

# 1 Leveraging non-structural data to predict 2 structures of protein–ligand complexes

3 Joseph M. Paggi<sup>\*1,2,3,4</sup>, Julia A. Belk<sup>\*1,2,3,4</sup>, Scott A. Hollingsworth<sup>\*1,2,3,4</sup>, Nicolas Villanueva<sup>6</sup>,  
4 Alexander S. Powers<sup>1,2,3,4,5</sup>, Mary J. Clark<sup>6</sup>, Augustine G. Chemparathy<sup>1,2,3,4</sup>, Jonathan E.  
5 Tynan<sup>1,2,3,4</sup>, Thomas K. Lau<sup>1,2,3,4</sup>, Roger K. Sunahara<sup>6</sup>, Ron O. Dror<sup>1,2,3,4,†</sup>

- 6 1. Department of Computer Science, Stanford University, Stanford, CA 94305, USA.
- 7 2. Department of Molecular and Cellular Physiology, Stanford University School of
- 8 Medicine, Stanford, CA 94305, USA.
- 9 3. Department of Structural Biology, Stanford University School of Medicine, Stanford,
- 10 CA 94305, USA.
- 11 4. Institute for Computational and Mathematical Engineering, Stanford University,
- 12 Stanford, CA 94305, USA.
- 13 5. Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
- 14 6. Department of Pharmacology, University of California San Diego School of Medicine,
- 15 La Jolla, CA 92093, USA.

16 \* These authors contributed equally to this work.

17 † Corresponding author. Email: [ron.dror@stanford.edu](mailto:ron.dror@stanford.edu)

## 19 Abstract

20 Over the past fifty years, tremendous effort has been devoted to computational methods for  
21 predicting properties of ligands that bind macromolecular targets, a problem critical to rational  
22 drug design. Such methods generally fall into two categories: physics-based methods, which  
23 directly model ligand interactions with the target given the target's three-dimensional (3D)  
24 structure, and ligand-based methods, which predict ligand properties given experimental  
25 measurements for similar ligands. Here we present a rigorous statistical framework to combine  
26 these two sources of information. We develop a method to predict a ligand's pose—the 3D  
27 structure of the ligand bound to its protein target—that leverages a widely available source of  
28 information: a list of other ligands that are known to bind the same target but for which no 3D  
29 structure is available. This combination of physics-based and ligand-based modeling improves  
30 upon state-of-the-art pose prediction accuracy across all major families of drug targets. As an  
31 illustrative application, we predict binding poses of antipsychotics and validate the results  
32 experimentally. Our statistical framework and results suggest broad opportunities to predict  
33 diverse ligand properties using machine learning methods that draw on physical modeling and  
34 ligand data simultaneously.

## 35 Introduction

36 Binding of small-molecule ligands to proteins is one of the most fundamental processes in  
37 biology, and the great majority of drugs are ligands that exert their effects by binding to a target  
38 protein. Predicting properties of protein–ligand interactions—including three-dimensional (3D)  
39 structures, binding affinities, binding kinetics, selectivity, and functional effects—is critical both  
40 to the rational design of effective medicines and to solving major problems in molecular biology.  
41 An enormous amount of work has thus focused on the development of computational methods to  
42 predict these properties (1, 2).

43 Such computational methods generally fall into two categories. “Physics-based” approaches use  
44 a 3D structure of the target protein and exploit an understanding of the physics of protein–ligand  
45 interactions (3). “Ligand-based” approaches use experimental measurements for many ligands of  
46 a given property (e.g., affinity) at a given target and employ pattern matching to predict the  
47 corresponding property for other ligands (4, 5).

48 Can one combine these two paradigms, and the orthogonal sources of information they leverage,  
49 in a systematic, principled manner? This has proven challenging, particularly when making  
50 predictions for ligands substantially different from those for which experimental data is  
51 available. It is especially difficult when one wishes to predict properties different from those  
52 measured experimentally—e.g., to predict ligand properties that are difficult to determine  
53 experimentally by exploiting experimental data that is easy to collect.

54 Here we present a method, ComBind, that overcomes these obstacles to substantially improve  
55 prediction of a ligand’s binding pose at a given target protein. Determining a ligand’s binding  
56 pose—the three-dimensional coordinates of the ligand’s atoms when bound to the target—is  
57 critical to structure-based optimization of the ligand’s pharmacological properties, as well as to  
58 understanding how it influences its target. Indeed, knowledge of a ligand’s binding pose is so  
59 advantageous that researchers in industry and academia often spend months or years to solve an  
60 experimental structure of a particular ligand in complex with a target protein.

61 Because experimental structure determination is time-consuming, expensive, and sometimes  
62 impossible, tremendous effort has been invested in the development of *in silico* “docking”  
63 methods for predicting ligand binding poses (6–15). These are physics-based approaches: given a  
64 structure of the target protein, they sample many candidate poses of a ligand and rank these  
65 poses using scoring functions that approximate the energetic favorability of each pose, typically  
66 by capturing interatomic interactions such as hydrogen bonds and van der Waals forces (Fig.  
67 1A). Despite the development of dozens of docking software packages over the past 40 years,  
68 binding pose predictions are typically correct less than half the time for ligands substantially  
69 different from those in the experimental structures used for docking (**Supplementary Table 1**).

70 ComBind improves binding pose prediction by exploiting a widely available type of non-  
71 structural data: the identities of other ligands known to bind the same target (Fig. 1B). Collecting  
72 such data is typically far easier than structure determination. Indeed, such data is routinely  
73 collected in drug development campaigns and is already available in public databases such as  
74 ChEMBL for the vast majority of recognized drug targets (16).

75 How can a list of other ligands that bind to the target protein—but whose binding poses are  
76 unknown—be used to improve pose prediction? Medicinal chemists have long recognized that  
77 distinct ligands tend to bind a given protein in similar poses; even ligands sharing no common

78 substructure often form similar interactions with the target protein (**Fig. 2A**). This intuition has a  
79 sound basis in physics. For example, the energetic favorability of a protein–ligand hydrogen  
80 bond depends on the mobility of the protein atoms involved and their ability to form hydrogen  
81 bonds with water in the absence of the ligand (17). These factors contribute similarly to binding  
82 of different ligands but are difficult to predict from a static protein structure alone.

83 To develop ComBind, we first use a large set of experimentally determined structures to quantify  
84 the medicinal chemist’s intuition—in particular, to determine the probability that binding poses  
85 for different ligands will share various features. We use the results to define a scoring function  
86 that predicts the favorability of a set of binding poses comprising one pose for each ligand  
87 known to bind the target protein. By contrast to the ComBind scoring function, scoring functions  
88 typically utilized by docking software assign a score to the pose of a single ligand at a time; we  
89 thus refer to them as per-ligand scoring functions. The ComBind scoring function takes into  
90 account the similarities and differences between the poses of different ligands as well as the  
91 energetic favorability of each ligand’s pose, as evaluated by a per-ligand scoring function.

92 We benchmark ComBind by comparing its results to 245 experimentally determined ligand  
93 binding poses across 30 proteins representing all major families of drug targets. ComBind  
94 improves the pose prediction accuracy of state-of-the-art docking software for all major drug  
95 target families. For G-protein-coupled receptors (GPCRs), which are of particular interest both  
96 because they represent the largest family of drug targets and because their structures are  
97 notoriously difficult to determine experimentally, ComBind selects a correct binding pose over  
98 60% more frequently, increasing the probability of correct prediction from 47% to 76%.  
99 ComBind’s results could be improved further by utilizing proprietary data generated as part of a  
100 drug discovery project (e.g., additional ligands found to bind the target).

101 We also illustrate the use of ComBind to predict the previously unknown binding poses of  
102 several antipsychotics at the D<sub>2</sub> dopamine receptor (D<sub>2</sub>R), an important drug target for which  
103 experimental structure determination has proven difficult. We validate ComBind’s predictions—  
104 which differ from those of state-of-the-art docking software—using mutagenesis experiments.  
105 The results reveal structural motifs determining the potency and subtype-selectivity of D<sub>2</sub>R-  
106 targeted drugs.

107 ComBind provides a rigorous statistical foundation for combining physics-based structural  
108 modeling of protein-ligand interactions with inference based on experimental data for other  
109 ligands. It effectively leverages data on ligands that share no common scaffold or substructure  
110 with the ligand whose pose is predicted. It allows prediction of a difficult-to-determine ligand  
111 property based on a completely different type of data for other ligands. This method thus  
112 suggests a broad range of possibilities for combining physics-based and ligand-based approaches  
113 to improve prediction of various ligand properties by exploiting diverse sources of data.

## 114 Results

### 115 Overview of method

116 Given several ligands known to bind a target, ComBind solves for all their binding poses  
117 simultaneously. We use per-ligand docking software to generate a list of candidate poses for  
118 each ligand. ComBind then selects a set of poses—one for each ligand—that optimizes the

119 ComBind scoring function. The ComBind scoring function considers both the favorability of  
120 each ligand's pose, as assessed by a per-ligand scoring function, and the likelihood that a set of  
121 poses sharing a given level of similarity will be correct or incorrect.

122 Here we use the commercial docking software package Glide (9, 10) to generate candidate poses  
123 and assign a per-ligand score to each. We selected Glide because it is widely used in the  
124 pharmaceutical industry and because it ranks among the most accurate docking packages in  
125 comparative studies (18, 19). We emphasize, however, that the ComBind approach can utilize  
126 any per-ligand scoring function and pose sampling strategy, including those implemented in any  
127 per-ligand docking package.

## 128 Quantifying the similarity of binding poses for distinct ligands

129 We begin by quantifying the medicinal chemist's intuition that different ligands tend to adopt  
130 structurally similar poses when binding the same target protein. We wish not only to measure the  
131 similarity of correct poses of different ligands, but also to compare the similarity of correct poses  
132 to that of other poses ranked highly by per-ligand docking software. We consider two notions of  
133 similarity: similarity of protein–ligand interactions and similarity in position of common ligand  
134 substructures.

135 We compiled a set of 385 protein–ligand complex structures for 28 target proteins representing  
136 all major classes of small-molecule drug targets (**Supplementary Table 2**) (20). We docked  
137 each of the ligands using Glide and selected the 100 most highly ranked poses for each ligand.  
138 To reflect practical application of docking, we docked each ligand into an experimental structure  
139 solved in the presence of a ligand distinct from any of those being docked ("cross-docking"; see  
140 Methods). Our docking procedure did not utilize the experimentally determined poses of ligands  
141 in any way.

142 For all pairs of ligands for each target protein, we compute the similarity between each pose of  
143 one ligand and each pose of the other ligand. We use this data to calculate a probability  
144 distribution over similarity values; we refer to this distribution as the reference distribution.

145 We also compute similarities between each pair of correct poses (again, one pose per ligand),  
146 where a pose is considered correct if it is within 2.0 Å root mean squared deviation (RMSD) to  
147 the experimentally determined pose. We use these data to calculate a second probability  
148 distribution over similarity values, the native distribution. When calculating the native  
149 distribution, we use correct poses from the lists generated by Glide instead of using the  
150 experimentally determined poses directly, such that the similarity statistics we calculate will be  
151 most applicable to candidate poses considered during computational pose prediction.

152 We evaluate pose similarity separately for different types of protein–ligand interactions:  
153 hydrogen bonds, salt bridges, and hydrophobic contacts (**Fig. 2B**, **Supplementary Fig. 1A**).  
154 Given a pair of poses, we evaluate the similarity for each interaction type by cataloging the set of  
155 protein residues with which each ligand forms an interaction of the given type and then  
156 comparing the sizes of the intersection and union of these sets. Their ratio (the Tanimoto  
157 coefficient (21)) increases when shared interactions are formed and decreases when either ligand  
158 forms an unshared interaction. To make this metric well-defined when neither ligand forms any  
159 interactions of a particular type, we add pseudo counts. For all interaction types, the native  
160 distribution exhibits higher similarity than the reference distribution—that is, pairs of correct

161 poses form more similar interactions than other pairs of poses ranked highly by the per-ligand  
162 scoring function (**Fig. 2B**).

163 We define substructure similarity as the RMSD of atom positions of the largest chemical  
164 substructure shared by a pair of ligands (**Supplementary Fig. 1B**). We evaluated substructure  
165 similarity for pairs of ligands that shared a substructure at least half the size of the smaller ligand.  
166 For this similarity metric, too, the native distribution exhibits higher similarity than the reference  
167 distribution, indicating that the common substructure tends to be more similarly positioned in  
168 pairs of correct poses than in other pairs of poses ranked highly by the per-ligand scoring  
169 function (**Fig. 2C**).

170 These results suggest that the similarity of correct poses is not adequately captured by a state-of-  
171 the-art per-ligand scoring function. In further support of this point, we also calculated probability  
172 distributions of similarity between the poses that the per-ligand scoring function ranks first for  
173 each ligand (**Supplementary Fig. 2**). We found that these distributions also exhibited lower  
174 similarity than the corresponding native distributions.

### 175 [Derivation of a statistical potential for sets of binding poses](#)

176 We used the similarity distributions described in the previous section to derive a statistical  
177 potential that—instead of acting on features of a single pose, as in previous docking software—  
178 acts on a set of hypothesized poses, one for each ligand known to bind the target protein.

179  $E^{\text{ComBind}}(\text{Poses for a set of ligands}) =$

$$180 (n - 1) \sum_{\text{ligands}} E^{\text{dock}}(\text{pose}) \\ 181 + \sum_{\text{ligand pairs}} \sum_{\text{similarity types}} -\log \frac{\text{frequency of pose pair similarity in native distribution}}{\text{frequency of pose pair similarity in reference distribution}},$$

182 where  $n$  is the total number of ligands.

183 The first component evaluates the energetic favorability of each ligand’s pose individually using  
184 a per-ligand scoring function  $E^{\text{dock}}$  (e.g., a scoring function used in Glide or another docking  
185 software package). The summation is over ligands known to bind the target protein, with “pose”  
186 referring to the hypothesized pose for each ligand.

