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Abstract  30 

A decade of association studies in multiple organisms suggests that most complex traits are 31 

polygenic; that is, they have a genetic architecture determined by numerous loci distributed 32 

across the genome, each with small effect-size. Thus, determining the degree of polygenicity 33 

and its variation across traits, environments and years is useful to understand the genetic basis 34 

of phenotypic variation. In this study, we applied multilocus approaches to estimate the 35 

degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., 36 

maritime pine) and to analyze how polygenicity changes across environments and years. To 37 

do so, we evaluated five categories of fitness-related traits (survival, height, phenology-38 

related, functional, and biotic-stress response traits) in a clonal common garden network, 39 

planted in contrasted environments (over 12,500 trees). First, most of the analyzed traits 40 

showed evidence of local adaptation based on QST-FST comparisons. Second, we observed a 41 

remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits, 42 

environments and years. As previously suggested for humans, some of these traits showed 43 

also evidence of negative selection, which could explain, at least partially, the high degree of 44 

polygenicity. The observed genetic architecture of fitness-related traits in maritime pine 45 

supports the polygenic adaptation model. Because polygenic adaptation can occur rapidly, our 46 

study suggests that current predictions on the capacity of natural forest tree populations to 47 

adapt to new environments should be revised, which is of special relevance in the current 48 

context of climate change. 49 

 50 

 51 

 52 
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Introduction 53 

Population adaptive responses to environmental changes depend on the genetic architecture of 54 

fitness-related traits (Hayward and Sella 2019). Although not initially conceived for the study 55 

of adaptation, genome-wide association studies (GWAS) have provided essential information 56 

to understand the genetic basis of complex traits. The implementation of GWAS allowed the 57 

identification of genetic variants affecting fitness-related traits, their allele frequencies, the 58 

magnitudes of their effects, and their interactions with one another and the environment. 59 

Examples exist for humans (reviewed by Visscher et al. 2017), other animals (e.g. Sharma et 60 

al. 2015; Pitchers et al. 2019) and plants (e.g. González-Martínez et al. 2006; Huang and Han 61 

2014; Alonso-Blanco et al. 2016). Surprisingly, in some species, such as humans and forest 62 

trees (Resende et al. 2012; Lind et al. 2018), the genetic variants associated with phenotypic 63 

variation accounted for only small fractions of trait heritability, as estimated through pedigree 64 

analysis, causing the so-called ‘missing heritability’ paradox (Maher 2008). Several 65 

explanations have been provided to solve this paradox (Manolio et al. 2009; Brachi et al. 66 

2011; Björkegren et al. 2015; Pallares 2019). In particular, different sources of evidence point 67 

to polygenicity, i.e. trait architecture determined by a large number of variants, each with a 68 

small effect-size, as a potential reason for the low levels of heritability explained by current 69 

GWAS, which would thus be unpowered to detect most causal variants (Yang et al. 2010; Shi 70 

et al. 2016; Boyle et al. 2017). 71 

The study of adaptation has traditionally been addressed from contrasting research paradigms 72 

(Höllinger et al. 2019). While quantitative genetic approaches view adaptation as the result of 73 

changes in allele frequencies at an idealized infinite number of loci, each with infinitesimal 74 

effects on fitness (Fisher 1918), population genetic approaches made more emphasis in the 75 

detection of selective sweeps, where new beneficial mutations rapidly become fixed at a small 76 

number of loci (Smith and Haigh 1974). The hypothesis that natural selection (mostly) acts 77 
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through subtle allele frequency shifts on standing genetic variation at numerous loci 78 

distributed across the genome has been suggested in previous evolutionary studies (Orr and 79 

Coyne 1992; e.g. McKay and Latta 2002; Le Corre and Kremer 2003). Nevertheless, it was 80 

Pritchard et al. (2010) who first brought together population and quantitative genetic theory 81 

with conclusions from GWAS to formulate a new model for the study of adaptation – the 82 

polygenic adaptation model. Under this model, some genes may harbor new mutations that 83 

have been fixed by natural selection, but the most common pattern would be the genome-wide 84 

increase of favored alleles, without the fixation of most causative variants. Thus, the expected 85 

genome-wide footprint resulting from natural selection would not be that of a classical hard 86 

sweep, but would rather involve a large number of causal variants, each with subtle allele 87 

frequency changes (Pritchard et al. 2010; Pritchard and Rienzo 2010; Hermisson and 88 

Pennings 2017).  89 

Several new methods have been developed to detect the genetic signatures of natural selection 90 

under the polygenic adaptation model (Guan and Stephens 2011; Turchin et al. 2012; Daub et 91 

al. 2013; Berg and Coop 2014; Field et al. 2016; Zeng et al. 2018; Edge and Coop 2019; 92 

Speidel et al. 2019; Lloyd-Jones et al. 2019). Applications using these methods, however, 93 

were often unknowingly biased by subtle patterns of population structure (Liu et al. 2018; 94 

Josephs et al. 2019; Rosenberg et al. 2019; Berg et al. 2019a; Sohail et al. 2019). 95 

Nonetheless, even considering the inflation of polygenic signals due to unrecognized 96 

population structure, mounting evidence over the last decade using a variety of 97 

methodologies, supports the polygenic adaptation model in a diversity of organisms, such as 98 

humans (Hancock et al. 2010a, b; Daub et al. 2013; Shi et al. 2016; Zeng et al. 2018; 99 

Gnecchi-Ruscone et al. 2018; Berg et al. 2019b), insects (Friedline et al. 2019), molluscs 100 

(Bernatchez et al. 2019), model plants (He et al. 2016), crops (Josephs et al. 2019; Wisser et 101 

al. 2019), and forest trees (Lind et al. 2017; De La Torre et al. 2019). However, there are still 102 
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multiple open questions regarding the degree of polygenicity at adaptive traits, the distribution 103 

of effect sizes the involved loci, and how the genetic architecture changes under varying 104 

selective forces, especially for non-model species (Lind et al. 2018). 105 

Following the expectations of the polygenic adaptation model, the heritability of complex 106 

traits is often associated with loci that are widespread across the whole genome, also 107 

including SNPs located in genes and pathways that do not show a clear functional connection 108 

to the trait of interest (Boyle et al. 2017). The omnigenic model, formulated by Boyle et al. 109 

(2017), provides a plausible hypothesis to explain this. The interconnection of gene regulatory 110 

networks implies that the vast majority of expressed genes likely influence the functions of 111 

core genes directly linked to fitness-related traits. Nevertheless, the study of polygenic 112 

adaptation at the pathway level is useful to identify gene sets of special relevance for 113 

adaptation (Daub et al. 2013). In particular, polygenic adaptation at pathway level has been 114 

proved especially useful to study non-model species, as reliance on selective sweep models 115 

often led to poor inferences (Hämälä et al. 2020). For example, Mayol et al. (2020) detected 116 

signatures of polygenic selection at the pathway level in English yew (Taxus baccata L.) 117 

Taxus baccata and identified negative selection as an important mechanism driving the 118 

pathway-level signal. Similarly, negative selection has been identified as a pervasive 119 

mechanism determining the polygenic architecture of fitness-related traits in humans (Zeng et 120 

al. 2018; O’Connor et al. 2019). In particular, negative selection has been proposed to favor 121 

polygenicity in complex traits by removing large-effect variants, because of their deleterious 122 

effects, while small-effect variants would remain unaffected; a process named ‘flattening’, as 123 

the genetic signal is ‘flattened’ relative to the underlying biology (O’Connor et al. 2019).  124 

