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Abstract 

In studies of cognitive neuroscience, multivariate pattern analysis (MVPA) is 
widely used as it offers richer information than traditional univariate analysis. 
Representational similarity analysis (RSA), as one method of MVPA, has 
become an effective decoding method based on neural data by calculating the 
similarity between different representations in the brain under different 
conditions. Moreover, RSA is suitable for researchers to compare data from 
different modalities, and even bridge data from different species. However, 
previous toolboxes have been made to fit for specific datasets. Here, we 
develop a novel and easy-to-use toolbox based on Python named NeuroRA 
for representational analysis. Our toolbox aims at conducting cross-modal data 
analysis from multi-modal neural data (e.g. EEG, MEG, fNIRS, ECoG, sEEG, 
neuroelectrophysiology, fMRI), behavioral data, and computer simulated data. 
Compared with previous software packages, our toolbox is more 
comprehensive and powerful. By using NeuroRA, users can not only calculate 
the representational dissimilarity matrix (RDM), which reflects the 
representational similarity between different conditions, but also conduct a 
representational analysis among different RDMs to achieve a cross-modal 
comparison. In addition, users can calculate neural pattern similarity, 
spatiotemporal pattern similarity (STPS) and inter-subject correlation (ISC) 
with this toolbox. NeuroRA also provides users with functions performing 
statistical analysis, storage and visualization of results. We introduce the 
structure, modules, features, and algorithms of NeuroRA in this paper, as well 
as examples applying the toolbox in published datasets. 

Keywords: 

Representational similarity analysis; multivariate pattern analysis; multi-modal; 
python; correlation analysis. 

Introduction 

In recent years, research on brain science based on neural data has shifted 
from univariate analysis towards multivariate pattern analysis (MVPA) 
(Norman et al., 2006). In contrast to the former, the latter accounts for the 
population coding for neurons. The decoding of neural activity can help 
scientists better understand the encoding process of neurons. As in David 
Marr’s model, representation bridges the gap between a computation goal and 
implementation machinery (Marr, 1982). Representational similarity analysis 
(RSA) (Kriegeskorte et al., 2008a) is an effective MVPA method that can 
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successfully describe the relationship between representations of different 
modalities of data, bridging gaps between human and animals. Therefore, 
RSA has been rapidly applied in investigating various cognitive functions, 
including perception (Evans et al., 2015; Henriksson et al., 2019), memory 
(Xue et al., 2010), language (Chen et al., 2016), and decision-making (Yan et 
al., 2016). 

With the technological development in brain science, various neural 
recording methods have emerged rapidly. Noninvasive neurophysiological 
recordings such as electroencephalography (EEG) and 
magnetoencephalography (MEG) with high temporal resolution, and 
neuroimaging methods such as functional near-infrared spectroscopy (fNIRS) 
and functional magnetic resonance imaging (fMRI) with high spatial resolution, 
have been widely used for basic research. Meanwhile, invasive techniques 
such as electrocorticography (ECoG), stereo-electro-encephalography (sEEG), 
and neuroelectrophysiology have been applied to patients or non-human 
primates. The interpretation of results across different recording modalities 
becomes difficult. The RSA method, however, uses a representation 
dissimilarity matrix (RDM) to bridge data from different modalities. For example, 
studies have attempted to combine fMRI results with electrophysiological 
results (Kriegeskorte et al., 2008b) or MEG results with electrophysiological 
results (Cichy et al., 2014). Moreover, it can connect behavioral and neural 
representational matrices (Wang et al., 2018). Furthermore, with the rapid 
development of artificial intelligence (AI) (Jordan and Mitchell, 2015; 
Kriegeskorte and Golan, 2019), RSA can be used to compare representations 
in artificial neural networks (ANN) with those in EEG (Greene and Hansen, 
2018). In summary, RSA is a useful tool to combine the results of behavior and 
multi-modal neural data, which can lead to a better understanding of the brain, 
and even further, can help us establish a clearer link between the brain and 
artificial intelligence (Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van 
Gerven, 2015; Eickenberg et al., 2017; Greene and Hansen, 2018b; Kuzovkin 
et al., 2018). 

