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Abstract: The global neuronal workspace (GNW) model has inspired over two
decades of hypothesis driven research on the neural basis consciousness. However,
recent studies have reported findings that are at odds with empirical predictions of
the model. Further, the macro-anatomical focus of current GNW research has limited
the specificity of predictions afforded by the model. In this paper we present a
neurocomputational model — based on Active Inference — that captures central
architectural elements of the GNW and is able to address these limitations. The
resulting ‘predictive global workspace’ casts neuronal dynamics as approximating
Bayesian inference, allowing precise, testable predictions at both the behavioural
and neural levels of description. We report simulations demonstrating the model’s
ability to reproduce: 1) the electrophysiological and behaviour results observed in
previous studies of inattentional blindness; and 2) the previously introduced four-way
taxonomy predicted by the GNW, which describes the relationship between
consciousness, attention, and sensory signal strength. We then illustrate how our
model can reconcile/explain (apparently) conflicting findings, extend the GNW
taxonomy to include the influence of prior expectations, and inspire novel paradigms

to test associated behavioural and neural predictions.
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1. Introduction
Global workspace theory (GWT) is one of the most widely supported neuroscientific
theories of consciousness (Michel et al., 2018). GWT was first proposed by Baars
(1988) as a cognitive architecture that identifies consciousness with the global
availability of information. According to GWT, information becomes conscious when
it is simultaneously made available to a wide range of localized (and individually sub-
personal) processes — jointly comprising a ‘global workspace’. More recently,
Dehaene and colleagues have advanced a global neuronal workspace (GNW)
model, which identifies the global workspace with a large-scale network of excitatory
pyramidal neurons with long-range axonal pathways connecting prefrontal and
parietal cortices (Dehaene & Changeux, 2011; Dehaene et al., 2011; Mashour,
Roelfsema, Changeux, & Dehaene, 2020). The key working hypothesis of the GNW
is that when a stimulus becomes conscious there will be a late, non-linear, all-or-
nothing “ignition” of prefrontal and parietal regions (Dehaene and Changeux, 2011,
Dehaene, 2014; Mashour et al., 2020) corresponding to the large-scale influence of
selected (otherwise unconscious) representations of perceptual features encoded
locally within sensory cortices. In contrast, activity related to stimuli that is rendered
unconscious (e.g., by masking or inattention) will fail to attain this global influence
and related neuronal activity will only be observable locally within sensory cortices.
Behavioural and neurobiological predictions of the GNW can be broadly
summarised in terms of a four-way taxonomy describing the relationship between
consciousness, bottom-up sensory signal strength, and attention-based modulation
(Dehaene et al., 2006). Specifically, in the absence of attention the activation caused
by the presence of a weak stimulus should remain within early extrastriate areas,

leading to weak priming effects (i.e. only slightly above chance) and unavailability for
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conscious report. When stimulus strength is weak but attention is present, the signal
should reach deeper levels of extrastriate cortex — leading to noticeable priming
effects (i.e. above chance) yet still unavailable for report. When stimulus strength is
increased, but attention is absent, this should allow for deep processing, again
facilitating noticeable (e.g., semantic) priming effects but activation should remain
limited to sensory areas and be unavailable for report. Finally, when a strong signal
has made its way to deep levels of processing and is amplified by top-down
attention, prefrontal and parietal loops will be recruited to maintain sensory
information through recurrent activity — thereby making it broadly available to large-
scale networks subserving domain-general (goal-directed) cognition and allowing for
conscious report (among other adaptive uses).

These predictions, while by no means uncontroversial, have been largely
corroborated. In a pioneering fMRI study, Dehaene and colleagues found that
conscious report of rapidly presented words resulted in the wide-spread activation of
prefrontal, temporal and parietal regions, whereas activity remained within sensory
regions when the stimulus was rendered invisible via masking (Dehaene et al, 2001).
In a meta-contrast masking paradigm combined with electroencephologaphy (EEG),
DelCul et al (2007) found that early event-related potential (ERP) components did
not display a significant difference between seen and unseen conditions, while the
late P3 component showed a significant non-linear increase in amplitude between
seen and unseen conditions. Importantly, objective task performance was well above
chance even at the lowest visibility rating. Similarly, using an attentional blink
paradigm, Sergent et al (2005) found that early ERP components either did not vary
with visibility, or had a linear relationship with visibility. In contrast, late components,

such as the P3, showed non-linear increases in amplitude when T2 visibility was
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above 50%. Work using multivariate decoding in magnetoencephalography (MEG)
has extended this finding, showing that, in comparison to temporally adjacent
distractor stimuli, consciously reported target stimuli display a stronger and more
sustained pattern of activation (Marti & Dehaene, 2017). Convincingly, when
recording from intracranial electrodes implanted in epilepsy patients, Gaillard et al
(2009, p.475) found that conscious word perception had a significant effect on many
frontal and parietal electrodes, whilst the electrodes showing a significant effect of
unconscious perception were almost all located in the occipital and temporal lobes.
Most recently, van Vugt et al, (2018) used multiunit electrodes implanted in
non-human primate V1, V4, and dIPFC to study the relationship between the
threshold for conscious access and ignition dynamics in PFC. Monkeys were trained
to report a visual stimulus presented at low contrasts by making a saccade to a
particular location. On unseen trials activity propagated through V1 (sometimes
reaching V4), but the signal was lost before reaching PFC. In contrast, on seen trials
activity was propagated with a high firing rate through V1 and V4, and caused a non-
linear activation of dIPFC. Crucially, although not as pronounced as on seen trials,
false alarm trials were also characterised by a spontaneous ignition like pattern of
activation in dIPFC. These results support the conclusions of a recent modelling
study (Joglekar et al, 2018), which showed that ignition like dynamics emerge
naturally from a neural network constructed to mirror connectivity of the macaque
cortex. As with van Vugt et al, (2018), they found that feedforward connections,
when balanced by local inhibitory connections, steadily propagate activity forwards
until the signal reaches PFC, at which point feedback connections cause a late and
non-linear ignition like pattern of activity (for a discussion and up to date review of

the theory and evidence behind the GNW see Mashour et al., 2020).
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Despite the flood of research supporting the GNW, the theory also has a
number of limitations. First, it is largely described at the level of gross neuroanatomy,
leaving the details of cortical micro-architecture unspecified, which in turn limits
limiting the granularity of predictions. Second, the GNW is agnostic about the
implementation of expectation, rendering the theory unable to engage with a large
body of evidence highlighting the role of expectation in visual consciousness (e.qg.
Chang et al., 2015; Denison et al., 2011; Valuch & Kulke, 2019; van Gaal et al.,
2015).

Of greater concern is the fact that, as experimental paradigms have become
more sophisticated, two predictions of the original theory have been falsified. For
example, in a delay matching task, multivariate decoding showed that the brain
represented both target presence and target orientation for an entire 800ms delay
period across visibility levels. In addition, whilst target visibility correlated with
decoding accuracy for target presence, unseen stimuli still exhibited a stable pattern
of activation that generalised across time, suggesting that information did not have to
be conscious to enter later phases of processing (King et al.,2016). This
corroborates the findings of Salti and colleagues (Salti et al.,2015) who showed that
target position could be decoded from superior frontal and superior parietal cortices
in both seen and unseen conditions. Together these results demonstrate that,
contrary to the original formulation of the GNW, information is processed and
unconsciously maintained (at least briefly and insofar as multivariate decoding is a
defensible proxy for information processing) by the same structures implicated in
conscious processing.

Another seemingly inconsistent result was found by Pitts et al (2014). Using a

novel inattentional blindness paradigm, they showed that the P3, which was initially
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thought to discriminate whether information had entered the global workspace (see
Dehaene, 2014, p.180), was driven by task relevance and not conscious access.
This result was recently replicated in a standard masking paradigm (Cohen, et al.,
2020) showing unequivocally that the P3 is related to task relevance and is not a
necessary signature of conscious access.

To the credit of GNW theorists, the model has been revised to accommodate
these findings. First, a revised computational model of subjective report has been
proposed, which, in addition to frontoparietal activity, requires that a stimulus
representation can be separated from a noise distribution (King & Dehaene, 2014).
Second, the claim that the P3 is a specific marker of conscious access (Dehaene et
al., 2014) is no longer defended. However, the modified computational model of
subjective report (King & Dehaene, 2014) is too idealised to make neurobiological
predictions. In addition, the abandonment of the P3 as a signature of conscious
access was not accompanied by any theoretical revisions and makes no additional
behavioural or neurobiological predictions. This situates the GNW in a tenuous
position, in which revision primarily explains away contrary results — a recognized
characteristic of degenerative research programs (Lakatos, 1970).

Here we aim to make progress in overcoming these limitations by advancing
an extension of the global neuronal workspace - the predictive global neuronal
workspace (PGNW) - that unifies essential aspects of the GNW with the more recent
(Bayesian) Active Inference approach to understanding brain function. Specifically,
we present a hierarchical, partially-observable Markov decision process (POMDP)
model of visual consciousness based upon Active Inference. Importantly, we
leverage the neural process theory associated with Active Inference to make explicit

links between neurobiology and the simulations afforded by the model.
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Formalising ideas first introduced by Hohwy (2013), Whyte (2019), and
Friston et al (2012), we will argue that conscious access or “ignition” is a
fundamentally inferential process that depends upon a level of processing of
sufficient temporal depth to contextualise and coordinate lower levels of processing.
This longer timescale coordination is seen as necessary for the generation of
subjective reports. Here, subjective reports stand in as one example of a broader set
of temporally extended action plans (i.e., extended sequences of actions), the
generation of which requires integration, maintenance, and manipulation of
information over sufficient lengths of time — and where that information is sufficiently
complex to guide the controlled generation of such goal-directed behaviours. For
instance, combining conceptual contents associated with words such as “I”, “see”,
“a”, “red” and “square” requires representing contents of much greater abstraction
and temporal depth than is necessary for representing the perceptual property
denoted by the word “red”.

