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Abstract 

Flower development is a major determinant of yield in crops. In wheat, natural variation for the size of 

spikelet and floral organs is particularly evident in Triticum polonicum, a tetraploid subspecies of 

wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VRT2, a MADS-

box transcription factor belonging to the SVP family, as the gene underlying the T. polonicum long-

glume (P1) locus. The causal P1 mutation is a sequence re-arrangement in intron-1 that results in both 

increased and ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, 

we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum species defining 

polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-

isogenic lines differing for the P1 locus revealed a gradient effect of P1 across florets. Transgenic lines 

of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are 

highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes 

in expression profiles, through variation in cis-regulation, can impact on agronomic traits in a dosage-

dependent manner in polyploid crops.  
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Introduction 
 

The genus Triticum contains multiple wheat subspecies exhibiting traits of agronomic interest, making 

them valuable genetic resources for breeding. Among these, Triticum turgidum ssp. polonicum (Polish 

wheat), a tetraploid (AABB) spring wheat, is characterized by elongated glumes and grains, the latter 

of which is an important component of crop yield. Glumes are sterile bract-like organs that subtend 

spikelets, which are lateral branches that contain several grain-producing florets. Each floret is 

composed of two leaf-like sheathing structures, the lemma and the palea, as well as two lodicules, three 

stamens and a pistil (Figure 1A). 

 

It was established over 100 years ago that glume length in T. polonicum is controlled by a single locus 

(Engledow, 1920; Biffen, 2009). The P or P1 locus (from Polish wheat) was mapped to chromosome 

7A (Matsumura, 1950) and subsequent studies refined the map location to the short arm of 

chromosome 7A (Watanabe et al., 1996; Kosuge et al., 2010; Okamoto and Takumi, 2013). While T. 

polonicum as a subspecies is defined by its highly elongated glumes, Biffen (2009), Engledow (1920), 

and Okamoto and Takumi (2013) also observed that the long-glume trait was completely linked with 

elongated grains, suggesting multiple pleiotropic effects of the P1 locus. Okamoto and Takumi (2013) 

further showed that the T. polonicum P1 allele was also linked to an increase in spike length and a 

reduction in the number of spikelets per spike. These studies all determined a semi-dominant effect of 

P1, with heterozygous lines being intermediate to the parents for both glume and grain length. 

 

In addition to tetraploid T. polonicum, there are a number of hexaploid bread wheat accessions with 

elongated glumes. These include the Chinese landrace T. petropavlovskyi (also called ‘Daosuimai’ or 

rice-head wheat) as well as members of the Portuguese landrace group ‘Arrancada’. It is hypothesized 

that the long-glume phenotype of these hexaploid wheat accessions is the result of natural hybridisation 

between T. polonicum and local landraces (Chen et al., 1985; Chen et al., 1988; Watanabe and 

Imamura, 2002; Akond and Watanabe, 2005; Akond et al., 2008). Indeed, for both T. petropavlovskyi 

and ‘Arrancada’ the causal genetic locus for long glumes was mapped to chromosome 7A, supporting 

the hypothesis of a shared origin with T. polonicum (Watanabe and Imamura, 2002; Watanabe et al., 

2004). 
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The spatial and temporal expression of MADS-box transcription factors determine floral organ identity 

and developmental phase transitions in plants. The Tunicate1 mutant of maize (Zea mays), known as 

pod corn, exhibits highly elongated leaf-like glumes that cover the kernels (Mangelsdorf and Galinat, 

1964; Langdale et al., 1994). Genetic studies identified the causal gene as Zea mays MADS19 

(ZMM19), a member of the short vegetative phase (SVP) gene family of MADS-box transcription 

factors (Han et al., 2012; Wingen et al., 2012). A rearrangement in the promoter region of ZMM19 

causes its ectopic expression, which leads to the dosage-dependent phenotype (Han et al., 2012; 

Wingen et al., 2012). Ectopic expression of ZMM19 in Arabidopsis thaliana leads to enlarged sepals, 

suggesting a conserved mechanism (Wingen et al., 2012). 

 

Spikelet morphology and organ size are tightly correlated with final grain weight in wheat (Millet, 

1986). Despite their importance, we have relatively little understanding of the genes controlling 

spikelet and floral organ size in wheat. Here, we characterised the P1 locus of T. polonicum, which has 

pleiotropic effects on glume, floral organ, and grain size. We show that the P1 long-glume phenotype is 

due to the ectopic expression of VRT-A2, a SVP MADS-box transcription factor. The higher and 

ectopic expression of VRT-A2 is due to a sequence rearrangement in the first intron, which defines T. 

polonicum as a subspecies. Expression levels of VRT-A2 affect glume, grain, and floral organ length in 

a dosage-dependent manner. 

 

Results 
 

The long-glume T. polonicum P1 allele enhances grain weight through longer grains 

To evaluate the performance of the T. polonicum P1 allele we developed BC4 and BC6 near isogenic 

lines (NILs) by crossing T. polonicum accession 1100002 to the hexaploid spring wheat cultivar 

Paragon (Table 1, Figure 1B). We verified the isogenic status of these lines using the Breeders' 35K 

Axiom Array (Supplementary Figure S1; (Allen et al., 2017)) and assessed the T. polonicum (P1POL) 

and wildtype (P1WT) NILs in the field over multiple years and environments. The P1POL NILs had 

longer glumes and lemmas than wildtype Paragon NILs (Figure 1B) and were on average 6 cm taller 

due to an increase in peduncle (final internode) and spike lengths (1.6 cm; P <0.01; Table 1, 

Supplementary Table S1-S3, Supplementary Figure S2). The increase in spike length, alongside a 

minor increase in spikelet number (0.4 spikelets per spike; P = 0.06), led to a 11.3% decrease in 

spikelet density (spikelets per cm) in P1POL with respect to P1WT NILs (significant in three of four 

environments; Supplementary Table S1). The P1POL NILs also flowered on average 0.8 days later (P 
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<0.001) than the wildtype NILs. We observed consistent positive effects on thousand grain weight in 

P1POL (TGW; 5.5%; P <0.001), which were driven by significant increases in grain length (5.0%; P 

<0.001), but not grain width (Table 1, Supplementary Table S1, S4). The increase in grain length 

resulted in an increased grain volume (10.7%; P = 0.001) as determined by CT scans of a single year of 

field samples (Figure 1C, Supplementary Table S4). The increased TGW in P1POL NILs also translated 

into a significant increase in hectolitre weight (HLW) in 4 out of 5 environments (2.3%; P <0.01). 

Final yield, however, was not significantly different between NILs despite the increase in TGW (Table 

1, Supplementary Table S1). 

 

Table 1: Phenotypic effects of the P1 allele in Paragon NILs. P1POL effect is the percentage 

difference (except height and spike length in cm; heading date in days) between the P1WT and the P1POL 

NILs. The P value of the ANOVA main effect is presented, apart from grain width, which had a 

significant interaction across environments (simple effects and detailed breakdown in Supplementary 

Table S1). Values represent means of six field experiments (except spike length n=4). 

Allele 
Height 

(cm) 

Spike 

Length 

(cm) 

Heading 

date 

(days) 

HLW 

(kg/hl) 

TGW 

(g) 

Grain 

Width 

(mm) 

Grain 

Length 

(mm) 

Yield 

(kg/plot) 

P1POL 90.6 13.2 218.5 77.2 46.8 3.584 6.757 5.237 

P1WT 84.6 11.6 217.7 75.5 44.4 3.589 6.438 5.212 

P1POL effect 6.0 1.6 0.8 2.3% 5.5% -0.1% 5.0% 0.5% 

P value 2.0E-13 0.005 4.4E-07 0.009 * 6.9E-06 Interact. < 2.2e-16  NS 

* P1POL NIL was significant in 5 out of 6 environments. 

 

The P1 allele from T. polonicum enhances grain size in florets 1 and 2 through an increase in cell 

length 

We conducted more in-depth phenotyping to identify the first timepoint during grain development in 

which differences in grain length are established between P1 NILs. We dissected and measured field-

grown grain samples from florets 1 and 2 of five central spikelets from P1WT and P1POL NILs at six 

timepoints during grain development (Figure 1D; second year data in Supplementary Figure S3). We 

did not detect consistent differences in ovary length before and at anthesis nor in grain length 7 days 

post anthesis (dpa). However, at 14 dpa, grains from P1POL NILs were 3.4 % longer than grains from 

P1WT NILs (P <0.05; Supplementary Table S5). The increased grain length in P1POL NILs was 

maintained at 21 and 28 dpa (7.0 and 6.2% longer grains than P1WT, respectively; P <0.002; 

Supplementary Table S5). These results, consistent in two independent field seasons (Supplementary 
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Figure S3), suggest that the difference in grain length between P1 NILs is established during mid-grain 

filling. 

 

We next measured the size (length, width, and area) of glumes, floral organs (lemma and palea), and 

grains across spikes and spikelets of P1POL and P1WT NILs using the same field-grown samples as 

above. We focus on organ length, given the effects observed in the field (Table 1, Fig. 1D), and all 

data, including width and area measurements, are presented in Supplementary Tables S2-S3 and 

Supplementary Figures S4-S5. The T. polonicum P1 allele significantly increased glume length (37%; 

P <0.001) with respect to the wildtype NILs; this effect was consistent and independent of spikelet 

position across the spike (Figure 1E). However, we detected a significant gradient in the effect of the T. 

polonicum P1 allele across the florets within each spikelet: the largest and most significant effects on 

lemma length were observed in florets 1 and 2 (28.6% and 19.8%, respectively; P <0.001), whereas the 

effect was reduced in floret 3 (+5.8%; P <0.001) and was non-significant in floret 4 (Figure 1F, 

Supplementary Table S3). This gradient in lemma length within spikelets was maintained across all 

positions along the spike. A very similar gradient within spikelets was also identified for grain length, 

with P1POL NILs having significantly longer grains than P1WT NILs in florets 1 and 2 (+4.1% and 

+6.7%, respectively; P <0.001), and non-significant differences in grain length in florets 3 (+0.4%; 

P=0.37) and 4 (+0.1%; P=0.92; Figure 1F). Minor effects of the T. polonicum P1 allele on palea length 

also followed this spikelet gradient (+2.5% in floret 1 to -3.6% in floret 4; Supplementary Table S3, 

Supplementary Figure S5). These results suggest that the increases in glume, lemma, and grain length 

conferred by the T. polonicum P1 allele are consistent along the spike, but that the positive effects on 

lemma and grain length follow a basipetal gradient from basal to apical florets within individual 

spikelets. 

