bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974113; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

available under aCC-BY-NC-ND 4.0 International license.

Polygenic adaptation and negative selection acr oss traits, years and environmentsin a

long-lived plant species (Pinus pinaster Ait., Pinaceae)

Marinade Miguel", Isabel Rodriguez-Quilén*, Myriam Heuertz!, Agathe Hurel™, Delphine
Grivet*, Juan-Pablo Jaramillo-Correa’, Giovanni G. Vendramin®, Christophe Plomion', Juan

Magjada'", Ricardo Alia*, Andrew J. Eckert™, Santiago C. Gonzalez-Martinez'®
"INRAE, Univ. Bordeaux, BIOGECO, F-33610 Cestas, France

*Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carreterade la

Corufia km 7.5, 28040 Madrid, Spain

*Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Auténoma

de México, AP 70-275 México City, CDM X 04510, Mexico

8Institute of Biosciences and Bioresources, Division of Florence, National Research Council,

50019 Sesto Fiorentino (Fl), Italy

"Seccion Forestal, SERIDA, Finca Experimental ‘‘LaMata’, 33820 Grado, Principado de

Asturias, Spain

*Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA

$8Corresponding author


https://doi.org/10.1101/2020.03.02.974113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974113; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19 Running title: Polygenic adaptation in maritime pine

20

21  Keywords: heritability, local adaptation, maritime pine, polygenicity, natural selection

22

23 Corresponding author:

24  Santiago C. Gonzalez-Martinez

25 UMR 1202 INRAE — Univ. Bordeaux

26 69 route d Arcachon, F-33610 Cestas, France

27  Tel: +33(0) 535385320

28  santiago.gonzalez-martinez@inrae.fr

29


https://doi.org/10.1101/2020.03.02.974113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974113; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

30 Abstract

31 A decade of association studies in multiple organisms suggests that most complex traits are
32 polygenic; that is, they have a genetic architecture determined by numerous loci distributed
33  across the genome, each with small effect-size. Thus, determining the degree of polygenicity
34  and its variation across traits, environments and years is useful to understand the genetic basis
35 of phenotypic variation. In this study, we applied multilocus approaches to estimate the
36 degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait.,
37 maritime pine) and to analyze how polygenicity changes across environments and years. To
38 do so, we evaluated five categories of fitness-related traits (survival, height, phenology-
39 related, functional, and biotic-stress response traits) in a clonal common garden network,
40 planted in contrasted environments (over 12,500 trees). First, most of the analyzed traits
41  showed evidence of local adaptation based on Qs-Fsr comparisons. Second, we observed a
42  remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits,
43  environments and years. As previously suggested for humans, some of these traits showed
44 also evidence of negative selection, which could explain, at least partially, the high degree of
45 polygenicity. The observed genetic architecture of fithess-related traits in maritime pine
46  supports the polygenic adaptation model. Because polygenic adaptation can occur rapidly, our
47  study suggests that current predictions on the capacity of natural forest tree populations to
48 adapt to new environments should be revised, which is of specia relevance in the current

49  context of climate change.

50
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53 Introduction

54 Population adaptive responses to environmental changes depend on the genetic architecture of
55 fitness-related traits (Hayward and Sella 2019). Although not initially conceived for the study
56  of adaptation, genome-wide association studies (GWAS) have provided essential information
57  to understand the genetic basis of complex traits. The implementation of GWAS alowed the
58 identification of genetic variants affecting fitness-related traits, their allele frequencies, the
59  magnitudes of their effects, and their interactions with one another and the environment.
60 Examples exist for humans (reviewed by Visscher et al. 2017), other animals (e.g. Sharma et
61 al. 2015; Pitchers et al. 2019) and plants (e.g. Gonzalez-Martinez et al. 2006; Huang and Han
62 2014, Alonso-Blanco et al. 2016). Surprisingly, in some species, such as humans and forest
63 trees (Resende et al. 2012; Lind et al. 2018), the genetic variants associated with phenotypic
64 variation accounted for only small fractions of trait heritability, as estimated through pedigree
65 analysis, causing the so-called ‘missing heritability’ paradox (Maher 2008). Severa
66 explanations have been provided to solve this paradox (Manolio et al. 2009; Brachi et al.
67 2011, Bjorkegren et al. 2015; Pallares 2019). In particular, different sources of evidence point
68 to polygenicity, i.e. trait architecture determined by a large number of variants, each with a
69 small effect-size, as a potential reason for the low levels of heritability explained by current
70 GWAS, which would thus be unpowered to detect most causal variants (Yang et al. 2010; Shi

71  etal. 2016; Boyle et al. 2017).

72  The study of adaptation has traditionally been addressed from contrasting research paradigms
73 (Hdllinger et al. 2019). While quantitative genetic approaches view adaptation as the result of
74  changes in alele frequencies at an idealized infinite number of loci, each with infinitesimal
75  effects on fitness (Fisher 1918), population genetic approaches made more emphasis in the
76  detection of selective sweeps, where new beneficial mutations rapidly become fixed at a small

77  number of loci (Smith and Haigh 1974). The hypothesis that natural selection (mostly) acts
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78 through subtle alele frequency shifts on standing genetic variation at numerous loci
79  distributed across the genome has been suggested in previous evolutionary studies (Orr and
80 Coyne 1992; eg. McKay and Latta 2002; Le Corre and Kremer 2003). Nevertheless, it was
81 Pritchard et al. (2010) who first brought together population and quantitative genetic theory
82 with conclusions from GWAS to formulate a new model for the study of adaptation — the
83  polygenic adaptation model. Under this model, some genes may harbor new mutations that
84  have been fixed by natural selection, but the most common pattern would be the genome-wide
85 increase of favored alleles, without the fixation of most causative variants. Thus, the expected
86  genome-wide footprint resulting from natural selection would not be that of a classical hard
87  sweep, but would rather involve a large number of causal variants, each with subtle allele
88 frequency changes (Pritchard et al. 2010; Pritchard and Rienzo 2010; Hermisson and

89  Pennings 2017).

90  Several new methods have been developed to detect the genetic signatures of natural selection
91  under the polygenic adaptation model (Guan and Stephens 2011; Turchin et al. 2012; Daub et
92 al. 2013; Berg and Coop 2014; Field et al. 2016; Zeng et al. 2018; Edge and Coop 2019;
93 Speidd et al. 2019; Lloyd-Jones et al. 2019). Applications using these methods, however,
94  were often unknowingly biased by subtle patterns of population structure (Liu et al. 2018;
95 Josephs et al. 2019; Rosenberg et al. 2019; Berg et al. 2019a; Sohail et al. 2019).
96 Nonetheless, even considering the inflation of polygenic signals due to unrecognized
97 population structure, mounting evidence over the last decade using a variety of
98 methodologies, supports the polygenic adaptation model in a diversity of organisms, such as
99 humans (Hancock et al. 2010a, b; Daub et al. 2013; Shi et al. 2016; Zeng et al. 2018;
100  Gnecchi-Ruscone et al. 2018; Berg et al. 2019b), insects (Friedline et al. 2019), molluscs
101 (Bernatchez et al. 2019), model plants (He et al. 2016), crops (Josephs et al. 2019; Wisser et

102  al. 2019), and forest trees (Lind et al. 2017; De La Torre et al. 2019). However, there are still
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103  multiple open questions regarding the degree of polygenicity at adaptive traits, the distribution
104  of effect sizes the involved loci, and how the genetic architecture changes under varying

105  selective forces, especially for non-model species (Lind et al. 2018).