Some existing tools for RSA include a module in PyMVPA (Hanke et al., 
2009), a toolbox for RSA by Kriegeskorte (Nili et al., 2014) and an example in 
MNE-Python (Gramfort et al., 2013). However, they all have some 
shortcomings. MNE can only perform RSA for MEG and EEG data in one 
example. PyMVPA can only implement some basic functions, such as 
calculating the correlation coefficient and data conversion. Kriegeskorte’s 
toolbox attached to their paper is designed mainly based on fMRI data and 
users need to be proficient in MATLAB (Kriegeskorte et al., 2008b), which 
makes it difficult to generate to other datasets. We considered build a 
comprehensive and universal toolbox for RSA, and Python was chosen as a 
suitable programming language. Python is a rapidly rising programming 
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language having great advantages for scientific computing (Sanner, 1999; 
Koepke, 2011). Because of its strong expansibility, it is more accommodating 
to use Python for computing and incorporate a toolbox inside it. NumPy (Van 
et al., 2011), Scikit-learn (Pedregosa et al., 2013), and some other extensions 
can realize and simplify various basic computing functions. Thus, a number of 
researchers select Python to develop toolkits in psychology and neuroscience, 
such as PsychoPy (Peirce, 2007) for designing psychological experiment 
programs, MNE-Python for EEG/MEG data analysis, and PyMVPA for utilizing 
MVPA in data from different modalities. 

In the present toolbox, we have developed a novel and easy-to-use Python 
toolbox, NeuroRA (neural representational analysis), for comprehensive 
representation analysis. NeuroRA aims at using powerful computational 
resources with Python and conducting cross-modal data analyses for various 
types of neural data (e.g. EEG, MEG, fNIRS, fMRI), as well as behavioral data 
and computer stimulation data. In addition to traditional functions of RSA, 
NeuroRA also includes some specialized functions of representational 
analysis in published papers across several laboratories, such as neural 
pattern similarity (NPS), spatiotemporal pattern similarity (STPS) (Xue et al., 
2010; Lu et al., 2015) and inter-subject correlation (ISC) (Hasson et al., 2004). 
NeuroRA requires several basic Python packages to function, including 
NumPy, SciPy, Matplotlib (Hunter, 2007), Nibabel (Brett et al., 2016), Nilearn 
and MNE-Python. In the following sections, we detail the structure and function 
of NeuroRA and further apply it to the open dataset of a MEG study (Cichy et 
al., 2014) and a fMRI study (Haxby 2001) to guide users to apply NeuroRA. 

Overview of NeuroRA 

The structure and functions of NeuroRA are illustrated in Figure 1. It can 
analyze all types of neural (including EEG, MEG, fNIRS, ECoG, sEEG, 
electrophysiological and fMRI data) and behavioral data. By utilizing the 
powerful computational toolbox in Python, NeuroRA gives users the ability to 
mine neural data thoroughly and efficiently. 
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Figure 1 Overview of NeuroRA. NeuroRA is a Python-based toolbox and requires some 
extension packages, including NumPy, SciPy, Matplotlib, Nilearn and MNE-Python. It contains 
several main functions: calculating neural pattern similarity (NPS), spatiotemporal pattern 
similarity (STPS), inter-subject correlation (ISC), and representation dissimilarity matrix (RDM), 
comparing representations among different modalities using RDMs, statistical analysis, saving 
results as a NIfTI file for fMRI data, and plotting the results. The blue arrows indicate the data 
flow. The specific implementation of these features is listed in the main text. 

NeuroRA provides abundant functions. First, NPS function reflects the 
correlation of brain activities induced under two different conditions. Second, 
STPS function reflects the representational similarity across different space 
and time points. Third, ISC function reflects the similarity of brain activity 
among multiple subjects under the same condition. Fourth, RDM function 
reflects the representation similarity between different conditions/stimuli with 
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neural data from a given modality. All values in the matrix are normalized, and 
the value at any point in the matrix reflects the dissimilarity of the data 
representation under the two conditions corresponding to the row and column 
respectively. Points on the diagonal use the same data under the same 
conditions, thus the dissimilarity value is 0. Fifth, NeuroRA performs a 
correlation analysis between RDMs from different modalities to compare 
representations across modalities. This procedure can be applied according to 
different parameters; for example, the calculation can be applied for each 
subject, for each channel, for each time-point, or a combination of all of them.  

In addition to calculating the above values, NeuroRA provides a statistical 
module to perform statistical analysis based on those values and a 
visualization module to plot the results, such as RDMs, representational 
similarities over time, and RSA-results for fMRI. Also, NeuroRA provides a 
unique approach to save the result of representational analysis back to fMRI 
widely used format, i.e. a NIfTI file obtained with user defined output-threshold. 

