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Abstract 19 

Over the past fifty years, tremendous effort has been devoted to computational methods for 20 
predicting properties of ligands that bind macromolecular targets, a problem critical to rational 21 
drug design. Such methods generally fall into two categories: physics-based methods, which 22 
directly model ligand interactions with the target given the target’s three-dimensional (3D) 23 
structure, and ligand-based methods, which predict ligand properties given experimental 24 
measurements for similar ligands. Here we present a rigorous statistical framework to combine 25 
these two sources of information. We develop a method to predict a ligand’s pose—the 3D 26 
structure of the ligand bound to its protein target—that leverages a widely available source of 27 
information: a list of other ligands that are known to bind the same target but for which no 3D 28 
structure is available. This combination of physics-based and ligand-based modeling improves 29 
upon state-of-the-art pose prediction accuracy across all major families of drug targets. As an 30 
illustrative application, we predict binding poses of antipsychotics and validate the results 31 
experimentally. Our statistical framework and results suggest broad opportunities to predict 32 
diverse ligand properties using machine learning methods that draw on physical modeling and 33 
ligand data simultaneously.  34 
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Introduction 35 

Binding of small-molecule ligands to proteins is one of the most fundamental processes in 36 
biology, and the great majority of drugs are ligands that exert their effects by binding to a target 37 
protein. Predicting properties of protein–ligand interactions—including three-dimensional (3D) 38 
structures, binding affinities, binding kinetics, selectivity, and functional effects—is critical both 39 
to the rational design of effective medicines and to solving major problems in molecular biology. 40 
An enormous amount of work has thus focused on the development of computational methods to 41 
predict these properties (1, 2). 42 
Such computational methods generally fall into two categories. “Physics-based” approaches use 43 
a 3D structure of the target protein and exploit an understanding of the physics of protein–ligand 44 
interactions (3). “Ligand-based” approaches use experimental measurements for many ligands of 45 
a given property (e.g., affinity) at a given target and employ pattern matching to predict the 46 
corresponding property for other ligands (4, 5). 47 
Can one combine these two paradigms, and the orthogonal sources of information they leverage, 48 
in a systematic, principled manner? This has proven challenging, particularly when making 49 
predictions for ligands substantially different from those for which experimental data is 50 
available. It is especially difficult when one wishes to predict properties different from those 51 
measured experimentally—e.g., to predict ligand properties that are difficult to determine 52 
experimentally by exploiting experimental data that is easy to collect. 53 
Here we present a method, ComBind, that overcomes these obstacles to substantially improve 54 
prediction of a ligand’s binding pose at a given target protein. Determining a ligand’s binding 55 
pose—the three-dimensional coordinates of the ligand’s atoms when bound to the target—is 56 
critical to structure-based optimization of the ligand’s pharmacological properties, as well as to 57 
understanding how it influences its target. Indeed, knowledge of a ligand’s binding pose is so 58 
advantageous that researchers in industry and academia often spend months or years to solve an 59 
experimental structure of a particular ligand in complex with a target protein. 60 
Because experimental structure determination is time-consuming, expensive, and sometimes 61 
impossible, tremendous effort has been invested in the development of in silico “docking” 62 
methods for predicting ligand binding poses (6-15). These are physics-based approaches: given a 63 
structure of the target protein, they sample many candidate poses of a ligand and rank these 64 
poses using scoring functions that approximate the energetic favorability of each pose, typically 65 
by capturing interatomic interactions such as hydrogen bonds and van der Waals forces (Fig. 66 
1A). Despite the development of dozens of docking software packages over the past 40 years, 67 
binding pose predictions are typically correct less than half the time for ligands substantially 68 
different from those in the experimental structures used for docking (Supplementary Table 1). 69 
ComBind improves binding pose prediction by exploiting a widely available type of non-70 
structural data: the identities of other ligands known to bind the same target (Fig. 1B). Collecting 71 
such data is typically far easier than structure determination. Indeed, such data is routinely 72 
collected in drug development campaigns and is already available in public databases such as 73 
ChEMBL for the vast majority of recognized drug targets (16). 74 
How can a list of other ligands that bind to the target protein—but whose binding poses are 75 
unknown—be used to improve pose prediction? Medicinal chemists have long recognized that 76 
distinct ligands tend to bind a given protein in similar poses; even ligands sharing no common 77 
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substructure often form similar interactions with the target protein (Fig. 2A). This intuition has a 78 
sound basis in physics. For example, the energetic favorability of a protein–ligand hydrogen 79 
bond depends on the mobility of the protein atoms involved and their ability to form hydrogen 80 
bonds with water in the absence of the ligand (17). These factors contribute similarly to binding 81 
of different ligands but are difficult to predict from a static protein structure alone. 82 
To develop ComBind, we first use a large set of experimentally determined structures to quantify 83 
the medicinal chemist’s intuition—in particular, to determine the probability that binding poses 84 
for different ligands will share various features. We use the results to define a scoring function 85 
that predicts the favorability of a set of binding poses comprising one pose for each ligand 86 
known to bind the target protein. By contrast to the ComBind scoring function, scoring functions 87 
typically utilized by docking software assign a score to the pose of a single ligand at a time; we 88 
thus refer to them as per-ligand scoring functions. The ComBind scoring function takes into 89 
account the similarities and differences between the poses of different ligands as well as the 90 
energetic favorability of each ligand’s pose, as evaluated by a per-ligand scoring function. 91 
We benchmark ComBind by comparing its results to 245 experimentally determined ligand 92 
binding poses across 30 proteins representing all major families of drug targets. ComBind 93 
improves the pose prediction accuracy of state-of-the-art docking software for all major drug 94 
target families. For G-protein-coupled receptors (GPCRs), which are of particular interest both 95 
because they represent the largest family of drug targets and because their structures are 96 
notoriously difficult to determine experimentally, ComBind selects a correct binding pose over 97 
60% more frequently, increasing the probability of correct prediction from 47% to 76%. 98 
ComBind’s results could be improved further by utilizing proprietary data generated as part of a 99 
drug discovery project (e.g., additional ligands found to bind the target). 100 
We also illustrate the use of ComBind to predict the previously unknown binding poses of 101 
several antipsychotics at the D2 dopamine receptor (D2R), an important drug target for which 102 
experimental structure determination has proven difficult. We validate ComBind’s predictions—103 
which differ from those of state-of-the-art docking software—using mutagenesis experiments. 104 
The results reveal structural motifs determining the potency and subtype-selectivity of D2R-105 
targeted drugs. 106 
ComBind provides a rigorous statistical foundation for combining physics-based structural 107 
modeling of protein-ligand interactions with inference based on experimental data for other 108 
ligands. It effectively leverages data on ligands that share no common scaffold or substructure 109 
with the ligand whose pose is predicted. It allows prediction of a difficult-to-determine ligand 110 
property based on a completely different type of data for other ligands. This method thus 111 
suggests a broad range of possibilities for combining physics-based and ligand-based approaches 112 
to improve prediction of various ligand properties by exploiting diverse sources of data. 113 

Results 114 

Overview of method 115 

Given several ligands known to bind a target, ComBind solves for all their binding poses 116 
simultaneously. We use per-ligand docking software to generate a list of candidate poses for 117 
each ligand. ComBind then selects a set of poses—one for each ligand—that optimizes the 118 
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ComBind scoring function. The ComBind scoring function considers both the favorability of 119 
each ligand’s pose, as assessed by a per-ligand scoring function, and the likelihood that a set of 120 
poses sharing a given level of similarity will be correct or incorrect. 121 
Here we use the commercial docking software package Glide (9, 10) to generate candidate poses 122 
and assign a per-ligand score to each. We selected Glide because it is widely used in the 123 
pharmaceutical industry and because it ranks among the most accurate docking packages in 124 
comparative studies (18, 19). We emphasize, however, that the ComBind approach can utilize 125 
any per-ligand scoring function and pose sampling strategy, including those implemented in any 126 
per-ligand docking package. 127 