187 The second component rewards sets of poses with a degree of similarity that is more often  
188 observed in correct poses than in other poses ranked highly by the per-ligand scoring function.  
189 Here the outer summation is over pairs of distinct ligands known to bind the target protein, and  
190 the inner summation is over the similarity measures shown in **Fig. 2B and 2C**: hydrogen bond  
191 similarity, salt bridge similarity, hydrophobic contact similarity, and substructure similarity.  
192 “Pose pair similarity” refers to the calculated similarity value of the given type for the  
193 hypothesized poses of the given ligand pair. The “native distribution” and “reference  
194 distribution” for each similarity type are determined as described above. The resulting negative  
195 log likelihood ratios have the mathematical properties of an energy, namely that an additive  
196 decrease in energy corresponds to a multiplicative increase in likelihood ratio, allowing for  
197 straightforward integration with standard per-ligand docking scores, which are typically in units  
198 of energy (**Supplementary Fig. 3**). For pairs of ligands that do not share a substructure at least

199 half the size of the smaller ligand, the substructure similarity term is not included in the  
200 summation.

201 The second component acts as a correction to the first. If the per-ligand scoring function were  
202 perfect, in the sense that it could perfectly distinguish correct poses from incorrect ones, the  
203 terms in the second component would consistently assume values of zero. Because per-ligand  
204 scoring functions remain imperfect—and, in particular, tend to underpredict the likelihood that a  
205 set of ligands will adopt similar poses—the second component typically assumes non-zero  
206 values.

## 207 [Structure prediction informed by non-structural data](#)

208 The ComBind pose prediction method identifies a set of binding poses—one for each of a set of  
209 ligands known to bind the target protein—that minimizes the ComBind potential. More  
210 specifically, given a target protein and a query ligand whose binding pose we wish to predict, we  
211 proceed as follows:

- 212 1. Compile a set of other ligands known to bind the target protein (e.g., from a public  
213 database such as ChEMBL or from ligands tested as part of a drug discovery project). We  
214 refer to these as helper ligands.
- 215 2. Dock the query ligand and each helper ligand individually to the target protein (with a  
216 per-ligand docking software package), generating many candidate poses and associated  
217 docking scores for each ligand.
- 218 3. Determine the set of poses—one per ligand—that minimizes the ComBind potential. We  
219 use an expectation-maximization algorithm for this purpose (see Methods).

220 As an illustrative example, we apply ComBind to predict binding poses for ligands at the  $\beta_1$ -  
221 adrenergic receptor ( $\beta_1$ AR), the primary target of the beta blocker drugs that are widely used to  
222 treat heart attack, heart failure, and hypertension. We selected 11 diverse ligands known to bind  
223  $\beta_1$ AR, including both beta blockers and beta agonists. We docked 11 distinct ligands to a  
224 crystallographic  $\beta_1$ AR structure using Glide, producing up to 100 candidate poses for each  
225 ligand. We then solved for a set of poses—one per ligand—that minimizes the ComBind  
226 potential (**Fig. 3A**). The crystallographic  $\beta_1$ AR structure used for docking was determined in  
227 complex with a ligand distinct from any of the 11 docked ligands. Crystallographic ligand poses  
228 were not used in any way by Glide or ComBind.

229 Glide's top-ranked pose was correct for 4 of 11 ligands, whereas the pose selected by ComBind  
230 was correct for 10 of 11 ligands (**Fig. 3B**). In ComBind's selected poses—as in experimentally  
231 determined poses—most of the ligands form a salt bridge with D121 and hydrogen bonds with  
232 S211 and N329 (**Fig. 3C**). In comparison, the poses ranked most highly by Glide's per-ligand  
233 scoring function exhibited more varied hydrogen bonds and salt bridges (**Fig. 3C**).

234 We emphasize that ComBind does not require that all ligands adopt similar poses or form similar  
235 interactions. ComBind correctly predicts, for example, that two of these  $\beta_1$ AR ligands do not  
236 form a hydrogen bond with S211.

## 237 [ComBind outperforms a state-of-the-art method on a diverse benchmark set](#)

238 We benchmarked ComBind on a set of 245 protein–ligand complexes representing all major  
239 families of drug targets. We took several steps to mimic a real-world use case. First, when  
240 predicting the binding pose of a query ligand with ComBind, we used helper ligands selected

241 from the public ChEMBL database (16). We did not use any experimental information on poses  
242 of helper ligands; indeed, for the vast majority of helper ligands selected, poses have not been  
243 determined experimentally. Second, we never used a target protein structure determined in the  
244 presence of a ligand that shares a chemical scaffold with the query ligand, ensuring that we  
245 performed only “cross-docking” and avoided the easier but less practically relevant case of “self-  
246 docking” (see Methods). Finally, when predicting ligand binding poses at a given target protein,  
247 we omitted all structures involving that protein when constructing the distributions used to define  
248 the ComBind potential.

249 We evaluated two ways of choosing, from ChEMBL, helper ligands for use in ComBind: (1) a  
250 diverse set of ligands with the highest binding affinity (“high affinity”), and (2) the ligands  
251 sharing the largest substructure with the query ligand (“congeneric”). Both of these selection  
252 criteria lead to substantial performance improvements over Glide (**Fig 4, Supplementary Fig.**  
253 **4**), indicating that ComBind could be applied effectively using either a diverse set of ligands  
254 identified from a high-throughput screen or a congeneric series of ligands generated during lead  
255 optimization.

256 ComBind’s performance improves with the use of more helper ligands (up to 20, the maximum  
257 number we tested) (**Fig. 4B, Supplementary Fig. 4B**). Interestingly, ComBind substantially  
258 outperforms Glide even when using only a single helper ligand.

259 In the ComBind benchmark results described below (**Fig. 4A**), we used 20 helper ligands for  
260 each query ligand, selected from ChEMBL by the high-affinity criterion. When computing  
261 overall results, we averaged across target families, weighted the performance for each family by  
262 the fraction of FDA-approved drugs targeting that family (20).

263 On average, ComBind selects a correct pose for 57% of all ligands and 70% of ligands for which  
264 at least one correct pose was included among the list of candidates considered—a 30%  
265 improvement over Glide in both cases (**Supplementary Table 1**). ComBind improves pose  
266 prediction performance for all target families considered. Even at the individual target level, we  
267 find that use of ComBind hardly ever degrades performance: ComBind only reduced  
268 performance for one of the 30 targets considered, and this performance reduction was minor.

269 Removing any of the similarity types from the ComBind potential reduced ComBind’s  
270 performance (**Supplementary Fig. 5**). In particular, both protein–ligand interaction similarity  
271 and substructure similarity contribute substantially to ComBind’s accuracy. Protein–ligand  
272 interaction similarity is the more important of the two, particularly when using a diverse set of  
273 helper ligands.

#### 274 Predicting binding poses of antipsychotics at the D<sub>2</sub> dopamine receptor

275 To illustrate the practical application of ComBind, we predicted the binding poses of three  
276 antipsychotic drugs—pimozide, benperidol, and spiperone—at their target, the D<sub>2</sub> dopamine  
277 receptor (D<sub>2</sub>R). Knowledge of these binding poses could aid ongoing efforts to develop  
278 antipsychotics with improved pharmacological properties, including ligands that bind selectively  
279 to D<sub>2</sub>R over other dopamine receptors (Butini et al., 2016; Moritz et al., 2018). Solving  
280 experimental structures of D<sub>2</sub>R has proven difficult, despite decades of effort (Wang et al.,  
281 2018, Yin et al., 2020). At the time we made these predictions, the only available D<sub>2</sub>R structure  
282 was for D<sub>2</sub>R bound to risperidone (22), a ligand substantially different from those whose poses  
283 we wished to predict.

284 We predicted binding poses for pimozide, benperidol and spiperone, as well as the tool  
285 compound mespiperone, using both Glide and ComBind (see Methods). For spiperone and  
286 mespiperone, ComBind and Glide predict similar poses. For pimozide and benperidol, however,  
287 ComBind's predictions are different from Glide's: a fluorobenzene ring of each compound is  
288 positioned near the top of the binding pocket by Glide and near the bottom by ComBind (Fig.  
289 5A,B, Supplementary Fig. 6A, B).

290 To test ComBind's predictions, we designed mutagenesis experiments. First, we tested a series of  
291 mutations of Ser193 (S193), which is positioned uncomfortably close to the second  
292 fluorobenzene ring of pimozide in ComBind's predicted pose but not in Glide's (Fig. 5C).  
293 Indeed, mutating S193 to a larger residue (Val or Leu) decreases pimozide's affinity, while  
294 mutating S193 to a smaller residue (Ala) increases pimozide's affinity. Such effects are not  
295 observed for benperidol, which is identical to pimozide except that it lacks the fluorobenzene  
296 ring that contacts S193 in pimozide (Fig. 5D). Indeed, benperidol's affinity actually increases  
297 when S193 is mutated to a larger residue. These results are consistent with ComBind's predicted  
298 poses but not with Glide's: Glide predicts that pimozide and benperidol position nearly identical  
299 chemical groups in essentially identical positions near S193. Additional experiments involving  
300 mutation of residues surrounding the top and bottom of the binding pocket also support  
301 ComBind's predictions (Supplementary Fig. 6C).

302 Shortly before submission of this manuscript, a haloperidol-bound D<sub>2</sub>R crystal structure  
303 appeared (Fan et al., 2020). Haloperidol shares a common substructure with the ligands we  
304 considered, and this substructure is positioned similarly in the crystal structure and in  
305 ComBind's predictions, further supporting the accuracy of these predictions.

306 Our results highlight a structural motif contributing to potent and selective binding to D<sub>2</sub>R. The  
307 antipsychotics we studied have picomolar affinity at D<sub>2</sub>R and bind more tightly to D<sub>2</sub>R than to  
308 the D<sub>3</sub> dopamine receptor (D<sub>3</sub>R). Haloperidol, by contrast, binds with weaker (nanomolar)  
309 affinity and is not selective for D<sub>2</sub>R over D<sub>3</sub>R. Comparison of the binding poses reveals that the  
310 primary difference in the protein–ligand interactions is that all of the antipsychotics we studied—  
311 but not haloperidol—place a ring structure in the “extracellular vestibule,” located above the  
312 orthosteric site where dopamine binds. The extracellular vestibule has much higher sequence  
313 diversity among the different dopamine receptors than does the orthosteric site, supporting the  
314 hypothesis that ligand interactions with this region contribute to selectivity. Optimizing ligands  
315 to strengthen these interactions could lead to drugs with greater selectivity for D<sub>2</sub>R.

## 316 Discussion

317 We have introduced a statistical potential that acts on a set of structures for different protein–  
318 ligand complexes, rather than on a single structure. We have used this potential to develop  
319 ComBind, a method that increases the accuracy of binding pose prediction by simultaneously  
320 considering the poses of multiple ligands known to bind the target.

321 Importantly, ComBind does not assume that all ligands considered bind in similar poses. Instead,  
322 it considers both the favorability of each individual ligand's pose, as evaluated by a per-ligand  
323 scoring function, and the tendency of different ligands to adopt similar poses, as determined by  
324 analysis of hundreds of experimental structures. ComBind often predicts correctly that two

325 ligands position their common scaffold differently, or that they form substantially different  
326 interactions with the binding pocket (**Supplementary Figs. 7 and 8**).

327 [Applicability and robustness](#)

328 ComBind is broadly applicable. When benchmarking ComBind, we simply selected, from the  
329 ChEMBL database, helper ligands that bind to the same target as the query ligand, without  
330 requiring that these ligands be similar in any way. For most major drug targets, numerous  
331 binders have already been identified. Even for a completely novel target, several binders would  
332 typically be identified in the very early stages of a drug discovery project by high-throughput  
333 screening.

334 Binding pose prediction is important in many areas beyond drug discovery. These include the  
335 study of biological phenomena such as cellular signaling (e.g., binding of hormones and  
336 neurotransmitters), sensation (e.g., binding of odorants and flavorants), enzyme function (e.g.,  
337 binding of nutrients and other metabolic substrates), and defense mechanisms (e.g., binding of  
338 toxins and antibiotics). Pose prediction is also important to understanding the effects of genetic  
339 variation on responses to both naturally occurring ligands and drugs, which is essential to  
340 personalized medicine (23). In each of these cases, multiple ligands are typically known to bind  
341 the targets of interest, and ComBind may thus be used to improve binding pose prediction.

342 ComBind is highly robust. This is illustrated by its accuracy in our benchmarks, which used  
343 helper ligands selected automatically according to approximate affinity values listed in the  
344 ChEMBL database. This data is noisy, not only because ligand affinities were measured by many  
345 labs using different assays, but also because the data often includes values that were inputted  
346 incorrectly (24, 25). In addition, ligands selected automatically from ChEMBL sometimes bind  
347 to completely different binding pockets on the same target.

348 ComBind generally produces an accurate prediction for the query ligand even when no correct  
349 candidate poses are generated for many helper ligands. **Supplementary Table 3** shows an  
350 example in which the majority of the ligands considered had no correct candidate pose;  
351 ComBind nevertheless outperformed per-ligand docking.

352 The per-ligand docking software used to generate and score individual ligand poses in our  
353 current implementation of ComBind treats the protein as rigid. Nevertheless, ComBind generally  
354 proves effective even when considering a set of ligands that bind diverse protein conformations.  
355 For example, the  $\beta_1$ AR ligands considered in **Fig. 3** include both agonists, which bind  
356 preferentially to the protein's active conformation, and inverse agonists, which bind  
357 preferentially to its inactive conformation (**Supplementary Table 4**).

358 [Relationship to previous work](#)

359 ComBind builds upon several methods that combine ligand-based and physics-based information  
360 in more limited settings. Three-dimensional quantitative structure-activity relationship (3D  
361 QSAR) techniques, including field-based methods and 3D pharmacophore methods, are ligand-  
362 based approaches that consider potential 3D conformations of many ligands (26-28). These  
363 methods attempt to align ligands in three dimensions, but they do not require a structure of the  
364 target protein, and even when such a structure is available, it is typically used only in a limited  
365 way—e.g., to define excluded volume (29). 3D QSAR methods require data for a large number  
366 of binders and are generally not applied to pose prediction.