The pre-required packages for NeuroRA include NumPy, SciPy, Matplotlib, 
Nilearn and MNE-Python, which are checked and automatically downloaded 
by installing NeuroRA. NumPy assists with matrix-based computation. SciPy 
helps with basic statistical analysis. Matplotlib is employed for the plotting 
functions. NiBabel is used to read and generate NIfTI files. Users can 
download NeuroRA through only one line of command: pip install neurora. The 
website for our toolbox is https://neurora.github.io/NeuroRA/, and the GitHub 
URL for its source code is https://github.com/neuora/NeuroRA. 

Data Structures in NeuroRA 

The calculations in NeuroRA are all based on multidimensional matrices, 
including deformation, transposition, decomposition, standardization, addition, 
and subtraction. The data type in NeuroRA is ndarray, an N-dimensional array 
class of NumPy. Therefore, users first convert their neural data into a matrix 
(ndarray type) as the input of NeuroRA, with information on the different 
dimensions of the matrix, such as the number of subjects, number of 
conditions, number of channels, and size of the image (see instructions in the 
software for details). Here, we give users some feasible methods for data 
conversion for different kinds of neural data in Tabel 1. The outputs of the 
functions in NeuroRA are square matrices with the same dimensions as the 
input matrix. The input and output data structures of the NeuroRA functions 
are shown in the tutorial attached in the website. 

Table 1. Recommeded data conversion scheme 
Type of Neural Bata Data Conversion Scheme 

fMRI Use Nibabel (https://nipy.org/nibabel/) to load fMRI data. 
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      # load fMRI data as ndarray 

      data = nib.load(fmrifilename).get_fdata() 

EEG/MEG 

Use MATLAB toolbox such as EEGLab (http://sccn.ucsd.edu/eeglab/) to do 

preprocessing and obtain .mat files, and use Scipy (https://www.scipy.org) to load 

EEG data (.mat). 

# load EEG/MEG data as ndarray 

data = sio.loadmat(filename)[“data”] 

Or use MNE (https://mne-tools.github.io) to do preprocessing and return 

ndarray-type data. 

# load EEG/MEG data from an Epoch object 

data = epoch.get_data() 

fNIRS 

For raw data from device, use Numpy (http://www.numpy.org) to load fNIRS data 

(.txt or .csv). 

# load fNIRS data of .txt file as ndarray 

data = np.loadtxt(txtfilename) 

# load fNIRS data of .csv file as ndarray 

data = np.loadtxt(csvfilename, delimiter, usecols, unpack) 

ECoG/sEEG 
Use Brainstorm (https://neuroimage.usc.edu/brainstorm/) to do preprocessing and 

obtain .mat files, and use Scipy to load ECoG data (.mat). 

Electrophysiology 

Use pyABF (https://github.com/swharden/pyABF) to load electrophysiology data 

(.abf). 

# the electrophysiology data file name with full address 

abf = pyabf.ABF(“demo.abf”) 

# access sweep data 

abf.setSweep(sweepNumber, channel) 

# get sweep data with sweepY 

data = abf.sweepY 

Two functions, NumPy.reshape() & NumPy.transpose(), are recommended for further data 
transformation 

NeuroRA’s Modules and Features 

NeuroRA attains various functions to process the representational analysis. 
Usually, data must be processed in multi-step ways, and this toolkit highly 
integrates these intermediate processes, making it easy to implement. In 
NeuroRA, only a simple function is required to complete the following 
processes. Users can obtain the required results after a necessary conversion 
of the data format. 

Meanwhile, we attempt to add some adjustable parameters to meet the 
calculation requirements for different experiments and different modalities of 
data. Users can flexibly change the input parameters in the function to match 
their data format and computing goals. 
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NeuroRA mainly includes the following core modules, and more modules 
could be added in the future or as requested. 

nps_cal: A module to calculate the neural pattern similarity based on 
neural data. 

stps_cal: A module to calculate the spatiotemporal pattern similarity based 
on neural data. 

isc_cal: A module to calculate the inter-subject correlation based on neural 
data. 

 rdm_cal: A module to calculate RDM based on multi-modal neural data. 

rdm_corr: A module to calculate the correlation coefficient between two 
RDMs, based on different algorithms, including Pearson correlation, 
Spearman correlation, Kendalls tau correlation, cosine similarity, and 
Euclidean distance. 

corr_cal_by_rdm: A module to calculate the representational similarities 
among the RDMs under different modes. 

corr_cal: A module to conduct one-step RSA between two different modes 
data. 

 corr_to_nii: A module to save the representational analysis results in a .nii 
file for fMRI. 

 stats_cal: A module to calculate the statistical results. 

 rsa_plot: A module to plot the results from representational analysis. It 
contains the functions of plotting the RDM, plotting the graphs or hotmaps with 
results from representational analysis by time sequence based on EEG or 
EEG-like (such as MEG) data, plotting the results of fMRI representational 
analysis (montage images and surface images). 