Quantifying the similarity of binding poses for distinct ligands 128 

We begin by quantifying the medicinal chemist’s intuition that different ligands tend to adopt 129 
structurally similar poses when binding the same target protein. We wish not only to measure the 130 
similarity of correct poses of different ligands, but also to compare the similarity of correct poses 131 
to that of other poses ranked highly by per-ligand docking software. We consider two notions of 132 
similarity: similarity of protein–ligand interactions and similarity in position of common ligand 133 
substructures. 134 
We compiled a set of 385 protein–ligand complex structures for 28 target proteins representing 135 
all major classes of small-molecule drug targets (Supplementary Table 2) (20). We docked 136 
each of the ligands using Glide and selected the 100 most highly ranked poses for each ligand. 137 
To reflect practical application of docking, we docked each ligand into an experimental structure 138 
solved in the presence of a ligand distinct from any of those being docked (“cross-docking”; see 139 
Methods). Our docking procedure did not utilize the experimentally determined poses of ligands 140 
in any way. 141 
For all pairs of ligands for each target protein, we compute the similarity between each pose of 142 
one ligand and each pose of the other ligand. We use this data to calculate a probability 143 
distribution over similarity values; we refer to this distribution as the reference distribution. 144 
We also compute similarities between each pair of correct poses (again, one pose per ligand), 145 
where a pose is considered correct if it is within 2.0 Å root mean squared deviation (RMSD) to 146 
the experimentally determined pose. We use these data to calculate a second probability 147 
distribution over similarity values, the native distribution. When calculating the native 148 
distribution, we use correct poses from the lists generate by Glide instead of using the 149 
experimentally determined poses directly, such that the similarity statistics we calculate will be 150 
most applicable to candidate poses considered during computational pose prediction. 151 
We evaluate pose similarity separately for different types of protein–ligand interactions: 152 
hydrogen bonds, salt bridges, and hydrophobic contacts (Fig. 2B, Supplementary Fig. 1A). 153 
Given a pair of poses, we evaluate the similarity for each interaction type by cataloging the set of 154 
protein residues with which each ligand forms an interaction of the given type and then 155 
comparing the sizes of the intersection and union of these sets. Their ratio (the Tanimoto 156 
coefficient (21)) increases when shared interactions are formed and decreases when either ligand 157 
forms an unshared interaction. To make this metric well-defined when neither ligand forms any 158 
interactions of a particular type, we add pseudo counts. For all interaction types, the native 159 
distribution exhibits higher similarity than the reference distribution—that is, pairs of correct 160 
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poses form more similar interactions than other pairs of poses ranked highly by the per-ligand 161 
scoring function (Fig. 2B). 162 
We define substructure similarity as the RMSD of atom positions of the largest chemical 163 
substructure shared by a pair of ligands (Supplementary Fig. 1B). We evaluated substructure 164 
similarity for pairs of ligands that shared a substructure at least half the size of the smaller ligand. 165 
For this similarity metric, too, the native distribution exhibits higher similarity than the reference 166 
distribution, indicating that the common substructure tends to be more similarly positioned in 167 
pairs of correct poses than in other pairs of poses ranked highly by the per-ligand scoring 168 
function (Fig. 2C). 169 
These results suggest that the similarity of correct poses is not adequately captured by a state-of-170 
the-art per-ligand scoring function. In further support of this point, we also calculated probability 171 
distributions of similarity between the poses that the per-ligand scoring function ranks first for 172 
each ligand (Supplementary Fig. 2). We found that these distributions also exhibited lower 173 
similarity than the corresponding native distributions. 174 

Derivation of a statistical potential for sets of binding poses 175 

We used the similarity distributions described in the previous section to derive a statistical 176 
potential that—instead of acting on features of a single pose, as in previous docking software—177 
acts on a set of hypothesized poses, one for each ligand known to bind the target protein. 178 

𝐸!"#$%&'(Poses	for	a	set	of	ligands) = 179 

(𝑛 − 1) & 𝐸!"#$(pose)
	

&'()*!+

180 

+ & & −log
frequency	of	pose	pair	similarity	in	native	distribution	

frequency	of	pose	pair	similarity	in	reference	distribution	 ,	
		+','&)-'./
./01+

	
&'()*!	0)'-+		

 181 

where n is the total number of ligands. 182 
The first component evaluates the energetic favorability of each ligand’s pose individually using 183 
a per-ligand scoring function 𝐸!"#$ (e.g., a scoring function used in Glide or another docking 184 
software package). The summation is over ligands known to bind the target protein, with “pose” 185 
referring to the hypothesized pose for each ligand. 186 
The second component rewards sets of poses with a degree of similarity that is more often 187 
observed in correct poses than in other poses ranked highly by the per-ligand scoring function. 188 
Here the outer summation is over pairs of distinct ligands known to bind the target protein, and 189 
the inner summation is over the similarity measures shown in Fig. 2B and 2C: hydrogen bond 190 
similarity, salt bridge similarity, hydrophobic contact similarity, and substructure similarity. 191 
“Pose pair similarity” refers to the calculated similarity value of the given type for the 192 
hypothesized poses of the given ligand pair. The “native distribution” and “reference 193 
distribution” for each similarity type are determined as described above. The resulting negative 194 
log likelihood ratios have the mathematical properties of an energy, namely that an additive 195 
decrease in energy corresponds to a multiplicative increase in likelihood ratio, allowing for 196 
straightforward integration with standard per-ligand docking scores, which are typically in units 197 
of energy (Supplementary Fig. 3). For pairs of ligands that do not share a substructure at least 198 
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half the size of the smaller ligand, the substructure similarity term is not included in the 199 
summation. 200 
The second component acts as a correction to the first. If the per-ligand scoring function were 201 
perfect, in the sense that it could perfectly distinguish correct poses from incorrect ones, the 202 
terms in the second component would consistently assume values of zero. Because per-ligand 203 
scoring functions remain imperfect—and, in particular, tend to underpredict the likelihood that a 204 
set of ligands will adopt similar poses—the second component typically assumes non-zero 205 
values. 206 

Structure prediction informed by non-structural data 207 

The ComBind pose prediction method identifies a set of binding poses—one for each of a set of 208 
ligands known to bind the target protein—that minimizes the ComBind potential. More 209 
specifically, given a target protein and a query ligand whose binding pose we wish to predict, we 210 
proceed as follows: 211 

1. Compile a set of other ligands known to bind the target protein (e.g., from a public 212 
database such as ChEMBL or from ligands tested as part of a drug discovery project). We 213 
refer to these as helper ligands. 214 

2. Dock the query ligand and each helper ligand individually to the target protein (with a 215 
per-ligand docking software package), generating many candidate poses and associated 216 
docking scores for each ligand. 217 

3. Determine the set of poses—one per ligand—that minimizes the ComBind potential. We 218 
use an expectation-maximization algorithm for this purpose (see Methods). 219 

As an illustrative example, we apply ComBind to predict binding poses for ligands at the β1-220 
adrenergic receptor (β1AR), the primary target of the beta blocker drugs that are widely used to 221 
treat heart attack, heart failure, and hypertension. We selected 11 diverse ligands known to bind 222 
β1AR, including both beta blockers and beta agonists. We docked 11 distinct ligands to a 223 
crystallographic β1AR structure using Glide, producing up to 100 candidate poses for each 224 
ligand. We then solved for a set of poses—one per ligand—that minimizes the ComBind 225 
potential (Fig. 3A). The crystallographic β1AR structure used for docking was determined in 226 
complex with a ligand distinct from any of the 11 docked ligands. Crystallographic ligand poses 227 
were not used in any way by Glide or ComBind. 228 
Glide’s top-ranked pose was correct for 4 of 11 ligands, whereas the pose selected by ComBind 229 
was correct for 10 of 11 ligands (Fig. 3B). In ComBind’s selected poses—as in experimentally 230 
determined poses—most of the ligands form a salt bridge with D121 and hydrogen bonds with 231 
S211 and N329 (Fig. 3C). In comparison, the poses ranked most highly by Glide’s per-ligand 232 
scoring function exhibited more varied hydrogen bonds and salt bridges (Fig. 3C).  233 
We emphasize that ComBind does not require that all ligands adopt similar poses or form similar 234 
interactions. ComBind correctly predicts, for example, that two of these β1AR ligands do not 235 
form a hydrogen bond with S211. 236 