To build on the previous conceptual contributions in this area mentioned
above, we substantiate our arguments with a series of detailed computational
simulations. These simulations are based upon the first principles account of
perception and action selection offered by Active Inference. The simulations we
show are also implemented using standard routines (that are available via open
access; see software note), which will allow the reader to replicate our results and
customize these simulations for their own purposes. The proof of principle offered by
these simulations is particularly important when it comes to understanding the
neuronal processes that implement the belief updating underlying the GNW
formulation of conscious access. We mention this here to prepare the reader for a

somewhat lengthy paper that must first cover some fundamentals that may appear a
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bit technical. However, as we will show, having an in silico subject at hand allows us
to demonstrate how a host of otherwise disparate findings in current neuroscience
research on visual consciousness can be explained by a first principles account of
brain function.

To begin, we provide a brief primer on Active Inference and POMDPs,
followed by a specification of the specific structure of the generative model we will
employ, paying close attention to the importance of temporal depth. With the
groundwork laid out, we show through simulations that the model can both; 1) unify
seemingly contradictory previous results; and 2) reproduce the essential aspects of
the four-way taxonomy predicted by the GNW, describing the relationship between
conscious access, attention, and stimulus strength. Using the same generative
model architecture, we then reproduce (and offer mechanistic explanations for) the
electrophysiological and behavioural results of the inattentional blindness paradigm
introduced by Pitts et al (2014).

Next, we turn to the role of expectation in visual consciousness and show how
our model can extend the original four-way taxonomy of GNW theory to encompass
paradigms that manipulate prior expectations on a trial-by-trial basis — highlighting
the novel predictions that emerge from this extension. We also describe a novel
paradigm that could be used to test distinct model predictions regarding dissociable
effects of expectation, attention, and stimulus strength. We end by examining the
relationship between the PGNW and alternative models, and briefly address
potential concerns about how phenomenal consciousness could plausibly be
situated within our model. However, this paper is chiefly concerned with what Block
(2005) terms “access consciousness” which is defined as the availability of

information for verbal report, voluntary action, and executive processing. For brevity,
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we will use “conscious access” and “consciousness” interchangeably throughout the

paper unless otherwise indicated.

2. Theory

2.1 A Primer on Active Inference

Active Inference, a corollary of the free energy principle (FEP), is a first principles
approach to modelling (approximately) Bayes optimal behaviour (Friston; 2010;
Friston et al, 2016, 2017a). The FEP starts from the tautology that, in order for a self-
organising system to maintain the integrity of its internal milieu, it must stay within
the narrow range of states consistent with its survival. Human body temperature, for
example, should ideally stay within the range of 36.5 — 37.5 degrees (Celsius). This
entails that an organism’s phenotype has an attracting set of physical states. Over
long timescales, these attractor states have a high probability of being observed in
the sense that the organism will visit them repeatedly (Friston, 2013). Formally then,
all self-organising systems must be minimising the (information-theoretic) surprise of
their sensory observations (i.e., where observations deviating from phenotype-
congruent states elicit surprise). However, surprise is computationally intractable.
Instead, according to the FEP, organism’s construct an internal (generative) model of
environmental dynamics that, when accurate, acts as an upper bound on surprise
(Buckley et al., 2017). The perception-action cycle is thus cast as an optimisation
problem. Perception corresponds to the process of inferring the hidden state values
that maximise the likelihood of observations and create a tight bound on surprise,
while action is the process of inferring action sequences that either minimise
uncertainty about hidden states (epistemic value) or bring about preferred

observations (pragmatic value), thereby minimising the surprise following an action
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(Friston et al, 2016, 2017). The former (perception) corresponds to the minimisation
of variational free energy F, while the latter (action selection) corresponds to the
minimisation of expected free energy G (see figure 1 for formal descriptions).

Before we continue, it is worth acknowledging here that the material in this
section might understandably come across to some readers as overly engineered
and unnecessarily mathematical. However, at a computational level of analysis, the
mechanics of belief updating described here are necessary to quantitatively account
for both perception and action selection. Crucially, as we will see later, many aspects
of the neuronal implementation of this belief updating scheme are already well
established (at least at coarser-grained levels of description) and provide novel
predictions in terms of firing rates and associated measures of synaptic efficacy.

Here we formulate the generative model as a partially observable Markov
decision process (POMDP; see figure 1). POMDPs model discrete transitions
between latent variables and the observations they generate. Such models infer
states and policies based upon the (likelihood) mapping between different hidden
state factors and distinct observation (or outcome) modalities — given by a set of A
matrices (one matrix per outcome modality). Transitions between states are
determined by the transition probabilities encoded by a set of B matrices (at least
one matrix per state factor; see description of policy selection below). A set of C
matrices describes the agent’s prior preferences over observations at each time
point (one matrix for each outcome modality) and quantifies the degree to which
agents prefer, or are averse to, particular observations. Finally, prior beliefs about
initial states are determined by a set of D vectors (one per hidden state factor). A, B,
C and D are each categorical distributions with Dirichlet priors over their respective

parameter spaces.
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Such models are equipped with allowable sequences of actions that can be
chosen (plans or policies; 1), where each possible sequence is assigned a value
(higher policy values relate to lower expected free energies G, defined in relation to
the prior preferences encoded in C). In the context of this class of models, allowable
policies are specified as sequences of allowable state transitions, where each
allowable transition (action) at each time point is encoded by a distinct B matrix for a
given state factor. Thus, action corresponds to the agent’s direct control of state
transitions. Observations and hidden states are factorised into separate outcome
modalities and hidden state factors to allow for interactions between hidden states in
the likelihood mapping (A). In hierarchical models, such as the model employed in
this paper, the hidden states at the first level serve as observations at the second
level (see figure 1). Crucially, hierarchical models also allow for inferences about
deep temporal structure. An intuitive example of this is reading, in which the first
level of a model could infer single words while the second level could infer the
narrative meaning entailed by sequences of words over longer spatiotemporal scales
(see Friston et al, 2017). Over the timescale of a single trial of a task (for example)
belief updates are equivalent to (e.g., perceptual) inference, while, over longer
timescales, updating gives rise to learning (we refer mathematically interested
readers to Da Costa et al., 2020a). Technically, inference refers to updating beliefs
about hidden states, while learning corresponds to updating (beliefs about) the

parameters of the generative model specified by the matrices described above.
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Figure 1. The top panel illustrates the free energy functionals and partially observable Markov
decision process (POMDP) structure used within the generative model. The left side of this upper
panel shows the decomposition of Variational free energy (VFE) into relative entropy and model
evidence. Because the relative entropy term is always greater than or equal to zero when the
approximate posterior approximates the true posterior VFE is equal to the negative model

evidence. Minimising VFE is, therefore, equivalent to maximising model evidence. For visual simplicity
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we have not included the policy term in the VFE, although it should be noted that states are,

generally, conditioned on policies. Also shown is the decomposition of expected free energy (G) into

epistemic value and pragmatic value. Here Q = P(o|s)Q(s|m) means that the expectation sums over
all future observations that are expected under each policy (rr). To minimise G agents must maximise
the epistemic value term by selecting policies that transition them into states that maximising
expected information gain (i.e. maximise the difference between In Q(s|m) and In P(s|o, 1)) whilst
also maximising the probability of preferred outcomes (In P(0)) by seeking out preferred states. In
other words, agents are driven to select actions that reduce uncertainty about hidden states whilst
also aiming to maximise the fulfilment of their preferences. The right side of this upper panel provides
a graphical depiction of the 2-level POMDP. Arrows show the dependences between variables
(circles). Observations depend on hidden states at the first level. In turn, hidden states at the first level
depend hidden states at the second level. Specifically, first-level hidden states function as
observations for the second level. Equivalently, first level hidden states are the outcomes generated
by hidden states at the second level. This representation also highlights the role of the
vectors/matrices (squares) in determining the conditional dependencies between variables.
Observations are generated by hidden states described by the matrix A. The B matrix determines
state transitions, beliefs about which function as empirical priors. The D vector serves as the prior for
initial states. When the B matrix is under the control of the agent, state transitions depend upon the
policy (171). The probability that a particular policy will be selected depends on the expected free
energy G of the policy which is, in turn, partially dependent on prior preferences specified by C. The
bottom panel depicts the neural process theory associated with the model, Including the update
equations and neural network implementation of the message passing implied by the Bayesian
network shown in the top panel. The left portion of this lower panel shows the update equations and
free energy functionals. Heuristically, state prediction errors & score the evidence that observations
provide for each policy (i.e., the difference between outcomes expected under each policy and those
that are subsequently observed). In contrast, outcome prediction errors ¢ encode beliefs about the
value of each policy (i.e., higher outcome prediction errors for a given policy roughly correspond to
lower probabilities of observing preferred outcomes under that policy, as well as less informative
observations expected under that policy). Directly below are expressions for variational free energy F

and expected free energy G, expressed in terms of the above mentioned (state and outcome)
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prediction errors. Also shown are the update equations for states, policies, Bayesian model averages
and the depolarisation variable, as well as action selection and its relation to the update terms for
expected precision over policies. The right side of this lower panel provides a schematic of message
passing between cell populations that could implement these updates. Red units encode Bayesian
model averages, cyan units encode expectations over hidden states, and pink units encode state and
outcome prediction errors. The backdrop image, depicting the neuroimaging signature associated with

conscious access, is adapted from (Sadaghini et al., 2009).

In terms of neurobiological implementation, Active Inference has a detailed
process theory that specifies how a family of possible message passing algorithms
can be used to perform inference, as implemented within neurobiologically plausible
structural and functional dynamics (Friston et al., 2017; Parr & Friston, 2018).
Broadly speaking, the firing rates of certain neuronal populations - represented in
figure 1 as neuronal populations within cortical columns - encode the current
estimate of the posterior probability over hidden states. The synaptic inputs to the
columns carry the conditional probabilities encoded in each of the matrices
described above. This means that, for example, activity levels in neuronal
populations encoding expectations of states are updated by ascending signals (from
observations) based on synaptic weights encoding the amount of evidence that each
possible observation provides for each possible hidden state (i.e., entries within the
A matrices).

