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Abstract

Over the past fifty years, tremendous effort has been devoted to computational methods for
predicting properties of ligands that bind macromolecular targets, a problem critical to rational
drug design. Such methods generally fall into two categories: physics-based methods, which
directly model ligand interactions with the target given the target’s three-dimensional (3D)
structure, and ligand-based methods, which predict ligand properties given experimental
measurements for similar ligands. Here we present a rigorous statistical framework to combine
these two sources of information. We develop a method to predict a ligand’s pose—the 3D
structure of the ligand bound to its protein target—that leverages a widely available source of
information: a list of other ligands that are known to bind the same target but for which no 3D
structure is available. This combination of physics-based and ligand-based modeling improves
upon state-of-the-art pose prediction accuracy across all major families of drug targets. As an
illustrative application, we predict binding poses of antipsychotics and validate the results
experimentally. Our statistical framework and results suggest broad opportunities to predict
diverse ligand properties using machine learning methods that draw on physical modeling and
ligand data simultaneously.
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Introduction

Binding of small-molecule ligands to proteins is one of the most fundamental processes in
biology, and the great majority of drugs are ligands that exert their effects by binding to a target
protein. Predicting properties of protein—ligand interactions—including three-dimensional (3D)
structures, binding affinities, binding kinetics, selectivity, and functional effects—is critical both
to the rational design of effective medicines and to solving major problems in molecular biology.
An enormous amount of work has thus focused on the development of computational methods to
predict these properties (1, 2).

Such computational methods generally fall into two categories. “Physics-based” approaches use
a 3D structure of the target protein and exploit an understanding of the physics of protein—ligand
interactions (3). “Ligand-based” approaches use experimental measurements for many ligands of
a given property (e.g., affinity) at a given target and employ pattern matching to predict the
corresponding property for other ligands (4, 5).

Can one combine these two paradigms, and the orthogonal sources of information they leverage,
in a systematic, principled manner? This has proven challenging, particularly when making
predictions for ligands substantially different from those for which experimental data is
available. It is especially difficult when one wishes to predict properties different from those
measured experimentally—e.g., to predict ligand properties that are difficult to determine
experimentally by exploiting experimental data that is easy to collect.

Here we present a method, ComBind, that overcomes these obstacles to substantially improve
prediction of a ligand’s binding pose at a given target protein. Determining a ligand’s binding
pose—the three-dimensional coordinates of the ligand’s atoms when bound to the target—is
critical to structure-based optimization of the ligand’s pharmacological properties, as well as to
understanding how it influences its target. Indeed, knowledge of a ligand’s binding pose is so
advantageous that researchers in industry and academia often spend months or years to solve an
experimental structure of a particular ligand in complex with a target protein.

Because experimental structure determination is time-consuming, expensive, and sometimes
impossible, tremendous effort has been invested in the development of in silico “docking”
methods for predicting ligand binding poses (6-15). These are physics-based approaches: given a
structure of the target protein, they sample many candidate poses of a ligand and rank these
poses using scoring functions that approximate the energetic favorability of each pose, typically
by capturing interatomic interactions such as hydrogen bonds and van der Waals forces (Fig.
1A). Despite the development of dozens of docking software packages over the past 40 years,
binding pose predictions are typically correct less than half the time for ligands substantially
different from those in the experimental structures used for docking (Supplementary Table 1).

ComBind improves binding pose prediction by exploiting a widely available type of non-
structural data: the identities of other ligands known to bind the same target (Fig. 1B). Collecting
such data is typically far easier than structure determination. Indeed, such data is routinely
collected in drug development campaigns and is already available in public databases such as
ChEMBL for the vast majority of recognized drug targets (16).

How can a list of other ligands that bind to the target protein—but whose binding poses are
unknown—be used to improve pose prediction? Medicinal chemists have long recognized that
distinct ligands tend to bind a given protein in similar poses; even ligands sharing no common
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78  substructure often form similar interactions with the target protein (Fig. 2A). This intuition has a
79  sound basis in physics. For example, the energetic favorability of a protein—ligand hydrogen

80  bond depends on the mobility of the protein atoms involved and their ability to form hydrogen
81  bonds with water in the absence of the ligand (17). These factors contribute similarly to binding
82  of different ligands but are difficult to predict from a static protein structure alone.

83  To develop ComBind, we first use a large set of experimentally determined structures to quantify
84  the medicinal chemist’s intuition—in particular, to determine the probability that binding poses
85  for different ligands will share various features. We use the results to define a scoring function
86  that predicts the favorability of a set of binding poses comprising one pose for each ligand

87  known to bind the target protein. By contrast to the ComBind scoring function, scoring functions
88  typically utilized by docking software assign a score to the pose of a single ligand at a time; we
89  thus refer to them as per-ligand scoring functions. The ComBind scoring function takes into

90  account the similarities and differences between the poses of different ligands as well as the

91  energetic favorability of each ligand’s pose, as evaluated by a per-ligand scoring function.

92  We benchmark ComBind by comparing its results to 245 experimentally determined ligand

93  binding poses across 30 proteins representing all major families of drug targets. ComBind

94  improves the pose prediction accuracy of state-of-the-art docking software for all major drug

95  target families. For G-protein-coupled receptors (GPCRs), which are of particular interest both

96  Dbecause they represent the largest family of drug targets and because their structures are

97  notoriously difficult to determine experimentally, ComBind selects a correct binding pose over

98  60% more frequently, increasing the probability of correct prediction from 47% to 76%.

99  ComBind’s results could be improved further by utilizing proprietary data generated as part of a
100  drug discovery project (e.g., additional ligands found to bind the target).

101  We also illustrate the use of ComBind to predict the previously unknown binding poses of

102 several antipsychotics at the D> dopamine receptor (D2R), an important drug target for which
103 experimental structure determination has proven difficult. We validate ComBind’s predictions—
104  which differ from those of state-of-the-art docking software—using mutagenesis experiments.
105  The results reveal structural motifs determining the potency and subtype-selectivity of D2R-

106  targeted drugs.

107  ComBind provides a rigorous statistical foundation for combining physics-based structural

108  modeling of protein-ligand interactions with inference based on experimental data for other

109  ligands. It effectively leverages data on ligands that share no common scaffold or substructure
110 with the ligand whose pose is predicted. It allows prediction of a difficult-to-determine ligand
111  property based on a completely different type of data for other ligands. This method thus

112 suggests a broad range of possibilities for combining physics-based and ligand-based approaches
113 to improve prediction of various ligand properties by exploiting diverse sources of data.

114 Results

115  Overview of method

116  Given several ligands known to bind a target, ComBind solves for all their binding poses
117  simultaneously. We use per-ligand docking software to generate a list of candidate poses for
118  each ligand. ComBind then selects a set of poses—one for each ligand—that optimizes the
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ComBind scoring function. The ComBind scoring function considers both the favorability of
each ligand’s pose, as assessed by a per-ligand scoring function, and the likelihood that a set of
poses sharing a given level of similarity will be correct or incorrect.

Here we use the commercial docking software package Glide (9, 10) to generate candidate poses
and assign a per-ligand score to each. We selected Glide because it is widely used in the
pharmaceutical industry and because it ranks among the most accurate docking packages in
comparative studies (18, 19). We emphasize, however, that the ComBind approach can utilize
any per-ligand scoring function and pose sampling strategy, including those implemented in any
per-ligand docking package.

Quantifying the similarity of binding poses for distinct ligands

We begin by quantifying the medicinal chemist’s intuition that different ligands tend to adopt
structurally similar poses when binding the same target protein. We wish not only to measure the
similarity of correct poses of different ligands, but also to compare the similarity of correct poses
to that of other poses ranked highly by per-ligand docking software. We consider two notions of
similarity: similarity of protein—ligand interactions and similarity in position of common ligand
substructures.

We compiled a set of 385 protein—ligand complex structures for 28 target proteins representing
all major classes of small-molecule drug targets (Supplementary Table 2) (20). We docked
each of the ligands using Glide and selected the 100 most highly ranked poses for each ligand.
To reflect practical application of docking, we docked each ligand into an experimental structure
solved in the presence of a ligand distinct from any of those being docked (“cross-docking”; see
Methods). Our docking procedure did not utilize the experimentally determined poses of ligands
in any way.