ComBind outperforms a state-of-the-art method on a diverse benchmark set 237 

We benchmarked ComBind on a set of 245 protein–ligand complexes representing all major 238 
families of drug targets. We took several steps to mimic a real-world use case. First, when 239 
predicting the binding pose of a query ligand with ComBind, we used helper ligands selected 240 
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from the public ChEMBL database (16). We did not use any experimental information on poses 241 
of helper ligands; indeed, for the vast majority of helper ligands selected, poses have not been 242 
determined experimentally. Second, we never used a target protein structure determined in the 243 
presence of a ligand that shares a chemical scaffold with the query ligand, ensuring that we 244 
performed only “cross-docking” and avoided the easier but less practically relevant case of “self-245 
docking” (see Methods). Finally, when predicting ligand binding poses at a given target protein, 246 
we omitted all structures involving that protein when constructing the distributions used to define 247 
the ComBind potential. 248 
We evaluated two ways of choosing, from ChEMBL, helper ligands for use in ComBind: (1) a 249 
diverse set of ligands with the highest binding affinity (“high affinity”), and (2) the ligands 250 
sharing the largest substructure with the query ligand (“congeneric”). Both of these selection 251 
criteria lead to substantial performance improvements over Glide (Fig 4, Supplementary Fig. 252 
4), indicating that ComBind could be applied effectively using either a diverse set of ligands 253 
identified from a high-throughput screen or a congeneric series of ligands generated during lead 254 
optimization. 255 
ComBind’s performance improves with the use of more helper ligands (up to 20, the maximum 256 
number we tested) (Fig. 4B, Supplementary Fig. 4B). Interestingly, ComBind substantially 257 
outperforms Glide even when using only a single helper ligand. 258 
In the ComBind benchmark results described below (Fig. 4A), we used 20 helper ligands for 259 
each query ligand, selected from ChEMBL by the high-affinity criterion. When computing 260 
overall results, we averaged across target families, weighted the performance for each family by 261 
the fraction of FDA-approved drugs targeting that family (20). 262 
On average, ComBind selects a correct pose for 57% of all ligands and 70% of ligands for which 263 
at least one correct pose was included among the list of candidates considered—a 30% 264 
improvement over Glide in both cases (Supplementary Table 1). ComBind improves pose 265 
prediction performance for all target families considered. Even at the individual target level, we 266 
find that use of ComBind hardly ever degrades performance: ComBind only reduced 267 
performance for one of the 30 targets considered, and this performance reduction was minor. 268 
Removing any of the similarity types from the ComBind potential reduced ComBind’s 269 
performance (Supplementary Fig. 5). In particular, both protein–ligand interaction similarity 270 
and substructure similarity contribute substantially to ComBind’s accuracy. Protein–ligand 271 
interaction similarity is the more important of the two, particularly when using a diverse set of 272 
helper ligands. 273 

Predicting binding poses of antipsychotics at the D2 dopamine receptor 274 

To illustrate the practical application of ComBind, we predicted the binding poses of three 275 
antipsychotic drugs—pimozide, benperidol, and spiperone—at their target, the D2 dopamine 276 
receptor (D2R). Knowledge of these binding poses could aid ongoing efforts to develop 277 
antipsychotics with improved pharmacological properties, including ligands that bind selectively 278 
to D2R over other dopamine receptors (Butini et al., 2016; Moritz et al., 2018). Solving 279 
experimental structures of D2R has proven difficult, despites decades of effort (Wang et al., 280 
2018, Yin et al., 2020). At the time we made these predictions, the only available D2R structure 281 
was for D2R bound to risperidone (22), a ligand substantially different from those whose poses 282 
we wished to predict. 283 
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We predicted binding poses for pimozide, benperidol and spiperone, as well as the tool 284 
compound mespiperone, using both Glide and ComBind (see Methods). For spiperone and 285 
mespiperone, ComBind and Glide predict similar poses. For pimozide and benperidol, however, 286 
ComBind’s predictions are different from Glide’s: a fluorobenzene ring of each compound is 287 
positioned near the top of the binding pocket by Glide and near the bottom by ComBind (Fig. 288 
5A,B, Supplementary Fig. 6A, B). 289 
To test ComBind’s predictions, we designed mutagenesis experiments. First, we tested a series of 290 
mutations of Ser193 (S193), which is positioned uncomfortably close to the second 291 
fluorobenzene ring of pimozide in ComBind’s predicted pose but not in Glide’s (Fig. 5C). 292 
Indeed, mutating S193 to a larger residue (Val or Leu) decreases pimozide’s affinity, while 293 
mutating S193 to a smaller residue (Ala) increases pimozide’s affinity. Such effects are not 294 
observed for benperidol, which is identical to pimozide except that it lacks the fluorobenzene 295 
ring that contacts S193 in pimozide (Fig. 5D). Indeed, benperidol’s affinity actually increases 296 
when S193 is mutated to a larger residue. These results are consistent with ComBind’s predicted 297 
poses but not with Glide’s: Glide predicts that pimozide and benperidol position nearly identical 298 
chemical groups in essentially identical positions near S193. Additional experiments involving 299 
mutation of residues surrounding the top and bottom of the binding pocket also support 300 
ComBind’s predictions (Supplementary Fig. 6C). 301 
Shortly before submission of this manuscript, a haloperidol-bound D2R crystal structure 302 
appeared (Fan et al., 2020). Haloperidol shares a common substructure with the ligands we 303 
considered, and this substructure is positioned similarly in in the crystal structure and in 304 
ComBind’s predictions, further supporting the accuracy of these predictions. 305 
Our results highlight a structural motif contributing to potent and selective binding to D2R. The 306 
antipsychotics we studied have picomolar affinity at D2R and bind more tightly to D2R than to 307 
the D3 dopamine receptor (D3R). Haloperidol, by contrast, binds with weaker (nanomolar) 308 
affinity and is not selective for D2R over D3R. Comparison of the binding poses reveals that the 309 
primary difference in the protein–ligand interactions is that all of the antipsychotics we studied—310 
but not haloperidol—place a ring structure in the “extracellular vestibule,” located above the 311 
orthosteric site where dopamine binds. The extracellular vestibule has much higher sequence 312 
diversity among the different dopamine receptors than does the orthosteric site, supporting the 313 
hypothesis that ligand interactions with this region contribute to selectivity. Optimizing ligands 314 
to strengthen these interactions could lead to drugs with greater selectivity for D2R.  315 

Discussion 316 

We have introduced a statistical potential that acts on a set of structures for different protein-317 
ligand complexes, rather than on a single structure. We have used this potential to develop 318 
ComBind, a method that increases the accuracy of binding pose prediction by simultaneously 319 
considering the poses of multiple ligands known to bind the target. 320 
Importantly, ComBind does not assume that all ligands considered bind in similar poses. Instead, 321 
it considers both the favorability of each individual ligand’s pose, as evaluated by a per-ligand 322 
scoring function, and the tendency of different ligands to adopt similar poses, as determined by 323 
analysis of hundreds of experimental structures. ComBind often predicts correctly that two 324 
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ligands position their common scaffold differently, or that they form substantially different 325 
interactions with the binding pocket (Supplementary Figs. 7 and 8). 326 

Applicability and robustness 327 

ComBind is broadly applicable. When benchmarking ComBind, we simply selected, from the 328 
ChEMBL database, helper ligands that bind to the same target as the query ligand, without 329 
requiring that these ligands be similar in any way. For most major drug targets, numerous 330 
binders have already been identified. Even for a completely novel target, several binders would 331 
typically be identified in the very early stages of a drug discovery project by high-throughput 332 
screening. 333 
Binding pose prediction is important in many areas beyond drug discovery. These include the 334 
study of biological phenomena such as cellular signaling (e.g., binding of hormones and 335 
neurotransmitters), sensation (e.g., binding of odorants and flavorants), enzyme function (e.g., 336 
binding of nutrients and other metabolic substrates), and defense mechanisms (e.g., binding of 337 
toxins and antibiotics). Pose prediction is also important to understanding the effects of genetic 338 
variation on responses to both naturally occurring ligands and drugs, which is essential to 339 
personalized medicine (23). In each of these cases, multiple ligands are typically known to bind 340 
the targets of interest, and ComBind may thus be used to improve binding pose prediction. 341 
ComBind is highly robust. This is illustrated by its accuracy in our benchmarks, which used 342 
helper ligands selected automatically according to approximate affinity values listed in the 343 
ChEMBL database. This data is noisy, not only because ligand affinities were measured by many 344 
labs using different assays, but also because the data often includes values that were inputted 345 
incorrectly (24, 25). In addition, ligands selected automatically from ChEMBL sometimes bind 346 
to completely different binding pockets on the same target. 347 
ComBind generally produces an accurate prediction for the query ligand even when no correct 348 
candidate poses are generated for many helper ligands. Supplementary Table 3 shows an 349 
example in which the majority of the ligands considered had no correct candidate pose; 350 
ComBind nevertheless outperformed per-ligand docking. 351 
The per-ligand docking software used to generate and score individual ligand poses in our 352 
current implementation of ComBind treats the protein as rigid. Nevertheless, ComBind generally 353 
proves effective even when considering a set of ligands that bind diverse protein conformations. 354 
For example, the β1AR ligands considered in Fig. 3 include both agonists, which bind 355 
preferentially to the protein’s active conformation, and inverse agonists, which bind 356 
preferentially to its inactive conformation (Supplementary Table 4). 357 