 

To further investigate the differences in grain length between P1 NILs, we used scanning electron 

microscopy to image and measure pericarp cell size of P1WT and P1POL grains. We selected grains from 

florets 2 and 4 of central spikelets and imaged the base, centre, and distal end of each grain 

(Supplementary Figure S6A). We found a significant 12.9 % increase (P <0.05) in pericarp cell length 

in floret 2 grains of P1POL NILs relative to P1WT NILs (Figure 1G). This difference in cell length was 

present only in the central portion of the grain, while cell size was similar between NILs at the base and 

distal end of the grain (Supplementary Table S6, Supplementary Figure S6). For floret 4, there were no 

differences in pericarp cell size between the NILs at each of the three positions examined across the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.09.375154doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375154
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

grain (Figure 1G, Supplementary Table S6, Supplementary Figure S6). Given the maternal origin of the 

pericarp, these results are consistent with the P1POL grain length effect being maternally inherited as 

first proposed by Engledow (1920). Taken together, these results suggest that the T. polonicum P1 

allele enhances grain size in basal florets through an increase in cell length in the centre of the grain, 

whereas grains of floret 3 and 4 are indistinguishable from the wildtype NILs, both macro- and 

microscopically. 
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Figure 1. Phenotypic effects of P1 in near-isogenic lines (NILs) 

(A) Drawing of a wheat spike, with a close-up of an individual spikelet. The first four florets on the 

spikelet are colour coded. A close-up of an open floret depicts its two enveloping sheathing structures 

(lemma and palea). (B) Spikelets of the parental hexaploid bread wheat cultivar ‘Paragon’ and 

tetraploid T. polonicum accession 11000002, and the P1WT and P1POL NILs. (C) Grain volume was 

measured using a CT-scanner to image field-grown spikes of the two NILs (n=15). (D) Timecourse 

tracking ovary/grain length development in field-grown P1WT and P1POL NILs (n=50). (E) Glume 

length along spikes of P1WT and P1POL NILs; positions are numbered from basal (position 0) to apical 

(position 20) spikelets (n=15 spikes). (F) Lemma and grain length at each floret position along P1WT 

and P1POL NILs spikes. Spikelet positions as in E (n= 15 spikes). In (E) and (F) bold line represents the 
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median value, ribbon represents the interquartile range. (G) Pericarp cell length from middle sections 

of grains from floret 2 and floret 4 for the P1WT and P1POL NILs (n= 18 grains). In (C) and (G), the box 

represents the middle 50% of data with the borders of the box representing the 25th and 75th percentile. 

The horizonal line in the middle of the box represents the median. Whiskers represent the minimum 

and maximum values, unless a point exceeds 1.5 times the inter-quartile range in which case the 

whisker represents this value and values beyond this are plotted as single points (outliers). See 

Supplementary Table S6 for additional measurements. Error bars represent mean ± SEM. *, P < 0.05; 

**, P < 0.01; ***, P < 0.001. 

 

P1 maps to a 50 kb interval on chromosome 7A containing a single candidate gene 

To map the P1 locus, we used BC4 and BC6 recombinant lines derived from the NILs described above. 

We initially phenotyped 17 BC4F3 homozygous recombinant lines between markers S1 and S9 for 

glume length and mapped the P1 locus between markers S2 (125,260,256 bp) and S7 (150,240,183 bp) 

(Figure 2A, Supplementary Table S7). Heterozygous individuals across the interval had glumes of 

intermediate length between the homozygous parental lines, consistent with a semi-dominant mode of 

action of P1 (Engledow, 1920; Biffen, 2009; Okamoto and Takumi, 2013). To further define the P1 

interval, we identified an additional 64 homozygous BC6F2 recombinants between markers S2 and S10, 

which were genotyped with a further 21 markers (Figure 2B, Supplementary Table S8). The long-

glume phenotype, alongside plant height, spike length, grain length, and thousand grain weight, 

mapped between markers S15 and S19, spanning a 50,338 bp interval (Figure 2C, Supplementary Table 

S8-S9). The complete linkage of the 50.3 kbp region with these multiple phenotypes suggests that they 

are all pleiotropic effects of the P1 locus. 

 

We identified two gene models based on the RefSeqv1.1 annotation within the P1 interval: 

TraesCS7A02G175100 and TraesCS7A02G175200. The flanking marker S15 resided within the last 

intron of TraesCS7A02G175100 and no additional SNPs were detected in the last exon of this gene 

between P1WT and P1POL NILs. Manual annotation of the 50.3 kbp P1 interval in the RefSeqv1.0 

assembly (and an additional 14 hexaploid and tetraploid cultivars) identified 38,261 bp as repetitive 

sequences, and no additional gene apart from TraesCS7A02G175200 (Figure 2D, Supplementary 

Figure S7A). This suggested TraesCS7A02G175200 as the sole candidate gene for P1. 

 

TraesCS7A02G175200 encodes a member of the MADS-box gene family previously named 

VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2) in wheat (Kane et al., 2005). VRT2, as 

well as its homolog TaSVP1, are the wheat orthologs of AtSVP in Arabidopsis thaliana (Supplementary 

Figure S8; (Schilling et al., 2020)). Using publicly available RNA-Seq data, we verified the exon-
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intron structure of TraesCS7A02G175200.1 (Supplementary Figure S7B). We sequenced the gene in 

the P1POL NIL from 2299 bp upstream of the ATG to marker S19 (1857 bp downstream of the 

termination codon; 9747 bp total including all exons and introns). Compared to the RefSeqv1.0 

assembly, we only found a single polymorphism located within intron-1; a 563-bp sequence in the 

RefSeqv1.0 assembly that was substituted for a 160-bp sequence in P1POL (Figure 2E, Supplementary 

Table S10). An analysis of the 160-bp sequence suggests that it consists of reoccurring units of DNA 

which are homologous to sequences found in the intron 1 regions flanking either side of the 160-bp 

substitution (Supplementary Figure S9). These reoccurring sequence units account for 145 of the 160 

nucleotides, indicating that the sequence is the result of a local rearrangement rather than insertion of 

foreign DNA. 
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Figure 2. Map-based cloning of the P1 locus reveals VRT-A2 as the single candidate gene 

(A) Initial mapping in 17 BC4F2 recombinants mapped P1 between markers S2 and S7 (~25 Mbp 

interval). (B) Subsequently, P1 was mapped between markers S2 and S10 using an additional 64 BC6F2 

recombinant lines. (C) Graphical genotype of eight critical recombinants between markers S12 and S24 

(~1 Mbp interval; marker distance not drawn to scale). Based on the phenotypic evaluation of glume 

length, we mapped P1 to a 50.3 kbp interval between markers S15 and S19 (n=5 plants per genotype). 

The box represents the middle 50% of data with the borders of the box representing the 25th and 75th 

percentile. The horizonal line in the middle of the box represents the median. Whiskers represent the 

minimum and maximum values, unless a point exceeds 1.5 times the inter-quartile range in which case 

the whisker represents this value and values beyond this are plotted as single points (outliers). (D) The 

50.3 kbp interval encompasses the last exon of Traes7A02G175100 (black arrow), multiple repetitive 
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elements (grey rectangles) and Traes7A02G175200 (red arrow). (E) We identified a single 

polymorphism between Chinese Spring (RefSeqv1.0) and T. polonicum in a ~10 kbp interval 

surrounding Traes7A02G175200. A 563-bp sequence in RefSeqv1.0 was substituted by a 160-bp 

sequence in T. polonicum. 

The 160-bp intron-1 sequence rearrangement in VRT-A2 is completely linked with the long-

glume phenotype in tetraploid and hexaploid wheat accessions 

We determined the allelic status of the VRT-A2 intron-1 sequence rearrangement in a wheat diversity 

panel. We first screened 367 accessions with wildtype glume length including tetraploid emmer wheat 

T. dicoccoides (n=70), tetraploid durum wheat T. durum (n=21), hexaploid wheat landraces from the 

Watkins collection (n=103), hexaploid UK cultivars (n=98), hexaploid European germplasm from the 

Gediflux collection (n=60), and 15 sequenced wheat cultivars. We found that all 367 accessions carried 

the 563-bp sequence in intron 1 and none had the 160-bp sequence rearrangement found in the P1POL 

NIL (Supplementary Table S11). We thus termed the 563-bp sequence as the wildtype VRT-A2a allele, 

and the 160-bp sequence rearrangement found in T. polonicum as the VRT-A2b allele, consistent with 

wheat gene nomenclature guidelines. We next screened 36 accessions of tetraploid T. polonicum (all 

with long glumes) from 17 different countries to determine their VRT-A2 allele. All 36 T. polonicum 

accessions carried the exact 160-bp rearrangement in intron 1 as the VRT-A2b allele (Figure 3A, B, 

Supplementary Table S12). These results suggest that the VRT-A2b allele with its 160-bp sequence 

rearrangement in intron 1 is unique to T. polonicum. 

 

We then examined accessions from two types of hexaploid wheat with long-glumes that have been 

postulated to be the product of independent hybridisation between T. polonicum and hexaploid 

landraces in China (T. petropavlovskyi) and Portugal (‘Arrancada’ group; Figure 3A, C; (Chen et al., 

1985; Chen et al., 1988; Watanabe and Imamura, 2002; Akond and Watanabe, 2005; Akond et al., 

2008)). All 11 accessions of T. petropavlovskyi (n=4) and the ‘Arrancada’ landraces (n=7) carried the 

VRT-A2b allele found in T. polonicum (Supplementary Table S12). We fully sequenced the allele (5591 

bp) from six T. polonicum, two T. petropavlovskyi, and four ‘Arrancada’ accessions (Supplementary 

Table S12) and obtained 100% identical sequences from these twelve long-glumed accessions. Using 

the markers developed for mapping P1, we found that our two T. petropavlovskyi accessions shared a 

common haplotype, whereas the seven ‘Arrancada’ accessions also shared a common, albeit distinct, 

haplotype from that in T. petropavlovskyi (Supplementary Table S13). Conversely, in accessions with 

normal-sized glumes, we identified multiple haplotypes within VRT-A2 (all with the 563-bp intron-1 

sequence) and also across the wider physical interval (Supplementary Tables S10, S13). These results, 
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alongside the absence of the 160-bp rearrangement in wild emmer and hexaploid landraces, provide 

evidence that the 563-bp intron-1 sequence in VRT-A2a is ancestral. 