Ø Calculate the RDMs 

An RDM is a typical approach for comparing representations in neural data. By 
extracting data from two different conditions and calculating the correlations 
between them, we will obtain the similarity between the two representations 
under the two conditions. Subtract the obtained similarity index from 1 and get 
the values of the dissimilarity index in RDM (Figure 2). In Fig 2, Different 
grating stimuli were observed to product different neural activity signals, and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.03.25.008086doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008086
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

the value in RDM presented the dissimilarity of neural activities between two 
different stimuli. As shown in the figure, the closer the two grating orientations 
were, the lower the dissimilarity would be. In a typical object recognition 
experiment, humans and monkeys were allowed to watch the same sets of 
visual stimuli (Kriegeskorte, 2008). Researchers calculated the humans’ RDM 
based on fMRI data and the monkeys’ RDM based on electrophysiological 
data. The results indicated that the neural patterns in RDMs were similar when 
humans and monkeys observed stimuli belonged to the same category 
(animate or inanimate). 

 

Figure 2 Schematic diagram for calculating the RDM. Different data can be obtained under 
different conditions. The value of the point [i, j] in RDM is obtained by calculating the 
dissimilarity (1-correlation coefficient r) between the data under condition i and that under 
condition j. 

The application of calculating RDM is not restricted. NeuroRA achieves 
computations based on multiple modal neural data from behavioral data to 
brain imaging data (Figure 3). 

 

Figure 3 Range of the feature of calculating the RDM. NeuroRA is capable of calculating 
data in a variety of modes, including behavior, fMRI, EEG, MEG, fNIRS, ECoG, sEEG, and 
electrophysiology. The red bold lines denote the ability to perform calculations between two 
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modes. The example referred to by the pink clip denotes the alternative calculation methods of 
the corresponding mode. 

Assuming that the measured data from a certain condition under a total of n 
experimental conditions are denoted as 𝑑!,𝑑!,… ,𝑑!, then the following RDM 
of 𝑛×𝑛 can be calculated by the corresponding function under the rdm_cal 
module from our toolkit: 

𝑅𝐷𝑀 =
𝐷!!
⋮
𝐷!!

𝐷!"
⋮
𝐷!!

⋯
⋱
⋯

𝐷!!
⋮
𝐷!!

 

where 𝐷!" denotes the dissimilarity between the data under condition i and 
that under condition j. The dissimilarity (𝐷!") is calculated as follows: 

𝐷!" = 1− 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑! ,𝑑!) 

 In certain cases, researchers must calculate RDM separately for each 
participant, or they may calculate RDM independently for each channel or 
each time point (Henriksson et al., 2019; Hall-McMaster et al., 2019). We 
resolve these issues at the beginning of NeuroRA. The toolkit provides several 
input parameters in the functions that allow users to make the corresponding 
changes in order to get RDM/RDMs by different subjects or channels or 
time-points or searchlight (for fMRI) or specific ROI (for fMRI) (Figure 3). 
Users can change the calculation parameters according to their requirements, 
and consequently, the corresponding output formats change. 

Ø Representational analysis among different RDMs 

NeuroRA provides a convenient way to calculate cross-modality similarity by 
computing the similarities between two RDMs from different modalities. We 
offer several solutions to calculate the similarity (or correlation coefficient), 
including Pearson correlation, Spearman correlation, Kendalls tau correlation, 
cosine similarity, and Euclidean distance. Users can freely change parameters 
to select different computing methods. 

 In these calculation process, we first reform the square matrices into 
vectors and then calculate similarities (Figure 4). Some previous studies 
calculated the correlation coefficient between two RDMs by using the diagonal 
values, which makes the result deceptively high (Ritchie et al., 2017). We 
avoid this by removing the diagonal values and include only half of the matrix 
to reduce the duplication, as the upper and lower halves of the RDM are 
actually identical (Figure 4). 
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 Furthermore, NeuroRA provides a permutation test to determine whether 
the two RDMs are related. The permutation test is based on random shuffling 
of data and is suitable for data with a small sample size (Efron and Tibshirani, 
1994). We first shuffle the values in the two RDMs and re-calculate the 
similarity matrix between the two RDMs. By repeating this procedure 5000 
times (the number of iterations here can be defined by users), we get the final 
p-values from this permutation distribution. 

 

Figure 4 Schematic diagram for calculation between two RDMs. Step 1: Obtain two 
RDMs from different modal data. Step 2: Extract the points of the upper diagonal (within the 
grey line). Step 3: Spread them as vectors. Step 4: Calculate the correlation coefficient or 
conduct a permutation test between two vectors. The former returns the correlation coefficient 
and the p-value, and the latter returns only the p-value. 