Of particular importance for the purposes of this paper are the equations
describing the expected hidden states and the time derivative of the depolarisation
variable v (see lower half of figure 1) associated with the neural process theory
linked to Active Inference. Specifically, the posterior expectation over hidden states
is a softmax (normalized exponential) function of the depolarisation variable v which

represents the average membrane potential of the neuronal populations responsible
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for encoding the surprise of expected states. The output of the softmax function is
taken as the average firing rate of the population. The use of the softmax function
(which is simply a generalisation of the sigmoid logistic function to vector inputs) to
simulate average firing rate is based on the assumption made in mean-field models
that the average firing rate of a population can be treated as a sigmoid function of
the average membrane potential (Breakspear, 2017; Da Costa et al, 2020b). ERPs
and local field potentials are modelled as the time derivative (rate of change) of the
depolarisation variable because the change in membrane potential over neuronal
populations is what generates ERPSs. It is worth highlighting the face validity of this
setup. Because the depolarisation variable is not normalised it can take both positive
and negative values (i.e. like voltage) and after being normalised by the softmax

function it is bounded between zero and one (i.e. like a normalised firing rate).

2.2 A Deep Temporal Model of Visual Consciousness

To model the difference between conscious and unconscious perception, we based
our simulated task on the paradigm introduced by Pitts and colleagues (2012, 2014a,
2014b). We chose this task because, with only minor changes in design, the
paradigm can be used to study both inattentional blindness and phenomenal
masking — allowing us to model the interaction between attention and sensory signal
strength in an empirically plausible manner.

At the beginning of each trial in our simulated task, the in silico subject - or
agent - was presented with a stimulus composed of an array of bars surrounded by
coloured disks. At the 2nd time point, the array of bars was replaced by a square,
and at the 3rd time point the array changed back to the collection of bars. The agent

was then required to self-report whether or not they had seen the square or to
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perform a two-alternative forced-choice task. We manipulated attention by requiring
the agent to monitor the colour of the surrounding circles (either red or black) at the

expense of the inner array (see figure 2).

Task Structure

Forward mask Target stimulus Backward mask Report

v

Time in trial

Figure 2. lllustration of the task performed by the agent. On each trial the in silico subject was
presented with a stimulus composed of an array of bars surrounded by coloured discs. At the 2nd
time point, the array was replaced by a square, and at the3rd time point the array changed back to the
original bar pattern. The agent was then required to either perform a two-alternative forced-choice

task or report whether they had seen the square.

To model manipulations of attention and stimulus signal strength, we
manipulated the precision of the mapping between hidden states and the outcomes
encoded in the first-level A matrix by passing what were initially identity matrices
through two softmax (normalized exponential) functions controlled by two precision
parameters, and , respectively encoding attention and signal strength (i.e.
presentation time or contrast; see figure Al in the appendix). Higher values of these
parameters made the A matrices more precise. We set up the interactions between

the A matrices such that the likelihood mapping for the internal stimulus factor was
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more precise when the agent was in an attentive state. In contrast, stimulus strength
manipulations reduced the precision of the mapping between stimuli and hidden
states independent of attentional state, with high stimulus strength corresponding to
a precise likelihood mapping.

To simulate the perceptual categorisation and self-report behaviour described
above, we specified the task in terms of a generative model which was inverted
using a variational message passing scheme (for technical details see Parr et al.,
2019a). To reproduce the recurrent interactions between the frontoparietal network
identified with the global workspace, and the input it receives from the visual system,
we employed a two-level deep temporal model (Friston et al., 2017b; Friston et al.,
2018). The first level (see figure 3), which roughly corresponds to processes within
the visual system, had four hidden state factors; attention allocation, internal stimulus
(bars/square), surrounding or peripheral stimulus (red/black circles), and a set of
auditory-verbal states (a number of words that could be put together in different
sequences to generate verbal reports). The second, higher level, which corresponds
to the frontoparietal network associated with the global workspace, included three
hidden state factors: 1) sequence type (encoding beliefs about the sequence of
internal and peripheral stimuli presented on each trial), 2) time point within the trial
which, in line with data from non-human primates (Kapoor et al., 2018), encodes the
current phase of the task, and 3) abstract semantic representations that could be
unpacked into different verbally reported sequences of words at the lower-level
(dependent on the chosen policy at the higher level).

It is worth emphasising that the temporal depth of this second level is
essential for simulating the self-report behaviour that defines conscious access. The

language component of the model is obviously an oversimplified depiction of
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linguistic cognition. Yet, it remains true that, in order to coordinate the selection of a
specific sequence of words (i.e., to construct a sentence describing the content of
perception), where each word is generated over a more rapid time scale, the agent
must have a level of processing that unfolds over a slow enough time scale. This
allows the agent to abstract away from the moment-to-moment sensory flux and
coordinate lower-level language processes to report the outcome of perceptual
decision-making in a goal- (i.e., preference-) dependant manner. Thus, the higher
level is necessary to accumulate evidence from the moment-to-moment sensory flux
with the longer-timescale, controlled processes capable of generating goal-directed
behaviour plans with greater temporal depth. This feature is at the core of our model

and we will revisit it in more depth in the discussion.

Generative Model
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Figure 3. Bayesian network depiction of the generative model, with arrows showing the dependencies
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between hidden state factors and outcome modalities. At the second level, states within the sequence
type and trial phase hidden state factors determine the internal stimulus and peripheral stimulus

hidden states at the first level (which function as second-level observations). This was set up such
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that the mapping between second-level hidden states and first-level hidden states was dependent on
the time point within the trial. The report state factor determined the language processing state at the
first level. In turn, first-level outcomes were dependent on first-level hidden states. Importantly, there
was only a precise mapping between the first-level internal (line/square) stimulus hidden state factor

and the corresponding outcome modality when the model was in an attentive state.

We made the modelling decision to have a more liberal threshold for forced-
choice behaviour than for subjective reports based on the well-replicated finding that
subject’s display above-chance performance even in the absence of reportability
(see discussion in King & Dehaene, 2014). However, we acknowledge that this
finding is largely dependent on the method of report. Specifically, there is evidence
suggesting that humans have optimal introspective access to their perceptual
processes in the sense that betting performance in a 2-interval forced-choice task
matches that of an ideal Bayesian observer (Peters & Lau, 2015). We do not wish to
take a stand on this issue here as we consider it an open empirical question.
Instead, we merely note that the decision was a pragmatic one based on the method
of report used in the paradigms we were aiming to simulate and that we plan to
pursue a more principled justification for report thresholds in future work.

For a full description of the generative model in terms of the matrices and

associated parameter values see the appendix following the discussion section.

3. Results

3.1 Foundational Simulations

As a proof of principle, we simulated 200 trials, 100 of which were “square-present”
trials. The model was in an attentive state (X = 1) and the stimulus also had a high

stimulus strength (¢ = 1), corresponding to a long presentation time that enabled
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evidence accumulation resulting in a relatively precise hidden state-to-outcome
mapping. We found that the model performed with 100% accuracy on the forced-
choice task and when reporting the presence — and absence — of the square (see
figure 4).

Having established the face validity of the model, we now turn to the

simulation of minimal contrast paradigms.
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Foundational Simulation
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Figure 4. Simulated firing rates (darker = higher firing rate) predicted under the process theory
associated with Active Inference (Friston et al., 2017). Each row represents the firing rate of the
neuronal populations encoding the posterior expectations over each state. Individual squares each

represent the time point within the trial. Actions (cyan dots = true action chosen; colour represents the
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posterior confidence in the actions chosen at the end of each trial, darker = higher confidence). Self-
report outcomes (cyan dots = actual observations; colour indicates the preference for each
observation, darker = greater preference, here the colours are all the same which means the agent
did not have a preference for language outcomes). Top. Simulated results for 100 “square-present”
trials. Notice the outcome modality associated with the “seen” report state generates the sentence “I
see a square”. Bottom. Simulated results for 100 “square-absent” trials. Notice that the outcomes

associated with the “unseen” report state generate the sentence “I didn’t see anything”.

3.2 A Four-Way Taxonomy of the Factors Underlying Conscious Access
As a field, the neuroscience of consciousness has converged on the use of minimal
contrast paradigms that, through masking, inattention, or near-threshold
presentation, render nearly identical stimuli unconscious in one condition and
conscious in the other. Combined with neuroimaging, this allows for the contrast of
conscious and non-conscious forms of visual processing. However, early
neuroimaging research reported conflicting results. Some studies found that
subjective reports correlated with activation in early visual cortices (Zeki, 2003),
while others found that subjective reports correlated with the activation of
frontoparietal areas (for a meta-analysis see Bisenius et al., 2015). Still others
argued that frontoparietal involvement is due to an attentional confound and does not
reflect conscious access (Peter et al., 2005). Based upon simulations of thalamo-
cortical networks (Dehaene et al., 2003), Dehaene and colleagues (Dehaene et al.,
2006) created a taxonomy of factors underlying conscious access with the aim of
unifying the conflicting results under the theoretical framework of the GNW.

In their exposition of the taxonomy, Dehaene and colleagues (Dehaene et al.,
2006) distinguished between subliminal, preconscious and conscious forms of
processing. However, for the sake of clarity, we describe the taxonomy in terms of

the two factors underlying the classifications; attention, which can be present or
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absent, and signal (i.e. stimulus) strength, which can be strong or weak. As
described in the introduction, the activation caused by a weak stimulus in the
absence of attention (e.g. an unattended masked stimulus) should remain within
early extrastriate regions — remaining unavailable for report and only causing weak
priming effects. When attention is present, but stimulus strength is weak (an
attended but masked stimulus), the signal should reach deeper levels of extrastriate
cortex — remaining unavailable for report but leading to stronger priming effects.
When attention is absent, but stimulus strength is high (i.e. during inattentional
blindness or motion-induced blindness), there should be deep levels of processing
within sensory areas — facilitating priming effects but remaining unavailable for
report. Lastly, when a strong signal reaches a deep level of processing and is
amplified by top-down attention, recurrent loops in frontoparietal cortices will
maintain the information over longer timescale and make it available to inform the
generation of verbal reports and other long-timescale goal-directed behaviours.