For all pairs of ligands for each target protein, we compute the similarity between each pose of
one ligand and each pose of the other ligand. We use this data to calculate a probability
distribution over similarity values; we refer to this distribution as the reference distribution.

We also compute similarities between each pair of correct poses (again, one pose per ligand),
where a pose is considered correct if it is within 2.0 A root mean squared deviation (RMSD) to
the experimentally determined pose. We use these data to calculate a second probability
distribution over similarity values, the native distribution. When calculating the native
distribution, we use correct poses from the lists generate by Glide instead of using the
experimentally determined poses directly, such that the similarity statistics we calculate will be
most applicable to candidate poses considered during computational pose prediction.

We evaluate pose similarity separately for different types of protein—ligand interactions:
hydrogen bonds, salt bridges, and hydrophobic contacts (Fig. 2B, Supplementary Fig. 1A).
Given a pair of poses, we evaluate the similarity for each interaction type by cataloging the set of
protein residues with which each ligand forms an interaction of the given type and then
comparing the sizes of the intersection and union of these sets. Their ratio (the Tanimoto
coefficient (21)) increases when shared interactions are formed and decreases when either ligand
forms an unshared interaction. To make this metric well-defined when neither ligand forms any
interactions of a particular type, we add pseudo counts. For all interaction types, the native
distribution exhibits higher similarity than the reference distribution—that is, pairs of correct
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161  poses form more similar interactions than other pairs of poses ranked highly by the per-ligand
162  scoring function (Fig. 2B).

163 We define substructure similarity as the RMSD of atom positions of the largest chemical

164  substructure shared by a pair of ligands (Supplementary Fig. 1B). We evaluated substructure
165  similarity for pairs of ligands that shared a substructure at least half the size of the smaller ligand.
166  For this similarity metric, too, the native distribution exhibits higher similarity than the reference
167  distribution, indicating that the common substructure tends to be more similarly positioned in
168  pairs of correct poses than in other pairs of poses ranked highly by the per-ligand scoring

169  function (Fig. 2C).

170  These results suggest that the similarity of correct poses is not adequately captured by a state-of-
171  the-art per-ligand scoring function. In further support of this point, we also calculated probability
172 distributions of similarity between the poses that the per-ligand scoring function ranks first for
173 each ligand (Supplementary Fig. 2). We found that these distributions also exhibited lower

174  similarity than the corresponding native distributions.

175  Derivation of a statistical potential for sets of binding poses

176~ We used the similarity distributions described in the previous section to derive a statistical
177  potential that—instead of acting on features of a single pose, as in previous docking software—
178  acts on a set of hypothesized poses, one for each ligand known to bind the target protein.

179  EComBind(pgges for a set of ligands) =

180 (n—1) Z Ed°ck(pose)

ligands
frequency of pose pair similarity in native distribution
181 + Z Z ~log

frequency of pose pair similarity in reference distribution ’
ligand pairs similarity
types

182  where n is the total number of ligands.

183  The first component evaluates the energetic favorability of each ligand’s pose individually using
184  aper-ligand scoring function E9°% (e.g., a scoring function used in Glide or another docking
185  software package). The summation is over ligands known to bind the target protein, with “pose”
186  referring to the hypothesized pose for each ligand.

187  The second component rewards sets of poses with a degree of similarity that is more often

188  observed in correct poses than in other poses ranked highly by the per-ligand scoring function.
189  Here the outer summation is over pairs of distinct ligands known to bind the target protein, and
190  the inner summation is over the similarity measures shown in Fig. 2B and 2C: hydrogen bond
191  similarity, salt bridge similarity, hydrophobic contact similarity, and substructure similarity.
192 “Pose pair similarity” refers to the calculated similarity value of the given type for the

193 hypothesized poses of the given ligand pair. The “native distribution” and “reference

194  distribution” for each similarity type are determined as described above. The resulting negative
195  log likelihood ratios have the mathematical properties of an energy, namely that an additive
196  decrease in energy corresponds to a multiplicative increase in likelihood ratio, allowing for
197  straightforward integration with standard per-ligand docking scores, which are typically in units
198  of energy (Supplementary Fig. 3). For pairs of ligands that do not share a substructure at least
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199  half the size of the smaller ligand, the substructure similarity term is not included in the
200  summation.

201  The second component acts as a correction to the first. If the per-ligand scoring function were
202  perfect, in the sense that it could perfectly distinguish correct poses from incorrect ones, the

203  terms in the second component would consistently assume values of zero. Because per-ligand
204  scoring functions remain imperfect—and, in particular, tend to underpredict the likelihood that a
205  set of ligands will adopt similar poses—the second component typically assumes non-zero

206  values.

207  Structure prediction informed by non-structural data

208  The ComBind pose prediction method identifies a set of binding poses—one for each of a set of
209  ligands known to bind the target protein—that minimizes the ComBind potential. More

210  specifically, given a target protein and a query ligand whose binding pose we wish to predict, we
211  proceed as follows:

212 1. Compile a set of other ligands known to bind the target protein (e.g., from a public

213 database such as ChEMBL or from ligands tested as part of a drug discovery project). We
214 refer to these as helper ligands.

215 2. Dock the query ligand and each helper ligand individually to the target protein (with a
216 per-ligand docking software package), generating many candidate poses and associated
217 docking scores for each ligand.

218 3. Determine the set of poses—one per ligand—that minimizes the ComBind potential. We
219 use an expectation-maximization algorithm for this purpose (see Methods).

220  As an illustrative example, we apply ComBind to predict binding poses for ligands at the pi-
221  adrenergic receptor (B1AR), the primary target of the beta blocker drugs that are widely used to
222 treat heart attack, heart failure, and hypertension. We selected 11 diverse ligands known to bind
223 B1AR, including both beta blockers and beta agonists. We docked 11 distinct ligands to a

224 crystallographic B1AR structure using Glide, producing up to 100 candidate poses for each

225  ligand. We then solved for a set of poses—one per ligand—that minimizes the ComBind

226  potential (Fig. 3A). The crystallographic B1AR structure used for docking was determined in
227  complex with a ligand distinct from any of the 11 docked ligands. Crystallographic ligand poses
228  were not used in any way by Glide or ComBind.

229  Glide’s top-ranked pose was correct for 4 of 11 ligands, whereas the pose selected by ComBind
230  was correct for 10 of 11 ligands (Fig. 3B). In ComBind’s selected poses—as in experimentally
231  determined poses—most of the ligands form a salt bridge with D121 and hydrogen bonds with
232 S211 and N329 (Fig. 3C). In comparison, the poses ranked most highly by Glide’s per-ligand
233 scoring function exhibited more varied hydrogen bonds and salt bridges (Fig. 3C).

234  We emphasize that ComBind does not require that all ligands adopt similar poses or form similar
235  interactions. ComBind correctly predicts, for example, that two of these B1AR ligands do not
236  form a hydrogen bond with S211.

237  ComBind outperforms a state-of-the-art method on a diverse benchmark set

238  We benchmarked ComBind on a set of 245 protein—ligand complexes representing all major
239  families of drug targets. We took several steps to mimic a real-world use case. First, when
240  predicting the binding pose of a query ligand with ComBind, we used helper ligands selected
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241  from the public ChEMBL database (16). We did not use any experimental information on poses
242 of helper ligands; indeed, for the vast majority of helper ligands selected, poses have not been
243  determined experimentally. Second, we never used a target protein structure determined in the
244  presence of a ligand that shares a chemical scaffold with the query ligand, ensuring that we

245  performed only “cross-docking” and avoided the easier but less practically relevant case of “self-
246  docking” (see Methods). Finally, when predicting ligand binding poses at a given target protein,
247  we omitted all structures involving that protein when constructing the distributions used to define
248  the ComBind potential.

249  We evaluated two ways of choosing, from ChEMBL, helper ligands for use in ComBind: (1) a
250  diverse set of ligands with the highest binding affinity (‘“high affinity”), and (2) the ligands

251  sharing the largest substructure with the query ligand (“congeneric”). Both of these selection
252 criteria lead to substantial performance improvements over Glide (Fig 4, Supplementary Fig.
253  4), indicating that ComBind could be applied effectively using either a diverse set of ligands
254  identified from a high-throughput screen or a congeneric series of ligands generated during lead
255  optimization.