NeuroRA can also perform calculations based on multiple RDMs. 
Consequently, we can expand it to conditions with multiple RDMs. When you 
obtain a behavioral RDM from behavioral data and wish to compare it with 
other modal data, a problem may arise as more than one RDM can be 
obtained based on other modal data, such as EEG or fMRI. Our toolbox 
provides “searchlight” computation to perform correlation analysis between 
RDM from one Mode (behavior, or any of neural data) and RDM from other 
Modes (each individual brain region, time interval, or others) one by one 
(Figure 3). For example, calculations based on EEG data can obtain one RDM 
per channel or time interval or both (Figure 5). Table 2 is a script example for 
using NeuroRA to calculate the similarities between behavioral RDM and EEG 
RDM per channel. Another simple example is when the users want to see 
which brain regions are highly correlated with behavioral performance or a 
coding model, they can get one behavioral/model RDM based on behavioral 
response time or accuracy and they may also get many fMRI RDMs from 
different regions. Users can put these two kinds of RDMs (behavioral/model 
RDM and fMRI RDMs) into our function, and they will get results showing the 
regions that are highly correlated with behavioral/model patterns based on 
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thresholds of significance (p value) or correlation values set by users. (Tabel 3, 
more details on fMRI calculation are described in the next section). These 
convenient functions of ergodic computation cover the vast majority of 
cross-modal research needs. 

 

Figure 5 Schematic diagram for calculating similarities between RDM from different 
Modes across time and channel for EEG and EEG-like (such as MEG, sEEG, et al.) data. 
NeuroRA calculates the similarities between RDMs for mode A (EEG and EEG-like data) and 
one RDM for mode B (such as behavior). Such calculation can be performed across each 
time-point and each channel. Each value in time-channel result-image (bottom right) 
corresponds to a similarity index (for example, the Pearson correlation) between RDMs from 
two Modes. 
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Table 2 Scripts of representational analysis between behavioral data and EEG data for 
each channel in NeuroRA. Users can input data from different modes and obtain the 
correlation between results of the two modes. If users want to conduct calculation for each 
time-points, they can set the parameters: time_opt, time_win & time_step in function eegRDM 
and bhvANDeeg_corr. 

S
ch

em
e 

1 

1 

2 

3 

4 

5 

6 

7   

8 

9 

10 

11   

12 

13   

14 

15 

16   

17   

from neurora.rdm_cal import bhvRDM, eegRDM 

from neurora.corr_cal_by_rdm import rdms_corr 

 

# calculate the behavioral RDM for each subject 

# the shape of bhv_data should be [n_conditions, n_subjects, n_trials] 

# the shape of bhv_rdms will be [n_subjects, n_conditions, n_conditions] 

bhv_rdms = bhvRDM(bhv_data, sub_opt=1) 

# calculate the eeg RDMs for each channel & each subject 

# the shape of eeg_data should be [n_conditions, n_subjects, n_trials, n_channels, n_times] 

# the shape of eeg_rdms will be [n_subjects, n_channels, n_conditions, n_conditions] 

eeg_rdms = eegRDM(eeg_data, sub_opt=1, chl_opt=1) 

# initialize the correlation coefficients 

corrs = np.zeros([n_subjects, n_channels, 2], dtype=np.float) 

# calculate the correlation coefficients between behavioral RDM and eeg RDMs 

# the shape of corrs is [n_subjects, n_channels, 2], 2 represents a r-value & a p-value 

for sub in range(n_subjects): 

   corrs[sub] = rdm_corr(bhv_rdms[sub], eeg_rdms[sub]) 

S
ch

em
e 

2 18 

19 

20 

21   

from neurora.corr_cal import bhvANDeeg_corr 

 

# calculate the correlation coefficients between behavioral RDM and eeg RDMs 

corrs = bhvANDeeg_corr(bhv_data, eeg_data, sub_opt=1, chl_opt=1) 

To maximally simplify users’ experience, our toolbox offers a one-step 
option between different modes (Tabel 2 Scheme 2 is a one-step example for 
calculating a similarity index between behavior and EEG). Users can input 
data from two modalities, and the toolbox will return the final results of 
representation analysis. This will be very convenient and efficient when the 
users do not need to obtain the RDMs in the intermediate stages. 