Crucially, different neural correlates are observed when using specific
paradigms, such as the attentional blink and phenomenal masking, to contrast
different parts of the taxonomy. Dehaene et al (2006) have leveraged these findings
to explain a number of seemingly contradictory results.

While the theoretical backbone of the taxonomy has been revised, in that the
activation of frontoparietal regions is no longer considered sufficient for conscious
access, it is still a useful starting point — as the interactions between stimulus
strength and attention described by the taxonomy encompass many, if not most, of
the minimal contrast paradigms reported in the literature.

As described above, we modelled the effects of both attention and signal

strength on simulated behaviour by altering the precision of the state-outcome
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mapping between the internal stimulus hidden state and internal stimulus outcome at
the first level. In terms of the task, the “low signal strength (¢ = 0.05) + attention
absent (X = 0.01)” condition corresponds to a short presentation time, with the agent
attending to the peripheral coloured disk at the expense of the internal stimulus. The
“low signal strength (¢ = 0.01) + attention present (X = 1)” condition corresponds to
a short presentation time with the agent directing attention to the internal stimulus.
The “high signal strength (¢ = 0.7) + attention absent (X = 0.1)” condition
corresponds to a long presentation time with the agent attending to the peripheral
coloured disk. Finally, the “high signal strength (¢ = 0.7) + attention present (X = 1)”
condition corresponds to a long presentation time with the agent attending to the
internal stimulus. We settled on the specific parameters shown above by searching
the parameter space to find consistent values that best reproduced the behavioural
results reported in the empirical literature, while remaining within plausible limits (i.e.,

as when fitting model parameters to real participant behaviour in empirical studies).

3.2.1 Four-Way Taxonomy: Simulated Behaviour

We presented the model with 400 “square present” trials, 100 corresponding to each
of the four parameter variants described above. When signal strength was low and
attention absent, the agent displayed chance levels of forced-choice performance
(47%) and only reported having seen the square on 10% of trials. When signal
strength increased, or when the agent attended to the stimulus, forced choice
performance improved to well above chance, 58% and 61% respectively, while still
not reporting ‘seen’ on more than 40% of trials (11% and 36% respectively). When
stimulus strength was strong, and attention was present, the agent showed near-

ceiling levels of forced-choice performance (96%; i.e., due to the small amounts of
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stochasticity in choice within the model) and accurately reported having seen the
square on 99% of the trials. Thus, under a consistent set of parameter settings, the
model accurately reproduced the self-report and forced-choice behaviour commonly
reported in the literature (see figure 5). This should not be a surprise, as we fine-
tuned the parameter values to capture behaviour reported in the empirical literature.
However, it is worth noting that it is possible a priori that no consistent set of
parameter values could be found to reproduce all of these known empirical results —
which would have shown a clear insufficiency of the model. Thus, the existence of

this consistent set of parameter values does support the validity of the model.

Four-way Taxonomy
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Figure 5. Report frequencies, forced choice accuracy, simulated firing rates, and simulated ERPs for
each quadrant of the four-way taxonomy. Numbers shown on the lower-level firing rate plots illustrate
the firing rate strengths (between 0 and 1) before and after top-down feedback from the higher level

(i.e., time steps 2 and 3, respectively). ERP plots show the temporal derivative of the firing rates.
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3.2.2 Four-Way Taxonomy: Simulated Firing Rates

We next simulated the neural firing rates associated with the different quadrants of
the taxonomy. The simulated first- and second-level firing rates both accurately
reproduced a number of otherwise disparate empirical findings (see figure 5, left
portion of each quadrant). Specifically, in all but the “weak signal + attention absent”
condition, the model showed an amplification of first-level firing rates after receiving
feedback from the second level. In line with the notion of ignition, this top-down
amplification was notably greater when the model reported having seen the square.
Similarly, at the second level of the model, in all but “weak signal + attention absent”
condition the firing rates corresponding to the neuronal population encoding the
“square present” sequence was amplified by the presentation of the square, even in
the absence of report. Again, in line with the notion of ignition, the firing rate at the
second level was further enhanced when the model reported having seen the square
on all trials.

These results mirror the multivariate decoding results reviewed in the
introduction, which found that, although increased visibility correlated with increased
decoding accuracy, target orientation could be decoded across visibility levels from
superior frontal and superior parietal cortices (Salti et al., 2015). What leads the
agent to report the presence of the square is not simply that the second level has
greater firing rates for the “square present” sequence, but that the model is
sufficiently more confident about the “square present” sequence than the “random
bar” (i.e. “square absent”) sequence. This feature of the model is similar to other
Bayesian and hierarchical models in the literature that associate subjective report
with the inference that a stimulus distribution is distinct from a noise distribution (King

& Dehaene, 2014; Peters and Lau, 2015; Fleming 2019). However, the threshold for
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report in the present model is set by the expected free energy functional, which is
composed of both an epistemic component (i.e., related to the difference between
posterior expectations over states with and without an observation expected under
each policy) and a pragmatic component (i.e., related to the deviation of expected
and preferred observations under each policy; see Friston et al., 2017). The inclusion
of the pragmatic component allows the PGNW to, in principle, explain the observed
role of reward in modulating the content of visual consciousness (e.g. Marx &
Einhauser, 2015; Dong et al., 2019).

Importantly, if we were to apply a contrastive methodology and compare any
of the three unconscious sections of the taxonomy with the conscious section, we
would find that conscious access is associated with an enhanced firing rate at the
first and second levels of the model. This mirrors the finding that conscious report
correlates with the enhanced activation of sensory regions and the seemingly all-or-
nothing activation of frontoparietal cortices originally cited in support of the GNW
taxonomy (e.g. Dehaene et al, 2001). Based on our model, the (seemingly)
contradictory finding that superior frontal and superior parietal cortices contain
decodable information across visibility levels (Salti et al., 2015) can be explained as
the result of using different methods to analyse the same underlying Active Inference
architecture — that is, the use of standard univariate analyses on the one hand, which
look for voxels that are more activated by visible stimuli than invisible stimuli (e.g.
Dehaene et al., 2001), and more sensitive multivariate pattern analyses on the other,
which instead look for patterns of information present across voxels. As was noted
above, using a standard univariate approach to analyse the simulated firing rates
shown in figure 5 would show that firing rate is enhanced on conscious compared to

unconscious trials at both the first and second level. However, this ignores the
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presence of stimulus relevant information in the firing rates; although firing rates are
higher for conscious compared to unconscious conditions, there is still a greater than
baseline firing rate in unconscious conditions at both the first- and second-level
within our simulations that could easily be exploited by a classifier. Thus, our model
can simulate and explain both (seemingly conflicting) results within a single

neurocomputational architecture.

3.2.3 Four-Way Taxonomy: Simulated Event-Related Potentials
Finally, we examined the ERPs' predicted by our model under different quadrants of
the taxonomy (figure 5, right portion of each quadrant). Here we found that ERPs at
the first level of the model — which correspond to early components such as the
P100 and N100 — are relatively unaffected by changes in visibility. In contrast, ERPs
at the second level — which correspond to late components, and specifically the P3 —
appear to be strongly modulated by changes in visibility. This emulates the empirical
findings described in the introduction, in which early components were relatively
unaffected by changes in visibility while late components displayed a non-linear
increase in amplitude as visibility increased (DelCul et al.,2007; Sergent et al., 2005).
As described above, ERPs are here modelled as the time derivative of the
depolarisation variable. When confidence in a state changes rapidly, the derivative of

the depolarisation variable increases in magnitude. This gives us a new perspective

11t should be noted that in the standard active inference simulation routine (spm_MDP_VB_X.m), thereisan
optional parameter (mdp.erp) that encodes the assumed degree of decay or attenuation in posterior beliefs across
timesteps (i.e., before each period of gradient descent following each new observation). In empirical work, this
parameter needs to be fit to neuronal or behavioural responses. Here we do not include this parameter (i.e., we
set it to avalue of 1), which entailsthat posterior beliefs a one timepoint fully carry over as priors for the
subsequent timepoint in atrial. Thisis analogous to predictive coding formulations and is most gppropriate for
our smulations due to the fact that multiple timepointsin our simulated trials are treated as single observations
(i.e., there should be no attenuation or ‘resetting’ of priors within a single stimulus presentation). It isimportant
to note this here, however, as predicted ERPs in simulations can be affected by different values of this
parameter.
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on late ERP components in the context of visual consciousness. Since the model
only reports the presence of the square when it is sufficiently more confident about
the “square present” sequence than the “random bar” sequence, it makes sense that
verbal reports are accompanied by late ERPs — as they reflect the rapid change in
beliefs at the second level of the model when the square is presented.

However, it is important to highlight that this is not a necessary feature of
conscious access. If the model is already sufficiently confident in a state — either
because of a precise likelihood mapping or because the rate of belief updating is
slowed (by a lack of precision in the likelihood; e.g., because of inattention) — the
model may report the presence of a stimulus without an accompanying late ERP.
This is indeed what we see empirically. Specifically, in the inattentional blindness
paradigm that guided development of the particular task structure of our model, Pitts
and colleagues (2012, 2014a, 2014b) found that the P3 is associated with task
relevance (i.e. attentional set) and not reportability, which was interpreted as
evidence against the standard model of the GNW. In other words, the amplitude of
the P3 changed as a function of attentional set — which affects precision — rather
than conscious access as such. In the next section we discuss in more detail how
our model can account for this result and demonstrate how the model can shed light
on the specific electrophysiological correlates of inattentional blindness more

generally.

3.3 Inattentional Blindness
The simulations reported in the previous section were focused on reproducing the
findings that characterise minimal contrast paradigms associated with the GNW

theory’s proposed four-way taxonomy. However, minimal contrast paradigms are not
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without limitations. For example, as Aru and colleagues (2012) have argued, these
paradigms often confound the neural correlates of consciousness with the
prerequisites to, and consequences of, consciousness. With these confounds in
mind, in the study referred to above Pitts and colleagues (2014a, 2014b) created a
three-phase sustained inattentional blindness paradigm that was designed to
dissociate the electrophysiological correlates of consciousness from the correlates of
task relevance.

