

# <sup>1</sup> An interpretable classification method for <sup>2</sup> predicting drug resistance in *M. tuberculosis*

<sup>3</sup> **Hooman Zabeti**

<sup>4</sup> School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

<sup>5</sup> **Nick Dexter**

<sup>6</sup> Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A1S6, Canada

<sup>7</sup> **Amir Hosein Safari**

<sup>8</sup> School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

<sup>9</sup> **Nafiseh Sedaghat**

<sup>10</sup> School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

<sup>11</sup> **Maxwell Libbrecht**

<sup>12</sup> School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

<sup>13</sup> **Leonid Chindelevitch**

<sup>14</sup> School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

## <sup>15</sup> — **Abstract** —

<sup>16</sup> **Motivation:** The prediction of drug resistance and the identification of its mechanisms in bacteria  
<sup>17</sup> such as *Mycobacterium tuberculosis*, the etiological agent of tuberculosis, is a challenging problem.  
<sup>18</sup> Modern methods based on testing against a catalogue of previously identified mutations often yield  
<sup>19</sup> poor predictive performance. On the other hand, machine learning techniques have demonstrated  
<sup>20</sup> high predictive accuracy, but many of them lack interpretability to aid in identifying specific  
<sup>21</sup> mutations which lead to resistance. We propose a novel technique, inspired by the group testing  
<sup>22</sup> problem and Boolean compressed sensing, which yields highly accurate predictions and interpretable  
<sup>23</sup> results at the same time.

<sup>24</sup> **Results:** We develop a modified version of the Boolean compressed sensing problem for identifying  
<sup>25</sup> drug resistance, and implement its formulation as an integer linear program. This allows us to  
<sup>26</sup> characterize the predictive accuracy of the technique and select an appropriate metric to optimize.  
<sup>27</sup> A simple adaptation of the problem also allows us to quantify the sensitivity-specificity trade-off of  
<sup>28</sup> our model under different regimes. We test the predictive accuracy of our approach on a variety  
<sup>29</sup> of commonly used antibiotics in treating tuberculosis and find that it has accuracy comparable to  
<sup>30</sup> that of standard machine learning models and points to several genes with previously identified  
<sup>31</sup> association to drug resistance.

<sup>32</sup> **Availability:** [https://github.com/hoomanzabeti/TB\\_Resistance\\_RuleBasedClassifier](https://github.com/hoomanzabeti/TB_Resistance_RuleBasedClassifier)

<sup>33</sup> **Contact:** hooman\_zabeti@sfu.ca

<sup>34</sup>

<sup>35</sup> **2012 ACM Subject Classification** Applied computing - Life and medical sciences - Computational  
<sup>36</sup> biology - Molecular sequence analysis

<sup>37</sup> **Keywords and phrases** Drug resistance; whole-genome sequencing; interpretable machine learning;  
<sup>38</sup> integer linear programming; rule-based learning

<sup>39</sup> **Digital Object Identifier** 10.4230/LIPIcs.WABI.2020.2



© Hooman Zabeti, Nick Dexter, Amir Hosein Safari, Nafiseh Sedaghat, Maxwell Libbrecht, Leonid Chindelevitch;

licensed under Creative Commons License CC-BY

20th International Workshop on Algorithms in Bioinformatics (WABI 2020).

Editors: Carl Kingsford and Nadia Pisanti; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics

LIPIcs Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

## 2:2 An interpretable classification method for drug resistance

40 **Acknowledgements** The authors would like to thank Dr. Cedric Chauve, Dr. Ben Adcock and  
41 Matthew Nguyen for helpful discussions. This project was funded by the Genome Canada grant  
42 BAC283. LC acknowledges additional funding from the CANSSI CRT and NSERC Discovery.

### 43 1 Introduction

44 Drug resistance is the phenomenon by which an infectious organism (also known as pathogen)  
45 develops resistance to one or more drugs that are commonly used in treatment [36]. In  
46 this paper we focus our attention on *Mycobacterium tuberculosis*, the etiological agent of  
47 tuberculosis, which is the largest infectious killer in the world today, responsible for over 10  
48 million new cases and 2 million deaths every year [37].

49 The development of resistance to common drugs used in treatment is a serious public health  
50 threat, not only in low and middle-income countries, but also in high-income countries where  
51 it is particularly problematic in hospital settings [40]. It is estimated that, without the urgent  
52 development of novel antimicrobial drugs, the total mortality due to drug resistance will  
53 exceed 10 million people a year by 2050, a number exceeding the annual mortality due to  
54 cancer today [35].

55 Existing models for predicting drug resistance from whole-genome sequence (WGS) data  
56 broadly fall into two classes. The first, which we refer to as “catalogue methods,” involves  
57 testing the WGS data of an isolate for the presence of point mutations (typically single-  
58 nucleotide polymorphisms, or SNPs) associated with known drug resistance. If one or  
59 more such mutations is identified, the isolate is declared to be resistant [46, 14, 4, 21, 15].  
60 While these methods tend to be easy to understand and apply, they often suffer from  
61 poor predictive accuracy [43], especially in identifying novel drug resistance mechanisms or  
62 screening resistance to untested or rarely-used drugs.

63 The second class, which we will refer to as “machine learning methods”, seeks to infer the drug  
64 resistance of an isolate by training complex models directly on WGS and drug susceptibility  
65 test (DST) data [48, 11, 2]. Such methods tend to result in highly accurate predictions at  
66 the cost of flexibility and interpretability - specifically, they typically do not provide any  
67 insights into the drug resistance mechanisms involved and often do not impose explicit limits  
68 on the predictive model’s complexity. Learning approaches based on deep neural networks  
69 are one such example.

70 In this paper we propose a novel method, based on the group testing problem and Boolean  
71 compressed sensing (CS), for the prediction of drug resistance. Compressed sensing is  
72 a mathematical technique for sparse signal recovery from under-determined systems of  
73 linear equations [16], and has been successfully applied in many application areas including  
74 digital signal processing [13, 12], MRI imaging [26], radar detection [19], and computational  
75 uncertainty quantification [29, 9]. Under a sparsity assumption on the unknown signal vector,  
76 it has been shown that CS techniques enable recovery from far fewer measurements than  
77 required by the Nyquist-Shannon sampling theorem [5]. Boolean CS is a slight modification  
78 of the CS problem, replacing the matrix vector product with a Boolean OR operator [28],  
79 and has been successfully applied to areas such as group testing for infection [3, 1].

80 Our approach combines some of the flexibility and interpretability of catalogue methods with  
81 the accuracy of machine learning methods—specifically, this method is capable of recovering  
82 interpretable rules for predicting drug resistance that both result in a high classification  
83 accuracy as well as provide insights into the mechanisms of drug resistance. We show that

84 our methods perform comparably to standard machine learning methods on *Mycobacterium*  
85 *tuberculosis* in terms of predicting first-line drug resistance, while accurately recovering  
86 many of the known mechanisms of drug resistance, and identifying some potentially novel  
87 ones.

## 88 **2 Methods**

89 Our proposed method is based on the rule-based classification technique introduced in  
90 [28], wherein group testing and Boolean CS are combined to determine subsets of infected  
91 individuals from large populations. In that setting the linear system encodes the infection  
92 status of the population through testing, and the solution, obtained from a suitable decoder,  
93 is a  $\{0, 1\}$ -valued vector representing the infection status of the individuals [6]. Since the  
94 infected group is assumed to be small, the solution vector is sparse and can be recovered  
95 using relatively few measurements with Boolean CS. The result of solving the Boolean CS  
96 problem can then be interpreted as a sparse set of rules for determining infections and used  
97 for classification on unseen data.

98 We present our methodology as follows. Section 2.1 introduces the group testing problem,  
99 and discusses how group testing can be combined with compressed sensing to deliver an  
100 interpretable predictive model. Section 2.2 introduces modifications to the standard setting  
101 to produce an accurate and flexible classifier, which can be tuned for specific evaluation  
102 metrics and tasks. Section 2.3 describes the tuning process for providing the desired trade-off  
103 between sensitivity and specificity in our model's predictions. Finally, Section 2.4 describes an  
104 approximation of the AUROC (area under receiver operating characteristic curve), a standard  
105 metric in machine learning, that is valid for evaluating the proposed approach.