Relationship to previous work  358 

ComBind builds upon several methods that combine ligand-based and physics-based information 359 
in more limited settings. Three-dimensional quantitative structure-activity relationship (3D 360 
QSAR) techniques, including field-based methods and 3D pharmacophore methods, are ligand-361 
based approaches that consider potential 3D conformations of many ligands (26-28). These 362 
methods attempt to align ligands in three dimensions, but they do not require a structure of the 363 
target protein, and even when such a structure is available, it is typically used only in a limited 364 
way—e.g., to define excluded volume (29). 3D QSAR methods require data for a large number 365 
of binders and are generally not applied to pose prediction. 366 
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ComBind also draws inspiration from previous methods that predict binding poses of multiple 367 
known binders simultaneously. Some of these methods consider a congeneric series of ligands 368 
and require that the shared scaffold is similarly placed (30, 31). Others use either the number of 369 
similarly placed functional groups (32) or the number of shared interactions (33) between a set of 370 
docked ligands as a scoring function, assuming that the ligands adopt maximally similar poses. 371 
ComBind goes beyond these techniques in that it not only applies to any set of ligands but also 372 
provides a principled method to combine information from per-ligand docking scores with 373 
information on pose similarity across multiple ligands. This is essential to ComBind’s success in 374 
cases where ligands form substantially different interactions or position shared substructures 375 
very differently (34). Likewise, ComBind provides a principled method to combine multiple 376 
metrics of pose similarity. Indeed, ComBind’s performance drops substantially if one omits per-377 
ligand docking scores, substructure similarity, or interaction similarity from its scoring function 378 
(Supplementary Fig. 5). 379 
ComBind, like many ligand-based approaches, may also be viewed as a machine learning 380 
method (35). Most recent innovations in machine learning for drug discovery, including deep 381 
learning methods, involve complex models with many parameters that are able to fit extremely 382 
general functions. But this generality comes at a cost: such methods are typically effective only 383 
in cases where ligand data is abundant. ComBind is designed to make efficient use of any 384 
available ligand data by leveraging the physical priors encoded in structure-based approaches. 385 
This allows ComBind to improve upon the performance of a state-of-the-art docking method 386 
even when the list of other known binders is limited to a single ligand. 387 

Performance 388 

Our extensive benchmarks show that ComBind outperforms a state-of-the-art per-ligand pose 389 
prediction method across all major families of drug targets. For individual targets, ComBind 390 
often substantially improves pose prediction accuracy and hardly ever degrades it. Using 391 
ComBind thus has little if any downside. 392 
ComBind performs particularly well for certain families of targets. Its 60% improvement over 393 
Glide for GPCRs is especially noteworthy, not only because GPCRs represent the targets of one-394 
third of all approved drugs—and a very large fraction of current drug discovery efforts—but also 395 
because experimentally determining structures of GPCRs in complex with lead compounds is 396 
often extremely difficult. Almost all experimentally determined structures of GPCRs are bound 397 
to ligands that were carefully selected for their very high affinities and residence times, often 398 
after structure determination with other ligands failed. More generally, ComBind appears to 399 
deliver an especially large improvement in pose prediction accuracy for ligands that bind to 400 
transmembrane domains of proteins, perhaps reflecting the deep, well-defined nature of these 401 
binding pockets. Experimental structure prediction tends to be particularly challenging for 402 
transmembrane proteins, highlighting ComBind’s utility. 403 
ComBind’s performance could undoubtedly be improved further through use of curated or in-404 
house data. In particular, a careful human curator could (1) identify ligands that can most 405 
confidently be classified as binders (e.g., based on multiple reports or on particularly reliable 406 
data sources), (2) identify ligands demonstrated to bind in the same binding pocket (e.g., by 407 
competition binding assays), and (3) remove data that was inputted incorrectly to a database. For 408 
a major drug discovery project focused on a particular target, a substantial amount of additional 409 
in-house data will often be available on ligands found to bind the target, and that data will 410 
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typically have been collected in a more uniform and consistent manner than data extracted from 411 
multiple publications. 412 
Skilled chemists can often improve the overall success rate of docking through careful manual 413 
preparation of the protein structure—for example, by diligent placement of waters or 414 
consideration of side chain rotamers. Such a procedure is subjective and was thus not employed 415 
in our performance benchmarks. In our experience, however, careful manual preparation of 416 
target structures improves ComBind’s results even more than those of per-ligand docking 417 
methods, because such preparation increases the accuracy of the helper ligand poses and thus the 418 
value of the information gleaned from them. 419 
A variety of “flexible docking” methods have been developed that allow deformation of the 420 
target protein when sampling ligand poses (19, 36, 37). These methods have proven highly 421 
valuable in cases where the user knows in advance that protein flexibility is important to binding 422 
of the query ligand. When used as fully automated pose prediction methods without such prior 423 
information, however, flexible docking methods generally underperform rigid docking methods 424 
such as Glide, as observed in our benchmarks of the popular Induced Fit Docking method (36) 425 
(Supplementary Table 1) and reported previously for other flexible docking methods (37). Such 426 
methods are more likely to sample a correct pose but also more likely to sample incorrect poses 427 
that outscore correct poses. The ComBind scoring function might address this problem by more 428 
effectively selecting a correct pose from among the incorrect poses; this is a potential area for 429 
future research. 430 

Extensibility and future work 431 

Because ComBind can use any per-ligand docking method for pose generation and scoring of 432 
individual ligands, it will be able to take advantage of improvements to these methods. For 433 
example, several recent methods use machine learning to fit scoring functions (38-40), and 434 
others allow for binding pocket flexibility when generating candidate poses (8, 36). 435 
Likewise, ComBind can be used with any pairwise pose similarity metric or combination thereof. 436 
ComBind’s performance could potentially be improved by using more fine-grained interaction 437 
descriptors (41, 42) or by using similarity metrics based on field-based methods developed for 438 
virtual screening (28, 43). 439 
The statistical potential used by ComBind is sufficiently general that the method could be 440 
extended to exploit other types of data, ranging from multiple experimental structures of the 441 
protein in complex with different ligands to effects of protein mutation on ligand binding. 442 
Likewise, future work might exploit the affinity of each known binder; we have not done so here 443 
to avoid obscuring the general applicability of our method, as the affinity estimates available in 444 
public databases are often determined by different techniques and thus difficult to compare to 445 
one another. 446 
Beyond binding pose prediction, our work suggests rich opportunities to improve prediction of 447 
diverse ligand properties by combining physics-based and ligand-based modeling. For example, 448 
both physics-based and ligand-based approaches are currently used to predict or rank ligand 449 
binding affinities in order to enable virtual ligand screening. Physics-based approaches require 450 
the use of various approximations that introduce error, while ligand-based approaches are limited 451 
in their ability to predict affinities of ligands very different from those for which experimental 452 
data is available. A careful combination of the two, perhaps based on the ComBind scoring 453 
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function, might outperform either one alone. Physical modeling allows ligand data to be used 454 
more efficiently by facilitating representation of the ligands in terms of specific interactions they 455 
form with the target, a level of abstraction where even chemically diverse ligands share features. 456 
Indeed, such approaches might prove effective even for predicting functional activity values 457 
whose physical basis is not known a priori. Further work will be necessary to explore these 458 
possibilities. 459 
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Methods 588 

Assembly of data for use in learning the ComBind scoring function 589 

Curation of experimental protein–ligand complex structures 590 

In order to learn the ComBind scoring function, we curated a set of protein–ligand complex 591 
structures representing each of the major drug targets catalogued by Santos et al., 2017 592 
(Supplementary Table 2). This set of target proteins was chosen through a combination of 593 
manual curation and adaptation of the PDBbind refined set (44). For each target, we included up 594 
to 21 structures, each with a distinct ligand bound, selecting the structures with alphabetically 595 
lowest PDB code when more than 21 were available. Structures with duplicate ligands, mutant 596 
proteins, or no small molecule in the orthosteric site were excluded. 597 

Generation of docked poses 598 

For all of the results presented in this study, we performed “cross-docking.” Specifically, for 599 
each target, we chose the structure with the alphabetically first PDB code as the input 3D 600 
structure of the protein and then docked other ligands to this reference structure. This simulates a 601 
real-world application where only one structure of the target protein is available, and the user 602 
wants to predict poses for ligands not present in that structure. 603 
To prepare protein structures for use in docking, we first prepared structures using the 604 
Schrodinger suite. All waters were removed, the tautomeric state of the ligand present in the 605 
experimentally determined structure was assigned using Epik at pH 7.0 +/– 2.0, hydrogen bonds 606 
were optimized, and energy minimization was performed with non-hydrogen atoms constrained 607 
to an RMSD of less than 0.3 Å from the initial structure. The ligand was then removed. 608 
For ligands to be docked, the tautomeric state was assigned using Epik tool at target pH 7.0 +/– 609 
2.0. The single most favorable state was considered for docking. Torsion angles were 610 
randomized before docking. 611 
Ligands were docked using default Glide SP settings except that “Enhanced Sampling” was set 612 
to 4, quadrupling the number of ligand conformers considered. For each ligand, we produced up 613 
to the 100 most highly ranked poses (for some ligands fewer than 100 poses passed Glide’s 614 
internal filters). We also considered using Glide XP but found that Glide XP produced a correct 615 
candidate pose substantially less often than Glide SP (Supplementary Table 1). Glide XP and 616 
SP performed similarly in terms of how frequently the top-ranked pose is correct. Additionally, 617 
we considered using Induced Fit Docking (IFD). While IFD produced at least one correct 618 
candidate pose more often than Glide SP, the performance in terms of how often the top-ranked 619 
pose is correct was worse. 620 