Ø Searchlight across the whole brain and save results as a NIfTI file for 
fMRI data 

In the field of cognitive neuroscience, fMRI research constitutes a large 
proportion. Researchers typically wish to calculate RDMs for different brain 
regions. Users can conduct representational analysis for ROIs or searchlight 
across the whole brain for fMRI data based on NeuroRA (Figure 6). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.03.25.008086doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008086
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 

Figure 6 Schematic diagram for searchlight calculation for fMRI data based on 
NeuroRA. Inside the area with dark brown borders is the calculating process for each 
searchlight process. Inside the area with light brown borders is the calculating process for 
each ROI. For each searchlight step, users define the size and strides of the calculation unit. 
After computations between the RDMs within the searchlight blob for fMRI and the RDM for 
other modes (e.g. behavioral data, computer simulated data), a NIfTI file can be obtained. At 
the bottom left is a demo of the resulting NIfTI file drawn with NeuroELF (http://neuroelf.net), 
and color-coded regions indicate strength of representation similarity between two modes. For 
each ROI, users can calculate the RDM based on the voxels in ROI and get similarity between 
ROI RDM and the RDM for other modes. 

 For each searchlight step, users can customize the size of the basic 
calculation unit [𝑘! , 𝑘! , 𝑘!]. Each k indicates the number of voxels along the 
corresponding axis. The strides between different calculation unit must be 
decided as [𝑠! , 𝑠! , 𝑠!]. The strides refer to how far the calculation unit is moved 
before another computation is made. Each s indicates how many voxels exist 
between two adjacent calculation units along the corresponding axis. For the 
fMRI data of size [X, Y, Z], the kernel size is usually set to be more than one 
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voxel, so each voxel can exist in multiple kernels (calculation units). Therefore, 
N computations are required here: 

𝑁 = ( 𝑋 − 𝑘! 𝑠! + 1)×( 𝑌 − 𝑘! 𝑠! + 1)×( 𝑍 − 𝑘! 𝑠! + 1) 

 This implies that N RDMs must be calculated, which are each related to 
the corresponding calculation unit. After obtaining searchlight RDMs, users 
can calculate the similarities between fMRI and other modes. In NeuroRA, the 
final correlation coefficient of one voxel is the mean value of the correlation 
coefficients calculated by all kernels that contain this voxel. 

Table 3 Script of searchlight representational analysis between fMRI data and a coding 
model in NeuroRA. The calculation parameters of fMRI data are ksize=[3, 3, 3] and 
strides=[1, 1, 1]. Users can just input different data and obtain the correlation results between 
two modes. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11   

12 

13   

14 

15 

16 

17   

18   

from neurora.rdm_cal import fmriRDM 

from neurora.corr_cal_by_rdm import fmrirdms_corr 

import numpy as np 

 

# calculate the searchlight fMRI RDMs for each subject 

# the shape of fmri_data should be [n_conditions, n_subjects, nx, ny, nz] 

# nx, ny, nz represent the size of fMRI-img 

# here, the size of calculation unit is [3, 3, 3] and the strides for calculating is [1, 1, 1] 

# the shape of fmri_rdms will be [n_subjects, n_x, n_y, n_z] 

# n_x, n_y, n_z represent the number of calculation units for searchlight along the x, y, z axis. 

fmri_rdms = fmriRDM(fmri_data, ksize=[3, 3, 3], strides=[1, 1, 1], sub_opt=1) 

# initialize the correlation coefficients 

corrs = np.zeros([n_subjects, n_x, n_y, n_z, 2], dtype=np.float) 

# calculate the correlation coefficients between searchlight fMRI RDMs and a model RDM 

# the shape of model_rdm should be [n_conditions, n_conditions] 

# the shape of corrs will be [n_subjetcs, n_x, n_y, n_z, 2], 2 represents a r-value & a p-value 

for sub in range(n_subjects): 

corrs[sub] = fmrirdms_corr(model_rdm, fmri_rdms[sub]) 

Tabel 3 is a script demo to understand how to conduct a searchlight based 
analysis for fMRI data. We could first calculate the fMRI RDMs within each 
searchlight blob, and then obtain similarities between fMRI RDMs and a 
coding model RDM all over the whole brain. 

NeuroRA provides functions to save the results as a NIfTI file with 
thresholding parameters as well (Table 4). Users can set certain thresholds for 
p-values, r-values or t-values. Also, users can select Family-Wise-Error (FWE) 
or False-Discovery-Rate (FDR) correction methods to control for multiple 
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comparisons across the whole brain. Furthermore, users can choose whether 
to smooth the results, whether to plot automatically, etc. For example, if the 
threshold for p value is set as 0.05, the final NIfTI file returned will be filtered 
with p < 0.05, and all voxels with p>=0.05 will be set as 0. 