### 106 **2.1 Group testing and Boolean compressed sensing**

107 We frame the problem of predicting drug resistance given sequence data as a group testing  
108 problem, originally introduced in [10]. This approach for detecting defective members of a  
109 set, was motivated by the need to screen large populations for syphilis while drafting citizens  
110 into military service for the United States during the World War II. The screening, performed  
111 by testing blood samples, was costly due to the low numbers of infected individuals. To make  
112 the screening more efficient, Dorfman suggested pooling blood samples into specific groups  
113 and testing the groups instead. A positive result for the group would imply the presence of  
114 at least one infected member. The problem then becomes to find the subset of individuals  
115 whose infected status would explain all of the positive results without invalidating any of the  
116 negative ones. By carefully selecting the groups, the total number of required tests  $m$  can be  
117 drastically reduced, i.e. if  $n$  is the population size, it is possible to achieve  $m \ll n$ .

118 Mathematically, a group testing problem with  $m$  tests can be described in terms of a Boolean  
119 matrix  $A \in \{0, 1\}^{m \times n}$ , where  $A_{ij}$  indicates the membership status of subject  $j$  in the  $i$ -th  
120 test group, and a Boolean vector  $y \in \{0, 1\}^m$ , where  $y_i$  represents the test result of the  $i$ -th  
121 group. If  $w \in \{0, 1\}^n$  is a Boolean vector, with  $w_j$  representing the infection status of the  
122  $j$ -th individual, then the result of all  $m$  tests will satisfy

$$123 \quad y = A \vee w, \quad (1)$$

## 2:4 An interpretable classification method for drug resistance

124 where  $\vee$  is the Boolean inclusive OR operator, so that (1) can also be written

$$125 \quad y_i = \bigvee_{j=1}^n A_{i,j} \wedge w_j \quad \forall 1 \leq i \leq m.$$

126 If the vector  $w$  satisfying equation (1) is assumed to be sparse (i.e. there are few infected  
127 individuals), the problem of finding  $w$  is an instance of the sparse Boolean vector recovery  
128 problem:

$$129 \quad \min \|w\|_0 \text{ subject to } y = A \vee w, \quad (2)$$

130 where  $\|w\|_0$  is the number of non-zero entries in the vector  $w$ .

131 Due to the non-convexity of the  $\ell_0$ -norm and the nonlinearity of the Boolean matrix product,  
132 the combinatorial optimization problem (2) is well-known to be NP-hard, see, e.g., [16,  
133 Section 2.3] or [33]. In [27] a relaxation of (2) via linear programming is proposed, with the  
134  $\ell_0$ -norm replaced by the  $\ell_1$ -norm (much like in basis pursuit for standard compressed sensing),  
135 and with the nonlinear Boolean matrix product also replaced with two closely related linear  
136 constraints. We recapitulate their equivalent 0-1 linear programming formulation here:

137

$$138 \quad \begin{aligned} & \min \sum_{j=1}^n w_j \\ & \text{s.t. } w \in \{0, 1\}^n \\ & \quad A_{\mathcal{P}} w \geq 1 \\ & \quad A_{\mathcal{Z}} w = 0, \end{aligned} \quad (3)$$

139 where  $\mathcal{P} = \{i : y_i = 1\}$  and  $\mathcal{Z} = \{i : y_i = 0\}$  are the sets of groups that test positive and  
140 negative, respectively. However, this problem is also NP-hard, but can be made tractable  
141 for linear programming by relaxing the Boolean constraint on  $w$  in (3) to  $0 \leq w_j \leq 1$  for all  
142  $j \in \{1, \dots, n\}$ .

143 [28] extended this idea for interpretable rule-based classification, meanwhile proving recovery  
144 guarantees for the relaxed problem. Because the Boolean CS problem is based on Boolean  
145 algebra, the conditions on the Boolean measurement matrices  $A$  that guarantee exact recovery  
146 of  $K$ -sparse vectors via linear programming are quite different from those of standard CS.  
147 Specifically, these guarantees require the definition of  $K$ -disjunct matrices, i.e., matrices  $A$   
148 for which all unions of their columns of size  $K$  do not contain any other columns of the  
149 original matrix. Constructions exist for matrices with  $\mathcal{O}(K^2 \log(n))$  rows which satisfy this  
150 property. We also note that by introducing an *approximate disjunctness* property, allowing  
151 for matrices for which a fraction  $(1 - \varepsilon)$  of all  $\binom{n}{K}$  possible  $K$ -subsets of the columns satisfy  
152 the disjunctness condition, it was shown in [30] that there exist constructions of measurement  
153 matrices  $A$  which allow for recovery from  $\mathcal{O}(K^{3/2} \sqrt{\log(n/\varepsilon)})$  rows.

154 In the standard setting for uniform recovery results for CS, the measurement matrices  $A$   
155 are subgaussian random matrices, i.e., having entries  $A_{i,j}$  drawn independently according  
156 to a subgaussian distribution. Examples include  $m \times n$  matrices consisting of Rademacher  
157 or Gaussian random variables, for which uniform recovery of  $K$ -sparse vectors via  $\ell_1$ -  
158 minimization has been shown under the condition  $m$  is  $\mathcal{O}(K \log(n/K))$ , see, e.g. [16, Chapter  
159 9] for more details. While subgaussian matrices have been shown to possess the most

desirable recovery guarantees, they are not always applicable for every measurement scheme, in particular the one considered here.

In this work, we only consider the Boolean constrained problem, i.e.  $w \in \{0, 1\}^n$ , though we adopt the slack variables and regularization proposed by [28] to trade off between the sparsity and the discrepancy with the test results of the relaxed problem. With these modifications in the Boolean constrained problem (3), our problem becomes:

$$\min \sum_{j=1}^n w_j + \lambda \sum_{i=1}^m \xi_i \quad (4a)$$

$$\text{s.t. } w \in \{0, 1\}^n \quad (4b)$$

$$0 \leq \xi_i \leq 1, \quad i \in \mathcal{P} \quad (4c)$$

$$0 \leq \xi_i, \quad i \in \mathcal{Z} \quad (4d)$$

$$A_{\mathcal{P}} w + \xi_{\mathcal{P}} \geq 1 \quad (4e)$$

$$A_{\mathcal{Z}} w - \xi_{\mathcal{Z}} = 0, \quad (4f)$$

where  $\lambda > 0$  is a regularization parameter. This Boolean constrained problem formulation can be solved via integer linear programming (ILP) techniques, see, e.g., [28].

### 2.1.1 Generalization to other contexts

The solution to the ILP (4) can be seen as an interpretable rule-based classifier in contexts beyond standard group testing. Given a rule for forming the matrix  $A$ , encoding binary attributes of a set of objects through multiple measurements or tests, and test data  $y$ , the general problem is to derive a Boolean disjunction that best classifies previously unseen objects from their features. In such a general setting, a context-specific technique for dichotomizing features may be needed [41]. However, in the case of drug resistance prediction, our features are the presence or absence of specific single-nucleotide polymorphisms (SNPs), and therefore no dichotomization is needed.

From now on, we assume that we have a binary labeled dataset  $\mathcal{D} = \{(x_1, y_1), \dots, (x_m, y_m)\}$ , where the  $x_i \in \mathcal{X} := \{0, 1\}^n$  are  $n$ -dimensional binary feature vectors and the  $y_i \in \{0, 1\}$  are the binary labels. The feature matrix  $A$  is defined via  $A_{i,j} = (x_i)_j$  (the  $j$ -th component of the  $i$ -th feature vector). If  $\hat{w}$  is the solution of ILP (4) for this feature matrix and the label vector  $y = (y_i)_{i=1}^m$ , we define the classifier  $\hat{c} : \mathcal{X} \rightarrow \{0, 1\}$  as follows:

$$\hat{c}(x) = x \vee \hat{w}. \quad (5)$$

## 2.2 Our approach

The formulation of the ILP (4) is designed to provide a trade-off between the sparsity of a disjunctive rule and the total slack, a quantity that resembles (but does not equal) the training error. Unmodified, these conditions are not ideal for machine learning tasks: *i*) they do not allow for accurate expression of this error, and *ii*) they lack the ability to assign different weights to different components of the error. Such a weighting can play a large role in settings where the data is highly unbalanced, or when the cost of a false positive differs greatly from that of a false negative. We now describe an approach that provides more flexibility in the training process and performs better on specific tasks such as ours.