Determining the quality of docked poses 621 

The accuracy of each pose was quantified by the non-hydrogen-atom RMSD from the 622 
experimentally determined pose. To compute the RMSD, each complex was aligned to the 623 
structure used for docking based on non-hydrogen-atoms within 15 Å of the ligand, and the 624 
RMSD was then computed between the docked pose and the same ligand’s pose in the aligned 625 
complex. We denote poses at most 2.0 Å RMSD from their aligned experimentally determined 626 
pose as being “near-native” or “correct.” 627 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.06.01.128181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Quantifying the similarity of binding poses for distinct ligands 628 

Protein–ligand interaction similarity 629 

Three interaction types were considered: hydrogen bonds, salt bridges, and hydrophobic 630 
contacts. We designed quantitative measures to assess the presence of these interactions between 631 
the ligand and a given protein residue (Supplementary Table 5). The hydrogen bond and salt 632 
bridge interaction measures were designed to give a value of 1 for interactions meeting 633 
established criteria (17). A soft boundary was added to give borderline cases values between 0 634 
and 1, in order to prevent discontinuities. The hydrophobic contact measure approximates the 635 
hydrophobic surface contact area by considering the number of protein–ligand atom pairs in 636 
contact with each other. Again, a soft boundary (in this case, between an atom pair being or not 637 
being in contact) was used to prevent very similar poses from leading to very different values. 638 
We denote the interaction value for interaction type k, for pose ℓ! of ligand i, with protein 639 
residue r as 𝑋	#

(%)(ℓ!). 640 

Interaction similarities for a pair of poses (for two different ligands bound to the same target 641 
protein) were computed separately for each interaction type. The interactions made between the 642 
ligand and each residue of the target protein residue were tabulated and then the similarity 643 
between the resulting lists for each pose was measured by the Tanimoto coefficient (21). The 644 
Tanimoto coefficient was modified by the addition of pseudo counts, which serve to make the 645 
metric well defined if neither ligand forms a particular type of interaction and to reward poses 646 
that share larger numbers of interactions in absolute terms. We define the interaction similarity, 647 
for interaction type k between a pair of poses	ℓ! , ℓ' (for ligands i and j, respectively), as 648 

𝑠(%)(ℓ! , ℓ') =
1 + ∑ .𝑋	#

(%)(ℓ!)𝑋	#
(%)(ℓ')#	∈	)

2 +	∑ 0𝑋	#
(%)(ℓ!) + 𝑋#

(%)(ℓ')1#	∈	) − ∑ .𝑋#
(%)(ℓ!)𝑋	#

(%)(ℓ')#	∈	)

, 649 

where R is the set of all protein residues. 650 
When computing hydrogen bond similarity, a case where a given protein residue acts as a 651 
hydrogen bond donor for one ligand and a hydrogen bond acceptor for another ligand is not 652 
considered a shared interaction. 653 

Substructure similarity 654 

To compute the substructure similarity for a pair of candidate poses, the maximum common 655 
substructure of the two ligands is identified using Canvas (Schrodinger LLC) and then mapped 656 
onto each candidate pose. Finally, the RMSD between these two sets of atoms is computed and 657 
used as the measure of substructure similarity. We defined custom atom and bond types for 658 
computation of the common scaffold (Supplementary Table 6). Scaffold similarity is not 659 
considered for pairs of ligands with a maximum common substructure of less than half the size 660 
of the smaller ligand. Hydrogen atoms were not included in the substructure nor when 661 
determining the total number of atoms in each ligand. 662 

Computation of similarity statistics 663 

Using the set of protein–ligand complex structures described above, we characterized the extent 664 
to which distinct ligands binding a common target adopt similar poses, as quantified by the 665 
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interaction and substructure similarity metrics described above. (We note that the three ion 666 
channel targets were not included in these statistics because they were added after the rest of our 667 
study had been completed.) 668 
When computing these statistics, we docked the ligands using Glide and then identified poses 669 
that are near-native among the candidate poses ranked in the top 100 by Glide. We used these 670 
docked poses, as opposed to the experimentally determined pose, in order to ensure that the 671 
statistics will be applicable to the scoring of candidate poses generated by Glide. We computed 672 
the empirical distribution of each similarity type across all pairs of near-native poses using a 673 
Gaussian kernel density estimate with standard deviation of 0.03 for interaction similarities and 674 
0.18 for substructure similarities. To reduce bias near the boundaries, we applied reflected 675 
boundary conditions(45). We capped substructure similarities at 6 Å (that is, substructure 676 
similarities greater than 6 Å were set to 6 Å), as the sparsity of near-native pose pairs for higher 677 
values led to overly rough distributions. We denote the similarity distribution over near-native 678 
poses for interaction type k as 𝑓%(𝑥; Native). 679 
We computed equivalent similarity distributions using all pairs of candidate poses produced by 680 
Glide, regardless of whether they are near-native. We denote the resulting distributions as 681 
𝑓%(𝑥; Reference). 682 
To combine the distributions for the four similarity types into a single joint distribution, we 683 
assume that the interaction types are conditionally independent and express the joint distribution 684 
as a product of the distributions for each interaction type. That is: 685 

𝑓(𝑠(ℓ! , ℓ'); Native) = 	∏ 𝑓%(𝑠(%)(ℓ! , ℓ'); Native)% , and 686 

𝑓(𝑠(ℓ! , ℓ'); Reference) = 	∏ 𝑓%(𝑠(%)(ℓ! , ℓ'); Reference)% . 687 

where 𝑠(ℓ! , ℓ') is the vector of 𝑠(%)(ℓ! , ℓ')’s for each similarity type k. 688 

Description of the ComBind method 689 

The ComBind score 690 

We describe a hypothesized set of binding poses of a set of n ligands as 𝐿 = ℓ*, ℓ+, … , ℓ,, where 691 
ℓ! 	specifies the hypothesized pose for ligand i. 692 
Per-ligand scoring functions, which consider each ligand independently, would determine an 693 
optimal set of poses 𝐿D by choosing the binding pose with minimum docking score for each ligand 694 
or, equivalently, by minimizing 695 

𝐸-./0(𝐿) = 	F𝐸-./0(ℓ!)
,

!1*

 696 

where 𝐸-./0(ℓ!) is the output of a per-ligand scoring function (such as that reported by Glide) 697 
for pose ℓ! of ligand i. 698 

In our method, we add pairwise terms that tend to favor sets of similar poses: 699 

𝐸2.3456-(𝐿) = (𝑛 − 1)𝐸-./0(𝐿) + F −log
𝑓(𝑠(ℓ! , ℓ'); Native)

𝑓(𝑠(ℓ! , ℓ'); Reference)(!,'),!	8'

. 700 
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Intuitively, these pairwise terms reward pose pairs with similarity values more often observed in 701 
near-native (correct) pose pairs than in reference pose pairs (i.e., pose pairs chosen at random 702 
from among all candidates). The idea of comparing the distribution of features in correct 703 
solutions to the distribution in all possible solutions has been used in statistical potentials for 704 
biomolecular structure prediction(46-48) and in the naïve Bayes machine learning model(49). 705 
We weight the docking scores by the number of ligands minus 1, in order to hold the relative 706 
contribution of singleton and pairwise terms constant for different numbers of helper ligands. 707 
Consistent with their reported units of kcal/mol, we find that Glide scores have the mathematical 708 
properties of an energy; namely, the negative log likelihood ratio of a pose being near-native is 709 
linear in its Glide score (Supplementary Fig. 3). By construction, the pairwise terms we 710 
introduce in this study also have this property. This congruence implies that these singleton and 711 
pairwise terms can be additively combined (as this is the equivalent of multiplying likelihood 712 
ratios). 713 
In general, it could be that the per-ligand docking scores need to be scaled by a constant factor in 714 
order to be consistent with the pairwise terms. For example, if the docking scores were on 715 
average 10 times the negative log likelihood ratio of a pose being near-native, they would need 716 
to be scaled by 1/10. This constant factor can be identified by performing logistic regression with 717 
the docking scores as features and whether each pose is near-native as the response. For Glide 718 
scores, the appropriate constant is close to 1 (1/0.9 = 1.1) (Supplementary Fig. 3), and we chose 719 
to set it to 1 for simplicity. 720 

Optimization procedure 721 

We use coordinate descent to compute a set of poses that minimizes the ComBind score. At first, 722 
𝐿	is randomly initialized. 𝐿 is then iteratively improved by iterating through the ligands, in a 723 
random order, and updating the selected ligand’s pose to the argument minimum of 724 
𝐸2.3456-(𝐿)	assuming that the other poses in 𝐿 are correct. This procedure is repeated until no 725 
more updates can be made. Each update can be computed efficiently because it depends only on 726 
the partial contribution of the selected ligand’s pose to the ComBind score: 727 

ℓD9 =	argmin
ℓ!