 
Figure 3. Natural variation of P1 indicates a single mutation event that led to the loss of 

evolutionary conserved motifs 

(A) Simplified diagram depicting the evolution and domestication of tetraploid and hexaploid wheat 

(tan shaded area). The glume phenotype for each species and set of accessions is indicated by the letter 

N (normal) or L (long) enclosed in a circle. Beside this classification, the number of accessions that 

carry the wildtype 563-bp (VRT-A2a allele) or the 160-bp (VRT-A2b allele) intron 1 sequence is shown. 

T. polonicum hybridised with hexaploid landraces in China and Portugal, giving rise to T. 
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petropavlovskyi and the ‘Arrancada’ landrace group, respectively, both of which exhibit long glumes 

and carry the VRT-A2b allele. (B) Spikelets of tetraploid wheat including P1 NILs in the tetraploid 

cultivar ‘Langdon’ and nine accession of T. polonicum. (C) Comparison of spikelets of hexaploid 

wheat including P1 NILs in the hexaploid cultivar ‘Paragon’, seven accession from the ‘Arrancada’ 

landrace group and two accession of T. petropavlovskyi. (D) Phylogenetic shadowing using mVISTA 

of VRT-A2 intron 1 with pairwise alignments of T. aestivum with barley (Hordeum vulgare), 

Brachypodium distachyon, rice (Oryza sativa), maize (Zea mays), and sorghum (Sorghum bicolor). The 

Y-axis represents percentage sequence similarity. Two conserved peaks (dark pink) were identified 

within the 563-bp sequence (blue box) that is absent in T. polonicum. (E) Sequence of the two 

conserved motifs that maintain an >80% similarity over a 20 bp sliding window across the species 

described in D. 

 

The 563-bp intron-1 sequence of VRT-A2a is highly conserved across Poaceae 

We compared the entire intron-1 sequence of VRT-A2a with orthologous Poaceae sequences from 

barley (Hordeum vulgare), Brachypodium distachyon, rice (Oryza sativa), maize (Zea mays), and 

sorghum (Sorghum bicolor). Phylogenetic shadowing using mVISTA (Mayor et al., 2000; Frazer et al., 

2004) revealed two highly conserved regions across Poaceae (>85% sequence id, minimum 20 bp), 

both of which are missing from the 160-bp rearrangement present in the VRT-A2b allele (Figure 3D). 

We further examined these two regions (see Methods) and identified broadly conserved sequences of 

34 and 69 bp in length, hereafter referred to as ‘Motif 1’ and ‘Motif 2’ respectively (Figure 3E). Within 

them, both motifs contain highly conserved sequences of 16 and 20 bp, respectively (Supplementary 

Data Set S1). We searched for putative transcription factor binding sites within Motifs 1 and 2 using 

three online databases (PlantPan3.0, PlantRegMap, and MEME, see Methods). We found two 

significant hits (both P <0.001 and q <0.001) for Motif 1 encoding members of the LATERAL 

ORGAN BOUNDARIES-DOMAIN (LBD) family (Supplementary Data Set S2). For Motif 2, we 

found 17 significant hits (all P <0.001 and q <0.05) encoding members of the LBD, Basic Leucine 

Zipper (bZIP), B3, and GLABROUS1 enhancer-binding protein (GeBP) families (Supplementary Data 

Set S2). Given the highly conserved nature of motifs within the 563-bp intron-1 sequence across the 

investigated Poaceae (~60 million years divergence time; (Charles et al., 2009; Reineke et al., 2011)) 

and the identification of putative transcription factor binding sites, we hypothesise that this intron-1 

sequence plays a regulatory role in the expression profile of VRT-A2. 

 

VRT-A2 is expressed ectopically and more highly in P1POL relative to P1WT NILs 

To assess if the intron-1 sequence rearrangement affected the expression profile of VRT-A2, we 

determined its expression pattern in P1WT and P1POL NILs using qRT-PCR. We first examined 
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expression levels in developing meristems of P1WT NILS. Consistent with previous studies (Kane et al., 

2005; Kane et al., 2007; Trevaskis et al., 2007), we found a progressive decrease in VRT-A2 expression 

from vegetative meristem (W1) to terminal spikelet stage (W4; Figure 4A). We next examined 

expression in P1POL NILs, which showed a five to 16-fold higher expression level of VRT-A2 relative 

to the P1WT NILs at all five timepoints investigated (P <0.05; Figure 4A). An increased expression 

level of VRT-A2 in P1POL relative to P1WT was also observed in leaves at the same developmental 

stages (six to 38-fold higher, P <0.05; Supplementary Table S14). Next, we examined VRT-A2 

expression in developing glumes, lemmas, anthers, flag leaves, and grains at multiple developmental 

timepoints. In the wildtype NIL, expression was restricted to the flag leaves and anthers at anthesis 

(Figure 4B, Supplementary Table S14). We did not detect VRT-A2 expression in glumes, lemmas, nor 

grains of P1WT NILs at any timepoint (Figure 4B-D), consistent with publicly available RNA-Seq data 

of wildtype VRT-A2 genotypes (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018). By contrast, VRT-

A2 expression was detected in all tissues and at all timepoints in the P1POL NIL, including glumes, 

lemmas, and grains (Figure 4B-D). 

 

Given the contrasting effects of the VRT-A2b allele on grain and lemma length between floret 1+2 and 

floret 4 (Figure 1F), we compared the VRT-A2 ectopic expression in these samples. Across multiple 

tissues and timepoints (lemma, palea, pistil at anthesis; grains at 4, 10, and 20 days post anthesis) we 

found similar expression of VRT-A2 in samples from florets 1+2 compared to floret 4 (Figure 4 C, D). 

We also investigated expression of the VRT2 homoeologs (TraesCS7B02G080300, 

TraesCS7D02G176700), and that of the closely related ortholog TaSVP1 (TraesCS6A02G313800, 

TraesCS6B02G343900, TraesCS6D02G293200) (Supplementary Figure S8; (Schilling et al., 2020)). 

Across the same tissues and developmental timepoints as those described above, we did not detect any 

differences in expression between P1WT and P1POl NILs (Figure 4E). These results show that VRT-A2 is 

expressed more highly and ectopically in P1POL relative to P1WT NILs across multiple tissues and 

timepoints. The ectopic expression does not extend to the homoeologs or closely related orthologs and 

is not restricted to those tissues in which we observed phenotypic differences between P1WT and P1POL 

NILs. 
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Figure 4. VRT-A2 is more highly and ectopically expressed in P1POL relative to P1WT NILs 

(A) Relative expression of VRT-A2 in developing meristems of P1WT (blue) and P1POL (orange) NILs. 

Developmental stages based on Waddington scale (Waddington et al., 1983); VG vegetative meristem 

(W1); DR, late double ridge stage (W2.5); LP, lemma primordium stage (W3.25); FP, floret 

primordium stage (W3.5); TS, early terminal spikelet stage (W4). (B) Relative expression of VRT-A2 in 

glume, lemma (floret 1+2), and anther (floret 1+2) at mid-boot (W7.5) and late-boot (W8.5) stages. (C) 

Relative expression of VRT-A2 in lemma, palea, and pistil just before anthesis (W9.5) in florets 1+2 

(white background) and floret 4 (pink background). Note that for Panel C and D the growth stage is 

based on florets 1+2; floret 4 tissues will be at a slightly less mature developmental stage. (D) Relative 

expression of VRT-A2 in grains from florets 1+2 as well as floret 4 at 4, 10, and 20 days post anthesis. 

(E) Heatmap showing log10 scaled expression in P1WT and P1POL NILs for the three VRT2 and TaSVP1 

homoeologs in tissues and developmental stages shown in panels A and B (Supplementary Table S14). 

Error bars are mean ± SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Ectopic expression of VRT-A2 leads to phenotypic effects in a dosage dependent manner 

We next tested whether the observed changes in VRT-A2 expression patterns in P1POL NILs are causal 

for the T. polonicum long-glume phenotype. We transformed the hexaploid accession ‘Fielder’ (normal 

glume phenotype) using the genomic T. polonicum VRT-A2b allele (5591 bp), including 2299 bp 

upstream of the ATG, all coding and intron sequences, as well as 1000 bp downstream of the 

termination codon. We obtained 14 independent T0 lines, which were classified based on the transgene 

copy number. No transgene was detected for five lines (zero copy number), three lines carried 1 or 2 

copies (low copy number), three lines carried 4 to 5 copies (medium copy number), and three lines 

carried 9 to 35 copies (high copy number; Figure 5A, Supplementary Tables S15-S17). 

 

We collected tissue from flag leaves, glumes, and grains at 21 dpa from all 14 plants to measure 

expression levels of VRT2 homoeologs (Supplementary Table S15). We detected expression of VRT-A2 

in flag leaves of all 14 transformed lines, including the zero copy number lines, similar to that observed 

in P1WT. In glume and grain tissue, VRT-A2 expression was extremely low or not detected in the zero 

copy number lines, consistent with the P1WT NILs (Figure 4), whereas we detected expression in all 

lines with at least one copy of the transgene. In all tissues, VRT-A2 expression scaled with copy 

number. As seen in the NILs, we did not detect differences in expression of the B- and D-homoeologs 

among transgenic lines (Supplementary Table S15). 