The task used the same stimulus set discussed in the previous two sections.
In phase one, participants were instructed to monitor the peripheral disks for a
change in colour. Every 600-800ms the internal section of the stimulus alternated
between random bars and a square, both of which were presented for 300ms. After
phase one, participants completed a debrief and 50% of them reported not being
aware of the square, replicating the findings of Mack and Rock (1998). The debrief
acted as a cue alerting the participants to the presence of the stimulus. Phase two
was identical to phase one except that participants had been alerted to the presence
of the square. Despite not being task relevant, 100% of participants reported having
seen a square in the subsequent debrief. In phase three, participants were instructed
to attend to the inside stimulus while ignoring the peripheral disks.

Contra the original predictions of the GNW model, the ERP results revealed a
dissociation between awareness and the P3. As expected, in phase one the P3 was
absent for inattentionally blind participants. However, the P3 was also absent in
phase two when all participants were conscious of the stimulus despite it not being
task relevant. In contrast, when the stimulus was conscious and task relevant (in
phase three), there was a large P3, showing that task relevance is the primary diver

of this ERP component.
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Our aim in simulating this task here is to provide a bridge between established
experimental findings and the more abstract account of the relationship between the
P3 and visual consciousness advanced in the previous section. To match the
empirical setup, we modelled phase one by placing the agent in an “attention absent”
state toward the square stimulus (£ = 0.05) and then found the value of the stimulus
strength parameter (¢ = .75) that led the model to report the presence of the square
~50% of the time (as during individual thresholding procedures in empirical studies).
To model the effect of the debrief that alerted the participants to the presence of the
square, in phase two we increased the value of the attention parameter (£ = 0.2) so
that it was higher than in the “attention absent” state but still substantially lower than
an “attention present” state, plausibly corresponding to a diffuse allocation of
attention. Phase three was the same as phase two, except that the model was
placed in an “attention present” state toward the possibility of seeing the square

= =1).

3.3.1 Inattentional Blindness: Simulated Behaviour and Event Related
Potentials

We presented the model with 300 square trials, 100 corresponding to each of the
three sets of parameter values described above. Through stimulus strength
calibration, in phase one the model reported the presence of the square 53% of the
time, mirroring the empirical results. Crucially, however, the electrophysiological
results of all three phases, and the behavioural results of phase two and phase
three, reproduced the empirical findings without any further adjustments to
parameter values. In phase one, there were only early first-level ERPs (see figure 6).

In phase two, when the “square present” and “random bar” sequences had equal
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prior probability, the model reported the presence of the square on 99% of trials and,
in line with empirical results, there were again only large first-level ERPs; no late P3-
like ERPs were generated. Finally, in phase three, when the model was attending to
the internal stimulus, the square was reported on 100% of trials and there was a
large and late ERP at the second level resembling the P3. Considering the idealised
nature of the model, the simulated ERPs displayed in figure 6 bear a striking

resemblance to the empirically observed ERPs.

Sustained Inattentional Blindness
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Figure 6. Report frequency, simulated ERPs, and associated firing rates predicted for each of the

three phases of the sustained inattentional blindness task. The empirical ERP plots, taken from the
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original study conducted by Pitts et al (2014), show the amplitude for “random bar” (black) versus
“square present” (red) trials at electrode CZ. Firing rate plots illustrate how more gradual updates in
2nd-level beliefs do not produce P3-like ERPs (middle panel, Phase 2) despite self-reported
experience of the square, while a faster rate of change in 2nd-level beliefs does produce P3-like

ERPs (right panel, Phase 3) in addition to almost identical self-reported experience.

This result is noteworthy. The dissociation of the P3 and visual consciousness
emerges naturally out of the belief updating scheme that underwrites the PGNW.
Further, it leads to a straightforward prediction; visual consciousness will be
accompanied by a late ERP whenever confidence in a particular state at a high level
of the hierarchy changes rapidly.

Having shown that our model reproduces the minimal contrast results cited in
support of the original formulation of the GNW, explains away otherwise
contradictory results in the minimal contrast literature, and accounts for the
dissociation of the P3 and visual awareness, we now turn to the role of visual
expectation — and illustrate how our model offers an extension of the previously
introduced four-way taxonomy of factors underlying conscious report. In addition to
attention and stimulus strength, our model introduces a third factor: trial-by-trial

changes in prior visual expectation.

3.4 Extended Taxonomy: Expectation and Visual Consciousness

There is now a large body of evidence showing that expectation plays a fundamental
role in determining the content of visual consciousness. Specifically, under
conditions of continuous flash suppression predictive cues accelerate the entry of a
suppressed stimulus into consciousness (van Gaal et al., 2015). In binocular rivalry
paradigms, predictive context increases the dominance of stimuli congruent with that

context (Denison et al., 2011; Valuch & Kulke, 2019). Cross-modal predictions also


https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.11.944611; this version posted September 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

35

accelerate the re-entry of stimuli into consciousness after a period of motion induced
blindness (Chang et al., 2015). In the absence of attention, expectations reliably
induce illusory perception of absent stimuli (Aru et al., 2018). And, when viewing
ambiguous figures, expectations have been shown to bias the perceived direction of
rotation (Sterzer et al., 2008). In light of this, if visual consciousness is to be fully
understood, it appears essential to extend the taxonomy of factors underlying
conscious access to include expectation.

To integrate the role of expectation — and the violation of expectation — into
the taxonomy, we altered the prior probability of the “square present” sequence in
the second level D vector for each of the four parameter settings used in the four-
way taxonomy, such that the model was approximately twice as confident, a priori, in
either the “square present” sequence (“consistent prior expectation” condition) or the
“random bar” sequence (“inconsistent prior expectation” condition). We treated each
trial as independent, so the manipulation of prior expectations most plausibly
corresponds to the use of explicit cues.

We retained the same generative model architecture used in the previous two
sections, allowing us to independently manipulate expectation, attention, and
stimulus strength. We are aware, however, that independently manipulating these
factors in an experimental setting is far from trivial. In the interest of making our
model empirically useful, we end this section by proposing a novel Posner cueing
paradigm aimed at empirically validating the results of our simulations.

Finally, it must be highlighted that the behavioural results of the following
simulations should be interpreted as directional hypotheses, as opposed to precise
predictions about the percentage of seen vs unseen trials. In contrast to firing rates

and ERPs, the model’s report behaviour (policy selection) depends on a number of
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parameters (policy precision and motor stochasticity) that need to be fitted to each
participant individually and will substantially shift the size of the effect for

manipulations of prior expectation.

3.4.1 Extend Taxonomy: Simulated Behaviour

We presented the model with 800 “square present” trials, 100 corresponding to
“consistent prior” and “inconsistent prior” conditions, for each of the four parameter
settings used in the four-way taxonomy. Across all taxonomy conditions, we found
that consistent prior expectations increased both the accuracy of forced-choice
behaviour and the percentage of trials where the model reported having seen the
stimulus (see figure 7 for percentages). Similarly, inconsistent prior expectations
decreased both the accuracy and the number of seen trials. The effects were
particularly pronounced in all of the otherwise sub-threshold conditions. This result
makes intuitive sense, as expectations will have the greatest enhancing effect on
visibility when a stimulus is marginally below the threshold for “ignition”; and, in the
absence of attention and/or precise sensory input, top-down messages will dominate
perception.

While these results are consistent with a number of studies showing an
enhancing effect of consistent prior expectations for both forced-choice performance
and stimulus detection (Aru et al., 2016; Stein, & Peelen, 2015), there is some
evidence showing that when expectations are induced by explicit cues, they boost
subjective visibility but do not alter accuracy (Andersen et al., 2019). Similarly, Lamy
et al (2017) found that prior experience of a target increased visibility but did not alter
response priming. Here forced-choice behaviour, like subjective report, depends on

policy selection at the second level of the model. However, if forced choice


https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.11.944611; this version posted September 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

37

behaviour depends upon a distinct neural substrate that operates over a shorter
timescale than subjective report, it would be better modelled by policy selection at
the first level of the model (c.f. Maniscalco & Lau, 2016). If this were the case
increasing the prior probability of a state at the second level (as we have done here)
would have a marginal effect on forced-choice behaviour. This represents an
important possible extension of our model architecture that will be addressed in

future work.

Extended Taxonomy: Behavior and Firing Rates

Endogenous attention

Inconsistent prior Inconsistent prior
Percent seen = 0% Percent seen = 68 % Percent seen = 0% Percent seen = 79%
Weak Percent correct = 26% Percent correct = 76% Percent correct = 26% Percent correct = 82%
Second level firing rates Second level firing rates Second level firing rates Second level firine rates
h" - e F-o. i ¥ 3 J --0—"
n g i o e 3 .
LR (L] e e
e ~e e —n
First level firing rates First level firing rates First level firing rates First level firing rates
a 3 = (] 46 40 ]
= o £ 34 B0 &
= Inconsistent prior Consistent prior Inconsistent prior Consistent prior
=
oo Percent seen = 2% Percent seen = 95% Percent seen = 94% Percent seen = 100%
w Percent correct = % 29 Percent correct = 87% Percent correct = 95% Percent correct = 100%
Second level firing rates Second level firing rites Second level firing rates Second level firing rates
BT T T Eee F-- = —-0
] e H ! vw i u:
ae - -
v "o i e
Strong | rirst tevel firing rates First level firing rates First level firing rates First level firing rates
- - - -
ha 4 e 09 01 e 07 o il

Figure 7. Report frequency, forced choice behaviour, and simulated firing rates predicted for each
consistent-inconsistent prior combination of the quadrants shown in the four-way taxonomy. Relative
to the results of the four-way taxonomy, consistent expectations increased forced choice accuracy,
the percentage of trials reported as “seen”, and boosted the enhancing effect of feedback from the
higher level. Inconsistent priors had the opposite effect, reducing accuracy, the percentage of “seen”

trials and first level firing rates.
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3.4.2 Extending the Taxonomy: Simulated Firing Rates

Next, we simulated the firing rates associated with consistent and inconsistent priors.
In all sections of the extended-taxonomy, relative to the four-way taxonomy,
consistent priors enhanced the amplifying effect of feedback. Correspondingly,
inconsistent priors dampened the effect of feedback. Interestingly, in the “strong
signal + attention present” condition, although inconsistent priors dampened the
amplifying effect of feedback (i.e., in comparison to the four-way taxonomy and the
consistent prior condition), the net effect of feedback still raised the firing rate of first
level neuronal populations.