M(𝑛 − 1)𝐸-./0(ℓ9) + F −log
𝑓(𝑠(ℓ9 , ℓ!); Native)

𝑓(𝑠(ℓ9 , ℓ!); Reference)	!	89	

N. 728 

In order to account for the non-convex nature of the ComBind score, we repeat this algorithm 729 
from 500 initial configurations, explicitly including the initial configuration corresponding to the 730 
generic scoring function predictions at least once and return the best scoring configuration. 731 
Empirically this procedure converges to the same result over multiple runs. 732 

Benchmarking 733 

We evaluated the performance of ComBind on the 30 target proteins listed in Supplementary 734 
Table 2. We only considered ligands that have less than 50% scaffold overlap with the ligand 735 
that was originally present in the experimental structure used for docking. We found that ligands 736 
with higher scaffold overlap were substantially easier to dock, likely due to the binding pocket 737 
being well shaped to accommodate the similar ligand (Supplementary Table 1). Additionally, 738 
we only consider ligands for which there is at least one correct candidate pose, since only in 739 
these cases is it possible for either ComBind or Glide to make a correct prediction. Importantly, 740 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.06.01.128181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

this subsetting was only done for the query ligands, not the helper ligands downloaded from 741 
ChEMBL described below. 742 
For each of the 245 unique ligands meeting these criteria, we identified other ligands known to 743 
bind the respective target protein from the ChEMBL database and then used ComBind to jointly 744 
predict their binding poses. Importantly, when evaluating the performance of our method on a 745 
particular target protein, we excluded the data for that target protein from the similarity statistics. 746 

Selection of helper ligands 747 

For all targets, we downloaded Ki or IC50 data (whichever was more numerous) from ChEMBL 748 
(16). We removed ligands that did not meet the following criteria: a ChEMBL confidence score 749 
of 9 (the highest value), molecular weight < 800 Da, and Ki or IC50 < 1 µM. Ligand structures 750 
were generated from the SMILES strings provided by ChEMBL. 751 
We benchmarked two criteria for selecting which ChEMBL ligands to use as helper ligands for 752 
each query ligand: (1) the highest affinity binders that do not share a chemical scaffold, and (2) 753 
the ligands that share the largest chemical substructure with the query ligand. To define the size 754 
of the common substructure, we used the same maximum common substructure definition as that 755 
used to compute substructure similarity. For selection method (1), we added helper ligands in 756 
order of affinity, not adding a ligand if it has greater than 80% substructure overlap with any 757 
ligand already in the selected set of helpers. 758 
The benchmarking results presented in the figures were obtained using the following ligand 759 
selection criteria and number of helper ligands: Fig. 4A and Supplementary Fig. 5A: 20 helper 760 
ligands selected using criterion (1); Fig. 4B: the indicated number of ligands selected using 761 
criterion (1);  Supplementary Fig. 4A and Supplementary Fig. 5B: 20 helper ligands selected 762 
using criterion (2); and Supplementary Fig. 4B: the indicated number of ligands selected using 763 
criterion (2). For a handful of targets, fewer than 20 helper ligands were available meeting our 764 
criteria. In these cases, we used the minimum of the indicated number of ligands and the number 765 
of available ligands. Targets with only one ligand are omitted from Fig. 4A and Supplementary 766 
Fig. 4A. 767 

Performance evaluation 768 

We developed an overall performance metric to represent the expected performance in drug 769 
development campaigns. For each protein family, we computed the average performance, then 770 
weighted each by the fraction of FDA-approved drugs targeting the protein family, as reported in 771 
Santos et al., 2017. 772 

Prediction of binding poses of antipsychotics at the D2R 773 

Execution of the ComBind method 774 

We predicted binding poses for the typical antipsychotics spiperone, mespiperone, benperidol, 775 
and pimozide at the D2 dopamine receptor (D2R). We prepared the ligands using the Schrodinger 776 
ligprep tool, considering the unprotonated tautomer and both inversions of the protonated 777 
tautomer. The same docking protocol was used as described above, except that the top 300 poses 778 
were considered by ComBind, in order to account for the use of the 3 tautomeric states of the 779 
ligand. 780 

D2 Dopamine receptor mutagenesis 781 
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Wild type (wt) human D2R in pcDNA3.1 was kindly provided by the laboratory of Jonathan 782 
Javitch (Columbia University, New York, NY). Mutations were introduced through of a 783 
modified QuikChange (Stratagene, La Jolla, CA) mutagenesis protocol using the following 784 
primers V91F: 5’-GGTCATGCCCTGGTTTGTCTACCTGG-3’, S193A: 785 
5’CGTGGTCTACGCCTCCATCGTCTCC-3’, S193V: 5’-786 
CGTGGTCTACGTCTCCATCGTCTCC-3’, S193L: 5’-787 
CGTGGTCTACCTCTCCATCGTCTCC-3’, W100L: 5’-788 
GGTAGGTGAGTTGAAATTCAGCAGG-3’, C118M: 5’-789 
GGACGTCATGATGATGACGGCGAGC-3’, W386F: 5’-790 
CGTGTTCATCATCTGCTTTCTGCCCTTCTTC-3’, F389L: 5’-791 
GCTGGCTGCCCTTATTCATCACACACATCC-3’. 792 

Membrane preparation and radioligand binding 793 

Membranes were isolated from HEK293T cells transiently transfected with D2R(wt) or D2R-794 
mutants. Briefly, cells were harvested 48 hr post-transfection (with Lipofectamine 2000), rinsed 795 
with PBS, lifted with harvesting buffer (0.68 mM EDTA, 150 mM NaCl, 20 mM HEPES, pH 796 
7.4), and centrifuged at 200 x g for 3 min.  The cells were resuspended in ice cold homogenizing 797 
buffer (10 mM HEPES, pH 7.4, 100 mM NaCl, 0.5 mM EGTA), homogenized using a Tissue 798 
Tearer (BioSpec, Bartlesville, OK) for 30 sec, and centrifuged at 20,000 x g for 20 min. 799 
Membranes were resuspended in Binding Buffer (20 mM HEPES, pH 7.4, 100 mM NaCl) using 800 
a Dounce glass homogenizer , flash frozen in liquid N2 and stored at –80oC. 801 

For saturation binding assays, cell membranes (0.6–20 µg per well, depending on the mutant) 802 
were incubated for 1.5 hr at 30oC with [3H]-spiperone (Perkin Elmer, Waltham, MA) (0.02–12 803 
nM, depending on the Kd of the D2R mutant) in Binding Buffer containing 0.001% BSA, 1 mM 804 
ascorbic acid,  and 100 nM GDP with or without 20 µM (+)butaclamol (to determine non-805 
specific binding). For competition binding assays, cell membranes (0.6–20 µg, depending on the 806 
D2R mutant) were incubated for 1.5 h at 30oC with [3H]-spiperone (0.05–0.6 nM, depending on 807 
the Kd of the D2R mutant) in Binding Buffer containing 0.001% BSA, 1 mM ascorbic acid, 100 808 
nM GDP and 0–0.1 nM test compound (purchased from Millipore-Sigma, St Louis, MO), or 20 809 
µM (+)butaclamol (to determine non-specific binding). Sample membranes were harvested by 810 
vacuum filtration on 96-well GF/C filter plates, washed with ice cold binding buffer to remove 811 
unbound radioligand, and allowed to dry before adding Microscint 0 (Perkin Elmer, Waltham, 812 
MA) for counting in a Top Count Scintillation Counter (Perkin Elmer/Packard, Waltham, MA ). 813 
Data were fit to a one site binding curve to determine Kd for [3H]-spiperone saturations, or to a 814 
one-site competition binding curve to calculate Ki of test compounds using Prism (GraphPad, 815 
San Diego CA). 816 
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Figures817 