Despite theoretical advances and the development of new methods to study polygenic 125 

adaptation, the addressed questions remain constrained by the specific life-history traits of a 126 

few model species. Maritime pine (Pinus pinaster Ait.) is an ideal case study to investigate 127 
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polygenic adaptation in an ecologically and economically important group of species, the 128 

forest trees: it is a long-lived plant inhabiting nearly undomesticated random-mating 129 

populations with high genetic diversity (González-Martínez et al. 2002; Jaramillo-Correa et 130 

al. 2015). It expanded from several isolated glacial refugia, and it is now distributed across 131 

the western Mediterranean Basin and the European Atlantic front in scattered populations 132 

under contrasting environments (Bucci et al. 2007). In addition, an artificial clonal 133 

propagation program in maritime pine allowed us to estimate precisely variance components 134 

and investigate selective forces driving trait evolution under contrasting environments. 135 

Specifically, we i) tested the hypothesis that most complex adaptive traits in a long-lived plant 136 

are polygenic, providing a first estimate of the degree polygenicity in a forest tree, and ii) that 137 

their genetic architecture is mostly driven by negative selection. We then iii) investigated how 138 

these patterns change with time and through environmental settings, which is of special 139 

relevance for long-lived organisms, such as forest trees. 140 

Materials and Methods 141 

Clonal common garden network (CLONAPIN)  142 

We studied phenotypic variation in a clonal common garden network (CLONAPIN) 143 

composed of five sites covering the natural environmental range of maritime pine, from harsh 144 

Mediterranean climates to mild Atlantic ones. Common gardens comprise trees from 36 145 

populations, sampled across the species natural distribution and covering the six previously 146 

identified gene pools for this species (Jaramillo-Correa et al. 2015; Supplemental Figure S1). 147 

Open-pollinated seeds were collected in natural stands, and germinated in a nursery; then one 148 

seedling per open-pollinated family was selected and vegetatively propagated by cuttings 149 

(following Majada et al. 2011). A total of 535 genotypes (clones) belonging to 35 populations 150 

were used to establish four of the clonal common gardens (three sites in Spain: Cabada, 151 
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Cáceres and Madrid; and one in Portugal: Fundão; Table 1) with eight ramets per clone set in 152 

a randomized complete block design (N=4,273 trees). These clonal common gardens were 153 

planted in 2010. In 2011, a fifth common garden was established in Pierroton (France), 154 

comprising 443 clones from all 36 populations (N=3,434 trees). Common gardens in Cabada, 155 

Fundão and Pierroton are located in the Atlantic region, with high annual rainfall and mild 156 

temperatures. Common gardens in Cáceres and Madrid are located in continental areas under 157 

Mediterranean influence, with large seasonal temperature oscillations and a marked summer 158 

drought. In addition, clay soils in Cáceres hampered plant growth and diminished survival 159 

(Table 1).   160 

Phenotypic evaluation 161 

A total of 28 phenotypic trait-environment combinations were evaluated in this study. 162 

Assayed phenotypic traits were classified into five groups: survival, height, phenology-163 

related, functional, and biotic-stress response (see Supplemental Table S1 for an exhaustive 164 

list of the measured traits). In brief, tree survival and height were evaluated in the five 165 

common gardens (including different years in Pierroton, with measures taken in 2013, 2015, 166 

and 2018). Phenology-related traits were evaluated in the Atlantic sites only (Cabada, Fundão 167 

and Pierroton), including different years of evaluation in Pierroton (2015 and 2017). In 168 

Cabada and Fundão, growth phenology was estimated through the presence of polycyclism 169 

(i.e. the ability for a plant to produce several flushes in the same growing season; (Girard et 170 

al. 2011)) and a phenology growth index (1): 171 

Phenology Growth Index � ������ �	
��


����� �	
��

� ����� 
���
� ���� � ���� 
���
� �������

����� 
���
� ���� � ���� 
���
� �������
              (1) 172 

where may and dec correspond to the months May and December of the year n and the year n-173 

1, respectively. 174 
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In Pierroton, phenology of bud burst was estimated through a scale ranging from 0 to 5 (0: 175 

bud with no winter elongation, 1: elongation of the bud, 2: emergence of brachyblasts, 3: 176 

brachyblasts begin to separate, 4: elongating needles, 5: total elongation of the needles) (see 177 

Hurel et al. 2019). The first Julian day at each stage (S1 to S5) was scored for each tree. 178 

Julian days were converted into accumulated degree-days (with base temperature 0°C) from 179 

the first day of the year, to take into account the between-year variability in temperature. The 180 

number of degree-days between stages 1 and 4 defines the duration of bud burst. Daily mean 181 

temperatures to calculate accumulated degree-days were downloaded from the nearest 182 

climatic station (located just a few hundred meters from the common garden, station 183 

33122004 of the INRAE Agroclim database: https://www6.paca.inrae.fr/agroclim/Les-outils). 184 

Functional traits, including nitrogen and carbon content and isotopic composition (δ15N and 185 

δ
13C, respectively), as well as specific leaf area (SLA, a measure of leaf area per unit of dry 186 

mass), were evaluated in the common garden located in Fundão (Portugal). A bulk of five 187 

needles positioned 10 cm below the upper part of the shoot to avoid sampling bias (Warren et 188 

al. 2001) were sampled and prepared in a standard way for analysis (Brendel 2001). 189 

Determination of carbon content and isotopic composition was performed with a mass 190 

spectrometer at the University of Colorado isotope laboratory. Raw values were corrected by 191 

their position in the plate according to the standards, and this value was used for the 192 

subsequent analysis. SLA is an estimation of the compromise among light capture, CO2 193 

assimilation, and the restrictions imposed by water loss through transpiration (Sefton et al. 194 

2002). Low SLA suggests high leaf construction cost, and thus higher stress tolerance (Díaz et 195 

al. 2016). Thus, this key leaf trait is also associated with fitness components, such as tree 196 

survival (Greenwood et al. 2017). Given that there is a positive relationship between δ13C and 197 

water use efficiency (Farquhar and Richards 1984), δ13C has been widely used as a surrogate 198 

to study tree adaptation to water-limiting environments (e.g. Aranda et al. 2010; Walker et al. 199 
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2015). Similarly, δ15N is an indirect index related to the nitrogen cycle (Craine et al. 2015).  200 

Assessment of biotic-stress response in a high number of trees is logistically complex. 201 

Therefore, it was evaluated only for a subset of clones (see Supplemental Table S1) in the 202 

Pierroton common garden (France). This common garden was selected because of the 203 

importance of the Landes region in maritime pine breeding for wood production. Biotic-stress 204 

response was evaluated based on susceptibility to two major pine pathogens, Diplodia sapinea 205 

and Armillaria ostoyae, as well as the incidence of the defoliator pest, Thaumetopoea 206 

pityocampa (pine processionary moth) (see Hurel et al. 2019 for details). D. sapinea causes 207 

several diseases in conifers, which may be exacerbated under climate change and compromise 208 

pine forest health (Desprez-Loustau et al. 2006). Susceptibility to D. sapinea was evaluated 209 

following controlled inoculation as the lesion extent around the inoculated site (hereafter 210 

referred as necrosis) and a scalar notation of needle discoloration (0: no discoloration, 2: some 211 

needles around the necrosis were discolored, and 3: all needles around the necrosis were 212 

discolored). A. ostoyae is a conifer root pathogen causing growth cessation and eventually 213 

death (Heinzelmann et al. 2019). To evaluate the incidence of this pathogen, A. ostoyae 214 

mycelium culture was prepared in plastic jars. The level of humidity observed in the plastic 215 

jar was visually scored as dry, medium or humid. Susceptibility to A. ostoyae was assessed 216 

after controlled inoculation as the lesion length in the sapwood (i.e. wood browning, hereafter 217 

also referred as necrosis). We accounted for the potential influence of variation in humidity on 218 

wood browning by including the level of humidity in the jar as a covariate for A. ostoyae 219 

susceptibility analysis (see below). Finally, the pine processionary moth is an insect that 220 

rapidly defoliates pines leading to forest decline (Jacquet et al. 2013). The presence or 221 

absence of pine processionary moth nests in the tree crowns was assessed in March 2018. 222 