106  Following the expectations of the polygenic adaptation model, the heritability of complex
107 traits is often associated with loci that are widespread across the whole genome, also
108 including SNPs located in genes and pathways that do not show a clear functional connection
109 to the trait of interest (Boyle et al. 2017). The omnigenic model, formulated by Boyle et al.
110 (2017), provides a plausible hypothesis to explain this. The interconnection of gene regulatory
111 networks implies that the vast majority of expressed genes likely influence the functions of
112 core genes directly linked to fitness-related traits. Nevertheless, the study of polygenic
113  adaptation at the pathway level is useful to identify gene sets of special relevance for
114  adaptation (Daub et al. 2013). In particular, polygenic adaptation at pathway level has been
115 proved especialy useful to study non-model species, as reliance on selective sweep models
116 often led to poor inferences (Haméala et al. 2020). For example, Mayol et al. (2020) detected
117  signatures of polygenic selection at the pathway level in English yew (Taxus baccata L.)
118 Taxus baccata and identified negative selection as an important mechanism driving the
119 pathway-level signal. Similarly, negative selection has been identified as a pervasive
120  mechanism determining the polygenic architecture of fitness-related traits in humans (Zeng et
121  al. 2018; O’'Connor €t al. 2019). In particular, negative selection has been proposed to favor
122  polygenicity in complex traits by removing large-effect variants, because of their deleterious
123  effects, while small-effect variants would remain unaffected; a process named ‘flattening’, as

124  the genetic signal is ‘flattened’ relative to the underlying biology (O’ Connor et al. 2019).

125 Despite theoretical advances and the development of new methods to study polygenic
126  adaptation, the addressed questions remain constrained by the specific life-history traits of a

127 few model species. Maritime pine (Pinus pinaster Ait.) is an ideal case study to investigate
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128  polygenic adaptation in an ecologically and economically important group of species, the
129 forest trees. it is a long-lived plant inhabiting nearly undomesticated random-mating
130  populations with high genetic diversity (Gonzalez-Martinez et al. 2002; Jaramillo-Correa et
131 al. 2015). It expanded from several isolated glacial refugia, and it is now distributed across
132  the western Mediterranean Basin and the European Atlantic front in scattered populations
133 under contrasting environments (Bucci et al. 2007). In addition, an artificia clonal
134  propagation program in maritime pine allowed us to estimate precisely variance components
135 and investigate selective forces driving trait evolution under contrasting environments.
136  Specifically, wei) tested the hypothesis that most complex adaptive traits in along-lived plant
137  are polygenic, providing afirst estimate of the degree polygenicity in aforest tree, and ii) that
138 their genetic architecture is mostly driven by negative selection. We then iii) investigated how
139 these patterns change with time and through environmental settings, which is of specid

140 relevance for long-lived organisms, such as forest trees.

141 Materialsand Methods

142 Clonal common garden network (CLONAPIN)

143  We studied phenotypic variation in a clona common garden network (CLONAPIN)
144  composed of five sites covering the natural environmental range of maritime pine, from harsh
145 Mediterranean climates to mild Atlantic ones. Common gardens comprise trees from 36
146  populations, sampled across the species natural distribution and covering the six previously
147  identified gene pools for this species (Jaramillo-Correa et al. 2015; Supplemental Figure S1).
148  Open-pollinated seeds were collected in natural stands, and germinated in a nursery; then one
149  seedling per open-pollinated family was selected and vegetatively propagated by cuttings
150 (following Magadaet al. 2011). A total of 535 genotypes (clones) belonging to 35 populations

151 were used to establish four of the clona common gardens (three sites in Spain: Cabada,
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152  Céceres and Madrid; and one in Portugal: Fundéo; Table 1) with eight ramets per clone set in
153 arandomized complete block design (N=4,273 trees). These clona common gardens were
154  planted in 2010. In 2011, a fifth common garden was established in Pierroton (France),
155  comprising 443 clones from all 36 populations (N=3,434 trees). Common gardens in Cabada,
156 Funddo and Pierroton are located in the Atlantic region, with high annual rainfall and mild
157  temperatures. Common gardens in Céceres and Madrid are located in continental areas under
158 Mediterranean influence, with large seasonal temperature oscillations and a marked summer
159 drought. In addition, clay soils in Céceres hampered plant growth and diminished survival

160 (Tablel).
161  Phenotypic evaluation

162 A tota of 28 phenotypic trait-environment combinations were evaluated in this study.
163  Assayed phenotypic traits were classified into five groups: survival, height, phenology-
164  related, functional, and biotic-stress response (see Supplemental Table S1 for an exhaustive
165 list of the measured traits). In brief, tree survival and height were evauated in the five
166  common gardens (including different years in Pierroton, with measures taken in 2013, 2015,
167 and 2018). Phenology-related traits were evaluated in the Atlantic sites only (Cabada, Fundéo
168 and Pierroton), including different years of evaluation in Pierroton (2015 and 2017). In
169 Cabada and Fundéo, growth phenology was estimated through the presence of polycyclism
170  (i.e. the ability for a plant to produce severa flushes in the same growing season; (Girard et

171  al. 2011)) and a phenology growth index (1):

spring growth _ (tree height mayy, — tree heightdec,_,) (1)
total growth - (tree height dec,, — tree height decy,—)

172 Phenology Growth Index =

173 where may and dec correspond to the months May and December of the year n and the year n-

174 1, respectively.
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175 In Pierroton, phenology of bud burst was estimated through a scale ranging from 0 to 5 (O:
176  bud with no winter elongation, 1: elongation of the bud, 2: emergence of brachyblasts, 3:
177  brachyblasts begin to separate, 4: elongating needles, 5: total elongation of the needles) (see
178 Hurel et al. 2019). The first Julian day at each stage (S1 to S5) was scored for each tree.
179  Julian days were converted into accumulated degree-days (with base temperature 0°C) from
180 thefirst day of the year, to take into account the between-year variability in temperature. The
181 number of degree-days between stages 1 and 4 defines the duration of bud burst. Daily mean
182 temperatures to calculate accumulated degree-days were downloaded from the nearest
183 climatic station (located just a few hundred meters from the common garden, station

184 33122004 of the INRAE Agroclim database: https.//www6.paca.inrae.fr/agroclim/L es-outils).

185  Functional traits, including nitrogen and carbon content and isotopic composition (5°N and
186  8C, respectively), as well as specific leaf area (SLA, a measure of leaf area per unit of dry
187 mass), were evaluated in the common garden located in Funddo (Portugal). A bulk of five
188  needles positioned 10 cm below the upper part of the shoot to avoid sampling bias (Warren et
189 al. 2001) were sampled and prepared in a standard way for analysis (Brendel 2001).
190 Determination of carbon content and isotopic composition was performed with a mass
191  spectrometer at the University of Colorado isotope laboratory. Raw values were corrected by
192 their position in the plate according to the standards, and this value was used for the

193  subsequent analysis. SLA is an estimation of the compromise among light capture, CO»

194  assimilation, and the restrictions imposed by water loss through transpiration (Sefton et al.
195 2002). Low SLA suggests high leaf construction cost, and thus higher stress tolerance (Diaz et
196 al. 2016). Thus, this key leaf trait is also associated with fitness components, such as tree
197  survival (Greenwood et al. 2017). Given that there is a positive relationship between §*C and
198  water use efficiency (Farquhar and Richards 1984), §*°C has been widely used as a surrogate

199  to study tree adaptation to water-limiting environments (e.g. Aranda et al. 2010; Walker et al.
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200 2015). Similarly, 8°N is an indirect index related to the nitrogen cycle (Craine et al. 2015).