 818 
Figure 1: ComBind leverages non-structural data to improve ligand binding pose 819 
predictions. (A) Standard docking methods take as input the chemical structure of the query 820 
ligand and the 3D structure of the target protein and predict a binding pose using a per-ligand 821 
scoring function. (B) ComBind additionally considers other ligands known to bind the target 822 
protein (whose binding poses are not known), resulting in more accurate predictions. For clarity, 823 
hydrogen and fluorine atoms are not shown in the 3D renderings.  824 
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 825 
Figure 2: Distinct ligands that bind to a given target protein often adopt similar binding 826 
poses and do so more frequently than predicted by a state-of-the-art per-ligand docking 827 
method. (A) Chemically distinct ligands share key interactions with the mineralocorticoid 828 
receptor (PDB IDs: 2AA2, 5L7E, 5MWP). (B) Across a set of 3115 ligand pairs, interaction 829 
similarities are generally higher in pairs of correct poses than in pairs including all poses ranked 830 
highly by a per-ligand scoring function. Shading depicts the per-target standard error of the 831 
mean. (C) Across a set of 690 ligand pairs with a shared substructure, the substructure tends to 832 
be placed more similarly in correct poses than in other poses ranked highly by a per-ligand 833 
scoring function. Substructure similarity for a pose pair was defined as the root mean square 834 
deviation (RMSD) between the largest substructure shared by the ligands (see Methods).  835 
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 836 
Figure 3: ComBind discovers and rewards key interactions shared by distinct ligands. (A) 837 
Whereas per-ligand docking considers each ligand individually, ComBind jointly selects poses 838 
for all ligands, optimizing for poses that are individually favorable according to a per-ligand 839 
scoring function and together form a coherent set of protein–ligand interactions. (B) We tested 840 
the ability of ComBind to predict the poses of 11 ligands that bind β1AR. Each dot corresponds 841 
to a single ligand, with the dot’s position indicating the error in the predicted pose (RMSD from 842 
the experimentally determined pose) for ComBind and for state-of-the art per-ligand docking 843 
software (Glide). A pose is considered correct if its RMSD is ≤ 2.0 Å (dashed lines). ComBind 844 
predicts a substantially more accurate pose than Glide for 7 of the 11 ligands. (C) The set of 845 
residues with which each ligand forms salt bridges or hydrogen bonds when positioned in its 846 
experimentally determined pose (top), the pose predicted by per-ligand docking (left), and the 847 
pose predicted by ComBind (right).  848 
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 849 
Figure 4: ComBind outperforms per-ligand docking on a diverse benchmark set. 850 
Performance of ComBind, as compared to a per-ligand scoring function, using helper ligands 851 
selected automatically from ChEMBL. All results are for “cross-docking” (the query ligand is 852 
docked into a structure determined in the presence of a distinct ligand). (A) Performance per 853 
target protein, target protein family (GPCRs, ion channels, etc.), and overall. Green disks and 854 
black circles indicate performance (fraction of ligands whose pose is predicted correctly) for 855 
ComBind and a state-of-the art per-ligand docking software package (Glide), respectively. (B) 856 
Performance as a function of the number of helper ligands. When using no helper ligands, 857 
ComBind is equivalent to Glide (dashed horizontal line).   858 
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 859 
Figure 5: Prediction and validation of the binding poses of antipsychotics at the D2 860 
dopamine receptor. Glide (A) and ComBind (B) predict very different binding poses for 861 
pimozide (and for benperidol; see Supplementary Fig. 6). (C) Mutagenesis experiments validate 862 
ComBind’s predictions. In ComBind’s predicted pose for pimozide, its “extra” ring is 863 
uncomfortably close to S193, such that decreasing the size of residue 193 (S193A) increases 864 
pimozide’s binding affinity and increasing the size of residue 193 (S193V and S193L) decreases 865 
pimozide’s binding affinity. WT represents the wild-type (unmutated) receptor. (D) As a control, 866 
we verified that benperidol—which lacks this “extra” ring but is otherwise identical to 867 
pimozide—does not exhibit the same trend. Error bars show standard error of the mean. See 868 
Supplementary Fig. 6 for additional data.  869 
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Supplementary Figures870 

 871 
Supplementary Figure 1: Examples of interaction similarity and substructure similarity 872 
computation. (A) Comparison of interactions formed by two ligands bound to PLK1, for a pair 873 
of correct poses (top) and randomly chosen poses (bottom). (B) Overlays of two ligands that 874 
share a common substructure bound to BRD4 for correct docked poses (top) and randomly 875 
chosen highly ranked docked poses (bottom).  876 
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 877 
Supplementary Figure 2: A state-of-the-art per-ligand scoring function (Glide) 878 
underestimates the similarity of binding poses of different ligands binding to the same 879 
target protein. (A) and (B) are identical to Fig. 2C and D, respectively, except that the black 880 
curves in this figure are computed using only the pose ranked first by Glide for each ligand.  881 
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 882 
Supplementary Figure 3: The output of Glide’s per-ligand scoring functions is in units of 883 
energy similar to those of ComBind’s pairwise potential. A quantile plot showing the 884 
relationship between Glide scores and the negative log likelihood ratio of a pose being correct. 885 
For each of the docked poses of each ligand in our benchmark set, we computed the Glide score 886 
and determined whether the pose was correct. We split all of the resulting data into quantiles 887 
based on Glide scores, with each quantile containing 100 poses. Each point in the plot represents 888 
the mean Glide score and negative log likelihood ratio for a given quantile. The red line shows 889 
the best-fit linear relationship between these two quantities as determined by logistic regression.  890 
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 891 
Supplementary Figure 4: ComBind performance using a congeneric series of ligands. This 892 
figure corresponds to Fig. 4, but with helper ligands selected from ChEMBL ligands according 893 
to the “congeneric” criterion (i.e., ligands that share the greatest common substructure with the 894 
query) instead of the “high affinity” criterion. 895 
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 896 
Supplementary Figure 5: Importance of components of the ComBind scoring function. 897 
Performance using various components of the ComBind scoring function when using helper 898 
ligands chosen by either the high-affinity (A) or congeneric (B) ChEMBL ligand selection 899 
criterion. ComBind uses per-ligand docking scores, similarity scores based on interactions, and 900 
similarity scores based on relative positions of shared substructures. “Per-ligand docking” 901 
(Glide) omits all similarity scores. The remaining bars (“No Per-Ligand Scores,” “No 902 
Substructure,” and “No Interactions”) show the effects of omitting per-ligand scores, 903 
substructure position similarity scores, and protein–ligand interaction similarity scores, 904 
respectively, from the ComBind potential. 905 

906 
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907 
Supplementary Figure 6: Prediction and validation of the binding poses of antipsychotics 908 
at the D2 dopamine receptor—additional data. (A) Binding poses of pimozide, benperidol, 909 
spiperone, and mespiperone as predicted by Glide. (B) Binding poses of the same ligands, as 910 
predicted by ComBind. (C) Results of mutagenesis studies designed to test ComBind’s binding 911 
pose predictions. Ligands are color-coded as in panel A. Error bars show standard error of the 912 
mean. S193 was mutated to A, S, V and L; these results are discussed in the main text. Unlike 913 
Glide, ComBind predicts that all four ligands will position a fluorobenzene ring at the bottom of 914 
the binding pocket, packing favorably against Trp386 (W386). Indeed, mutating W386 to a 915 
smaller residue (Phe) reduced affinity to a similar extent for all of the ligands, with a slightly 916 
smaller effect for pimozide, which packs less tightly against W386 according to ComBind’s 917 
prediction. At the top of the ligand binding pocket, near Val91 (V91) and Trp100 (W100), 918 
ComBind predicts that the pimozide and benperidol will place identical functional groups that 919 
differ somewhat from those of spiperone and mespiperone. Indeed, mutation of these residues 920 
affects pimozide and benperidol slightly differently from spiperone and mespiperone. 921 
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 923 
Supplementary Figure 7: Example of a case where ComBind correctly predicts that a 924 
shared chemical scaffold is placed differently for different ligands. We show two ligands that 925 
bind the kinase CDK2. These ligands share a common scaffold but adopt significantly different 926 
binding poses. In A and B, we show their experimentally determined poses (PDB: 1JSV and 927 
PDB: 1DI8, respectively). In C and D, we show the poses predicted by ComBind for the two 928 
ligands. The shared scaffold is shown in the thicker sticks and parts of the ligands that differ are 929 
shown in the thinner lines. 930 
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 931 
Supplementary Figure 8: Example of a case where ComBind correctly predicts that ligands 932 
form distinct interactions with the protein. We ran ComBind for 20 ligands that bind F10. 933 
While most of the ligands have a positively charged group, only some of them position it to form 934 
a salt bridge with D189 (e.g., ligand 1, shown in panel A) while others orient it in the complete 935 
opposite direction (e.g., ligand 2, shown in panel B). ComBind correctly predicts both binding 936 
poses (C, D). (E) One of the candidate poses for ligand 1 forms the same salt bridge as ligand 2. 937 
ComBind correctly avoided choosing this pose, even though choosing it would have led to more 938 
similar interactions between ligands.  939 
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Supplementary Tables 940 

Supplementary Table 1: Performance of Glide SP and Glide XP on our benchmark set. The 941 
data presented in this table does not include ligands that share a substantially sized chemical 942 
scaffold with the ligand present in the experimental structure used for docking. Including such 943 
ligands increases the success rate for both Glide SP and Glide XP (to 49%, 53%, 47%, 944 
respectively). 945 
# Ligands Is the top-ranked pose correct? Is any candidate pose correct? 