Recall that the regularization parameter  $\lambda$  in equation (4) provides control over the trade-off between the total slack and the sparsity of the solution. It is straightforward to generalize

## 2:6 An interpretable classification method for drug resistance

201 this term to provide useful information about the classifier's false positive and false negative  
 202 rates. To obtain this information, we modify the ILP (4) in two ways.

203 For clarity, in the following section we assume that  $\hat{c}$  is a binary classifier trained on a sample  
 204  $y$  with corresponding Boolean feature matrix  $A$ . In addition, unless otherwise stated, we  
 205 refer to the misclassification of a training sample as a false negative if it has label 1 (is in  $\mathcal{P}$ ),  
 206 and as a false positive if it has label 0 (is in  $\mathcal{Z}$ ). For instance, in the case of drug resistance,  
 207 a false negative would mean that we incorrectly predict a drug-resistant isolate as sensitive,  
 208 while a false positive would mean that we predict a drug-sensitive isolate as resistant.

209 First, note that in ILP (4),  $\xi_{\mathcal{P}}$  corresponds to the training error of  $\hat{c}$  on the positively labeled  
 210 subset of the data, while  $\xi_{\mathcal{Z}}$  does not correspond to its training error on the negatively  
 211 labeled subset. This follows from the fact that  $A$  is a binary matrix and  $w$  is a binary vector,  
 212 so  $\xi_{\mathcal{P}}$  is also a binary vector, with

$$213 \quad \sum_{i \in \mathcal{P}} \xi_i = 1^T \xi_{\mathcal{P}} = \text{FN}, \quad (6)$$

214 the number of false negatives. On the other hand, to obtain the number of false positives  
 215 (FP) we need to modify the constraints (4d) and (4f) by setting

$$216 \quad \xi_i \in \{0, 1\}, \quad i \in \mathcal{Z} \quad (7)$$

217 and replacing  $A_{\mathcal{Z}}w - \xi_{\mathcal{Z}} = 0$  with the inequalities:

$$218 \quad A_{\mathcal{Z}}w - \xi_{\mathcal{Z}} \geq 0, \quad (8a)$$

$$219 \quad \alpha_i \xi_i - A_i w \geq 0 \quad \forall i \in \mathcal{Z}, \quad (8b)$$

221 where  $\alpha_i = \sum_{j=1}^n A_{i,j}$  and  $A_i$  represent  $i$ th row of  $A$ . Note that the motivation behind this  
 222 replacement is to count the number of non-zero elements of  $A_{\mathcal{Z}}w$  by  $\xi_{\mathcal{Z}}$ . Therefore, we  
 223 can observe that eq.(8a) ensure that  $\xi_i = 0$  if  $A_i w = 0$  and eq.(8b) ensures that  $\xi_i = 1$   
 224 if  $A_i w > 0$ . However, eq.(8a) can be eliminated in those settings where the  $\xi_{\mathcal{Z}}$  enter the  
 225 objective function to be minimized with a positive coefficient. We will see similar situations  
 226 in the following section.

227 After these modifications, we obtain

$$228 \quad \sum_{i \in \mathcal{Z}} \xi_i = 1^T \xi_{\mathcal{Z}} = \text{FP}. \quad (9)$$

229 To provide the desired flexibility, we further split the regularization term into two terms  
 230 corresponding to the positive class  $\mathcal{P}$  and the negative class  $\mathcal{Z}$ :

$$231 \quad \lambda_{\mathcal{P}} \sum_{i \in \mathcal{P}} \xi_i + \lambda_{\mathcal{Z}} \sum_{k \in \mathcal{Z}} \xi_k. \quad (10)$$

232 The general form of the new ILP is now as follows:

$$233 \quad \begin{aligned} \min \quad & \sum_{j=1}^n w_j + \lambda_{\mathcal{P}} \sum_{i \in \mathcal{P}} \xi_i + \lambda_{\mathcal{Z}} \sum_{k \in \mathcal{Z}} \xi_k \\ \text{s.t.} \quad & w \in \{0, 1\}^n \\ & 0 \leq \xi_i \leq 1, \quad i \in \mathcal{P} \\ & \xi_i \in \{0, 1\}, \quad i \in \mathcal{Z} \\ & A_{\mathcal{P}}w + \xi_{\mathcal{P}} \geq 1 \\ & \alpha_i \xi_i - A_i w \geq 0 \quad \forall i \in \mathcal{Z} \end{aligned} \quad (11)$$

<sup>234</sup> In this new formulation,  $\lambda_{\mathcal{P}}$  and  $\lambda_{\mathcal{Z}}$  control the trade-off between the false positives and the  
<sup>235</sup> false negatives, and jointly influence the sparsity of the rule. This formulation can be further  
<sup>236</sup> tailored to optimize specific evaluation metrics. In the following section we demonstrate this  
<sup>237</sup> for sensitivity and specificity, as an example.

<sup>238</sup> **2.3 Optimizing sensitivity and specificity**

<sup>239</sup> Since the ILP formulation in (11) provides us with direct access to the two components of  
<sup>240</sup> the training error, we may modify the classifier to optimize a specific evaluation metric. For  
<sup>241</sup> instance, assume that we would like to train the classifier  $\hat{c}$  to maximize the sensitivity at a  
<sup>242</sup> given specificity threshold  $\bar{t}$ . First, recall that

$$\text{Specificity} = \frac{\text{TN}}{\text{TN} + \text{FP}} = 1 - \frac{\text{FP}}{\text{N}}, \quad (12)$$

$$\text{Sensitivity} = \frac{\text{TP}}{\text{TP} + \text{FN}} = 1 - \frac{\text{FN}}{\text{P}}. \quad (13)$$

<sup>243</sup> From equation (10), equation (12) and the definition of  $\mathcal{Z}$ , we get the constraint

$$\bar{t} \leq 1 - \frac{1^T \xi_{\mathcal{Z}}}{|\mathcal{Z}|} \iff 1^T \xi_{\mathcal{Z}} \leq (1 - \bar{t})|\mathcal{Z}|. \quad (14)$$

<sup>244</sup> Our objective is to maximize sensitivity, which is equivalent to minimizing  $\sum_{i \in \mathcal{P}} \xi_i$  by  
<sup>245</sup> equations (13) and (6). Hence, the ILP (11) can be modified as follows:

$$\begin{aligned} \min \quad & \sum_{j=1}^n w_j + \lambda_{\mathcal{P}} \sum_{i \in \mathcal{P}} \xi_i \\ \text{s.t.} \quad & w \in \{0, 1\}^n \\ & 0 \leq \xi_i \leq 1, \quad i \in \mathcal{P} \\ & \xi_i \in \{0, 1\}, \quad i \in \mathcal{Z} \\ & A_{\mathcal{P}} w + \xi_{\mathcal{P}} \geq 1 \\ & \alpha_i \xi_i - A_i w \geq 0 \quad \forall i \in \mathcal{Z} \\ & 1^T \xi_{\mathcal{Z}} \leq (1 - \bar{t})|\mathcal{Z}|. \end{aligned} \quad (15)$$

<sup>252</sup> The maximum specificity at given sensitivity can be found analogously.

<sup>253</sup> **2.4 Approximating the AUROC**

<sup>254</sup> In this section we compute an analog of the AUROC<sup>1</sup> of our classifier given a limit on rule  
<sup>255</sup> size. Recall that the ROC is a plot demonstrating the performance of a score-producing  
<sup>256</sup> classifier at different score thresholds, created by plotting the true positive rate (TPR) against  
<sup>257</sup> the false positive rate (FPR). However, since the rule-based classifier produced by ILP (11)  
<sup>258</sup> is a discrete classifier, it cannot produce a ROC curve in the usual way. To create a ROC  
<sup>259</sup> curve for this classifier, we compute the true positive rate (TPR) for different values of  
<sup>260</sup> the false positive rate (FPR). In addition, we set a limit on the rule size (sparsity) of the  
<sup>261</sup> classifier.