 

We dissected all spikelets from two spikes of each of the 14 T0 lines for morphological 

characterisation. We compared spike length and glume length, as well as lemma, palea, and grain 

length from florets 1 to 4 among the four categories of copy number lines (Figure 5A-C, 

Supplementary Table S16). Overall, we identified significant differences between the zero copy lines 

(N = 5) and the transgenic lines (low, medium, and high; N =9) for glume, lemma, palea, and grain 

length (all P <0.05; Supplementary Table S16). These differences were largest in glumes (42%) and 

lemmas (26%), whereas paleae showed the smallest effect (6.6%; Figure 5B, C, Supplementary Table 

S16). 

 

Having established the overall positive effects of the T. polonicum VRT-A2 transgene on these traits, 

we next evaluated the magnitude of the phenotypic effects among the four categories of copy number 

lines. Due to the relatively small sample size for each category (N=3 to 5 T0 plants), we did not detect 

significant differences between zero copy number lines and low copy number lines for any of the traits, 
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although glume length increased by 14.1% (P <0.08). However, we did detect significant effects for 

glume length (19.0%), palea length (5.9%) and grain length (9.6%) in medium copy number lines (all P 

< 0.05). These effects increased in magnitude and significance in high copy number lines, which 

showed a highly significant increase of 93% in glume length, 58% in lemma length, 13% in palea 

length, and 14% in grain length with respect to the zero copy number lines (all P <0.002; 

Supplementary Table S16). While spike length was increased in both low and medium copy number 

lines (3% and 14%, respectively), it was only significantly increased in high copy number lines with a 

51% increase compared to zero copy number lines (P < 0.01). This significant increase in spike length 

led to a significant 47% reduction in spikelet density in the high copy number lines, consistent with the 

effects observed in the P1POL NILs (Supplementary Table S1). We saw a gradient in the phenotypic 

effects from floret 1 to floret 4, consistent again with what we observed in the NILs. This basipetal 

gradient was most obvious in the medium and high copy number lines. For example, floret 1 lemma 

and grain length increased by 105% and 19%, respectively, in high copy number lines, whereas in 

floret 4 both traits ‘only’ increased by 11% (Supplementary Table S16). 

 

We further analysed the phenotypic data to relate it to the expression of VRT-A2 in the different 

transgenic lines. VRT-A2 expression correlated highly and significantly with several phenotypic traits, 

independent of the tissue examined for expression. For example VRT-A2 expression levels in the glume 

correlated strongly with spike length (R2 = 0.76; P <0.0001) and glume length (R2 = 0.92; P <0.0001) 

(Figure 5D), as well as with lemma, palea, and grain length in floret 1 (all R2 >0.81; all P <0.0001; 

Supplementary Table S17). Similar to the gradient in phenotypic effects across florets detailed above, 

these correlations were strongest and most significant in floret 1 and floret 2 (R2 >0.64), remained 

significant for floret 3 phenotypes (R2 ≥0.41), and were less significant for floret 4 phenotypes 

(Supplementary Table S17). The multiple phenotypes of the medium and high copy transgenic lines 

recreate, in a dosage dependent manner, the effects seen in the P1POL NIL, providing further evidence 

that VRT-A2 is the causal gene underlying the T. polonicum P1 locus. 
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Figure 5. Increased and ectopic VRT-A2 expression elicits phenotypic effects in a dosage dependent 

manner 

(A) Comparison of spikes and spikelets of zero, low (1-2), medium (3-4), and high (9-35) copy number 

lines (left to right). Notably, spike length increases with copy number, as does glume length. Scale bar 

= 1 cm. (B) Dot and box plots depicting the variation of spike (left) and glume (right) length, 

respectively, from two tillers of zero (cyan), low (purple), medium (red), and high (yellow) copy 

number lines. Horizontal lines represent the median. (C) Box plots depicting lemma and grain length 

for florets 1, 2, 3, and 4 for zero (cyan), low (purple), medium (red), and high (yellow) copy number 

lines. (D) Pearson correlations between VRT-A2 relative expression in the glume at 21 dpa and spike 

length (left), and glume length (right). Relative expression shown as 2ddCt x 103 (Supplementary Table 

S15). Regression (Dark grey line) and 95% confidence interval (light grey shading) are shown. Data 

points are coloured according to copy number. Additional correlations in Supplementary Table S17. 

Box plots in (B) and (C) include all subsamples, whereas statistical analyses were performed with mean 

values. The box represents the middle 50% of data with the borders of the box representing the 25th and 

75th percentile. The horizonal line in the middle of the box represents the median. Whiskers represent 

the minimum and maximum values, unless a point exceeds 1.5 times the inter-quartile range in which 

case the whisker represents this value and values beyond this are plotted as single points (outliers). 
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Statistical classifications in (B) and (C) are based on Dunnett tests against the zero copy number lines. 

▪, P < 0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

Discussion 
 

An intron-1 sequence rearrangement in VRT-A2 is the T. polonicum species defining 

polymorphism 

The first formal classification of wheat was compiled by Linnaeus in 1753 and was based on 

discernible characteristics such as phenology, spike architecture, and glume morphology. With its 

characteristic long glumes T. polonicum is a standout Triticum species. Despite this, the first mention of 

T. polonicum only dates back to 1687 (Percival, 1921). T. polonicum was instrumental in the study of 

early geneticists who showed that measurable quantitative traits, such as glume length, were also 

inherited according to the same laws of qualitative traits postulated by Mendel (Engledow, 1920; 

Biffen, 2009). However, despite first being described genetically over a century ago, the gene 

underlying the P1 locus remained unknown. 

 

Here, we show that the gene underlying the long-glume P1 locus of T. polonicum is VRT-A2, a member 

of the SVP family of MADS-box transcription factors. We mapped multiple phenotypes associated with 

P1, including glume length, grain length, spike length, grain weight, and plant height to the same 

physical interval that included VRT-A2 as the single candidate gene. For grains, we further showed that 

the increase in length is likely a result of increased cell length. We identified a sequence rearrangement 

in the first intron of VRT-A2 in which a 563-bp wildtype sequence (VRT-A2a) was replaced by a 160-

bp fragment in T. polonicum (VRT-A2b). The 160-bp sequence is mostly composed of imperfect 

tandem copies of two sequence units that flank either side of the rearranged intron-1 region 

(Supplementary Figure S9). The 160-bp sequence has no match to other plant sequences nor to 

repetitive elements consistent with its local origin rather than an insertion of foreign sequence. We 

hypothesise that the rearrangement was caused by erroneous DNA repair following a double strand 

break via the alternative non-homologous end-joining (aNHEJ) pathway (Deriano and Roth, 2013; 

Rodgers and McVey, 2016). aNHEJ has been shown to result in complex insertion/deletion events with 

insertions being identical or near-identical matches of flanking sequences (Kent et al., 2016; van 

Kregten et al., 2016). These templated insertion are associated with many disease-causing genomic 

rearrangements in humans (Schimmel et al., 2019). 
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Using diverse germplasm, we showed that the VRT-A2b allele is only present in tetraploid T. polonicum 

accessions, or in hexaploid wheat germplasm with long glumes. Our results provide strong evidence 

that these hexaploid wheat accessions with long-glumes, namely T. petropavlovskyi and the 

‘Arrancada’ accessions, are the outcome of introgressions between T. polonicum and hexaploid wheat 

(Chen et al., 1985; Chen et al., 1988; Watanabe and Imamura, 2002; Akond and Watanabe, 2005; 

Akond et al., 2008). The lack of sequence variation among lines with the VRT-A2b allele, coupled with 

its absence among ancestral wheat types (e.g. wild emmer, Watkins landraces), suggests a single and 

recent origin for the VRT-A2b allele. We propose that a single mutation event in the ancestral VRT-A2a 

intron-1 sequence gave rise to the 160-bp sequence rearrangement within the domesticated tetraploid 

gene pool. This mutation was later introduced into hexaploid wheat via natural hybridizations resulting 

in hexaploid accessions with long-glumes. These results, together with the complete linkage of this 

VRT-A2b allele with the long-glume phenotype, suggest that the intron-1 mutation in VRT-A2b is the T. 

polonicum species defining polymorphism. 

 

 

VRT-A2 expression levels affect spike, glume, grain, and floral organ length in a dosage-

dependent manner 

We observed that VRT-A2 was expressed to a higher degree in P1POL compared to P1WT NILs in all 

tested tissues (e.g. developing spikelets, leaves, and anthers). Furthermore, we observed ectopic VRT-

A2 expression in P1POL tissues that have no detectable expression in wildtype lines (e.g. glumes and 

grains). These expression profiles were also found in transgenic lines that carry the VRT-A2b allele. In 

these transgenic lines, we found a linear relationship between expression levels and multiple 

phenotypic traits (R2 = 0.76 for spike length; R2 = 0.92 for glume length; R2 = 0.88 for lemma length; 

R2 = 0.81 for grain length; R2 = 0.83 for palea length; all P <0.001). The NIL and transgenic data also 

suggest that outer organs, including glumes and lemmas, are more responsive to changes in VRT-A2 

expression levels than inner organs such as paleae and carpels. Our results suggest that ectopic and 

higher expression of VRT-A2 leads to multiple phenotypic effects, including the glume, lemma, and 

grain length phenotypes, in a dosage dependent manner in polyploid wheat. 

 

In the P1POL NIL, we detected ectopic expression of VRT-A2 in tissues that do not show morphological 

changes (e.g. lemma and grains from floret 4) nor differences in pericarp cell size (e.g. grains from 

floret 4). Similarly, we only detected an increase in length in paleae from floret 1, but not subsequent 
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florets. This is recapitulated in the transgenic lines with medium copy number of the transgene 

(Supplementary Table S16). In contrast, the lines with high copy number show significant increases in 

lemma length (P < 0.02) and grain length (P ≤ 0.02) within floret 3 and 4, respectively. Similarly, palea 

length is only significantly different in floret 1 in the P1POL NIL, whereas paleae are longer up until 

floret 3 in the high copy number transgenic lines. This suggests that increasing expression levels of 

VRT-A2 are necessary to alter organ length in subsequent florets and across different organs. The 

strongest effects are visible in the basal florets of the spikelets, and only transgenic lines with medium 

or high copy number exhibit changes in organ length in apical florets, consistent with a basipetal 

gradient that determines organ length. Both lemma and palea, and the resulting grain, respond to this 

gradient, although the magnitude of the phenotypic effects (with respect to wildtype or zero copy lines) 

is stronger in lemmas than in paleae. 