Table 4 Script of saving the calculation results as a NIfTI file for fMRI data. Users can get 
the correlation results based on the script in Tabel 3. The NIfTI file can be obtained by 
entering some necessary parameters. 

1 

2 

3 

4 

5 

6 

7 

8 

9   

10   

11   

12 

13 

from neurora.nii_save import corr_save_nii 

 

# corrs represents the similarities (correlation coefficients) between fMRI and other mode 

# the shape of corrs should be [n_x, n_y, n_z, 2] 

# filename represents the filename of the result .nii file 

# affine represents the information of the fMRI-image array data in a reference space 

# here, the size of fMRI-image is [60, 60, 60], the size of calculation unit is [3, 3, 3] and the 

# strides for calculating is [1, 1, 1] 

filename = “demo_result.nii” 

corr_save_nii(corrs, filename, affine, size=[60, 60, 60], size=[60, 60, 60], ksize=[3, 3, 3], 

strides=[1, 1, 1], p=0.05, correct_method=’FDR’) 

# The output is an [60, 60, 60] NumPy-array 

# And a .nii file named ‘demo-results.nii’ has been generated 

Ø Other Representational Analysis 

In addition to RSA, users can conduct analysis of NPS, STPS and ISC with 
NeuroRA. Our toolkits have separate modules to conduct these calculations. 
Just like RSA from multiple modalities, the calculations for representational 
analysis above support EEG-like data as well as fMRI data. Users can calculate 
the results for each channel/region, each time-point from a time series, each 
ROI or searchlight blobs (for fMRI) as they wish by selecting different functions 
and setting specific parameters. These calculations are used in a similar way to 
calculate RDM or RSA in the above sections. Users can use help() (a built-in 
function in Python) to see and understand the detailed description of the 
purpose of the specific function or module, and users can get more information 
from our tutorial documents. 

Ø Statistical Analysis 

NeuroRA provides functions for statistical analysis based on the 
calculations mentioned above. The inputs are the r-value & p-value maps for 
each subject, and the output will be the statistical results (a t-value & p-value 
map) (Table 5). Besides, we add permutation test to all processes of statistical 
analysis. This means the statistical significance could be assessed through a 
permutation test by randomly shuffling the data and calculated the results for 
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many iterations (for example 5000) to draw a distribution. Real data exceeding 
95% of the distribution are regarded significant. Users can independently 
choose to use permutation test or not and change the iteration number by set 
parameters in related functions. 

Table 5 Example of statistical analysis for channel-time based EEG calculation and 
searchlight fMRI calculation. 

Type of Calculation Example Script 

channel-time based EEG 
calculation 

from neurora.stats_cal import stats 

# the shape of corrs should be [n_subs, n_chls, n_ts, 2] 

stats(corrs, permutation=True, iter=1000) 

# The output is an [n_chls, n_ts, 2] NumPy-array 

# 2 represents a t-value and a p-value 

searchlight fMRI 
calculation 

from neurora.stats_cal import stats_fmri 

# the shape of corrs should be [n_subs, n_x, n_y, n_z, 2] 

stats_fmri(corrs, permutation=True, iter=10000) 

# The output is an [n_x, n_y, n_z, 2] NumPy-array 

Ø Visualization of Results 

NeuroRA provides several functions to visualize the results in rsa_plot 
module (Figure 7). These allow users to use our toolkit to plot whatever they 
select. 

The basic option is to visualize RDMs by function plot_rdm() or 
plot_rdm_withvalue(). Users can select different colormaps and set up the 
threshold for correlation coefficients to appear. The more advanced option for 
EEG and EEG-like data is to visualize the results across different time points 
by function plot_corrs_by_time() and plot_corrs_hotmap(), etc. The similarity 
index is obtained from each time point and cascaded together. The former is a 
graph and the latter is a hotmap. Also, NeuroRA has options for plotting fMRI 
results on a brain. Users can use plot_brainrsa_montage() and some other 
functions to plot 2-D results and use plot_brainrsa_surface() to plot 3-D results. 
The implementation of visualization requires the Pyplot module in the 
Matplotlib and nilearn package. 
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Figure 7 Typical features of visualization. Left-top: Plot the RDM by function plot_rdm() 
and plot_rdm_withvalue(). Right-top: Plot the results by time sequence by function 
plot_corrs_by_time() and plot_corrs_by_hotmap(). Left-down: Plot the 2-D fMRI results by 
function plot_brainrsa_montage(). Right-down: Plot the 3-D fMRI results by function 
plot_brainrsa_surface(). 