367 ComBind also draws inspiration from previous methods that predict binding poses of multiple  
368 known binders simultaneously. Some of these methods consider a congeneric series of ligands  
369 and require that the shared scaffold is similarly placed (30, 31). Others use either the number of  
370 similarly placed functional groups (32) or the number of shared interactions (33) between a set of  
371 docked ligands as a scoring function, assuming that the ligands adopt maximally similar poses.  
372 ComBind goes beyond these techniques in that it not only applies to any set of ligands but also  
373 provides a principled method to combine information from per-ligand docking scores with  
374 information on pose similarity across multiple ligands. This is essential to ComBind's success in  
375 cases where ligands form substantially different interactions or position shared substructures  
376 very differently (34). Likewise, ComBind provides a principled method to combine multiple  
377 metrics of pose similarity. Indeed, ComBind's performance drops substantially if one omits per-  
378 ligand docking scores, substructure similarity, or interaction similarity from its scoring function  
379 (**Supplementary Fig. 5**).

380 ComBind, like many ligand-based approaches, may also be viewed as a machine learning  
381 method (35). Most recent innovations in machine learning for drug discovery, including deep  
382 learning methods, involve complex models with many parameters that are able to fit extremely  
383 general functions. But this generality comes at a cost: such methods are typically effective only  
384 in cases where ligand data is abundant. ComBind is designed to make efficient use of any  
385 available ligand data by leveraging the physical priors encoded in structure-based approaches.  
386 This allows ComBind to improve upon the performance of a state-of-the-art docking method  
387 even when the list of other known binders is limited to a single ligand.

## 388 [Performance](#)

389 Our extensive benchmarks show that ComBind outperforms a state-of-the-art per-ligand pose  
390 prediction method across all major families of drug targets. For individual targets, ComBind  
391 often substantially improves pose prediction accuracy and hardly ever degrades it. Using  
392 ComBind thus has little if any downside.

393 ComBind performs particularly well for certain families of targets. Its 60% improvement over  
394 Glide for GPCRs is especially noteworthy, not only because GPCRs represent the targets of one-  
395 third of all approved drugs—and a very large fraction of current drug discovery efforts—but also  
396 because experimentally determining structures of GPCRs in complex with lead compounds is  
397 often extremely difficult. Almost all experimentally determined structures of GPCRs are bound  
398 to ligands that were carefully selected for their very high affinities and residence times, often  
399 after structure determination with other ligands failed. More generally, ComBind appears to  
400 deliver an especially large improvement in pose prediction accuracy for ligands that bind to  
401 transmembrane domains of proteins, perhaps reflecting the deep, well-defined nature of these  
402 binding pockets. Experimental structure prediction tends to be particularly challenging for  
403 transmembrane proteins, highlighting ComBind's utility.

404 ComBind's performance could undoubtedly be improved further through use of curated or in-  
405 house data. In particular, a careful human curator could (1) identify ligands that can most  
406 confidently be classified as binders (e.g., based on multiple reports or on particularly reliable  
407 data sources), (2) identify ligands demonstrated to bind in the same binding pocket (e.g., by  
408 competition binding assays), and (3) remove data that was inputted incorrectly to a database. For  
409 a major drug discovery project focused on a particular target, a substantial amount of additional  
410 in-house data will often be available on ligands found to bind the target, and that data will

411 typically have been collected in a more uniform and consistent manner than data extracted from  
412 multiple publications.

413 Skilled chemists can often improve the overall success rate of docking through careful manual  
414 preparation of the protein structure—for example, by diligent placement of waters or  
415 consideration of side chain rotamers. Such a procedure is subjective and was thus not employed  
416 in our performance benchmarks. In our experience, however, careful manual preparation of  
417 target structures improves ComBind’s results even more than those of per-ligand docking  
418 methods, because such preparation increases the accuracy of the helper ligand poses and thus the  
419 value of the information gleaned from them.

420 A variety of “flexible docking” methods have been developed that allow deformation of the  
421 target protein when sampling ligand poses (19, 36, 37). These methods have proven highly  
422 valuable in cases where the user knows in advance that protein flexibility is important to binding  
423 of the query ligand. When used as fully automated pose prediction methods without such prior  
424 information, however, flexible docking methods generally underperform rigid docking methods  
425 such as Glide, as observed in our benchmarks of the popular Induced Fit Docking method (36)  
426 (**Supplementary Table 1**) and reported previously for other flexible docking methods (37). Such  
427 methods are more likely to sample a correct pose but also more likely to sample incorrect poses  
428 that outscore correct poses. The ComBind scoring function might address this problem by more  
429 effectively selecting a correct pose from among the incorrect poses; this is a potential area for  
430 future research.

### 431 [Extensibility and future work](#)

432 Because ComBind can use any per-ligand docking method for pose generation and scoring of  
433 individual ligands, it will be able to take advantage of improvements to these methods. For  
434 example, several recent methods use machine learning to fit scoring functions (38-40), and  
435 others allow for binding pocket flexibility when generating candidate poses (8, 36).

436 Likewise, ComBind can be used with any pairwise pose similarity metric or combination thereof.  
437 ComBind’s performance could potentially be improved by using more fine-grained interaction  
438 descriptors (41, 42) or by using similarity metrics based on field-based methods developed for  
439 virtual screening (28, 43).

440 The statistical potential used by ComBind is sufficiently general that the method could be  
441 extended to exploit other types of data, ranging from multiple experimental structures of the  
442 protein in complex with different ligands to effects of protein mutation on ligand binding.  
443 Likewise, future work might exploit the affinity of each known binder; we have not done so here  
444 to avoid obscuring the general applicability of our method, as the affinity estimates available in  
445 public databases are often determined by different techniques and thus difficult to compare to  
446 one another.

447 Beyond binding pose prediction, our work suggests rich opportunities to improve prediction of  
448 diverse ligand properties by combining physics-based and ligand-based modeling. For example,  
449 both physics-based and ligand-based approaches are currently used to predict or rank ligand  
450 binding affinities in order to enable virtual ligand screening. Physics-based approaches require  
451 the use of various approximations that introduce error, while ligand-based approaches are limited  
452 in their ability to predict affinities of ligands very different from those for which experimental  
453 data is available. A careful combination of the two, perhaps based on the ComBind scoring

454 function, might outperform either one alone. Physical modeling allows ligand data to be used  
455 more efficiently by facilitating representation of the ligands in terms of specific interactions they  
456 form with the target, a level of abstraction where even chemically diverse ligands share features.  
457 Indeed, such approaches might prove effective even for predicting functional activity values  
458 whose physical basis is not known *a priori*. Further work will be necessary to explore these  
459 possibilities.

460 **Acknowledgements**

461 We thank B. Kelly, N. Latorraca, A. Venkatakrishnan, and N. Sohoni for advice and guidance in  
462 the early stages of the project, all members of the Dror lab for insightful comments, and J.  
463 Javitch for providing materials for mutagenesis experiments. This work was supported by  
464 National Institutes of Health grants R01 GM127359 (to R.O.D.), R01-GM083118 (to R.K.S.)  
465 and U19-GM106990 (to R.K.S.), and by a Stanford Graduate Fellowship (to J.M.P.).

## 466 References

- 467 1. W. Yu, A. D. MacKerell, Jr., Computer-Aided Drug Design Methods. *Methods Mol Biol*  
468 **1520**, 85-106 (2017).
- 469 2. G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, Jr., Computational methods in drug  
470 discovery. *Pharmacol Rev* **66**, 334-395 (2013).
- 471 3. J. Li, A. Fu, L. Zhang, An Overview of Scoring Functions Used for Protein-Ligand  
472 Interactions in Molecular Docking. *Interdiscip Sci* **11**, 320-328 (2019).
- 473 4. S. P. Leelananda, S. Lindert, Computational methods in drug discovery. *Beilstein J Org*  
474 *Chem* **12**, 2694-2718 (2016).
- 475 5. A. Cherkasov *et al.*, QSAR modeling: where have you been? Where are you going to?  
476 *Journal of medicinal chemistry* **57**, 4977-5010 (2014).
- 477 6. K. E. B. Platzer, F. Momany, H. Scheraga, CONFORMATIONAL ENERGY CALCULATIONS OF  
478 ENZYME-SUBSTRATE INTERACTIONS. II. Computation of the Binding Energy for  
479 Substrates in the Active Site of  $\alpha$ -Chymotrypsin. *International Journal of Peptide and*  
480 *Protein Research* **4**, 201-219 (1972).
- 481 7. I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, A geometric approach to  
482 macromolecule-ligand interactions. *J Mol Biol* **161**, 269-288 (1982).
- 483 8. A. N. Jain, Surflex: fully automatic flexible molecular docking using a molecular  
484 similarity-based search engine. *Journal of medicinal chemistry* **46**, 499-511 (2003).
- 485 9. R. A. Friesner *et al.*, Extra precision glide: docking and scoring incorporating a model of  
486 hydrophobic enclosure for protein-ligand complexes. *Journal of medicinal chemistry* **49**,  
487 6177-6196 (2006).
- 488 10. R. A. Friesner *et al.*, Glide: a new approach for rapid, accurate docking and scoring. 1.  
489 Method and assessment of docking accuracy. *Journal of medicinal chemistry* **47**, 1739-  
490 1749 (2004).
- 491 11. O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a  
492 new scoring function, efficient optimization, and multithreading. *J Comput Chem* **31**,  
493 455-461 (2010).
- 494 12. G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, Development and validation of a  
495 genetic algorithm for flexible docking. *Journal of molecular biology* **267**, 727-748 (1997).
- 496 13. M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A fast flexible docking method using an  
497 incremental construction algorithm. *Journal of molecular biology* **261**, 470-489 (1996).

498 14. W. J. Allen *et al.*, DOCK 6: Impact of new features and current docking performance. *J*  
499 *Comput Chem* **36**, 1132-1156 (2015).

500 15. C. M. Venkatachalam, X. Jiang, T. Oldfield, M. Waldman, LigandFit: a novel method for  
501 the shape-directed rapid docking of ligands to protein active sites. *J Mol Graph Model*  
502 **21**, 289-307 (2003).

503 16. A. Gaulton *et al.*, The ChEMBL database in 2017. *Nucleic Acids Res* **45**, D945-D954  
504 (2017).

505 17. C. Bissantz, B. Kuhn, M. Stahl, A medicinal chemist's guide to molecular interactions.  
506 *Journal of medicinal chemistry* **53**, 5061-5084 (2010).

507 18. Z. Wang *et al.*, Comprehensive evaluation of ten docking programs on a diverse set of  
508 protein-ligand complexes: the prediction accuracy of sampling power and scoring  
509 power. *Phys Chem Chem Phys* **18**, 12964-12975 (2016).

510 19. N. S. Pagadala, K. Syed, J. Tuszyński, Software for molecular docking: a review. *Biophys*  
511 *Rev* **9**, 91-102 (2017).

512 20. R. Santos *et al.*, A comprehensive map of molecular drug targets. *Nature reviews. Drug*  
513 *discovery* **16**, 19-34 (2017).

514 21. D. Bajusz, A. Rácz, K. Héberger, Why is Tanimoto index an appropriate choice for  
515 fingerprint-based similarity calculations? *J Cheminform* **7**, 20-20 (2015).

516 22. S. Wang *et al.*, Structure of the D2 dopamine receptor bound to the atypical  
517 antipsychotic drug risperidone. *Nature* **555**, 269-273 (2018).

518 23. A. S. Hauser *et al.*, Pharmacogenomics of GPCR Drug Targets. *Cell* **172**, 41-54.e19 (2018).

519 24. C. Kramer, T. Kalliokoski, P. Gedeck, A. Vulpetti, The experimental uncertainty of  
520 heterogeneous public K(i) data. *Journal of medicinal chemistry* **55**, 5165-5173 (2012).

521 25. G. Papadatos, A. Gaulton, A. Hersey, J. P. Overington, Activity, assay and target data  
522 curation and quality in the ChEMBL database. *Journal of computer-aided molecular*  
523 *design* **29**, 885-896 (2015).

524 26. J. Verma, V. M. Khedkar, E. C. Coutinho, 3D-QSAR in drug design--a review. *Curr Top*  
525 *Med Chem* **10**, 95-115 (2010).

526 27. R. D. Cramer, D. E. Patterson, J. D. Bunce, Comparative molecular field analysis (CoMFA).  
527 1. Effect of shape on binding of steroids to carrier proteins. *J Am Chem Soc* **110**, 5959-  
528 5967 (1988).

529 28. G. M. Sastry, S. L. Dixon, W. Sherman, Rapid shape-based ligand alignment and virtual  
530 screening method based on atom/feature-pair similarities and volume overlap scoring.  
531 *Journal of chemical information and modeling* **51**, 2455-2466 (2011).

532 29. S. Alam, F. Khan, 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal  
533 anticancer activity through Tankyrase inhibition. *Sci Rep* **9**, 5414-5414 (2019).

534 30. D. Y. Fu, J. Meiler, RosettaLigandEnsemble: A Small-Molecule Ensemble-Driven Docking  
535 Approach. *ACS omega* **3**, 3655-3664 (2018).

536 31. M. Vieth, D. J. Cummins, DoMCoSAR: a novel approach for establishing the docking  
537 mode that is consistent with the structure-activity relationship. Application to HIV-1  
538 protease inhibitors and VEGF receptor tyrosine kinase inhibitors. *Journal of medicinal  
539 chemistry* **43**, 3020-3032 (2000).

540 32. I. Wallach, R. Lilien, Predicting multiple ligand binding modes using self-consistent  
541 pharmacophore hypotheses. *Journal of chemical information and modeling* **49**, 2116-  
542 2128 (2009).

543 33. S. Renner, S. Derksen, S. Radestock, F. Morchen, Maximum common binding modes  
544 (MCBM): consensus docking scoring using multiple ligand information and interaction  
545 fingerprints. *Journal of chemical information and modeling* **48**, 319-332 (2008).

546 34. S. Malhotra, J. Karanicolas, When Does Chemical Elaboration Induce a Ligand To Change  
547 Its Binding Mode? *Journal of medicinal chemistry* **60**, 128-145 (2017).

548 35. N. Fleming, How artificial intelligence is changing drug discovery. *Nature* **557**, S55-s57  
549 (2018).

550 36. W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner, R. Farid, Novel procedure for  
551 modeling ligand/receptor induced fit effects. *Journal of medicinal chemistry* **49**, 534-553  
552 (2006).

553 37. P. A. Ravindranath, S. Forli, D. S. Goodsell, A. J. Olson, M. F. Sanner, AutoDockFR:  
554 Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. *PLoS  
555 Comput Biol* **11**, e1004586 (2015).