201 Assessment of biotic-stress response in a high number of trees is logistically complex.
202 Therefore, it was evaluated only for a subset of clones (see Supplemental Table S1) in the
203  Pierroton common garden (France). This common garden was selected because of the
204  importance of the Landes region in maritime pine breeding for wood production. Biotic-stress
205  response was evaluated based on susceptibility to two major pine pathogens, Diplodia sapinea
206 and Armillaria ostoyae, as well as the incidence of the defoliator pest, Thaumetopoea
207  pityocampa (pine processionary moth) (see Hurel et al. 2019 for details). D. sapinea causes
208  severa diseases in conifers, which may be exacerbated under climate change and compromise
209 pine forest health (Desprez-Loustau et al. 2006). Susceptibility to D. sapinea was evauated
210 following controlled inoculation as the lesion extent around the inoculated site (hereafter
211 referred as necrosis) and a scalar notation of needle discoloration (0: no discoloration, 2: some
212  needles around the necrosis were discolored, and 3: all needles around the necrosis were
213 discolored). A. ostoyae is a conifer root pathogen causing growth cessation and eventually
214  death (Heinzelmann et al. 2019). To evaluate the incidence of this pathogen, A. ostoyae
215 mycelium culture was prepared in plastic jars. The level of humidity observed in the plastic
216  jar was visually scored as dry, medium or humid. Susceptibility to A. ostoyae was assessed
217  after controlled inoculation as the lesion length in the sapwood (i.e. wood browning, hereafter
218  also referred as necrosis). We accounted for the potentia influence of variation in humidity on
219 wood browning by including the level of humidity in the jar as a covariate for A. ostoyae
220  susceptibility analysis (see below). Finaly, the pine processionary moth is an insect that
221 rapidly defoliates pines leading to forest decline (Jacquet et al. 2013). The presence or

222  absence of pine processionary moth nests in the tree crowns was assessed in March 2018.

223  DNA extraction and SNP genotyping

10
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224 Needles were collected from one ramet per clone in the Cabada common garden (N=523).
225 Genomic DNA was extracted using the Invisorb® DNA Plant HTS 96 Kit/C kit (Invitek
226 ~ GmbH, Berlin, Germany). A 9k Illumina Infinium SNP array developed by Plomion et al.
227  (2016b) was used for genotyping. This array was constructed using previously identified and
228 newly in silico-developed SNPs, either from randomly screened EST sequences or
229 gspecificaly detected at candidate genes for adaptation to biotic and abiotic factors (see
230 Plomion et al. 2016b for further details). Genotyped SNPs covered all 12 chromosomes of P.
231 pinaster according to previous linkage mapping (Plomion et al. 2016b). For this study, 6,100
232  SNPs were finally retained following standard filtering (GenTrain score > 0.35, GenCall50
233 score > 0.15 and Cal frequency > 0.85) and removal of SNPs with uncertain clustering
234  patterns (visua inspection using GenomeSudio v. 2.0). Individuals with more than 15%
235 missing data were also removed. This resulted in 5,165 polymorphic SNPs that were included
236 in the estimation of molecular population differentiation (Fsr) and the polygenic association

237  study.
238  Quantitative genetics analysis

239  Genetic components of the phenotypic variance were estimated using Generalized Linear
240 Mixed-Effects Models (GLMM) fitted in a Bayesian framework using Markov chain Monte
241  Carlo (MCMC) methods. The model, described in equation (2), was implemented for those
242  phenotypic traits evaluated at multiple sites of the CLONAPIN common garden network (see
243  Supplemental Table S1). To estimate the genetic control of the genotype-by-environment
244 (GXE) interactions, the model described in equation (3) was fitted for those traits measured at

245  all sites of the CLONAPIN common garden network (i.e. height and survival).

246 Vijit = B+ Si + S(B)ij + P + P(O)jy + Si * C + &4y ()

11
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2471 Vijit = U+ S+ S(B)ij + P+ P(C)jq + Si * P + S; G + &g (©)

248  where, for a given trait y, i1 denotes the overall phenotypic mean, S refers to the fixed effect
249  of sitei, Bj represents the random effect of experimental block j nested within site i, Pk is the
250 random effect of population k, C denotes the random effect of clone | nested within

251 population k, and ¢ isthe residual effect.

252  Simplified models with or without covariates represented by equations (4) and (5) were
253 implemented for phenotypic traits measured in just one site of the CLONAPIN common

254 garden network (see Supplemental Table S1).

256 yijk = M+Bi+C0U+Pj+P(C)jk+gijk (5)

257 Where, for a given trait y, 4 denotes the overall phenotypic mean, B; represents the fixed
258  effect of experimental block i, P; is the random effect of population j, C denotes the random
259 effect of clone k nested within population j, and ¢ is the residual effect. In the model
260 represented by equation (5), cov represents a covariate implemented when modeling the
261  presence of pine processionary moth nests (i.e. an estimate of tree height) and necrosis caused

262 by A. ostoyae (i.e., level of humidity in the experimental jar).

263  All models were fitted with the R package MCMCglmm (Hadfield 2010). Phenotypic traits
264  showing Gaussian distributions where modeled using the identity link function, while
265 phenotypic traits exhibiting a binomial distribution (survival, polycyclism, D. sapinea needle
266  discoloration, and presence or absence of pine processionary moth) were modeled either with
267 logit or probit link functions (see Supplemental Table S2 for an exhaustive list of model
268  parameter specifications). Multivariate-normal prior distributions with mean centered at zero

269 and large variance matrices (10% were used for fixed effects. For ordina traits, a Gelman

12
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270  prior for the variance of fixed effects was set, as suggested by Gelman et a. (2008). Inverse
271  Wishart non-informative priors were used for the variances and covariances of random
272  effects, with the matrix parameter V set to 1, and a parameter n set to 0.002 (Hadfield 2010).
273  Parameter expanded priors were used to improve the chain convergence and mixing, as
274 suggested by Gelman (2006) for models with near-zero variance components. Priors with a
275 larger degree of belief parameter (n set to 1), specifying that a large proportion of the
276  variation is under genetic control (as suggested by Wilson et al. 2010) did not change the
277  results (data not shown). Models were run for at least 550,000 iterations, including a burn-in
278  of 50,000 iterations and a thinning interval of 100 iterations. Four chains per model were run
279 totest for parameter convergence. The potential scale reduction factor (psrf) was consistently

280 below 1.02 for all the models (Supplemental Table S2) (Gelman and Rubin 1992).

281  Variance components were then used to compute broad-sense heritability (H?) as (6):

282 H? = Cclone _ (6)

-T2 2
(FClonetoe)

283  where ¢, is the variance among clones within populations and ¢2 the residual variance.
284  For estimating broad-sense heritability for traits following a binomia distribution, we
285 included an extra term in the denominator (+ n%/3) to account for implicit logit link function
286 variance; similarly, we added one to the denominator to account for the probit link function

287  (Nakagawa and Schielzeth 2010).

288 The GLMMs described above were used to estimate genetic values using Best Linear
289  Unbiased Predictors (BLUPs) (Henderson 1973; Robinson 1991). The genetic value of each
290 clone was defined as the population BLUP plus the clone BLUP. BLUPs for GxE, were

291 obtained from equation (3) and calculated following equation (7).