<sup>262</sup> More precisely, we create the ROC curve by incrementally changing the FPR and computing  
<sup>263</sup> the optimum value of the TPR. To do so, we put varying upper bounds on the FPR and

---

<sup>1</sup> the Area Under the Receiver Operating Characteristic Curve

## 2:8 An interpretable classification method for drug resistance

264 proceed analogously to the previous section. For instance, assume that we would like to get  
265 the best TPR value when the FPR is at most  $\hat{t}$ , where  $0 \leq \hat{t} \leq 1$ , meaning that

$$266 \quad \text{FPR} = \frac{\text{FP}}{\text{N}} \leq \hat{t}. \quad (16)$$

267

268 From equations (10), (16) and the definition of  $\mathcal{Z}$  we get

$$269 \quad \frac{1^T \xi_{\mathcal{Z}}}{|\mathcal{Z}|} \leq \hat{t} \iff 1^T \xi_{\mathcal{Z}} \leq \hat{t} |\mathcal{Z}|. \quad (17)$$

270 Assuming further that the limit on rule size is equal to  $\hat{s}$ , we have the following constraint:

271

$$272 \quad 1^T w \leq \hat{s}. \quad (18)$$

273 Therefore, the modified version of the ILP (11) suitable for computing an AUROC is:

$$\begin{aligned} \min \quad & \sum_{i \in \mathcal{P}} \xi_i \\ \text{s.t.} \quad & w \in \{0, 1\}^n \\ & 0 \leq \xi_i \leq 1, \quad i \in \mathcal{P} \\ & \xi_i \in \{0, 1\}, \quad i \in \mathcal{Z} \\ & A_{\mathcal{P}} w + \xi_{\mathcal{P}} \geq 1 \\ & \alpha_i \xi_i - A_i w \geq 0 \quad \forall i \in \mathcal{Z} \\ & 1^T w \leq \hat{s} \\ & 1^T \xi_{\mathcal{Z}} \leq \hat{t} |\mathcal{Z}|. \end{aligned} \quad (19)$$

274

275 We utilize the CPLEX optimizer [20] to solve the ILP in (19).

## 276 3 Implementation

277 All the methods in this paper are implemented in the Python programming language. We  
278 use a Scikit-learn [38] implementation for the machine learning models and the CPLEX  
279 optimizer version 12.10.0 [20], together with its Python API, for our method.

### 280 3.1 Data

281 To obtain a dataset to train and evaluate our method on, we combine data from the Pathosystems  
282 Resource Integration Center (PATRIC)[47] and the Relational Sequencing TB Data  
283 Platform (ReSeqTB)[45]. This results in 8000 isolates together with their resistant/sus-  
284 ceptible status (label) for seven drugs, including five first-line drugs (rifampicin, isoniazid,  
285 pyrazinamide, ethambutol, and streptomycin) and two second-line drugs (kanamycin and  
286 ofloxacin) [34]. The short-read whole genome sequences of these 8000 isolates are down-  
287 loaded from the European Nucleotide Archive [23] and the Sequence Read Archive [24].  
288 The accession numbers used to obtain the data in our study were: ERP[000192, 006989,  
289 008667, 010209, 013054, 000520], PRJEB[10385, 10950, 14199, 2358, 2794, 5162, 9680],  
290 PRJNA[183624, 235615, 296471], and SRP[018402, 051584, 061066].

291 In order to map the raw sequence data to the reference genome, we use a method similar to  
292 that used in previous work [7, 8]. We use the BWA software [25], specifically, the bwa-mem

293 program. We then call the single-nucleotide polymorphisms (SNPs) of each isolate with two  
294 different pipelines, SAMtools [18] and GATK [39], and take the intersection of their calls to  
295 ensure reliability. The final dataset, which includes the position as well as the reference and  
296 alternative allele for each SNP [8], is used as the input to our classifier.

297 Starting from this input we create a binary feature matrix, where each row represents an  
298 isolate and each column indicates the presence or absence of a particular SNP. For each drug,  
299 we group all the SNPs with identical presence/absence patterns into a single column, since at  
300 most one SNP in a group would ever be selected to be part of a rule. The number of labeled  
301 and resistant isolates and of SNPs and SNP groups for each drug is stated in Table 1.

| Drug         | Number of isolates | Number of resistant isolates | Number of SNPs | Number of SNP groups |
|--------------|--------------------|------------------------------|----------------|----------------------|
| Ethambutol   | 6,096              | 1,407                        | 666,349        | 55,164               |
| Isoniazid    | 7,734              | 3,445                        | 666,349        | 65,090               |
| Kanamycin    | 2,436              | 697                          | 666,349        | 21,513               |
| Oflloxacin   | 2,911              | 800                          | 666,349        | 23,905               |
| Pyrazinamide | 3,858              | 754                          | 666,349        | 33,942               |
| Rifampicin   | 7,715              | 2,968                        | 666,349        | 65,379               |
| Streptomycin | 5,125              | 2,104                        | 666,349        | 45,037               |

**Table 1** Summary of number of isolates in our data

### 302 **3.2 Train-Test split**

303 To evaluate our classifier we use a stratified train-test split, where the training set contains  
304 80% and the testing set contains 20% of data.

### 305 **3.3 AUROC comparison**

306 The AUROC of our model was computed for two purposes: first, to investigate the effect of  
307 the classifier's sparsity (rule size) on its performance, and second, to compare this performance  
308 to that of other machine learning methods. We calculated the AUROC of classifiers with  
309 various limits on rule size, selected from  $\{1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200\}$ . For  
310 each rule size, we use the formulation in subsection 2.4, increasing the FPR upper bound  
311 from 0 to 1 in increments of 0.1. We then train a classifier by using the ILP (19), and  
312 compute the effective FPR and TPR. Lastly, we create the ROC curve by plotting the TPRs  
313 against the FPRs, and compute the AUROC.

314 To compare the performance of our model with other machine learning models, we also  
315 compute the AUROC of the Random Forest (RF) and  $\ell_1$ -regularized Logistic Regression  
316 (LR) models. For these models, we first perform hyper-parameter tuning using grid search  
317 with three-fold cross validation, and then select the model with the highest AUROC.

### 318 **3.4 Sensitivity at a fixed specificity**

319 As another evaluation criteria we compute the sensitivity of our model at a desired specificity  
320 level (i.e.  $\beta\%$  specificity). To do so, we use the ILP (15). In this formulation, the  $\lambda_P$   
321 parameter can be tuned to provide the desired trade-off between the sparsity of the classifier  
322 (i.e., rule size) and the number of false negatives. However, in order to make a consistent  
323 comparison between the trained models for different drugs, we set a specific limit on rule  
324 size and use ILP (19) with the last constraint replaced by the last constraint of ILP (15), i.e.  
325 with (17) replaced with (14).

## 2:10 An interpretable classification method for drug resistance

### 326 4 Results

327 Evaluating the performance of an interpretable predictive model can be challenging. While  
328 most evaluation methods focus on predictive accuracy, it is essential to assess the model's  
329 interpretability. Even though there is no consensus on the definition of interpretability, the  
330 "Predictive, Descriptive, Relevant" (PDR) framework introduced by [32] provides general  
331 insights into interpretable models, by emphasizing the balance between these characteristics.  
332 In this section, we use the PDR framework to evaluate our models in the following ways.

333 First, in Section 4.1, we assess our method's predictive accuracy by comparing it with RF  
334 and LR. At this step we do not have any specific restriction on the rule size, and we report  
335 the best AUROC that our model can achieve based on the settings in Section 3.3.