256  ComBind’s performance improves with the use of more helper ligands (up to 20, the maximum
257  number we tested) (Fig. 4B, Supplementary Fig. 4B). Interestingly, ComBind substantially
258  outperforms Glide even when using only a single helper ligand.

259  In the ComBind benchmark results described below (Fig. 4A), we used 20 helper ligands for
260  each query ligand, selected from ChEMBL by the high-affinity criterion. When computing

261  overall results, we averaged across target families, weighted the performance for each family by
262  the fraction of FDA-approved drugs targeting that family (20).

263  On average, ComBind selects a correct pose for 57% of all ligands and 70% of ligands for which
264  at least one correct pose was included among the list of candidates considered—a 30%

265 improvement over Glide in both cases (Supplementary Table 1). ComBind improves pose

266  prediction performance for all target families considered. Even at the individual target level, we
267  find that use of ComBind hardly ever degrades performance: ComBind only reduced

268  performance for one of the 30 targets considered, and this performance reduction was minor.

269  Removing any of the similarity types from the ComBind potential reduced ComBind’s

270  performance (Supplementary Fig. 5). In particular, both protein—ligand interaction similarity
271  and substructure similarity contribute substantially to ComBind’s accuracy. Protein—ligand
272 interaction similarity is the more important of the two, particularly when using a diverse set of
273 helper ligands.

274  Predicting binding poses of antipsychotics at the D, dopamine receptor

275  To illustrate the practical application of ComBind, we predicted the binding poses of three

276  antipsychotic drugs—pimozide, benperidol, and spiperone—at their target, the D> dopamine

277  receptor (D2R). Knowledge of these binding poses could aid ongoing efforts to develop

278 antipsychotics with improved pharmacological properties, including ligands that bind selectively
279  to D2R over other dopamine receptors (Butini et al., 2016; Moritz et al., 2018). Solving

280  experimental structures of D2R has proven difficult, despites decades of effort (Wang et al.,

281 2018, Yin et al., 2020). At the time we made these predictions, the only available DR structure
282  was for D2R bound to risperidone (22), a ligand substantially different from those whose poses
283  we wished to predict.
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284  We predicted binding poses for pimozide, benperidol and spiperone, as well as the tool

285  compound mespiperone, using both Glide and ComBind (see Methods). For spiperone and

286  mespiperone, ComBind and Glide predict similar poses. For pimozide and benperidol, however,
287  ComBind’s predictions are different from Glide’s: a fluorobenzene ring of each compound is
288  positioned near the top of the binding pocket by Glide and near the bottom by ComBind (Fig.
289  5A,B, Supplementary Fig. 6A, B).

290  To test ComBind’s predictions, we designed mutagenesis experiments. First, we tested a series of
291  mutations of Ser193 (S193), which is positioned uncomfortably close to the second

292  fluorobenzene ring of pimozide in ComBind’s predicted pose but not in Glide’s (Fig. 5C).

293  Indeed, mutating S193 to a larger residue (Val or Leu) decreases pimozide’s affinity, while

294  mutating S193 to a smaller residue (Ala) increases pimozide’s affinity. Such effects are not

295  observed for benperidol, which is identical to pimozide except that it lacks the fluorobenzene
296  ring that contacts S193 in pimozide (Fig. 5D). Indeed, benperidol’s affinity actually increases
297  when S193 is mutated to a larger residue. These results are consistent with ComBind’s predicted
298  poses but not with Glide’s: Glide predicts that pimozide and benperidol position nearly identical
299  chemical groups in essentially identical positions near S193. Additional experiments involving
300  mutation of residues surrounding the top and bottom of the binding pocket also support

301 ComBind’s predictions (Supplementary Fig. 6C).

302 Shortly before submission of this manuscript, a haloperidol-bound D2R crystal structure
303  appeared (Fan et al., 2020). Haloperidol shares a common substructure with the ligands we
304  considered, and this substructure is positioned similarly in in the crystal structure and in
305 ComBind’s predictions, further supporting the accuracy of these predictions.

306  Our results highlight a structural motif contributing to potent and selective binding to D2R. The
307  antipsychotics we studied have picomolar affinity at D;R and bind more tightly to D2R than to
308  the D3 dopamine receptor (D3R). Haloperidol, by contrast, binds with weaker (nanomolar)

309 affinity and is not selective for D2R over D3R. Comparison of the binding poses reveals that the
310  primary difference in the protein—ligand interactions is that all of the antipsychotics we studied—
311  but not haloperidol—place a ring structure in the “extracellular vestibule,” located above the

312 orthosteric site where dopamine binds. The extracellular vestibule has much higher sequence

313 diversity among the different dopamine receptors than does the orthosteric site, supporting the
314  hypothesis that ligand interactions with this region contribute to selectivity. Optimizing ligands
315  to strengthen these interactions could lead to drugs with greater selectivity for D2R.

316 Discussion

317  We have introduced a statistical potential that acts on a set of structures for different protein-
318  ligand complexes, rather than on a single structure. We have used this potential to develop
319 ComBind, a method that increases the accuracy of binding pose prediction by simultaneously
320  considering the poses of multiple ligands known to bind the target.

321  Importantly, ComBind does not assume that all ligands considered bind in similar poses. Instead,
322 it considers both the favorability of each individual ligand’s pose, as evaluated by a per-ligand
323  scoring function, and the tendency of different ligands to adopt similar poses, as determined by
324  analysis of hundreds of experimental structures. ComBind often predicts correctly that two
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325  ligands position their common scaffold differently, or that they form substantially different
326  interactions with the binding pocket (Supplementary Figs. 7 and 8).

327  Applicability and robustness

328  ComBind is broadly applicable. When benchmarking ComBind, we simply selected, from the
329  ChEMBL database, helper ligands that bind to the same target as the query ligand, without

330  requiring that these ligands be similar in any way. For most major drug targets, numerous

331  binders have already been identified. Even for a completely novel target, several binders would
332 typically be identified in the very early stages of a drug discovery project by high-throughput
333 screening.

334  Binding pose prediction is important in many areas beyond drug discovery. These include the
335  study of biological phenomena such as cellular signaling (e.g., binding of hormones and

336  neurotransmitters), sensation (e.g., binding of odorants and flavorants), enzyme function (e.g.,
337  binding of nutrients and other metabolic substrates), and defense mechanisms (e.g., binding of
338  toxins and antibiotics). Pose prediction is also important to understanding the effects of genetic
339  variation on responses to both naturally occurring ligands and drugs, which is essential to

340  personalized medicine (23). In each of these cases, multiple ligands are typically known to bind
341  the targets of interest, and ComBind may thus be used to improve binding pose prediction.

342  ComBind is highly robust. This is illustrated by its accuracy in our benchmarks, which used

343  helper ligands selected automatically according to approximate affinity values listed in the

344  ChEMBL database. This data is noisy, not only because ligand affinities were measured by many
345  labs using different assays, but also because the data often includes values that were inputted

346  incorrectly (24, 25). In addition, ligands selected automatically from ChEMBL sometimes bind
347  to completely different binding pockets on the same target.

348  ComBind generally produces an accurate prediction for the query ligand even when no correct
349  candidate poses are generated for many helper ligands. Supplementary Table 3 shows an
350  example in which the majority of the ligands considered had no correct candidate pose;

351  ComBind nevertheless outperformed per-ligand docking.

352 The per-ligand docking software used to generate and score individual ligand poses in our

353  current implementation of ComBind treats the protein as rigid. Nevertheless, ComBind generally
354  proves effective even when considering a set of ligands that bind diverse protein conformations.
355  For example, the B1AR ligands considered in Fig. 3 include both agonists, which bind

356  preferentially to the protein’s active conformation, and inverse agonists, which bind

357  preferentially to its inactive conformation (Supplementary Table 4).