 

A possible explanation for these results is the sequential formation of these organs during spikelet and 

floral development together with the fact that MADS-box genes act in sequential manner as part of 

protein complexes (Schwarz-Sommer et al., 1992; Goto and Meyerowitz, 1994; Davies et al., 1996; 

Huang et al., 1996; Riechmann et al., 1996; Egea-Cortines et al., 1999; Honma and Goto, 2001). In the 

wildtype, VRT2 expression is strongly downregulated during the transition from vegetative meristem to 

the double ridge stage, presumably to allow floral transition from vegetative to spikelet and floret 

meristems (Trevaskis et al., 2007; Li et al., 2019; Li et al., 2020). Tetraploid wheat lines with 

constitutive expression of VRT2 show significant downregulation of A-, B-, C-, and E- class floral 

genes at the terminal spikelet stage of spike development (W3.5) (Li et al., 2020). In Arabidopsis, the 

SVP-class genes SVP and AGL24 act as repressors of B- and C- class flowering genes (Gregis et al., 

2013). Thus, normal transition into floral meristems takes place under decreasing SVP levels and 

increasing levels of A-class (SQUAMOSA) and E-class (SEPALLATA) MADS-box proteins, among 

others. 

 

Disruption in this balance can lead to increased vegetative characteristics as evidenced in E-class 

mutants in rice which have leaf-like glumes (rudimentary glumes and sterile lemmas), lemmas, and 

paleae (Ren et al., 2016; Wu et al., 2018). Likewise, overexpression of SVP genes in wheat (Li et al., 

2020) and barley (Trevaskis et al., 2007) results in a delay or reversion, respectively, of this vegetative 

to reproductive transition. Li et al. (2020) hypothesise that the downregulation of SVP genes is 

necessary given that SVP proteins interfere with SQUAMOSA-SEPALLATA protein complexes that 
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are required for normal spikelet and floral development. This is consistent with the results presented 

here where higher and ectopic expression of VRT-A2 in P1POL and transgenic lines would interfere with 

the activity of these protein complexes. The magnitude of the response and the tissues affected would 

be dependent on the level of SVP overexpression and the ability of SVP proteins to compete with the 

sequential MADS-box protein complexes that give rise to the different floral tissue types. We 

hypothesise that SVP is able to compete more strongly with protein complexes required for glume and 

lemma development (as shown in Li et al. (2020)) and gradually less so with those protein complexes 

involved in palea development, which include additional MADS-box proteins (e.g. ALG6-like genes; 

(Reinheimer and Kellogg, 2009)). This would explain the dosage-dependent response observed in our 

study and why we observe the strongest effects in outer and early established organs (e.g. glumes and 

lemmas) while later developing/differentiating organs (e.g. paleae) are affected only in lines with the 

highest VRT-A2 expression. 

 

 

Intron 1 motifs are conserved across grasses and may be recognised by repressors 

Our results are reminiscent of the pod corn phenotype observed in maize Tunicate1 (Tu1) mutants, in 

which the grains (kernels) are completely enclosed by elongated glumes. Similar to P1, the mutant Tu1 

phenotype is caused by the ectopic expression of the MADS-box gene ZMM19, the maize TaSVP1 

homolog and a closely related ortholog of wheat VRT2, in the developing maize inflorescence 

(Supplementary Figure S8; (Han et al., 2012; Wingen et al., 2012; Schilling et al., 2020)). The ectopic 

expression of ZMM19, however, is due to a duplication and rearrangement in the promoter region, 

whereas our results indicate that the intron-1 sequence plays a key regulatory role in the expression 

profile of VRT-A2. 

 

Numerous MADS-box genes have been shown to contain regulatory sequences within their first 

introns, including FLC in Arabidopsis (Sung et al., 2006) and VRN1 in wheat (reviewed in Distelfeld et 

al. (2009)). We thus hypothesise that the 563-bp sequence of the VRT-A2a allele, substituted for 160-bp 

in the VRT-A2b allele, contains putative regulatory sequences for establishing the correct expression 

pattern of the gene. By comparing VRT2 intron-1 sequences across Poaceae, we identified two distinct 

motifs (both within the 563-bp region of intron 1) that showed a high degree of sequence conservation 

across 60 million years of evolution. The absence of the 563-bp intron-1 sequence, as in VRT-A2b, 

results in a misexpression of VRT-A2, both in terms of its absolute expression levels and spatiotemporal 
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patterns. It is thus tempting to speculate that either one or both conserved intron-1 motifs allows the 

binding of proteins or protein complexes that repress VRT-A2 expression. 

 

Using online databases, we identified significant hits in both intron-1 motifs to members of the LOB-

domain family of transcription factors. LOB-domain genes are important for the establishment of 

boundaries between floral organs and have been shown to be important for glume, lemma, and palea 

development in several monocot species. In rice, mutations in LOB-domain genes DEGENERATED 

HULL 1 (DH1; (Li et al., 2008)) and INDETERMINATE GAMETOPHYTE 1 (OsIG1; (Zhang et al., 

2015)) affect glume, lemma, and palea formation, and OsIG1 affects expression of SEPALLATA and 

AGL-6 like MADS-box genes. In maize and barley, LOB-domain genes RAMOSA2 (RA2; (Bortiri et 

al., 2006)) and VULGARE ROW-TYPE SPIKE 4 (VRS4; (Koppolu et al., 2013)) restrict inflorescence 

branching and establish determinacy of spikelet meristems. Strong overexpression of VRT-A2 in wheat 

(Li et al., 2020), and maize plants with multiple copies of the ectopically expressed Tu1 allele (Han et 

al., 2012), result in spikelet branching similar to that observed in ra2 mutants (Bortiri et al., 2006). 

This is consistent with an antagonistic relationship between their activities as first suggested by Han et 

al. (2012). Further investigation, however, will be required to understand if the intron 1 motifs can be 

recognised by repressors and if LOB-domain proteins play a role in this. We cannot exclude the 

possibility that the misexpression of VRT-A2 is caused by the VRT-A2b allele. Despite the 160-bp 

sequence not being homologous to any plant sequence in the NCBI database, it is predicted to contain 

putative DNA binding motifs for transcription factors (Supplementary Data S1, S2). 

 

The B- and D-homoeologs of VRT2 also contain the two highly conserved intron-1 motifs, and as such 

we see no difference in their expression pattern between NILs nor in the transgenic lines. Likewise, no 

changes in expression of the closest MADS-box ortholog (TaSVP1) were detected in P1 NILs nor VRT-

A2 transgenic lines, similar to the lack of expression differences in closely related MADS-box genes in 

the maize Tu1 mutants (Han et al., 2012; Wingen et al., 2012). This suggests that VRT-A2 does not 

regulate its homoeologs or is unable to overcome the presence of the putative repressive protein or 

protein complex in intron 1 of the B- and D-genome homoeologs. Further work is needed to fully 

characterise the role of these putative motifs and how they regulate expression of VRT2. 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.09.375154doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375154
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

cis-regulatory variation can impact agronomic traits in polyploid wheat 

Major loci that control a relatively large proportion of phenotypic variation for quantitative traits have 

been selected during domestication of diploid plant species (reviewed in Swinnen et al. (2016)). Often, 

the causal variants underlying these phenotypes occur in cis-regulatory regions of developmental 

regulators that affect the level or the spatiotemporal expression profile of transcription factors (Sieburth 

and Meyerowitz, 1997; Salvi et al., 2007; Louwers et al., 2009; Studer et al., 2011). Selection of cis-

regulatory variation has also played a pivotal role in shaping polyploid wheat domestication. Examples 

include the major vernalisation (VRN1; (Yan et al., 2003)) and photoperiod (Ppd1; (Wilhelm et al., 

2009)) response genes as well as in the major homoeolog pairing Ph1 locus (Rey et al., 2017). All 

these selected wheat domestication alleles are dominant or semi-dominant, thereby circumventing 

functional redundancy and allowing the rapid detection of favourable phenotypes. 

 

The P1POL allele provides a compelling example, where the over- and extended expression of VRT-A2 

results in enhancement of traits of agronomic interest in a dosage-dependent (semi-dominant) manner. 

This is similar to recent results in maize, where increasing and extending the expression of the MADS-

box gene ZMM28 resulted in improved vegetative and reproductive growth parameters, which 

impacted positively on yield (Wu et al., 2019). Interestingly, the authors discuss how a more subtle 

over- and extended expression of ZMM28 using a native maize promoter resulted in more consistent 

yield benefits and fewer pleiotropic effects compared to promoters with constitutive overexpression. 

Analogously, overexpression of VRT-A2 in wheat (Li et al., 2020) and related SVP genes in barley 

(Trevaskis et al., 2007) and rice (Sentoku et al., 2005) using the maize Ubiquitin promoter (in all three 

studies) resulted in multiple negative pleiotropic effects, including floral reversion. These results 

highlight how the more subtle changes in expression profiles, through variation in cis-regulation, can 

impact on agronomic traits. Recent work in tomato has shown how a wide range of phenotypic 

variation for quantitative traits can be engineered by genome editing of transcription factor promoters 

to generate cis-regulatory alleles (Rodriguez-Leal et al., 2017). It will be important to determine if 

engineered cis-regulatory variants will overcome functional redundancy and have similar impact on 

agronomic traits in a polyploid context. 

 

In summary, we identified VRT2, a member of the SVP family of MADS-box transcription factors, as 

the gene underlying the T. polonicum P1 locus in polyploid wheat. An intron-1 sequence rearrangement 

results in the misexpression of VRT-A2, which leads to multiple phenotypic effects in a dosage 
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dependent manner. Allelic variation studies support the intron-1 mutation in VRT-A2 as the T. 

polonicum species defining polymorphism. The P1POL allele increases grain weight and other 

agronomic traits, but not yield, in UK environments. As expression levels of VRT-A2 are correlated 

with the magnitude of the phenotypic effects, it is possible that engineering of VRT2 expression 

patterns through novel cis-regulatory alleles will generate further beneficial quantitative variation for 

plant breeding. 