Again, this makes intuitive sense; feedback is driven by posterior confidence
at the second level, and, in all but the “strong signal + attention present” condition,
the sensory likelihood mapping is relatively imprecise. As such, posterior confidence
at the second level is dominated by the effect of prior expectation. Consistent
expectations increase second-level posterior confidence to a sufficiently large
degree to shift otherwise unconscious trials over the threshold for “ignition” by
magnifying the feedback to the first level (while inconsistent priors reduce posterior
confidence and dampen top-down feedback). In contrast, when the first-level
likelihood mapping is more precise, as is the case in the “strong signal + attention
present” condition, inconsistent priors carry less influence and second-level posterior
confidence in the “square-present” sequence is still high enough to enhance top-
down feedback (i.e., despite it being dampened relative to the four-way taxonomy

and consistent prior condition).

This result produces three novel predictions. First, when consistent
expectations raise posterior confidence past the threshold for ignition, feedback from

frontoparietal to sensory regions will be enhanced. Second, when a stimulus is well
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above threshold, inconsistent expectations will reduce the amplification of feedback
relative to consistent expectations. Third, based on the extrinsic connectivity
predicted by the neural process theory (see figure 1), feedback from frontoparietal to
sensory regions will be associated with a specific pattern of effective connectivity.
That is, consistent prior expectations are predicted to disinhibit granular layers in the
relevant neuronal populations in sensory cortices (via feedback connections
originating in superficial pyramidal cells in frontoparietal regions), while inconsistent
priors are predicted to inhibit granular layers in the same lower-level neuronal
populations. This last prediction, although highly specific, can be readily tested via
dynamic causal modelling (e.g. Parr et al., 2019b). However, it is important to note
that this prediction is dependent upon the use of variational message passing (or
marginal message passing), and other message passing schemes have been

proposed (see Parr et al., 2019a).

3.4.3 Extend Taxonomy: Simulated Event Related Potentials

Lastly, we simulated the ERPs predicted by our model for all combinations of
consistent and inconsistent prior expectation conditions within the four-way
taxonomy (see figure 8). Despite the previously described changes in reported
visibility, in most cases ERPs were relatively unaffected by consistent and
inconsistent priors at both levels of the model. However, in the “strong signal +
attention present” condition the amplitude of ERPs at the second level of the model,
corresponding to the P3, were dampened by a consistent prior and boosted by an
inconsistent prior relative to neutral priors. This result makes sense, because in the
consistent prior condition the model was already confident that it would be presented

with a square, so the presentation of the stimulus caused a smaller and less rapid
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belief update, while the opposite was true in the inconsistent prior condition — thus
reducing the rate of change of posterior expectations at the second level in the
consistent prior condition and increasing it in the inconsistent prior condition.
Importantly, these results lead to another novel prediction. Specifically,
contingent upon the presence of attention, and sensory input being sufficiently
precise, a consistent prior should decrease the amplitude of the P3 (relative to
neutral and inconsistent prior conditions), whilst an inconsistent prior should increase
the amplitude of the P3 (relative to neutral and consistent prior conditions). Indeed,
this prediction has already been partially confirmed empirically. Melloni et al. (2011)
found that expectations induced via a history of prior exposure to a stimulus both
increased the proportion of trials reported as seen and decreased the amplitude of
the P3. However, this study did not simultaneously manipulate attention, which will

be a critical further test of the hypothesis.

Extended Taxonomy: Event Related Potentials (P3)
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Figure 8. Second-level ERPs predicted for each combination of consistent or inconsistent priors with
each quadrant in the four-way taxonomy. Notice that 1) the P3 is attention- and stimulus strength-
dependent (i.e., only the bottom-right quadrant shows clear responses above noise levels), 2) it is

enhanced by inconsistent priors, and 3) it is dampened by consistent priors.

3.4.4 Extend Taxonomy: A Novel Paradigm for Dissecting the Influences of
Signal Strength, Attention, and Expectation on Conscious Access.
The structure of our generative model is generic enough to generalise across
paradigms that involve inference; however, as noted above, in an empirical setting
independently manipulating expectation, signal strength, and attention poses a
number of methodological challenges, with expectation often being confounded with
attention (e.g. Rahnev et al., 2011). In the interest of making the predictions of our
model as straightforward to test as possible, we here outline a possible extension of
the Posner cueing paradigm introduced by Kok and colleagues (2012) that would
allow for the independent manipulation of expectation, signal strength, and attention.
The key feature of the design is the orthogonal manipulation of expectation
and attention (see figure 9). Expectation can be manipulated in a block-wise manner
with a predictive cue appearing at the beginning of every block consisting of a word
(“left”, “right” or “neutral”) indicating the likelihood with which the stimulus will appear
in a particular hemifield on each trial. Attention, in contrast, will be manipulated in a
trial-wise manner, with a cue appearing at the start of every trial indicating the
hemifield to which the subject should covertly direct their attention. However, the
attention cue will contain no information about the likelihood of the stimulus’ location.
Finally, stimulus strength will be manipulated by altering the time between the
stimulus and the backward mask. Each block would begin with a predictive cue, and

each trial would begin with the presentation of an attention cue, followed by a briefly
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presented stimulus (a grating in the above figure) that is congruent with the
prediction on 75% of trials (paired with either a backwards mask or a blank).
Subsequent to the presentation of the mask (or blank), subjects would be given a
forced-choice task and asked to provide a subjective report.

Crucially, since expectation, attention, and stimulus strength are manipulated
independently of each other, this paradigm could allow all 12 quadrants of the

extended taxonomy to be studied within one paradigm.

Extended Taxonomy: Novel Posner Paradigm

=
B

Predicted attended

Unpredicted unattended

Figure 9. A potential extension of Posner cueing paradigm introduced by Kok and colleagues (2012)
that could allow for the independent manipulation of expectation, stimulus strength, and attention. By
manipulating expectation in a block-wise manner, and attention and stimulus strength in a trial-wise
manner, the paradigm would allow all twelve combinations of expectation (consistent, neutral,
inconsistent) by attention (present, absent) by stimulus strength (strong, weak) to be studied within

one paradigm. Shown above are predicted/attended and unpredicted/unattended combinations.
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4. Discussion

4.1 The role of deep temporal structure

The defining (measurable) feature of conscious access is subjective report (Baars,
1988; Dehaene, 2014; Fleming, 2019), which requires the coordination of processing
between perceptual, motor, and auditory-verbal systems, all of which evolve over a
rapid temporal scale. The core notion underlying our model is that conscious access
is a fundamentally inferential process that can only occur at a level of processing that
is sufficiently temporally deep to integrate information from lower levels of the
hierarchy and contextualise processing at these lower levels. To produce subjective
reports, a system must infer the state of a lower level perceptual system, integrate
this information into a representation that is not tethered to the moment by moment
sensory flux, and use this representation to modulate more controlled, slowly
evolving trajectories of action over time. Put another way, temporally deeper levels
are necessary to encode patterns of covariance in lower-level sensory and motor
representations over time under different goal states. Without a sensory
representation updating predicted patterns of covariance at this higher level (to a
sufficient degree), the use of that piece of sensory information by the more complex
cognitive processes carried out at the higher level would be greatly limited (i.e., only
promoting implicit biases through small changes in higher-level posterior
distributions). Technically, the insight here is that ignition and the global workspace
are descriptions of evidence accumulation or assimilation — which necessarily implies

some temporal narrative. The nature of this narrative turns a straightforward
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Markovian model of the world into a semi-Markovian model with deep temporal
structure.

The first major insight afforded by our model is that many previous
electrophysiological results can be reproduced based only on assuming a simple 2-
level model with deep temporal structure. Self-reported conscious vs. unconscious
percepts can then be accounted for by specifying the integrative functions of the
higher level of the model that are plausible based on the known neural correlates of
consciousness, and how the different hidden state factors (which could perhaps
correspond to distributed processing hubs within association cortices implicated in
domain-general cognition i.e. van den Heuvel et al., 2012) operate on those
contents. The second major insight comes from how our model illustrates the way
prior expectation can fit seamlessly within this structure — affording a number of

novel, testable predictions.

4.2 Relationship to Other Models

The PGNW is a formal extension of the GNW and, as such, the models share many
similarities. However, as should be clear by this point, the PGNW diverges
substantially from the original GNW model. Ultimately, the point of departure for the
PGNW is its implementation in an Active Inference architecture, which, as we have
shown, has a number of important consequences. Foremost, by leveraging the
process theory that accompanies Active Inference, we are able to reproduce/explain
previous findings and make predictions about the neurobiological implementation of
the inferential machinery that we argue underlies conscious access. Crucially, this
also allows the PGNW to make specific predictions about the role of visual

expectation. In contrast, the inferential machinery cited in support of the standard
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GNW model (i.e. King & Dehaene 2014) remains at a more abstract computational
level of description (in the sense of Marr, 1980). What the PGNW retains is the
fundamental insight that conscious access makes information widely available to
domain-general cognitive processes (i.e., represented by the different state factors at
the second level of our model). It is for this reason that we retain the workspace
label. However, unlike the initial conceptual account of the PGNW introduced by
Hohwy (2013) and Whyte (2019) which, as Marvan and Tomas (2020) point out,
relies on explanatory machinery external to the Active Inference framework to
explain conscious access, here we identify the global availability of information with
temporally deep processing, and conscious access with the posterior confidence
threshold required for report (broadly construed as goal-directed verbal report, button
presses, saccades or any other method of goal-directed reporting of subjective
content). As such the PGNW explains conscious access exclusively in terms of the
explanatory tools of Active Inference.