DNA extraction and SNP genotyping 223 
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Needles were collected from one ramet per clone in the Cabada common garden (N=523). 224 

Genomic DNA was extracted using the Invisorb® DNA Plant HTS 96 Kit/C kit (Invitek 225 

GmbH, Berlin, Germany). A 9k Illumina Infinium SNP array developed by Plomion et al. 226 

(2016b) was used for genotyping. This array was constructed using previously identified and 227 

newly in silico-developed SNPs, either from randomly screened EST sequences or 228 

specifically detected at candidate genes for adaptation to biotic and abiotic factors (see 229 

Plomion et al. 2016b for further details). Genotyped SNPs covered all 12 chromosomes of P. 230 

pinaster according to previous linkage mapping (Plomion et al. 2016b). For this study, 6,100 231 

SNPs were finally retained following standard filtering (GenTrain score > 0.35, GenCall50 232 

score > 0.15 and Call frequency > 0.85) and removal of SNPs with uncertain clustering 233 

patterns (visual inspection using GenomeStudio v. 2.0). Individuals with more than 15% 234 

missing data were also removed. This resulted in 5,165 polymorphic SNPs that were included 235 

in the estimation of molecular population differentiation (FST) and the polygenic association 236 

study. 237 

Quantitative genetics analysis 238 

Genetic components of the phenotypic variance were estimated using Generalized Linear 239 

Mixed-Effects Models (GLMM) fitted in a Bayesian framework using Markov chain Monte 240 

Carlo (MCMC) methods. The model, described in equation (2), was implemented for those 241 

phenotypic traits evaluated at multiple sites of the CLONAPIN common garden network (see 242 

Supplemental Table S1). To estimate the genetic control of the genotype-by-environment 243 

(G×E) interactions, the model described in equation (3) was fitted for those traits measured at 244 

all sites of the CLONAPIN common garden network (i.e. height and survival). 245 

����� �  � � �� � ���	�� � 
� � 
��	�� � �� � �� � 
����                        (2) 246 
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����� �  � � �� � ���	�� � 
� � 
��	�� � �� � 
� � �� � �� � 
����           (3) 247 

where, for a given trait y, µ denotes the overall phenotypic mean, Si refers to the fixed effect 248 

of site i, Bj represents the random effect of experimental block j nested within site i, Pk is the 249 

random effect of population k, C denotes the random effect of clone l nested within 250 

population k, and ε is the residual effect.  251 

Simplified models with or without covariates represented by equations (4) and (5) were 252 

implemented for phenotypic traits measured in just one site of the CLONAPIN common 253 

garden network (see Supplemental Table S1). 254 

���� �  � � �� � 
� � 
��	�� � 
���                     (4) 255 

���� �  � � �� � ��� � 
� � 
��	�� � 
���           (5) 256 

Where, for a given trait y, µ denotes the overall phenotypic mean, Bi represents the fixed 257 

effect of experimental block i, Pj is the random effect of population j, C denotes the random 258 

effect of clone k nested within population j, and ε is the residual effect. In the model 259 

represented by equation (5), cov represents a covariate implemented when modeling the 260 

presence of pine processionary moth nests (i.e. an estimate of tree height) and necrosis caused 261 

by A. ostoyae (i.e., level of humidity in the experimental jar).  262 

All models were fitted with the R package MCMCglmm (Hadfield 2010). Phenotypic traits 263 

showing Gaussian distributions where modeled using the identity link function, while 264 

phenotypic traits exhibiting a binomial distribution (survival, polycyclism, D. sapinea needle 265 

discoloration, and presence or absence of pine processionary moth) were modeled either with 266 

logit or probit link functions (see Supplemental Table S2 for an exhaustive list of model 267 

parameter specifications). Multivariate-normal prior distributions with mean centered at zero 268 

and large variance matrices (108) were used for fixed effects. For ordinal traits, a Gelman 269 
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prior for the variance of fixed effects was set, as suggested by Gelman et al. (2008). Inverse 270 

Wishart non-informative priors were used for the variances and covariances of random 271 

effects, with the matrix parameter V set to 1, and a parameter n set to 0.002 (Hadfield 2010). 272 

Parameter expanded priors were used to improve the chain convergence and mixing, as 273 

suggested by Gelman (2006) for models with near-zero variance components. Priors with a 274 

larger degree of belief parameter (n set to 1), specifying that a large proportion of the 275 

variation is under genetic control (as suggested by Wilson et al. 2010) did not change the 276 

results (data not shown). Models were run for at least 550,000 iterations, including a burn-in 277 

of 50,000 iterations and a thinning interval of 100 iterations. Four chains per model were run 278 

to test for parameter convergence. The potential scale reduction factor (psrf) was consistently 279 

below 1.02 for all the models (Supplemental Table S2) (Gelman and Rubin 1992). 280 

Variance components were then used to compute broad-sense heritability (H2) as (6):  281 

�� �
����� 

!

������ 
! �� 

!	
           (6) 282 

where �
���

�  is the variance among clones within populations and �


� the residual variance. 283 

For estimating broad-sense heritability for traits following a binomial distribution, we 284 

included an extra term in the denominator (+ π2/3) to account for implicit logit link function 285 

variance; similarly, we added one to the denominator to account for the probit link function 286 

(Nakagawa and Schielzeth 2010).  287 

The GLMMs described above were used to estimate genetic values using Best Linear 288 

Unbiased Predictors (BLUPs) (Henderson 1973; Robinson 1991). The genetic value of each 289 

clone was defined as the population BLUP plus the clone BLUP. BLUPs for G×E, were 290 

obtained from equation (3) and calculated following equation (7). 291 

� � � ���� � �∑ #$%&��� ���

' ���
� ∑ #$%&��� ���

' ���
� � �∑ #$%&����	 ���

' ���
� ∑ #$%&����	 ���

' ���
�          (7) 292 
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where BLUPpop atl is the population BLUP in sites under Atlantic climate (Cabada, Fundão, 293 

and Pierroton), BLUPpop med the population BLUP in sites under Mediterranean climate 294 

(Cáceres and Madrid), BLUPclone atl the clone BLUP in sites under Atlantic climate, 295 

BLUPclone med, the clone BLUP in sites under Mediterranean climate, N atl the number of 296 

sites under Atlantic climate, and N med the number of sites under Mediterranean climate. 297 

Parameter estimates from quantitative genetics analyses are presented as the mode of the 298 

posterior distribution; 95% credible intervals were computed as the highest density region of 299 

each posterior parameter distribution. 300 

QST-FST comparison 301 

Molecular population differentiation (FST) was estimated according to Weir and Cockerham 302 

(1984) using the 5,165 SNPs from the Illumina Infinium SNP array and the diveRsity R 303 

package (Keenan et al. 2013). The 95% confidence interval of the global FST estimate was 304 

computed by bootstrapping across loci (1,000 bootstrap iterations). Quantitative genetic 305 

differentiation among populations was calculated following Spitze (1993) using the variance 306 

components estimated from the previously described models (equations 2-5):  307 

�() �
�*�*

!