We also provide several code demos in NeuroRA on the publicly available 
datasets. One is based on visual-92-categories-task MEG datasets (Cichy et 
al., 2014). The other one is based on Haxby fMRI datasets (Haxby, 2001). In 
these demos, user can learn how to use NeuroRA to perform representational 
analysis and plot the essential results, including calculating RDMs from 
different time points (Fig 8a), correlations over the time series (Fig 8b), ROI 
calculation (Fig 8c, here use a ventral temporal mask), searchlight calculation 
between the brain activities and a ‘animate-inanimate’ coding model (Fig 8d) 
and so on. These demos contain several critical sections: loading data & 
preprocessing, calculating RDMs, calculating the neural similarities or 
similarity matrix and plotting. Users can download the tutorial in NeuroRA 
website and find further details. 
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Figure 8 Demo results. (a) The RDMs of 0ms, 100ms, 200ms, 300ms and 400ms based 
on all 302 channels’ MEG data. (b) Use the neural representations of 200ms and 800ms 
to calculate the similarities with all time-points’ neural representations. (c) The RDM for 
ROI (ventral temporal). (d) The searchlight results between a ‘animate-inanimate’ coding 
model RDM and searchlight RDMs. In this coding model RDM, we assume that there are 
consistent representations among animate objects and among inanimate objects. 

User Support 

To report any bugs in the code or submit any queries or suggestions about our 
toolbox, users can use the issue tracker on GitHub: 
https://github.com/neurora/NeuroRA/issues. We will reply and act accordingly 
as soon as possible. 

Discussion 

RSA provides a novel way of observing big data, which is powerful in the field 
of cognitive neuroscience. An increasing number of studies have used such 
multivariate analysis to obtain novel information that could not be observed 
through univariate analysis (Mahmoudi et al., 2012; Sui et al., 2012; Haxby et 
al., 2014). More importantly, research based on different modalities must be 
assessed simultaneously, and RSA offers a perfect way to quantitatively 
compare results from different modalities with distinctive dimensions, 
resolutions, and even different species (Cichy and Pantazis, 2017; Salmela et 
al., 2016).  

 In the present study, we have developed a Python-based toolbox that can 
perform representation analysis for neural data from many different modalities. 
Compared with other toolkits or modules that can also implement RSA, our 
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toolbox has much wider application, stronger computational performance, and 
more convenient and complete functions, especially for the analysis of 
multi-modal data and cross-modal comparisons. Moreover, it is open source, 
free to use, and cross-platform. 

 For detailed information on each module and function in our toolbox, 
including the format of input data, the choice of parameters, and the format of 
output data, users can refer to our toolbox tutorial. To further understand the 
specific implementation of each function in the toolbox, people can read the 
source code directly. If users encounter any problems or difficulties during use, 
they can consult NeuroRA’s tutorials and email our developers. 

 Although NeuroRA has already realized the essential functions for RSA 
analysis, there are still several limitations to be addressed in the future. First, 
NeuroRA is not yet designed to process the raw data. However, users can 
utilize other toolbox such as EEGLAB (Delorme and Makeig, 2004), MNE 
(Gramfort et al., 2013), and Nibabel (Brett et al., 2016), to import data and 
transfer them into a format fit for NeuroRA. We plan to develop an integrated 
format conversion function in the next version. Second, there is still significant 
room for improving the computational performance of NeuroRA, especially in 
the iterative calculation of fMRI data, which is often slow. This is due to nested 
loops in the code structure when we need to traverse the data from the entire 
brain and iterate the random shuffle many times. In the future, we will reduce 
the time by optimizing functions with GPUs. Third, there is currently no 
graphical user interface (GUI) right now, which we plan to design and 
implement based on PyQt in a future version. Users could then obtain the final 
results by dragging the data file to a specific location in the GUI with the mouse 
and filling in the relevant parameters. 

 Through NeuroRA, for the first time, we provide a method for researchers 
to perform representation analysis with neural data from many different 
modalities. However, this is only a starting point. With the development of the 
algorithm to compute representational analysis, we will include new methods, 
as well as new visualization tools. We hope that many interesting findings can 
be observed through our toolbox and we would like to collaborate with 
researchers that are interested in this tool to improve the toolbox further. 

Information Sharing Statement 

NeuroRA is available at https://pypi.org/project/neurora/. The website for 
NeuroRA is https://neurora.github.io/NeuroRA/, and the tutorial of the toolbox 
can be download here. The code for our toolbox NeuroRA can be accessed on 
GitHub: https://github.com/neurora/NeuroRA. 
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