The model that is most similar to the PGNW is Fleming's (2019) higher-order
state-space (HOSS). Both the PGNW and HOSS are implemented in hierarchical
generative models, and as such they entail similar predictions. However, there are
two key points of separation. First, HOSS casts conscious access as a
metacognitive inference about the presence or absence of a stimulus in the content
of a generative model of perception. This inference relies on an abstract state
representing presence or absence that is independent of the specific content of a
stimulus. The function of this metacognitive state is to differentiate stimulus
representations from noise distributions at lower levels of the model (c.f. Lau, 2007,

2019). A stimulus representation becomes available for report according to HOSS
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when the model infers that a distribution is different enough from a noise distribution
to be classified as present.

There is a sense in which HOSS is simply a higher-order version of the
PGNW. In fact, it would be relatively simple to introduce a new hidden state factor
corresponding to the presence or absence of a stimulus and factorise a generative
model such that the presence of the stimulus would be independent of the content of
the stimulus. Computationally, however, this state would have no function. Precision
estimation is an inbuilt feature of Active Inference architectures (see Parr & Friston
2017 for technical details) that modulates the updating process in response to the
estimated reliability of a bottom-up signal, without needing to posit an additional
abstract state representing presence and absence.

This brings us to a second key difference. According to the HOSS model,
absence of a stimulus is explicitly represented in addition to all the possible states of
a stimulus making the state space asymmetric. Fleming (2020) leverages this
asymmetry to explain the ignition response that sweeps across frontoparietal
cortices during conscious access. Because there are many more ways that a
stimulus can be present than absent, the presence of a stimulus causes larger belief
updates than when a stimulus is absent. Although this is ultimately an empirical
guestion, we regard the explicit representation of the absence of a stimulus in the
perceptual state space to be a somewhat unrealistic idealisation. Participants in
minimal contrast paradigms are fully aware of the presence of the background
screen (itself a stimulus) and the task requirements, and frontoparietal cortices are,
of course, active the whole time. The wide scale activation of these regions when a
stimulus is seen is only apparent because we isolate the processes underlying the

reportability of the stimulus, while holding all of these other variables constant. When
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participants do not report a stimulus, they are not perceiving “absence”; at a
minimum the content of perception will include the background screen. It may be a
mistake, therefore, to explicitly represent the absence of a stimulus in a generative
model of perception. Instead, as we have done in the current model, the state space
should consist of sequences of stimuli with and without the critical stimulus. The
ignition response is then instead explained by the update that occurs at temporally
deep levels of the model when the stimulus is seen as opposed to unseen.

Finally, it is worth mentioning that, although there have been proposals aimed
at integrating other major theories of consciousness, such as integrated information
theory (Oizumi, Albantakis & Tononi, 2014) with VFE and active inference (Safron,
2020a, 2020b), these proposals remain largely at the level of conceptual analysis
and do not afford the detailed simulations and resulting empirical predictions that are
a straightforward consequence of the PGNW architecture. However, it remains an
open question whether or not systematic relationships might be found between
measures of integrated information and VFE in future work (for discussion on this

topic see Friston, Wiese & Hobson, 2020).

4.3 Brief Note on Phenomenology and the Phenomenal Consciousness -
Access Consciousness Distinction

Although not the focus of this paper, it is worth briefly clarifying how phenomenology
does and does not plausibly situate within our model. Specifically, we would like to
avoid implicitly conveying that the phenomenological contents of our first-person
experience correspond to the contents of second-level states. A major problem with
this is that the contents of second-level states appear to operate on timescales that

are too slow to match the moment-to-moment sensory flux of perceptual experience.
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However, there is also a problem with identifying phenomenological contents
with the contents of lower-level states. To see why, consider that, as is the case in
our model, there is no explicit representation of absence at the higher level of the
model that generates reports. The model will always represent and report an
experience of something based on the posterior distribution over second-level states
(e.g., either lines or a square; and note that the model’s state space could also be
extended such that the agent could report the experience of ‘just seeing the
background screen’). If this architecture is representative of human cognition, it
highlights an interesting change in perspective. Specifically, the question about
phenomenology being separable from access (c.f. Block, 2005) changes to a
guestion about the possibility of inconsistencies between phenomenology and what
was accessed (i.e., the states represented at the second level). For example, if the
agent reported currently seeing lines (and not a square), and yet a square stimulus
was present and encoded at the first level, a strong distinction between
phenomenology and access would not merely entail that “square” phenomenology
was present but not accessed. Instead it would mean that the agent’s confident self-
reported phenomenology of experiencing lines (i.e., what was represented at the
second level) would be inconsistent with their “true” phenomenology of experiencing
a square (i.e., based on what was represented at the first level). In other words, they
would be wrong about what they believed they were currently experiencing or had
just experienced. Taken to the extreme, this would entail that any honestly reported
phenomenology could be problematically different from true phenomenology (e.g., a
person honestly reporting experiencing a loud screeching sound could have the

“true” phenomenology of a hearing a piece of classical music).
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Another way to highlight this problem more formally is by considering that one
could manipulate the second-level likelihood mapping (A matrix) in our model while
leaving the first-level likelihood mapping unchanged (i.e., one could selectively
manipulate the nature of the messages that are passed from the first level to the
second level that update higher-level beliefs at each timestep). If so, first-level states
would still reliably track presented stimuli (e.g., square stimuli would activate first-
level square states), but those states could now update the second-level in an
entirely different way. For example, with the right second-level likelihood mapping,
red circle and line representations at the first level could be specified so as to pass
messages to the second level that activate representations of, and promote self-
reported phenomenology of, a black circle and a square (which would also obviously
be problematic for the empirical study of conscious experience; i.e., the presence of

a particular phenomenology would become empirically unfalsifiable).

To avoid this uncomfortable conclusion, while also keeping sensory
phenomenology at the correct timescale, we suggest that phenomenology in our
model is most plausibly situated at the point during which (and based on the
manner in which) lower-level representations update the content of higher-level
states. In other words, phenomenology in our model most plausibly depends on
the nature of the messages passed from the lower to the higher level, and would
occur at the point where the higher level assesses or “decodes” the contents of
the lower-level signals through the second-level likelihood mapping (A matrix).
These updates occur at the fast timescales associated with the sensory flux; yet,
the nature of each fast-timescale update (i.e., the nature of the influence the first
level has on the second level at each time point) will necessarily be correlated

with self-reported beliefs about what type of phenomenology was experienced —
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preventing the possibility of strong disagreements between “true” and self-
reported beliefs about phenomenology (for more on this line of argument see
Smith, 2016). Note that the focus on belief updating thus speaks to phenomenal
consciousness as a process of inference.

Thus, the perspective motivated by our model might therefore be seen as
somewhat at odds with a strong distinction (or at least with the most commonly
made distinction; (Block, 2005)) between phenomenal consciousness and
access consciousness. In contrast to the typical distinction, our model suggests
that (empirically verifiable) phenomenology and access consciousness each rely
on particular (partially theoretically separable) types of access (c.f. Cohen &
Dennett, 2011). Phenomenology (i.e., the content of first-person experience)
most plausibly depends on the faster timescale process by which first-level
representations update higher-level beliefs via the nature of the messages
passed through the second-level likelihood function (A-matrix). In contrast,
access consciousness (as typically defined), and all of the functional benefits
that it is associated with, corresponds best to the encoding of posterior beliefs
over hidden states at the second level, which, although updated by the moment-
to-moment sensory flux, are themselves representations of regularities that
occur over longer timescales.

A final point worth emphasizing is that, while verbal or other types of goal-
directed self-report measures remain the gold-standard in assessing the
presence or absence of conscious experience, our model also clearly
distinguishes access consciousness from report. That is, access consciousness
in our model depends only on the precision of posterior beliefs at the higher

level. In a no-report paradigm, for example, an active inference task model
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analogous to the one we have presented would be able to demonstrate that —
even if no report was made at the timepoint of stimulus presentation — posterior
beliefs were sufficiently precise at that timepoint such that, had the person been
incentivized to report their experience, they would have reported seeing the
stimulus. Such extensions of our model to no-report paradigms represents an

important future research direction.

4.4 Limitations
To make the PGNW testable, we have deliberately limited the scope of the model to
experimental settings where visual consciousness is operationalised via report. We
follow Baars (1988) in taking report, or rather the availability of information for report,
as the epistemic foundation of the scientific study of consciousness. However, we
acknowledge that report paradigms come with methodological difficulties (Tsuchiya
et al., 2015). By the same token, in limiting the scope of the PGNW to the visual
modality, we are aware that we are reifying the pervasive bias in consciousness
science of primarily studying vision. That said, it is crucial to emphasise that the
model structure is sufficiently general that it can be straightforwardly applied to other
modalities (e.qg., first-level observations could fairly easily be understood as auditory
as opposed to visual). A somewhat similar 2-level architecture was also recently
employed to simulate emotional awareness based on interoceptive stimuli (Smith, et
al., 2019a).

The main focus of the GNW has, until recently, been the contents of
consciousness (especially vision). Likewise, this paper has limited the scope of the
simulations to conscious access in awake behaving subjects. However, there is now

a growing body of work showing that the GNW is also able to account for differences


https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.11.944611; this version posted September 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

52

in levels of consciousness (see Mashour et al, 2020 for a review), in the sense that
the integrity of connectivity between workspace nodes covaries with changes in the
overall state of consciousness. Specifically, all major classes of general anaesthetic
have been shown to in some way disrupt frontoparietal networks (Hudetz &
Mashour, 2016). Further, work in non-human primates has found that, only in a
waking state, GNW nodes — including parietal, prefrontal, and sensory cortices —
display a wide range of functional connectivity patterns much richer than anatomical
connectivity. In contrast, a range of anaesthetics with different molecular
mechanisms (ketamine, propofol, and sevoflurane) all drastically limit functional
connectivity to patterns that resemble anatomical connectivity (Uhrig et a, 2018). The
simulations in this paper do not speak directly to these results, although they do sit
well with the relevant aspects of the computational architecture of the PGNW. For
example, the most plausible analogue in our model to the disconnection between
prefrontal and parietal cortices that accompanies general anaesthesia would be a
lesion to the 2nd level A-matrix (i.e., such that the first and second levels no longer
exchange information). In this case, second-level representations would quickly
become maximally imprecise (barring infinitely precise second-level priors) and carry
no information, plausibly corresponding to general unconsciousness (i.e., no
conscious content of any kind). Importantly, the agent would also become insensitive
to longer timescale regularities in sensory input, explaining the abolishment of the P3
response to violations of longer time scale auditory regularities during sedation and
sleep (Shirazibeheshti et al, 2018; Strauss et al, 2015).