358 Relationship to previous work

359  ComBind builds upon several methods that combine ligand-based and physics-based information
360  in more limited settings. Three-dimensional quantitative structure-activity relationship (3D

361  QSAR) techniques, including field-based methods and 3D pharmacophore methods, are ligand-
362  based approaches that consider potential 3D conformations of many ligands (26-28). These

363  methods attempt to align ligands in three dimensions, but they do not require a structure of the
364  target protein, and even when such a structure is available, it is typically used only in a limited
365 way—e.g., to define excluded volume (29). 3D QSAR methods require data for a large number
366  of binders and are generally not applied to pose prediction.
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367 ComBind also draws inspiration from previous methods that predict binding poses of multiple
368  known binders simultaneously. Some of these methods consider a congeneric series of ligands
369  and require that the shared scaffold is similarly placed (30, 31). Others use either the number of
370  similarly placed functional groups (32) or the number of shared interactions (33) between a set of
371  docked ligands as a scoring function, assuming that the ligands adopt maximally similar poses.
372  ComBind goes beyond these techniques in that it not only applies to any set of ligands but also
373  provides a principled method to combine information from per-ligand docking scores with

374  information on pose similarity across multiple ligands. This is essential to ComBind’s success in
375  cases where ligands form substantially different interactions or position shared substructures
376  very differently (34). Likewise, ComBind provides a principled method to combine multiple

377  metrics of pose similarity. Indeed, ComBind’s performance drops substantially if one omits per-
378  ligand docking scores, substructure similarity, or interaction similarity from its scoring function
379  (Supplementary Fig. 5).

380 ComBind, like many ligand-based approaches, may also be viewed as a machine learning

381  method (35). Most recent innovations in machine learning for drug discovery, including deep
382  learning methods, involve complex models with many parameters that are able to fit extremely
383  general functions. But this generality comes at a cost: such methods are typically effective only
384  in cases where ligand data is abundant. ComBind is designed to make efficient use of any

385 available ligand data by leveraging the physical priors encoded in structure-based approaches.
386  This allows ComBind to improve upon the performance of a state-of-the-art docking method
387  even when the list of other known binders is limited to a single ligand.

388 Performance

389  Our extensive benchmarks show that ComBind outperforms a state-of-the-art per-ligand pose
390  prediction method across all major families of drug targets. For individual targets, ComBind
391  often substantially improves pose prediction accuracy and hardly ever degrades it. Using

392  ComBind thus has little if any downside.

393  ComBind performs particularly well for certain families of targets. Its 60% improvement over
394  Glide for GPCRs is especially noteworthy, not only because GPCRs represent the targets of one-
395  third of all approved drugs—and a very large fraction of current drug discovery efforts—but also
396  because experimentally determining structures of GPCRs in complex with lead compounds is
397  often extremely difficult. Almost all experimentally determined structures of GPCRs are bound
398  to ligands that were carefully selected for their very high affinities and residence times, often
399  after structure determination with other ligands failed. More generally, ComBind appears to

400  deliver an especially large improvement in pose prediction accuracy for ligands that bind to

401  transmembrane domains of proteins, perhaps reflecting the deep, well-defined nature of these
402  binding pockets. Experimental structure prediction tends to be particularly challenging for

403  transmembrane proteins, highlighting ComBind’s utility.

404 ComBind’s performance could undoubtedly be improved further through use of curated or in-
405  house data. In particular, a careful human curator could (1) identify ligands that can most

406  confidently be classified as binders (e.g., based on multiple reports or on particularly reliable
407  data sources), (2) identify ligands demonstrated to bind in the same binding pocket (e.g., by

408  competition binding assays), and (3) remove data that was inputted incorrectly to a database. For
409  amajor drug discovery project focused on a particular target, a substantial amount of additional
410  in-house data will often be available on ligands found to bind the target, and that data will
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411  typically have been collected in a more uniform and consistent manner than data extracted from
412 multiple publications.

413 Skilled chemists can often improve the overall success rate of docking through careful manual
414  preparation of the protein structure—for example, by diligent placement of waters or

415  consideration of side chain rotamers. Such a procedure is subjective and was thus not employed
416  in our performance benchmarks. In our experience, however, careful manual preparation of

417  target structures improves ComBind’s results even more than those of per-ligand docking

418  methods, because such preparation increases the accuracy of the helper ligand poses and thus the
419  value of the information gleaned from them.

420 A variety of “flexible docking” methods have been developed that allow deformation of the

421  target protein when sampling ligand poses (19, 36, 37). These methods have proven highly

422  valuable in cases where the user knows in advance that protein flexibility is important to binding
423  of the query ligand. When used as fully automated pose prediction methods without such prior
424  information, however, flexible docking methods generally underperform rigid docking methods
425  such as Glide, as observed in our benchmarks of the popular Induced Fit Docking method (36)
426  (Supplementary Table 1) and reported previously for other flexible docking methods (37). Such
427  methods are more likely to sample a correct pose but also more likely to sample incorrect poses
428  that outscore correct poses. The ComBind scoring function might address this problem by more
429  effectively selecting a correct pose from among the incorrect poses; this is a potential area for
430  future research.

431  Extensibility and future work

432 Because ComBind can use any per-ligand docking method for pose generation and scoring of
433 individual ligands, it will be able to take advantage of improvements to these methods. For
434  example, several recent methods use machine learning to fit scoring functions (38-40), and
435  others allow for binding pocket flexibility when generating candidate poses (8, 36).

436  Likewise, ComBind can be used with any pairwise pose similarity metric or combination thereof.
437  ComBind’s performance could potentially be improved by using more fine-grained interaction
438  descriptors (41, 42) or by using similarity metrics based on field-based methods developed for
439  virtual screening (28, 43).

440  The statistical potential used by ComBind is sufficiently general that the method could be

441  extended to exploit other types of data, ranging from multiple experimental structures of the

442  protein in complex with different ligands to effects of protein mutation on ligand binding.

443  Likewise, future work might exploit the affinity of each known binder; we have not done so here
444  to avoid obscuring the general applicability of our method, as the affinity estimates available in
445  public databases are often determined by different techniques and thus difficult to compare to
446  one another.

447  Beyond binding pose prediction, our work suggests rich opportunities to improve prediction of
448  diverse ligand properties by combining physics-based and ligand-based modeling. For example,
449  both physics-based and ligand-based approaches are currently used to predict or rank ligand

450  binding affinities in order to enable virtual ligand screening. Physics-based approaches require
451  the use of various approximations that introduce error, while ligand-based approaches are limited
452  in their ability to predict affinities of ligands very different from those for which experimental
453  data is available. A careful combination of the two, perhaps based on the ComBind scoring
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function, might outperform either one alone. Physical modeling allows ligand data to be used
more efficiently by facilitating representation of the ligands in terms of specific interactions they
form with the target, a level of abstraction where even chemically diverse ligands share features.
Indeed, such approaches might prove effective even for predicting functional activity values
whose physical basis is not known a priori. Further work will be necessary to explore these
possibilities.
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Methods

Assembly of data for use in learning the ComBind scoring function
Curation of experimental protein—ligand complex structures

In order to learn the ComBind scoring function, we curated a set of protein—ligand complex
structures representing each of the major drug targets catalogued by Santos et al., 2017
(Supplementary Table 2). This set of target proteins was chosen through a combination of
manual curation and adaptation of the PDBbind refined set (44). For each target, we included up
to 21 structures, each with a distinct ligand bound, selecting the structures with alphabetically
lowest PDB code when more than 21 were available. Structures with duplicate ligands, mutant
proteins, or no small molecule in the orthosteric site were excluded.

Generation of docked poses

For all of the results presented in this study, we performed “cross-docking.” Specifically, for
each target, we chose the structure with the alphabetically first PDB code as the input 3D
structure of the protein and then docked other ligands to this reference structure. This simulates a
real-world application where only one structure of the target protein is available, and the user
wants to predict poses for ligands not present in that structure.

To prepare protein structures for use in docking, we first prepared structures using the
Schrodinger suite. All waters were removed, the tautomeric state of the ligand present in the
experimentally determined structure was assigned using Epik at pH 7.0 +/— 2.0, hydrogen bonds
were optimized, and energy minimization was performed with non-hydrogen atoms constrained
to an RMSD of less than 0.3 A from the initial structure. The ligand was then removed.

For ligands to be docked, the tautomeric state was assigned using Epik tool at target pH 7.0 +/—
2.0. The single most favorable state was considered for docking. Torsion angles were
randomized before docking.

