Intergenic Regions, 
and Annotations 
 
Variants included in SFS calculations for the PCIT 
had to meet gnomAD PASS criteria, the test was run 
on gnomAD v2.1.1. In addition, indels were 
excluded and only autosomal chromosomes were 
used. Low coverage regions where all positions in a 
window did not have 10X coverage in 70% of 
samples,  SEGDUP regions, and recent repeat 
regions defined as having sequence < 10% diverged 
from the consensus in RepeatMasker30were  
removed.  Aggarwala and Voight characterized 
sequence context and modeled heptamere mutation 
rates focusing on intergenic regions to explicitly 
avoid the potential impact of negative selection.9 
We build on this definition to create an empirical 
sample of within ancestry intergenic SFS spectrums 
defined as the full set of genomic sequence filtering 
out centromeric, telomeric, repetitive regions, gene 
deserts of length greater than 2MB, sequence not 
present in the combined accessibility mask of 1000 
genomes. Additionally, we restricted regions to be 
least 1KB away from any gene.  

The annotations in Fig. 3 were 
predominantly taken from Ensembl27 including: 
CDS exon, CDS intron, CCCTC-binding factor 
(CTCF), promoter flanking regions, open chromatin 
regions, transcription factor binding sites (TFBS), 
enhancer, promoter, untranslated regions (UTR), 
transcript nonsense mediated decay, lincRNA, 
miRNA, snoRNA, miscRNA, rRNA, and snRNA. 
Additional annotations that were used  included: 
Human accelerated regions (HAR),31 ultra 
conserved elements (UCE) 
(https://www.ultraconserved.org/),32 Hi-C 
experimental data,7 DNase I hypersensitive (DHS),6 
and a million randomly sampled variants from 
TOPMed (https://www.nhlbi.nih.gov/science/trans-

omics-precision-medicine-topmed-program)33 with 
MAF greater than 5%.Cell specific enhancers were 
defined based on Roadmap Core 15-state model (5 
marks, 127 epigenomes 
https://egg2.wustl.edu/roadmap/web_portal/chr_sta
te_learning.html#core_15state).  
 
 
Online Methods 
 

We use a weighted and stratified log rank 
test to test for differences between the SFS within a 
given query window and the SFS estimated from 
intergenic neutral sequence across multiple 
ancestral populations.  
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Using 𝑃 different populations, separating the data 
into the different ancestral stratum, indexed by 𝑖, 
where within stratum we test the two groups (neutral 
and local window), G, using index j, where 𝑂$

(") is 
the observed number of events, 𝐸$

(") the expected 
number of events, and 𝑉$

(") is the variance all using 
the ordinary log rank definitions.34 The failure 
events are taken to be the MAF for a given position 
and in this setting there is no right censoring.  The 
weight, 𝑤("), was set to the inverse of the proportion 
of individuals from a given ancestry, where the 
weight was estimated by the number of individuals 
in the ancestral group relative to the total number of 
samples.  The weighting was chosen looking at 
other schemes and verifying inverse proportions 
gave the best classification of pathogenic variation. 
To estimate the intergenic neutral SFS, we sampled 
a million random intergenic positions, and 
computed the SFS from the variation at those 
positions within each population. Our testing 
approach was optimized to take advantage of the 
fact that the data is sparse and does not change 
dramatically when moving from query window to 
query window. Thus, when moving from one 
window to another we can avoid fully reloading the 
data structures by simply removing the counts from 
the old position and then adding those for the new 
position. This greatly increases computational 
efficiency
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