556 38. M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, D. R. Koes, Protein-Ligand Scoring with  
557 Convolutional Neural Networks. *Journal of chemical information and modeling* **57**, 942-  
558 957 (2017).

559 39. V. Chupakhin, G. Marcou, I. Baskin, A. Varnek, D. Rognan, Predicting ligand binding  
560 modes from neural networks trained on protein-ligand interaction fingerprints. *Journal  
561 of chemical information and modeling* **53**, 763-772 (2013).

562 40. J. Lim *et al.*, Predicting Drug-Target Interaction Using a Novel Graph Neural Network  
563 with 3D Structure-Embedded Graph Representation. *Journal of chemical information*  
564 and modeling **59**, 3981-3988 (2019).

565 41. C. Da, D. Kireev, Structural protein-ligand interaction fingerprints (SPLIF) for structure-  
566 based virtual screening: method and benchmark study. *Journal of chemical information*  
567 and modeling **54**, 2555-2561 (2014).

568 42. P. Gainza *et al.*, Deciphering interaction fingerprints from protein molecular surfaces  
569 using geometric deep learning. *Nat Methods* **17**, 184-192 (2020).

570 43. A. E. Cleves, A. N. Jain, Quantitative surface field analysis: learning causal models to  
571 predict ligand binding affinity and pose. *Journal of computer-aided molecular design*  
572 10.1007/s10822-018-0126-x (2018).

573 44. R. Wang, X. Fang, Y. Lu, C.-Y. Yang, S. Wang, The PDBbind database: methodologies and  
574 updates. *Journal of medicinal chemistry* **48**, 4111-4119 (2005).

575 45. M. C. Jones, Simple boundary correction for kernel density estimation. *Statistics and*  
576 *Computing* **3**, 135-146 (1993).

577 46. M. J. Sippl, Boltzmann's principle, knowledge-based mean fields and protein folding. An  
578 approach to the computational determination of protein structures. *Journal of*  
579 *computer-aided molecular design* **7**, 473-501 (1993).

580 47. M. J. Sippl, Calculation of conformational ensembles from potentials of mean force. An  
581 approach to the knowledge-based prediction of local structures in globular proteins. *J*  
582 *Mol Biol* **213**, 859-883 (1990).

583 48. R. Das, D. Baker, Automated de novo prediction of native-like RNA tertiary structures.  
584 *Proc Natl Acad Sci U S A* **104**, 14664-14669 (2007).

585 49. D. J. Hand, K. Yu, Idiot's Bayes: Not So Stupid after All? *International Statistical Review /*  
586 *Revue Internationale de Statistique* **69**, 385-398 (2001).

587

## 588 Methods

### 589 Assembly of data for use in learning the ComBind scoring function

#### 590 Curation of experimental protein–ligand complex structures

591 In order to learn the ComBind scoring function, we curated a set of protein–ligand complex  
592 structures representing each of the major drug targets catalogued by Santos *et al.*, 2017  
593 (**Supplementary Table 2**). This set of target proteins was chosen through a combination of  
594 manual curation and adaptation of the PDBbind refined set (44). For each target, we included up  
595 to 21 structures, each with a distinct ligand bound, selecting the structures with alphabetically  
596 lowest PDB code when more than 21 were available. Structures with duplicate ligands, mutant  
597 proteins, or no small molecule in the orthosteric site were excluded.

#### 598 Generation of docked poses

599 For all of the results presented in this study, we performed “cross-docking.” Specifically, for  
600 each target, we chose the structure with the alphabetically first PDB code as the input 3D  
601 structure of the protein and then docked other ligands to this reference structure. This simulates a  
602 real-world application where only one structure of the target protein is available, and the user  
603 wants to predict poses for ligands not present in that structure.

604 To prepare protein structures for use in docking, we first prepared structures using the  
605 Schrodinger suite. All waters were removed, the tautomeric state of the ligand present in the  
606 experimentally determined structure was assigned using Epik at pH 7.0  $\pm$  2.0, hydrogen bonds  
607 were optimized, and energy minimization was performed with non-hydrogen atoms constrained  
608 to an RMSD of less than 0.3 Å from the initial structure. The ligand was then removed.

609 For ligands to be docked, the tautomeric state was assigned using Epik tool at target pH 7.0  $\pm$   
610 2.0. The single most favorable state was considered for docking. Torsion angles were  
611 randomized before docking.

612 Ligands were docked using default Glide SP settings except that “Enhanced Sampling” was set  
613 to 4, quadrupling the number of ligand conformers considered. For each ligand, we produced up  
614 to the 100 most highly ranked poses (for some ligands fewer than 100 poses passed Glide’s  
615 internal filters). We also considered using Glide XP but found that Glide XP produced a correct  
616 candidate pose substantially less often than Glide SP (**Supplementary Table 1**). Glide XP and  
617 SP performed similarly in terms of how frequently the top-ranked pose is correct. Additionally,  
618 we considered using Induced Fit Docking (IFD). While IFD produced at least one correct  
619 candidate pose more often than Glide SP, the performance in terms of how often the top-ranked  
620 pose is correct was worse.

#### 621 Determining the quality of docked poses

622 The accuracy of each pose was quantified by the non-hydrogen-atom RMSD from the  
623 experimentally determined pose. To compute the RMSD, each complex was aligned to the  
624 structure used for docking based on non-hydrogen-atoms within 15 Å of the ligand, and the  
625 RMSD was then computed between the docked pose and the same ligand’s pose in the aligned  
626 complex. We denote poses at most 2.0 Å RMSD from their aligned experimentally determined  
627 pose as being “near-native” or “correct.”

628 Quantifying the similarity of binding poses for distinct ligands

629 Protein–ligand interaction similarity

630 Three interaction types were considered: hydrogen bonds, salt bridges, and hydrophobic  
631 contacts. We designed quantitative measures to assess the presence of these interactions between  
632 the ligand and a given protein residue (**Supplementary Table 5**). The hydrogen bond and salt  
633 bridge interaction measures were designed to give a value of 1 for interactions meeting  
634 established criteria (17). A soft boundary was added to give borderline cases values between 0  
635 and 1, in order to prevent discontinuities. The hydrophobic contact measure approximates the  
636 hydrophobic surface contact area by considering the number of protein–ligand atom pairs in  
637 contact with each other. Again, a soft boundary (in this case, between an atom pair being or not  
638 being in contact) was used to prevent very similar poses from leading to very different values.  
639 We denote the interaction value for interaction type  $k$ , for pose  $\ell_i$  of ligand  $i$ , with protein  
640 residue  $r$  as  $X_r^{(k)}(\ell_i)$ .

641 Interaction similarities for a pair of poses (for two different ligands bound to the same target  
642 protein) were computed separately for each interaction type. The interactions made between the  
643 ligand and each residue of the target protein residue were tabulated and then the similarity  
644 between the resulting lists for each pose was measured by the Tanimoto coefficient (21). The  
645 Tanimoto coefficient was modified by the addition of pseudo counts, which serve to make the  
646 metric well defined if neither ligand forms a particular type of interaction and to reward poses  
647 that share larger numbers of interactions in absolute terms. We define the interaction similarity,  
648 for interaction type  $k$  between a pair of poses  $\ell_i, \ell_j$  (for ligands  $i$  and  $j$ , respectively), as

$$649 s^{(k)}(\ell_i, \ell_j) = \frac{1 + \sum_{r \in R} \sqrt{X_r^{(k)}(\ell_i)X_r^{(k)}(\ell_j)}}{2 + \sum_{r \in R} \left[ X_r^{(k)}(\ell_i) + X_r^{(k)}(\ell_j) \right] - \sum_{r \in R} \sqrt{X_r^{(k)}(\ell_i)X_r^{(k)}(\ell_j)}},$$

650 where  $R$  is the set of all protein residues.

651 When computing hydrogen bond similarity, a case where a given protein residue acts as a  
652 hydrogen bond donor for one ligand and a hydrogen bond acceptor for another ligand is not  
653 considered a shared interaction.

654 Substructure similarity

655 To compute the substructure similarity for a pair of candidate poses, the maximum common  
656 substructure of the two ligands is identified using Canvas (Schrodinger LLC) and then mapped  
657 onto each candidate pose. Finally, the RMSD between these two sets of atoms is computed and  
658 used as the measure of substructure similarity. We defined custom atom and bond types for  
659 computation of the common scaffold (**Supplementary Table 6**). Scaffold similarity is not  
660 considered for pairs of ligands with a maximum common substructure of less than half the size  
661 of the smaller ligand. Hydrogen atoms were not included in the substructure nor when  
662 determining the total number of atoms in each ligand.

663 Computation of similarity statistics

664 Using the set of protein–ligand complex structures described above, we characterized the extent  
665 to which distinct ligands binding a common target adopt similar poses, as quantified by the

666 interaction and substructure similarity metrics described above. (We note that the three ion  
667 channel targets were not included in these statistics because they were added after the rest of our  
668 study had been completed.)

669 When computing these statistics, we docked the ligands using Glide and then identified poses  
670 that are near-native among the candidate poses ranked in the top 100 by Glide. We used these  
671 docked poses, as opposed to the experimentally determined pose, in order to ensure that the  
672 statistics will be applicable to the scoring of candidate poses generated by Glide. We computed  
673 the empirical distribution of each similarity type across all pairs of near-native poses using a  
674 Gaussian kernel density estimate with standard deviation of 0.03 for interaction similarities and  
675 0.18 for substructure similarities. To reduce bias near the boundaries, we applied reflected  
676 boundary conditions(45). We capped substructure similarities at 6 Å (that is, substructure  
677 similarities greater than 6 Å were set to 6 Å), as the sparsity of near-native pose pairs for higher  
678 values led to overly rough distributions. We denote the similarity distribution over near-native  
679 poses for interaction type  $k$  as  $f_k(x; \text{Native})$ .

680 We computed equivalent similarity distributions using all pairs of candidate poses produced by  
681 Glide, regardless of whether they are near-native. We denote the resulting distributions as  
682  $f_k(x; \text{Reference})$ .

683 To combine the distributions for the four similarity types into a single joint distribution, we  
684 assume that the interaction types are conditionally independent and express the joint distribution  
685 as a product of the distributions for each interaction type. That is:

$$686 f(s(\ell_i, \ell_j); \text{Native}) = \prod_k f_k(s^{(k)}(\ell_i, \ell_j); \text{Native}), \text{ and}$$
$$687 f(s(\ell_i, \ell_j); \text{Reference}) = \prod_k f_k(s^{(k)}(\ell_i, \ell_j); \text{Reference}).$$

688 where  $s(\ell_i, \ell_j)$  is the vector of  $s^{(k)}(\ell_i, \ell_j)$ 's for each similarity type  $k$ .

#### 689 Description of the ComBind method

##### 690 The ComBind score

691 We describe a hypothesized set of binding poses of a set of  $n$  ligands as  $L = \ell_1, \ell_2, \dots, \ell_n$ , where  
692  $\ell_i$  specifies the hypothesized pose for ligand  $i$ .

693 Per-ligand scoring functions, which consider each ligand independently, would determine an  
694 optimal set of poses  $\hat{L}$  by choosing the binding pose with minimum docking score for each ligand  
695 or, equivalently, by minimizing

$$696 E^{\text{dock}}(L) = \sum_{i=1}^n E^{\text{dock}}(\ell_i)$$

697 where  $E^{\text{dock}}(\ell_i)$  is the output of a per-ligand scoring function (such as that reported by Glide)  
698 for pose  $\ell_i$  of ligand  $i$ .

699 In our method, we add pairwise terms that tend to favor sets of similar poses:

$$700 E^{\text{ComBind}}(L) = (n - 1)E^{\text{dock}}(L) + \sum_{(i,j), i \neq j} -\log \frac{f(s(\ell_i, \ell_j); \text{Native})}{f(s(\ell_i, \ell_j); \text{Reference})}.$$

701 Intuitively, these pairwise terms reward pose pairs with similarity values more often observed in  
702 near-native (correct) pose pairs than in reference pose pairs (i.e., pose pairs chosen at random  
703 from among all candidates). The idea of comparing the distribution of features in correct  
704 solutions to the distribution in all possible solutions has been used in statistical potentials for  
705 biomolecular structure prediction(46-48) and in the naïve Bayes machine learning model(49).  
706 We weight the docking scores by the number of ligands minus 1, in order to hold the relative  
707 contribution of singleton and pairwise terms constant for different numbers of helper ligands.

708 Consistent with their reported units of kcal/mol, we find that Glide scores have the mathematical  
709 properties of an energy; namely, the negative log likelihood ratio of a pose being near-native is  
710 linear in its Glide score (**Supplementary Fig. 3**). By construction, the pairwise terms we  
711 introduce in this study also have this property. This congruence implies that these singleton and  
712 pairwise terms can be additively combined (as this is the equivalent of multiplying likelihood  
713 ratios).

714 In general, it could be that the per-ligand docking scores need to be scaled by a constant factor in  
715 order to be consistent with the pairwise terms. For example, if the docking scores were on  
716 average 10 times the negative log likelihood ratio of a pose being near-native, they would need  
717 to be scaled by 1/10. This constant factor can be identified by performing logistic regression with  
718 the docking scores as features and whether each pose is near-native as the response. For Glide  
719 scores, the appropriate constant is close to 1 (1/0.9 = 1.1) (**Supplementary Fig. 3**), and we chose  
720 to set it to 1 for simplicity.

## 721 Optimization procedure

722 We use coordinate descent to compute a set of poses that minimizes the ComBind score. At first,  
723  $L$  is randomly initialized.  $L$  is then iteratively improved by iterating through the ligands, in a  
724 random order, and updating the selected ligand's pose to the argument minimum of  
725  $E^{\text{ComBind}}(L)$  assuming that the other poses in  $L$  are correct. This procedure is repeated until no  
726 more updates can be made. Each update can be computed efficiently because it depends only on  
727 the partial contribution of the selected ligand's pose to the ComBind score:

$$728 \hat{\ell}_q = \underset{\ell_q}{\operatorname{argmin}} \left[ (n-1)E^{\text{dock}}(\ell_q) + \sum_{i \neq q} -\log \frac{f(s(\ell_q, \ell_i); \text{Native})}{f(s(\ell_q, \ell_i); \text{Reference})} \right].$$

729 In order to account for the non-convex nature of the ComBind score, we repeat this algorithm  
730 from 500 initial configurations, explicitly including the initial configuration corresponding to the  
731 generic scoring function predictions at least once and return the best scoring configuration.  
732 Empirically this procedure converges to the same result over multiple runs.