Ligands were docked using default Glide SP settings except that “Enhanced Sampling” was set
to 4, quadrupling the number of ligand conformers considered. For each ligand, we produced up
to the 100 most highly ranked poses (for some ligands fewer than 100 poses passed Glide’s
internal filters). We also considered using Glide XP but found that Glide XP produced a correct
candidate pose substantially less often than Glide SP (Supplementary Table 1). Glide XP and
SP performed similarly in terms of how frequently the top-ranked pose is correct. Additionally,
we considered using Induced Fit Docking (IFD). While IFD produced at least one correct
candidate pose more often than Glide SP, the performance in terms of how often the top-ranked
pose is correct was worse.

Determining the quality of docked poses

The accuracy of each pose was quantified by the non-hydrogen-atom RMSD from the
experimentally determined pose. To compute the RMSD, each complex was aligned to the
structure used for docking based on non-hydrogen-atoms within 15 A of the ligand, and the
RMSD was then computed between the docked pose and the same ligand’s pose in the aligned
complex. We denote poses at most 2.0 A RMSD from their aligned experimentally determined
pose as being “near-native” or “correct.”
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628 Quantifying the similarity of binding poses for distinct ligands
629  Protein—ligand interaction similarity

630  Three interaction types were considered: hydrogen bonds, salt bridges, and hydrophobic

631  contacts. We designed quantitative measures to assess the presence of these interactions between
632  the ligand and a given protein residue (Supplementary Table 5). The hydrogen bond and salt
633  bridge interaction measures were designed to give a value of 1 for interactions meeting

634  established criteria (17). A soft boundary was added to give borderline cases values between 0
635 and 1, in order to prevent discontinuities. The hydrophobic contact measure approximates the
636  hydrophobic surface contact area by considering the number of protein—ligand atom pairs in

637  contact with each other. Again, a soft boundary (in this case, between an atom pair being or not
638  being in contact) was used to prevent very similar poses from leading to very different values.
639  We denote the interaction value for interaction type &, for pose ¢; of ligand 7, with protein

640  residue ras X (rk) ).

641  Interaction similarities for a pair of poses (for two different ligands bound to the same target
642  protein) were computed separately for each interaction type. The interactions made between the
643  ligand and each residue of the target protein residue were tabulated and then the similarity

644  between the resulting lists for each pose was measured by the Tanimoto coefficient (21). The
645  Tanimoto coefficient was modified by the addition of pseudo counts, which serve to make the
646  metric well defined if neither ligand forms a particular type of interaction and to reward poses
647  that share larger numbers of interactions in absolute terms. We define the interaction similarity,
648  for interaction type k between a pair of poses ¥;, €; (for ligands i and j, respectively), as

145 e (KO 00XP(2)

649 s® (e, ¢) =

2+ Trer X @) +XP(4)] - Zrer \/xﬁ’“(mx(f) ()
650  where R is the set of all protein residues.

651  When computing hydrogen bond similarity, a case where a given protein residue acts as a
652  hydrogen bond donor for one ligand and a hydrogen bond acceptor for another ligand is not
653  considered a shared interaction.

654  Substructure similarity

655  To compute the substructure similarity for a pair of candidate poses, the maximum common
656  substructure of the two ligands is identified using Canvas (Schrodinger LLC) and then mapped
657  onto each candidate pose. Finally, the RMSD between these two sets of atoms is computed and
658  used as the measure of substructure similarity. We defined custom atom and bond types for
659  computation of the common scaffold (Supplementary Table 6). Scaffold similarity is not

660  considered for pairs of ligands with a maximum common substructure of less than half the size
661  of the smaller ligand. Hydrogen atoms were not included in the substructure nor when

662  determining the total number of atoms in each ligand.

663  Computation of similarity statistics

664  Using the set of protein—ligand complex structures described above, we characterized the extent
665  to which distinct ligands binding a common target adopt similar poses, as quantified by the
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666  interaction and substructure similarity metrics described above. (We note that the three ion
667  channel targets were not included in these statistics because they were added after the rest of our
668  study had been completed.)

669  When computing these statistics, we docked the ligands using Glide and then identified poses
670  that are near-native among the candidate poses ranked in the top 100 by Glide. We used these
671  docked poses, as opposed to the experimentally determined pose, in order to ensure that the
672  statistics will be applicable to the scoring of candidate poses generated by Glide. We computed
673  the empirical distribution of each similarity type across all pairs of near-native poses using a
674  Gaussian kernel density estimate with standard deviation of 0.03 for interaction similarities and
675  0.18 for substructure similarities. To reduce bias near the boundaries, we applied reflected

676  boundary conditions(45). We capped substructure similarities at 6 A (that is, substructure

677  similarities greater than 6 A were set to 6 A), as the sparsity of near-native pose pairs for higher
678  values led to overly rough distributions. We denote the similarity distribution over near-native
679  poses for interaction type k as fi (x; Native).

680  We computed equivalent similarity distributions using all pairs of candidate poses produced by
681  Glide, regardless of whether they are near-native. We denote the resulting distributions as
682  fi(x; Reference).

683  To combine the distributions for the four similarity types into a single joint distribution, we
684  assume that the interaction types are conditionally independent and express the joint distribution
685  as aproduct of the distributions for each interaction type. That is:

686 f(s(¢;,¢,); Native) = [ fi (s® (¢, ¢;); Native), and
687 f(s(¢;,¢;); Reference) = [Ii fi(s®(#;, ¢;); Reference).
688  where s(£;, ;) is the vector of sk )(€ ir ]) s for each similarity type k.

689  Description of the ComBind method
690  The ComBind score

691  We describe a hypothesized set of binding poses of a set of n ligands as L = ¢4, ¥, ..., £,,, where
692 ¢, specifies the hypothesized pose for ligand i.

693  Per-ligand scoring functions, which consider each ligand independently, would determine an
694  optimal set of poses L by choosing the binding pose with minimum docking score for each ligand
695  or, equivalently, by minimizing

n

696 Edock(L) = z Ek ()

i=1
697  where E4°K(¢,) is the output of a per-ligand scoring function (such as that reported by Glide)
698  for pose #; of ligand i.
699  In our method, we add pairwise terms that tend to favor sets of similar poses:

f(s({’l, ]) Natlve)
f(s({’l, ]) Reference)

700 ECOMBN(L) = (n— DEYHL) + ) —log
@i #j
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701  Intuitively, these pairwise terms reward pose pairs with similarity values more often observed in
702  near-native (correct) pose pairs than in reference pose pairs (i.e., pose pairs chosen at random
703  from among all candidates). The idea of comparing the distribution of features in correct

704  solutions to the distribution in all possible solutions has been used in statistical potentials for
705  biomolecular structure prediction(46-48) and in the naive Bayes machine learning model(49).
706  We weight the docking scores by the number of ligands minus 1, in order to hold the relative
707  contribution of singleton and pairwise terms constant for different numbers of helper ligands.

708  Consistent with their reported units of kcal/mol, we find that Glide scores have the mathematical
709  properties of an energy; namely, the negative log likelihood ratio of a pose being near-native is
710  linear in its Glide score (Supplementary Fig. 3). By construction, the pairwise terms we

711  introduce in this study also have this property. This congruence implies that these singleton and
712 pairwise terms can be additively combined (as this is the equivalent of multiplying likelihood
713 ratios).

714 In general, it could be that the per-ligand docking scores need to be scaled by a constant factor in
715  order to be consistent with the pairwise terms. For example, if the docking scores were on

716  average 10 times the negative log likelihood ratio of a pose being near-native, they would need
717  to be scaled by 1/10. This constant factor can be identified by performing logistic regression with
718  the docking scores as features and whether each pose is near-native as the response. For Glide
719  scores, the appropriate constant is close to 1 (1/0.9 = 1.1) (Supplementary Fig. 3), and we chose
720  tosetitto 1 for simplicity.