�*�*
! ������� 

!            (8) 308 

where ����
�  is the variance among populations, and �
���


�  is the variance among clones within 309 

populations. Quantitative (QST) and molecular (FST) genetic differentiation among populations 310 

were considered significantly different when QST and FST posterior distributions had non-311 

overlapping 95% confidence intervals. 312 

Polygenicity across traits, years and environments 313 

Polygenicity was evaluated as the proportion of SNPs with non-zero effects on phenotypic 314 
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traits. First, we conducted posterior inference via model averaging and subset selection 315 

(VSR), as implemented in piMASS software (Guan and Stephens 2011). This method allows 316 

to identify combinations of SNPs likely affecting a phenotype and to estimate the proportion 317 

of trait variance explained by the SNPs in the data set. Hereafter, we referred to this quantity 318 

as the genetic explained variance (GEV), which, in this study, represents the BLUP variance 319 

explained by SNP additive effects. Second, we used the Bayesian mixed linear model (MLM) 320 

framework developed by Zeng et al. (2018) as implemented in CGTB 2.0 software. This last 321 

model simultaneously estimates: i) SNP-based heritability (considering the SNPs with non-322 

zero effects on the trait), hereafter referred as GEV, analogously to VSR estimates, ii) 323 

polygenicity (as defined above), and iii) the relationship between SNP effect-size and minor 324 

allele frequency (S, a common indicative of negative selection). When negative selection is 325 

operating, S is expected to be negative, as most new mutations are deleterious and high-effect 326 

SNPs are kept at low frequencies. Estimates with 95% credible intervals of parameter 327 

posterior distributions not overlapping zero were considered as significant. Prior to these 328 

analyses, neutral population genetic structure was accounted for by running linear models 329 

relating the genetic values for each trait (with site and block effects removed) to the admixture 330 

coefficients for each clone (Q-scores) obtained using a STRUCTURE run for K=6 based on 331 

neutral markers (see Jaramillo-Correa et al. 2015 for further details). From this linear model, 332 

we extracted the normalized residuals for each trait, as recommended in piMASS manual. 333 

Analyses were run separately for different traits, years, and environments (see Supplemental 334 

Table S1). VSR models were run for 2,000,000 iterations with a burn-in of 100,000 iterations 335 

and a thinning interval of 100. After several preliminary runs, the maximum number of SNPs 336 

included in VSR models was fixed to 2,000 (i.e. maximum allowed polygenicity of ~40%). 337 

MLM models were run for 500,100 iterations, including a burn-in of 100 iterations, and a 338 

thinning interval of 10 iterations. Parameter estimates from both VSRs and MLMs were 339 
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presented as the median of the posterior distribution, instead of the mode, for better handling 340 

of bimodal distributions (Supplemental Figure S2). The 95% credible intervals were 341 

computed as the highest density region of the posterior parameter distribution, as above. 342 

Annotation and gene function enrichment at pathway level 343 

The transcripts containing the 5,165 polymorphic SNPs were downloaded from SustainPine 344 

v.3.0 database (Canales et al. 2014). DNA sequences were translated with BioEdit v. 7.2.6 345 

(Hall 1999) and submitted to BlastKOALA (Kanehisa et al. 2016) for annotation and 346 

functional characterization using InterPro annotations, GO terms, and KEGG pathway 347 

identification. Annotations were compared with those available at SustainPine, and 348 

conflicting cases were examined individually by privileging similarity to genes correctly 349 

identified in other conifers or forest trees. Contigs with no clear annotations (e.g. hypothetical 350 

or unknown proteins, or unsolved conflicting annotations) were removed from the database. 351 

For the retained contigs, the top-two KEGG terms were used for assignation to one or more 352 

specific metabolic pathways/modules based on KEGG orthology. Genes for which no hit with 353 

KEGG database was found, were assigned to metabolic pathways/modules based on the 354 

InterPro annotation. We privileged metabolic pathways/modules that could be unequivocally 355 

assigned to a given phenotypic response (e.g. circadian rhythm to bud phenology or pathogen 356 

interaction to biotic stress response) or linked to various stress responses (e.g. DNA 357 

recombination and repair, ubiquitin system or transcription factor machinery to survival and 358 

biotic stress response). In total, seventeen pathways/modules were retained containing a total 359 

of 628 (19.7% out of 3,194) genes, with 1,233 polymorphic SNPs (Supplemental Table S3). 360 

For enrichment tests using polysel (Daub et al. 2013), the seventeen pathways/modules were 361 

defined as gene sets. First, we computed two statistics at the gene level (i.e. objStat in polysel) 362 

based on the per-SNP estimates obtained from the VSR implemented in piMASS: the 363 
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maximum, over all SNPs included in a gene, of the Rao-Backwellized posterior probability of 364 

inclusion maxpostrb, and the maximum of the absolute value of Rao-Backwellized effect size 365 

maxabsbetarb. To account for a weak correlation of these statistics with the number of SNPs 366 

per gene, we used the AssignBins and RescaleBins functions in polysel, which automatically 367 

assigns gene scores (objStat) into bins defined from the number of SNPs per gene. We then 368 

rescaled scores within bins and computed the sum(objStat) of each statistic over all genes per 369 

gene set. Since the sum(objStat) for random gene sets (sizes n = 10, 50, 250 genes) was not 370 

normally distributed, we built empirical null distributions by randomly sampling gene sets of 371 

the same size as the sets to be tested. Then, we performed one-sided tests evaluating whether 372 

the observed sum(objStat) was smaller than the 5th or larger than the 95th percentile of the 373 

sum(obStat) null distribution. Higher-tail significant results for maxpostrb indicate gene sets 374 

enriched with higher overall probability of being selected during the VSR procedure 375 

implemented in piMASS. Higher-tail significant results for maxabsbetarb points to gene sets 376 

enriched with higher overall SNP effect-sizes. Contrarily, lower-tail significant results for 377 

both statistics suggests conserved gene sets, containing genes with smaller overall probability 378 

of inclusion or SNP effect-size estimates. We report p-values based on this comparison, as 379 

well as q-values from a False Discovery Rate (FDR) approach implemented in the R package 380 

qvalue (R Core Team 2019). The level of connection between gene sets was weak with only 381 

four genes associated with more than one gene set (633 gene – gene set combinations for 628 382 

genes). For this reason, we did not assess enrichment for pruned gene sets (see Daub et al. 383 

2013). 384 

Results 385 

Broad-sense heritability and genetic differentiation among populations  386 
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All traits had low to moderate estimates of broad-sense heritability (Supplemental Table S1), 387 

with the exception of nitrogen and carbon amount that did not show genetic variation. 388 

Consequently, polygenic association methods failed to converge for these two traits and they 389 

were excluded from further analyses. H2 ranged from 0.32 for bud burst measured in 2015 to 390 

zero for survival in the French Atlantic environment in 2013. Interestingly, survival showed 391 

significant estimates of H2 only in the sites under (harsher) Mediterranean climate. The 392 

highest H2 estimates were observed for phenology-related traits followed by tree height. H2 for 393 

a given trait varied across environments (e.g. height, survival and phenology-related traits) but 394 

showed little variation across years (Supplemental Table S1). 395 

The global FST was 0.112 (95% confidence interval: 0.090 - 0.141). All groups of phenotypic 396 

traits, excepting survival, had at least one trait with statistically higher QST than FST 397 

(Supplemental Table S1). The highest QST was obtained for susceptibility to D. sapinea 398 

infection measured as necrosis length, followed by δ13C and tree height, which also showed 399 

similar QST values across environments and tree ages (Figure 1).   400 

Genetic architecture (polygenicity) of adaptive traits 401 

Polygenicity estimates were consistent between the VSR and MLM methods (Supplemental 402 

Table S4). Both methods showed substantial polygenic control for most of the phenotypic 403 

traits, with an average of 6% (0-27%) of the genotyped SNPs having non-zero effects. 404 

