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Abstract 21 

Stochastic fluctuations in gene expression (‘noise’) are often considered detrimental but, in 22 

other fields, fluctuations are harnessed for benefit (e.g., ‘dither’ or amplification of thermal 23 

fluctuations to accelerate chemical reactions).  Here, we find that DNA base-excision repair 24 

amplifies transcriptional noise, generating increased cellular plasticity and facilitating 25 

reprogramming.  The DNA-repair protein Apex1 recognizes modified nucleoside substrates 26 

to amplify expression noise—while homeostatically maintaining mean levels of expression—27 

for virtually all genes across the transcriptome.  This noise amplification occurs for both 28 

naturally occurring base modifications and unnatural base analogs.  Single-molecule 29 

imaging shows amplified noise originates from shorter, but more intense, transcriptional 30 

bursts that occur via increased DNA supercoiling which first impedes and then accelerates 31 

transcription, thereby maintaining mean levels.  Strikingly, homeostatic noise amplification 32 

potentiates fate-conversion signals during cellular reprogramming.  These data suggest a 33 

functional role for the observed occurrence of modified bases within DNA in embryonic 34 

development and disease.  35 
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Main Text 36 

From Brownian motion to electrical ‘shot’ noise, fluctuations are fundamental to physical 37 

processes.  Since the 1800s (1), fluctuations have been recognized to dynamically shape the 38 

distribution of microstates a system adopts, and modulation of fluctuations has been harnessed 39 

throughout engineering and the sciences.  For example, in chemistry, thermal fluctuations—40 

amplified via temperature increase (e.g., Bunsen Burners)—accelerate reactions (2); in 41 

engineering, amplification of electrical, acoustic, or mechanical fluctuations (i.e., ‘dither’, from 42 

the Middle English "didderen" meaning to "tremble") is used for signal recovery (3), and in 43 

neuroscience, electrophysiological fluctuations—first reported in the 1950s (4)—are clinically 44 

amplified to improve sensorimotor function (5-7).  Such ‘dither’ approaches break Poisson 45 

dependency so that Dvariance ¹ Dmean. 46 

 47 

Evolutionary theories dating to the 1960s (8-10) proposed that biological organisms maximized 48 

fitness by harnessing putative fluctuations to enable probabilistic ‘bet-hedging’ decisions.  49 

Subsequent studies showed that intrinsic molecular fluctuations in gene expression (i.e., stochastic 50 

‘noise’), modulated by gene-regulatory circuits, enabled probabilistic fate selection (Fig. 1A) in 51 

diverse biological systems (11-13).  Open questions remain as to whether cellular noise control is 52 

limited to inherently locus-specific gene-regulatory circuits or if generalized noise-modulation 53 

mechanisms exist, if and how such mechanisms might orthogonally tune noise independent of 54 

mean, and, given the detrimental effects of noise, if such putative mechanisms might be regulated 55 

‘on-demand’ to potentiate cell-fate specification. 56 

 57 

Non-genetic variability or noise in gene expression, often quantified by measurement of cell-to-58 

cell variability in reporter expression, can arise from multiple sources, both intrinsic and extrinsic.  59 

In mammalian cells, intrinsic noise originates from episodic transcriptional ‘bursts’ (14-17) 60 

initiated by promoter toggling between ON and OFF states (Fig. 1B).  The two-state random-61 

telegraph model describes this bursting via two parameters: (i) the fraction of time a promoter is 62 

active (KON/[KON+KOFF]), and (ii) the number of transcripts produced during the ON state (burst 63 

size, KTX/KOFF) (18-20).  These bursting parameters are tuned by regulatory machinery (21) like 64 

histone acetyltransferases, which can increase burst frequency by facilitating nucleosome 65 

clearance from promoters thereby increasing mean transcriptional levels (22).  Increases in mean 66 
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expression (µ) are typically accompanied by a stereotypical reduction in noise measured by 67 

coefficient of variation, CV, (s/µ) (Fig. 1B), whereas stressors that decrease mean are typically 68 

accompanied by an increase in noise (23-25).  This 1/µ scaling of noise can be broken by gene-69 

regulatory circuits such as feedback and feedforward loops (26), and some small-molecule 70 

pharmaceuticals can modulate transcriptional fluctuations/noise (s/µ) independent of change in 71 

mean (µ) (27, 28).  Since some molecules can amplify expression noise of diverse unrelated 72 

promoters (27, 29), we asked if these molecules might be functioning via disruption or 73 

enhancement of a putative cellular noise-control mechanism. 74 

 75 

A series of screens (Fig. S1) identified one compound, 5’-iodo-2’-deoxyuridine (IdU), which 76 

consistently increased expression noise of multiple transcriptional reporter constructs in diverse 77 

cell types.  To test the generality of this noise amplification effect we focused on mouse embryonic 78 

stem cells (mESCs), due to extensive characterization of their developmental and transcriptional 79 

characteristics (30-34).  Strikingly, single-cell RNA sequencing (scRNA-seq) of mESCs 80 

maintained in 2i/LIF media—after filtering and normalization using Seurat (35)—showed that IdU 81 

amplified cell-to-cell variability in transcript levels (i.e., transcript noise) for virtually all genes 82 

across the genome—4,578 genes analyzed (Fig. 1C)—with little alteration in mean transcript 83 

levels for most genes, as analyzed by either CV2 (s2/µ2) or variance (s2) versus mean (Figs. 1C–84 

D).  To account for the Poisson scaling of variance on mean, transcript noise was also quantified 85 

using the Fano factor (s2/µ), which measures how noise deviates from Poisson scaling (s2/µ = 1) 86 

(20, 36, 37).  Despite mean-expression levels exhibiting minimal changes (Fig. 1E), the Fano factor 87 

increased for > 90% of genes (Fig. 1F) with lowly expressed genes showing a slightly greater 88 

change in Fano (Fig. S2).  These results of a global increase in transcript noise with little change 89 

in mean levels are in stark contrast to the effects of transcriptional activators or cellular stressors 90 

that alter noise in a stereotypic manner together with changes in mean (23, 38). 91 

 92 

To account for technical noise and quantify statistical significance of changes in noise and mean, 93 

we used an established Bayesian hierarchical model (39, 40) to create probabilistic, gene-specific 94 

estimates of both mean expression and cell-to-cell transcript variability.  Of the 4,578 genes, the 95 

algorithm classified 945 genes (~20%) as highly variable, whereas 113 genes (~2%) showed a 96 

significant change in mean expression (Figs. 1G–H).  Bulk RNA-seq measurements of mean 97 
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abundances—performed using ERCC spike-ins for normalization—confirmed the scRNA-seq 98 

findings (Fig. S3).  Thus, analyses from two methods (Seurat and BASiCS) show that IdU induces 99 

a significant increase in transcript variability (expression noise) but comparatively little change in 100 

mean expression in mESCs. 101 

 102 

To examine if certain characteristics could explain a gene’s potential for noise enhancement we 103 

examined (i) gene length, (ii) promoter and (iii) gene-body AT content, (iv) number of exons, (v) 104 

TATA-box inclusion and (vi) strand orientation.  None of these characteristics exhibited predictive 105 

power or correlated with a gene’s potential for noise enhancement (Fig. S4).  However, genes 106 

susceptible to high noise enhancement were preferentially located within the interior of 107 

topologically associated domains (TADs), suggesting gene topology influences potency of noise 108 

enhancement (Fig. S4).  Ontology analysis of highly variable genes showed enrichment of house-109 

keeping pathways along with pluripotency maintenance factors, particularly Sox2, Oct4, Nanog 110 

and Klf4 (Figs. 1H, S5).  As these pluripotency maintenance factors are key influencers of cell-111 

fate specification, we next focused on the molecular mechanisms driving their amplified transcript 112 

noise. 113 

 114 

We first tested whether the enhanced variability arose from extrinsic factors, which include cell-115 

cycle phase and cell-type identity (16, 41-44).  Cells within the scRNA-seq dataset were 116 

computationally assigned a cycle stage (G1, S, G2/M) (45) which showed that Nanog, Oct4, Sox2 117 

and Klf4 were highly variable in each cell-cycle phase, indicating that their variability is not cell-118 

cycle dependent (Fig. S6).  Moreover, pseudo-time analysis showed no bifurcations, indicating 119 

transcriptional variability was not due to a differentiation-induced mixture of cell-types (Fig. S7). 120 

 121 

Extrinsic variability may also arise from the coordinated propagation of noise through gene-122 

regulatory networks (46, 47) and can be measured by gene-to-gene correlation matrices (48, 49).  123 

If the increase in global transcript noise is extrinsic, expression correlation between network 124 

partners would increase or remain unchanged.  Analysis of gene-to-gene correlation matrices 125 

showed that ~80% of gene-gene pairs lost correlation strength following IdU treatment (Figs. 2A 126 

and S8), indicating that enhanced expression noise is uncorrelated and not consistent with an 127 

extrinsic noise source.  Exclusion of these extrinsic noise sources suggested that IdU amplifies 128 
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intrinsic noise arising from stochastic fluctuations in transcript birth (promoter toggling) or death 129 

(degradation).   130 

 131 

To test whether a change in promoter toggling could account for IdU-enhanced noise, we used 132 

single-molecule RNA FISH (smRNA-FISH) to count both nascent and mature transcripts of 133 

Nanog, a master regulator of pluripotency.  Spot counting was performed on a mESC line in which 134 

both endogenous alleles of Nanog are fused to eGFP.  This fusion does not alter mRNA or protein 135 

half-life or impair differentiation potential (50).  To target mature transcripts, smRNA-FISH 136 

probes to eGFP were used, and to minimize extrinsic noise, analyses were limited to cells of similar 137 

sizes (Fig. S9A).  Consistent with scRNA-seq, smRNA-FISH showed a large increase in cell-to-138 

cell variability of mature Nanog transcripts (~2-fold increase in Fano) with little change in mean 139 

Nanog levels (Fig. 2B).  Fewer IdU-treated cells exhibited active transcriptional centers (TCs), but 140 

the number of nascent mRNAs at each TC increased (Figs. 2C–D).  Fitting of the two-state 141 

random-telegraph model to smRNA-FISH data revealed that increased variability was due to a 142 

shortened burst duration (increased kOFF) and amplified transcription rate (higher kTX) (Fig. S9B, 143 

Table S2).  These results represent direct validation of previous predictions (20, 27) that enhanced 144 

noise could arise from reciprocal changes in transcriptional burst duration (1/kOFF) and intensity 145 

(kTX). 146 

 147 

To test if enhanced transcript variability transmitted to the protein level, we performed flow-148 

cytometric analysis of Nanog-GFP reporter protein.  In IdU-treated cells, the Nanog protein Fano 149 

factor increased by ~3-fold, with little change in mean, indicating that mRNA variability from 150 

altered promoter toggling indeed resulted in changes to protein noise (Fig. 2E).  The increase in 151 

protein noise showed no dependency on cell-cycle (Fig. S10C–D) despite G1-to-S cell-cycle 152 

progression being slightly slowed by IdU treatment (Fig. S10A–B). Consistent with the extrinsic 153 

noise analysis above, there was no evidence of aneuploidy following IdU treatment (Fig. S10A), 154 

precluding the possibility that increased noise results from a sub-population of cells with non-155 

physiologic gene-copy numbers. 156 

 157 

Given that Nanog noise was intrinsic and transmitted to the protein level, we next tested a previous 158 

theoretical prediction about Nanog.  When cultured in 2i/LIF, mESCs exhibit Nanog protein 159 
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expression that is unimodal and high, but when cultured in serum/LIF, mESCs exhibit bimodal 160 

Nanog expression with both a low Nanog state and a high Nanog state (Fig. S11) (34).  Theories 161 

predicted that increased transcriptional noise would drive greater excursions from the high Nanog 162 

state into the low Nanog state (51).  We found that in mESCs cultured in serum/LIF, IdU-induced 163 

amplification of Nanog noise did indeed generate greater excursions into the low Nanog state (Fig. 164 

S11), verifying theoretical predictions.  This result demonstrates how promoter toggling can drive 165 

Nanog state-switching thereby altering differentiation potential. 166 

  167 

To verify that enhanced noise is not a population-level phenomenon brought on by differential 168 

responses to IdU in distinct cellular subpopulations (i.e., verify ‘ergodicity’ and that individual 169 

cells exhibit increased fluctuations), we used live-cell time-lapse imaging to quantify both the 170 

magnitude (intrinsic-CV2) and frequency content (1/half-autocorrelation time) of Nanog 171 

fluctuations.  Single-cell tracking of individual cells showed that IdU induced a 2-fold increase in 172 

the magnitude (intrinsic-CV2) of fluctuations (Figs. 2F, S12A), and auto-correlation analysis of 173 

detrended trajectories showed a broadening of the frequency distribution to higher spectra, 174 

indicating reduced memory of protein state (Fig. S12B).  These higher frequency fluctuations are 175 

consistent with amplification of a non-genetic, intrinsic source of noise (52, 53) because genetic 176 

sources of cellular heterogeneity, such as promoter mutations, would lead to longer retention of 177 

protein states (increased memory) (54).  In silico sorting of cells based on starting Nanog 178 

expression verified that noise enhancement was not dependent on memory of initial state (Fig. 179 

S13).  Fluctuations in promoter toggling therefore drive individual cells to dynamically explore a 180 

larger state-space of Nanog expression.  To further validate that IdU perturbs an intrinsic source 181 

of noise, we used a mESC line in which the two endogenous alleles of Sox2 are tagged with P2A-182 

mClover and P2A-tdTomato, respectively, to enable quantification of the intrinsic and extrinsic 183 

components of noise.  Treatment with IdU increased Sox2 intrinsic noise greater than 2-fold across 184 

all expression levels (Fig. S14) further validating that IdU enhances intrinsic noise. 185 

 186 

To test if a generalized stress response could explain the noise enhancement induced by IdU, we 187 

subjected Nanog-GFP mESCs to UV radiation for 15, 30, or 60 minutes.  Both the mean and Fano 188 

factor of Nanog expression decreased for all timepoints, which markedly differs from IdU 189 
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treatment (Fig. S15).  This result further indicates that IdU does not perturb an extrinsic or global 190 

noise source; rather, it perturbs an intrinsic source of noise (i.e., promoter toggling). 191 

 192 

To pinpoint the molecular mechanism, 14 additional nucleoside analogs (Table S3) were screened 193 

for noise enhancement effects.  5’-bromo-2’-deoxyuridine (BrdU), 5-hydroxymethylcytosine 194 

(hmC), and 5-hydroxymethyluridine (hmU) also increased Nanog Fano factor to varying degrees 195 

(Fig. 3A).  Intriguingly, hmU and hmC are naturally produced by the Ten Eleven Translocation 196 

(Tet) family of enzymes during oxidation of thymine and methylated cytosine respectively (55-197 

58).  Given that these base modifications are removed via base-excision repair (BER), we surmised 198 

that their incorporation and removal from genomic DNA may be responsible for noise 199 

enhancement (Fig. 3B) (59, 60).  To test this, we knocked down 25 genes (3 gRNAs/gene, Table 200 

S4) involved in nucleoside metabolism and DNA repair using CRISPRi, and quantified how these 201 

knockdowns affected IdU’s noise enhancement.  We identified 2 genes: AP Endonuclease 1 202 

(Apex1) and thymidine kinase 1 (Tk1) whose knockdown abrogated noise enhancement (Fig. 3C).  203 

Knockdown was confirmed via RT-qPCR (Fig. S16). 204 

 205 

Tk1 adds a requisite gamma-phosphate group to diphosphate nucleotides prior to genomic 206 

incorporation (Fig. 3B) (61).  Our knockdown results indicated that phosphorylation of IdU by 207 

Tk1 and subsequent incorporation of phosphorylated IdU into the genome may be necessary for 208 

noise enhancement.  To validate this, we tested the effect of treatment with 10µM IdU combined 209 

with excess thymidine, a competitive substrate of Tk1. Competitive inclusion of thymidine 210 

returned Nanog noise to baseline levels (Fig. S17), indicating that noise enhancement is dependent 211 

on IdU incorporation.  The reduction in Nanog noise with addition of exogenous thymidine also 212 

suggests that IdU-induced noise amplification is not a generic effect of nucleotide imbalances 213 

within the cell. 214 

 215 

Apex1 (a.k.a., Ref-1, Ape1) plays a pivotal role in the BER pathway as it incises DNA at 216 

apurinic/apyrimidinic sites via an endonuclease domain, allowing for subsequent removal of the 217 

sugar backbone and patching of the gap (62, 63).  To confirm the knockdown results, we attempted 218 

to knockout Apex1 in mESCs.  However, the knockout was lethal, in agreement with previous 219 

reports (64).  As an alternative, we used a small-molecule inhibitor (CRT0044876) specific for the 220 
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Apex1 endonuclease domain (65).  Unexpectedly, the combination of CRT0044876 with IdU 221 

synergistically increased Nanog protein variability, without significantly changing the mean (Fig. 222 

3D). 223 

 224 

The contrasting effects of Apex1 knockdown and catalytic inhibition implied that a physical rather 225 

than enzymatic quality of the protein is responsible for modulation of transcriptional bursting.  In 226 

support of this, Apex1 induces helical distortions and local supercoiling to identify mismatched 227 

bases (66, 67).  Furthermore, catalytically inactive Apex1 binds DNA with higher affinity (68).  228 

Therefore, CRT0044876 may lengthen Apex1 residence times on DNA, thus synergistically 229 

amplifying topological reformations.  Taken together with evidence that supercoiling sets 230 

mechanical bounds on transcriptional bursting (69-71), we next asked whether Apex1 recruitment 231 

impacts supercoiling levels. 232 

 233 

To assay supercoiling, we used a psoralen-crosslinking assay in which mESCs are incubated with 234 

biotinylated-trimethylpsoralen (bTMP), which preferentially intercalates into negatively 235 

supercoiled DNA (72, 73).  To eliminate DNA replication as a contributor of supercoiling, 236 

aphidicolin is added to inhibit DNA polymerases prior to bTMP incubation (74).  IdU treatment 237 

significantly increased genomic supercoiling as demonstrated by a ~2-fold increase in bTMP 238 

intercalation (Fig. 3E).  The combination of IdU and CRT0044876 further increased intercalation, 239 

suggesting that supercoiling levels are correlated with noise enhancement through increased 240 