721  Optimization procedure

722 We use coordinate descent to compute a set of poses that minimizes the ComBind score. At first,
723 L is randomly initialized. L is then iteratively improved by iterating through the ligands, in a

724  random order, and updating the selected ligand’s pose to the argument minimum of

725  EComBind(1) assuming that the other poses in L are correct. This procedure is repeated until no
726  more updates can be made. Each update can be computed efficiently because it depends only on
727  the partial contribution of the selected ligand’s pose to the ComBind score:

f(s(£4,£:); Native)
f(s(fq, ?); Reference) '

728 2, = argmin | (n — DE*™*(¢,) + z “log

q L #q

729  In order to account for the non-convex nature of the ComBind score, we repeat this algorithm
730  from 500 initial configurations, explicitly including the initial configuration corresponding to the
731  generic scoring function predictions at least once and return the best scoring configuration.

732 Empirically this procedure converges to the same result over multiple runs.

733  Benchmarking

734  We evaluated the performance of ComBind on the 30 target proteins listed in Supplementary
735  Table 2. We only considered ligands that have less than 50% scaffold overlap with the ligand
736  that was originally present in the experimental structure used for docking. We found that ligands
737  with higher scaffold overlap were substantially easier to dock, likely due to the binding pocket
738  being well shaped to accommodate the similar ligand (Supplementary Table 1). Additionally,
739  we only consider ligands for which there is at least one correct candidate pose, since only in

740  these cases is it possible for either ComBind or Glide to make a correct prediction. Importantly,
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this subsetting was only done for the query ligands, not the helper ligands downloaded from
ChEMBL described below.

For each of the 245 unique ligands meeting these criteria, we identified other ligands known to
bind the respective target protein from the ChEMBL database and then used ComBind to jointly
predict their binding poses. Importantly, when evaluating the performance of our method on a
particular target protein, we excluded the data for that target protein from the similarity statistics.

Selection of helper ligands

For all targets, we downloaded K; or ICso data (whichever was more numerous) from ChEMBL
(16). We removed ligands that did not meet the following criteria: a ChEMBL confidence score
of 9 (the highest value), molecular weight < 800 Da, and K; or ICso < 1 puM. Ligand structures
were generated from the SMILES strings provided by ChEMBL.

We benchmarked two criteria for selecting which ChEMBL ligands to use as helper ligands for
each query ligand: (1) the highest affinity binders that do not share a chemical scaffold, and (2)
the ligands that share the largest chemical substructure with the query ligand. To define the size
of the common substructure, we used the same maximum common substructure definition as that
used to compute substructure similarity. For selection method (1), we added helper ligands in
order of affinity, not adding a ligand if it has greater than 80% substructure overlap with any
ligand already in the selected set of helpers.

The benchmarking results presented in the figures were obtained using the following ligand
selection criteria and number of helper ligands: Fig. 4A and Supplementary Fig. SA: 20 helper
ligands selected using criterion (1); Fig. 4B: the indicated number of ligands selected using
criterion (1); Supplementary Fig. 4A and Supplementary Fig. 5B: 20 helper ligands selected
using criterion (2); and Supplementary Fig. 4B: the indicated number of ligands selected using
criterion (2). For a handful of targets, fewer than 20 helper ligands were available meeting our
criteria. In these cases, we used the minimum of the indicated number of ligands and the number
of available ligands. Targets with only one ligand are omitted from Fig. 4A and Supplementary
Fig. 4A.

Performance evaluation

We developed an overall performance metric to represent the expected performance in drug
development campaigns. For each protein family, we computed the average performance, then
weighted each by the fraction of FDA-approved drugs targeting the protein family, as reported in
Santos et al., 2017.

Prediction of binding poses of antipsychotics at the D,R
Execution of the ComBind method

We predicted binding poses for the typical antipsychotics spiperone, mespiperone, benperidol,
and pimozide at the D, dopamine receptor (D2R). We prepared the ligands using the Schrodinger
ligprep tool, considering the unprotonated tautomer and both inversions of the protonated
tautomer. The same docking protocol was used as described above, except that the top 300 poses
were considered by ComBind, in order to account for the use of the 3 tautomeric states of the
ligand.

D> Dopamine receptor mutagenesis
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782  Wild type (wt) human D2R in pcDNA3.1 was kindly provided by the laboratory of Jonathan
783  Javitch (Columbia University, New York, NY). Mutations were introduced through of a
784  modified QuikChange (Stratagene, La Jolla, CA) mutagenesis protocol using the following
785  primers VI1F: 5’-GGTCATGCCCTGGTTTGTCTACCTGG-3’, S193A:

786  5’CGTGGTCTACGCCTCCATCGTCTCC-3’, S193V: 5°-

787  CGTGGTCTACGTCTCCATCGTCTCC-37, S193L: 5°-

788  CGTGGTCTACCTCTCCATCGTCTCC-3’, W100L: 5°-

789  GGTAGGTGAGTTGAAATTCAGCAGG-3°, C118M: 5°-

790  GGACGTCATGATGATGACGGCGAGC-3’, W386F: 5°-

791  CGTGTTCATCATCTGCTTTCTGCCCTTCTTC-3’, F389L: 5°-

792  GCTGGCTGCCCTTATTCATCACACACATCC-3".

793  Membrane preparation and radioligand binding

794  Membranes were isolated from HEK293T cells transiently transfected with DoR(wt) or D2R-
795  mutants. Briefly, cells were harvested 48 hr post-transfection (with Lipofectamine 2000), rinsed
796  with PBS, lifted with harvesting buffer (0.68 mM EDTA, 150 mM NaCl, 20 mM HEPES, pH
797  7.4), and centrifuged at 200 x g for 3 min. The cells were resuspended in ice cold homogenizing
798  buffer (10 mM HEPES, pH 7.4, 100 mM NacCl, 0.5 mM EGTA), homogenized using a Tissue
799  Tearer (BioSpec, Bartlesville, OK) for 30 sec, and centrifuged at 20,000 x g for 20 min.

800  Membranes were resuspended in Binding Buffer (20 mM HEPES, pH 7.4, 100 mM NaCl) using
801  a Dounce glass homogenizer , flash frozen in liquid N> and stored at —80°C.

802  For saturation binding assays, cell membranes (0.6—20 pg per well, depending on the mutant)
803  were incubated for 1.5 hr at 30°C with [*H]-spiperone (Perkin Elmer, Waltham, MA) (0.02—-12
804 nM, depending on the Kd of the D;R mutant) in Binding Buffer containing 0.001% BSA, 1 mM
805  ascorbic acid, and 100 nM GDP with or without 20 uM (+)butaclamol (to determine non-

806  specific binding). For competition binding assays, cell membranes (0.6-20 pg, depending on the
807  D:R mutant) were incubated for 1.5 h at 30°C with [*H]-spiperone (0.05-0.6 nM, depending on
808  the Kd of the D2R mutant) in Binding Buffer containing 0.001% BSA, 1 mM ascorbic acid, 100
809  nM GDP and 0-0.1 nM test compound (purchased from Millipore-Sigma, St Louis, MO), or 20
810  uM (+)butaclamol (to determine non-specific binding). Sample membranes were harvested by
811  vacuum filtration on 96-well GF/C filter plates, washed with ice cold binding buffer to remove
812  unbound radioligand, and allowed to dry before adding Microscint 0 (Perkin Elmer, Waltham,
813  MA) for counting in a Top Count Scintillation Counter (Perkin Elmer/Packard, Waltham, MA ).
814  Data were fit to a one site binding curve to determine Kd for [*H]-spiperone saturations, or to a
815  one-site competition binding curve to calculate Ki of test compounds using Prism (GraphPad,
816  San Diego CA).
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819  Figure 1: ComBind leverages non-structural data to improve ligand binding pose