 

 

Materials and Methods 
 

Germplasm 

To develop P1 NILs, we crossed T. polonicum accession 1100002 to the hexaploid spring wheat 

cultivar Paragon and the resulting F1 was backcrossed four to six times to the Paragon recurrent parent. 

At each generation, F1 lines exhibiting the long-glume phenotype of T. polonicum where selected to 

continue the backcrossing process. After four (BC4) or six (BC6) backcrosses, BCnF2 plants were grown 

and homozygous lines for P1 selected based on glume length. Bulked seed from the BC4F2 or BC6F2 

plants were used for subsequent experiments. Accessions of T. dicoccoides, T. polonicum, T. 

petropavlovskyi, and of the T. aestivum landrace group ‘Arrancada’ as well as the Watkins collection 

were obtained from the IPK Genebank, the USDA-ARS National Small Grains Collection (NSGC), the 

John Innes Centre Germplasm Resources Unit (GRU), the Centre for Genetic Resources (CGN) at 

Wageningen University, and the International Center for Agricultural Research in the Dry Areas 

(ICARDA). 

 

Field experiments and phenotyping 

The P1 NILs were evaluated in six field experiments between 2016 to 2020. Two trials (2016 BC4; 

2020 BC4 and BC6) were sown at the John Innes Centre Experimental trials site in Bawburgh, UK 

(52°37'50.7"N 1°10'39.7"E) and four (2017 BC4; 2018, 2019 and 2020 BC4 and BC6) were sown at The 

Morley Agricultural Foundation trials site in Morley St Botolph, UK (52°33'15.1"N 1°01'59.2"E). All 

experiments were sown in autumn (end September-November; except 2020 which was sown in 

February) as yield-scale plots (6m x 1.2m) in a randomised complete block design (RCBD) with five 

replications and sown by grain number for comparable plant densities aiming for 275 seeds*m−2. 

Developmental traits were evaluated throughout the growing period and a 10-ear sample was collected 
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at harvest for the assessment of spike, floret and grain characteristics (marked ‘10ES’ in Supplementary 

Table S1). Spike length was measured as the distance between the peduncle-rachis junction and tip of 

the terminal floret. Plot yield, hectolitre weight, and grain moisture were measured during harvest on 

board the combine (Zürn 150). Final grain yield was determined per plot after adjustment to 15% grain 

moisture. Grain morphometric measurements were analysed using the MARVIN grain analyser (GTA 

Sensorik GmbH, Neubrandenburg, Germany) using ~ 400 grains of the combined grain samples. 

 

Spike dissection and organ measurements (NILs and transgenic lines) 

We measured organ size of the P1WT and P1POL NILs by sampling three spikes from five field blocks 

per NIL grown in 2019 at Morley. The spikes were dissected by hand and all organs (glume, lemma, 

palea, and grain) were placed on PCR film (Cat No.: AB0580, Thermofisher) from bottom (position 0 

in Fig. 1E-F) to top (position 20 in Fig 1E-F) of the spike. The PCR films with the organs were scanned 

using a standard Ricoh photocopier (settings: greyscale, 600dpi). The resulting images were analysed 

using the Fiji “analyse particles” function, restricting analysis to particles of 0.1-5 cm2 area (Schindelin 

et al., 2012). Fiji measures particles from top-left to bottom-right of the image, thus allowing us to 

match position of the organ along the spike with the Fiji measurements retrospectively. To measure 

organ size in the transgenic T0 lines (grown in 1 L pots under 16 hours light at 20°C and 8 hours 

darkness at 15°C in a controlled environment room), we hand dissected organs from two main spikes 

per plant. The organs were measured and analysed as described for the NILs above. 

 

3D scanning of spikes and morphometric grain extraction 

Fifteen mature spikes from both P1 NILs grown in 2019 at Morley were used for μCT scanning (three 

spikes from five field blocks per NIL). Scanning conditions were as described in Hughes et al. (2019). 

Feature extraction from the scans was performed using previously developed MATLAB‐based 

software (Hughes et al., 2017) using the following setup parameters (SE=7, voxel size=68.8, 

minSize=10,000 and watershed=false). The features extracted were length (calculated using the major 

axis of the whole grain), width, and depth (the major and minor axis of a cross-section respectively, 

found by selecting the grain's midpoint), volume (a complete connected pixel count per grain), and 

grain counts for each spike. More than 750 grains were measured per genotype. The data were checked 

for false positives by first removing outliers that were identified using the 0.025 upper and lower 

percentiles of the data. Additionally, for added robustness, manual checks were performed. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.09.375154doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375154
http://creativecommons.org/licenses/by-nc/4.0/


27 
 

Grain developmental timecourse 

The P1 NILs grown in 2018 and 2019 at Morley were used for the grain developmental time courses. 

For this, we tagged 70 ears per NIL over five replicated blocks in the field at ear emergence (spike fully 

emerged and peduncle just visible), as described in Brinton et al. (2017). Ten spikes per NIL were 

collected at five (2018) and six (2019) different timepoints. These were ear emergence, 3, 9, 16, and 22 

days post anthesis (dpa) in 2018, while in 2019, the timepoints included ear emergence, anthesis (here 

measured as anther extrusion), 7, 14, 21, and 28 dpa. Grain measurements were performed as described 

in Brinton et al. (2017). 

 

Cell size measurements 

We measured cell size of mature grains from P1WT and P1POL NILs collected from three field blocks 

grown at Morley in 2019. Within each block, we sampled three spikes and from each spike we sampled 

grains from florets 2 and 4 of the two central spikelets. In total, this resulted in 18 grains per genotype 

per floret position (2 grains x 3 spikes x 3 field blocks). Dry grain samples were mounted crease-down 

onto 12.5 mm diameter aluminium pin stubs using double-sided 12 mm adhesive carbon discs (Agar 

Scientific Ltd, Stansted, Essex). The stubs were then sputter coated with approximately 15nm gold in a 

high-resolution sputter coater (Agar Scientific Ltd) and transferred to a Zeiss Supra 55 VP FEG 

scanning electron microscope (Zeiss SMT, Germany). The samples were viewed at 3kV with a 

magnification of 1500x and digital TIFF files were stored. The surface of each grain was imaged in the 

top, middle and bottom thirds of the grain (excluding the embryo; Supplementary Figure S6) with three 

images taken in each section (nine images total per grain). Cell length was measured manually using 

the Fiji distribution of ImageJ (Schindelin et al., 2012). For statistical analyses, only images with ≥30 

cell measurements were used. For each image, the median cell length was calculated. The image 

medians were then used to calculate a median cell length value for each section (bottom/middle/top) of 

each grain. 

 

Genetic Mapping of P1 

For fine-mapping, we generated a set of BC4 and BC6 recombinant inbred lines (RILs) derived from the 

P1 NILs. In the first round we identified 17 BC4F2 heterozygous recombinant lines between markers S1 

and S9. We screened twelve BC4F3 progeny for each line to identify homozygous recombinants, which 

were phenotyped for glume length (Supplementary Table S7). To further define the P1 interval, we 
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screened an additional 1867 BC6F2 plants heterozygous across the S2 and S7 interval. We identified 64 

independent homozygous recombinants between markers S2 and S10, which were phenotyped for 

glume length and genotyped with a further 21 markers (Supplementary Table S8). The eight critical 

recombinants (Supplementary Table S9) were grown at the John Innes Centre Experimental trials site 

and phenotyped for height, grain weight, spike length and grain morphometrics. 

To test the isogenic nature of the BC4 P1 NILs, we used the Axiom 35k Breeders' Array (Allen et al., 

2017). The array showed that 98.7% of markers (32839) were monomorphic between the NILs, with 

418 polymorphisms between the NILs. More than 65% of the polymorphisms (272) were located on 

chromosome 7A, while the remaining were distributed evenly across other chromosomes. To generate 

markers, we performed exome-capture of an accession of T. polonicum (idPlant: 27422, GRU Store 

Code: T1100002), wildtype Paragon, and wildtype Langdon. These three samples were exome-

sequenced in a pool of eight samples on a single Illumina HiSeq2000 lane following published 

protocols (Krasileva et al., 2017). This generated 27919048, 30795964, and 30683631 reads for the 

three lines, respectively. The reads were mapped to the RefSeqv1.0 (International Wheat Genome 

Sequencing et al., 2018) assembly using bwa-0.7.15 (bwa mem -t 8 -M; (Li and Durbin, 2009; Li, 

2013)). The resulting SAM file was converted to BAM format using samtools-1.3.1 (samtools view -b -

h; (Li et al., 2009)) and sorted by chromosome position (samtools sort). Optical and PCR duplicates 

were marked using picard-1.134 (picard MarkDuplicates 

MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1024 

VALIDATION_STRINGENCY=LENIENT http://broadinstitute.github.io/picard/). Single nucleotide 

polymorphisms (SNPs) were called for chromosome 7A with freebayes-1.1.0 (freebayes -0 -t; 

(Garrison and Marth, 2012)), and filtered using bcftools-1.3.1 (bcftools filter; (Li and Durbin, 2009)). 

Lastly, the vcf file was compressed with bgzip, indexed with tabix-0.2.6 (tabix -p vcf; (Li and Durbin, 

2009)) before extracting relevant data in a user-friendly format with bcftools-1.3.1 (bcftools query -H -f 

'%CHROM\t%POS\t%REF\t%ALT{0}\t%QUAL\t%INFO/DP\t%INFO/RO\t%INFO/AO{0}[\t%GT\t

%DP\t%RO\t%AO{0}]\n'). The SNPs were filtered for polymorphisms between T. polonicum and the 

two cultivars Paragon and Langdon. These putative SNPs were used to design KASP markers using 

PolyMarker (Ramirez-Gonzalez et al., 2015). KASP assays were validated in the parental NILs and 

then used for genetic mapping of P1 as indicated in Supplementary Tables S7-S8. 
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PCR markers 

The mapping populations were genotyped as described in Trick et al. (2012), with the following 

changes: 2 µl DNA (10-40 ng) was mixed with 2 µl of mastermix (2 µl PACE (Standard ROX; 3CR 

Bioscience) with 0.056 µl primer assay) for a total reaction volume of 4 µl. All PACE markers used for 

map-based cloning are listed in Supplementary Table S18. Standard PCR as well as qRT-PCR primers, 

their annealing temperatures and amplicon sizes are listed in Supplementary Table S19. 