Apex1-DNA interactions (Fig. 3E).  IdU treatment followed by a short incubation with bleomycin 241 

(which decreases supercoiling through double-stranded breaks) reduced bTMP intercalation below 242 

the DMSO control level, indicating IdU alone in uncoiled DNA does not increase intercalation 243 

(Fig. S18). 244 

 245 

If DNA topology influences transcriptional bursting, additional modifiers of supercoiling should 246 

also affect Nanog noise.  Topoisomerase 1 and 2a (Top1 and Top2a, respectively) relax coiled 247 

DNA through the introduction of single- and double-stranded breaks, respectively.  Knockdown 248 

of Top1 and Top2a via CRISPRi increased Nanog protein variability (Fig. 3F).  Furthermore, 249 

inhibition of topoisomerase activity with the small-molecule inhibitors topotecan and etoposide 250 

recapitulated these effects (Fig. S19).  Taken together with psoralen-crosslinking data, these results 251 
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suggest that Apex1-induced supercoiling tunes gene-expression fluctuations without altering mean 252 

expression levels. 253 

 254 

To understand the mechanism by which Apex1 might increase transcriptional noise without 255 

altering mean expression levels, we developed a series of minimalist computational models to 256 

account for the experimental data (supplementary text 2). We ran Monte Carlo simulations of each 257 

model using smRNA-FISH data for parameterization (Table S2); this revealed that a transcription-258 

coupled-repair (TCR) mechanism best accounts for the noise-without-mean amplification (Figs. 259 

4A-B, S20-21, supplementary text 5).  Importantly, Apex1 binding triggers a transcriptionally non-260 

productive, negatively supercoiled state, whereas unbinding of Apex1 allows mRNA production 261 

to resume with an amplified transcription rate. This amplification may originate from the increased 262 

negative supercoiling during repair which can facilitate upstream binding of transcriptional 263 

machinery in preparation for when repair is complete (75-82).  The ability to render a gene 264 

transcriptionally non-productive while also stimulating recruitment of transcriptional resources 265 

points to a homeostatic mechanism: the BER pathway maintains gene-expression homeostasis 266 

(i.e., mean) by amplifying transcriptional fluctuations through reciprocal modulation of burst 267 

intensity and duration (Fig. 4B).   268 

 269 

Sensitivity analysis of the Apex1 TCR model revealed that orthogonal modulation of Nanog mean 270 

and noise is possible within a large portion of the parameter space (Fig. S22A-B, supplementary 271 

text 6).  As validation, we tested the effect of 96 concentration combinations (Table S6) of IdU 272 

and CRT0044876 to perturb the rates of Apex1 binding and unbinding respectively.  The 273 

experimental results confirmed model predictions, showing that Nanog noise could be tuned 274 

independently of the mean (Fig. 4C).  Testing of BrdU and hmU further validated that parameter 275 

regimes exist where noise can be regulated independent of mean (Fig. S23).  The hmU data in 276 

particular showed that the BER pathway can amplify noise while maintaining mean expression 277 

when removing a naturally occurring base modification. Additionally, sensitivity analysis 278 

indicated that for genes whose KOFF >> KON (i.e., lowly expressed genes), IdU treatment would 279 

increase mean abundance (Fig 22E).  This prediction was verified experimentally with bulk RNA-280 

seq measurements of transcript abundance in mESCs treated with IdU (Fig S3), as all 98 of the up-281 

regulated genes reside within the lowest expression regime.  282 
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 283 

To test whether the homeostatic mechanism of BER applies to additional genes, mRNA 284 

distributions from the scRNA-seq dataset were fit to a Poisson-beta model (two-state model) 285 

allowing for estimation of KON, KOFF, and KTX (83, 84).  A consistent pattern emerged for genes 286 

classified as highly variable: 80% exhibited increased rates of promoter inactivation (KOFF) and 287 

84% had increased transcription rates (KTX) (Fig. S24).  Alignment of these rate estimates with 288 

predictions from the TCR model revealed that the BER pathway can alter noise while maintaining 289 

transcriptional homeostasis by individually tailoring expression fluctuations for genes with vastly 290 

different bursting kinetics (Fig. S25, supplementary text 7).   291 

 292 

We next asked if this amplification of transcriptional variability acted to enhance cellular plasticity 293 

as previously suggested (85).  Using a neural-network approach, we reconstructed the Waddington 294 

landscape based on a predictive model of gene-gene interactions inferred from the scRNA-seq data 295 

(86).  In this approach, each cell has a characteristic energy determined by its proximity to an 296 

attractor state, with lower energy values corresponding to greater stability.  The analysis indicated 297 

that cells exposed to IdU lie at a higher altitude on this landscape, indicating destabilization of 298 

cellular identity and greater developmental plasticity (Fig. S26). Numerical simulations of the TCR 299 

model then verified that IdU-mediated amplification of transcriptional noise has the potential to 300 

increase responsiveness to activation stimuli (Fig. 4D).  The complementary abilities of IdU-301 

mediated noise amplification to destabilize cellular identity and potentiate responsiveness to fate 302 

signals suggested that IdU might facilitate cellular reprogramming.   303 

 304 

To experimentally verify these predictions, we tested if IdU could potentiate conversion of 305 

differentiated cells into pluripotent stem cells using two cellular reprogramming systems.  The first 306 

assay utilized mouse embryonic fibroblasts (MEFs) that express GFP from the endogenous Nanog 307 

locus and harbor stably integrated, doxycycline-inducible cassettes for three of the Yamanaka 308 

factors: Oct4, Sox2, and Klf4 (OSK).  As confirmation that IdU acts as a noise-enhancer in this 309 

system, treatment of secondary MEFs with IdU for 48 hours in standard MEF media caused 310 

increased variability in Nanog protein expression (Fig. S27A) with no changes in cell-cycle 311 

progression (Fig. S27B).  Strikingly, IdU supplementation for the first 48 hours of a 10-day 312 

reprogramming course enhanced the formation of pluripotent colonies as measured by alkaline 313 
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phosphatase staining (Fig. 4E).  Bulk RNA-seq at days 2 and 5 of reprogramming (Fig. S27C) and 314 

flow-cytometric analysis at day 10 (Fig. 4F) demonstrate that early-stage noise-enhancement 315 

accelerates activation of the pluripotency program.  To confirm the results in an orthogonal 316 

reprogramming assay, Oct4-GFP primary MEFs were transduced with retroviral vectors 317 

expressing Oct4, Sox2, Klf4, and c-Myc.  IdU supplementation for the 48 hours immediately 318 

following transduction caused a ~2.4-fold increase in the number of Oct4-GFP(+) colonies (Fig. 319 

4G), further demonstrating how amplification of intrinsic gene expression fluctuations can 320 

potentiate cell-fate conversion.  321 

 322 

 323 

Overall, these data reveal that a DNA-surveillance pathway exploits the biomechanical link 324 

between supercoiling and transcription to homeostatically enhance noise without altering mean-325 

expression levels.  This homeostatic noise-without-mean amplification appears to increase cellular 326 

plasticity, thus facilitating reprogramming of cellular identity.  This raises intriguing implications 327 

for the role of naturally occurring oxidized nucleobases (e.g., hmU) in cell-fate determination, 328 

particularly since these base modifications are found at higher frequencies in embryonic stem-cell 329 

DNA (57).  Mechanistic insight from modeling and experimental perturbation of Apex1 suggest 330 

that homeostatic (i.e., orthogonal) noise amplification may also apply to other DNA-processing 331 

activities that interrupt transcription.  It is important to note that homeostatic noise amplification 332 

cannot occur for all promoters (i.e., promoters with KOFF >> KON are precluded as they will exhibit 333 

increased mean) and propagation of transcriptional variability to the protein level likely depends 334 

on protein half-lives and thus may not occur for a large swath of proteins.  The proteins monitored 335 

in this study either have naturally short half-lives (Nanog) or PEST tags (e.g. d2GFP) which 336 

minimizes the buffering of transcriptional bursts conferred by longer protein half-lives (87).  The 337 

ability to independently control the mean and variance of gene expression may indicate that cells 338 

have the ability to amplify transcriptional noise for fate exploration and specification.    339 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


References and Notes 340 
 341 
1.	 L.	Boltzmann,	Weitere	Studien	uber	das	Wärmegleichgewicht	unter	Gasmolekulen,	342 

Sitzungsber.	Kais.	Akad.	Wiss.	Wien	Math.	Naturwiss	66,	275-370	(1872).	343 

2.	 S.	Arrhenius,	Über	die	Reaktionsgeschwindigkeit	bei	der	Inversion	von	Rohrzucker	344 
durch	Säuren.	Zeitschrift	für	Physikalische	Chemie	4,	226	(1889).	345 

3.	 L.	Roberts,	Picture	coding	using	pseudo-random	noise.	IEEE	Transactions	on	346 
Information	Theory	8,	145-154	(1962).	347 

4.	 P.	Fatt,	B.	Katz,	Some	Observations	on	Biological	Noise.	Nature	166,	597-598	(1950).	348 

5.	 A.	A.	Priplata,	J.	B.	Niemi,	J.	D.	Harry,	L.	A.	Lipsitz,	J.	J.	Collins,	Vibrating	insoles	and	349 
balance	control	in	elderly	people.	The	Lancet	362,	1123-1124	(2003).	350 

6.	 A.	A.	Priplata	et	al.,	Noise-enhanced	balance	control	in	patients	with	diabetes	and	351 
patients	with	stroke.	Annals	of	Neurology	59,	4-12	(2006).	352 

7.	 A.	Aboutorabi,	M.	Arazpour,	M.	Bahramizadeh,	F.	Farahmand,	R.	Fadayevatan,	Effect	353 
of	vibration	on	postural	control	and	gait	of	elderly	subjects:	a	systematic	review.	354 
Aging	Clinical	and	Experimental	Research	30,	713-726	(2018).	355 

8.	 D.	Cohen,	Optimizing	reproduction	in	a	randomly	varying	environment.	Journal	of	356 
Theoretical	Biology	12,	119-129	(1966).	357 

9.	 A.	Arkin,	J.	Ross,	H.	H.	McAdams,	Stochastic	kinetic	analysis	of	developmental	358 
pathway	bifurcation	in	phage	lambda-infected	Escherichia	coli	cells.	Genetics	149,	359 
1633-1648	(1998).	360 

10.	 J.	L.	Spudich,	D.	E.	Koshland,	Non-genetic	individuality:	chance	in	the	single	cell.	361 
Nature	262,	467-471	(1976).	362 

11.	 N.	Q.	Balaban,	J.	Merrin,	R.	Chait,	L.	Kowalik,	S.	Leibler,	Bacterial	Persistence	as	a	363 
Phenotypic	Switch.	Science	305,	1622	(2004).	364 

12.	 P.	B.	Gupta	et	al.,	Stochastic	state	transitions	give	rise	to	phenotypic	equilibrium	in	365 
populations	of	cancer	cells.	Cell	146,	633-644	(2011).	366 

13.	 L.	S.	Weinberger,	J.	C.	Burnett,	J.	E.	Toettcher,	A.	P.	Arkin,	V.	D.	Schaffer,	Stochastic	367 
gene	expression	in	a	lentiviral	positive-feedback	loop:	HIV-1	Tat	fluctuations	drive	368 
phenotypic	diversity.	Cell	122,	169-182	(2005).	369 

14.	 W.	J.	Blake,	M.	Kærn,	C.	R.	Cantor,	J.	J.	Collins,	Noise	in	eukaryotic	gene	expression.	370 
Nature	422,	633-637	(2003).	371 

15.	 I.	Golding,	J.	Paulsson,	S.	M.	Zawilski,	E.	C.	Cox,	Real-time	kinetics	of	gene	activity	in	372 
individual	bacteria.	Cell	123,	1025-1036	(2005).	373 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


16.	 T.	B.	Kepler,	T.	C.	Elston,	Stochasticity	in	transcriptional	regulation:	Origins,	374 
consequences,	and	mathematical	representations.	Biophysical	Journal	81,	3116-375 
3136	(2001).	376 

17.	 A.	Raj,	C.	S.	Peskin,	D.	Tranchina,	D.	Y.	Vargas,	S.	Tyagi,	Stochastic	mRNA	Synthesis	in	377 
Mammalian	Cells.	PLoS	Biology	4,	e309	(2006).	378 

18.	 J.	Peccoud,	B.	Ycart,	Markovian	modeling	of	gene-product	synthesis.	Theoretical	379 
Population	Biology	48,	222-234	(1995).	380 

19.	 J.	R.	Chubb,	T.	Trcek,	S.	M.	Shenoy,	R.	H.	Singer,	Transcriptional	Pulsing	of	a	381 
Developmental	Gene.	Current	Biology	16,	1018-1025	(2006).	382 

20.	 B.	Munsky,	G.	Neuert,	A.	Van	Oudenaarden,	Using	Gene	Expression	Noise	to	383 
Understand	Gene	Regulation.	Science	336,	183-187	(2012).	384 

21.	 J.	Rodriguez,	D.	R.	Larson,	Transcription	in	Living	Cells:	Molecular	Mechanisms	of	385 
Bursting.	Annual	Review	of	Biochemistry	89,		(2020).	386 

22.	 D.	Nicolas,	B.	Zoller,	D.	M.	Suter,	F.	Naef,	Modulation	of	transcriptional	burst	387 
frequency	by	histone	acetylation.	Proceedings	of	the	National	Academy	of	Sciences	of	388 
the	United	States	of	America	115,	7153-7158	(2018).	389 

23.	 A.	Bar-Even	et	al.,	Noise	in	protein	expression	scales	with	natural	protein	390 
abundance.	Nature	Genetics	38,	636-643	(2006).	391 

24.	 R.	D.	Dar	et	al.,	Transcriptional	Bursting	Explains	the	Noise–Versus–Mean	392 
Relationship	in	mRNA	and	Protein	Levels.	PLOS	ONE	11,	e0158298	(2016).	393 

25.	 J.	R.	S.	Newman	et	al.,	Single-cell	proteomic	analysis	of	S.	cerevisiae	reveals	the	394 
architecture	of	biological	noise.	Nature	441,	840-846	(2006).	395 

26.	 U.	Alon,	An	introduction	to	systems	biology	:	design	principles	of	biological	circuits.		396 
(Chapman	&	Hall/CRC,	Boca	Raton,	FL,	2007),	pp.	xvi,	301	p.,	[304]	p.	of	plates.	397 

27.	 R.	D.	Dar,	N.	N.	Hosmane,	M.	R.	Arkin,	R.	F.	Siliciano,	L.	S.	Weinberger,	Screening	for	398 
noise	in	gene	expression	identifies	drug	synergies.	Science	344,	1392-1396	(2014).	399 

28.	 M.	M.	K.	Hansen	et	al.,	A	Post-Transcriptional	Feedback	Mechanism	for	Noise	400 
Suppression	and	Fate	Stabilization.	Cell	173,	1609-1621	e1615	(2018).	401 

29.	 Y.	Li	et	al.,	Noise-driven	cellular	heterogeneity	in	circadian	periodicity.	Proceedings	402 
of	the	National	Academy	of	Sciences	117,	10350-10356	(2020).	403 

30.	 B.	D.	Macarthur,	I.	R.	Lemischka,	Statistical	Mechanics	of	Pluripotency.	Cell	154,	484-404 
489	(2013).	405 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


31.	 R.	M.	Kumar	et	al.,	Deconstructing	transcriptional	heterogeneity	in	pluripotent	stem	406 
cells.	Nature	516,	56-61	(2014).	407 

32.	 C.	Furusawa,	K.	Kaneko,	A	Dynamical-Systems	View	of	Stem	Cell	Biology.	Science	408 
338,	215-217	(2012).	409 

33.	 Zakary	et	al.,	Dynamic	Heterogeneity	and	DNA	Methylation	in	Embryonic	Stem	Cells.	410 
Molecular	Cell	55,	319-331	(2014).	411 

34.	 E.	Abranches	et	al.,	Stochastic	NANOG	fluctuations	allow	mouse	embryonic	stem	412 
cells	to	explore	pluripotency.	Development	141,	2770-2779	(2014).	413 

35.	 A.	Butler,	P.	Hoffman,	P.	Smibert,	E.	Papalexi,	R.	Satija,	Integrating	single-cell	414 
transcriptomic	data	across	different	conditions,	technologies,	and	species.	Nature	415 
Biotechnology	36,	411-420	(2018).	416 

36.	 M.	M.	K.	Hansen,	V.	R.	Desai,	M.	L.	Simpson,	L.	S.	Weinberger,	Cytoplasmic	417 
Amplification	of	Transcriptional	Noise	Generates	Substantial	Cell-to-Cell	Variability.	418 
Cell	Systems	7,	384-397.e386	(2018).	419 

37.	 A.	Sanchez,	I.	Golding,	Genetic	determinants	and	cellular	constraints	in	noisy	gene	420 
expression.	Science	342,	1188-1193	(2013).	421 

38.	 D.	M.	Suter	et	al.,	Mammalian	genes	are	transcribed	with	widely	different	bursting	422 
kinetics.	Science	332,	472-474	(2011).	423 

39.	 N.	Eling,	A.	C.	Richard,	S.	Richardson,	J.	C.	Marioni,	C.	A.	Vallejos,	Correcting	the	424 
Mean-Variance	Dependency	for	Differential	Variability	Testing	Using	Single-Cell	425 
RNA	Sequencing	Data.	Cell	Systems	7,	284-294.e212	(2018).	426 

40.	 C.	A.	Vallejos,	J.	C.	Marioni,	S.	Richardson,	BASiCS:	Bayesian	Analysis	of	Single-Cell	427 
Sequencing	Data.	PLOS	Computational	Biology	11,	e1004333	(2015).	428 

41.	 M.	Kærn,	T.	C.	Elston,	W.	J.	Blake,	J.	J.	Collins,	Stochasticity	in	gene	expression:	From	429 
theories	to	phenotypes.	Nature	Reviews	Genetics	6,	451-464	(2005).	430 

42.	 M.	B.	Elowitz,	A.	J.	Levine,	E.	D.	Siggia,	P.	S.	Swain,	Stochastic	gene	expression	in	a	431 
single	cell.	Science	297,	1183-1186	(2002).	432 