336 Second, in Section 4.2, we compare the AUROC produced by our method for different limits  
337 on rule size. This comparison between the method at different parameter values helps us  
338 evaluate its ability to produce a simple model (i.e. a model with a fairly small rule size) with  
339 a high AUROC. The simpler models are easier to understand for human users. In this paper,  
340 we define the descriptiveness of a model by its simplicity (its rule size, i.e., the number of  
341 SNPs needed to define it). In addition, we evaluate our method's sensitivity by comparing it  
342 with LR and RF. To do so, we compute and compare the sensitivity of these three models at  
343 a specificity near 90%. More specifically, this comparison uses the specificity level achieved  
344 by the rule-based model that is closest to 90% (in practice, this is always between 88% and  
345 92% for this dataset), since the rule-based model does not achieve every possible specificity  
346 level when given a limit on rule size. For this evaluation, we limit model complexity by  
347 setting a limit of 20 on the rule size.

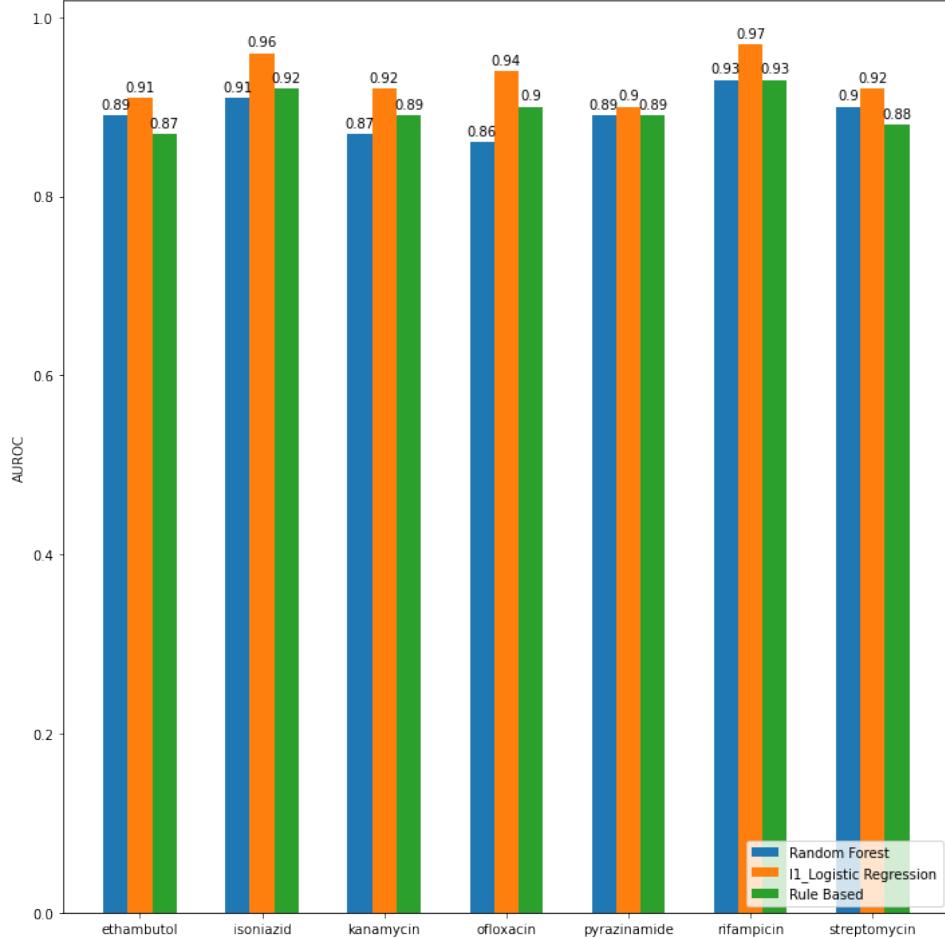
348 Finally, in Section 4.3, we assess the relevance of the model produced by our method by  
349 observing the fraction of SNPs used by the model that are located in genes previously  
350 reported to be associated with drug resistance. Note that, unlike the approach in [48], we do  
351 not limit the genes *a priori* to those with known associations with drug resistance.

### 352 4.1 Our models produce competitive AUROCs

353 Figure 1 illustrates the results of comparing our model to LR and RF. In this figure, we  
354 can see that LR provides a higher AUROC for all 7 drugs, but our model produces slightly  
355 higher AUROCs than RF for 3 of the drugs, identical AUROCs for 2 other drugs and slightly  
356 lower ones for the remaining 2.

| Drug         | Rule size $\leq 10$ | Rule size $\leq 20$ | Rule size $\leq 30$ | Rule size $\leq 40$ | Max AUROC |
|--------------|---------------------|---------------------|---------------------|---------------------|-----------|
| Ethambutol   | 0.86                | 0.86                | 0.85                | <b>0.86</b>         | 0.87      |
| Isoniazid    | 0.88                | 0.89                | 0.90                | <b>0.91</b>         | 0.92      |
| Kanamycin    | 0.88                | 0.89                | <b>0.89</b>         | 0.88                | 0.89      |
| Ofloxacin    | 0.90                | 0.87                | <b>0.90</b>         | 0.88                | 0.90      |
| Pyrazinamide | 0.88                | 0.88                | 0.88                | <b>0.89</b>         | 0.89      |
| Rifampicin   | 0.90                | 0.92                | 0.92                | <b>0.93</b>         | 0.93      |
| Streptomycin | 0.84                | 0.86                | 0.85                | <b>0.87</b>         | 0.88      |

357 **Table 2** Comparison between AUROCs of models produced by our method with different rule  
358 size limits. We observe that even small rule sizes produce models with a high AUROC.

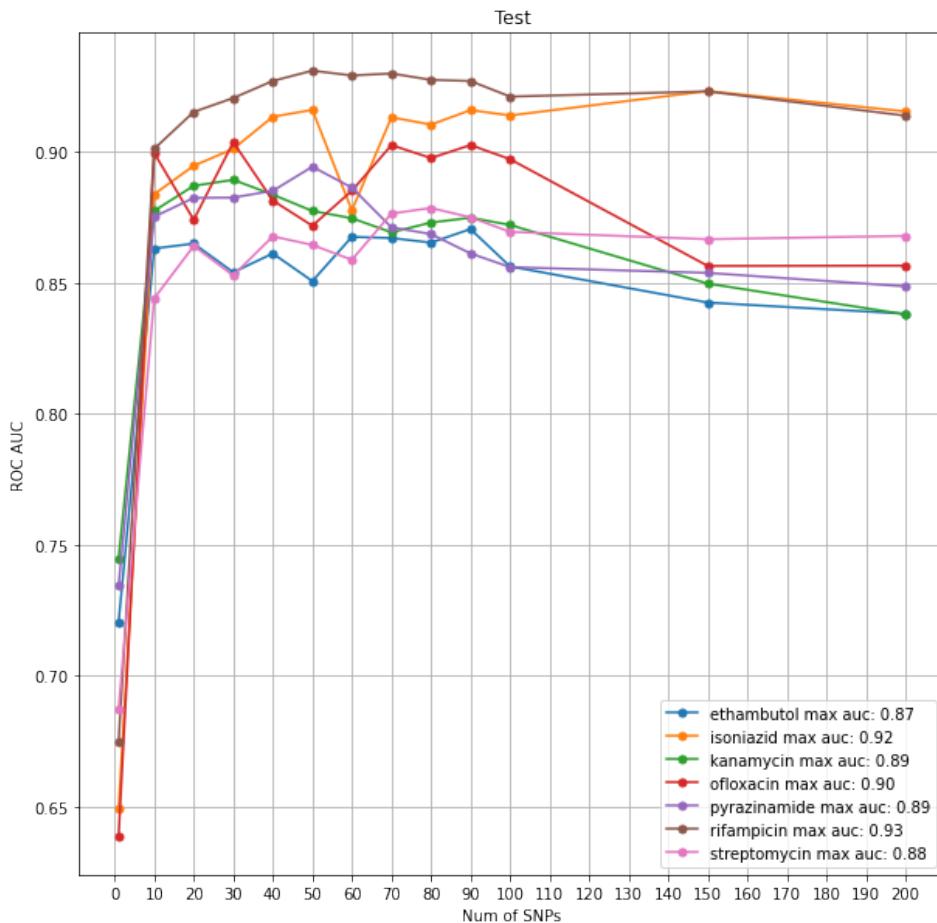


**Figure 1** Comparison between the test AUROC of our rule-based model (with no limit imposed on the rule size),  $\ell_1$ -regularized logistic regression and Random Forest.