## 733 Benchmarking

734 We evaluated the performance of ComBind on the 30 target proteins listed in **Supplementary**  
735 **Table 2**. We only considered ligands that have less than 50% scaffold overlap with the ligand  
736 that was originally present in the experimental structure used for docking. We found that ligands  
737 with higher scaffold overlap were substantially easier to dock, likely due to the binding pocket  
738 being well shaped to accommodate the similar ligand (**Supplementary Table 1**). Additionally,  
739 we only consider ligands for which there is at least one correct candidate pose, since only in  
740 these cases is it possible for either ComBind or Glide to make a correct prediction. Importantly,

741 this subsetting was only done for the query ligands, not the helper ligands downloaded from  
742 ChEMBL described below.

743 For each of the 245 unique ligands meeting these criteria, we identified other ligands known to  
744 bind the respective target protein from the ChEMBL database and then used ComBind to jointly  
745 predict their binding poses. Importantly, when evaluating the performance of our method on a  
746 particular target protein, we excluded the data for that target protein from the similarity statistics.

#### 747 Selection of helper ligands

748 For all targets, we downloaded  $K_i$  or  $IC_{50}$  data (whichever was more numerous) from ChEMBL  
749 (16). We removed ligands that did not meet the following criteria: a ChEMBL confidence score  
750 of 9 (the highest value), molecular weight  $< 800$  Da, and  $K_i$  or  $IC_{50} < 1 \mu M$ . Ligand structures  
751 were generated from the SMILES strings provided by ChEMBL.

752 We benchmarked two criteria for selecting which ChEMBL ligands to use as helper ligands for  
753 each query ligand: (1) the highest affinity binders that do not share a chemical scaffold, and (2)  
754 the ligands that share the largest chemical substructure with the query ligand. To define the size  
755 of the common substructure, we used the same maximum common substructure definition as that  
756 used to compute substructure similarity. For selection method (1), we added helper ligands in  
757 order of affinity, not adding a ligand if it has greater than 80% substructure overlap with any  
758 ligand already in the selected set of helpers.

759 The benchmarking results presented in the figures were obtained using the following ligand  
760 selection criteria and number of helper ligands: **Fig. 4A** and **Supplementary Fig. 5A**: 20 helper  
761 ligands selected using criterion (1); **Fig. 4B**: the indicated number of ligands selected using  
762 criterion (1); **Supplementary Fig. 4A** and **Supplementary Fig. 5B**: 20 helper ligands selected  
763 using criterion (2); and **Supplementary Fig. 4B**: the indicated number of ligands selected using  
764 criterion (2). For a handful of targets, fewer than 20 helper ligands were available meeting our  
765 criteria. In these cases, we used the minimum of the indicated number of ligands and the number  
766 of available ligands. Targets with only one ligand are omitted from **Fig. 4A** and **Supplementary**  
767 **Fig. 4A**.

#### 768 Performance evaluation

769 We developed an overall performance metric to represent the expected performance in drug  
770 development campaigns. For each protein family, we computed the average performance, then  
771 weighted each by the fraction of FDA-approved drugs targeting the protein family, as reported in  
772 Santos *et al.*, 2017.

#### 773 Prediction of binding poses of antipsychotics at the D<sub>2</sub>R

#### 774 Execution of the ComBind method

775 We predicted binding poses for the typical antipsychotics spiperone, mespiperone, benperidol,  
776 and pimozide at the D<sub>2</sub> dopamine receptor (D<sub>2</sub>R). We prepared the ligands using the Schrodinger  
777 ligprep tool, considering the unprotonated tautomer and both inversions of the protonated  
778 tautomer. The same docking protocol was used as described above, except that the top 300 poses  
779 were considered by ComBind, in order to account for the use of the 3 tautomeric states of the  
780 ligand.

#### 781 D<sub>2</sub> Dopamine receptor mutagenesis

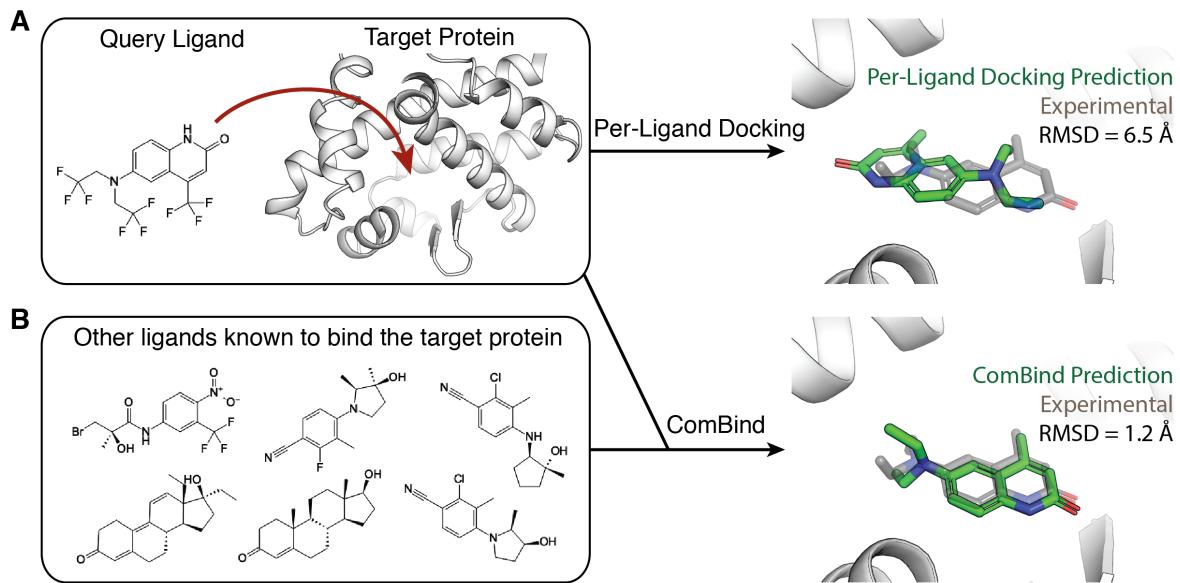
782 Wild type (wt) human D<sub>2</sub>R in pcDNA3.1 was kindly provided by the laboratory of Jonathan  
783 Javitch (Columbia University, New York, NY). Mutations were introduced through of a  
784 modified QuikChange (Stratagene, La Jolla, CA) mutagenesis protocol using the following  
785 primers V91F: 5'-GGTCATGCCCTGGTTGTCTACCTGG-3', S193A:  
786 5'CGTGGTCTACGCCCTCCATCGTCTCC-3', S193V: 5'-  
787 CGTGGTCTACGTCTCCATCGTCTCC-3', S193L: 5'-  
788 CGTGGTCTACCTCTCCATCGTCTCC-3', W100L: 5'-  
789 GGTAGGTGAGTTGAAATTCAAGCAGG-3', C118M: 5'-  
790 GGACGTCATGATGATGACGGCGAGC-3', W386F: 5'-  
791 CGTGTTCATCATCTGCTTCTGCCCTTCTTC-3', F389L: 5'-  
792 GCTGGCTGCCCTTATTACACACACATCC-3'.

### 793 Membrane preparation and radioligand binding

794 Membranes were isolated from HEK293T cells transiently transfected with D<sub>2</sub>R(wt) or D<sub>2</sub>R-  
795 mutants. Briefly, cells were harvested 48 hr post-transfection (with Lipofectamine 2000), rinsed  
796 with PBS, lifted with harvesting buffer (0.68 mM EDTA, 150 mM NaCl, 20 mM HEPES, pH  
797 7.4), and centrifuged at 200 x g for 3 min. The cells were resuspended in ice cold homogenizing  
798 buffer (10 mM HEPES, pH 7.4, 100 mM NaCl, 0.5 mM EGTA), homogenized using a Tissue  
799 Tearer (BioSpec, Bartlesville, OK) for 30 sec, and centrifuged at 20,000 x g for 20 min.  
800 Membranes were resuspended in Binding Buffer (20 mM HEPES, pH 7.4, 100 mM NaCl) using  
801 a Dounce glass homogenizer , flash frozen in liquid N<sub>2</sub> and stored at -80°C.

802 For saturation binding assays, cell membranes (0.6–20 µg per well, depending on the mutant)  
803 were incubated for 1.5 hr at 30°C with [<sup>3</sup>H]-spiperone (Perkin Elmer, Waltham, MA) (0.02–12  
804 nM, depending on the Kd of the D<sub>2</sub>R mutant) in Binding Buffer containing 0.001% BSA, 1 mM  
805 ascorbic acid, and 100 nM GDP with or without 20 µM (+)butaclamol (to determine non-  
806 specific binding). For competition binding assays, cell membranes (0.6–20 µg, depending on the  
807 D<sub>2</sub>R mutant) were incubated for 1.5 h at 30°C with [<sup>3</sup>H]-spiperone (0.05–0.6 nM, depending on  
808 the Kd of the D<sub>2</sub>R mutant) in Binding Buffer containing 0.001% BSA, 1 mM ascorbic acid, 100  
809 nM GDP and 0–0.1 nM test compound (purchased from Millipore-Sigma, St Louis, MO), or 20  
810 µM (+)butaclamol (to determine non-specific binding). Sample membranes were harvested by  
811 vacuum filtration on 96-well GF/C filter plates, washed with ice cold binding buffer to remove  
812 unbound radioligand, and allowed to dry before adding Microscint 0 (Perkin Elmer, Waltham,  
813 MA) for counting in a Top Count Scintillation Counter (Perkin Elmer/Packard, Waltham, MA ).  
814 Data were fit to a one site binding curve to determine Kd for [<sup>3</sup>H]-spiperone saturations, or to a  
815 one-site competition binding curve to calculate Ki of test compounds using Prism (GraphPad,  
816 San Diego CA).

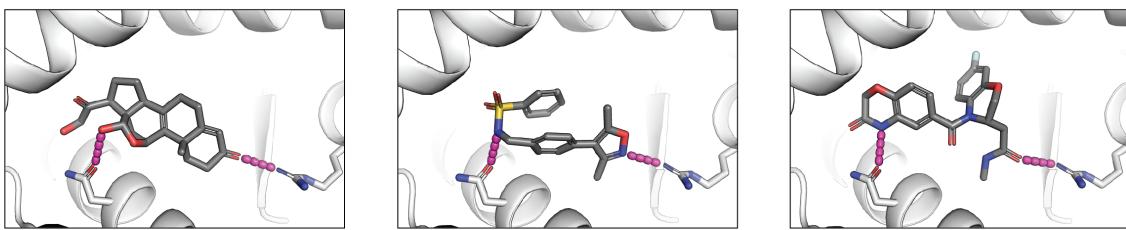
817 **Figures**



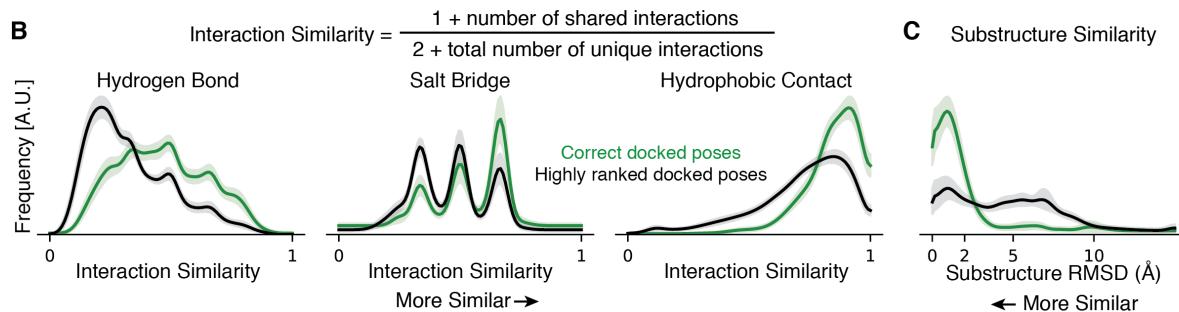
818

819 **Figure 1: ComBind leverages non-structural data to improve ligand binding pose**  
820 **predictions.** (A) Standard docking methods take as input the chemical structure of the query  
821 ligand and the 3D structure of the target protein and predict a binding pose using a per-ligand  
822 scoring function. (B) ComBind additionally considers other ligands known to bind the target  
823 protein (whose binding poses are not known), resulting in more accurate predictions. For clarity,  
824 hydrogen and fluorine atoms are not shown in the 3D renderings.