 

TraesCS7A02G175200 gene model 

Using the expVIP browser (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018), expression of 

TraesCS7A02G175200 showed high expression in young seedlings (vegetative plants with 1 cm long 

spikes). The corresponding transcriptome data (Zadoks growth stage 30; (Choulet et al., 2014)) was 

downloaded, and aligned to the genomic RefSeqv1.0 assembly using HiSat2 v2.1.0 (hisat2 -p 16; (Kim 

et al., 2015)). The SAM file was converted to BAM format, sorted, and optical duplicates were marked 

as described for the exome capture data above. The depth of reads was measured using samtools-1.3.1 

(samtools depth -a). The RNA-seq data supports the TraesCS7A02G175200.1 gene model and its 

predicted untranslated regions (UTRs; Supplementary Figure S7B). 

 

Phylogenetic analysis of StMADS11-like family 

Amino acid sequences of StMADS11 and related proteins were aligned in MEGA X using MUSCLE 

with default settings (Gap open penalty: -2.9; Gap extension penalty: 0; Hydrophobicity multiplier: 1.2; 

Clustering method: UPGMA; (Edgar, 2004b, a; Kumar et al., 2018; Schilling et al., 2020)). The 

alignment was then used to create a neighbor-joining tree in MEGA X (Test of phylogeny: 1000 

bootstraps; Model: Poisson; Rates among sites: Uniform; Gaps/Missing Data: Pairwise deletion; 

(Zuckerkandl and Pauling, 1965; Felsenstein, 1985; Saitou and Nei, 1987; Kumar et al., 2018)). A list 

of all proteins used for the alignment can be found in Supplementary Table S20. The alignment and 

tree files are deposited at Dryad 

(https://datadryad.org/stash/share/a6HM2SGbQyigaK7r2AnYc3TFao1kF9kN8C1QzScBsUU). 
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Haplotype variation of TraesCS7A02G175200 

We sequenced the promoter (2299 bp), TraesCS7A02G175200 genomic sequence (5591 bp, exon and 

introns) and 1857 bp downstream of the termination codon (9747 bp) in the P1POL NIL using primers 

detailed in Supplementary Table S19. We also sequenced the 5591 bp exon-intron sequences of 

TraesCS7A02G175200 in six T. polonicum, two T. petropavlovskyi, and four ‘Arrancada’ accessions 

(Supplementary Table S12) using primers listed in Supplementary Table S19. 

We developed a PCR marker (primers S37_Fwd and S37_Rev; Supplementary Table S19) to determine 

the presence of either the 563-bp (VRT-A2a allele) or the 160-bp (VRT-A2b allele) intron-1 

rearrangement in a large diversity panel. We used this marker to assay the intron-1 status of 70 wild 

emmer (T. dicoccoides), 103 hexaploid landraces, 4 durum, 23 T. polonicum, 2 T. petropavlovskyi and 

7 ‘Arrancada’ landrace accessions (Supplementary Table S11, S12). We also used available genome 

sequences of 16 hexaploid (Walkowiak et al., 2020) and 3 tetraploid (Avni et al., 2017; Maccaferri et 

al., 2019; Walkowiak et al., 2020) cultivars and accessions to characterise TraesCS7A02G175200 

across its promoter, exon-intron sequences and 3’ untranslated region (Supplementary Table S10). We 

also evaluated the wider haplotype of the P1 NILs, 16 hexaploid and 1 tetraploid cultivar, 7 T. 

polonicum, 2 T. petropavlovskyi and 7 ‘Arrancada’ landrace accessions using 14 markers spanning the 

7A physical region (Supplementary Table S13). Details of the accessions used are listed in 

Supplementary Tables S11 and S12. 

 

Phylogenetic footprinting 

We extracted intron-1 sequences of VRT2 orthologs from barley (HORVU7Hr1G036130), 

Brachypodium (Bradi1g45812), rice (Os06g0217300), maize (GRMZM5G814279) and sorghum 

(SORBI_3010G085400) and used these, alongside TraesCS7A02G175200, as query sequences in the 

mVISTA program (http://genome.lbl.gov/vista/index.shtml). 

 

Intron-1 motif discovery 

The phylogenetic footprinting analysis revealed two conserved sequence peaks between wheat, barley, 

Brachypodium, rice, maize, and sorghum. These sequences, plus some flanking sequence (71 and 84 bp 

for both regions, respectively), were aligned using T-Coffee with default settings 

(https://www.ebi.ac.uk/Tools/msa/tcoffee/; (Notredame et al., 2000; Madeira et al., 2019)). We defined 

the motifs using the following approach: a nucleotide was considered conserved if it was identical in 5 
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out of the 6 species (83%). A maximum of four nucleotides with lower conservation was tolerated, 

provided the neighbouring sequences were again highly conserved (83%). This yielded a 34 and 69 bp 

sequence, which were designated Motif 1 and Motif 2, respectively (Supplementary Data Set S1). 

When tolerating only a single nucleotide with low conservation (<83%), a highly conserved 16 and 20 

bp sequence was detected within Motif 1 and Motif 2, respectively (Supplementary Data Set S1). In 

addition, within Motif 2, we detected a 6 bp highly conserved palindromic sequence that we designated 

“palindrome” (Supplementary Data Set S1). As there are no homologous sequences to the VRT-A2b 

allele 160-bp rearrangement, we divided the sequence into three “motifs”, constituting the two sections 

made of matching flanking DNA and the leftover sequence (Supplementary Data Set S2). 

 

Transcription factor binding site analysis of predicted motifs 

To search for possible transcription factor binding sites within the predicted motif sequences we used 

three different tools. The sequences were queried one by one using the Binding Site Prediction tool 

from PlantRegMap (http://plantregmap.gao-lab.org/binding_site_prediction.php) with default settings 

for the Arabidopsis thaliana, Oryza sativa, and Zea mays databases respectively (Tian et al., 2020). 

Next, we queried the Arabidopsis thaliana, Oryza sativa, and Zea mays databases of PlantPan3.0 using 

the TF/TFBS Search tool with a q-value cut-off of 0.05. Lastly, we used the Tomtom tool of MEME 

Suite 5.2.0 (http://meme-suite.org/tools/tomtom) to query the Arabidopsis thaliana DAP motifs 

database from O'Malley et al. (2016) as well as the ‘JASPAR CORE (2018) plants’ database (Khan et 

al., 2018) with default settings. 

 

RNA extraction 

BC4 NILs were grown in 11 cm2 pots (1 L volume) in ‘John Innes Cereal Mix’ (40% Medium Grade 

Peat, 40% Sterilised Soil, 20% Horticultural Grit, 1.3 kg*m-³ PG Mix 14-16-18 + Te Base Fertiliser, 1 

kg*m-³ Osmocote Mini 16-8-11 2 mg + Te 0.02% B, Wetting Agent, 3 kg*m-³ Maglime, 300 g*m-³ 

Exemptor) under long day conditions (16 h light : 8 h dark) in the glasshouse. Tissues were harvested, 

immediately placed into 2 ml tubes in liquid nitrogen and stored at -80°C until needed. For meristem 

tissues, samples were dissected using a stereo microscope (Leica MZ16) and processed as above. 

Details of tissues sampled are presented in Supplementary Table S14. For transgenic plants, we 

sampled flag leaves, glumes, and grains at 21 days post anthesis. 
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The grain samples were homogenized using mortar and pestle with liquid nitrogen. All other tissues 

were homogenized in a SPEX CertiPrep 2010-230 Geno/Grinder (Cat No.: 12605297, Fischer 

Scientific) using 5 mm steel beads (Cat No.: 69989, Qiagen); tubes were shaken in 20 sec bursts at 

1500 rpm, then immediately transferred back into liquid nitrogen. Depending on the tissue type, this 

was repeated up to two times. 

RNA was extracted using three different methods depending on the tissue: 

(a) For young spikes (up until Floret primordium stage W3.5), we used the Qiagen RNeasy Plant 

Mini Kit (Cat No.: 74904, Qiagen) with RLT buffer according to the manufacturer’s protocol, 

as it enables recovery of RNA from small input samples. DNA digestion was performed using 

the RNase-Free DNase Set (Cat No.: 79254, Qiagen) according to the manufacturer’s protocol. 

(b) For all other non-grain tissues, we used the Spectrum Plant Total RNA kit (Cat No.: STRN250-

1KT, Sigma), following Protocol A of the manufacturer’s protocol and using 750 μL of Binding 

Solution. DNA digestion was performed using the On-Column DNase I Digestion Set (Cat No.: 

DNASE70-1SET, Sigma) according to the manufacturer’s protocol. 

(c) For grain samples, 500 μL of RNA extraction buffer (0.1 M Tris pH 8.0, 5 mM EDTA pH 8.0, 

0.1 M NaCl, 0.5% SDS; autoclaved) with 1% β-Mercaptoethanol (Cat No.: M3148, Merck) and 

100 μL of Ambion Plant RNA Isolation Aid (Cat No.: AM9690, Thermofisher) were added to 

each sample, before vortexing. Tissue debris as well as polysaccharides and polyphenols were 

pelleted at 13000 rpm for 10 min in a microcentrifuge. The supernatant was transferred to a new 

1.5 mL tube, before adding 500 μL of Acid Phenol:Chloroform:IAA (125:24:1) (Cat No.: 

AM9720, Thermofisher). The tubes were shaken in a SPEX CertiPrep 2010-230 Geno/Grinder 

for 10 min at 500 rpm, then placed in a microcentrifuge at 13000 rpm for 15 min to separate the 

organic and aqueous components. The supernatant (aqueous phase) was transferred to a new 1.5 

mL tube with 500 μL of Chloroform (Cat No.: C/4960/PB17, FisherScientific). The tubes were 

inverted 10 times and then placed in a microcentrifuge for 15 min at 13000 rpm. The 

supernatant was transferred to a new 1.5 mL tube with 360 μL of Isopropanol (Cat No.: 

P/7500/PC17, FisherScientific) and 45 μL 3 M Sodium Acetate (pH 5.2). The tube was inverted 

10 times to mix the solution, before placing at 4°C for 1 hour to precipitate RNA. The RNA 

was pelleted in a microcentrifuge at 4°C by spinning for 30 min at 13000 rpm. The supernatant 

was carefully tipped off to not lose the pellet. The tubes were then washed twice with 70% 

Ethanol (Cat No.: 20821.330, VWR) and centrifuged between washes at 13000 rpm for 5 min at 

4°C. The supernatant was then carefully discarded and remaining droplets of Ethanol removed 
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using a pipette tip, before adding 100 μL of nuclease-free water (Cat No.: AM9937, 

Thermofisher). 