43.	 M.	S.	H.	Ko,	A	stochastic	model	for	gene	induction.	Journal	of	Theoretical	Biology	153,	433 
181-194	(1991).	434 

44.	 P.	S.	Swain,	M.	B.	Elowitz,	E.	D.	Siggia,	Intrinsic	and	extrinsic	contributions	to	435 
stochasticity	in	gene	expression.	Proceedings	of	the	National	Academy	of	Sciences	of	436 
the	United	States	of	America	99,	12795-12800	(2002).	437 

45.	 A.	Scialdone	et	al.,	Computational	assignment	of	cell-cycle	stage	from	single-cell	438 
transcriptome	data.	Methods	85,	54-61	(2015).	439 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


46.	 S.	Hooshangi,	S.	Thiberge,	R.	Weiss,	Ultrasensitivity	and	noise	propagation	in	a	440 
synthetic	transcriptional	cascade.	Proceedings	of	the	National	Academy	of	Sciences	of	441 
the	United	States	of	America	102,	3581-3586	(2005).	442 

47.	 J.	H.	Pedraza,	A.	Van	Oudenaarden,	Noise	propagations	in	gene	networks.	Science	443 
307,	1965-1969	(2005).	444 

48.	 R.	Bargaje	et	al.,	Cell	population	structure	prior	to	bifurcation	predicts	efficiency	of	445 
directed	differentiation	in	human	induced	pluripotent	cells.	Proceedings	of	the	446 
National	Academy	of	Sciences	of	the	United	States	of	America	114,	2271-2276	(2017).	447 

49.	 M.	Mojtahedi	et	al.,	Cell	Fate	Decision	as	High-Dimensional	Critical	State	Transition.	448 
PLoS	Biology	14,		(2016).	449 

50.	 C.	Sokolik	et	al.,	Transcription	Factor	Competition	Allows	Embryonic	Stem	Cells	to	450 
Distinguish	Authentic	Signals	from	Noise.	Cell	Systems	1,	117-129	(2015).	451 

51.	 T.	Kalmar	et	al.,	Regulated	fluctuations	in	Nanog	expression	mediate	cell	fate	452 
decisions	in	embryonic	stem	cells.	PLoS	Biology	7,		(2009).	453 

52.	 D.	W.	Austin	et	al.,	Gene	network	shaping	of	inherent	noise	spectra.	Nature	439,	454 
608-611	(2006).	455 

53.	 N.	Rosenfeld,	J.	W.	Young,	U.	Alon,	P.	S.	Swain,	M.	B.	Elowitz,	Gene	regulation	at	the	456 
single-cell	level.	Science	307,	1962-1965	(2005).	457 

54.	 A.	Sigal	et	al.,	Variability	and	memory	of	protein	levels	in	human	cells.	Nature	444,	458 
643-646	(2006).	459 

55.	 S.	Ito	et	al.,	Role	of	Tet	proteins	in	5mC	to	5hmC	conversion,	ES-cell	self-renewal	and	460 
inner	cell	mass	specification.	Nature	466,	1129-1133	(2010).	461 

56.	 W.	A.	Pastor	et	al.,	Genome-wide	mapping	of	5-hydroxymethylcytosine	in	embryonic	462 
stem	cells.	Nature	473,	394-397	(2011).	463 

57.	 T.	Pfaffeneder	et	al.,	Tet	oxidizes	thymine	to	5-hydroxymethyluracil	in	mouse	464 
embryonic	stem	cell	DNA.	Nature	Chemical	Biology	10,	574-581	(2014).	465 

58.	 M.	Tahiliani	et	al.,	Conversion	of	5-methylcytosine	to	5-hydroxymethylcytosine	in	466 
mammalian	DNA	by	MLL	partner	TET1.	Science	324,	930-935	(2009).	467 

59.	 Y.	F.	He	et	al.,	Tet-mediated	formation	of	5-carboxylcytosine	and	its	excision	by	TDG	468 
in	mammalian	DNA.	Science	333,	1303-1307	(2011).	469 

60.	 L.	Shen	et	al.,	Genome-wide	analysis	reveals	TET-	and	TDG-dependent	5-470 
methylcytosine	oxidation	dynamics.	Cell	153,	692-706	(2013).	471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


61.	 E.	S.	J.	Arnér,	S.	Eriksson,	Mammalian	deoxyribonucleoside	kinases.	Pharmacology	472 
and	Therapeutics	67,	155-186	(1995).	473 

62.	 B.	Demple,	T.	Herman,	D.	S.	Chen,	Cloning	and	expression	of	APE,	the	cDNA	encoding	474 
the	major	human	apurinic	endonuclease:	Definition	of	a	family	of	DNA	repair	475 
enzymes.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	476 
America	88,	11450-11454	(1991).	477 

63.	 T.	Lindahl,	R.	D.	Wood,	Quality	control	by	DNA	repair.	Science	286,	1897-1905	478 
(1999).	479 

64.	 S.	Xanthoudakis,	R.	J.	Smeyne,	J.	D.	Wallace,	T.	Curran,	The	redox/DNA	repair	480 
protein,	Ref-1,	is	essential	for	early	embryonic	development	in	mice.	Proceedings	of	481 
the	National	Academy	of	Sciences	of	the	United	States	of	America	93,	8919-8923	482 
(1996).	483 

65.	 S.	Madhusudan	et	al.,	Isolation	of	a	small	molecule	inhibitor	of	DNA	base	excision	484 
repair.	Nucleic	Acids	Research	33,	4711-4724	(2005).	485 

66.	 O.	A.	Kladova	et	al.,	The	role	of	the	N-terminal	domain	of	human	486 
apurinic/apyrimidinic	endonuclease	1,	APE1,	in	DNA	glycosylase	stimulation.	DNA	487 
Repair	64,	10-25	(2018).	488 

67.	 C.	D.	Mol,	T.	Izumi,	S.	Mitra,	J.	A.	Talner,	DNA-bound	structures	and	mutants	reveal	489 
abasic	DNA	binding	by	APE1	DNA	repair	and	coordination.	Nature	403,	451-456	490 
(2000).	491 

68.	 D.	R.	McNeill,	D.	M.	Wilson,	A	dominant-negative	form	of	the	major	human	abasic	492 
endonuclease	enhances	cellular	sensitivity	to	laboratory	and	clinical	DNA-damaging	493 
agents.	Molecular	Cancer	Research	5,	61-70	(2007).	494 

69.	 S.	Chong,	C.	Chen,	H.	Ge,	X.	S.	Xie,	Mechanism	of	transcriptional	bursting	in	bacteria.	495 
Cell	158,	314-326	(2014).	496 

70.	 N.	Mitarai,	I.	B.	Dodd,	M.	T.	Crooks,	K.	Sneppen,	The	Generation	of	Promoter-497 
Mediated	Transcriptional	Noise	in	Bacteria.	PLoS	Computational	Biology	4,	498 
e1000109	(2008).	499 

71.	 S.	A.	Sevier,	D.	A.	Kessler,	H.	Levine,	Mechanical	bounds	to	transcriptional	noise.	500 
Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America	113,	501 
13983-13988	(2016).	502 

72.	 S.	Corless,	N.	Gilbert,	Investigating	DNA	supercoiling	in	eukaryotic	genomes.	503 
Briefings	in	Functional	Genomics	16,	379-389	(2017).	504 

73.	 F.	Kouzine,	L.	Baranello,	D.	Levens,	in	Methods	in	Molecular	Biology.	(2018),	vol.	505 
1703,	pp.	95-108.	506 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


74.	 K.	N.	Babos	et	al.,	Mitigating	Antagonism	between	Transcription	and	Proliferation	507 
Allows	Near-Deterministic	Cellular	Reprogramming.	Cell	Stem	Cell	25,	486-500.e489	508 
(2019).	509 

75.	 P.	Guptasarma,	Cooperative	relaxation	of	supercoils	and	periodic	transcriptional	510 
initiation	within	polymerase	batteries.	BioEssays	18,	325-332	(1996).	511 

76.	 S.	Kim,	B.	Beltran,	I.	Irnov,	C.	Jacobs-Wagner,	Long-Distance	Cooperative	and	512 
Antagonistic	RNA	Polymerase	Dynamics	via	DNA	Supercoiling.	Cell	179,	106-513 
119.e116	(2019).	514 

77.	 F.	Kouzine,	S.	Sanford,	Z.	Elisha-Feil,	D.	Levens,	The	functional	response	of	upstream	515 
DNA	to	dynamic	supercoiling	in	vivo.	Nature	Structural	and	Molecular	Biology	15,	516 
146-154	(2008).	517 

78.	 J.	Liu	et	al.,	The	FUSE/FBP/FIR/TFIIH	system	is	a	molecular	machine	programming	518 
a	pulse	of	c-myc	expression.	The	EMBO	Journal	25,	2119-2130	(2006).	519 

79.	 M.	Mizutani,	T.	Ohta,	H.	Watanabe,	H.	Handa,	S.	Hirose,	Negative	supercoiling	of	DNA	520 
facilitates	an	interaction	between	transcription	factor	IID	and	the	fibroin	gene	521 
promoter.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	522 
America	88,	718-722	(1991).	523 

80.	 S.	S.	Teves,	S.	Henikoff,	Transcription-generated	torsional	stress	destabilizes	524 
nucleosomes.	Nature	Structural	and	Molecular	Biology	21,	88-94	(2014).	525 

81.	 M.	Bazlekowa-Karaban	et	al.,	Mechanism	of	stimulation	of	DNA	binding	of	the	526 
transcription	factors	by	human	apurinic/apyrimidinic	endonuclease	1,	APE1.	DNA	527 
Repair	82,		(2019).	528 

82.	 J.	F.	Breit,	K.	Ault-Ziel,	A.-B.	Al-Mehdi,	M.	N.	Gillespie,	Nuclear	protein-induced	529 
bending	and	flexing	of	the	hypoxic	response	element	of	the	rat	vascular	endothelial	530 
growth	factor	promoter.	The	FASEB	Journal	22,	19-29	(2008).	531 

83.	 M.	Delmans,	M.	Hemberg,	Discrete	distributional	differential	expression	(D3E)	-	a	532 
tool	for	gene	expression	analysis	of	single-cell	RNA-seq	data.	BMC	Bioinformatics	17,	533 
110	(2016).	534 

84.	 J.	K.	Kim,	J.	C.	Marioni,	Inferring	the	kinetics	of	stochastic	gene	expression	from	535 
single-cell	RNA-sequencing	data.	Genome	Biology	14,	1-12	(2013).	536 

85.	 W.	J.	Blake	et	al.,	Phenotypic	Consequences	of	Promoter-Mediated	Transcriptional	537 
Noise.	Molecular	Cell	24,	853-865	(2006).	538 

86.	 J.	Guo,	J.	Zheng,	HopLand:	Single-cell	pseudotime	recovery	using	continuous	539 
Hopfield	network-based	modeling	of	Waddington's	epigenetic	landscape.	540 
Bioinformatics	33,	i102-i109	(2017).	541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


87.	 A.	Singh,	Transient	changes	in	intercellular	protein	variability	identify	sources	of	542 
noise	in	gene	expression.	Biophysical	Journal	107,	2214-2220	(2014).	543 

88.	 F.	Mueller	et	al.,	FISH-quant:	Automatic	counting	of	transcripts	in	3D	FISH	images.	544 
Nature	Methods	10,	277-278	(2013).	545 

89.	 E.	P.	Nora	et	al.,	Targeted	Degradation	of	CTCF	Decouples	Local	Insulation	of	546 
Chromosome	Domains	from	Genomic	Compartmentalization.	Cell,		(2017).	547 

90.	 P.	Angerer	et	al.,	Destiny:	Diffusion	maps	for	large-scale	single-cell	data	in	R.	548 
Bioinformatics	32,	1241-1243	(2016).	549 

91.	 M.	A.	Horlbeck	et	al.,	Compact	and	highly	active	next-generation	libraries	for	550 
CRISPR-mediated	gene	repression	and	activation.	eLife	5,		(2016).	551 

92.	 L.	V.	Sharova	et	al.,	Database	for	mRNA	Half-Life	of	19	977	Genes	Obtained	by	DNA	552 
Microarray	Analysis	of	Pluripotent	and	Differentiating	Mouse	Embryonic	Stem	Cells.	553 
DNA	Research	16,	45-58	(2009).	554 

93.	 J.	Zhang,	T.	Zhou,	Promoter-mediated	Transcriptional	Dynamics.	Biophysical	Journal	555 
106,	479-488	(2014).	556 

94.	 K.	P.	Burnham,	D.	R.	Anderson,	K.	P.	Burnham,	Model	selection	and	multimodel	557 
inference	:	a	practical	information-theoretic	approach.		(Springer,	New	York,	ed.	2nd,	558 
2002),	pp.	xxvi,	488	p.	559 

95.	 C.	McQuin	et	al.,	CellProfiler	3.0:	Next-generation	image	processing	for	biology.	PLOS	560 
Biology	16,	e2005970	(2018).	561 

96.	 H.	Ochiai,	T.	Sugawara,	T.	Sakuma,	T.	Yamamoto,	Stochastic	promoter	activation	562 
affects	Nanog	expression	variability	in	mouse	embryonic	stem	cells.	Scientific	563 
Reports	4,	7125	(2015).	564 

  565 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements: 566 

We thank Michael Simpson, Benoit Bruneau, Jonathon Weissman and the Weinberger lab for 567 

thoughtful discussions and suggestions.  We thank Kathryn Claiborn for editing and Giovanni 568 

Maki for graphics support.  We would like to acknowledge the technical assistance of Nandhini 569 

Raman in the Gladstone Institute Flow Cytometry Facility (NIH S10 RR028962, P30 AI027763, 570 

DARPA, and the James B. Pendleton Charitable Trust) and the Gladstone Assay Development 571 

and Drug Discovery Core.  We also acknowledge Kurt Thorn and DeLaine Larson in the UCSF 572 

Nikon Imaging Center (NIH S10 1S10OD017993-01A1).  We are grateful to the Gladstone 573 

Institute Genomics Core for assistance with single-cell RNA-sequencing experiments.  The dual-574 

tagged Sox2 mESCs were a kind donation from Benoit Bruneau and Elphege Nora.  We thank 575 

Noam Vardi for the EF-1𝛼 d2GFP and UBC d2GFP isoclones.  We thank Marco Jost and 576 

Jonathon Weissman for CRISPRi reagents.  Funding:  R.V.D. is supported by an NIH/NICHD 577 

F30 fellowship (HD095614-03).  L.S.W. acknowledges support from the Bowes Distinguished 578 

Professorship, Alfred P. Sloan Research Fellowship, Pew Scholars in the Biomedical Sciences 579 

Program, NIH awards R01AI109593, P01AI090935, and the NIH Director’s New Innovator 580 

Award (OD006677) and Pioneer Award (OD17181) programs.  Author contributions:  R.V.D. 581 

and L.S.W. conceived and designed the study.  R.V.D., C.U., S.D., and L.S.W conceived and 582 

designed the cellular reprogramming experiments.  R.V.D. and C.U. performed the experiments.  583 

R.V.D., M.M.K.H., and B.M. analyzed data.  R.V.D., M.M.K.H., B.M. and L.S.W. constructed 584 

and analyzed the mathematical models.  R.V.D. and L.S.W. wrote the manuscript.  Competing 585 

interests: Authors declare no competing interests.  Data and materials availability: 586 

Sequencing data from bulk RNA-seq and single-cell RNA-seq will be deposited onto GEO.  587 

Custom code for analysis of sequencing data and mathematical modeling will be made available 588 

on GitHub.  Reagents, including plasmids and cell-lines, are available from the corresponding 589 

author upon request.  590 

Supplementary Materials: 591 
Materials and Methods 592 

Supplementary Text 593 
Figures S1-S27 594 

Tables S1-S6 595 
References (88-96)  596 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1:  Genome-wide amplification of cell-to-cell mRNA variability (i.e., ‘noise’) 597 

independent of mean. 598 

A.  (Left) Monte-Carlo simulations of the two-state Random-Telegraph model of transcription 599 

showing low noise and higher noise trajectories with matched mean expression levels.  Coefficient 600 

of Variation (𝜎! 𝜇!⁄ ,	CV2) quantifies magnitude of fluctuations.  (Right) The predicted facilitation 601 

of state transitions through ‘dithering’.  B.  (Top) Schematic of two-state Random-Telegraph 602 

model of transcription.  (Bottom) Schematic of mean vs. CV2 for mRNA abundance with solid 603 

gray line representing Poisson, inverse scaling of CV2 as a function of mean.  Question mark 604 

symbolizes unknown noise-control mechanisms that amplify fluctuations independently of mean.  605 

Histograms depict expected shift in mRNA copy number distributions.  C-F.  scRNA-seq of 606 

mESCs treated with DMSO (black) or 10µM IdU (red) for 24h.  812 and 744 transcriptomes 607 

(filtered and normalized with Seurat) from DMSO and IdU treatments, respectively, were 608 

analyzed.  (C) Mean expression vs. CV2 and (D) mean vs. variance for 4,578 genes.  Four examples 609 

of housekeeping genes (purple) demonstrate how IdU increases expression fluctuations with 610 

minimal change in mean (white arrows).  (E) Mean expression and (F) Fano factor (𝜎! 𝜇⁄ ) of 4,578 611 

genes in DMSO vs. IdU treatments.  Overlay of density contours reveals how center of mass lies 612 

on diagonal for mean values while lying above the diagonal for Fano factor measurements.  G-H.  613 

BASiCS analysis of scRNA-seq data for 4,578 genes.  (G) Fold change in mean vs. certainty 614 

(posterior probability) that gene is up- or down-regulated.  With IdU treatment, 113 genes (red) 615 

were classified as differentially expressed (>2-fold change in mean with >85% probability).  (H) 616 

Fold change in over-dispersion vs. certainty (posterior probability) that gene is highly- or lowly-617 

variable.  945 genes (red) were classified as highly variable (>1.5-fold change in over-dispersion 618 

with >85% probability).    619 
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Figure 2: Amplification of mRNA noise is not due to extrinsic sources, results from shorter 620 

but more intense transcriptional bursts, and propagates to protein levels. 621 

A.  Pearson correlations of expression for gene pairs in scRNA-seq dataset.  Hierarchical clustering 622 

reveals networks of genes (highlighted in black rectangles) sharing similar correlation patterns.  623 