**A** Distinct ligands tend to form similar interactions with the target

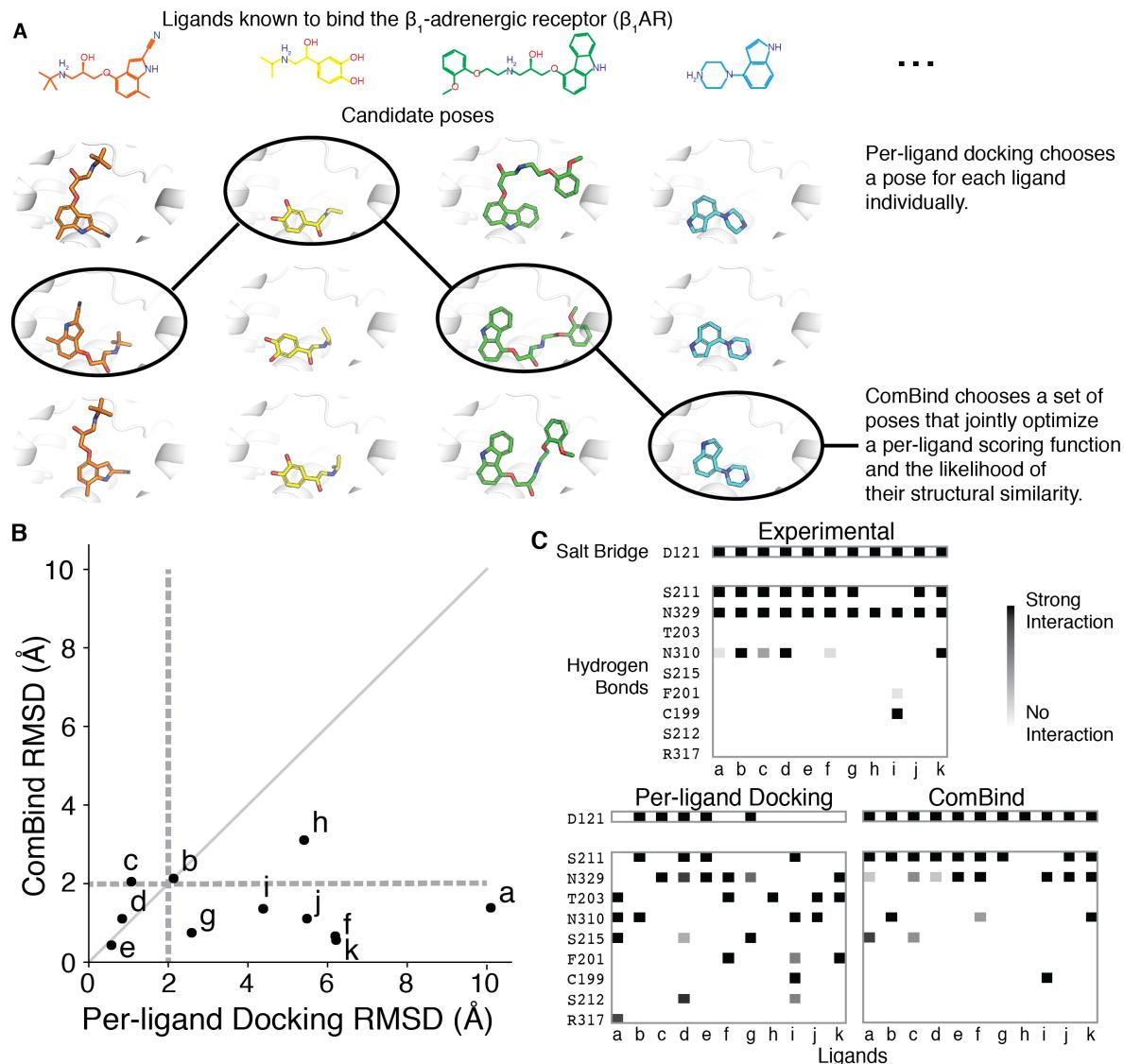


Per-ligand docking underestimates the structural similarity of distinct ligands' binding poses



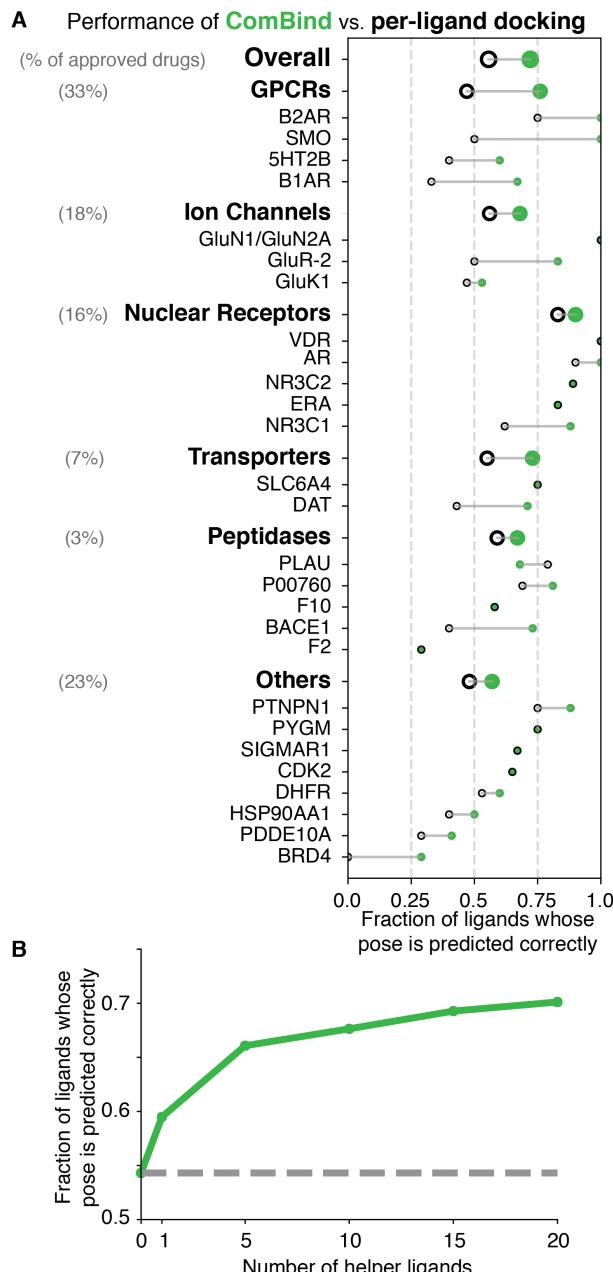
825

**Figure 2: Distinct ligands that bind to a given target protein often adopt similar binding poses and do so more frequently than predicted by a state-of-the-art per-ligand docking method.** (A) Chemically distinct ligands share key interactions with the mineralocorticoid receptor (PDB IDs: 2AA2, 5L7E, 5MWP). (B) Across a set of 3115 ligand pairs, interaction similarities are generally higher in pairs of correct poses than in pairs including all poses ranked highly by a per-ligand scoring function. Shading depicts the per-target standard error of the mean. (C) Across a set of 690 ligand pairs with a shared substructure, the substructure tends to be placed more similarly in correct poses than in other poses ranked highly by a per-ligand scoring function. Substructure similarity for a pose pair was defined as the root mean square deviation (RMSD) between the largest substructure shared by the ligands (see Methods).



836

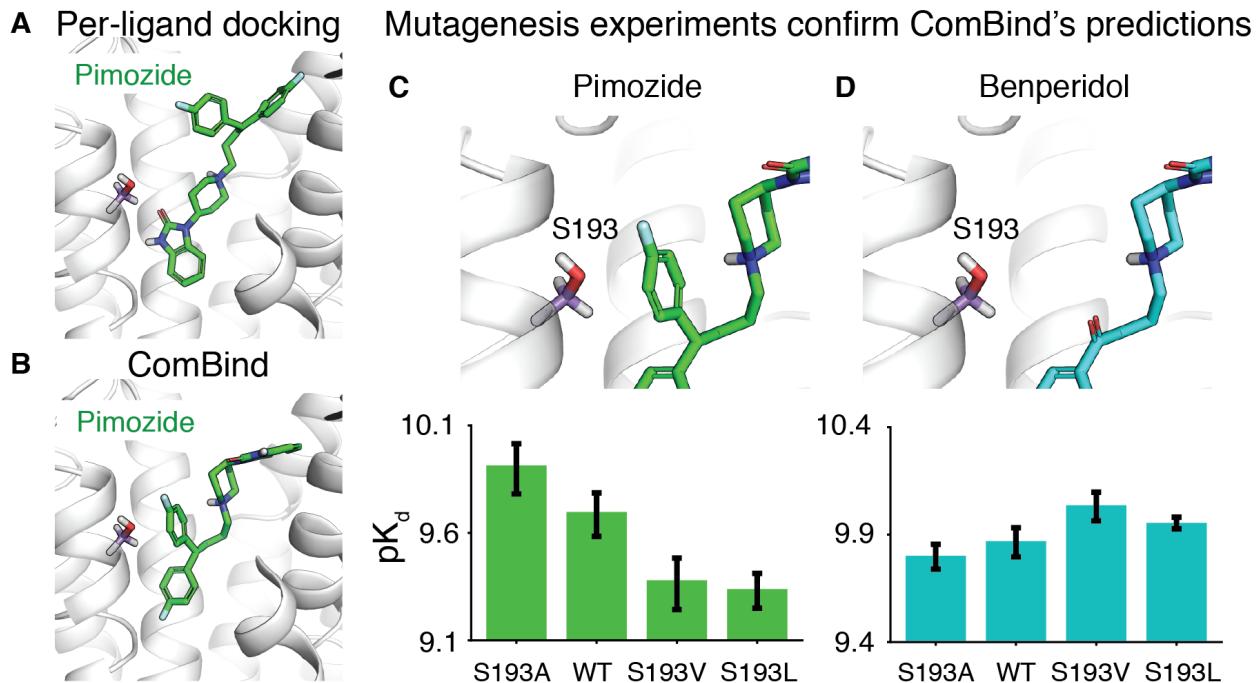
837 **Figure 3: ComBind discovers and rewards key interactions shared by distinct ligands.** (A) Whereas per-ligand docking considers each ligand individually, ComBind jointly selects poses  
 838 for all ligands, optimizing for poses that are individually favorable according to a per-ligand  
 839 scoring function and together form a coherent set of protein–ligand interactions. (B) We tested  
 840 the ability of ComBind to predict the poses of 11 ligands that bind  $\beta_1$ AR. Each dot corresponds  
 841 to a single ligand, with the dot’s position indicating the error in the predicted pose (RMSD from  
 842 the experimentally determined pose) for ComBind and for state-of-the art per-ligand docking  
 843 software (Glide). A pose is considered correct if its RMSD is  $\leq 2.0$   $\text{\AA}$  (dashed lines). ComBind  
 844 predicts a substantially more accurate pose than Glide for 7 of the 11 ligands. (C) The set of  
 845 residues with which each ligand forms salt bridges or hydrogen bonds when positioned in its  
 846 experimentally determined pose (top), the pose predicted by per-ligand docking (left), and the  
 847 pose predicted by ComBind (right).



849

850 **Figure 4: ComBind outperforms per-ligand docking on a diverse benchmark set.**

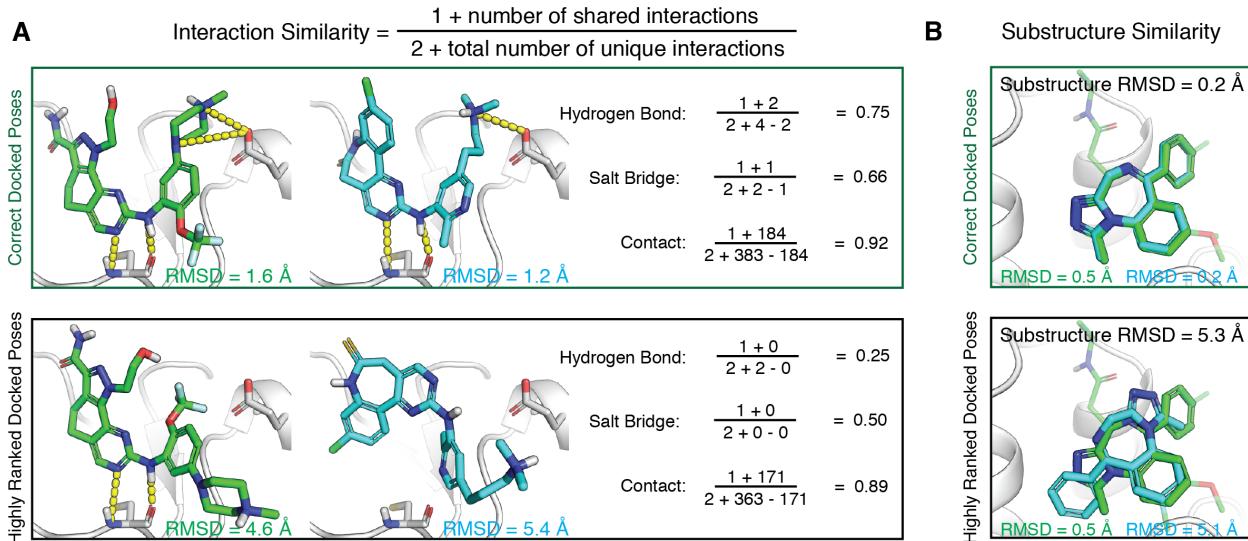
851 Performance of ComBind, as compared to a per-ligand scoring function, using helper ligands  
 852 selected automatically from ChEMBL. All results are for “cross-docking” (the query ligand is  
 853 docked into a structure determined in the presence of a distinct ligand). (A) Performance per  
 854 target protein, target protein family (GPCRs, ion channels, etc.), and overall. Green disks and  
 855 black circles indicate performance (fraction of ligands whose pose is predicted correctly) for  
 856 ComBind and a state-of-the art per-ligand docking software package (Glide), respectively. (B)  
 857 Performance as a function of the number of helper ligands. When using no helper ligands,  
 858 ComBind is equivalent to Glide (dashed horizontal line).



859

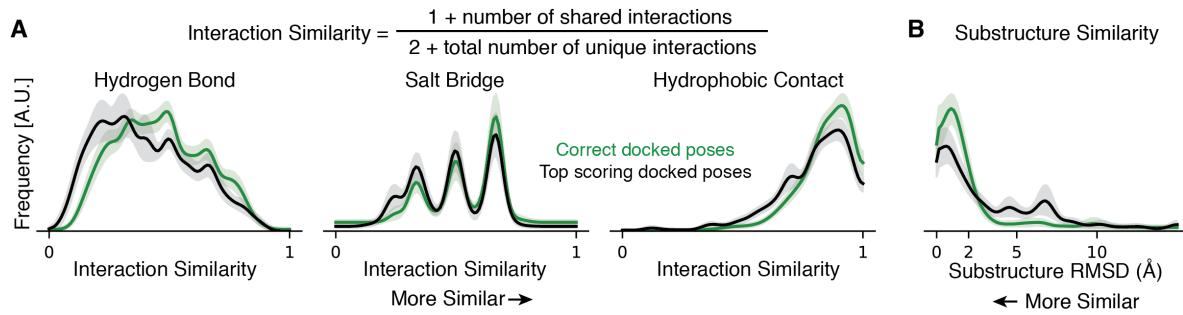
860 **Figure 5: Prediction and validation of the binding poses of antipsychotics at the D<sub>2</sub>**  
861 **dopamine receptor.** Glide (A) and ComBind (B) predict very different binding poses for  
862 pimozide (and for benperidol; see **Supplementary Fig. 6**). (C) Mutagenesis experiments validate  
863 ComBind's predictions. In ComBind's predicted pose for pimozide, its "extra" ring is  
864 uncomfortably close to S193, such that decreasing the size of residue 193 (S193A) increases  
865 pimozide's binding affinity and increasing the size of residue 193 (S193V and S193L) decreases  
866 pimozide's binding affinity. WT represents the wild-type (unmutated) receptor. (D) As a control,  
867 we verified that benperidol—which lacks this "extra" ring but is otherwise identical to  
868 pimozide—does not exhibit the same trend. Error bars show standard error of the mean. See  
869 **Supplementary Fig. 6** for additional data.