Significant polygenicity was found in all five trait categories for at least one trait (Figures 2 405 

and 3; Supplemental Table S4). Polygenicity for height was stable across environments and 406 

years, when measured multiple times under the same environment (i.e. in the French Atlantic 407 

common garden) (Figure 3). Along the same line, polygenicity for phenology-related traits 408 

and tree survival also remained stable across environments, although 95% credible intervals 409 

overlapped zero in some cases. The low polygenicity values observed for survival in the 410 
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French Atlantic common garden are probably a consequence of the low levels of phenotypic 411 

variability in this site, with almost no mortality (97.12% of planted trees were alive at the 412 

evaluation time, Supplemental Table S1). Polygenicity was heterogeneous for biotic-stress 413 

response and functional traits (Figure 2). For instance, susceptibility to D. sapinea was more 414 

polygenic than to A. ostoyae or than incidence of pine processionary moth. For functional 415 

traits, SLA and δ15N showed the highest levels of polygenicity, while δ13C showed a 416 

considerably lower proportion of SNPs with non-zero effects. 417 

In addition, GEV was consistent between methods, although VSR tended to render higher 418 

values (Supplemental Table S4). On average GEV was 0.38 across traits, with a minimum of 419 

0.018 for survival in the French Atlantic environment in 2018, and a maximum of 0.99 for D. 420 

sapinea necrosis. GEV estimated with the VSR method for the G×E component on tree height 421 

(considering Atlantic versus Mediterranean environments) was low but significant (median = 422 

0.238, 95% credible interval = 0.043 - 0.409), indicating some SNPs with significant effects 423 

on growth plasticity. However, this result could not be confirmed with the MLM method. 424 

Moreover, GEV for the G×E component on tree survival was not significant with any model. 425 

Polygenicity and GEV were positively and consistently correlated for both VSR and MLM 426 

models (Figure 4). This positive correlation suggested that SNP-based heritability is mainly 427 

determined by genetic variants with similarly small effects, and that differences in 428 

polygenicity across traits are mostly accounting for differences in explained genetic variance, 429 

rather than the distribution of SNP effect-size (Supplemental Figures S2 and S3). 430 

Evidence of negative selection 431 

The correlation between SNP effect-size and minor allele frequency (MAF), S, was used to 432 

identify the type and mode of natural selection acting upon phenotypic traits. Out of the 28 433 

assayed traits, we were able to estimate S through the MLM method for 19 of them. Estimates 434 
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ranged from -1.68 (bud burst in 2017) to 0.55 (tree survival in French Atlantic environment), 435 

but only seven traits from four out of five trait categories (survival, height, phenology-related, 436 

and functional traits) were significant (Figure 5). No significant effect was observed for any 437 

trait belonging to the biotic-stress response category. Remarkably, all seven significant 438 

estimates of S were negative (ranging from -1.68 for bud burst in 2017 to -0.99 for survival in 439 

the Iberian Atlantic environment). 440 

Estimates of S for height were consistent across years and environments. However, S 441 

estimated for tree survival was only significant in the Iberian Atlantic environment. For 442 

phenology-related traits, S was significant only for bud burst measured in 2017 (Figure 5). 443 

These results contrast with the consistent level of polygenicity for all these traits across years 444 

and environments. Interestingly, our results suggest a stable polygenic architecture, but an 445 

environment and year-dependent impact of negative selection at some traits. 446 

Gene function enrichment at pathway level 447 

Tests for gene function enrichment at the pathway level provided significant results for 448 

survival in the Iberian Atlantic environment, phenology-related and biotic-stress response 449 

traits, and height in the French Atlantic and Mediterranean environments. Genes coding for 450 

transcription factors showed higher probability of being included in the VSR models 451 

(maxpostprb) and higher estimated SNP effect-sizes (maxabsbetarb) for survival in the 452 

Iberian Atlantic environment (Table 2). Two gene sets associated to bud burst in 2015 showed 453 

signals of polygenic selection: monolignol biosynthesis, which had high overall values of both 454 

maxpostprb and maxabsbetarb, and glycan metabolism, which showed low overall 455 

maxabsbetarb estimates (Table 2). Furthermore, phenology growth index was associated with 456 

enrichment for genes related to cell growth and death, DNA recombination and repair and UV 457 

response, which mostly have low maxabsbetarb values (Table 2). D. sapinea susceptibility 458 
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was associated with enrichment of genes, with high overall maxabsbetarb and maxpostprb, in 459 

the ubiquitin system for D. sapinea necrosis, and in the signal transduction and flavonoid 460 

biosynthesis gene sets for D. sapinea needle discoloration (Table 2). Interestingly, height was 461 

enriched for genes from different pathways when measured in contrasting environments. For 462 

instance, in the French Atlantic environment genes coding for transcription factors showed 463 

high maxabsbetarb and maxpostprb, while genes within the cytoskeleton pathway showed 464 

overall low maxabsbetarb values in the Mediterranean environment. 465 

Discussion 466 

Unraveling the genetic architecture of adaptive traits is challenging because of the difficulty 467 

to identify variants with small effect-sizes using GWAS. Here, we addressed this challenge 468 

obtaining precise phenotypic information (over 12,500 trees were evaluated) for an extensive 469 

number of fitness-related traits measured on clonal replicates. Specifically, we tested if a high 470 

proportion of the genetic variance of fitness-related traits in a long-lived forest tree (maritime 471 

pine) can be explained by a large number of small size-effect variants, in line with the 472 

polygenic adaptation model. We also tested whether negative selection is pervasive for such 473 

polygenic traits. Our results showed patterns of local adaptation for most of the analyzed 474 

traits, highlighting its relationship with fitness, and also revealed a high and remarkably stable 475 

degree of polygenicity, across traits, years, and environments. Moreover, using two 476 

complementary multilocus approaches we accounted for a considerable proportion of the 477 

heritability estimated for these highly polygenic traits, and identified negative selection as a 478 

key driver of local adaptation. 479 

Evidence of local adaptation in maritime pine 480 

All phenotypic categories presented significant within-population genetic variation (i.e. 481 

broad-sense heritability), and were consequently susceptible to respond to natural selection 482 
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(Visscher et al. 2008). Estimates of heritability were consistent with previous results for these 483 

traits in forest trees (reviewed by Lind et al. 2018). In addition, our results were consistent 484 

with adaptive differentiation (QST > FST) for 11 out of 26 analyzed traits, involving four out of 485 

the five trait categories (no evidence for survival traits). These results are in accordance with 486 

reports of pervasive local adaptation in forest trees (Savolainen et al. 2007, 2013; Alberto et 487 

al. 2013; Lind et al. 2018).  488 

The stability of QST estimates for height across environments and years highlights the strength 489 

of directional selection for height in this species; a trait that can thus be used for the 490 

delimitation of conservation and management units (Rodríguez-Quilón et al. 2016). 491 

Contrarily, phenology-related traits showed contrasting estimates of QST depending on the 492 

environment and year of measurement. This result highlights that the evolutionary forces 493 

driving population genetic differences in phenology-related traits are environmentally and 494 

temporally-dependent, which can slow-down attaining phenotypic optima under rapidly 495 

changing climates. Polygenic adaptation could be specially relevant for these traits because it 496 

can produce rapid phenotypic changes, as it only requires small adjustments in allele 497 

frequencies in the contributing loci rather than selective sweeps on new mutations (Jain and 498 