Dashed rectangle highlights network enriched with pluripotency factors like Nanog.  IdU treatment 624 

causes a fading of heatmap, indicating weakened expression correlations.  B-D.  Results of 625 

smRNA-FISH used to count nascent and mature Nanog mRNA in Nanog-GFP mESCs treated 626 

with DMSO or 10µM IdU for 24 hours in 2i/LIF media.  Data are from four biological replicates.  627 

(B) (Left) Representative micrograph (maximum intensity projection) in which Nanog transcripts 628 

are labelled with probe-set for eGFP.  Bright foci correspond to transcriptional centers as verified 629 

by intron probe set.  Scale bar is 5µm. (Right) Distributions of mature Nanog transcripts/cell.  630 

Dashed lines represent mean.  IdU treatment increases cell-to-cell variability of transcript 631 

abundance as reported by averaged Fano factors (± SD), *p =0.0011 by a two-tailed, unpaired 632 

Student’s t test.  (C) Fraction of possible transcriptional centers that are active as detected by 633 

overlap of signal in exon and intron probe channels.  Each cell is assumed to have 2 possible 634 

transcriptional centers (TCs).  Data represent mean and SD.  With IdU, the fraction of possible of 635 

TCs that are active decreases, **p =6.9 x 10-5 by a two-tailed, unpaired Student’s t test.  (D) 636 

Distributions of nascent Nanog mRNA per TC.  With IdU, active TCs have more nascent mRNAs, 637 
**p =1.0 x 10-4 by a two-tailed, unpaired Student’s t test.  E.  Representative flow cytometry 638 

distribution of Nanog-GFP expression in mESCs treated with DMSO or 10µM IdU for 24h in 639 

2i/LIF.  Dashed lines represent mean.  Fold change in Fano factor (± SD) obtained from three 640 

biological replicates.  IdU increases cell-to-cell variability in Nanog protein expression.  Inset: 641 

Representative flow cytometry dot-plot showing conservative gating on forward and side scatter 642 

to filter extrinsic noise arising from cell size heterogeneity.  F.  Time-lapse imaging of Nanog-643 

GFP mESCs treated with either DMSO (n = 1513) or 10µM IdU (n = 1414) in 2i/LIF.  Image 644 

acquisition began immediately after addition of compounds.  Trajectories from two replicates of 645 

each condition are pooled, with solid and dashed lines representing mean and standard deviation 646 

of trajectories respectively.  Distributions of Nanog-GFP represent expression at final time-point.  647 

Intrinsic-CV2 of each detrended trajectory was calculated, with the average (± SD) of all 648 

trajectories reported.    649 
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Figure 3: Noise amplification independent of mean is due to Apex1-mediated DNA repair 650 

A.  Screening of 14 additional nucleoside analogs.  Nanog-GFP mESCs grown in 2i/LIF were 651 

supplemented with 10µM of nucleoside analog for 24h.  Fano factor for Nanog protein expression 652 

was normalized to DMSO.  Data represent mean (± SD) of two biological replicates.  BrdU, hmC 653 

and hmU increase Nanog expression variability as compared to DMSO, *p < 0.01 by a Kruskal-654 

Wallis test followed by Tukey’s multiple comparison test.  B.  Schematic of nucleoside analog 655 

incorporation into genomic DNA and removal via base excision repair pathway.  C.  (Left) 656 

CRISPRi screening for genetic dependencies of IdU noise enhancement.  Nanog-GFP mESCs 657 

stably expressing dCas9-KRAB-p2A-mCherry were transduced with a single gRNA expression 658 

vector with BFP reporter.  75 gRNAs (25 genes, 3 gRNAs/gene) were tested in addition to 3 non-659 

targeting control gRNAs.  Two days following transduction, each gRNA-expressing population of 660 

mESCs was treated with DMSO or 10µM IdU for 24h in 2i/LIF media.  Nanog-GFP protein 661 

expression was measured for mCherry/BFP double positive cells.  Nanog Fano factor for DMSO 662 

and IdU treatment of each gRNA population was normalized to Nanog Fano factor of non-663 

targeting gRNA+DMSO population.  Each point represents a gRNA.  Dashed horizontal line 664 

represents average noise enhancement of Nanog from IdU in the background of non-targeting 665 

gRNA expression (black squares).  Knockdown of Apex1 and Tk1 diminishes noise enhancement 666 

of Nanog from IdU.  (Right) Representative flow cytometry distributions of Nanog expression for 667 

mESCs expressing non-targeting (top-right), Apex1 (middle-right), or Tk1 (bottom-right) gRNAs 668 

and treated with DMSO or 10µM IdU.  D.  Combination of IdU and small-molecule inhibitor of 669 

the Apex1 endonuclease domain (CRT0044876).  (Left) mESCs were treated with DMSO, 100µM 670 

CRT0044876, 10µM IdU or 10µM IdU + 100µM CRT0044876 for 24h in 2i/LIF.  Nanog Fano 671 

factor for each treatment was normalized to DMSO control.  Data represent mean (± SD) of three 672 

biological replicates.  Inhibition of Apex1 endonuclease domain in combination with IdU 673 

synergistically increases cell-to-cell variability of Nanog expression, *p = 0.0028 by a two-tailed, 674 

unpaired Student’s t test.  (Right) Representative flow cytometry distributions of Nanog expression 675 

for mESCs treated with DMSO or 10µM IdU + 100µM CRT0044876.  E.  Single-cell 676 

quantification of negative supercoiling levels using psoralen-crosslinking assay.  mESCs were 677 

treated with DMSO, 10µM IdU or 10µM + 100µM CRT0044876 for 24h in 2i/LIF.  1µM 678 

aphidicolin was added to cultures 2h prior to incubation with biotinylated-trimethylpsoralen 679 

(bTMP).  Following UV-crosslinking, cells were stained with streptavidin-Alexa594 conjugate 680 
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and DAPI.  Distributions for nuclear intensities of bTMP staining are shown.  Data are pooled 681 

from two biological replicates of each treatment.  IdU treatment increases negative supercoiling as 682 

compared to DMSO control, **p < 0.0001.  IdU in combination with CRT0044876 further increases 683 

supercoiling levels as compared to DMSO (**p < 0.0001) and IdU alone (**p < 0.0001).  P values 684 

were calculated using Kruskal-Wallis test followed by Tukey’s multiple comparison test.  F.  685 

CRISPRi Knockdown of Topoisomerases involved in relaxation of DNA supercoiling.  Nanog 686 

Fano factor was normalized to scrambled gRNA population.  Data represent mean (± SD) of three 687 

biological replicates.  Knockdown of Top1 (*p = 0.002) and Top2a (*p = 0.003) increases Nanog 688 

expression variability.  P values were calculated by two-tailed, unpaired Student’s t test.    689 
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Figure 4: Transcription-coupled DNA repair tunes transcriptional bursting across a broad 690 

parameter regime, generating amplified noise which potentiates reprogramming of cellular 691 

identity  692 

A.  Detailed schematic of Model 5 (see Fig. S20 for schematic of models 1-4), which represents 693 

transcription-coupled repair (TCR).  In the presence of IdU (bottom panel), Apex1 binding occurs 694 

when gene is transcriptionally permissive (ON state).  Binding induces negative supercoiling 695 

which lengthens the time that a gene is transcriptionally non-productive (ON* state) while also 696 

facilitating recruitment of transcriptional resources.  Upon repair completion, a higher 697 

transcriptional rate compensates for lost productivity.  Mean expression is maintained with larger 698 

transcriptional fluctuations.  B.  The macroscopic behavior (mean Nanog mRNA [µ], Fano factor 699 

[FF], Koff, fraction of time active [von], burst size [BS], Kon) of model 5 simulations are compared 700 

to experimentally derived values of each parameter (red dots) obtained from smRNA-FISH data.  701 

Absolute percentage error (APE) is calculated as described in supplementary text 5.2.2.  Model 5 702 

(TCR model) best matches experimental data.  C.  Testing of 96 concentration combinations of 703 

IdU and CRT0044876 to validate tunability of Nanog variability.  IdU and CRT0044876 were 704 

used to increase binding and decrease unbinding of Apex1 respectively.  Nanog-GFP mESCs 705 

grown in 96-well plates were treated with 12 concentrations of CRT0044876 ranging from 0 to 706 

150µM in combination with 8 concentrations of IdU ranging from 0 to 50µM.  Data represent 707 

average of two biological replicates.  (Leftmost and Center Panels) 96-well heatmaps displaying 708 

fold change in Nanog mean and Fano factor for each drug combination as compared to DMSO 709 

(top-leftmost well).  Insufficient number of cells (<50,000) for extrinsic noise filtering were 710 

recorded from white wells.  (Rightmost Panel) Representative flow cytometry distributions from 711 

highlighted wells (black rectangles).  Nanog variability increases independently of the mean.  D.  712 

Simulations of the TCR model for Nanog gene expression in the presence of DMSO (top left), IdU 713 

(top right), an activator (increased KON, decreased KOFF) of promoter activity (bottom left) and an 714 

activator combined with IdU (bottom right). Homeostatic noise amplification potentiates 715 

responsiveness to an activator of gene expression as demonstrated by increased threshold crossing 716 

(14% to 28%).  E.  Nanog-GFP secondary MEFs (seeded at 10,000 cells/cm2) harboring stably-717 

integrated, doxycycline-inducible cassettes for Oct4, Sox2, and Klf4 (OSK) were subjected to 10 718 

days of doxycycline treatment in combination with DMSO (first well), 1µM IdU (second well), or 719 

4µM IdU (third well) for the first 48 hours of reprogramming. Alkaline phosphatase staining for 720 
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pluripotent colonies of cells demonstrates how IdU treatment potentiates pluripotency induction.  721 

F.  (Top) Micrographs of Nanog-GFP secondary MEFs at day 10 of doxycycline-induced 722 

reprogramming (scale bar = 100 µm). (Bottom) Flow cytometric analysis of Nanog-GFP activation 723 

at day 10 of reprogramming.  Data are pooled from two replicates.  G.  Oct4-GFP primary MEFs 724 

(seeded at 10,000 cells/cm2) were retrovirally transduced with cDNAs encoding Oct4, Sox2, Klf4, 725 

and c-Myc.  24 hours after transduction, infected cells were treated with DMSO (continuously), 726 

1mM valproic acid (VPA, continuously), 10µM forskolin (continuously), or 4µM IdU (first 48 727 

hours).  VPA and forskolin are established enhancers of cellular reprogramming.  The number of 728 

Oct4-GFP(+) stem cell colonies were counted 8, 10, and 12 days from the start of drug treatment.  729 

Data represent mean and SD of 2 biological replicates.  Treatment of transduced MEFs with IdU 730 

during early stages of reprogramming increases the number of Oct4-GFP(+) colonies that form as 731 

compared to DMSO control, *p =0.039 by one-way ANOVA with Bonferroni post hoc test.  732 
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Materials and Methods

Cell Culture and Growth Conditions

Mouse E14 embryonic stem cells (male) were routinely cultured in feeder-free conditions on
gelatin-coated plates with ESGRO-2i medium (Millipore, cat:SF016-200) at 37°C, 5% CO2, in hu-
midified conditions (36). Jurkat T Lymphocytes (male) were cultured in RPMI-1640 medium (sup-
plemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at 37°C,
5% CO2, in humidified conditions at 0.1 × 106 to 1 × 106 cells/mL. Isoclonal Jurkat T Lympho-
cytes with lentivirally integrated EF1α-d2GFP construct were previously described (36). Human
immortalized myelogenous leukemia (K652, female) cells were cultured in RPMI-1640 medium
(supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at
37°C, 5% CO2, in humidified conditions at 2 × 105 to 2 × 106 cells/mL. Isoclonal K562 cells with
lentivirally integrated EF1α-d2GFP and UBC- d2GFP constructs were previously described (36).
Human embryonic kidney (HEK293, female) cells were cultured in DMEM (supplemented with
10% fetal bovine serum, 1% penicillin-streptomycin, 25mM HEPES, and 2mM L-glutamine) at
37°C, 5% CO2, in humidified conditions at 30 to 90% confluency.

Noise Enhancer Testing on Isoclonal Jurkat and K562 Cells

Jurkat and K562 cells were seeded into 12-well plates at densities of 0.2 × 106 and 0.4 × 106

cells/mL respectively in media containing 20 μM IdU (Sigma, cat:I7125, dissolved in DMSO) or
equivalent volume of DMSO for 24 hours. Flow cytometry was performed using a BD LSRII
cytometer. Treated cells were run unfixed and live to avoid additional sources of variability from
fixation. 50k live cells were collected from each sample for noise measurements. Conservative
gating for a live subset of approximately 3k cells of similar size, volume, and state, was applied on
the FSC vs. SSC to reduce extrinsic noise contributions as previously described (25,27).

Single-Cell RNA Sequencing Preparation and Analysis

1x106 mESCs were seeded in a gelatin-coated, 10cm dish in 2i/LIF media. 24 hours follow-
ing seeding, cultures were replenished with 2i/LIF media containing 10μM IdU or an equivalent
volume of DMSO for 24 hours. After treatment, cells were trypsinized with TrypLE and spun
down for 5 minutes at 200 x g. Single-cell suspensions were prepared in DPBS at a concentra-
tion of 83,000 cells/ml. Approximately 3000 cells from each sample were loaded into a chip and
processed with the Chromium Single Cell Controller (10x Genomics). To generate single-cell gel
beads in emulsion (GEMs), DMSO- and IdU- treated samples were assigned unique indexes using
Single Cell 3′ Library and Gel Bead Kit V2 (10x Genomics, cat:120237). Sequencing was per-
formed on an Illumina HiSeq4000 with a paired-end setup specific for 10x libraries.

Data were aligned to mm10 reference genome using 10x Cell Ranger v2. Quality control, nor-
malization and analysis were carried out using two packages: Seurat and BASiCS. For analysis
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in Seurat, gene-barcode matrices were filtered and normalized using the “LogNormalize” method,
resulting in 812 and 744 transcriptomes from DMSO and IdU samples. Transcript variability was
quantified using variance (σ2), coefficient of variation (σ2

µ2 ), and Fano factor (σ2

µ
). During the nor-

malization procedure in Seurat, counts for the ith gene in the jth cell (xi j) are multiplied by the fol-
lowing scaling factor: S = 10000

∑
n
i=1 xi j

, where n is the number of genes in the dataset. The scaling factor
is therefore dependent on the number of UMIs detected per cell. The coefficient of variation is in-
sensitive to this scaling factor as it is a dimensionless quantity (i.e, σ and µ are scaled by the same
factor and thus cancel out when calculating coefficient of variation). However, the Fano factor,
which has units, must be re-scaled to account for the differential effect that this normalization pro-
cedure has on σ2 vs. µ (i.e., σ2 gets scaled by S2 while µ gets scaled by S). To negate the carryover
of this scaling factor, calculated Fano factors from the Seurat-normalized dataset were multiplied
by 1

S where S is a unique value for the DMSO and IdU samples: 10000
avg. number of UMIs per cell in sample .

On average, 4151.3 and 4191.4 UMIs were detected per cell in DMSO and IdU samples respec-
tively.

For analysis using BASiCS, quality control and filtering was performed using the BASiCS Filter
function resulting in an identical number of transcriptomes (812 and 744) as produced by Seurat.
Posterior estimates of mean and over-dispersion for each gene were computed using a Markov
Chain Monte Carlo (MCMC) simulation with 40,000 iterations and a log-normal prior. For dif-
ferential mean testing, a threshold of fold change >2 with an FDR cutoff of 0.05 was used. Dif-
ferential variability was tested with a threshold of fold change >1.5 with an FDR cutoff of 0.05.
Only genes with no change in mean expression (4,458 of 4,578) were considered for interpreting
changes in variability.

Gene features and sequences from the GRCm38 reference were used for analysis of gene char-
acteristics that potentiate noise enhancement. TAD boundary locations in mESCs were taken from
Hi-C maps produced by Elphège et al (89). DAVID v6.8 was used to test for gene ontology (GO)
enrichment among highly variable genes. All tested genes (4,458) from BASiCS were used as
background. Bonferroni-corrected p-values (adjusted p-values) were used to visualize GO enrich-
ment. Cell cycle determination was performed using cyclone as implemented in scran (45). The
default set of cell cycle marker genes for mESCs (mouse cycle markers.rds) was used. Cells were
assigned to G1, S, and G2/M phases using their normalized genes counts produced by Seurat.
Pseudotime analysis was conducted using destiny (90) with the Seurat-normalized cell-gene ma-
trix as input. Gene-gene correlation matrices were assembled by first filtering out genes from the
Seurat-normalized matrix whose mean abundance <1 in each treatment group to avoid spurious
correlations that may emerge from low expression. 961 genes remained for downstream analysis.
Pearson correlation for each gene pair was calculated. Clustering of gene-pairs based on similarity
in correlation patterns was performed using the hierarchical clustering method within the seriation
package. Change in correlation strength was calculated by subtracting absolute value of gene-pair
correlation in DMSO condition from IdU condition.

Bulk RNA Sequencing Preparation and Analysis
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2x105 mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media. 24
hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU, 5μM
IdU or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were
trypsinized with TrypLE and RNA was extracted using a RNeasy minikit (Qiagen) according to
manufacturer’s instructions. ERCC spike-in RNA (2μl diluted at 1:100) was added to each RNA
extraction (Ambion, cat:4456740). A total of 9 cDNA libraries were prepared with an NEBNext
Ultra II RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Se-
quencing yielded a median of ∼40 million single-end reads per library. Read quality was checked
via FASTQC. Reads were aligned to an edited version of the mm10 reference genome containing
the ERCC spike-in sequences using TopHat with default parameters. Transcript level quantifica-
tion was performed using Cufflinks with default parameters. The quantification matrix was then
imported into R and analyzed via DESeq2. Samples were normalized using ERCC transcripts as
controls for size factor estimation. Differential mean testing was conducted with a threshold of
fold change >2 and an FDR cutoff of 0.05.