870 **Supplementary Figures**



871  
872  
873  
874  
875  
876

**Supplementary Figure 1: Examples of interaction similarity and substructure similarity computation.** (A) Comparison of interactions formed by two ligands bound to *PLK1*, for a pair of correct poses (top) and randomly chosen poses (bottom). (B) Overlays of two ligands that share a common substructure bound to *BRD4* for correct docked poses (top) and randomly chosen highly ranked docked poses (bottom).



877

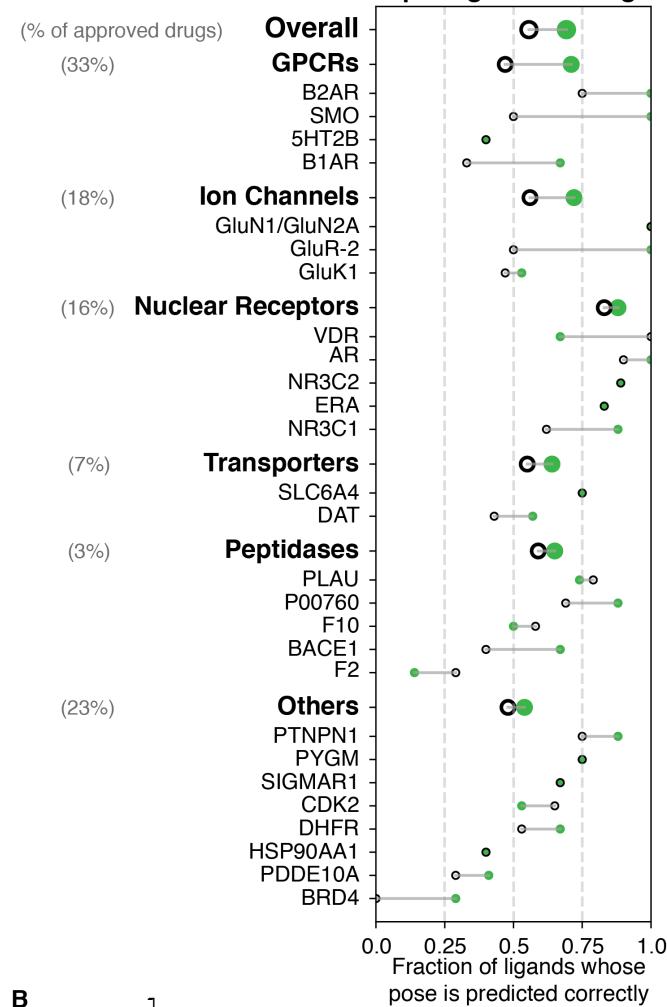
878 **Supplementary Figure 2: A state-of-the-art per-ligand scoring function (Glide)**  
879 **underestimates the similarity of binding poses of different ligands binding to the same**  
880 **target protein.** (A) and (B) are identical to Fig. 2C and D, respectively, except that the black  
881 curves in this figure are computed using only the pose ranked first by Glide for each ligand.



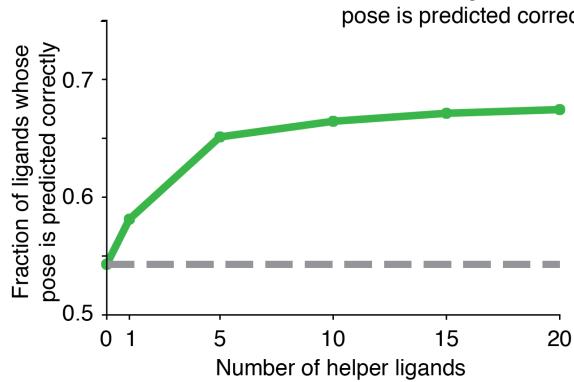
882

883 **Supplementary Figure 3: The output of Glide's per-ligand scoring functions is in units of**  
884 **energy similar to those of ComBind's pairwise potential.** A quantile plot showing the  
885 relationship between Glide scores and the negative log likelihood ratio of a pose being correct.  
886 For each of the docked poses of each ligand in our benchmark set, we computed the Glide score  
887 and determined whether the pose was correct. We split all of the resulting data into quantiles  
888 based on Glide scores, with each quantile containing 100 poses. Each point in the plot represents  
889 the mean Glide score and negative log likelihood ratio for a given quantile. The red line shows  
890 the best-fit linear relationship between these two quantities as determined by logistic regression.

**A Performance of ComBind vs. per-ligand docking**

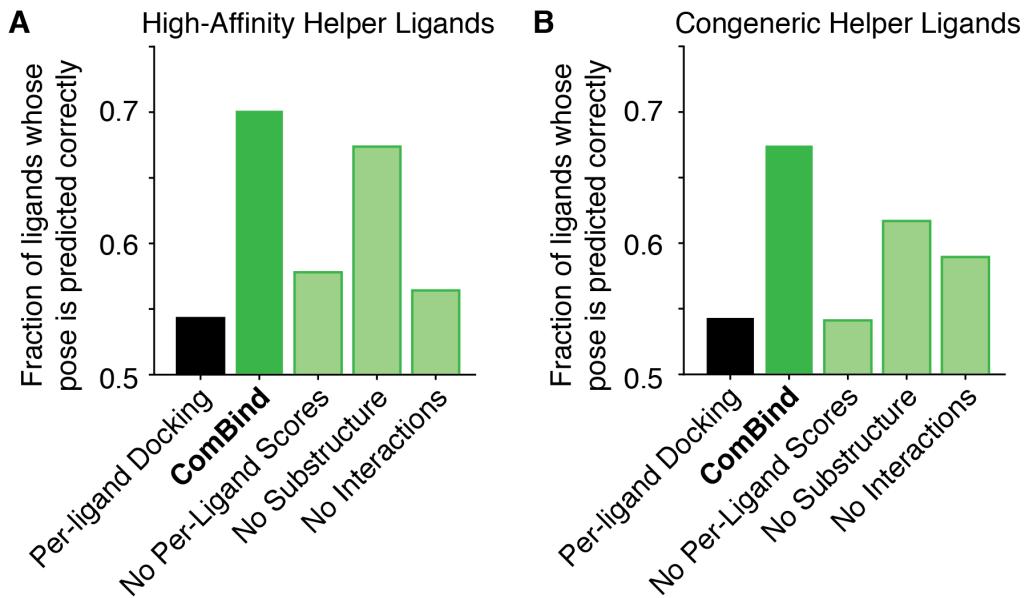


**B**



891

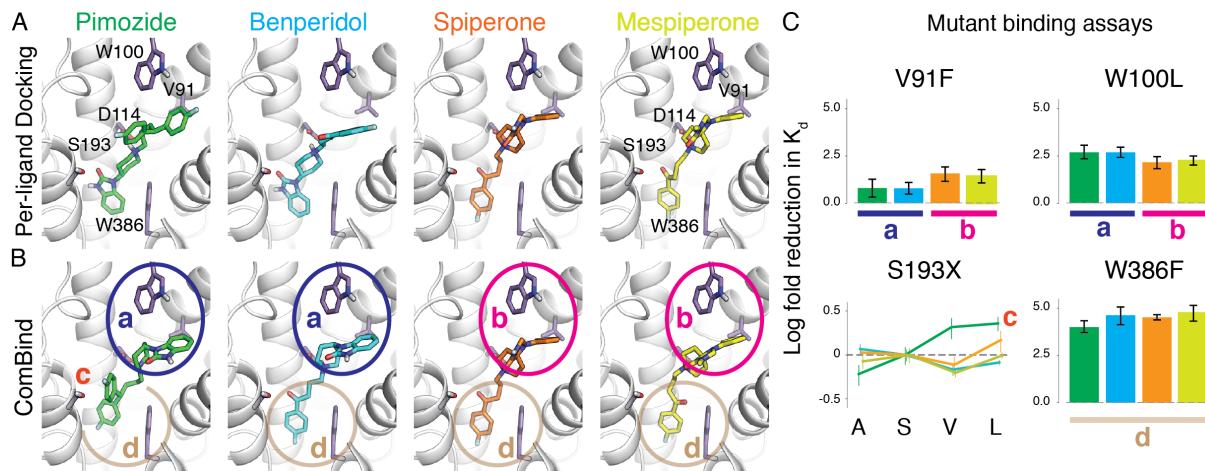
892 **Supplementary Figure 4: ComBind performance using a congeneric series of ligands.** This  
893 figure corresponds to **Fig. 4**, but with helper ligands selected from ChEMBL ligands according  
894 to the “congeneric” criterion (i.e., ligands that share the greatest common substructure with the  
895 query) instead of the “high affinity” criterion.



896

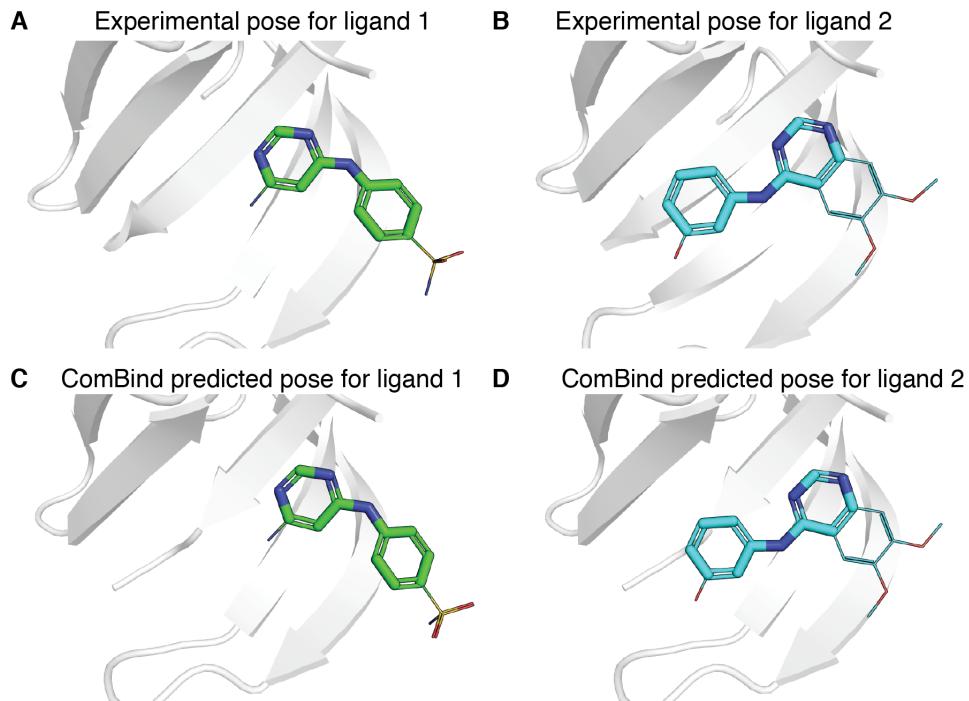
897 **Supplementary Figure 5: Importance of components of the ComBind scoring function.**  
898 Performance using various components of the ComBind scoring function when using helper  
899 ligands chosen by either the high-affinity (A) or congeneric (B) ChEMBL ligand selection  
900 criterion. ComBind uses per-ligand docking scores, similarity scores based on interactions, and  
901 similarity scores based on relative positions of shared substructures. “Per-ligand docking”  
902 (Glide) omits all similarity scores. The remaining bars (“No Per-Ligand Scores,” “No  
903 Substructure,” and “No Interactions”) show the effects of omitting per-ligand scores,  
904 substructure position similarity scores, and protein–ligand interaction similarity scores,  
905 respectively, from the ComBind potential.

906



907  
908 **Supplementary Figure 6: Prediction and validation of the binding poses of antipsychotics**  
909 **at the D<sub>2</sub> dopamine receptor—additional data.** (A) Binding poses of pimozide, benperidol,  
910 spiperone, and mespiperone as predicted by Glide. (B) Binding poses of the same ligands, as  
911 predicted by ComBind. (C) Results of mutagenesis studies designed to test ComBind’s binding  
912 pose predictions. Ligands are color-coded as in panel A. Error bars show standard error of the  
913 mean. S193 was mutated to A, S, V and L; these results are discussed in the main text. Unlike  
914 Glide, ComBind predicts that all four ligands will position a fluorobenzene ring at the bottom of  
915 the binding pocket, packing favorably against Trp386 (W386). Indeed, mutating W386 to a  
916 smaller residue (Phe) reduced affinity to a similar extent for all of the ligands, with a slightly  
917 smaller effect for pimozide, which packs less tightly against W386 according to ComBind’s  
918 prediction. At the top of the ligand binding pocket, near Val91 (V91) and Trp100 (W100),  
919 ComBind predicts that the pimozide and benperidol will place identical functional groups that  
920 differ somewhat from those of spiperone and mespiperone. Indeed, mutation of these residues  
921 affects pimozide and benperidol slightly differently from spiperone and mespiperone.

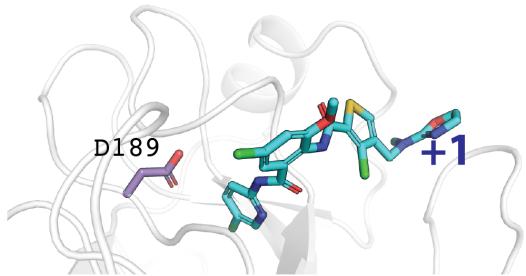
922



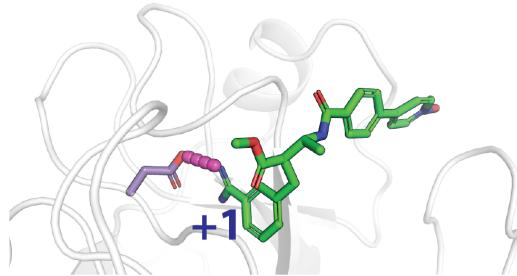
923

924 **Supplementary Figure 7: Example of a case where ComBind correctly predicts that a**  
925 **shared chemical scaffold is placed differently for different ligands.** We show two ligands that  
926 bind the kinase CDK2. These ligands share a common scaffold but adopt significantly different  
927 binding poses. In A and B, we show their experimentally determined poses (PDB: 1JSV and  
928 PDB: 1DI8, respectively). In C and D, we show the poses predicted by ComBind for the two  
929 ligands. The shared scaffold is shown in the thicker sticks and parts of the ligands that differ are  
930 shown in the thinner lines.