_ (XBLUPpop atl ¥ BLUPpop med) (2 BLUPcjone atl ¥ BLUPcione med)
292 G X E BLUP = ( N atl N med + N atl N med (7)

13
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293  where BLUP,q, atl is the population BLUP in sites under Atlantic climate (Cabada, Fundéo,
294  and Perroton), BLUP,,, med the population BLUP in sites under Mediterranean climate
295 (Céceres and Madrid), BLUPyqe atl the clone BLUP in sites under Atlantic climate,
296  BLUPgone med, the clone BLUP in sites under Mediterranean climate, N atl the number of

297 sitesunder Atlantic climate, and N med the number of sites under Mediterranean climate.

298 Parameter estimates from quantitative genetics analyses are presented as the mode of the
299  posterior distribution; 95% credible intervals were computed as the highest density region of

300 each posterior parameter distribution.
301  Qsr-Fsrcomparison

302 Molecular population differentiation (Fs;) was estimated according to Weir and Cockerham
303  (1984) using the 5,165 SNPs from the Illumina Infinium SNP array and the diveRsity R
304 package (Keenan et al. 2013). The 95% confidence interval of the globa Fs estimate was
305 computed by bootstrapping across loci (1,000 bootstrap iterations). Quantitative genetic
306 differentiation among populations was calculated following Spitze (1993) using the variance
307  components estimated from the previously described models (equations 2-5):

308 Qn=—T2 (8

2 2
Thopt2¢ione

309  where g}, isthe variance among populations, and 6, is the variance among clones within
310  populations. Quantitative (Qsr) and molecular (Fsr) genetic differentiation among populations
311 were considered significantly different when Qsr and Fs; posterior distributions had non-

312  overlapping 95% confidence intervals.
313  Polygenicity acrosstraits, years and environments

314  Polygenicity was evaluated as the proportion of SNPs with non-zero effects on phenotypic
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315 traits. First, we conducted posterior inference via model averaging and subset selection
316 (VSR), asimplemented in piMASS software (Guan and Stephens 2011). This method alows
317  toidentify combinations of SNPs likely affecting a phenotype and to estimate the proportion
318 of trait variance explained by the SNPs in the data set. Hereafter, we referred to this quantity
319 asthe genetic explained variance (GEV), which, in this study, represents the BLUP variance
320 explained by SNP additive effects. Second, we used the Bayesian mixed linear model (MLM)
321 framework developed by Zeng et al. (2018) as implemented in CGTB 2.0 software. This last
322 moded simultaneously estimates: i) SNP-based heritability (considering the SNPs with non-
323 zero effects on the trait), hereafter referred as GEV, analogously to VSR estimates, ii)
324  polygenicity (as defined above), and iii) the relationship between SNP effect-size and minor
325 allele frequency (S, a common indicative of negative selection). When negative selection is
326  operating, Sis expected to be negative, as most new mutations are deleterious and high-effect
327 SNPs are kept at low frequencies. Estimates with 95% credible intervals of parameter
328 posterior distributions not overlapping zero were considered as significant. Prior to these
329 analyses, neutral population genetic structure was accounted for by running linear models
330 relating the genetic values for each trait (with site and block effects removed) to the admixture
331 coefficients for each clone (Q-scores) obtained using a STRUCTURE run for K=6 based on
332  neutral markers (see Jaramillo-Correa et al. 2015 for further details). From this linear model,

333  we extracted the normalized residuals for each trait, as recommended in piMASS manual.

334  Analyses were run separately for different traits, years, and environments (see Supplemental
335 Table S1). VSR models were run for 2,000,000 iterations with a burn-in of 100,000 iterations
336 and athinning interval of 100. After several preliminary runs, the maximum number of SNPs
337 included in VSR models was fixed to 2,000 (i.e. maximum allowed polygenicity of ~40%).
338 MLM models were run for 500,100 iterations, including a burn-in of 100 iterations, and a

339 thinning interval of 10 iterations. Parameter estimates from both VSRs and MLMs were
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340 presented as the median of the posterior distribution, instead of the mode, for better handling
341 of bimodal distributions (Supplemental Figure S2). The 95% credible intervals were

342  computed as the highest density region of the posterior parameter distribution, as above.

343  Annotation and gene function enrichment at pathway level

344  The transcripts containing the 5,165 polymorphic SNPs were downloaded from SustainPine
345 v.3.0 database (Canales et al. 2014). DNA seguences were translated with BioEdit v. 7.2.6
346 (Hal 1999) and submitted to BlastKOALA (Kanehisa et al. 2016) for annotation and
347 functiona characterization using InterPro annotations, GO terms, and KEGG pathway
348 identification. Annotations were compared with those available at SustainPine, and
349  conflicting cases were examined individually by privileging similarity to genes correctly
350 identified in other conifers or forest trees. Contigs with no clear annotations (e.g. hypothetical
351  or unknown proteins, or unsolved conflicting annotations) were removed from the database.
352  For the retained contigs, the top-two KEGG terms were used for assignation to one or more
353  specific metabolic pathways/modules based on KEGG orthology. Genes for which no hit with
354 KEGG database was found, were assigned to metabolic pathways/modules based on the
355 InterPro annotation. We privileged metabolic pathways/modules that could be unequivocally
356  assigned to a given phenotypic response (e.g. circadian rhythm to bud phenology or pathogen
357 interaction to biotic stress response) or linked to various stress responses (e.g. DNA
358  recombination and repair, ubiquitin system or transcription factor machinery to survival and
359  hiotic stress response). In total, seventeen pathways/modules were retained containing a total

360 of 628 (19.7% out of 3,194) genes, with 1,233 polymorphic SNPs (Supplemental Table S3).

361  For enrichment tests using polysel (Daub et al. 2013), the seventeen pathways/modules were
362 defined as gene sets. First, we computed two statistics at the gene level (i.e. objStat in polysel)

363 based on the per-SNP estimates obtained from the VSR implemented in piMASS: the
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364 maximum, over all SNPsincluded in a gene, of the Rao-Backwellized posterior probability of
365 inclusion maxpostrb, and the maximum of the absolute value of Rao-Backwellized effect size
366 maxabsbetarb. To account for a weak correlation of these statistics with the number of SNPs
367 per gene, we used the AssignBins and RescaleBins functions in polysel, which automatically
368 assigns gene scores (objStat) into bins defined from the number of SNPs per gene. We then
369 rescaled scores within bins and computed the sum(objStat) of each statistic over all genes per
370  gene set. Since the sum(objStat) for random gene sets (sizes n = 10, 50, 250 genes) was not
371  normally distributed, we built empirical null distributions by randomly sampling gene sets of
372  the same size as the sets to be tested. Then, we performed one-sided tests evaluating whether
373 the observed sum(objStat) was smaller than the 5" or larger than the 95™ percentile of the
374  sum(obStat) null distribution. Higher-tail significant results for maxpostrb indicate gene sets
375 enriched with higher overal probability of being selected during the VSR procedure
376  implemented in piMASS. Higher-tail significant results for maxabsbetarb points to gene sets
377  enriched with higher overall SNP effect-sizes. Contrarily, lower-tail significant results for
378  both statistics suggests conserved gene sets, containing genes with smaller overall probability
379 of incluson or SNP effect-size estimates. We report p-values based on this comparison, as
380 well as g-values from a False Discovery Rate (FDR) approach implemented in the R package
381 qgvalue (R Core Team 2019). The level of connection between gene sets was weak with only
382  four genes associated with more than one gene set (633 gene — gene set combinations for 628
383  genes). For this reason, we did not assess enrichment for pruned gene sets (see Daub et al.