| Drug         | Non-zero coef. $\leq 10$ | Non-zero coef. $\leq 20$ | Non-zero coef. $\leq 30$ | Non-zero coef. $\leq 40$ | Max AUROC |
|--------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|
| Ethambutol   | 0.87                     | 0.87                     | 0.88                     | 0.89                     | 0.91      |
| Isoniazid    | 0.90                     | 0.91                     | 0.92                     | 0.93                     | 0.96      |
| Kanamycin    | 0.90                     | 0.91                     | 0.91                     | 0.92                     | 0.92      |
| Ofloxacin    | 0.86                     | 0.90                     | 0.94                     | 0.94                     | 0.94      |
| Pyrazinamide | 0.81                     | 0.87                     | 0.89                     | 0.89                     | 0.90      |
| Rifampicin   | 0.92                     | 0.92                     | 0.94                     | 0.94                     | 0.97      |
| Streptomycin | 0.88                     | 0.88                     | 0.89                     | 0.90                     | 0.92      |

**Table 3** Comparison between AUROCs of models produced by  $\ell_1$ -regularized logistic regression with different numbers of non-zero regression coefficients.

## 2:12 An interpretable classification method for drug resistance



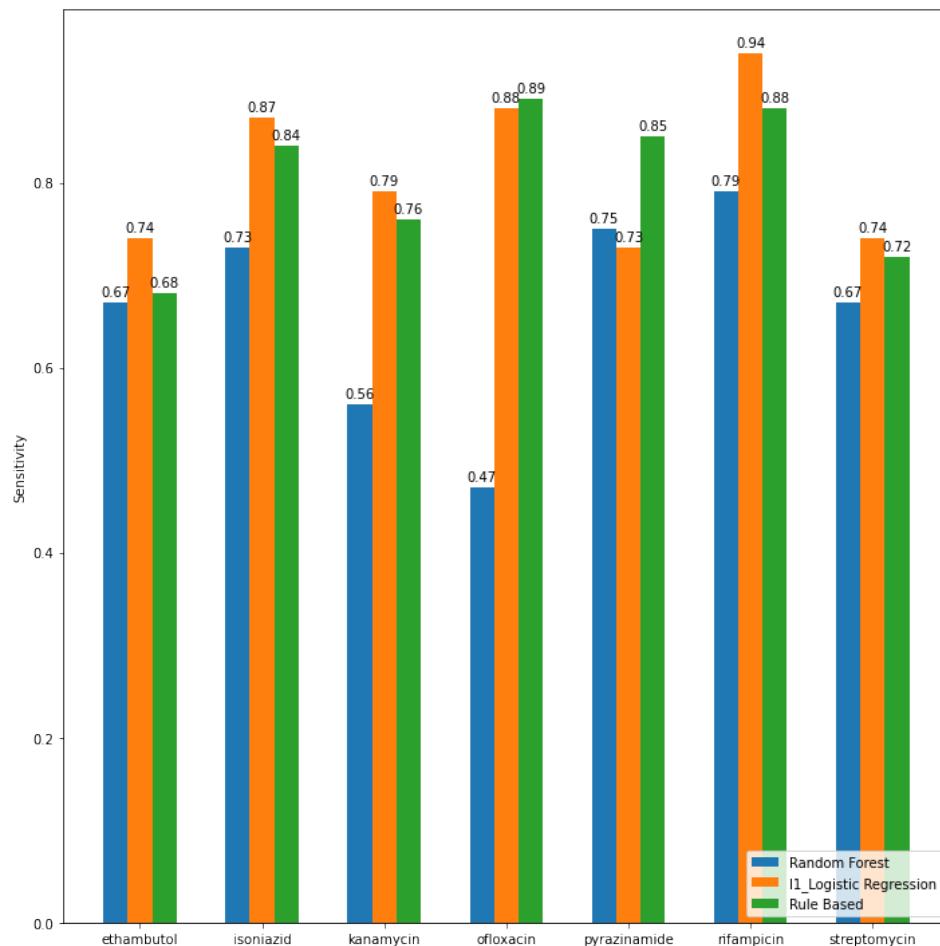
■ **Figure 2** Test AUROC for models trained on each drug with various rule size limits. Beyond a certain rule size, which varies with the drug, the AUROC of the predictive model no longer improves.

### 357 4.2 Our approach is able to produce simple models with high 358 AUROC

359 Figure 2 demonstrates the change in AUROC as we increase the limit on the rule size. Our  
360 results show that as the limit on the rule size increases, we get higher AUROC on the training  
361 set. However, on the test set, we see that the AUROC increases more slowly after a rule size  
362 limit of 10, and eventually starts to decrease.

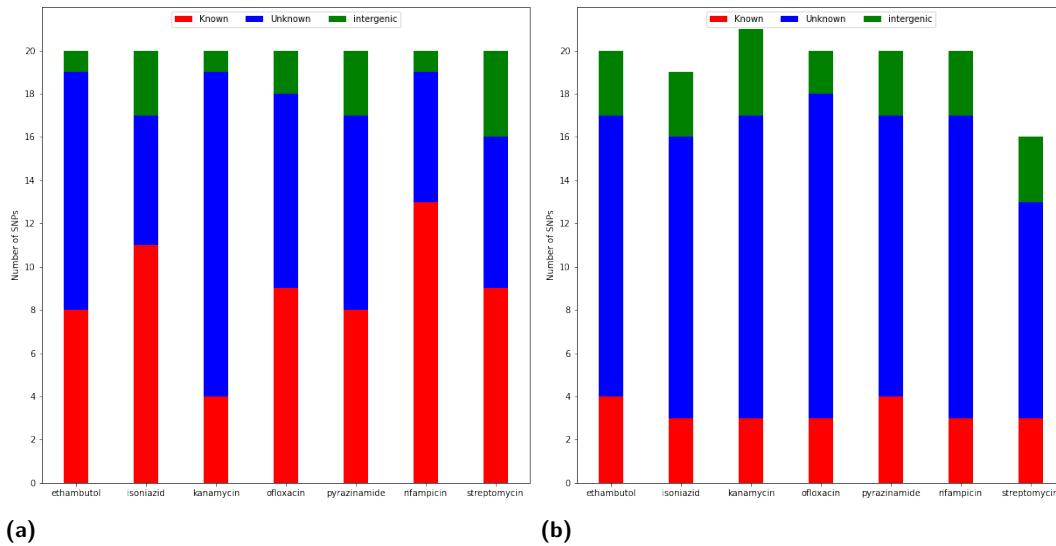
363 As shown in Figure 2 and Table 2, the AUROC does not increase significantly beyond a rule  
364 size limit of 10. Thus, our method is capable of producing models with a rule sizes small  
365 enough to keep the model simple yet keep the AUROC within 1% of the maximum.

366 Table 3 shows the same trend for the  $\ell_1$ -regularized logistic regression. We see that, at the low  
367 rule-size limits (such as 10 and 20), our approach produces a comparable performance to that  
368 of  $\ell_1$ -regularized logistic regression, while it is slightly worse for larger rule-size limits. At the  
369 same time, as we show in Figures 4a and 4b below, our approach results in the recovery of a  
370 lot more genes known to be associated with drug resistance than logistic regression.



■ **Figure 3** Comparison between the sensitivity of our rule-based method with the rule size limit set to 20,  $l_1$ -Logistic regression and Random Forest at around 90% specificity on the testing data.

## 2:14 An interpretable classification method for drug resistance



**Figure 4** (a) The number of SNPs in genes with known association to drug resistance, genes without such an association, and intergenic regions, in our models with at most 20 SNPs and a specificity of  $\geq 90\%$ . (b) The same numbers for  $\ell_1$ -Logistic regression models with as close as possible to 20 non-zero regression coefficients.

### 371 4.3 Our model uses genes previously associated to drug resistance

372 Our results show that the models produced by our method contains many SNPs in genes  
373 previously associated with drug resistance in *Mycobacterium tuberculosis*. Due to the large  
374 size of SNP groups (SNPs in perfect linkage disequilibrium), the causality of specific SNPs  
375 remains difficult to determine. However, many of the genes known to be relevant to resistance  
376 mechanisms appear among the possible variants that are pointed to by the selected groups  
377 of duplicated SNPs.