 

Quantitative real-time reverse-transcription PCR (qRT-PCR) 

RNA was reverse transcribed using M-MLV reverse transcriptase (Cat No.: 28025013, Thermofisher) 

according to the manufacturer’s protocol. For the qRT-PCR reactions, LightCycler 480 SYBR Green I 

Master Mix (Roche Applied Science, UK) was used according to the manufacturer’s protocol. The 

reactions were run in a LightCycler 480 instrument (Roche Applied Science, UK) under the following 

conditions: 5 min at 95 °C; 45 cycles of 10 s at 95 °C, 15 s at 62 °C, 30 s at 72 °C; dissociation curve 

from 60 °C to 95 °C to determine primer specificity. All reactions were performed with three technical 

replicates per sample and using TaActin as reference gene (Li et al., 2019). Relative gene expression 

was calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001) with a common calibrator so that 

values are comparable across genes, tissues and developmental stages. All primers used in qRT-PCR 

are listed in Supplementary Table S19. 

 

Construct assembly 

A modified version of the GoldenGate (MoClo) compatible level 2 vector pGoldenGreenGate-M 

(pGGG-M) as described in Hayta et al. (2019) was used in this study. The pGGG-AH-L2P2 acceptor 

plasmid is comprised of the hygromycin resistance gene (hpt) containing the Cat1 intron driven by the 

rice actin1 (OsAct1) promoter for in planta selection and a LacZ-MCS flanked by two BsaI sites at 

MoClo position 2 with standardised overhangs to accept basic (level 0) components. In brief, the T. 

polonicum VRT-A2 promoter (2299 bp), genomic sequence (5585 bp), 1000 bp downstream of STOP 

codon, and NOS terminator (8916 bp total) were cloned into pGGG-AH-L2P2 using standard Golden 

Gate MoClo assembly (Werner et al., 2012), resulting in construct pGGG-AH-VRT-A2 (Supplementary 

Figure S10). Several BsaI and BbsI sites had to be domesticated to make the T. polonicum VRT-A2 

sequence suitable for Golden Gate MoClo assembly, including 3 sites in the promoter (C4174T, G4549A, 

C5755T), 1 site in exon 1 (C6126T; V47V), 1 site in an intronic MITE (C8377T), and 1 site in exon 3 

(T9477C; L106L). Six nucleotides from a partial LINE in intron 5 were omitted by mistake from the 

genomic sequence (hence 5585 bp from start to termination codon instead of 5591 bp). The construct 

was electroporated into the hypervirulent Agrobacterium tumefaciens strain AGL1 (Lazo et al., 1991) 
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containing the helper plasmid pAL155 (additional VirG gene). Standard inoculums of Agrobacterium 

(Tingay et al., 1997) were prepared as described in Hayta et al. (2019). 

 

Wheat transformation 

Hexaploid wheat c.v. ‘Fielder’ was transformed using the previously described method by Hayta et al. 

(2019). In brief, under aseptic conditions wheat immature embryos were isolated, pre-treated by 

centrifugation, inoculated with A. tumefaciens AGL1 containing pGGG-AH-VRT-A2 and co-cultivated 

for 3 days. Wheat callus proliferation, shoot regeneration, and rooting were carried out under a 

stringent hygromycin selection regime before the regenerated plantlets were transferred from in vitro to 

soil and acclimatised. Transgenesis was confirmed by hpt gene PCR; transgene copy number analysis 

was performed using Taqman qPCR and probe (Hayta et al., 2019). The values obtained were used to 

calculate copy number according to published methods (Livak and Schmittgen, 2001). Based on this 

copy number determination we defined T0 lines as zero, low (1 to 2 copies of pGGG-AH-VRT-A2), 

medium (4-5 copies of pGGG-AH-VRT-A2) and high (9 or more copies of pGGG-AH-VRT-A2) copy 

number lines (Supplementary Table S15). 

 

Statistical Analyses 

Field experiments: To determine the differences between the P1POL and P1WT NILs, we performed 

ANOVA on the multiple field phenotypic data in RStudio (v1.3.1056). For the overall analysis we 

included block (nested in location), genotype, location, and the genotype*location interaction in the 

model. For the analysis of individual locations, we used a simple two-way ANOVA including block 

and genotype. For the BC6 RILs, we determined the effect of the VRT-A2 allele on height, TGW, spike 

length, grain width and length using a two-way ANOVA using block and the VRT-A2 genotype in the 

model. For glume length, RILs were assigned as having a normal or long-glume phenotype using a post 

hoc Dunnett's test to compare with the P1POL and P1WT controls. 

Spike dissection: We used glume measurements from spikelets 1 (basal) to 20 (apical) to determine the 

differences between the P1POL and P1WT NILs. We did not include datapoints from spikelets 21 to 23 as 

these were only found in very few instances (balanced between genotype) and made up less than 2.5% 

of the total grain data (50 datapoints excluded from 2117 total grain values). Likewise, we did not 

include 80 datapoints from florets 5, which between them represented 3.8% of grain data and were 

found only in spikelets 4 to 13 in both NILs. Given that the experimental unit is the field plot to which 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.09.375154doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375154
http://creativecommons.org/licenses/by-nc/4.0/


35 
 

the genotype was randomised within each block, we analysed the data using a split-plot ANOVA in 

which the ‘Spikelet’ was nested within the ‘Genotype*Block’ interaction. The ANOVA therefore 

included the following terms: Block, Genotype, Spikelet and Genotype*Spikelet interactions, with F 

statistic and P values calculated based on the ‘Block*Genotype’ error term (for Block and Genotype) 

or the Residual error term for the other factors. 

We analysed the grain, lemma, and palea data from spikelets 1 to 20 and florets 1 to 4 to determine the 

differences between the P1 NILs. Given that the florets are nested in the spikelet, and the spikelet is 

nested within the genotype*block interaction (i.e. the florets and spikelets are not randomly assigned), 

we analysed the data as a split-split plot design using the corresponding error terms for calculating the 

F statistic and P values. This model included the block, genotype, spikelet, floret, and corresponding 

interaction terms. We also performed individual ANOVAs for each floret position using the same 

model as above, with the exception that we excluded floret as a factor. 

Grain development timecourse: Each block at every timepoint consisted of c. 100 grains (10 spikes x 

10 grains) per NIL. The grain morphometrics were averaged across the 100 grains (as they were 

considered to be subsamples) to yield a single value per timepoint, resulting in 5 datapoints per NIL per 

timepoint. We performed a two-way ANOVA with Block and Genotype in the model to determine 

whether P1 affects grain morphometrics at the sampled timepoints. 

Cell size measurements: We analysed the data independently for floret 2 and 4 using a three-way 

ANOVA including Block, Genotype, Block*Genotype, Section, and the Genotype*Section interaction. 

Given the significant Genotype*Section interactions, we explored differences between P1 genotypes 

for each section using Tukey multiple comparison as implemented in RStudio (v1.3.1056). 

Expression: We evaluated differences in expression levels of VRT2 and MADS22 homoeologs by 

performing t-tests between the 2-ΔΔCt expression values of P1POL and P1WT NILs for each individual 

tissue*timepoint comparison. 

Phenotypes in transgenic lines: To evaluate differences in phenotype between the four categories of 

transgenic lines (zero, low, medium, and high copy number lines; Supplementary Table S16) we 

performed one-way ANOVAs for each floret position including ‘transgene copy number’ as the single 

factor. Given that ‘transgene copy number’ was significant for all phenotypes (glume, lemma, palea, 

and grain length) and across all florets, we performed Tukey multiple comparison tests to determine 

differences between the four ‘transgene copy number’ categories as well as Dunnett tests against the 

zero copy number control lines (Supplementary Table S16). 
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Correlation of phenotype and expression in transgenic T0 lines: We calculated the Pearson’s 

correlation coefficient between VRT-A2 expression (in flag leaf, glume, and grain) and phenotypic 

traits (internode length, spike length, glume length, lemma length, grain length, palea length) in R 

(Supplementary Table S17). We used geom_smooth(method = “lm”) to plot the regression line and 

95% confidence interval. 

 

Accession numbers 

Sequence data from this article can be found in the EMBL/GenBank data libraries under accession 

numbers MW289820 - MW289831 (TraesCS7A02G175200 sequence for T. polonicum, T. 

petropavlovskyi, and Arrancada accessions), and MW307955 – MW307976 for T. dicoccoides and 

Watkins accessions (Supplementary Table S11, S12). Construct pGGG-AH-VRT-A2 has been 

deposited in Addgene (ID 163703) and the sequence is available (NCBI accession MW289819). Seed 

of the BC6 P1POL NIL is available from the JIC GRU (Code WM0013). Full-size images of spikes and 

spikelets of the T. polonicum, T. petropavlovskyi, and ‘Arrancada’ accessions used in this study and in 

Figure 3B-C are deposited at Dryad 

(https://datadryad.org/stash/share/a6HM2SGbQyigaK7r2AnYc3TFao1kF9kN8C1QzScBsUU). 

 

Supplemental Data files 

Supplementary Data Set 1: Analysis of VRT-A2 intron-1 conserved sequences across grass species. 

Supplementary Data Set 2: Analysis of putative transcription factor binding sites within VRT-A2 

intron 1 
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