384  2013).
385 Results

386  Broad-sense heritability and genetic differentiation among populations
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387  All traits had low to moderate estimates of broad-sense heritability (Supplemental Table S1),
388 with the exception of nitrogen and carbon amount that did not show genetic variation.
389  Consequently, polygenic association methods failed to converge for these two traits and they
390 were excluded from further analyses. H? ranged from 0.32 for bud burst measured in 2015 to
391  zero for surviva in the French Atlantic environment in 2013. Interestingly, survival showed
392 significant estimates of H? only in the sites under (harsher) Mediterranean climate. The
393  highest H? estimates were observed for phenology-related traits followed by tree height. H*for
394 agiven trait varied across environments (e.g. height, survival and phenology-related traits) but

395  showed little variation across years (Supplemental Table S1).

396 The global Fs was 0.112 (95% confidence interval: 0.090 - 0.141). All groups of phenotypic
397 traits, excepting survival, had at least one trait with statistically higher Qs than Fgr
398 (Supplemental Table S1). The highest Qs was obtained for susceptibility to D. sapinea
399 infection measured as necrosis length, followed by 8*3C and tree height, which also showed

400 similar Qs values across environments and tree ages (Figure 1).
401  Genetic architecture (polygenicity) of adaptive traits

402  Polygenicity estimates were consistent between the VSR and MLM methods (Supplemental
403 Table $4). Both methods showed substantial polygenic control for most of the phenotypic
404  traits, with an average of 6% (0-27%) of the genotyped SNPs having non-zero effects.
405  Significant polygenicity was found in all five trait categories for at least one trait (Figures 2
406 and 3; Supplemental Table $4). Polygenicity for height was stable across environments and
407  years, when measured multiple times under the same environment (i.e. in the French Atlantic
408 common garden) (Figure 3). Along the same line, polygenicity for phenology-related traits
409 and tree survival also remained stable across environments, although 95% credible intervals

410 overlapped zero in some cases. The low polygenicity values observed for survival in the
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411  French Atlantic common garden are probably a consequence of the low levels of phenotypic
412  variability in this site, with aimost no mortality (97.12% of planted trees were aive at the
413 evauation time, Supplemental Table S1). Polygenicity was heterogeneous for biotic-stress
414  response and functional traits (Figure 2). For instance, susceptibility to D. sapinea was more
415 polygenic than to A. ostoyae or than incidence of pine processionary moth. For functional
416  traits, SLA and 8°N showed the highest levels of polygenicity, while §°C showed a

417  considerably lower proportion of SNPs with non-zero effects.

418 In addition, GEV was consistent between methods, although VSR tended to render higher
419  values (Supplemental Table S4). On average GEV was 0.38 across traits, with a minimum of
420 0.018 for survival in the French Atlantic environment in 2018, and a maximum of 0.99 for D.
421  sapinea necrosis. GEV estimated with the VSR method for the GXE component on tree height
422  (considering Atlantic versus Mediterranean environments) was low but significant (median =
423  0.238, 95% credible interval = 0.043 - 0.409), indicating some SNPs with significant effects
424 on growth plasticity. However, this result could not be confirmed with the MLM method.

425  Moreover, GEV for the GXE component on tree survival was not significant with any model.

426  Polygenicity and GEV were positively and consistently correlated for both VSR and MLM
427 models (Figure 4). This positive correlation suggested that SNP-based heritability is mainly
428 determined by genetic variants with similarly small effects, and that differences in
429  polygenicity across traits are mostly accounting for differences in explained genetic variance,

430 rather than the distribution of SNP effect-size (Supplemental Figures S2 and S3).
431  Evidence of negative selection

432  The correlation between SNP effect-size and minor alele frequency (MAF), S, was used to
433 identify the type and mode of natura selection acting upon phenotypic traits. Out of the 28

434  assayed traits, we were able to estimate Sthrough the MLM method for 19 of them. Estimates
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435 ranged from -1.68 (bud burst in 2017) to 0.55 (tree survival in French Atlantic environment),
436  but only seven traits from four out of five trait categories (survival, height, phenology-related,
437 and functional traits) were significant (Figure 5). No significant effect was observed for any
438 trait belonging to the biotic-stress response category. Remarkably, al seven significant
439 estimates of Swere negative (ranging from -1.68 for bud burst in 2017 to -0.99 for survival in

440  the lberian Atlantic environment).

441 Estimates of S for height were consistent across years and environments. However, S
442  estimated for tree survival was only significant in the Iberian Atlantic environment. For
443  phenology-related traits, S was significant only for bud burst measured in 2017 (Figure 5).
444 These results contrast with the consistent level of polygenicity for all these traits across years
445  and environments. Interestingly, our results suggest a stable polygenic architecture, but an

446  environment and year-dependent impact of negative selection at some traits.

447  Gene function enrichment at pathway level

448  Tests for gene function enrichment at the pathway level provided significant results for
449  surviva in the Iberian Atlantic environment, phenology-related and biotic-stress response
450 traits, and height in the French Atlantic and Mediterranean environments. Genes coding for
451 transcription factors showed higher probability of being included in the VSR models
452  (maxpostprb) and higher estimated SNP effect-sizes (maxabsbetarb) for survival in the
453  Iberian Atlantic environment (Table 2). Two gene sets associated to bud burst in 2015 showed
454  signals of polygenic selection: monolignol biosynthesis, which had high overall values of both
455 maxpostprb and maxabsbetarb, and glycan metabolism, which showed low overal
456  maxabsbetarb estimates (Table 2). Furthermore, phenology growth index was associated with
457  enrichment for genes related to cell growth and death, DNA recombination and repair and UV

458  response, which mostly have low maxabsbetarb values (Table 2). D. sapinea susceptibility

20


https://doi.org/10.1101/2020.03.02.974113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974113; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

459  was associated with enrichment of genes, with high overall maxabsbetarb and maxpostprb, in
460 the ubiquitin system for D. sapinea necrosis, and in the signal transduction and flavonoid
461  biosynthesis gene sets for D. sapinea needle discoloration (Table 2). Interestingly, height was
462  enriched for genes from different pathways when measured in contrasting environments. For
463 instance, in the French Atlantic environment genes coding for transcription factors showed
464  high maxabsbetarb and maxpostprb, while genes within the cytoskeleton pathway showed

465  overall low maxabsbetarb valuesin the Mediterranean environment.

466  Discussion

467  Unraveling the genetic architecture of adaptive traits is challenging because of the difficulty
468  to identify variants with small effect-sizes using GWAS. Here, we addressed this challenge
469  obtaining precise phenotypic information (over 12,500 trees were evaluated) for an extensive
470  number of fitness-related traits measured on clonal replicates. Specifically, we tested if a high
471  proportion of the genetic variance of fitness-related traitsin a long-lived forest tree (maritime
472  pine) can be explained by a large number of small size-effect variants, in line with the
473  polygenic adaptation model. We also tested whether negative selection is pervasive for such
474 polygenic traits. Our results showed patterns of local adaptation for most of the analyzed
475  traits, highlighting its relationship with fitness, and also revealed a high and remarkably stable
476 degree of polygenicity, across traits, years, and environments. Moreover, using two
477  complementary multilocus approaches we accounted for a considerable proportion of the
478  heritability estimated for these highly polygenic traits, and identified negative selection as a

479  key driver of local adaptation.

480 Evidence of local adaptation in maritime pine

481  All phenotypic categories presented significant within-population genetic variation (i.e.

482  broad-sense heritability), and were consequently susceptible to respond to natural selection
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483  (Visscher et al. 2008). Estimates of heritability were consistent with previous results for these
484  traits in forest trees (reviewed by Lind et al. 2018). In addition, our results were consistent
485  with adaptive differentiation (Qsr > Fsr) for 11 out of 26 analyzed traits, involving four out of
486 the five trait categories (no evidence for survival traits). These results are in accordance with
487  reports of pervasive local adaptation in forest trees (Savolainen et al. 2007, 2013; Alberto et

488 al.2013; Lind et al. 2018).