378 In Figure 4a we show the number of SNPs within different classes of genes found by our  
379 approach with rule size  $\leq 20$  and specificity  $\geq 90\%$ , where each gene is classified according to  
380 whether it has a known association to drug resistance (“known”) or not (“unknown”), with  
381 an additional class for SNPs in intergenic regions. We show these numbers for  $\ell_1$ -Logistic  
382 regression models with as close as possible to 20 non-zero regression coefficients in Figure 4b.  
383 A comparison between these figures suggests that when both approaches are restricted to a  
384 small number of features, our approach detects more relevant SNPs than  $\ell_1$ -logistic regression.  
385 The list of “known” genes, selected through a data-driven and consensus-driven process by a  
386 panel of experts, is the one in [31], containing 183 out of over 4,000 *M. tuberculosis* genes.  
387 We note that in both cases, a group of SNPs in perfect linkage disequilibrium was coded as  
388 “known” if at least one of the SNPs was contained in a known gene, “intergenic” if none of  
389 them appeared in a gene, and as “unknown” otherwise.

### 390 4.4 Running time

391 We run our code on a cluster node with 2 CPU sockets, each with an 8-core 2.60 GHz Intel  
392 Xeon E5-2640 v3 with 32 threads. The training of a single model with fixed hyper-parameters  
393 takes between 1 and 8 minutes. This suggests that once a suitable value is chosen for the  
394 hyper-parameters, the optimization used to determine the optimal rule can be performed

395 efficiently. Overall, producing the ROC curve for each drug takes between 3 and 18 hours,  
396 depending on the number of labeled isolates available for each drug.

397 **5 Conclusion**

398 In this paper, we introduced a new approach for creating rule-based classifiers. Our method  
399 utilizes the group testing problem and Boolean compressed sensing. It can produce inter-  
400 pretable, highly accurate, flexible classifiers which can be optimized for particular evaluation  
401 metrics.

402 We used our method to produce classifiers for predicting drug resistance in *Mycobacterium*  
403 *tuberculosis*. The classifiers' predictive accuracy was tested on a variety of antibiotics  
404 commonly used for treating tuberculosis, including five first-line and two second-line drugs.  
405 We show that our method could produce classifiers with a high AUROC, slightly less than that  
406 of unrestricted  $\ell_1$ -Logistic regression, and comparable to Random Forest, as well as  $\ell_1$ -Logistic  
407 regression restricted to a comparably small number of selected features for interpretability.  
408 In addition, we show that our method is capable of producing accurate models with a rule  
409 size small enough to keep the model understandable for human users. Finally, we show that  
410 our approach can provide useful insights into its input data - in this case, it could help  
411 identify genes associated with drug resistance.

412 We note that the presence of SNPs with identical presence/absence patterns, which would  
413 be referred to as being in perfect linkage disequilibrium (LD) in genetics [42], is common  
414 in bacteria such as *Mycobacterium tuberculosis* whose evolution is primarily clonal [17].  
415 For this reason, while the grouping of such SNPs together substantially greatly simplifies  
416 the computational task at hand, it is challenging to ascertain the exact representative of  
417 each group that should be selected to determine the drug resistance status of an isolate.  
418 Determining this representative would likely require larger sample sizes or a built-in prior  
419 knowledge of the functional effects of individual SNPs.

420 We also note that the genes we define as having a known association to drug resistance are  
421 not specific to the drug being tested, i.e. some of them may have been found to be associated  
422 with the resistance to a drug other than the one being predicted. This is to be expected,  
423 however, as the distinct resistance mechanisms are generally less numerous than antibiotics  
424 [44]. It will be interesting to see whether methods such as ours are able to detect specific,  
425 for instance, by testing it on data for newly developed antibiotics such as bedaquiline and  
426 delamanid [22].

427 Our goal in this paper was to introduce a novel method for producing interpretable models  
428 and explore its accuracy, descriptive ability, and relevance in detecting drug resistance in  
429 *Mycobacterium tuberculosis* isolates. In this study, the focus was mostly on the predictive  
430 accuracy, and we will explore the similarities and differences between our model and other  
431 interpretable techniques (both model-based and *post-hoc* ones) in future work.

432 **References**

433 1 Matthew Aldridge, Oliver Johnson, Jonathan Scarlett, et al. Group testing: an information  
434 theory perspective. *Foundations and Trends® in Communications and Information Theory*,  
435 15(3-4):196–392, 2019.

## 2:16 An interpretable classification method for drug resistance

436 2 Gustavo Arango-Argoty, Emily Garner, Amy Pruden, Lenwood S Heath, Peter Vikesland, and  
437 Liqing Zhang. DeepARG: a deep learning approach for predicting antibiotic resistance genes  
438 from metagenomic data. *Microbiome*, 6(1):1–15, 2018.

439 3 G. K. Atia and V. Saligrama. Boolean compressed sensing and noisy group testing. *IEEE*  
440 *Transactions on Information Theory*, 58(3):1880–1901, 2012.

441 4 P. Bradley, N. Gordon, T Walker, et al. Rapid antibiotic-resistance predictions from genome  
442 sequence data for *Staphylococcus aureus* and *Mycobacterium tuberculosis*. *Nature Communications*,  
443 6, 2015.

444 5 E. J. Candes and M. B. Wakin. An introduction to compressive sampling. *IEEE Signal*  
445 *Processing Magazine*, 25(2):21–30, 2008.

446 6 Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Compressed sensing and best  $k$ -term  
447 approximation. *Journal of the American mathematical society*, 22(1):211–231, 2009.

448 7 Francesc Coll, Ruth McNerney, José Afonso Guerra-Assunção, Judith R. Glynn, João Perdigão,  
449 Miguel Viveiros, Isabel Portugal, Arnab Pain, Nigel Martin, and Taane G. Clark. A robust  
450 snp barcode for typing *mycobacterium tuberculosis* complex strains. *Nature Communications*,  
451 2014. URL: <https://doi.org/10.1038/ncomms5812>.

452 8 Wouter Deelder, Sofia Christakoudi, Jody Phelan, Ernest Diez Benavente, Susana Campino,  
453 Ruth McNerney, Luigi Palla, and Taane Gregory Clark. Machine learning predicts accurately  
454 *Mycobacterium tuberculosis* drug resistance from whole genome sequencing data. *Frontiers in*  
455 *Genetics*, 10:922, 2019.

456 9 Alireza Doostan and Houman Owhadi. A non-adapted sparse approximation of PDEs with  
457 stochastic inputs. *Journal of Computational Physics*, 230(8):3015–3034, 2011.

458 10 Robert Dorfman. The detection of defective members of large populations. *The Annals of*  
459 *Mathematical Statistics*, 14(4):436–440, 1943.

460 11 Sorin Drăghici and R Brian Potter. Predicting HIV drug resistance with neural networks.  
461 *Bioinformatics*, 19(1):98–107, 2003.

462 12 M. F. Duarte and Y. C. Eldar. Structured compressed sensing: From theory to applications.  
463 *IEEE Transactions on Signal Processing*, 59(9):4053–4085, 2011.

464 13 Y.C. Eldar and G. Kutyniok. *Compressed Sensing: Theory and Applications*. Cambridge  
465 University Press, 2012. URL: <https://books.google.ca/books?id=9ccLAQAAQBAJ>.

466 14 Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug  
467 resistance from whole-genome sequences. *Genome Med.*, 7:51, 2015.

468 15 Silke Feuerriegel, Viola Schleusener, Patrick Beckert, Thomas A. Kohl, Paolo Miotto, Daniela M.  
469 Cirillo, Andrea M. Cabibbe, Stefan Niemann, and Kurt Fellenberg. PhyResSE: a web tool  
470 delineating *Mycobacterium tuberculosis* antibiotic resistance and lineage from whole-genome  
471 sequencing data. *Journal of Clinical Microbiology*, 53(6):1908–1914, 2015.