820  predictions. (A) Standard docking methods take as input the chemical structure of the query
821  ligand and the 3D structure of the target protein and predict a binding pose using a per-ligand
822  scoring function. (B) ComBind additionally considers other ligands known to bind the target
823  protein (whose binding poses are not known), resulting in more accurate predictions. For clarity,
824  hydrogen and fluorine atoms are not shown in the 3D renderings.
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A Distinct ligands tend to form similar interactions with the target
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Per-ligand docking underestimates the structural similarity of distinct ligands’ binding poses
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Figure 2: Distinct ligands that bind to a given target protein often adopt similar binding
poses and do so more frequently than predicted by a state-of-the-art per-ligand docking
method. (A) Chemically distinct ligands share key interactions with the mineralocorticoid
receptor (PDB IDs: 2AA2, SL7E, SMWP). (B) Across a set of 3115 ligand pairs, interaction
similarities are generally higher in pairs of correct poses than in pairs including all poses ranked
highly by a per-ligand scoring function. Shading depicts the per-target standard error of the
mean. (C) Across a set of 690 ligand pairs with a shared substructure, the substructure tends to
be placed more similarly in correct poses than in other poses ranked highly by a per-ligand
scoring function. Substructure similarity for a pose pair was defined as the root mean square
deviation (RMSD) between the largest substructure shared by the ligands (see Methods).
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A NLigands known to bind the B,-adrenergic receptor (3,AR)
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837  Figure 3: ComBind discovers and rewards key interactions shared by distinct ligands. (A)
838  Whereas per-ligand docking considers each ligand individually, ComBind jointly selects poses
839  for all ligands, optimizing for poses that are individually favorable according to a per-ligand
840  scoring function and together form a coherent set of protein—ligand interactions. (B) We tested
841  the ability of ComBind to predict the poses of 11 ligands that bind f1AR. Each dot corresponds
842  to a single ligand, with the dot’s position indicating the error in the predicted pose (RMSD from
843  the experimentally determined pose) for ComBind and for state-of-the art per-ligand docking
844  software (Glide). A pose is considered correct if its RMSD is < 2.0 A (dashed lines). ComBind
845  predicts a substantially more accurate pose than Glide for 7 of the 11 ligands. (C) The set of
846  residues with which each ligand forms salt bridges or hydrogen bonds when positioned in its
847  experimentally determined pose (top), the pose predicted by per-ligand docking (left), and the
848  pose predicted by ComBind (right).

26


https://doi.org/10.1101/2020.06.01.128181
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128181; this version posted September 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Performance of ComBind vs. per-ligand docking
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850  Figure 4: ComBind outperforms per-ligand docking on a diverse benchmark set.

851  Performance of ComBind, as compared to a per-ligand scoring function, using helper ligands
852  selected automatically from ChEMBL. All results are for “cross-docking” (the query ligand is
853  docked into a structure determined in the presence of a distinct ligand). (A) Performance per
854  target protein, target protein family (GPCRs, ion channels, etc.), and overall. Green disks and
855  black circles indicate performance (fraction of ligands whose pose is predicted correctly) for
856  ComBind and a state-of-the art per-ligand docking software package (Glide), respectively. (B)
857  Performance as a function of the number of helper ligands. When using no helper ligands,
858  ComBind is equivalent to Glide (dashed horizontal line).
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A Pgr-l\igand docking Mutagenesis experiments confirm ComBind’s predictions
Pimozide

Cc Pimozide D Benperidol

/

\
S193 S193
9.9
9.4
S193A WT S193V S193L S193A WT S193V S193L

Figure 5: Prediction and validation of the binding poses of antipsychotics at the D>
dopamine receptor. Glide (A) and ComBind (B) predict very different binding poses for
pimozide (and for benperidol; see Supplementary Fig. 6). (C) Mutagenesis experiments validate
ComBind’s predictions. In ComBind’s predicted pose for pimozide, its “extra” ring is
uncomfortably close to S193, such that decreasing the size of residue 193 (S193A) increases
pimozide’s binding affinity and increasing the size of residue 193 (S193V and S193L) decreases
pimozide’s binding affinity. WT represents the wild-type (unmutated) receptor. (D) As a control,
we verified that benperidol—which lacks this “extra” ring but is otherwise identical to
pimozide—does not exhibit the same trend. Error bars show standard error of the mean. See
Supplementary Fig. 6 for additional data.
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872  Supplementary Figure 1: Examples of interaction similarity and substructure similarity
873  computation. (A) Comparison of interactions formed by two ligands bound to PLK, for a pair
874  of correct poses (top) and randomly chosen poses (bottom). (B) Overlays of two ligands that
875  share a common substructure bound to BRD4 for correct docked poses (top) and randomly

876  chosen highly ranked docked poses (bottom).
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Supplementary Figure 2: A state-of-the-art per-ligand scoring function (Glide)
underestimates the similarity of binding poses of different ligands binding to the same
target protein. (A) and (B) are identical to Fig. 2C and D, respectively, except that the black
curves in this figure are computed using only the pose ranked first by Glide for each ligand.
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883  Supplementary Figure 3: The output of Glide’s per-ligand scoring functions is in units of
884  energy similar to those of ComBind’s pairwise potential. A quantile plot showing the

885  relationship between Glide scores and the negative log likelihood ratio of a pose being correct.
886  For each of the docked poses of each ligand in our benchmark set, we computed the Glide score
887  and determined whether the pose was correct. We split all of the resulting data into quantiles
888  based on Glide scores, with each quantile containing 100 poses. Each point in the plot represents
889  the mean Glide score and negative log likelihood ratio for a given quantile. The red line shows
890 the best-fit linear relationship between these two quantities as determined by logistic regression.

I
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892  Supplementary Figure 4: ComBind performance using a congeneric series of ligands. This
893  figure corresponds to Fig. 4, but with helper ligands selected from ChEMBL ligands according

894  to the “congeneric” criterion (i.e., ligands that share the greatest common substructure with the

895  query) instead of the “high affinity” criterion.
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897  Supplementary Figure 5: Importance of components of the ComBind scoring function.
898  Performance using various components of the ComBind scoring function when using helper
899  ligands chosen by either the high-affinity (A) or congeneric (B) ChEMBL ligand selection

900 criterion. ComBind uses per-ligand docking scores, similarity scores based on interactions, and
901  similarity scores based on relative positions of shared substructures. “Per-ligand docking”

902  (Glide) omits all similarity scores. The remaining bars (“No Per-Ligand Scores,” “No

903  Substructure,” and “No Interactions”) show the effects of omitting per-ligand scores,

904  substructure position similarity scores, and protein—ligand interaction similarity scores,

905  respectively, from the ComBind potential.

906
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Supplementary Figure 6: Prediction and Valldatlon of the binding poses of antipsychotics
at the D> dopamine receptor—additional data. (A) Binding poses of pimozide, benperidol,
spiperone, and mespiperone as predicted by Glide. (B) Binding poses of the same ligands, as
predicted by ComBind. (C) Results of mutagenesis studies designed to test ComBind’s binding
pose predictions. Ligands are color-coded as in panel A. Error bars show standard error of the
mean. S193 was mutated to A, S, V and L; these results are discussed in the main text. Unlike
Glide, ComBind predicts that all four ligands will position a fluorobenzene ring at the bottom of
the binding pocket, packing favorably against Trp386 (W386). Indeed, mutating W386 to a
smaller residue (Phe) reduced affinity to a similar extent for all of the ligands, with a slightly
smaller effect for pimozide, which packs less tightly against W386 according to ComBind’s
prediction. At the top of the ligand binding pocket, near Val91 (V91) and Trp100 (W100),
ComBind predicts that the pimozide and benperidol will place identical functional groups that
differ somewhat from those of spiperone and mespiperone. Indeed, mutation of these residues
affects pimozide and benperidol slightly differently from spiperone and mespiperone.
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924  Supplementary Figure 7: Example of a case where ComBind correctly predicts that a

925  shared chemical scaffold is placed differently for different ligands. We show two ligands that
926  bind the kinase CDK2. These ligands share a common scaffold but adopt significantly different
927  binding poses. In A and B, we show their experimentally determined poses (PDB: 1JSV and

928  PDB: 1DIS, respectively). In C and D, we show the poses predicted by ComBind for the two

929  ligands. The shared scaffold is shown in the thicker sticks and parts of the ligands that differ are
930  shown in the thinner lines.
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A Experimental pose for ligand 1 B Experimental pose for ligand 2
PIES W

C ComBind’s predicted pose for ligand 1 D ComBind’s predicted pose for ligand 2

HWH

E Candidate pose for ligand 1 that forms salt bridge matching ligand 2

+1

Supplementary Figure 8: Example of a case where ComBind correctly predicts that ligands
form distinct interactions with the protein. We ran ComBind for 20 ligands that bind F10.
While most of the ligands have a positively charged group, only some of them position it to form
a salt bridge with D189 (e.g., ligand 1, shown in panel A) while others orient it in the complete
opposite direction (e.g., ligand 2, shown in panel B). ComBind correctly predicts both binding
poses (C, D). (E) One of the candidate poses for ligand 1 forms the same salt bridge as ligand 2.
ComBind correctly avoided choosing this pose, even though choosing it would have led to more
similar interactions between ligands.
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940 Supplementary Tables

941  Supplementary Table 1: Performance of Glide SP and Glide XP on our benchmark set. The
942  data presented in this table does not include ligands that share a substantially sized chemical

943  scaffold with the ligand present in the experimental structure used for docking. Including such
944  ligands increases the success rate for both Glide SP and Glide XP (to 49%, 53%, 47%,

945  respectively).