489  The stability of Qsr estimates for height across environments and years highlights the strength
490 of directiona selection for height in this species; a trait that can thus be used for the
491  delimitation of conservation and management units (Rodriguez-Quilén et al. 2016).
492  Contrarily, phenology-related traits showed contrasting estimates of Qsr depending on the
493  environment and year of measurement. This result highlights that the evolutionary forces
494  driving population genetic differences in phenology-related traits are environmentally and
495 temporally-dependent, which can slow-down attaining phenotypic optima under rapidly
496 changing climates. Polygenic adaptation could be specially relevant for these traits because it
497 can produce rapid phenotypic changes, as it only requires small adjustments in allele
498 freguencies in the contributing loci rather than selective sweeps on new mutations (Jain and

499  Stephan 2017; Dayan et al. 2019; Wisser et al. 2019).

500  Unexpectedly, survival, atrait directly related with a component of fitness (i.e. viability), did
501 not show evidence of local adaptation in maritime pine. The low levels of phenotypic
502 variability observed for survival in this study may explain these results. Future studies should
503 focus on quantitative evaluations of survival (e.g. adding a time-frame, such as time until
504  death or order of dead trees) to better gather the complexity of this trait, and be able to discern
505 genetic differences among populations. The strong selective pressure in the Mediterranean
506 region exacerbated genetic differences in survival among clones and resulted in slightly

507 higher estimates of heritability (similarly to Gaspar et al. 2013). Additionally, we observed
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508 significant phenotypic plasticity for height and survival, the two traits measured in all five
509 experimental sites. While our results hinted a heritable component for plasticity, this question
510  dtill deserves further investigation to elucidate the importance of phenotypic plasticity in the
511 adaptive response of maritime pine to changing environmental conditions (Alia et al. 2014,

512  Vizcaino-Palomar et al. 2019).

513 Two traits in particular had remarkably high levels of adaptive genetic differentiation among
514  populations, §**C and D. sapinea necrosis (Figure 1), but genetic variation within populations
515  waslow, compromising their adaptive potential. These traits deserve specia attention because
516  of the implication of water-use efficiency in drought resistance (reviewed by Plomion et al.
517 2016a) and the new pathogenic outbreaks of D. sapinea expected on maritime pine
518 plantations fostered by climate change (Fabre et al. 2011; Brodde et al. 2019). In contrast to
519 our findings, a lack of adaptive genetic differentiation for *3C was previously reported for
520 maritime pine by Lamy et al. (2011), as well as for broad-leaved trees (Torres-Ruiz et al.
521  2019). Although this disagreement may be influenced by the much larger number of
522  populations we anayzed (see Whitlock and Guillaume 2009) as compared to Lamy et al.
523  (2011), we cannat rule out discrepancies due to the estimation of total genetic variance in our
524  study (i.e. based on clones), instead of additive genetic variance. Nevertheless, non-additive
525  genetic effectsin maritime pine traits related to drought resistance have been reported to be of

526 littleimportance (Gaspar et al. 2013), and they should not have affected our estimates.
527  Genetic architecture (polygenicity) of fitness-related traits

528 Most traits assessed had a considerable degree of polygenicity, ranging between 4-15%,
529  which is on the same order of magnitude as for humans (Zeng et al. 2018). Polygenicity was
530 relatively similar across al analyzed traits and therefore did not depend on the level of genetic

531 control, as estimated by heritability through quantitative genetic analysis. Mel et al. (2018)
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532  observations in humans predicted different genetic architectures as a function of genome size.
533  Surprisingly, although the maritime pine genome is more than seven times larger than that of
534  humans (De La Torre et al. 2014), we found similar estimates of polygenicity between both
535 species. The distributions of SNP effect-sizes showed that hundreds of SNPs with near-zero
536 effect-size contributed together to shape phenotypic differences among clones. This highly
537 polygenic architecture could be explained by the omnigenic model (Boyle et al. 2017).
538 Indeed, as in humans, we expect high biologica complexity and interconnectivity of gene
539  expression networks in forest trees, resulting in the association of virtually all expressed genes
540 in relevant tissues with the observed phenotypes (Wray et al. 2018). However, this
541  explanation would not account for the lack of high effect-size SNPs in our data set composed

542  mostly of SNPs from candidate genes (see below).

543  The implementation of polygenic adaptation studies outside of humans is slowly emerging
544  (Csilléry et al. 2014; He et al. 2016; Lind et al. 2017; Barghi et al. 2019; Friedline et al. 2019;
545  Wisser et al. 2019), providing increased evidence that polygenic adaptation in complex traits
546 may be pervasive (Sella and Barton 2019). As a result, new evolutionary questions relevant
547  for different organisms are arising. For instance, in forest trees, for which local adaptation is
548  frequently observed (Savolainen et al. 2007, 2013; Alberto et al. 2013; this study), the
549  contribution of alleles with small effect-size and selection coefficients (and therefore more
550 prompted to be swamped by gene flow) to shaping local adaptation is a question that remains
551  open (Yeaman 2015). Another fundamental question, in particular for conifers, is the role of
552 genetic redundancy. It has been suggested that genetic redundancy favors polygenic
553 adaptation and speed up the achievement of phenotypic optima through multiple genetic
554  pathways leading to similar phenotypes (Hollinger et al. 2019; Barghi et al. 2019).
555  Unraveling this relationship in conifers, whose genomes are characterized by a high number

556 of paralogs (Diaz-Sala et al. 2013), may shed new light about how rapidly these taxa can
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557 adapt to environmental changes. Moreover, the influence of genome size in the genetic
558 architecture of fitness-related traits, as well as the relationship between heritability and
559  polygenicity, deserve further investigation including a better coverage of conifer genomes, as

560  well asimproved knowledge of non-coding regions (Mackay et al. 2012).

561 Recent studiesin human height (a classic example of polygenic adaption) have suggested that
562 detecting polygenicity may be affected by subtle biases in GWAS caused by population
563 structure (Berg et al. 2019a; Sohail et al. 2019). In our study, the clona common garden
564 network allowed separating the genetic and the environmental effect on phenotypes to
565 identify which traits are contributing to adaptation. In addition, we corrected the BLUPs
566 estimates for the effect of neutral population genetic structure. In this sense, our work
567  highlights the potential of combining precise estimation of the genetic effect on phenotypes
568  with multi-locus genotype-phenotype association models to elucidate the mechanisms that
569 alow the maintenance of genetic variation in adaptive traits, especially in species with
570 complex demographic history. Undoubtedly, next steps to decipher polygenic adaptation in
571 species with varied life-history traits should implement upcoming polygenic association

572  methods that directly correct for population stratification (e.g. Josephs et al. 2019).