In addition to these big picture limitations, our model has a number of more
specific limitations that apply strictly to the study of visual consciousness. Principally,

our model only has two levels and we treat the entire visual system as a singular and
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discrete level instead of modelling it for what it is — a continuous and multi-level
system. The need for multiple levels brings us to the next limitation. As Kouider et al
(2010) argue, people are often only partially aware of a visual scene in the sense
that they may be aware of an object’s colour but not its identity. This requires
information to skip levels of the hierarchy, which is also not possible in the present
model. A more complete model would therefore allow both shallower and deeper
representations to selectively update the second “workspace” level (e.g., allowing

separable awareness of representations of an eye vs. a face vs. a person’s identity).

5. Conclusions and Future Directions
This paper introduced a formal extension of the global neuronal workspace — the
predictive global neuronal workspace — implemented within a deep Active Inference
architecture. In addition to explaining and unifying otherwise disparate findings in the
neural correlates of visual consciousness literature, the predictive global neuronal
workspace model presented here generates several empirical predictions, and
mechanistic neuro-computational explanations, regarding the relationship of the P3
and subjective report, the neurobiological implementation of the inferential machinery
underlying conscious access, and the role of expectation in visual consciousness.

In future work, we hope to build on the wealth of existing Active Inference
models (e.g. Allen et al., 2019; Parr et al., 2019c; Smith et al., 2019a; 2019b), to
extend the PGNW to other sensory modalities and more sophisticated experimental

paradigms.

Software note: The generative model detailed in this paper used a generic belief

updating scheme (spm_MDP_VB_X.m) implemented in Matlab code using the freely
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available SPM academic software: https://www.fil.ion.ucl.ac.uk/spm/. The scripts

used to produce the specific simulations reported here can be downloaded from

https://github.com/CIWhyte/PGNW_ERP-1_2020.

Conflict of interest statement: The authors have no conflicts of interest to disclose.

Appendix: Full Model Specification

At the first level of the model (see figure Al), the D vectors specified the initial state
of the four hidden state factors; top-down attention (present, absent), internal
stimulus (bars/square), peripheral stimulus (red/black circles), and auditory-verbal
states (single words: “silent”, “I”, “see”, “a”, “square”, “didn’t”, “anything”). The state
transitions specified by the B matrices were all identity matrices, meaning that the
hidden states were stable across the course of each trial. The likelihood mapping
between the hidden states and outcomes, specified by the A matrices, is where we
implemented the attention and signal strength manipulations. The peripheral
stimulus and language matrices were both fully precise (identity matrices). In
contrast, we reduced the precision (denoted by ¢ for stimulus strength and X for
attention) of the mapping between the internal state and the outcomes by passing
what were initially identity matrices through two softmax functions controlled by
precision parameters representing the effects attention and signal strength (i.e.
presentation time). Higher values of these parameters made the A matrices more
precise. We set up the interaction between the A matrices such that the likelihood
mapping for the internal stimulus factor was more precise when the agent was in an
attentive state. In contrast, stimulus strength manipulations reduced the precision of

the mapping between stimuli and hidden states independent of attentional state.
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Figure Al. 1st-level generative model matrices. All matrices are passed through softmax functions
such that the columns of each matrix, and the rows of each vector, always sum to one. Each column
of the D vector represents the probability of a hidden state. Columns of the B matrix correspond to
states at time t and rows correspond to states at t+1. Here all the B matrices are identity matrices
meaning that the states were believed to be stable across each trial. Columns of the A matrix
correspond to hidden states while rows correspond to observations. An identity mapping therefore
implies a deterministic (i.e. precise) likelihood mapping between states and observations. To model
the effects of attention and stimulus strength the A matrix encoding the likelihood mapping for the

internal segment of the stimulus was passed through a softmax function twice with a precision

multiplier representing attention () which could be present or absent, and stimulus strength which

could be strong or weak (. The combined effect of the attention and signal strength multipliers

determine the final precision of the matrix as depicted above. With the exception of the A matrix
encoding the likelihood mapping for the internal segment of the stimulus, all other first-level A
matrices were identity matrices, meaning that the mapping was deterministic. Finally, it is important to
note that, for visual simplicity, the matrices displayed above have not been factorised (in the code,

these matrices are Kronecker tensor products).
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At the second level (see figure 5) the three hidden state factors specified by
the D vectors were: sequence type (black disk and square, black disk and bars, red
disk and square, red disk and bars), time point within trial (1-8), and report state
(wait, seen, unseen). We set the initial level of the report state to “wait”. The B matrix
for sequence type was an identity matrix, meaning that the agent believed a priori
that the sequence type would not change mid-trial. Trial phase was set up such that
time point 1 transitioned to time point 2, which transitioned to time point 3 and so on
until the end of the trial. For time points 1-4, all states in the “report” B matrix
mapped to “wait”; however, at time point 5 the agent had control over the B matrices
for the report state, meaning that it could transition to either a “seen” or “unseen”
state depending on which policy best minimised expected free energy. The A
matrices were factorised such that the mapping from hidden states to outcomes was
dependent on the time point in the trial (see the time-in-trial hidden state factor in
figure A2). In other words, the narrative of this paradigm was specified in terms of
interactions between time and other content-specific hidden state factors (i.e., and
the interaction between ‘when’ and ‘what’). For example, at time point 1 both square
sequence and bar sequence hidden states predicted a bar outcome (recall that
second-level outcomes are also first-level hidden states). While at the 2nd and 3rd
time points the square sequence predicted a square outcome and a bar hidden state
predicted a bar outcome. At time point 4, both the square sequence and bar
sequence once again predicted a bar outcome. To model the recurrent feedback
between hierarchical levels characteristic of ignition, the square sequences mapped
to the square outcomes for time point 2 and 3 — allowing the state at the second level
to influence belief updating at the first level via the second-level A matrix. From time

points 1-4 all the states in the “report” factor mapped to the “silent” first-level verbal
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state. However, from time point 5 on, “seen” and “unseen” states entailed a different
sequence of lower-level word representations. The “seen” report state entailed the
words (in order) “I” “see” “a” “square” at each successive time point, while the
“unseen” report state entailed the words “I” “didn’t” “see” “anything” in that order. The
report state also had a likelihood mapping to a feedback outcome. The agent was
“correct” if, at time point 8, they reported “seen” after a square sequence or “unseen”
after a bar sequence, and “incorrect” if they reported “unseen” after a square
sequence or “seen” after a bar sequence (this preferred feedback was used to
motivate honest verbal reporting policies; see below). To account for the diffuse
nature of feedback projections (Bannister, 2005; Garcia-Cabezas et al., 2019), we
lowered the precision of the A matrix for the “sequence type” factor (precision = 0.8)

providing a plausible threshold on ignition events.
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Figure A2. 2nd-level generative model matrices. D vectors for sequence type (unless otherwise
indicated) assigned equal probability to each state. The D vector for the trial phase hidden state factor
was initialised so that the model would always start each trial with full confidence that it was in the

state corresponding to time point 1. Similarly, the D vector for the report state was initialised so that
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the model had full confidence in the “wait” state at the start of each trial. The B matrix for sequence
type was an identity matrix meaning that the agent believed a priori that the sequence of states would
be stable throughout the trial. We set up the B matrix for the trial phase hidden state factor such that
each state successively transitioned to the next state (i.e. state 1 transitioned to state 2 and so on).
For the controllable B matrices there was one matrix for each possible report state (wait, unseen, and
seen). From time step 1 - 4 the agent could only select the “wait” matrix but at time step 5 the agent
could choose (i.e. via policy selection) between the “seen” and unseen “matrices”. The C matrix
encoded the agents preference for each outcome and had a column for each time point and a row for
each action (report state). There was one C matrix for each outcome modality. Here we only display
the C matrix for the “correct/incorrect feedback” outcome modality associated with the report state, as
it is the only outcome for which the agent had non-zero preferences. That is, the agent preferred to
be “correct” at the end of each trial rather than “incorrect”. Finally, the A matrices were set up such
that the sequence type hidden state factor had two corresponding outcome modalities, which mapped
the sequence type hidden states to the internal stimulus and peripheral stimulus hidden states at level
1. To provide the model with a plausible “ignition threshold,” we lowered the precision of the A matrix
for the “sequence type” factor by passing it through a softmax function (precision = 0.8) although we
do not picture this graphically. The report hidden state factor did not map to hidden states at the level
below, instead it mapped to observations that informed the agent about whether they were “correct” or
“incorrect” (recall that, because of the C matrix, the agent wanted to receive “correct” observations
and was averse to “incorrect” observations). Finally, the report hidden state factor mapped to first
level language processing hidden states so that after time step 5, once the model was in a “seen” or
“unseen” state, the appropriate sequence of spoken word states would be initiated at the level below

(i.e. “I" “see” “a” “square”). Again, for visual simplicity the matrices displayed above have not been

factorised and appear differently to how they are implemented in code.

Finally, we constructed the C matrix such that when the agent received
feedback at time point 8 they most preferred to be correct and least preferred to be
incorrect when reporting whether or not they had seen the stimulus (preference

values that produced sufficient motivation for accurate reporting are depicted in
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figure A2). To model forced-choice behaviour, we ran a separate simulation but
reduced the preference for being correct versus incorrect, making the agent less
conservative and more likely to guess under conditions of weaker perceptual signals.
Because Active Inference models are deterministic, we set policy precision (the
confidence in policy selection denoted by ), and motor stochasticity (randomness of
action selection denoted by a) to f = 2 and a = 6, thereby allowing for a plausible
level of behavioural variability reflecting the agent’s relative confidence in some

states over others.
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