Single Molecule RNA FISH

Probes for detection of nascent and mature Nanog transcripts were developed using the de-
signer tool from Stellaris (LGC Biosearch Technologies) (Table S1). 30 probes (TAMRA con-
jugated) for mature Nanog mRNA were targeted towards the 3′ GFP segment of transcripts. 48
probes (Quasar 670 conjugated) for nascent Nanog mRNA were targeted towards the first intronic
sequence as taken from the mm10 genome reference. Probes were designed using a masking level
of 5, and at least 2 base pair spacing between single probes.

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced
with 2i/LIF containing 10μM IdU or equivalent volume DMSO. After 24 hours of treatment, cells
were then fixed with DPBS in 4% paraformaldehyde for 10 minutes. Fixed cells were washed with
DPBS and stored in 70% EtOH at 4°C for one hour to permeabilize the cell membranes. Probes
were diluted 200-fold and allowed to hybridize at 37°C overnight. Wash steps and DAPI (Thermo)
staining were performed as described (https://www.biosearchtech.com/support/resources/stellaris-
protocols).

To minimize photo-bleaching, cells were imaged in a buffer containing 50% glycerol (Thermo),
75 μg/mL glucose oxidase (Sigma Aldrich), 520 μg/mL catalase (Sigma Aldrich), and 0.5 mg/mL
Trolox (Sigma Aldrich). Images were taken on a Zeiss Axio Observer Z1 microscope equipped
with a Yokogawa CSU-X1 spinning disk unit and 100x/1.4 oil objective. Approximately 20 xy
locations were randomly selected for each condition. For each xy location, Nyquist sampling was
performed by taking 30, 0.4μM steps along the z-plane.

Image analysis and spot counting was performed using FISH-quant (88). Cells were manually
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segmented and analysis was conducted on cells of a similar size to minimize extrinsic noise. Tran-
scriptional centers (TCs) were identified by signal overlap in exon, intron and DAPI channels. The
amount of nascent mRNA at TCs was quantified through a weighted superposition of point spread
functions.

Rate calculations for random-telegraph model

From smRNA-FISH data for Nanog, the kinetic parameters of the random-telegraph model
were inferred using the empirically derived values of mRNA mean (µ), mRNA Fano factor (Fano),
transcriptional center frequency ( fON) and transcriptional center size (TCmRNA) (36). The transcrip-
tion rate (ktx) is calculated as:

ktx = TCmRNA
kelongation

L
(1)

where kelongation is the elongation rate of RNAPII (1.9 kb/min) (96) and L is the length of the
transcribed region of Nanog. The degradation rate (kdecay) is calculated as:

kdecay =
fON · ktx

µ
(2)

The rate of promoter activation (kON) is given by:

kON = kdecay

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
(3)

The rate of promoter inactivation (kOFF ) is given by:

kOFF =−kdecay

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
·
(

1
fON
−1
)

(4)

Extrinsic Noise Filtering on Flow Cytometry Data

All flow cytometry data were collected on BD FACSCalibur, LSRII or LSRFortessa X-20 with
488-nm laser used to detect GFP. For all measurements of Nanog-GFP mean and variability, >50k
cells are collected per sample. Gating of cytometry data was performed with FlowJo. Prior to
quantification of Nanog-GFP mean and variability, the smallest possible forward- and side-scatter
region containing at least 3k cells was used to isolate cells of similar size and shape. This fil-
ters out gene expression variability arising from cell-size heterogeneity as previously established
(25,27,36).

Cell-cycle Analysis by Propidium-Iodide Staining
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2x105 Nanog-GFP mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF
media. 24 hours following seeding, media was replaced with 2i/LIF media containing 10μM IdU
or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were washed
with DPBS, dissociated with TrypLE, pelleted, washed with DPBS, and resuspended in ice-cold
70% ethanol. Samples were stored overnight at -20°C and pelleted the following day at 200g for
5 minutes at 4°C. Cells were washed twice with DPBS supplemented with 0.5% BSA to prevent
cell loss. Pellets were resuspended in 150μL of DPBS supplemented with 0.1mg/ml RNAse A
(Thermo) and 30 μg/ml Propidium Iodide (Thermo). After overnight incubation at 4°C, cells were
directly analyzed on a BD LSRII cytometer.

Noise Enhancer Testing in Serum/LIF culture

Serum/LIF media was prepared with 85% DMEM (supplemented with 2mM of L-glutamine),
15% FBS, 0.1mM 2-mercaptoethanol, and 1000U/ml of LIF (Sigma Aldrich). Nanog-GFP mESCs
grown feeder-free in 2i/LIF were passaged and seeded onto gelatin-coated 10cm dishes in serum/LIF
media. Cells were passaged twice in serum/LIF media prior to noise enhancer testing. 4x105

Nanog-GFP mESCs were seeded into each well of a gelatin-coated 6-well plate in serum/LIF me-
dia. 24 hours following seeding, media was replaced with serum/LIF supplemented with either
10μM IdU or equivalent volume DMSO in triplicate. After 24 hours of treatment, cells were run
unfixed and live on BD LSRII flow cytometer.

Sox2 two-color reporter assay

The endogenous alleles of Sox2 are tagged with P2A-mClover and P2A-tdTomato. Both flu-
orophores have a PEST tag, thus shortening their half-lives to approximately 2.5 hours. 2x105

Sox2-dual-tag mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media.
24 hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU
or an equivalent volume of DMSO in triplicate for 24 hours. Cells were run unfixed and live on
BD LSRII flow cytometer. Intrinsic noise was calculated as in Elowitz et. al (42). Data from all
three replicates were pooled together. No cell-size gating was performed as assay allows for sepa-
ration of extrinsic noise. To align fluorescence values of mClover and tdTomato on the same scale,
each cell’s fluorescence intensity was normalized to the mean expression level of that fluorophore
for the population. Since Sox2 expression spans several orders of magnitude, cells were binned
according to their total Sox2 expression (mClover + tdTomato). Bins with fewer than 100 cells
were discarded. Intrinsic noise (CV2) of Sox2 expression for each bin was calculated using the
following formula:

η
2
intrinsic =

〈(tdTomatoi−mCloveri)
2〉

2〈tdTomato〉〈mClover〉
(5)

This value was then multiplied by the mean Sox2 expression for each bin to obtain the Fano
factor. Given that the number of cells in each bin differs and variance estimates are affected by
sample size, we calculated 95% confidence intervals around the Fano factor for each bin through
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bootstrapping. Bin populations were resampled 10,000 times with replacement.

UV stress assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF
media. 24 hours following seeding, cultures were exposed to 3kJ of 365nM light (Fotodyne UV
Transilluminator 3-3000 with 15W bulbs) for 15, 30 or 60 minutes at room temperature in the
dark. Control plates were left at room temperature in the dark for equivalent periods of time. Cells
from UV-exposed and control plates were run unfixed and live on BD FACS Calibur cytometer
1,2,4,8, and 12 hours post-exposure in replicate. Extrinsic noise filtering via cell-size gating was
performed prior to calculation of Nanog Fano factor.

Live-cell time-lapse microscopy

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replenished
with 2i/LIF containing 10μM IdU or equivalent volume DMSO in replicate. Time-lapse imaging
commenced immediately after addition of compounds with IdU- and DMSO- treated cells imaged
in the same experiment (neighboring wells). Imaging was performed on a Zeiss Axio Observer Z1
microscope equipped with Yokogawa CSU-X1 spinning disk unit and a Cool-SNAP HQ2 14-bit
camera (PhotoMetrics). 488nM laser line (50% laser power, 500-ms excitation) was used for GFP
imaging. Samples were kept in an enclosed stage that maintained humidified conditions at 37°C
and 5% CO2. Images were captured every 20 minutes for 24 hours. For each xy location, three
z-planes were sampled at 4-μm intervals. The objective used was 40x oil, 1.3 N.A.

Cell segmentation, tracking and GFP quantification were carried out using CellProfiler (95).
Tracking of cells was manually verified. Segmented cells tracked for less than 4 hours were
discarded. Cell division triggered the start of 2 new trajectories. After illumination correction
and background subtraction, the mean GFP fluorescence intensity of a segmented cell was taken
from each z-plane and averaged over the entire z-stack. For each trajectory, noise autocorre-
lation (τ1/2) and noise magnitude (intrinsic-CV2) were calculated as previously described (52).
Fluorescence trajectories were first detrended (normalized) by subtracting the population time-
dependent average fluorescence to isolate intrinsic noise. Distributions of noise frequency ranges
(FN) were extracted from normalized autocorrelation functions (ACFs) of individual trajectories,
where FN = 1

τ1/2
.τ1/2 is the value of τ (lag time) where the normalized ACF reaches a value of 0.5.

Nucleoside analog screening

14 nucleoside analogs (compound names and sources listed in Table S3) were resuspended in
DMSO. 1x105 Nanog-GFP mESCs were seeded in gelatin-coated 12-well plates in 2i/LIF media.
24 hours after seeding, media was swapped with 2i/LIF containing 10μM of nucleoside analog or
equivalent volume DMSO in replicate. After 24 hours of treatment, cells were run unfixed and
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live on BD LSRII cytometer. Extrinsic noise filtering via cell-size gating was performed prior to
calculation of Nanog Fano factor. Fano factor for Nanog-GFP expression for each treatment was
normalized to DMSO control.

Generation of stable CRISPRi Nanog-GFP mESC line

To stably integrate the CRISPRi machinery into the ROSA26 locus of Nanog-GFP mESCs,
AAVS1 homology arms of the CRISPRi knockin construct (krab-dCas9-p2a-mCherry, Addgene:73497)
were swapped with ROSA26 homology arms. The dox-inducible promoter of this construct was
replaced with a constitutive CAGGS promoter and the kanamycin resistance cassette was replaced
with puromycin resistance. Two million Nanog-GFP mESCs were nucleofected with the CRISPRi
knockin construct and left to recover for 48 hours. Puromycin (1µg/ml) selection was run until sin-
gle colonies could be picked. Clonal CRISPRi Nanog-GFP mESC lines were assessed for mCherry
expression and ability to knockdown Nanog. We selected the clone with the highest percentage of
mCherry-positive cells.

CRISPRi gRNA design and cloning

gRNA sequences were were taken from the mCRISPRi-v2 library (91). gRNA oligos were an-
nealed and cloned into the pU6-sgRNA EF1Alpha-puro-T2A-BFP lentiviral vector (Addgene:60955)
using the BstXI/BlpI ligation strategy (91).

CRISPRi screening for genetic dependencies of noise enhancer

25 genes involved in nucleotide metabolism, DNA repair, and chromatin remodeling were
screened for their potential role in noise enhancement from IdU. Three gRNAs were designed per
gene (gene names and gRNA sequences listed in Table S4). Three non-targeting controls (scram-
bled gRNAs) were taken from the mCRISPRi-v2 library (91). Each gRNA expression plasmid was
separately packaged into lentivirus in HEK293T cells as previously described (91). For each gRNA
lentivirus, 1.5x105 CRISPRi Nanog-GFP mESCs were spinoculated with filtered viral supernatant
for 90 minutes at 200 x g in replicate. Following spinoculation, infected cells were seeded into
gelatin-coated, 6-well plates in 2i/LIF media. 48 hours following seeding, media was swapped
with 2i/LIF supplemented with either 10μM IdU or equivalent volume DMSO. Consequently, for
every knockdown there is a DMSO and IdU treatment group. After 24 hours of treatment, cells
were run unfixed and live on a BD LSRII flow cytometer. To minimize technical variability, analy-
sis was restricted to cells with homogeneous levels of dCas9-KRAB and gRNA expression through
stringent gating on mCherry/BFP double-positive cells. Extrinsic noise filtering through cell-size
gating was then applied. For each gRNA, Nanog Fano factor for the DMSO and IdU treatments
were normalized to the Nanog Fano factor of the non-targeting controls treated with DMSO.

qPCR verification of CRISPRi knockdown
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To verify CRISPRi knockdown of Apex1 and Tk1, each of the six gRNA-expression plasmids
targeting these two genes along with a non-targeting control and empty vector were packaged into
lentivirus. 1.5x105 CRISPRi Nanog-GFP mESCs were spinoculated with filtered viral supernatant
for 90 minutes at 200 x g in replicate. Following spinoculation, infected cells were seeded into
gelatin-coated, 6-well plates in 2i/LIF media. 72 hours following seeding, 1x106 mCherry/BFP
double-positive cells from each infected cell population were sorted on a FACSAria II. Total
RNA was extracted using an RNeasy Mini Kit (QIAGEN cat:74104) and reverse-transcribed us-
ing a QuantiTect Reverse Transcription Kit (QIAGEN cat:205311). cDNA from each independent
biological replicate was plated in triplicate and run on a 7900HT Fast Real-Time PCR System
(Thermo) using designed primers (Table S5) and Fast SYBR Green Master Mix (Applied Biosys-
tems, cat:4385612). Expression of GAPDH was used for normalization. Relative mRNA levels
of Apex1 and Tk1 were calculated by the ∆∆Ct method using the empty-vector populations as the
control. All reported levels of repression are relative to the non-targeting control.

Tk1 competition assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF
media. 24 hours following seeding, media was replaced with 2i/LIF supplemented with 10μM IdU
in combination with thymidine (Sigma cat:T1895) or uridine (Sigma cat:U3003) at concentrations
ranging from 0 to 100μM. Concentration combinations were done in triplicate. After 24 hours of
treatment, cells were run unfixed and live on BD FACS Calibur cytometer. Extrinsic noise filtering
via cell-size gating was performed prior to calculation of Nanog Fano factor.

Biotinylated-trimethylpsoralen (bTMP) supercoiling assay

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced
with 2i/LIF supplemented with 10μM IdU , 10μM IdU & 100μM CRT0044876, or equivalent
volume DMSO in replicate. After 24 hours of treatment, media was replaced with 2i/LIF supple-
mented with 1μM aphidicolin for two hours. For control experiments, Nanog-GFP mESCs were
cultured with or without 10μM IdU for 24 hours followed by treatment with 100μM bleomycin
for one hour. Cells were then washed 1xDPBS and then permeabilized with 0.1% Tween-20 in
DPBS for 15 minutes. Cells were then incubated with 0.3mg/ml EZ-Link Psoarlen-PEG3-Biotin
(Thermo cat:29986) for 15 minutes. Cultures were then exposed to 365nM light (AlphaImager
HP with 15W bulbs, ProteinSimple) for 15 minutes at room temperature. Cells were then washed
2xDPBS, fixed with cold 70% ethanol for 30 minutes at 4°C, and then washed 2xDPBS. Cells
were then incubated with Alexa Fluor 594 Streptavidin (Thermo cat:S32356) for one hour at room
temperature in the dark, washed 2xDPBS, and stained with DAPI for 10 minutes at room temper-
ature in the dark. Cells were imaged in a buffer containing 50% glycerol (Thermo), 75 μg/mL
glucose oxidase (Sigma Aldrich), 520 μg/mL catalase (Sigma Aldrich), and 0.5 mg/mL Trolox
(Sigma Aldrich). Images were taken on a Zeiss Axio Observer Z1 microscope equipped with a
Yokogawa CSU-X1 spinning disk unit and 63x/1.4 oil objective. Approximately 20 xy locations
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were randomly selected for each condition. For each xy location, three z-planes were sampled at
4-μm intervals. Nuclear segmentation using DAPI signal and quantification of psoralen staining
intensity were carried out using CellProfiler. After illumination correction and background sub-
traction, the mean psoralen fluorescence intensity of a segmented nucleus was taken from each
z-plane and averaged over the entire z-stack.

96 dose combination for testing of noise phase space

Compound plates containing 96 concentration combinations of IdU, BrdU, or HmU with CRT0044876
were prepared by the Gladstone Assay Development and Drug Discovery Core using an Agilent
Bravo liquid handling system. All wells contained equivalent volumes of DMSO. Compound mix-
tures were suspended in 200μL of 2i/LIF media. 1x104 Nanog-GFP mESCs were seeded into each
well of a gelatin-coated, 96-well dish in 200μL of 2i/LIF media. 24 hours after seeding, 100μL of
media was removed from each well and 100μL of compound-containing 2i/LIF was added in repli-
cate. Layout and final concentrations of treatments are listed in Table S6. IdU and BrdU concen-
trations ranged from 0 to 50μM while HmU concentrations ranged from 0 to 10μM. CRT0044876
ranged from 0 to 150μM. After 24 hours of treatment, cells were detached using TrypLE and plates
were run on BD LSRFortessa high-throughput system. After extrinsic noise filtering via cell-size
gating, Nanog mean and Fano factor for each treatment were normalized to DMSO control well.
Reported fold changes in mean and Fano factor are the average of two replicates.

Estimation of promoter toggling kinetics from scRNA-seq data

Gene expression data from the scRNA-seq dataset were fit to the 2-state model using the D3E
algorithm, allowing for estimation of kON ,kOFF ,andktx in proportion to the rate of mRNA degra-
dation which is the lone parameter that is not estimable from this dataset alone (83). Parameter
estimation was conducted using the methods of moments approach with the normalise and re-
moveZeros options. Analysis was run for the 945 genes classified as highly variable according to
the BASiCS algorithm. The Cramer-von Mises test was used for goodness-of-fit testing. Values
of kdecay were then retrieved from an existing dataset of mRNA degradation rates in mESCs (92),
with the assumption that degradation rates are unchanged between DMSO and IdU conditions. Pa-
rameter estimates were then verified against experimental values of mean mRNA counts using the
following relationship: 〈RNA〉 = kON

kON+kOFF
· kRNA

kdecay
. Genes whose predicted mean was within 10%

of experimental value were used for downstream analysis. 314 genes passed this filtering process
based on availability of mRNA degradation rates and alignment of parameter estimates with ex-
pected mean mRNA counts.

Mathematical modeling and simulations

Detailed descriptions of model development, parameterization, evaluation, and sensitivity anal-
ysis can be found in the supplementary text along with details of Gillespie simulations.
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Estimation of cellular developmental potential and Waddington Landscape reconstruction

The HopLand algorithm (continuous Hopfield network) was used to create a predictive model
of gene-gene interactions from scRNA-seq data (86). As input, raw count data for a total of 800
randomly chosen cells (400 from DMSO and 400 from IdU treatment groups) were used. Each
neuron of the network corresponds to a gene. Genes whose variance fell within in the top 10%
were used for construction of a neural network resulting in 512 nodes. The weight matrix describ-
ing pair-wise interactions between nodes was initialized using the gene-gene Pearson correlation
matrix. A Gaussian process latent variable model (GP-LVM) was used for dimensionality reduc-
tion to create a 2-D map of cell clustering (x and y coordinates on Waddington Landscape). Energy
values (z coordinate on landscape) were calculated using the Lyapunov function which is a mea-
sure of stability. Lower energy values indicate greater proximity to an equilibrium point (attractor
state) and thus less developmental potential.