Stephan 2017; Dayan et al. 2019; Wisser et al. 2019). 499 

Unexpectedly, survival, a trait directly related with a component of fitness (i.e. viability), did 500 

not show evidence of local adaptation in maritime pine. The low levels of phenotypic 501 

variability observed for survival in this study may explain these results. Future studies should 502 

focus on quantitative evaluations of survival (e.g. adding a time-frame, such as time until 503 

death or order of dead trees) to better gather the complexity of this trait, and be able to discern 504 

genetic differences among populations. The strong selective pressure in the Mediterranean 505 

region exacerbated genetic differences in survival among clones and resulted in slightly 506 

higher estimates of heritability (similarly to Gaspar et al. 2013). Additionally, we observed 507 
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significant phenotypic plasticity for height and survival, the two traits measured in all five 508 

experimental sites. While our results hinted a heritable component for plasticity, this question 509 

still deserves further investigation to elucidate the importance of phenotypic plasticity in the 510 

adaptive response of maritime pine to changing environmental conditions (Alía et al. 2014; 511 

Vizcaíno-Palomar et al. 2019).   512 

Two traits in particular had remarkably high levels of adaptive genetic differentiation among 513 

populations, δ13C and D. sapinea necrosis (Figure 1), but genetic variation within populations 514 

was low, compromising their adaptive potential. These traits deserve special attention because 515 

of the implication of water-use efficiency in drought resistance (reviewed by Plomion et al. 516 

2016a) and the new pathogenic outbreaks of D. sapinea expected on maritime pine 517 

plantations fostered by climate change (Fabre et al. 2011; Brodde et al. 2019). In contrast to 518 

our findings, a lack of adaptive genetic differentiation for δ13C was previously reported for 519 

maritime pine by Lamy et al. (2011), as well as for broad-leaved trees (Torres-Ruiz et al. 520 

2019). Although this disagreement may be influenced by the much larger number of 521 

populations we analyzed (see Whitlock and Guillaume 2009) as compared to Lamy et al. 522 

(2011), we cannot rule out discrepancies due to the estimation of total genetic variance in our 523 

study (i.e. based on clones), instead of additive genetic variance. Nevertheless, non-additive 524 

genetic effects in maritime pine traits related to drought resistance have been reported to be of 525 

little importance (Gaspar et al. 2013), and they should not have affected our estimates. 526 

Genetic architecture (polygenicity) of fitness-related traits  527 

Most traits assessed had a considerable degree of polygenicity, ranging between 4-15%, 528 

which is on the same order of magnitude as for humans (Zeng et al. 2018). Polygenicity was 529 

relatively similar across all analyzed traits and therefore did not depend on the level of genetic 530 

control, as estimated by heritability through quantitative genetic analysis. Mei et al. (2018) 531 
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observations in humans predicted different genetic architectures as a function of genome size. 532 

Surprisingly, although the maritime pine genome is more than seven times larger than that of 533 

humans (De La Torre et al. 2014), we found similar estimates of polygenicity between both 534 

species. The distributions of SNP effect-sizes showed that hundreds of SNPs with near-zero 535 

effect-size contributed together to shape phenotypic differences among clones. This highly 536 

polygenic architecture could be explained by the omnigenic model (Boyle et al. 2017). 537 

Indeed, as in humans, we expect high biological complexity and interconnectivity of gene 538 

expression networks in forest trees, resulting in the association of virtually all expressed genes 539 

in relevant tissues with the observed phenotypes (Wray et al. 2018). However, this 540 

explanation would not account for the lack of high effect-size SNPs in our data set composed 541 

mostly of SNPs from candidate genes (see below).  542 

The implementation of polygenic adaptation studies outside of humans is slowly emerging 543 

(Csilléry et al. 2014; He et al. 2016; Lind et al. 2017; Barghi et al. 2019; Friedline et al. 2019; 544 

Wisser et al. 2019), providing increased evidence that polygenic adaptation in complex traits 545 

may be pervasive (Sella and Barton 2019). As a result, new evolutionary questions relevant 546 

for different organisms are arising. For instance, in forest trees, for which local adaptation is 547 

frequently observed (Savolainen et al. 2007, 2013; Alberto et al. 2013; this study), the 548 

contribution of alleles with small effect-size and selection coefficients (and therefore more 549 

prompted to be swamped by gene flow) to shaping local adaptation is a question that remains 550 

open (Yeaman 2015). Another fundamental question, in particular for conifers, is the role of 551 

genetic redundancy. It has been suggested that genetic redundancy favors polygenic 552 

adaptation and speed up the achievement of phenotypic optima through multiple genetic 553 

pathways leading to similar phenotypes (Höllinger et al. 2019; Barghi et al. 2019). 554 

Unraveling this relationship in conifers, whose genomes are characterized by a high number 555 

of paralogs (Diaz-Sala et al. 2013), may shed new light about how rapidly these taxa can 556 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.03.02.974113doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

adapt to environmental changes. Moreover, the influence of genome size in the genetic 557 

architecture of fitness-related traits, as well as the relationship between heritability and 558 

polygenicity, deserve further investigation including a better coverage of conifer genomes, as 559 

well as improved knowledge of non-coding regions (Mackay et al. 2012).  560 

Recent studies in human height (a classic example of polygenic adaption) have suggested that 561 

detecting polygenicity may be affected by subtle biases in GWAS caused by population 562 

structure (Berg et al. 2019a; Sohail et al. 2019). In our study, the clonal common garden 563 

network allowed separating the genetic and the environmental effect on phenotypes to 564 

identify which traits are contributing to adaptation. In addition, we corrected the BLUPs 565 

estimates for the effect of neutral population genetic structure. In this sense, our work 566 

highlights the potential of combining precise estimation of the genetic effect on phenotypes 567 

with multi-locus genotype-phenotype association models to elucidate the mechanisms that 568 

allow the maintenance of genetic variation in adaptive traits, especially in species with 569 

complex demographic history. Undoubtedly, next steps to decipher polygenic adaptation in 570 

species with varied life-history traits should implement upcoming polygenic association 571 

methods that directly correct for population stratification (e.g. Josephs et al. 2019).  572 

Performance of polygenic adaptation approaches (VSR and MLM)  573 

We evaluated the performance of polygenic approaches (VSR and MLM) through the 574 

comparison of SNP-based genetic variance estimates, GEV. Despite some slight differences, 575 

notably for biotic-stress response traits that were limited by low sample sizes, both methods 576 

were robust and provided consistent estimations. The large proportion of the genetic variance 577 

explained by SNP-based models, usually higher than 50%, suggests that, by adopting a 578 

polygenic analytical model, we were able to account for a significant part of the heritability 579 

inferred through pedigree-based analysis, even when using a modest number of SNPs. It is 580 
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worth noting that the performance of polygenic models did not depend on the estimated 581 

degree of heritability, as evidenced by the absence of correlation between GEV and H2 (ρ = 582 

0.04 for VSR, ρ = -0.05 for MLM, p > 0.05 in both cases). For instance, polygenic models 583 

allowed to explain around 45% of the broad-sense heritability, also for low-heritable traits, 584 

such as survival in Mediterranean sites, polycyclism, and SLA. GEV can be interpreted as an 585 

analogous of the SNP-based heritability, with the particularity that GEV refers to proportion 586 

of the variance in genetic values, rather than on the phenotypic values that are explained by 587 

associated SNPs (see Materials and Methods for further details). SNP-based heritability is 588 

becoming a fundamental parameter in quantitative genetics because it can yield insights into 589 

the ‘missing heritability’ of complex traits (Hou et al. 2019). In this sense, our study shows 590 

that polygenic approaches can be a promising strategy to account for a significant part of this 591 

missing heritability that is commonly observed in GWAS in forest trees (reviewed by Hall et 592 

al. 2016; Lind et al. 2018). 593 

However, insights provided by SNP-based estimations of GEV should be interpreted with 594 

caution. First, because maritime pine has a huge genome size (around 28 Gbp; Grotkopp et al. 595 