 SP XP IFD SP XP  IFD 

327 44% 45% 40% 81% 63% 81% 
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Supplementary Table 2: Structural data used for benchmarking ComBind. From left to 947 
right, columns represent: Protein family, protein name, Uniprot ID, ChEMBL target ID, number 948 
of ligands, number of ligands that do not share a scaffold with the ligand present in the 949 
experimental structure used for docking, and number of ligands that do not share a scaffold with 950 
the ligand present in the experimental structure used for docking and have at least one correct 951 
candidate pose. The right-most column corresponds to the number of ligands included in our 952 
benchmarks for each target protein. 953 

PROTEIN 
FAMILY 

PROTEIN UNIPROT CHEMBL # TOTAL 
LIGANDS 

# DIVERSE 
LIGANDS 

# DIVERSE LIGANDS 
WITH AT LEAST ONE 

CORRECT 
CANDIDATE POSE 

GPCR 5-HT2B P41595 CHEMBL1833 5 5 5 
 β1AR P07700 CHEMBL213 11 6 6 
 β2AR P07550 CHEMBL210 7 4 4 
 mGluR5 P41594 CHEMBL2564 4 3 1 
 Smo Q99835 CHEMBL5971 4 3 2 

 
ION CHANNEL GluN1/2A Q05586 

Q12879 

CHEMBL1907604 8 6 4 

 GluR-2 P19491 CHEMBL3503 15 7 6 
 GluK1 P22756 CHEMBL2919 18 18 15 

 
TRANSPORTER DAT Q7K4Y6 CHEMBL238 8 8 7 
 SERT P31645 CHEMBL228 4 4 4 
 GLUT1 P11166 CHEMBL2535 2 1 1 

 
NUCLEAR 
RECEPTOR 

ER P03372 CHEMBL206 20 14 12 

 GR P04150 CHEMBL2034 16 10 8 
 MR P08235 CHEMBL1994 12 10 9 
 AR P10275 CHEMBL1871 19 12 10 
 VDR P11473 CHEMBL1977 20 3 3 

 
PROTEASE F2 P00734 CHEMBL204 20 19 15 
 F10 P00742 CHEMBL244 20 19 12 
 PLAU P00749 CHEMBL3286 20 20 19 
 P00760 P00760 CHEMBL3769 20 19 16 
 BACE1 P56817 CHEMBL4822 20 19 7 
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PHOSPHORYLASE PYGM P00489 CHEMBL4696 20 5 4 
PHOSPHATASE PTPN1 P18031 CHEMBL335 20 19 8 
TRANSCRIPTION 
FACTOR 

BRD4 O60885 CHEMBL1163125 16 13 7 

CHAPERONE HSP90-α P07900 CHEMBL3880 20 16 10 
PHOSPHO-
DIESTERASE 

PDE10A Q9Y233 CHEMBL4409 20 19 17 

RECEPTOR σ1 Q99720 CHEMBL287 4 4 3 
ELATASE ELANE P08246 CHEMBL248 8 1 1 
REDUCTASE DHFR P00374 CHEMBL202 20 20 15 
KINASE Cdk2 P24941 CHEMBL301 20 20 17 
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Supplementary Table 3: ComBind is robust to cases where some of the ligands considered 955 
have no correct (near-native) candidate pose. Here we show the results of running ComBind 956 
for 20 ligands that bind PTPN1. We considered ligands whose binding poses have been 957 
determined experimentally, so that we could assess whether the predicted poses are correct. For 958 
over half of the ligands, there were no correct candidate poses (likely because these ligands 959 
induce a conformational change in the binding pocket). Despite this, ComBind produces more 960 
accurate pose predictions than state-of-the art per-ligand docking software. The ligands used in 961 
the predictions correspond to those present in the following PDB structures: 1C88, 1C86, 1GFY, 962 
1ECV, 1C83, 1C84, 1L8G, 1KAV, 1BZJ, 1NWL, 1G7F, 1QXK, 1PYN, 1G7G, 1NZ7, 1NNY, 963 
1NO6, 1ONZ, 1NL9, 1ONY. 964 

 Ligand 
 a b c d e f g h i j k l m n o p q r s t 

Is any candidate pose correct? Y Y Y Y Y Y Y Y Y N N N N N N N N N N N 

Is Glide’s predicted pose correct? Y Y Y Y Y Y N N N N N N N N N N N N N N 
Is ComBind’s predicted pose correct? Y Y Y Y Y Y Y Y N N N N N N N N N N N N 
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Supplementary Table 4: Ligands used in predictions for the β1 adrenoceptor. From left to 966 
right, columns represent: index of ligand (a–k are as shown in Fig. 3; xtal denotes the 967 
cocrystallized ligand in the protein structure used for docking), name of ligand, mode of action, 968 
and PDB ID of the experimental structure. 969 

Index Ligand Mode of action Structure 

xtal cyanopindolol antagonist 2VT4 

a dobutamine partial agonist 2Y00 

b carmoterol partial agonist 2Y02 

c isoprenaline full agonist 2Y03 

d salbuterol partial agonist 2Y04 

e carazolol inverse agonist 2YCW 

f iodocyanopindolol antagonist 2YCZ 

g 4-(piperazin-1- yl)-1H-indole antagonist 3ZPQ 

h 4-methyl-2-(piperazin-1-yl) 
quinoline 

antagonist 3ZPR 

i bucindolol antagonist 4AMI 

j carvedilol inverse agonist 4AMJ 

k methylcyanopindolol inverse agonist 5A8E 
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Supplementary Table 5: Definitions for the measures used to quantity the presence of each 971 
of the three interaction types considered in this study. 972 

Hydrogen Bond 

A = a hydrogen bond acceptor; D = a hydrogen bond donor; H = the associated hydrogen 

distance term = !
1 if	distance(𝐻, 𝐴) ≤ 2.5	Å																	

!.#	Å	&	'()*+,-.(0,2)
#.4	Å

if	2.5	Å < 	distance(𝐻, 𝐴) ≤ 3.0	Å
 

     angle term = :
1 if	angle(𝐷, 𝐻, 𝐴) ≥ 120°.													

+,56.(7,0,2)&8#°
!#°

if	90° ≤ 	angle(𝐷, 𝐻, 𝐴) < 120°
 

hydrogen bond value = distance term * angle term 

 
Salt Bridge 

N = an atom with a negative formal charge; P = an atom with a positive formal charge 

salt bridge value = !
1 if	distance(𝑁, 𝑃) ≤ 4.0	Å																	

4.#	Å	&	'()*+,-.(:,;)
<.#	Å

if	4.0	Å < 	distance(𝑁, 𝑃) ≤ 5.0	Å
 

 
Hydrophobic Contact 

A1, A2, …, An = all carbon or halogen atoms in the ligand; B1, B2, …, Bm = all carbon atoms in 
the given protein residue 
distance term for Ai and Bj = 

 D
1 if	distanceE𝐴= , 𝐵>G ≤ 1.25	𝑟=>																					

<.?4	@()	&	'()*+,-.A2(,	B)C
#.4	@()

if	1.25	𝑟=> < distanceE𝐴= , 𝐵>G ≤ 1.75	𝑟=>
 

where rij is the sum of the van der Waals radii of Ai and Bj 

hydrophobic contact value = ∑ ∑ distance	term	for	𝐴! 	and	𝐵' 	;
'1*

,
!1*  
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Supplementary Table 6: Atom types used in maximum common substructure definition. 974 
SMARTS pattern and intuitive description of each atom type used when searching for common 975 
substructures. Each atom in a molecule is assigned the most specific atom type (lowest in the 976 
table) that applies to it. 977 

SMARTS Description 

(*) Any Atom 

(#1) Hydrogen 

(#6) Carbon 

(#6; r5; CX4) 
(#6; r6) 

Saturated carbon in 5-member ring  
Carbon in 6-member ring 

c1ccccc1 Carbon-only aromatic ring 

(CR0) Carbon not in a ring 

(#7) Nitrogen 

(#7; r5) Nitrogen in 5-member ring 

(#8) Oxygen 

O=* Ketone Oxygen 

(#8; r5) Oxygen in 5-member ring 

(#15) Phosphorus 

(#16) Sulphur 

(#16; r5) Sulphur in 5-member ring 

(#9, #17, #35, #53) Halogens 

 978 
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