Cellular reprogramming assays

Two cellular reprogramming systems were tested in this study: (1) Nanog-GFP secondary
mouse embryonic fibroblasts (MEFs) harboring stably integrated, doxycycline-inducible cassettes
for Oct4, Sox2, and Klf4. GFP is expressed from the endogenous Nanog locus. (2) Oct4-GFP
primary MEFs that express GFP from the endogenous Oct4 locus.

Secondary MEFs were seeded onto gelatin-coated, 12-well plates at a density of 10,000 cells/cm2

in MEF medium (DMEM supplemented with 10% FBS and 0.1mM non-essential amino acid, and
2mM Glutamax). 24 hours after seeding, wells were washed with DPBS and media was switched
to ESC media (knockout DMEM, 10% FBS, 10% KSR, 2mM Glutamax, 0.1mM non-essential
amino acid, 0.1mM 2-mercaptoethanol, 103 units/ml leukemia inhibitory factor) supplemented
with 1μg/ml doxycycline. Additionally, IdU (1uM or 4uM) or equivalent volume DMSO (Day 0)
were added to media. 48 hours after the start of IdU treatment, wells were washed with DPBS
and media was replaced with ESC media supplemented with 1μg/ml doxycycline alone. Media
was refreshed every other day until day 10 of reprogramming. Alkaline phosphatase staining was
performed according to manufacturer’s instructions using the Alkaline Phosphatase Detected Kit
(Millipore). For flow cytometric analysis of Nanog-GFP expression, cells were dissociated with
TrypLE and run unfixed on BD FACS Calibur cytometer.

Oct4-GFP primary MEFs were transduced with lentiviral vectors encoding Oct4, Sox2, Klf4,
and c-Myc. Lentiviruses encoding these factors were individually packaged in PLAT-E cells
(ATCC) using pMX-based vectors. 48 hours after transfection of lentiviral vectors, viral super-
natant was collected and filtered. For infection, Oct4-GFP primary MEFs were seeded on gelatin-
coated, 6-well plates at a density of 10,000 cells/cm2 in MEF medium 24 hours prior to transduc-
tion (Day -2). Oct4, Sox2, Klf4, and c-Myc viruses were mixed in equal volume along with 5μg/ml
polybrene and incubated with primary MEFs for 24 hours in MEF medium (Day -1). Following
infection, wells were washed with ESC media and cells were incubated with ESC media supple-
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mented with 10μM Forskolin, 1mM Valproic Acid, 4μM IdU or equivalent volume DMSO (Day
0). ESC media was refreshed every other day. IdU supplementation was discontinued after 48
hours while Forskolin and Valproic Acid were kept in media continuously. Oct4-GFP(+) colonies
were counted on days 8, 10 and 12.

Bulk RNA-seq of secondary MEFs undergoing reprogramming

Secondary MEFs were seeded onto gelatin-coated, 6-well plates at a density of 10,000 cells/cm2

in MEF medium. For each timepoint (2- and 5-day), 4 wells were seeded (2 replicates for standard
reprogramming and 2 replicates for IdU-assisted reprogramming). 24 hours after seeding, wells
were washed with DPBS and media was switched to ESC media supplemented with 1μg/ml doxy-
cycline. Additionally, 4μM IdU or equivalent volume DMSO (Day 0) were added to media. 48
hours after the start of reprogramming, cells for the 2-day timepoint in DMSO and IdU conditions
were dissociated with TrypLE, pelleted, and snap frozen with liquid nitrogen. Media in the wells
for the 5-day timepoint was refreshed with ESC media supplemented with 1μg/ml doxycycline
alone. This was repeated on day 4. On day 5, remaining cells were dissociated and frozen identi-
cally to that of the 2-day timepoint.

RNA was extracted from each cell pellet using a RNeasy minikit (Qiagen) according to man-
ufacturer’s instructions. A total of 8 cDNA libraries were prepared with an NEBNext Ultra II
RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Sequenc-
ing yielded a median of ≈50 million single-end reads per library. Read quality was checked via
FASTQC. Reads were aligned to the mm10 reference genome using TopHat with default parame-
ters. Transcript level quantification was performed using Cufflinks with default parameters.
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Supplementary Text

1 Overview of tested models
To delineate how Apex1 alters transcriptional dynamics of Nanog gene expression in a way that
increases noise without changing mean, we developed a series of models that allow for Apex1
interaction at different stages of the transcription process. Through stochastic simulation of these
models and comparison to experimental data, the aim is to develop greater mechanistic insight into
what stages of the transcription process Apex1 affects. The tested models listed in supplementary
figure 20 are adapted from the two-state random telegraph model. We assume in each of the models
that IdU incorporation into the genome leads to recruitment of Apex1 (kincorpo). The resulting
interaction results in a transcriptionally non-productive state. Unbinding of Apex1 is triggered by
completion of repair (krepair).

2 Detailed mathematics and derivation of parameter constraints
We derive here some relations, at equilibrium, between the kinetic rates of the diverse models.
These relationships are then used to constrain the parameter phase space for a given set of data.

2.1 Model 0
This is the null model and consists of only the canonical two-state random-telegraph. This model
is used as a null hypothesis, in particular for log-likelihood and AIC- based model selection.

2.2 Model 1
We assume that IdU incorporation and subsequent interaction of Apex1 with the chromatin, occurs
only in the OFF state of the promoter. Biologically, this may occur if control mechanisms inhibit
DNA repair during active transcription.

The differential equations governing the gene fractions in the different states and the mRNA
counts are as follows:

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/




dOFF
dt = kON ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− kOFF ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dRNA
dt = kRNA ·ON− kdecay ·RNA

Using the fact that:

KON

KON +KOFF
≡ ON

ON +OFF +OFF∗
(6)

we derive the following constraint between krepair and kincorpo, where KOFF represents the
transition rate to the macroscopic OFF state consisting of the OFF (kOFF ) and OFF*(kincorpo)
states in Model 1:

krepair =
KON +KOFF

KON
· kON

kON + kOFF + kincorpo
− kincorpo (7)

2.3 Model 2
In this model, Apex1 can interact with chromatin in both the ON and OFF states of the promoter.
If Apex1 interacts with the chromatin in the ON state, this leads to a turning off of the system.
Molecularly this may be seen as a strong inhibitory effect mediated by Apex1: the interaction may
recruit chromatin modifiers (e.g. histone deacetylases, histone methyltransferases) that silence
gene expression. In the same way, stalled polymerases, at both the promoter proximal region and
further in the gene, may unbind DNA.

This model can be described by the following set of ODEs:
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

dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF + kincorpo ·ON− krepair ·OFF∗

dRNA
dt = kRNA ·ON− kdecay ·RNA

Using equation (6) we derive the following constraint between krepair and kincorpo:

kincorpo

krepair
=

KOFF

KON
· kON

kOFF
−1 (8)

2.4 Model 3
Here we assume that Apex1 can still interact in the ON state but that does not alter the ”primed”
characteristic of the gene expression system. The system is thus in a transcriptionally non-productive
ON* state. In other words transcription can not be achieved when Apex1 interacts with the chro-
matin but the transcriptionally permissive chromatin and molecular context is not altered: primed
polymerases remain, transcription enhancing epigenetic marks are not erased, etc.

This model can be described by the following set of ODEs:



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = kRNA ·ON− kdecay ·RNA
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We can thus derive the following constraint:

kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (9)

The details of this derivation are described below for Model 4.

2.5 Model 4
Model 4 is based on Model 3, but an amplification step was added. When the system transi-
tions from ON* to ON, the basal transcription rate (k0

RNA) increased by a multiplicative factor:
kRNA2 = coop · k0

RNA . Thus we assume that there is molecular memory of the repair event. This
may be rooted in a modification of supercoiling, polymerase accumulation, or chromatin remodel-
ing.

This model can be described by the following set of ODEs :



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈kRNA〉 ·ON− kdecay ·RNA

Where kincorpo = [IdU ] ·k0
incorpo. We assume that IdU is in excess and thus [IdU] remains constant.

At equilibrium :

dOFF
dt

=
dON

dt
=

dOFF∗

dt
=

dON∗

dt
=

dRNA
dt

= 0
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=⇒



OFFeq =
kOFF
kON
·ONeq

ONeq =
kON

kOFF
·OFFeq

OFF∗eq =
kincorpo
krepair

·OFFeq

ON∗eq =
kincorpo
krepair

·ONeq

RNAeq =
〈kRNA〉
kdecay

·ONeq

(10)

By definition:

KON

KON +KOFF
≡ ON

ON +OFF +ON∗+OFF∗
(11)

where KOFF represents the transition rate to the macroscopic OFF state (defined by no transcrip-
tion) consisting of the OFF, OFF*, and ON* states. Using the set of equations in (10) and (11) we
obtain:

KON

KON +KOFF
=

krepair

krepair + kincorpo
· kON

kON + kOFF
(12)

Equation (12) can be seen as :

P(ONmacro) = P(”Repaired state”) ·P(ONmicro)

Because P(ONmacro) ≡ P(”Repaired state”∩ONmicro) we can deduce that ”Repaired state” and
ONmicro are independent probabilistic events.

Equation (12) can be rewritten as:

KON

KOFF
=

krepair · kON

kOFF · (krepair + kincorpo)+ kON · kincorpo
(13)
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Which gives us:
kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (14)

Let us define 〈kRNA〉 and k0
RNA as the mean transcription rate in the presence of IdU and the

transcription rate in the control condition (DMSO), respectively. By construction of the model:

〈kRNA〉= P(ON | OFF) · k0
RNA +P(ON | ON∗) · coop · k0

RNA (15)

The coop term represents the amplification of the transcription rate following completion of repair.
P(ON |OFF) and P(ON |ON∗) represent the probability that the gene transitioned to the ON state
from the OFF and ON* states respectively.

Or : 
P(ON | OFF) = kON ·OFF

kON ·OFF+krepair·ON∗

P(ON | ON∗) = krepair·ON∗

kON ·OFF+krepair·ON∗

(16)

Combining equations (14) and (16) we get:
P(ON | OFF) = kOFF

kOFF+kincorpo

P(ON | ON∗) = kincorpo
kOFF+kincorpo

(17)

Rewriting (15) using (17) we obtain :

〈kRNA〉
k0

RNA
=

1
kOFF + kincorpo

· (kOFF + coop · kincorpo) (18)

=⇒ coop =
kOFF + kincorpo

kincorpo
· 〈kRNA〉

k0
RNA

− kOFF

kincorpo
(19)

Equation (19) can be rewritten to explicitly take into account [IdU] :

coop =
kOFF + k0

incorpo · [IdU ]

k0
incorpo · [IdU ]

· 〈kRNA〉
k0

RNA
− kOFF

k0
incorpo · [IdU ]

(20)
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2.6 Model 5
In this last model we make the same assumptions as in model 4 except that Apex1 interaction with
chromatin occurs only in the ON state. This does not imply that IdU incorporation and subsequent
Apex1 interaction only occurs in the ON state. Our assumption supposes that the interaction of
Apex1 in the OFF state is negligible quantitatively speaking compared to that in the ON state.

The ODEs describing this model are as follows:



dOFF
dt = kOFF ·ON− kON ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈kRNA〉 ·ON− kdecay ·RNA

The coop expression remains unchanged from Model 4 but the ratio between krepair and kincorpo
changes as follows:

KON

KOFF
≡ ON

OFF +ON∗
(21)

Thus we obtain:

KON

KOFF
=

krepair · kON

kOFF · krepair + kincorpo · kON
(22)

And :

kincorpo

krepair
=

KOFF

KON
− kOFF

kON
(23)
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3 Chemical Master Equation
For all models we constructed an associated stochastic scheme. As an example, Model 5 can be
rewritten using the following scheme:



OFF
kON−−→ ON1

ON1
kOFF−−−→ OFF

ON1
kRNA1−−−→ RNA

ON1
kincorpo−−−−→ ON∗

ON∗
krepair−−−→ ON2

ON2
kincorpo−−−−→ ON∗

ON2
kOFF−−−→ OFF

ON2
kRNA2−−−→ RNA

RNA
kdecay−−−→∅

(24)

OFF ON1
RNA

O

kOFF

kOFF

kON

kRNA1

k
decay

RNA

O

kRNA2

k
decay

kincorpo

kincorpokrepair

ON*

ON2

ON2 represents the repaired state of the gene, which results in a higher transcription rate
(kRNA2). Using this scheme, we can construct the chemical master equation (CME) describing
the time dependent distributions of mRNA copy number:

dP(m, t)
dt

= A ·P(m, t)+δ (E− I)[mP(m, t)]+∆(E−1− I)[P(m, t)] (25)
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Where A, ∆, and δ are the transition, transcription, and degradation matrices respectively:

A =


−kON 0 −kOFF −kOFF

0 −krepair kincorpo kincorpo
kON 0 −(kOFF + kincorpo) 0

0 krepair 0 −(kincorpo + kOFF)



∆ =


0 0 0 0
0 0 0 0
0 0 kRNA1 0
0 0 0 kRNA2



δ =


kdecay 0 0 0

0 kdecay 0 0
0 0 kdecay 0
0 0 0 kdecay


P(m, t) is a four-element column vector consisting of the time-dependent mRNA probability

distributions while in the OFF,ON∗,ON1,andON2 states respectively. E and E−1 are the forward
and backward shift operators while I is the identity matrix.

At steady-state, the mRNA probability distribution can be reconstructed as a sum of the bino-
mial moments (93)

P(m) = ∑
k≥m

(−1)m−k
(

k
m

)
bk,m = 0,1,2, ... (26)

Where bk is the kth binomial moment of the distribution given by:

bk =
1

∏
k
i=1 det(iδ −A)

·
1

∏
i=k

[uN(iδ −A)∗∆] ·b0,k = 1,2, ... (27)

where uN = [1,1,1,1]. (iδ −A)∗ and det(iδ −A) are the adjugate and the determinant of matrix
(iδ −A) respectively. b1 is equivalent to the mean mRNA abundance of the system at equilibrium.
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b0 is the corresponding eigenvector for the zero eigenvalue of A. The 4 elements of b0 therefore
represent the fraction of time spent in the OFF,ON∗,ON1,and ON2 states at equilibrium. The nth

component of b0 is given by:

b(n)0 =
3

∏
i=1

β
(n)
i
αi

,1≤ n≤ 4 (28)

where α1,α2,α3 are the three non-zero eigenvalues of A. β
(n)
1 ,β

(n)
2 ,β

(n)
3 are the three eigen-

values of the sub-matrix Mn which is constructed by removing the nth row and nth column of A.

The Fano factor for mRNA counts at equilibrium is then given by:

FF =
2b2 +b1−b2

1
b1

(29)

An exact simulation of such a stochastic process is given by the Gillespie algorithm. We im-
plemented the algorithm using a homemade script in Julia 1.1.1. For each model, 1500 simulations
were run for a virtual duration of 200h. Since the time is not discrete we used a ”parsing” algo-
rithm, based on recursive binary search, to align all the traces on a common time scale of 2000
intervals. For each interval of the discretized time we computed the average and variance of the
number of mRNAs, taking into account all traces. The analytic relationships described above are
used to verify the inferred kinetic rates from stochastic simulations.

4 Estimation of model parameters from experimental data
From the smRNA FISH data, we can infer the macroscopic kinetic rates (Table S2). The kinetic
rates computed in the control condition (DMSO in Table S2) are at the basis of the simulations and
have to be considered as constant for all the models and associated results.

Use of these macroscopic rates along with the relationships developed in section 2 results in
one remaining degree of freedom for our models: krepair (or kincorpo for Model 1).

The confrontation between experimental data and the results of stochastic simulations for each
of the models should allow us to define the consistency of our models and thus gain mechanistic
insight into how Apex1 affects transcriptional dynamics.
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5 Model selection: Comparison of simulation results to exper-
imental data

5.1 Information theory-based approach: MLE and Akaike’s criterion
5.1.1 Workflow

Model Data

Structural constraints

krepair = unique degree of freedom
krepair1 krepair2 krepair3

Stochastic 
simulations

Infered krepair

Log-likelihood
computation

max(LLE)
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5.1.2 Method of Log-likelihood and AIC computation

For each of the 500 chosen values (logarithmically spaced) of our unique degree of freedom
(krepair), we ran 50,000 simulations for a total duration of 200h. Only the last point of each simula-
tion was stored. Then the steady-state distribution of RNA was computed using the same binning
as in the experimental data. The computation of the log-likelihood is as follows:

Let X be the vector of n empirical observations and let X∆ : {x∆,x∆ ∈ [x,x+∆]}, where ∆ is
the size of a bin and X∆ is the set of bins. We define p̂(x∆) as the probability of observing an
experimental value within a particular bin (x∆). P(x∆) is the probability of a given x∆ ∈ [x,x+∆]
for a given model. The likelihood function L is defined as :

L ≡ ∏
xi∈X

P(xi,xi ∈ [x,x+∆]) = ∏
x∆∈X∆

P(x∆)n·p̂(x∆) (30)

The log-likelihood is then given as:

log(L ) = ∑
x∆∈X∆

np̂(x∆) · log(P(x∆)) (31)

L is a function of krepair. We then try to find the value of krepair that maximizes log(L ):

k̂repair,LLE = argmaxk(log(L (k))) (32)

With krepair ∈ [10−4,10], by assumption. After computing log(L (k)) for each of the 500 val-
ues of krepair, we apply a smoothing (moving average) to the data, take the derivative, smooth the
derivative, find the two points on each side of the abscissa, and then interpolate the point for which
the derivative is equal to zero using a linear interpolation. The maximum log(L ) is computed after
the first smoothing. Then, we compute the macroscopic behavior of the system using the inferred
value of krepair.