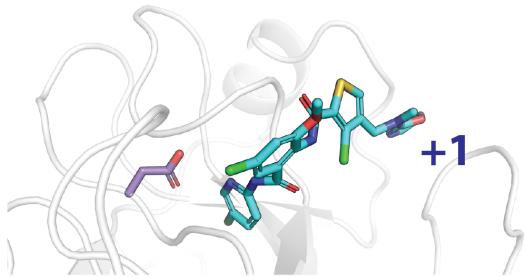
**A** Experimental pose for ligand 1



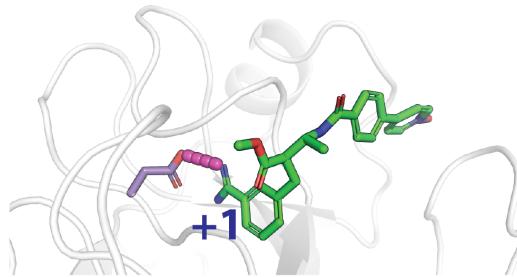
**B** Experimental pose for ligand 2



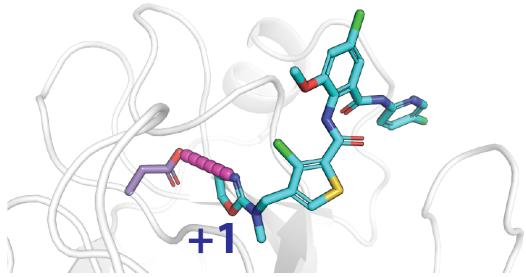
**C** ComBind's predicted pose for ligand 1



**D** ComBind's predicted pose for ligand 2



**E** Candidate pose for ligand 1 that forms salt bridge matching ligand 2



931

932 **Supplementary Figure 8: Example of a case where ComBind correctly predicts that ligands**  
933 **form distinct interactions with the protein.** We ran ComBind for 20 ligands that bind F10.  
934 While most of the ligands have a positively charged group, only some of them position it to form  
935 a salt bridge with D189 (e.g., ligand 1, shown in panel A) while others orient it in the complete  
936 opposite direction (e.g., ligand 2, shown in panel B). ComBind correctly predicts both binding  
937 poses (C, D). (E) One of the candidate poses for ligand 1 forms the same salt bridge as ligand 2.  
938 ComBind correctly avoided choosing this pose, even though choosing it would have led to more  
939 similar interactions between ligands.

940 **Supplementary Tables**

941 **Supplementary Table 1: Performance of Glide SP and Glide XP on our benchmark set.** The  
942 data presented in this table does not include ligands that share a substantially sized chemical  
943 scaffold with the ligand present in the experimental structure used for docking. Including such  
944 ligands increases the success rate for both Glide SP and Glide XP (to 49%, 53%, 47%,  
945 respectively).

| # Ligands | Is the top-ranked pose correct? |           |            | Is any candidate pose correct? |           |            |
|-----------|---------------------------------|-----------|------------|--------------------------------|-----------|------------|
|           | <i>SP</i>                       | <i>XP</i> | <i>IFD</i> | <i>SP</i>                      | <i>XP</i> | <i>IFD</i> |
| 327       | 44%                             | 45%       | 40%        | 81%                            | 63%       | 81%        |

946

947 **Supplementary Table 2: Structural data used for benchmarking ComBind.** From left to  
 948 right, columns represent: Protein family, protein name, Uniprot ID, ChEMBL target ID, number  
 949 of ligands, number of ligands that do not share a scaffold with the ligand present in the  
 950 experimental structure used for docking, and number of ligands that do not share a scaffold with  
 951 the ligand present in the experimental structure used for docking and have at least one correct  
 952 candidate pose. The right-most column corresponds to the number of ligands included in our  
 953 benchmarks for each target protein.

| PROTEIN FAMILY   | PROTEIN            | UNIPROT | CHEMBL        | # TOTAL LIGANDS | # DIVERSE LIGANDS | # DIVERSE LIGANDS WITH AT LEAST ONE CORRECT CANDIDATE POSE |
|------------------|--------------------|---------|---------------|-----------------|-------------------|------------------------------------------------------------|
| GPCR             | 5-HT <sub>2B</sub> | P41595  | CHEMBL1833    | 5               | 5                 | 5                                                          |
|                  | β <sub>1</sub> AR  | P07700  | CHEMBL213     | 11              | 6                 | 6                                                          |
|                  | β <sub>2</sub> AR  | P07550  | CHEMBL210     | 7               | 4                 | 4                                                          |
|                  | mGluR5             | P41594  | CHEMBL2564    | 4               | 3                 | 1                                                          |
|                  | Smo                | Q99835  | CHEMBL5971    | 4               | 3                 | 2                                                          |
| ION CHANNEL      | GluN1/2A           | Q05586  | CHEMBL1907604 | 8               | 6                 | 4                                                          |
|                  |                    | Q12879  |               |                 |                   |                                                            |
|                  | GluR-2             | P19491  | CHEMBL3503    | 15              | 7                 | 6                                                          |
| TRANSPORTER      | GluK1              | P22756  | CHEMBL2919    | 18              | 18                | 15                                                         |
|                  | DAT                | Q7K4Y6  | CHEMBL238     | 8               | 8                 | 7                                                          |
|                  | SERT               | P31645  | CHEMBL228     | 4               | 4                 | 4                                                          |
| NUCLEAR RECEPTOR | GLUT1              | P11166  | CHEMBL2535    | 2               | 1                 | 1                                                          |
|                  | ER                 | P03372  | CHEMBL206     | 20              | 14                | 12                                                         |
|                  | GR                 | P04150  | CHEMBL2034    | 16              | 10                | 8                                                          |
|                  | MR                 | P08235  | CHEMBL1994    | 12              | 10                | 9                                                          |
|                  | AR                 | P10275  | CHEMBL1871    | 19              | 12                | 10                                                         |
| PROTEASE         | VDR                | P11473  | CHEMBL1977    | 20              | 3                 | 3                                                          |
|                  | F2                 | P00734  | CHEMBL204     | 20              | 19                | 15                                                         |
|                  | F10                | P00742  | CHEMBL244     | 20              | 19                | 12                                                         |
|                  | PLAU               | P00749  | CHEMBL3286    | 20              | 20                | 19                                                         |
|                  | P00760             | P00760  | CHEMBL3769    | 20              | 19                | 16                                                         |
|                  | BACE1              | P56817  | CHEMBL4822    | 20              | 19                | 7                                                          |

| <b>PHOSPHORYLASE</b>        | PYGM            | P00489 | CHEMBL4696    | 20 | 5  | 4  |
|-----------------------------|-----------------|--------|---------------|----|----|----|
| <b>PHOSPHATASE</b>          | PTPN1           | P18031 | CHEMBL335     | 20 | 19 | 8  |
| <b>TRANSCRIPTION FACTOR</b> | BRD4            | O60885 | CHEMBL1163125 | 16 | 13 | 7  |
| <b>CHAPERONE</b>            | HSP90- $\alpha$ | P07900 | CHEMBL3880    | 20 | 16 | 10 |
| <b>PHOSPHO-DIESTERASE</b>   | PDE10A          | Q9Y233 | CHEMBL4409    | 20 | 19 | 17 |
| <b>RECEPTOR</b>             | $\sigma_1$      | Q99720 | CHEMBL287     | 4  | 4  | 3  |
| <b>ELATASE</b>              | ELANE           | P08246 | CHEMBL248     | 8  | 1  | 1  |
| <b>REDUCTASE</b>            | DHFR            | P00374 | CHEMBL202     | 20 | 20 | 15 |
| <b>KINASE</b>               | Cdk2            | P24941 | CHEMBL301     | 20 | 20 | 17 |

954

955 **Supplementary Table 3: ComBind is robust to cases where some of the ligands considered**  
956 **have no correct (near-native) candidate pose.** Here we show the results of running ComBind  
957 for 20 ligands that bind PTPN1. We considered ligands whose binding poses have been  
958 determined experimentally, so that we could assess whether the predicted poses are correct. For  
959 over half of the ligands, there were no correct candidate poses (likely because these ligands  
960 induce a conformational change in the binding pocket). Despite this, ComBind produces more  
961 accurate pose predictions than state-of-the art per-ligand docking software. The ligands used in  
962 the predictions correspond to those present in the following PDB structures: 1C88, 1C86, 1GFY,  
963 1ECV, 1C83, 1C84, 1L8G, 1KAV, 1BZJ, 1NWL, 1G7F, 1QXK, 1PYN, 1G7G, 1NZ7, 1NNY,  
964 1NO6, 1ONZ, 1NL9, 1ONY.

|                                      | Ligand |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                                      | a      | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t |
| Is any candidate pose correct?       | Y      | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N |
| Is Glide's predicted pose correct?   | Y      | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| Is ComBind's predicted pose correct? | Y      | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N |

965

966 **Supplementary Table 4: Ligands used in predictions for the  $\beta 1$  adrenoceptor.** From left to  
967 right, columns represent: index of ligand (a–k are as shown in Fig. 3; xtal denotes the  
968 cocrystallized ligand in the protein structure used for docking), name of ligand, mode of action,  
969 and PDB ID of the experimental structure.

| Index | Ligand                               | Mode of action  | Structure |
|-------|--------------------------------------|-----------------|-----------|
| xtal  | cyanopindolol                        | antagonist      | 2VT4      |
| a     | dobutamine                           | partial agonist | 2Y00      |
| b     | carmoterol                           | partial agonist | 2Y02      |
| c     | isoprenaline                         | full agonist    | 2Y03      |
| d     | salbuterol                           | partial agonist | 2Y04      |
| e     | carazolol                            | inverse agonist | 2YCW      |
| f     | iodocyanopindolol                    | antagonist      | 2YCZ      |
| g     | 4-(piperazin-1-yl)-1H-indole         | antagonist      | 3ZPQ      |
| h     | 4-methyl-2-(piperazin-1-yl)quinoline | antagonist      | 3ZPR      |
| i     | bucindolol                           | antagonist      | 4AMI      |
| j     | carvedilol                           | inverse agonist | 4AMJ      |
| k     | methylcyanopindolol                  | inverse agonist | 5A8E      |

970

971 **Supplementary Table 5: Definitions for the measures used to quantify the presence of each**  
972 **of the three interaction types considered in this study.**

### Hydrogen Bond

---

$A$  = a hydrogen bond acceptor;  $D$  = a hydrogen bond donor;  $H$  = the associated hydrogen

$$\text{distance term} = \begin{cases} 1 & \text{if } \text{distance}(H, A) \leq 2.5 \text{ \AA} \\ \frac{3.0 \text{ \AA} - \text{distance}(H, A)}{0.5 \text{ \AA}} & \text{if } 2.5 \text{ \AA} < \text{distance}(H, A) \leq 3.0 \text{ \AA} \end{cases}$$

$$\text{angle term} = \begin{cases} 1 & \text{if } \text{angle}(D, H, A) \geq 120^\circ \\ \frac{\text{angle}(D, H, A) - 90^\circ}{30^\circ} & \text{if } 90^\circ \leq \text{angle}(D, H, A) < 120^\circ \end{cases}$$

hydrogen bond value = distance term \* angle term

### Salt Bridge

---

$N$  = an atom with a negative formal charge;  $P$  = an atom with a positive formal charge

$$\text{salt bridge value} = \begin{cases} 1 & \text{if } \text{distance}(N, P) \leq 4.0 \text{ \AA} \\ \frac{5.0 \text{ \AA} - \text{distance}(N, P)}{1.0 \text{ \AA}} & \text{if } 4.0 \text{ \AA} < \text{distance}(N, P) \leq 5.0 \text{ \AA} \end{cases}$$

### Hydrophobic Contact

---

$A_1, A_2, \dots, A_n$  = all carbon or halogen atoms in the ligand;  $B_1, B_2, \dots, B_m$  = all carbon atoms in the given protein residue

distance term for  $A_i$  and  $B_j$  =

$$\begin{cases} 1 & \text{if } \text{distance}(A_i, B_j) \leq 1.25 r_{ij} \\ \frac{1.75 r_{ij} - \text{distance}(A_i, B_j)}{0.5 r_{ij}} & \text{if } 1.25 r_{ij} < \text{distance}(A_i, B_j) \leq 1.75 r_{ij} \end{cases}$$

where  $r_{ij}$  is the sum of the van der Waals radii of  $A_i$  and  $B_j$

hydrophobic contact value =  $\sum_{i=1}^n \sum_{j=1}^m$  distance term for  $A_i$  and  $B_j$

973

974 **Supplementary Table 6: Atom types used in maximum common substructure definition.**  
975 SMARTS pattern and intuitive description of each atom type used when searching for common  
976 substructures. Each atom in a molecule is assigned the most specific atom type (lowest in the  
977 table) that applies to it.

| SMARTS              | Description                       |
|---------------------|-----------------------------------|
| (*)                 | Any Atom                          |
| (#1)                | Hydrogen                          |
| (#6)                | Carbon                            |
| (#6; r5; CX4)       | Saturated carbon in 5-member ring |
| (#6; r6)            | Carbon in 6-member ring           |
| c1ccccc1            | Carbon-only aromatic ring         |
| (CR0)               | Carbon not in a ring              |
| (#7)                | Nitrogen                          |
| (#7; r5)            | Nitrogen in 5-member ring         |
| (#8)                | Oxygen                            |
| O=*                 | Ketone Oxygen                     |
| (#8; r5)            | Oxygen in 5-member ring           |
| (#15)               | Phosphorus                        |
| (#16)               | Sulphur                           |
| (#16; r5)           | Sulphur in 5-member ring          |
| (#9, #17, #35, #53) | Halogens                          |

978