472 16 S. Foucart and H. Rauhut. *A Mathematical Introduction to Compressive Sensing*. Applied  
473 and Numerical Harmonic Analysis. Springer New York, 2013. URL: <https://books.google.ca/books?id=zb28BAAQBAJ>.

475 17 Sébastien Gagneux. Ecology and evolution of *Mycobacterium tuberculosis*. *Nat Rev Microbiol*,  
476 16:202–213, 2018.

477 18 Li H1, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin  
478 R, and 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format  
479 and samtools. *Bioinformatics*, 25(16):2078–2079, 2009.

480 19 Matthew A Herman and Thomas Strohmer. High-resolution radar via compressed sensing.  
481 *IEEE transactions on signal processing*, 57(6):2275–2284, 2009.

482 20 IBM. IBM ILOG CPLEX Optimization Studio V12.10.0 documentation. <https://www.ibm.com/support/knowledgecenter/SSSA5P>, 2020.

484 21 H. Iwai, M. Kato-Miyazawa, T Kirikae, and T. Miyoshi-Akiyama. CASTB (the comprehensive  
485 analysis server for the *Mycobacterium tuberculosis* complex): A publicly accessible web server  
486 for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical  
487 isolates. *Tuberculosis*, pages 843–844, 2015.

488 22 Suha Kadura, Nicholas King, Maria Nakhoul, Hongya Zhu, Grant Theron, Claudio U Köser,  
489 and Maha Farhat. Systematic review of mutations associated with resistance to the new and  
490 repurposed *Mycobacterium tuberculosis* drugs bedaquiline, clofazimine, linezolid, delamanid  
491 and pretomanid. *Journal of Antimicrobial Chemotherapy*, 05 2020. dkaa136.

492 23 Rasko Leinonen, Ruth Akhtar, Ewan Birney, Lawrence Bower, Ana Cerdeno-Tárraga, et al.  
493 The European Nucleotide Archive. *Nucleic Acids Research*, 39:D28–31, 2011.

494 24 Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and International Nucleotide Se-  
495 quence Database Collaboration. The sequence read archive. *Nucleic acids research*,  
496 39(suppl\_1):D19–D21, 2010.

497 25 H Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*,  
498 2013.

499 26 Michael Lustig, David Donoho, and John M Pauly. Sparse MRI: The application of compressed  
500 sensing for rapid MR imaging. *Magnetic Resonance in Medicine: An Official Journal of the  
501 International Society for Magnetic Resonance in Medicine*, 58(6):1182–1195, 2007.

502 27 D. Malioutov and M. Malyutov. Boolean compressed sensing: LP relaxation for group testing.  
503 In *2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,  
504 pages 3305–3308, 2012.

505 28 Dmitry Malioutov and Kush Varshney. Exact rule learning via Boolean compressed sensing.  
506 In *International Conference on Machine Learning*, pages 765–773, 2013.

507 29 L Mathelin and KA Gallivan. A compressed sensing approach for partial differential equations  
508 with random input data. *Communications in computational physics*, 12(4):919–954, 2012.

509 30 Arya Mazumdar. On almost disjunct matrices for group testing. In Kun-Mao Chao, Tsan-  
510 sheng Hsu, and Der-Tsai Lee, editors, *Algorithms and Computation*, pages 649–658, Berlin,  
511 Heidelberg, 2012. Springer Berlin Heidelberg.

512 31 Paolo Miotto, Belay Tessema, Elisa Tagliani, Leonid Chindelevitch, et al. A standardised  
513 method for interpreting the association between mutations and phenotypic drug-resistance in  
514 *Mycobacterium tuberculosis*. *European Respiratory Journal*, 50(6), 2017.

515 32 W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Interpretable  
516 machine learning: definitions, methods, and applications. *arXiv*, 2019.

517 33 Balas Kausik Natarajan. Sparse approximate solutions to linear systems. *SIAM journal on  
518 computing*, 24(2):227–234, 1995.

519 34 Tra-My Ngo and Yik-Ying Teo. Genomic prediction of tuberculosis drug-resistance: bench-  
520 marking existing databases and prediction algorithms. *BMC Bioinformatics*, 20(1):68, 2019.

521 35 Jim O'Neill. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations.  
522 Technical report, Review on Antimicrobial Resistance, 2014. URL: <https://amr-review.org/Publications.html>.

## 2:18 An interpretable classification method for drug resistance

524 36 World Health Organization. Antimicrobial resistance: global report on surveillance. Technical  
525 report, WHO, 2014.

526 37 World Health Organization. Global tuberculosis report 2019. Technical report, WHO, 2019.

527 38 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,  
528 P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,  
529 M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine  
530 Learning Research*, 12:2825–2830, 2011.

531 39 Ryan Poplin, Valentín Ruano-Rubio, Mark A. DePristo, Tim J. Fennell, Mauricio O. Carneiro,  
532 Geraldine A. Van der Auwera, David E. Kling, Laura D. Gauthier, Ami Levy-Moonshine,  
533 David Roazen, Khalid Shakir, Joel Thibault, Sheila Chandran, Chris Whelan, Monkol Lek,  
534 Stacey Gabriel, Mark J Daly, Ben Neale, Daniel G. MacArthur, and Eric Banks. Scaling  
535 accurate genetic variant discovery to tens of thousands of samples. *bioRxiv*, 2017.

536 40 Mario C Raviglione and Ian M Smith. XDR tuberculosis—implications for global public health.  
537 *New England Journal of Medicine*, 356(7):656–659, 2007.

538 41 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i trust you?" Explaining  
539 the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International  
540 Conference on Knowledge Discovery and Data Mining*, pages 1135–1144, 2016.

541 42 James Emmanuel San, Shakuntala Baichoo, Aquillah Kanzi, Yumna Moosa, Richard Lessells,  
542 Vagner Fonseca, John Mogaka, Robert Power, and Tulio de Oliveira. Current affairs of  
543 microbial genome-wide association studies: Approaches, bottlenecks and analytical pitfalls.  
544 *Frontiers in Microbiology*, 10:3119, 2020. URL: <https://www.frontiersin.org/article/10.3389/fmicb.2019.03119>.

546 43 V. Schleusener, C. Köser, P. Beckert, et al. Mycobacterium tuberculosis resistance prediction  
547 and lineage classification from genome sequencing: comparison of automated analysis tools.  
548 *Scientific Reports*, 7, 2017.

549 44 Almeida Da Silva, Pedro Eduardo, Palomino, and Juan Carlos. Molecular basis and mechanisms  
550 of drug resistance in Mycobacterium tuberculosis: classical and new drugs. *Journal of  
551 Antimicrobial Chemotherapy*, 66(7):1417–1430, 05 2011.

552 45 Angela M Starks, Enrique Avilés, Daniela M Cirillo, Claudia M Denkinger, David L Dolinger,  
553 Claudia Emerson, Jim Gallarda, Debra Hanna, Peter S Kim, Richard Liwski, et al. Collaborative  
554 effort for a centralized worldwide tuberculosis relational sequencing data platform.  
555 *Clinical Infectious Diseases*, 61(suppl\_3):S141–S146, 2015.

556 46 A Steiner, D Stucki, M Coscolla, S Borrell, and S Gagneux. KvarQ: targeted and direct variant  
557 calling from fastq reads of bacterial genomes. *BMC Genomics*, 15, 2014.

558 47 Alice R Wattam, David Abraham, Oral Dalay, Terry L Disz, Timothy Driscoll, Joseph L  
559 Gabbard, Joseph J Gillespie, Roger Gough, Deborah Hix, Ronald Kenyon, et al. PATRIC, the  
560 bacterial bioinformatics database and analysis resource. *Nucleic acids research*, 42(D1):D581–  
561 D591, 2014.

562 48 Yang Yang, Katherine E Niehaus, Timothy M Walker, Zamin Iqbal, A Sarah Walker, Daniel J  
563 Wilson, Tim EA Peto, Derrick W Crook, E Grace Smith, Tingting Zhu, et al. Machine  
564 learning for classifying tuberculosis drug-resistance from DNA sequencing data. *Bioinformatics*,  
565 34(10):1666–1671, 2018.