The model selection is based on the AIC and the resulting measures ∆iAIC and wi (94). Because
k̂repair,LLE is dependent on the empirical distribution, we can assume that it is only an estimate of
the true value, which we’ll call k0

repair. Thus we want to reduce as much as possible the distance be-
tween k̂repair,LLE and k0

repair. This optimization problem allows us to derive the so-called Akaike’s
information criterion (AIC) as a measure to compare models. AIC is an estimate of the expected
relative distance between the fitted model and the unknown true mechanism that actually generated
the observed data:

AIC =−2log(L (k̂repair,LLE))+2K (33)

with K the number of degrees of freedom of the system.
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5.1.3 Results

As shown in Figures S20A-B, Model 5 is selected on the basis of AIC. Model 4 is second-best.
Model 5 qualitatively and quantitatively matches experimental data with its inferred krepair.

5.1.4 Parameter identifiability

We used bootstrapping to assess the quality of the inference of krepair for Model 5 using MLE esti-
mator. This method allows the computation of the confidence/credible interval (CI) for krepair, and,
in the framework of Bayesianism, a posterior distribution P(Data|krepair) using a non-informative
prior (94). The distribution of the MLE is peaked around a particular value, suggesting parameter
identifiability (Figure S20C).

5.2 APE-based approach
5.2.1 Workflow

The second approach for model selection that we employed involves comparison of the macro-
scopic behavior of simulation results to experimental data. After deriving constraints on the phase
space spanned by krepair we simulate each of the models over a range of krepair values. From these
stochastic simulations, we then extract the macroscopic behavior of the system for a given model.
We computed the mean number of mRNA and the Fano factor at equilibrium, on the last 100 time
points of the traces. ko f f and kon were computed using a non-linear curve fitting assuming expo-
nentially distributed residence times (Poisson process). Both νon and the burst size were computed
using their basic definitions. The density of mRNA population was computed using the last points
of the simulations. A classic kernel density was used to represent the data.

For each model, we then infer the best value of krepair based on the minimization of a loss
function (absolute percentage error, a.k.a. APE). This quantitative approach is coupled with visual
comparison of model behavior to experimental data. The model whose inferred krepair value min-
imizes divergence between model and data behavior is thus chosen. A graphical representation of
such a process is given below:
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Model Data

Structural constraints

krepair = unique degree of freedom
krepair1 krepair2 krepair3

Stochastic 
simulations

Macroscopic
behaviour

min(APE) computation

Infered krepair

5.2.2 Method of APE calculation

To discriminate between models based on their macroscopic behavior, we need a measure that
quantifies the discrepancy between model-derived results and experimental data. Because the
macroscopic observations (Fano factor, kON , etc.) are of different orders of magnitude, we need a
relative measure to avoid the largest parameters carrying the highest weight on the error. We chose
to use the absolute percentage error (APE). The procedure is as follows:

Consider the vector M≡ (〈RNA〉,νON ,BS,FF,kON ,kOFF). Thus, Mmodel and Mexp contain all
the macroscopic observations from modeling and experiment respectively. Mmodel is a function of
krepair or kincorpo equivalently. k̂repair,APE is the best inferred value of the degree of freedom for a
particular model. It is given by:

k̂repair,APE = argmink

∣∣∣∣Mexp−Mmodel(k)
Mexp

∣∣∣∣ (34)
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With k ∈ [10−4,10], by assumption. This notation implies that we are minimizing the `1 norm
(sum of the vector components). In an operative manner, we simulated each model for 250 loga-
rithmic distributed values of krepair using the previously described Gillespie algorithm.

To validate our approach, we devised an alternative loss function where the `1 norm is com-
puted using a non-biased (i.e symmetric) measure of relative prediction accuracy: the absolute log
accuracy (ALA). The procedure is as follows:

k̂repair,ALA = argmink

∣∣∣∣log
(

Mmodel(k)
Mexp

)∣∣∣∣ (35)

With k ∈ [10−4,10], by assumption.

5.2.3 Results

Using both the APE and ALA approaches, we obtained exactly the same results for parameter
inference (except for model 1 for which k̂incorpo,ALA = 0.39) and model selection. According to the
APE-based approach for parameter inference and model selection, model 5 best recapitulates the
macroscopic behavior observed in the data (Figure S21).

5.3 Selection of Model 5
Based on both the MLE- and APE-based approaches, model 5 best matches experimental FISH
data and scRNA-seq data for Nanog. Model 5 is most similar to a transcription-coupled repair
(TCR) mechanism in which repair events only occur while the gene is transcriptionally permissive.
The key adjustment we make is the introduction of a higher transcription rate upon completion of
repair. This modification is justified by our model selection process, as we find that the second-best
model (model 4) also has an amplified transcription rate following Apex1 interaction and subse-
quent DNA repair. Interestingly, for the same value of krepair, transcription-coupled repair (model
5) leads to a less significant increase in noise and better maintenance of mean as compared to
model 4 in which repair can also take place in the OFF state (model 4). This implies that coupling
of repair to transcription is the most efficient method of DNA repair in terms of minimizing excess
transcriptional variability.

Several molecular mechanisms can lead to the amplified transcription rate that we have in-
corporated into model 5. Apex1 binding may both momentarily silence RNA transcription while
also inducing increased chromatin supercoiling and chromatin remodelling. This could lead to a
subsequent increase in transcription efficiency through increased initiation and/or RNApol II pro-
cessivity. This feedback mechanism may be perceived as a homeostatic process, allowing mainte-
nance of the mean mRNA production despite a perturbation in template integrity. It is important
to note that the dynamic binding and unbinding of Apex1 triggers noise enhancement and mean
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maintenance more than the repair per-se. One implication of this is that other protein-DNA dy-
namic interactions may lead to unavoidable noise modulation through structural constraints like
supercoiling. The strength of such modulation will depend on the kinetic rates of interaction.
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6 Sensitivity analysis of TCR model (Model 5)

6.1 Modulation of krepair and kincorpo with fixed cooperativity
We have seen that a model incorporating Apex1 interaction with chromatin and an associated tran-
scriptional amplification, can recapitulate an increase in noise without alteration of the mean num-
ber of mRNA produced by the Nanog gene expression system. We next asked how this behavior -
increase in noise without dramatic modification of mean expression - is related to the dynamics of
Apex1 binding and unbinding with chromatin. krepair and kincorpo are the kinetic rates describing
such interaction.

We conducted a phase plane analysis of the system mean and Fano factor for both krepair and
kincorpo (Fig S22A-B). We assume that the cooperativity is fixed and equal to the deduced cooper-
ativity from the previous analysis using Nanog FISH data for 10µM IdU. As expected, the Fano
factor increases as kincorpo increases (for kincorpo lower than ≈ 1). This suggests a positive dose-
dependent relationship between IdU and noise (Fig S22B).

We observe an inverse relation for krepair, where noise increases as krepair decreases. Experi-
mentally, we use a small-molecule inhibitor of the Apex1 endonuclease domain (CRT0044876) to
decrease krepair. It is interesting to highlight that when kincorpo is higher than ≈ 1 the Fano factor
starts to decrease. These observations can be understood looking at equation (36) for the Fano
factor. For kincorpo > 1, νon decreases slowly and the effective 〈kRNA〉 starts to increase slowly as
compared to when kincorpo ∈ [0.1,1] (Fig S22C-D). These changes are counteracted by a larger in-
crease in KOFF . The behavior for the mean number of RNA produced with increasing kincorpo > 1
can also be understood using the previous considerations: the decrease in mean corresponds to a
decrease of the frequency in the ON state that is not counteracted by a strong enough cooperativity.
All the results can be understood using the following formula for the Fano factor:

FF = 1+
(1−νon) · kRNA

KON +KOFF + kdecay
(36)

6.2 Modulation of kON and kOFF with fixed cooperativity
We next wanted to define the parameter regime for kON and kOFF in which homeostatic mainte-
nance of mean expression is possible with transcription-coupled repair (model 5). For this analysis,
simulations were run with values of kON ,kOFF ∈ [10−3,10] for both the null model (standard 2-
state model, DMSO condition) and model 5. For the same values of kON ,kOFF , the fold change
in mean of mRNA counts was calculated by comparing results of model 5 to the null model. This
provides insight into how IdU treatment may impact expression of genes with different bursting
kinetics. When kOFF >> kON , the addition of IdU in Model 5 increases the average number of
mRNA produced as compared to the null model (Fig S22E). This can be explained by a compe-
tition between the OFF and ON∗ states and by the fact that in this portion of the phase space
kON < kOFF < kincorpo (and kincorpo < krepair ). Therefore, the probability of presence in the ON2
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state (transcriptionally more productive state), increases. This implies that IdU treatment would
increase the mean of very lowly expressed genes. This was seen experimentally in bulk RNA-seq
measurements of transcript abundance in mESCs as the ≈ 100 genes that showed an increase in
mean with IdU treatment were from the lowest expression regime (Fig S3). The exact inverse
effect is observed in the upper left corner of the heatmap, where kON > kOFF > kincorpo. Thus for
highly expressed genes, the effect of IdU on mean expression is minimal as seen experimentally.

6.3 Cooperativity and noise enhancement
When all the kinetics rates of the system are fixed, increasing the cooperativity, and thus the effec-
tive transcription rate, leads both to an increase in mean and Fano factor (Fig S22F).

7 Testing of TCR model for other noise-enhanced genes
In analyzing the Nanog gene expression we have found that IdU treatment leads to recruitment of
DNA repair machinery while a gene is transcriptionally permissive (TCR model). This repair ac-
tivity makes a second ON state accessible to the system. This state is characterized by an increased
kRNA which is sufficient to recapitulate the experimental observations of mean maintenance with
increased noise strength (Fano factor). We next asked whether the inferred TCR model can explain
the experimental data collected for other noise-enhanced genes within the scRNA-seq dataset of
mESCs treated with 10µM IdU for 24 hours.

To simulate the TCR model for additional genes, estimates for the following parameters are
needed: kON ,kOFF ,kRNA1(basal transcription rate in DMSO),kdecay,and〈kRNA〉 (effective transcrip-
tion rate in IdU). To derive estimates of kON ,kOFF ,kRNA1,and〈kRNA〉we used a moments-matching
technique described in ((83, 84), where the first, second, and third exponential moments of the
mRNA distributions in the DMSO and IdU conditions are used to calculate the parameters of
a Poisson-beta distribution (describes 2-state model) that best fits experimental count data. The
parameter estimates are derived in proportion to kdecay. Values of kdecay were retrieved from an
existing dataset of mRNA degradation rates in mESCs (92).

Of the 945 genes classified as highly variable with IdU treatment, 314 genes remained for
downstream analysis based on availability of mRNA degradation rates and high confidence param-
eter estimates (Fig. S24A). With the above parameter estimates, we next computed the constraints
on the cooperativity term and kincorpo as a function of krepair using the relationships derived in
sections 2.5 and 2.6. There is again one remaining degree of freedom in our model system: krepair.
Using the MLE-based approach outlined in section 5.1, simulation results for a range of krepair

values were compared against scRNA-seq data to identify k̂repair,LLE for each of the 314 genes.

Once k̂repair,LLE was identified, the macroscopic values of KON and KOFF from simulation re-
sults were compared to experimentally derived estimates of KON and KOFF from scRNA-seq data
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for each gene (Fig. S25). Overall, simulated values for macroscopic rates of promoter toggling in
the IdU condition align with experimental results, indicating that the TCR model holds explana-
tory power for noise-enhanced genes beyond just Nanog. The use of a second, transcriptionally-
enhanced ON state appears to be a unifying mechanism for maintenance of transcriptional home-
ostasis during DNA repair across a broad range of genes with different bursting kinetics. This
suggests that the TCR mechanism for mean maintenance is robust to the initial bursting character-
istics of a gene.
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Supplementary Figures S1-S27

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2

3

200 2000 4000 10000 20000
d2GFP driven by Ef1α promoter

D
en

si
ty

DMSO
IdU

Jurkat Isoclonal Cell Line

0

1

2

3

4

5

6

100 1000 2000 4000 10000
d2GFP driven by Ef1α promoter

De
ns

ity

0

1

2

3

4

5

6

100 1000 2000 4000 10000
d2GFP driven by Ubc promoter

D
en

si
ty

K562 Isoclonal Cell Lines

DMSO
IdU

Supplemental Figure 1

Mean (± SD)
5642.8 +/− 315.6DMSO

Fano Factor (±SD)

5745.4 +/− 390.7IdU
623.2 +/− 62.5
1224.3 +/− 87.8

2199.4 +/− 213.5DMSO
2146.7 +/− 314.7IdU

99.1 +/− 13.5
495.0 +/− 47.8

Mean (± SD) Fano Factor (±SD) 1065.2 +/− 98.4DMSO
1055.7 +/− 85.3IdU

44.7 +/− 8.5
110.7 +/− 10.4

Mean (± SD) Fano Factor (±SD)

A

B

Figure S1: Nucleoside analog increases expression variability of housekeeping promoters in
Jurkat and K562 cells.
(A) Representative flow cytomtery distributions of d2GFP expression in an isoclonal population of
Jurkat cells treated with either 20μM IdU or equivalent volume DMSO for 24 hours. Mean and SD
are derived from 2 biological replicates. (B) Representative flow cytomtery distributions of d2GFP
expression in isoclonal populations of K562 cells treated with either 20μM IdU or equivalent vol-
ume DMSO for 24 hours. Mean and SD are derived from 2 biological replicates.
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Figure S2: Noise enhancement occurs for genes across all expression levels.
4,578 genes from scRNA-seq dataset were binned into one of four groups (quartiles) based on mean
expression level in DMSO condition. (A) Comparison of mean expression level for each gene in
IdU and DMSO treatment groups. Boxplots show median ±interquartile range of mean values
for genes within each bin. Solid lines connect the same gene in the DMSO and IdU boxplots. P
values were calculated using a two-tailed, paired Student’s t test. (B) Comparison of Fano factor
for each gene in IdU and DMSO treatment groups. Boxplots show median ±interquartile range of
Fano factors for genes within each bin. Solid lines connect the same gene in the DMSO and IdU
boxplots. P values were calculated using a two-tailed, paired Student’s t test. **p < 0.001, *p =
0.0016
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Figure S3: IdU causes minimal change in mean gene expression levels as measured by bulk
RNA-seq.
Transcript abundances were normalized using ERCC spike-in counts. Differential mean testing
was conducted with a threshold of fold change > 2 and an FDR cutoff of 0.05. Genes considered
differentially expressed are highlighted in red. (A) Mean transcript abundance vs. fold change
(Log2) in mean for 12,502 genes. Comparison is between 10μM IdU and DMSO treatments. 98
genes were identifed as differentially expressed. (B) Mean transcript abundance vs. fold change
(Log2) in mean for 12,054 genes. Comparison is between 5μM IdU and DMSO treatments.
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Supplemental Figure 4
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Figure S4: Noise-enhanced genes tend to be centrally located within topologically associating
domains.
Comparisons are between 945 genes classified as highly variable and 3,513 genes classified as non-
variable (background) according to BASiCS algorithm. Gene characteristics and sequences were
taken from Ensembl GRCm38 reference genome. (A) Distributions of gene lengths for highly
variable and background genes. Length was calculated as distance between Ensembl gene start
and end coordinates which correspond to outermost transcript start and end coordinates. (B) Per-
centage of base-pairs in gene body (based on gene start and end coordinates) that are A:T. (C)
Percentage of base-pairs in 200bp region upstream of gene start that are A:T. (D) The number of
exons was averaged over all transcripts associated with a gene. Distributions of average exon quan-
tity for genes in the highly variable and background group were then plotted. (E) Fraction of genes
with TATA sequence in 200bp region upstream of gene start. Data represent mean and SD from
bootstrapping procedure with 10,000 resamplings of 100 genes from each group with replacement.
(F) Fraction of genes whose coding sequence is located on negative and positive strands. Data
represent mean and SD from bootstrapping procedure with 10,000 resamplings of 100 genes from
each group with replacement. (G) Fractional distance of gene within TAD was calculated as (gene
start coordinate - TAD start coordinate)/(TAD end coordinate - TAD start coordinate). Coordinates
of TAD boundaries in mESCs were taken from Elphege et al. (89).
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Supplemental Figure 5
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Figure S5: Ontology analysis of variably expressed genes shows enrichment for housekeeping
and pluripotency maintenance pathways.
DAVID v6.8 was used to identify enriched ontologies among the 945 genes classified as highly
variable according to BASiCS algorithm.
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Supplemental Figure 6
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Figure S6: Noise-enhancement of pluripotency factors occurs in all three phases of the cell
cycle.
A total of 1556 cells in the scRNA-seq dataset were classified into one of three cell-cycle phases.
Differential variability testing was then conducted between cells in the DMSO and IdU treatment
groups with the same cycle classification.