2004; Zonneveld 2012) and a rapid decay in linkage disequilibrium (Neale and Savolainen 596 

2004), a larger number of genotyped SNPs should be needed to obtain a good genomic 597 

coverage. And second, because rare variants are usually difficult to incorporate in genotyping 598 

platforms, such as the one used in our study. Such rare variants may indeed account for an 599 

important proportion of the heritability in complex traits (Young 2019). Even though further 600 

investigations are needed to draw stronger conclusions, robust and consistent estimates of 601 

polygenicity across methods were fostered herein by a precise phenotypic evaluation in a 602 

large number of individuals (over 12,500 trees).  603 

Stability of polygenicity estimates across environments and years 604 
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The temporal and spatial heterogeneity of selection can impact the evolution of the genetic 605 

architecture underlying adaptation (Sella and Barton 2019). Monitoring the patterns of genetic 606 

architecture not only across environments but also across years is an important issue in long-607 

lived forest trees that may experience changing selection pressures along their lifetimes. In 608 

this sense, our study is not only a validation of the polygenic adaptation model in a new 609 

organism, but a contribution to improving our understanding of adaptation. Surprisingly, the 610 

estimated degree of polygenicity remained stable across environments for all trait categories, 611 

especially tree height. Additionally, we observed highly stable genetic architectures for 612 

height, phenology, and survival across years. For the case of tree height, polygenicity was 613 

highly stable for three time-point measures along a time-span of 6 years, comprising seedling 614 

and juvenile stages, during which trees are more vulnerable and selection pressure are more 615 

pronounced (Leck et al. 2008). However, analysis of gene function enrichment (see below) 616 

suggests that different genetic pathways could be underlying phenotypic variation in 617 

contrasting environments.  Moreover, differences in gene expression may also underlie 618 

adaptation under different environments and years (Mähler et al. 2017; Hämälä et al. 2020) .  619 

The role of negative selection in polygenic adaptation 620 

All significant correlations between SNP effect-size and MAF were negative (for tree height, 621 

bud burst and SLA), suggesting a genetic architecture modeled, at least partially, by the action 622 

of negative selection, i.e. SNPs with large effects are rare because they mostly have 623 

deleterious effects and are thus selected against (O’Connor et al. 2019). The MLM method 624 

did not allow elucidating whether negative estimates of S were the consequence of an 625 

enrichment of trait-increasing or trait-decreasing alleles (Zeng et al. 2018), but it certainly 626 

suggests that these traits have been under some form of negative selection. The effect of 627 

purifying selection is widespread in model plant genomes (Wright and Andolfatto 2008), and 628 

it has been largely evidenced in trees (Krutovsky and Neale 2005; Palmé et al. 2009; Eckert et 629 
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al. 2013; De La Torre et al. 2017; Grivet et al. 2017). Indeed, negative selection, and its 630 

variation across populations and through time, has been pointed out as a main cause for 631 

maintaining polygenicity (Zeng et al. 2018; O’Connor et al. 2019). Thus, negative selection 632 

may also explain, at least partially, the degree of polygenicity observed for fitness-related 633 

traits in maritime pine (but see below), as well as the absence of large effect-size SNPs in 634 

previous association studies for this species (Lepoittevin et al. 2012; Budde et al. 2014; Hurel 635 

et al. 2019). 636 

Nevertheless, strikingly, the negative selection patterns observed across environments and 637 

years did not mimic the trend observed for polygenicity. That is, negative selection was 638 

consistently inferred for height, but its strength changed across environments and years for 639 

survival and phenology-related traits. This uncoupling between negative selection and 640 

polygenicity may result from the fact that our limited coverage of maritime pine genome did 641 

not account for (most) rare variants, which can considerably affect S estimates (Zeng et al. 642 

2018). In addition, polygenic adaptation generally results in highly stochastic genetic 643 

responses driven by non-predictable changes in allele frequencies (Zhang et al. 2013). 644 

Finally, we detected signals of gene enrichment for 10 pathways that had higher values of 645 

maximum SNP effect-size or higher posterior probability of being included in the polygenic 646 

models: height in the French Atlantic environment and survival in the Iberian Atlantic 647 

environment were enriched for genes coding for transcription factors, bud burst in 2015 for 648 

genes within the monolignol biosynthesis pathway, and D. sapinea susceptibility (considering 649 

both the induced necrosis and needle discoloration) for genes within the ubiquitin system, 650 

signal transduction and flavonoid biosynthesis pathways. Assuming that evolution of these 651 

pathways is driven by negative selection, these patterns could be interpreted as a consequence 652 

of the accumulation of (slightly) deleterious alleles, resulting in higher proportions of SNPs 653 

with non-zero effect-size on these phenotypic traits. This higher tolerance to retain deleterious 654 
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mutations could be explained by a high genetic redundancy (Nowak et al. 1997; Krakauer and 655 

Nowak 1999). Otherwise, if we were to assume a higher impact of positive than negative 656 

selection, the observed patterns would imply an accumulation of beneficial mutations in these 657 

pathways, which is a hypothesis worth exploring using sequence-based neutrality tests in 658 

future studies.  659 

Another five pathways were enriched in lower effect-sizes alleles: genes involved in 660 

cytoskeleton were linked with height in the Mediterranean environment, those in the glycan 661 

metabolism pathway were associated with bud burst in 2015, and those for cell growth and 662 

death, DNA recombination and repair, and UV response were associated with phenology 663 

growth index. These pathways perform general functions and could be constituted by 664 

functionally important genes. In this case, the observed patterns suggest higher genetic 665 

constraints on these functionally important genes, for which negative selection should be 666 

highly efficient (Wright and Andolfatto 2008). Interestingly, our results suggest that even for 667 

stable estimates of polygenicity, different gene pathways could underlie polygenic adaptation 668 

for height in contrasting environments. Finally, although our gene enrichment analysis 669 

revealed some pathways with stronger evidence for polygenic adaptation, we cannot discard 670 

the influence of other (non-studied) gene pathways, as pointed by the omnigenic theory 671 

(Boyle et al. 2017). 672 

Conclusions 673 

The study of genetic adaptation is currently facing new challenges. The advancement of 674 

GWAS relies on the development of methods able to detect causal variants of small effect-675 

size, or at low allele frequencies. Our study, adopting a polygenic adaptation model on well-676 

characterized maritime pine clones planted in contrasted environments, contributed to a better 677 

understanding of the heritability of complex adaptive traits in long-lived organisms, and its 678 
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underlying genetic architecture. Our results showed that most complex adaptive traits are 679 

polygenic, with several of them showing also signatures of negative selection. The degree of 680 

polygenicity was similar for traits spanning different functional categories, and this genetic 681 

architecture was considerably stable over time and across environments. Current models for 682 

predicting population trajectories in forest trees under climate change are based on 683 

identification of outlier SNPs with relatively large effects on phenotypes and/or strong 684 

correlation with climate variables (e.g. Jaramillo-Correa et al. 2015; Rellstab et al. 2016; Lu 685 

et al. 2019). Because polygenic adaptation can take place rapidly (see, for example, Jain and 686 

Stephan 2017), current prediction models are probably underestimating the capacity of natural 687 

forest tree populations to adapt to new environments. Thus, adopting a polygenic adaptation 688 

perspective could significantly improve prediction accuracy, and provide new scenarios to 689 

inform forest conservation and reforestation programs (Valladares et al. 2014; Fady et al. 690 