573  Performance of polygenic adaptation approaches (VSR and MLM)

574 We evauated the performance of polygenic approaches (VSR and MLM) through the
575  comparison of SNP-based genetic variance estimates, GEV. Despite some slight differences,
576  notably for biotic-stress response traits that were limited by low sample sizes, both methods
577  were robust and provided consistent estimations. The large proportion of the genetic variance
578 explained by SNP-based models, usually higher than 50%, suggests that, by adopting a
579 polygenic analytical model, we were able to account for a significant part of the heritability

580 inferred through pedigree-based analysis, even when using a modest number of SNPs. It is
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581 worth noting that the performance of polygenic models did not depend on the estimated
582  degree of heritability, as evidenced by the absence of correlation between GEV and H? (p =
583 0.04 for VSR, p = -0.05 for MLM, p > 0.05 in both cases). For instance, polygenic models
584 allowed to explain around 45% of the broad-sense heritability, also for low-heritable traits,
585 such assurvival in Mediterranean sites, polycyclism, and SLA. GEV can be interpreted as an
586 analogous of the SNP-based heritability, with the particularity that GEV refers to proportion
587  of the variance in genetic values, rather than on the phenotypic values that are explained by
588 associated SNPs (see Materials and Methods for further details). SNP-based heritability is
589  becoming a fundamental parameter in quantitative genetics because it can yield insights into
590 the ‘missing heritability’ of complex traits (Hou et al. 2019). In this sense, our study shows
591 that polygenic approaches can be a promising strategy to account for a significant part of this
592  missing heritability that is commonly observed in GWAS in forest trees (reviewed by Hall et

593 al. 2016; Lind et al. 2018).

594  However, insights provided by SNP-based estimations of GEV should be interpreted with
595  caution. First, because maritime pine has a huge genome size (around 28 Gbp; Grotkopp et al.
596 2004; Zonneveld 2012) and a rapid decay in linkage disequilibrium (Neale and Savolainen
597 2004), a larger number of genotyped SNPs should be needed to obtain a good genomic
598 coverage. And second, because rare variants are usually difficult to incorporate in genotyping
599 platforms, such as the one used in our study. Such rare variants may indeed account for an
600 important proportion of the heritability in complex traits (Y oung 2019). Even though further
601 investigations are needed to draw stronger conclusions, robust and consistent estimates of
602 polygenicity across methods were fostered herein by a precise phenotypic evaluation in a

603  large number of individuals (over 12,500 trees).

604  Sability of polygenicity estimates across environments and years
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605 The temporal and spatial heterogeneity of selection can impact the evolution of the genetic
606  architecture underlying adaptation (Sella and Barton 2019). Monitoring the patterns of genetic
607  architecture not only across environments but also across years is an important issue in long-
608 lived forest trees that may experience changing selection pressures along their lifetimes. In
609 this sense, our study is not only a validation of the polygenic adaptation model in a new
610 organism, but a contribution to improving our understanding of adaptation. Surprisingly, the
611 estimated degree of polygenicity remained stable across environments for all trait categories,
612 especialy tree height. Additionaly, we observed highly stable genetic architectures for
613 height, phenology, and survival across years. For the case of tree height, polygenicity was
614  highly stable for three time-point measures along a time-span of 6 years, comprising seedling
615 and juvenile stages, during which trees are more vulnerable and selection pressure are more
616 pronounced (Leck et al. 2008). However, analysis of gene function enrichment (see below)
617 suggests that different genetic pathways could be underlying phenotypic variation in
618 contrasting environments. Moreover, differences in gene expression may also underlie

619 adaptation under different environments and years (Mahler et al. 2017; Hamala et al. 2020) .

620 Therole of negative selection in polygenic adaptation

621  All significant correlations between SNP effect-size and MAF were negative (for tree height,
622  bud burst and SLA), suggesting a genetic architecture modeled, at least partially, by the action
623 of negative selection, i.e. SNPs with large effects are rare because they mostly have
624  deleterious effects and are thus selected against (O’ Connor et al. 2019). The MLM method
625 did not alow elucidating whether negative estimates of S were the consequence of an
626 enrichment of trait-increasing or trait-decreasing alleles (Zeng et al. 2018), but it certainly
627  suggests that these traits have been under some form of negative selection. The effect of
628  purifying selection is widespread in model plant genomes (Wright and Andolfatto 2008), and

629 it has been largely evidenced in trees (Krutovsky and Neale 2005; Palmé et al. 2009; Eckert et
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630 al. 2013; De La Torre et al. 2017; Grivet et al. 2017). Indeed, negative selection, and its
631 variation across populations and through time, has been pointed out as a main cause for
632 maintaining polygenicity (Zeng et al. 2018; O’ Connor et al. 2019). Thus, negative selection
633 may also explain, at least partially, the degree of polygenicity observed for fitness-related
634 traits in maritime pine (but see below), as well as the absence of large effect-size SNPs in
635  previous association studies for this species (Lepoittevin et al. 2012; Budde et al. 2014; Hurel

636 etal.2019).

637  Nevertheless, strikingly, the negative selection patterns observed across environments and
638 years did not mimic the trend observed for polygenicity. That is, negative selection was
639 consistently inferred for height, but its strength changed across environments and years for
640 survival and phenology-related traits. This uncoupling between negative selection and
641 polygenicity may result from the fact that our limited coverage of maritime pine genome did
642 not account for (most) rare variants, which can considerably affect S estimates (Zeng et al.
643 2018). In addition, polygenic adaptation generally results in highly stochastic genetic

644  responses driven by non-predictable changes in allele frequencies (Zhang et al. 2013).

645 Finaly, we detected signals of gene enrichment for 10 pathways that had higher values of
646  maximum SNP effect-size or higher posterior probability of being included in the polygenic
647 models: height in the French Atlantic environment and survival in the lIberian Atlantic
648 environment were enriched for genes coding for transcription factors, bud burst in 2015 for
649  genes within the monolignol biosynthesis pathway, and D. sapinea susceptibility (considering
650  both the induced necrosis and needle discoloration) for genes within the ubiquitin system,
651 signal transduction and flavonoid biosynthesis pathways. Assuming that evolution of these
652 pathways is driven by negative selection, these patterns could be interpreted as a consequence
653 of the accumulation of (slightly) deleterious alleles, resulting in higher proportions of SNPs

654  with non-zero effect-size on these phenotypic traits. This higher tolerance to retain deleterious
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655 mutations could be explained by a high genetic redundancy (Nowak et al. 1997; Krakauer and
656 Nowak 1999). Otherwise, if we were to assume a higher impact of positive than negative
657  selection, the observed patterns would imply an accumulation of beneficial mutations in these
658 pathways, which is a hypothesis worth exploring using sequence-based neutrality tests in

659  future studies.

660 Another five pathways were enriched in lower effect-sizes aleles. genes involved in
661 cytoskeleton were linked with height in the Mediterranean environment, those in the glycan
662  metabolism pathway were associated with bud burst in 2015, and those for cell growth and
663 death, DNA recombination and repair, and UV response were associated with phenology
664 growth index. These pathways perform general functions and could be constituted by
665 functionaly important genes. In this case, the observed patterns suggest higher genetic
666 constraints on these functionally important genes, for which negative selection should be
667  highly efficient (Wright and Andolfatto 2008). Interestingly, our results suggest that even for
668 stable estimates of polygenicity, different gene pathways could underlie polygenic adaptation
669 for height in contrasting environments. Finally, athough our gene enrichment analysis
670 reveaded some pathways with stronger evidence for polygenic adaptation, we cannot discard
671 the influence of other (non-studied) gene pathways, as pointed by the omnigenic theory

672 (Boyleetal. 2017).