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 7
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Figure S7: Transcript variability is not caused by bifurcation of mESCs into separate devel-
opmental lineages.
Pseudotime analysis of IdU-treated cells shows no differentiation of mESCs into separate devel-
opmental lineages.
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Supplemental Figure 8
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Figure S8: Majority of gene-gene pairs show a decrease in correlation strength.
The Pearson correlation of expression for 923,521 (961 x 961) gene-gene pairs were compared
between DMSO and IdU treatment groups. For each gene-gene pair, the absolute value of the
correlation strength in DMSO was subtracted from the absolute value of the correlation strength in
IdU. Negative values indicate loss of correlation in expression.
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Supplemental Figure 9
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Figure S9: Shortened burst duration and increased transcription rate causes enhanced cell-
to-cell variability in Nanog mRNA counts.
(A) Distribution of cell sizes for analyzed cells in DMSO and IdU conditions. Cell size was
calculated as number of pixels within segmented cell boundary. Dashed lines represent means
of each distribution. Data represent pooling of cells from all four biological replicates for each
condition. KS test shows no significant difference between cell size distributions. (B) Inference of
parameters for 2-state model of transcription. P values were calculated using a two-tailed, unpaired
Student’s t test. *p = 0.0017, **p = 0.0001
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Supplemental Figure 10
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Figure S10: Noise-enhancement of Nanog protein expression is independent of cell-cycle
state.
(A) Representative flow cytometry distributions of propidium iodide staining for Nanog-GFP
mESCs treated with either DMSO or 10μM IdU for 24 hours. No signs of aneuploidy are visi-
ble, indicating transcriptional variability is not due to cell-to-cell variability in gene copy numbers.
(B) Percent of cells in each phase of the cell cycle for DMSO and IdU treatments based on propid-
ium iodide staining. IdU treatment slightly slows entry into S phase. Data represent mean and SD
of three biological replicates. P values were calculated using a two-tailed, unpaired Student’s t test.
*p < 0.01 (C) Representative flow cytometry distributions of Nanog-GFP for mESCs within the
G1, S and G2 phases of the cell cycle. mESCs were treated with 10μM IdU or equivalent volume
DMSO for 24h followed by propidium iodide staining. (D) IdU-induced noise-enhancement of
Nanog-GFP protein levels is unchanged across all three phases of the cell cycle. Nanog-GFP Fano
factor with IdU treatment was normalized to DMSO control for calculation of fold change. Data
represent mean and SD of three biological replicates. P values were calculated using a two-tailed,
unpaired Student’s t test.
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Supplemental Figure 11
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Figure S11: Increased transcriptional noise drives a greater number of mESCs into the low-
Nanog state while cultured in serum/LIF.
Flow cytometry distribution of Nanog-GFP expression for mESCs cultured in serum/LIF and
treated with 10μM IdU or equivalent volume DMSO for 24h. Data is pooled from three biological
replicates.
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Figure S12: Time-lapse imaging demonstrates that altered kinetics of promoter toggling
cause individual cells to experience larger fluctuations in Nanog protein expression.
(A) Each point represents a single-cell fluorescence trajectory (DMSO on left, n = 1513; IdU
on right, n = 1414). Single-cell fluorescence trajectories were detrended by subtracting time-
dependent population average for Nanog-GFP fluorescence. The mean Nanog-GFP fluorescence
for each raw trajectory is then plotted versus the CV2 of the detrended version of the trajectory
to isolate intrinsic noise. The dashed lines represent the average intrinsic CV2 of all trajectories
for each treatment group. Time-lapse imaging shows that for individual cells the magnitude of
Nanog protein fluctuations increases with IdU treatment. (B) Distributions of noise frequencies
from autocorrelation functions of each detrended trajectory. Noise frequency is calculated as the
inverse of the autocorrelation time (τ1/2). Shorter but more productive transcriptional bursts with
IdU treatment pushes the frequency content of Nanog-GFP fluctuations to higher spectra.
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Supplemental Figure 13
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Figure S13: Amplification of expression fluctuations occurs independently of starting Nanog
level.
Single-cell trajectories whose starting fluorescence value was below 500 a.u. or above 700 a.u.
were binned into low and high groups respectively. Only trajectories whose starting point coin-
cided with addition of DMSO or IdU at time zero were used. Distributions of trajectory fluores-
cence values at zero, seven, and 14 hours into treatment conditions are shown. By 14 hours into
IdU treatment, there is visible interconversion of cells between the low and high Nanog states, in-
dicating that memory of initial Nanog expression level is erased. This precludes the possibility that
noise enhancement is due to promoter mutations that create sub-populations of cells with stable
expression of Nanog at low and high levels.
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Supplemental Figure 14

B

A

Figure S14: IdU treatment increases intrinsic noise of Sox2 expression.
(A) Flow cytometry dot-plot of mESCs with Sox2 dual color tags. Dashed red line has slope of one.
mCLover and tdTomato fluorescence values were normalized to population average. Data shown is
pooled from three biological replicates. (B) Cells were binned according to total Sox2 expression
from both alleles. Each point represents the intrinsic noise (Fano factor) of Sox2 expression for
cells within a particular bin. Grey shadings represent 95% confidence intervals as determined by
bootstrapping. Smooth lines are produced from loess regression. IdU increases Sox2 intrinsic
noise across all expression levels.
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Supplemental Figure 15
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Figure S15: UV-stress reduces Nanog mean and Fano factor.
(A) Representative flow cytometry distributions of Nanog-GFP expression from UV-exposed
(green) and control (grey) cell populations. Cells were analyzed one, two, four, eight, and 12
hours post exposure. (B) For each exposure group (15, 30, and 60 minutes), the fold change in
Fano factor is calculated as the Fano factor for Nanog in the UV-exposed population normalized
to the Fano factor of its respective control population. Data points represent mean and SD of two
biological replicates. Across all time points (except 4 hour point in 15 minute exposure group) UV
stress reduces the Fano factor of Nanog.
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Supplemental Figure 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Scram Apex1
gRNA1

Apex1
gRNA3

Apex1
gRNA2

N
or

m
al

iz
ed

 F
ol

d 
C

ha
ng

e
 in

 A
pe

x1
 E

xp
re

ss
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Scram Tk1
gRNA2

Tk1
gRNA1

Tk1
gRNA3

No
rm

al
iz

ed
 F

ol
d 

Ch
an

ge
 in

 T
k1

 E
xp

re
ss

io
n

A

B

Figure S16: Validation of CRISPRi knockdown of Apex1 and Tk1 via qPCR measurements.
∆∆Ct method was used with the empty-vector cell population as the control. Levels of Apex1 and
Tk1 repression are relative to the non-targeting (scrambled) population. Data represent mean and
SD of two biological replicates.
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Figure S17: Thymidine competition ablates Nanog noise-enhancement from IdU.
The Fano factor of Nanog for each concentration combination is normalized to DMSO control.
For all treatment combinations, IdU concentration is held constant at 10μM. Concentration of
thymidine (red) and uridine (blue) is reported on the x-axis. Combination of 100μM thymidine
and 10μM IdU returns Nanog Fano factor to baseline level (DMSO control). Uridine, which is not
a substrate of Tk1, fails to ablate IdU-induced noise-enhancement. Data points represent mean and
SD of three biological replicates.
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Figure S18: Bleomycin treatment reduces bTMP intercalation into DNA, validating assay
sensitivity for negative supercoiling levels.
Boxplots show median ±interquartile range of single-cell bTMP staining intensities. Treatment
of mESCs with 100μM bleomycin was performed for 1 hour just prior to bTMP incubation.
Bleomycin reduces the mean bTMP staining intensity for cells treated with DMSO or 10μM IdU as
compared to DMSO control with no bleomycin treatment (**p < 0.0001). The reduction in bTMP
staining when IdU is coupled with bleomycin indicates that IdU alone in uncoiled DNA does not
increase bTMP intercalation. Data shown are pooled from two biological replicates. P values were
calculated using Kruskal-Wallis test followed by Tukey’s multiple comparison test.
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Figure S19: Small-molecule inhibition of Topoisomerase I and II increases Nanog expression
variability.
Representative flow cytometry distributions of Nanog-GFP expression in mESCs treated with
DMSO, 500nM topotecan or 500nM etoposide for 24 hours in 2i/Lif media. Extrinsic noise fil-
tering via cell-size gating was performed prior to calculation of Nanog Fano factor. Table inset
shows mean and Fano factor (±SD) of Nanog expression averaged over three biological replicates
of each treatment.
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Figure S20: MLE-based approach for model selection reveals transcription-coupled repair
mechanism best recapitulates experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) For each model, 500 logarithmically-spaced values of
krepair ∈ [10−4,10] were simulated. For each simulated value of krepair, log-likelihood is calculated
as described in supplementary text 5.1.2 and plotted. Dashed vertical line in each plot denotes
value of krepair that maximizes log-likelihood estimate. (Third Column) Comparison of experi-
mental Nanog mRNA distribution (red) to simulated distributions of Nanog mRNA (blue) for each
model using value of krepair that maximizes log-likelihood. (Fourth Column) Macroscopic behav-
ior of simulation results (using value of krepair that maximizes log-likelihood estimate) are com-
pared to experimental data (supplementary text 5.2). Bars represent simulation values of Nanog
gene expression system while red points with vertical line represent experimental data on Nanog
expression from smRNA-FISH of mESCs treated with 10μM IdU. (B) For each tested model, the
maximum log-likelihood value is listed along with the associated ∆iAIC. Model 5 (transcription-
coupled repair) best describes experimental data based on these metrics. (C) Distribution and
confidence interval (CI) of inferred krepair values (based on MLE) for Model 5 using bootstrapping
method in which the empirical distribution of Nanog mRNA counts from smRNA-FISH data was
re-sampled 1000 times with replacement (supplementary text 5.1.4). Bootstrapping results show a
well peaked distribution indicating practical parameter identifiability for krepair.
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Figure S21: APE-based approach for model selection concurs with MLE-based approach,
identifying TCR model as best match to experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) Comparison of experimental Nanog mRNA distribu-
tion (red) to simulated distributions of Nanog mRNA (blue) for each model using value of krepair
that minimizes absolute percentage error. (Third Column) Macroscopic behavior of simulation
results (using value of krepair that minimizes absolute percentage error) are compared to experi-
mental data (supplementary text 5.2). Bars represent simulation values of Nanog gene expression
system while red points with vertical line represent experimental data on Nanog expression from
smRNA-FISH of mESCs treated with 10μM IdU. (B) Values of krepair that minimize the absolute
percentage error for each model are listed. Model 5 (TCR model) yields the smallest APE and the
largest log-likelihood.
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Figure S22: Sensitivity analysis of model parameters reveals phase-space for modulation of
Nanog variability independently of mean.
(A) Heatmaps displaying mean (left) and Fano factor (right) of Nanog mRNA from simulation
results of TCR model as a function of krepair and kincorpo values spanning four orders of magnitude
(supplementary text 6.1). Dashed horizontal and vertical lines represent inferred values of krepair
and kincorpo that match experimental Nanog gene expression system in the presence of 10μM IdU.
Multiple regions of the parameter phase-space exhibit constant mean output with unique levels
of variability (Fano factor) demonstrating how mean and variability are tuned independently. (B)
Simulated distributions of Nanog mRNA with increasing concentration of IdU which increases
kincorpo. Simulation results demonstrate how TCR model allows for maintenance of mean output
with increasing variability as concentration of IdU is increased. (C) Effective transcription rate
of Nanog gene expression system as a function of kincorpo. As IdU incorporation and subsequent
Apex1 recruitment increases, the effective transcription rate increases as well. This represents the
compensatory mechanism of model 5 allowing for maintenance of mean output with increasing
incorporation of IdU. (D) Heatmap displaying fraction of time that the Nanog gene expression is
in the macroscopic ON state as a function of krepair and kincorpo values. (E) Heatmap displaying
fold change in mean as a function of microscopic ko f f and kon values (supplementary text 6.2).
Fold change is calculated as the output of Model 5 relative to model 0 (canonical 2-state model)
for the same set of ko f f and kon values. For a gene whose ko f f >> kon, addition of IdU to the system
increases the mean output. (F) Mean mRNA and Fano factor of Model 5 output as a function of
the cooperativity term which describes how strongly the transcription rate is amplified following
completion of repair (supplementary text 6.3).
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Figure S23: Treatment with BrdU or HmU in combination with CRT0044876 allows for tun-
ing of Nanog variability independently of the mean.
(A) Testing of 96 concentration combinations of BrdU and CRT0044876 (apex1 endonuclease
domain inhibitor) to validate tunability of Nanog variability. BrdU and CRT0044876 were used
to increase binding and decrease unbinding of Apex1 respectively. Nanog-GFP mESCs grown
in 96-well plates were treated with 12 concentrations of CRT0044876 ranging from 0 to 150uM
in combination with 8 concentrations of BrdU ranging from 0 to 50uM. Data represent average
of two biological replicates. (Top left and top right panels) 96-well heatmaps displaying fold
change in Nanog mean and Fano factor for each drug combination as compared to DMSO (top-
leftmost well). Insufficient number of cells (<50,000) for extrinsic noise filtering were recorded
from white wells. (Bottom Panel) Representative flow cytometry distributions from highlighted
wells (black rectangles). Nanog variability increases independently of the mean. (B) Testing of
96 concentration combinations of HmU and CRT0044876 (apex1 endonuclease domain inhibitor)
to validate tunability of Nanog variability. HmU is a naturally found, Tet-induced oxidation prod-
uct of thymine. Nanog-GFP mESCs grown in 96-well plates were treated with 12 concentrations
of CRT0044876 ranging from 0 to 150uM in combination with 8 concentrations of HmU rang-
ing from 0 to 10uM. Data represent average of two biological replicates. (Top left and top right
panels) 96-well heatmaps displaying fold change in Nanog mean and Fano factor for each drug
combination as compared to DMSO (top-leftmost well). Insufficient number of cells (¡50,000)
for extrinsic noise filtering were recorded from white wells. (Bottom Panel) Representative flow
cytometry distributions from highlighted wells (black rectangles). As with IdU and BrdU, Nanog
variability increases independently of the mean.

64

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 24

B

D

C

DMSO IdU DMSO IdU DMSO IdU

K
on

 (h
r -1

)

K
of

f  
(h

r -1
)

K
tx

 (h
r -1

)

Promoter Activation Promoter Inactivation Transcriptional Rate

Time

Unperturbed Base Excision Repair

Tr
an

sc
rip

tio
na

l 
   

   
 A

ct
iv

ity

Time

0.01

0.10

1.00

10.00

Nanog

Nanog

1e−05

1e−02

1e+01

1e+03

1e−02

1e+00

1e+02

1e+03

Nanog

Log2(Fold Change)

Kon

−8 −4 0 4 8

D
en

si
ty Koff

−10 −5 0 5 10 15 20
Log2(Fold Change)

Ktx

−2 0 2 4 6 8
Log2(Fold Change)

DMSO IdU

314518 565

A

Filtered genes based on consistency between
inferred kinetic rates and experimental data

Poisson-β Model Consistency

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.128439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S24: Highly variable genes exhibit shorter but more intense transcriptional bursts.
(A) Of the 945 genes classified as highly variable with IdU treatment, we were able to estimate
parameters of the 2-state model for 314 of these genes (supplementary text 7). (B) Boxplots show
median ±interquartile range of parameter estimates with each point representing a gene. (C) Dis-
tributions of fold change in bursting kinetics between IdU and DMSO conditions for 314 highly
variable genes. Dashed blue line signifies mean of distribution. Majority of highly variable genes
exhibit increased KOFF and Ktx, which is consistent with TCR model. (D) Base-excision repair
orchestrates shorter but more intense transcriptional bursts to maintain mean expression for genes
with diverse bursting kinetics.
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Figure S25: TCR model provides unifying mechanism for noise-enhancement of genes with
different bursting kinetics.
(A) Experimental values (exp) of macroscopic KON and KOFF , as derived from a moments-
matching technique applied to scRNA-seq data, are compared to predicted values (simul) de-
rived from simulations of TCR model. Each point represents a gene. Boxplots show median
±interquartile range of parameter values. (B) Experimental values of mean, Fano factor, KON , and
KOFF (based on scRNA-seq data) are compared to simulated values derived from TCR model.
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Figure S26: Amplification of transcriptional fluctuations destabilizes cellular identity result-
ing in greater cellular plasticity.
(A) Reconstruction of Waddington’s landscape using scRNA-seq data of mESCs treated with
DMSO (left) or IdU (right). Each point represents a cell. A Gaussian process latent variable
model (GP-LVM) was used for dimensionality reduction to create a 2-D map of cell clustering,
represented by component 1 (y-axis) and component 2 (x-axis). The z-axis represents the cal-
culated potential energy (distance from an attractor) of a cell’s gene expression state with lower
values indicating greater proximity to an attractor and thus lower developmental potential. Cells
are colored according to their height (developmental potential energy, z-axis value) on the land-
scape as denoted by the associated color bar. Underlying shading of landscape represents density
of points with purple being the least dense and yellow being the most dense. (B) Distributions of
developmental potential energy (z-axis values from Waddington landscape in panel A) for mESCs
treated with DMSO or 10μM IdU for 24 hours. Dashed vertical lines signify the mean of each
distribution, with IdU-treated cells demonstrating greater potential energies.
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Figure S27: IdU treatment enhances conversion of mouse embryonic fibroblasts (MEFs) into
induced pluripotent stem cells (iPSCs).
(A) Secondary MEFs with the endogenous Nanog locus tagged with GFP were treated with 4μM
IdU or equivalent volume DMSO for 48 hours in MEF media. (Right) Representative flow cytom-
etry distributions of Nanog-GFP expression in secondary MEFs after 48 hour treatment with IdU
or DMSO. (Left) Quantification of Nanog Fano factor demonstrates that IdU treatment increases
expression variability as compared to DMSO control (*p = 0.003, by a two-tailed, unpaired Stu-
dent’s t test). Data represent mean and SD of three biological replicates. (B) (Top) Representative
flow cytometry distributions of propidium iodide staining for Nanog-GFP secondary MEFs treated
with either DMSO or 4μM IdU for 48 hours in MEF media. No signs of aneuploidy are visible,
indicating Nanog expression variability is not due to cell-to-cell variability in gene copy numbers.
(Bottom) Percent of cells in each phase of the cell cycle for DMSO and IdU treatments based
on propidium iodide staining. IdU treatment does not alter cell-cycle progression, indicating en-
hanced reprogramming is not due to accelerated cellular division. Data represent mean and SD
of three biological replicates. P values were calculated using a two-tailed, unpaired Student’s t
test. (C) Bulk RNA-seq was conducted on days 2 and 5 of doxycycline-induced reprogramming of
secondary MEFs supplemented with 4μM IdU or equivalent volume DMSO for the first 48 hours.
Distributions of fold change in expression for 129 pluripotency genes (taken from Mouse Genome
Informatics, gene ontology term: 0019827) in the IdU condition as compared to the DMSO control
are shown. Dashed blue line represents mean of distribution. 81% and 66% of the pluripotency
factors show increased expression with the addition of IdU as compared to DMSO control at days
2 and 5 of reprogramming, respectively. Noise amplification during early stages of reprogramming
accelerates activation of pluripotency network.
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Captions for supplementary tables S1-S6

Table S1 (attached separately)
Sequences of smRNA-FISH oligonucleotide probes for first intron of Nanog and GFP.

Table S2 (attached separately)
Inferred macroscopic kinetic rates of 2-state random telegraph model for Nanog in DMSO and IdU
conditions.

Table S3 (attached separately)
List of nucleoside analogs that were screened for ability to increase to Nanog protein variability.

Table S4 (attached separately)
Gene targets and sequences of gRNAs used in CRISPRi screen.

Table S5 (attached separately)
Sequences of primers used for RT-qPCR verification of Apex1 and Tk1 knockdown.

Table S6 (attached separately)
Concentrations and layout of compound plates used for testing of IdU, BrdU, or hmU in combina-
tion with CRT0044876.
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