2016). Also, a better understanding of the genetic architecture of economically valuable 691 

polygenic traits can improve genomic-assisted breeding, and allow building better genomic 692 

selection models (Grattapaglia et al. 2018). 693 
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Supplemental material 718 

Table S1. Phenotypic data summary and quantitative genetic analysis. Vg stands for 719 

genetic variance (posterior mean of the variance explained by clone effect), H2 stands for 720 

broad-sense heritability and QST for genetic differentiation among populations (posterior mode 721 

and 95% credible interval are presented). 722 

Table S2. MCMCglmm Bayesian model parametrization. Psrf stands for the Gelman-723 

Rubin potential scale reduction factor criterion, a measure of model convergence. Good 724 

convergence of models is expected for psrf < 1.02. 725 
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Table S3. List of genes included in the 17 gene sets considered for gene function 726 

enrichment at pathway level. Annotation based on KEGG: Kyoto Encyclopedia of Genes 727 

and Genomes (https://www.genome.jp/kegg/) is also provided. Annotation label indicates 728 

genes for which no hit with KEGG database was found and thus were assigned to metabolic 729 

pathways/modules based on the InterPro annotation. 730 

Table S4. Number of non-zero effect-size SNPs (nbnon-zero) and genetic explained 731 

variance (GEV) estimated using Bayesian variable selection regression (VSR), as 732 

implemented in piMASS software, and the Bayesian linear mixed model, MLM, 733 

implemented in GCTB software. For MLM, the coefficients of correlation between SNP 734 

effect-size and minor allele frequency (S) are also provided. The parameters are presented as 735 

the posterior median and 95% credible intervals. Estimates not overlapping zero are marked 736 

in bold. NA: models that did not converge. 737 

Figure S1. Sampled maritime pine populations (circles) and common garden sites (other 738 

symbols). Neutral gene pools (identified in Jaramillo-Correa et al. 2015) outline the species 739 

natural distribution range in different colors.  740 

Figure S2. Posterior distribution of the number of non-zero size-effect SNPs for 26 traits 741 

belonging to five categories: survival, height, phenology-related, functional, and biotic-742 

stress response traits. The number of non-zero size-effect SNPs was estimated through two 743 

Bayesian methods: posterior inference via model averaging and subset selection (VSR), as 744 

implemented in the software piMASS (Guan and Stephens 2011), and the Mixed Linear 745 

Model (MLM) implemented in the software CGTB (Zeng et al. 2018). The posterior median 746 

is indicated with a dashed line. 747 

Figure S3. Posterior distribution of SNP effect-sizes for 26 traits belonging to five 748 

categories: survival, height, phenology-related, functional, and biotic-stress response 749 
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traits. SNP effect-size was estimated through two Bayesian methods: posterior inference via 750 

model averaging and subset selection (VSR), as implemented in the software piMASS (Guan 751 

and Stephens 2011), and the Mixed Linear Model (MLM) implemented in the software CGTB 752 

(Zeng et al. 2018).  753 

754 
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Table 1. CLONAPIN common garden network (5 sites). Climatic data correspond to the mean of each parameter for the period 2005-2014 

obtained from the EuMedClim database (Fréjaville and Benito Garzón 2018). 

Site Country Coordinates Environment Plantation 

year  

N trees 

(clones) 

Annual 

precipitation 

(mm) 

Summer 

precipitation 

(mm) 

Annual mean 

temperature 

(ºC) 

Annual 

temperature 

range (ºC) 

Soil type 

 

Cabada Spain 43°25’17” N 

06°32’38” W 

Iberian 

Atlantic 

2010 4,272 

(535) 

890 126 12.9 24.0 Cambisol 

Fundão Portugal 40°06’38” N 

07°28’58” W 

2010 4,272 

(535) 

1122 58 14.0 26.9 Cambisol 

Pierroton France 44°44’42” N 

00°47’04” W 

French 

Atlantic 

2011 3,434 

(443) 

933 199 13.8 26.7 Arenosol 

Madrid Spain 40°30’47” N 

03°18’44” W 

Mediterranean 2010 4,272 

(535) 

378 35 14.8 32.8 Arenosol 

Cáceres Spain 40°02’24” N 

05°22’19” W 

2010 4,272 

(535) 

374 21 16.7 32.6 Fluvisol 
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Trait Environment Gene set Statistic tested Sign of 
enrichment 

p-value  q-value 
(<0.10) 

Height  French Atlantic Transcription factor maxabsbetarb Higher 0.003 0.05 
  maxpostprb Higher 0.004 0.07 

 Mediterranean Cytoskeleton maxabsbetarb Lower 0.003 0.06 
Survival  Iberian Atlantic Transcription factor maxabsbetarb Higher 0.001 0.01 

  maxpostprb Higher <0.001 0.005 
Bud burst 2015 French Atlantic Monolignol biosynthesis maxabsbetarb Higher 0.003 0.05 

 Monolignol biosynthesis maxpostprb Higher 0.005 0.08 
 Glycan metabolism maxabsbetarb Lower 0.040 0.09 

Phenology growth 
index 

Iberian Atlantic Cell growth and death maxabsbetarb Lower 0.010 0.03 
 DNA recomb and repair maxabsbetarb Lower 0.008 0.03 
 UV response maxabsbetarb Lower 0.005 0.03 

D. sapinea necrosis French Atlantic Ubiquitin system maxabsbetarb Higher 0.002 0.04 
  maxpostprb Higher 0.003 0.06 

D. sapinea 
discoloration 

French Atlantic Signal transduction maxabsbetarb Higher 0.004 0.08 
  maxpostprb Higher 0.003 0.06 
 Flavonoid biosynthesis maxpostprb Higher 0.007 0.07 

Table 2. Gene sets with gene function enrichment at pathway/module level. Two statistics obtained from the VSR method were tested: the 

maximum of any SNP per gene of the Rao-Backwellized posterior probability of inclusion (maxpostprb) and the maximum of any SNP per gene 

of the absolute value of the Rao-Backwellized effect-size (maxabsbetarb). Sign of enrichment refers to two-tailed null hypothesis testing. 
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Figures  

 

Figure 1. Comparison of QST and FST estimates across traits, environments and years. A) 

QST for a selection of traits belonging to five categories: survival, height, phenology-related 

traits, functional traits and biotic-stress response (see Supplemental Table S1 for all traits). B) 

QST for height estimated in three different environments: Mediterranean, Iberian Atlantic, and 

French Atlantic, and a global QST for the three environments together. In the French Atlantic 

common garden, height was measured in three different years: 2013, 2015 and 2018. Global 

FST estimate is presented by a red line surrounded by the 95% confidence intervals computed 

by bootstrapping. 
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Figure 2. Polygenicity estimated from Bayesian mixed linear models (MLMs) for a 

selection of traits (see Supplemental Table S4 for all traits). Polygenicity was estimated as 

the proportion of non-zero size-effect SNPs. Posterior median and 95% credible intervals are 

presented. 
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Figure 3. Polygenicity estimated from Bayesian mixed linear models (MLMs) across 

environments and years. A) Variation of polygenicity across environments. B) Temporal 

variation of polygenicity. Polygenicity was estimated as the proportion of non-zero size-effect 

SNPs. Posterior median and 95% credible intervals are presented.  
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Figure 4. Correlation between polygenicity (proportion of non-zero size-effect SNPs) and 

GEV (explained genetic variance). A) MLM method implemented in CGTB software. B) 

VSR method implemented in piMASS software. Each point represents the posterior median. 
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Figure 5. Correlation between SNP effect-size and Minor Allele Frequency (MAF). The 

coefficient of correlation between SNP effect-size and MAF (S) was estimated through the 

MLM method. The posterior distribution of S (median and 95% credible intervals) are 

presented. 
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