673 Conclusions

674 The study of genetic adaptation is currently facing new challenges. The advancement of
675 GWAS relies on the development of methods able to detect causal variants of small effect-
676 size, or at low allele frequencies. Our study, adopting a polygenic adaptation model on well-
677 characterized maritime pine clones planted in contrasted environments, contributed to a better

678 understanding of the heritability of complex adaptive traits in long-lived organisms, and its
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679 underlying genetic architecture. Our results showed that most complex adaptive traits are
680 polygenic, with several of them showing also signatures of negative selection. The degree of
681  polygenicity was similar for traits spanning different functional categories, and this genetic
682  architecture was considerably stable over time and across environments. Current models for
683 predicting population trgectories in forest trees under climate change are based on
684 identification of outlier SNPs with relatively large effects on phenotypes and/or strong
685 correlation with climate variables (e.g. Jaramillo-Correa et al. 2015; Rellstab et al. 2016; Lu
686 et al. 2019). Because polygenic adaptation can take place rapidly (see, for example, Jain and
687  Stephan 2017), current prediction models are probably underestimating the capacity of natural
688 forest tree populations to adapt to new environments. Thus, adopting a polygenic adaptation
689  perspective could significantly improve prediction accuracy, and provide new scenarios to
690 inform forest conservation and reforestation programs (Valladares et al. 2014; Fady et al.
691 2016). Also, a better understanding of the genetic architecture of economically valuable
692 polygenic traits can improve genomic-assisted breeding, and allow building better genomic

693  selection models (Grattapaglia et al. 2018).
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719 Table S1. Phenotypic data summary and quantitative genetic analysis. Vy stands for
720 genetic variance (posterior mean of the variance explained by clone effect), H? stands for
721  broad-sense heritability and Qs for genetic differentiation among populations (posterior mode

722  and 95% credible interval are presented).

723 Table S2. MCMCglmm Bayesian model parametrization. Psrf stands for the Gelman-
724  Rubin potential scale reduction factor criterion, a measure of model convergence. Good

725  convergence of modelsis expected for psrf < 1.02.
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726 Table S3. List of genes included in the 17 gene sets considered for gene function
727 enrichment at pathway level. Annotation based on KEGG: Kyoto Encyclopedia of Genes
728 and Genomes (https.//www.genome.jp/kegg/) is also provided. Annotation label indicates
729  genes for which no hit with KEGG database was found and thus were assigned to metabolic

730  pathways/modules based on the InterPro annotation.

731 Table S4. Number of non-zero effect-size SNPs (nbnon-zero) and genetic explained
732 variance (GEV) estimated using Bayesian variable selection regression (VSR), as
733 implemented in piIMASS software, and the Bayesian linear mixed model, MLM,
734  implemented in GCTB software. For MLM, the coefficients of correlation between SNP
735 effect-size and minor allele frequency (S) are also provided. The parameters are presented as
736  the posterior median and 95% credible intervals. Estimates not overlapping zero are marked

737 inbold. NA: models that did not converge.

738  Figure S1. Sampled maritime pine populations (circles) and common gar den sites (other
739  symbols). Neutral gene pools (identified in Jaramillo-Correa et al. 2015) outline the species

740 natura distribution range in different colors.

741  Figure S2. Posterior distribution of the number of non-zer o size-effect SNPsfor 26 traits
742  belonging to five categories: survival, height, phenology-related, functional, and biotic-
743  stress response traits. The number of non-zero size-effect SNPs was estimated through two
744  Bayesian methods. posterior inference via model averaging and subset selection (VSR), as
745 implemented in the software piMASS (Guan and Stephens 2011), and the Mixed Linear
746  Model (MLM) implemented in the software CGTB (Zeng et al. 2018). The posterior median

747  isindicated with adashed line.

748 Figure S3. Posterior distribution of SNP effect-sizes for 26 traits belonging to five

749  categories:. survival, height, phenology-related, functional, and biotic-stress response
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traits. SNP effect-size was estimated through two Bayesian methods: posterior inference via
model averaging and subset selection (VSR), as implemented in the software piMASS (Guan
and Stephens 2011), and the Mixed Linear Model (MLM) implemented in the software CGTB

(Zeng et al. 2018).
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Site Country Coordinates Environment Plantation Ntrees Annual Summer Annual mean  Annual Soil type
year (clones) precipitation precipitation temperature  temperature
(mm) (mm) (°C) range (°C)

Cabada  Spain 43°25'17" N Iberian 2010 4272 890 126 12.9 24.0 Cambisol
06°32'38" W Atlantic (535)

Fundao  Portugal 40°06'38" N 2010 4272 1122 58 14.0 26.9 Cambisol
07°28'58" W (535)

Pierroton France  44°44'42° N  French 2011 3434 933 199 13.8 26.7 Arenosol
00°47'04” W Atlantic (443)

Madrid  Spain 40°30'47" N Mediterranean 2010 4,272 378 35 14.8 32.8 Arenosol
03°18'44" W (535)

Céaceres  Spain 40°02'24" N 2010 4,272 374 21 16.7 326 Fluvisol
05°22'19" W (535)

Table 1. CLONAPIN common garden network (5 sites). Climatic data correspond to the mean of each parameter for the period 2005-2014

obtained from the EuMedClim database (Fréjaville and Benito Garzon 2018).
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Trait Environment Gene set Statistic tested Sign of p-value g-value
enrichment (<0.10)
Height French Atlantic Transcription factor maxabsbetarb Higher 0.003 0.05
maxpostprb Higher 0.004 0.07
Mediterranean Cytoskeleton maxabsbetar b Lower 0.003 0.06
Survival Iberian Atlantic Transcription factor maxabsbetar b Higher 0.001 0.01
maxpostprb Higher <0.001 0.005
Bud burst 2015 French Atlantic Monolignol biosynthesis maxabsbetarb Higher 0.003 0.05
Monolignol biosynthesis maxpostprb Higher 0.005 0.08
Glycan metabolism maxabsbetar b Lower 0.040 0.09
Phenology growth Iberian Atlantic Cell growth and death maxabsbetarb Lower 0.010 0.03
index DNA recomb and repair maxabsbetar b Lower 0.008 0.03
UV response maxabsbetar b Lower 0.005 0.03
D. sapinea necrosis  French Atlantic Ubiquitin system maxabsbetar b Higher 0.002 0.04
maxpostprb Higher 0.003 0.06
D. sapinea French Atlantic Sgnal transduction maxabsbetar b Higher 0.004 0.08
discoloration maxpostprb Higher 0.003 0.06
Flavonoid biosynthesis maxpostprb Higher 0.007 0.07

Table 2. Gene sets with gene function enrichment at pathway/module level. Two statistics obtained from the VSR method were tested: the
maximum of any SNP per gene of the Rao-Backwellized posterior probability of inclusion (maxpostprb) and the maximum of any SNP per gene

of the absolute value of the Rao-Backwellized effect-size (maxabsbetarb). Sign of enrichment refers to two-tailed null hypothesis testing.
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Figure 1. Comparison of Qs and Fr estimates across traits, environments and years. A)
Qs for a selection of traits belonging to five categories: survival, height, phenology-related
traits, functional traits and biotic-stress response (see Supplemental Table Sl for al traits). B)
Qsr for height estimated in three different environments: Mediterranean, Iberian Atlantic, and
French Atlantic, and a global Qs for the three environments together. In the French Atlantic
common garden, height was measured in three different years: 2013, 2015 and 2018. Global
Fsr estimate is presented by a red line surrounded by the 95% confidence intervals computed

by bootstrapping.
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Figure 2. Polygenicity estimated from Bayesian mixed linear models (MLMs) for a
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the proportion of non-zero size-effect SNPs. Posterior median and 95% credible intervals are

presented.
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Figure 3. Polygenicity estimated from Bayesian mixed linear models (MLMs) across
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variation of polygenicity. Polygenicity was estimated as the proportion of non-zero size-effect

SNPs. Posterior median and 95% credible intervals are presented.
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