# Ligands s the top-ranked pose correct? Is any candidate pose correct?
SP XP IFD SP XP IFD
327 | 44% 45% 40% 81% 63% 81%

946
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947  Supplementary Table 2: Structural data used for benchmarking ComBind. From left to
948  right, columns represent: Protein family, protein name, Uniprot ID, ChEMBL target ID, number
949  of ligands, number of ligands that do not share a scaffold with the ligand present in the

950  experimental structure used for docking, and number of ligands that do not share a scaffold with
951  the ligand present in the experimental structure used for docking and have at least one correct
952 candidate pose. The right-most column corresponds to the number of ligands included in our
953  benchmarks for each target protein.

PROTEIN PROTEIN UNIPROT CHEMBL #TOTAL #DIVERSE  #DIVERSE LIGANDS
FAMILY LIGANDS  LIGANDS  WITH AT LEAST ONE
CORRECT
CANDIDATE POSE
GPCR 5-HT2s P41595  CHEMBLI833 5 5 5
B1AR P07700  CHEMBL213 11 6 6
B2AR P07550  CHEMBL210 7 4 4
mGluR5 P41594  CHEMBL2564 4 3 1
Smo Q99835  CHEMBLS5971 4 3 2
ION CHANNEL GluN1/2A Q05586  CHEMBLI1907604 § 6 4
Q12879
GluR-2 P19491  CHEMBL3503 15 7 6
GluK1 P22756 ~ CHEMBL2919 18 18 15
TRANSPORTER DAT Q7K4Y6 CHEMBL238 8 8 7
SERT P31645 CHEMBL228 4 4 4
GLUT1 P11166 CHEMBL2535 2 1 1
NUCLEAR ER P03372  CHEMBL206 20 14 12
RECEPTOR
GR P04150  CHEMBL2034 16 10 8
MR P08235  CHEMBL1994 12 10 9
AR P10275  CHEMBLI1871 19 12 10
VDR P11473 CHEMBL1977 20 3 3
PROTEASE F2 P00734  CHEMBL204 20 19 15
F10 P00742  CHEMBL244 20 19 12
PLAU P00749  CHEMBL3286 20 20 19
P00760 P00760  CHEMBL3769 20 19 16
BACEI P56817  CHEMBL4822 20 19 7
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PHOSPHORYLASE | PYGM P00489  CHEMBL4696 20 5 4
PHOSPHATASE PTPN1 P18031  CHEMBL335 20 19 8
TRANSCRIPTION | BRD4 060885  CHEMBLI1163125 16 13 7
FACTOR

CHAPERONE HSP90-a  P07900  CHEMBL3880 20 16 10
PHOSPHO- PDEI0A  Q9Y233 CHEMBL4409 20 19 17
DIESTERASE

RECEPTOR ol Q99720  CHEMBL287 4 4 3
ELATASE ELANE P08246 ~ CHEMBL248 8 1 1
REDUCTASE DHFR P00374  CHEMBL202 20 20 15
KINASE Cdk2 P24941 CHEMBL301 20 20 17

954
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955  Supplementary Table 3: ComBind is robust to cases where some of the ligands considered
956  have no correct (near-native) candidate pose. Here we show the results of running ComBind
957  for 20 ligands that bind PTPN1. We considered ligands whose binding poses have been

958  determined experimentally, so that we could assess whether the predicted poses are correct. For
959  over half of the ligands, there were no correct candidate poses (likely because these ligands

960  induce a conformational change in the binding pocket). Despite this, ComBind produces more
961  accurate pose predictions than state-of-the art per-ligand docking software. The ligands used in
962  the predictions correspond to those present in the following PDB structures: 1C88, 1C86, 1GFY,
963 1ECV, 1C83, 1C84, 1L8G, 1KAV, 1BZJ, INWL, 1G7F, 1QXK, 1PYN, 1G7G, INZ7, INNY,
964  INOG6, 10NZ, INL9, 10ONY.

Ligand
abcdefghij kl mnopaqr st
Is any candidate pose correct? Y YYY|YYYYYNNNNININ|IN|NIN|N|N
Is Glide’s predicted pose correct? Y| Y Y Y| Y YININNN|NN|NINNIN|NIN|N|N
Is ComBind’s predicted pose correct? |[Y Y Y |Y|Y|Y|Y|[YN|N|N|N|N NN N|N|N|N N

965
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966
967
968
969

970

Supplementary Table 4: Ligands used in predictions for the 1 adrenoceptor. From left to
right, columns represent: index of ligand (a—k are as shown in Fig. 3; xtal denotes the
cocrystallized ligand in the protein structure used for docking), name of ligand, mode of action,

and PDB ID of the experimental structure.
Index | Ligand Mode of action | Structure
xtal cyanopindolol antagonist 2VT4
a dobutamine partial agonist | 2Y00
b carmoterol partial agonist | 2Y02
C isoprenaline full agonist 2Y03
d salbuterol partial agonist | 2Y04
e carazolol inverse agonist | 2YCW
f iodocyanopindolol antagonist 2YCZ
g 4-(piperazin-1- yl)-1H-indole antagonist 3ZPQ
h 4-methyl-2-(piperazin-1-yl) antagonist 3ZPR

quinoline

i bucindolol antagonist 4AMI
] carvedilol inverse agonist | 4AMJ
k methylcyanopindolol inverse agonist | SASE
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971  Supplementary Table 5: Definitions for the measures used to quantity the presence of each
972  of the three interaction types considered in this study.

Hydrogen Bond
A = a hydrogen bond acceptor; D = a hydrogen bond donor; H = the associated hydrogen
. 1 if distance(H,A) < 2.5 A
distance term =130 4 - d:;?ce(H’A) if 2.5 A < distance(H,4) < 3.0 &
1 if angle(D,H,A) = 120°.

angle term = {angle(D,H,A)—90°

e if 90° < angle(D,H,A) < 120°

hydrogen bond value = distance term * angle term

Salt Bridge

N = an atom with a negative formal charge; P = an atom with a positive formal charge
1 if distance(N, P) < 4.0 A

salt bridge value =450 & — di i ) o ) o
s 5.0 f;a;ce(” P) if4.0 A < distance(N,P) < 5.0 A

Hydrophobic Contact

Ay, A, ..., An = all carbon or halogen atoms in the ligand; B;, B>, ..., B» = all carbon atoms in
the given protein residue

distance term for 4; and B;=
1 if distance(Al-,Bj) < 1.257;

1.75 rij — distance(4;, B)
0.5 7j

if 1.257;; < distance(Ai,Bj) < L7571

where 7 is the sum of the van der Waals radii of 4; and B;
hydrophobic contact value = ¥i_; Y7~ distance term for 4; and B;

973
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Supplementary Table 6: Atom types used in maximum common substructure definition.
SMARTS pattern and intuitive description of each atom type used when searching for common

substructures. Each atom in a molecule is assigned the most specific atom type (lowest in the
table) that applies to it.

SMARTS Description

*) Any Atom

(#1) Hydrogen

(#6) Carbon

(#6; 15; CX4) Saturated carbon in 5S-member ring

(#6: 16) Carbon in 6-member ring

clceececl Carbon-only aromatic ring

(CRO) Carbon not in a ring

(#7) Nitrogen

(#7; 15) Nitrogen in 5-member ring

(#8) Oxygen

O=* Ketone Oxygen

(#8; 15) Oxygen in 5-member ring

(#15) Phosphorus

(#16) Sulphur

(#16; 15) Sulphur in 5-member ring

(#9, #17,#35,453)  Halogens
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