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Abstract

In studies of cognitive neuroscience, multivariate pattern analysis (MVPA) is
widely used as it offers richer information than traditional univariate analysis.
Representational similarity analysis (RSA), as one method of MVPA, has
become an effective decoding method based on neural data by calculating the
similarity between different representations in the brain under different
conditions. Moreover, RSA is suitable for researchers to compare data from
different modalities, and even bridge data from different species. However,
previous toolboxes have been made to fit for specific datasets. Here, we
develop a novel and easy-to-use toolbox based on Python named NeuroRA
for representational analysis. Our toolbox aims at conducting cross-modal data
analysis from multi-modal neural data (e.g. EEG, MEG, fNIRS, ECoG, sEEG,
neuroelectrophysiology, fMRI), behavioral data, and computer simulated data.
Compared with previous software packages, our toolbox is more
comprehensive and powerful. By using NeuroRA, users can not only calculate
the representational dissimilarity matrix (RDM), which reflects the
representational similarity between different conditions, but also conduct a
representational analysis among different RDMs to achieve a cross-modal
comparison. In addition, users can calculate neural pattern similarity,
spatiotemporal pattern similarity (STPS) and inter-subject correlation (ISC)
with this toolbox. NeuroRA also provides users with functions performing
statistical analysis, storage and visualization of results. We introduce the
structure, modules, features, and algorithms of NeuroRA in this paper, as well
as examples applying the toolbox in published datasets.

Keywords:

Representational similarity analysis; multivariate pattern analysis; multi-modal,
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Introduction

In recent years, research on brain science based on neural data has shifted
from univariate analysis towards multivariate pattern analysis (MVPA)
(Norman et al., 2006). In contrast to the former, the latter accounts for the
population coding for neurons. The decoding of neural activity can help
scientists better understand the encoding process of neurons. As in David
Marr’'s model, representation bridges the gap between a computation goal and
implementation machinery (Marr, 1982). Representational similarity analysis
(RSA) (Kriegeskorte et al., 2008a) is an effective MVPA method that can
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successfully describe the relationship between representations of different
modalities of data, bridging gaps between human and animals. Therefore,
RSA has been rapidly applied in investigating various cognitive functions,
including perception (Evans et al., 2015; Henriksson et al., 2019), memory
(Xue et al., 2010), language (Chen et al., 2016), and decision-making (Yan et
al., 2016).

With the technological development in brain science, various neural
recording methods have emerged rapidly. Noninvasive neurophysiological
recordings such as electroencephalography (EEG) and
magnetoencephalography (MEG) with high temporal resolution, and
neuroimaging methods such as functional near-infrared spectroscopy (fNIRS)
and functional magnetic resonance imaging (fMRI) with high spatial resolution,
have been widely used for basic research. Meanwhile, invasive techniques
such as electrocorticography (ECoG), stereo-electro-encephalography (sEEG),
and neuroelectrophysiology have been applied to patients or non-human
primates. The interpretation of results across different recording modalities
becomes difficult. The RSA method, however, uses a representation
dissimilarity matrix (RDM) to bridge data from different modalities. For example,
studies have attempted to combine fMRI results with electrophysiological
results (Kriegeskorte et al., 2008b) or MEG results with electrophysiological
results (Cichy et al., 2014). Moreover, it can connect behavioral and neural
representational matrices (Wang et al., 2018). Furthermore, with the rapid
development of artificial intelligence (Al) (Jordan and Mitchell, 2015;
Kriegeskorte and Golan, 2019), RSA can be used to compare representations
in artificial neural networks (ANN) with those in EEG (Greene and Hansen,
2018). In summary, RSA is a useful tool to combine the results of behavior and
multi-modal neural data, which can lead to a better understanding of the brain,
and even further, can help us establish a clearer link between the brain and
artificial intelligence (Khaligh-Razavi and Kriegeskorte, 2014; Guglu and van
Gerven, 2015; Eickenberg et al., 2017; Greene and Hansen, 2018b; Kuzovkin
et al., 2018).

Some existing tools for RSA include a module in PyMVPA (Hanke et al.,
2009), a toolbox for RSA by Kriegeskorte (Nili et al., 2014) and an example in
MNE-Python (Gramfort et al., 2013). However, they all have some
shortcomings. MNE can only perform RSA for MEG and EEG data in one
example. PyMVPA can only implement some basic functions, such as
calculating the correlation coefficient and data conversion. Kriegeskorte’s
toolbox attached to their paper is designed mainly based on fMRI data and
users need to be proficient in MATLAB (Kriegeskorte et al., 2008b), which
makes it difficult to generate to other datasets. We considered build a
comprehensive and universal toolbox for RSA, and Python was chosen as a
suitable programming language. Python is a rapidly rising programming

3


https://doi.org/10.1101/2020.03.25.008086
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.008086; this version posted May 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

language having great advantages for scientific computing (Sanner, 1999;
Koepke, 2011). Because of its strong expansibility, it is more accommodating
to use Python for computing and incorporate a toolbox inside it. NumPy (Van
et al., 2011), Scikit-learn (Pedregosa et al., 2013), and some other extensions
can realize and simplify various basic computing functions. Thus, a number of
researchers select Python to develop toolkits in psychology and neuroscience,
such as PsychoPy (Peirce, 2007) for designing psychological experiment
programs, MNE-Python for EEG/MEG data analysis, and PyMVPA for utilizing
MVPA in data from different modalities.

In the present toolbox, we have developed a novel and easy-to-use Python
toolbox, NeuroRA (neural representational analysis), for comprehensive
representation analysis. NeuroRA aims at using powerful computational
resources with Python and conducting cross-modal data analyses for various
types of neural data (e.g. EEG, MEG, fNIRS, fMRI), as well as behavioral data
and computer stimulation data. In addition to traditional functions of RSA,
NeuroRA also includes some specialized functions of representational
analysis in published papers across several laboratories, such as neural
pattern similarity (NPS), spatiotemporal pattern similarity (STPS) (Xue et al.,
2010; Lu et al., 2015) and inter-subject correlation (ISC) (Hasson et al., 2004).
NeuroRA requires several basic Python packages to function, including
NumPy, SciPy, Matplotlib (Hunter, 2007), Nibabel (Brett et al., 2016), Nilearn
and MNE-Python. In the following sections, we detail the structure and function
of NeuroRA and further apply it to the open dataset of a MEG study (Cichy et
al., 2014) and a fMRI study (Haxby 2001) to guide users to apply NeuroRA.

Overview of NeuroRA

The structure and functions of NeuroRA are illustrated in Figure 1. It can
analyze all types of neural (including EEG, MEG, fNIRS, ECoG, skEEG,
electrophysiological and fMRI data) and behavioral data. By utilizing the
powerful computational toolbox in Python, NeuroRA gives users the ability to
mine neural data thoroughly and efficiently.
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behavioral, EEG, MEG, fNIRS, ECoG,

Input Data (NumPy Array) electrophysiological, fMRI data

Calculating the Neural Pattern Similarity

Data under Condition A Data under Condition B

Calculating the Spatiotemporal Pattern Similarity

Data under Condition A Data under Condition B

Calculating the Inter-Subject Correlation

Data of Subject 1 Data of Subject 2 ... Data of Subject n

Calculating the Representational Dissimilarity Matrix

Statistical Analysis

Data under Condition 7 Data under Condition 2 ... Data under Condition n

Plotting the Results

Calculating the Representational Similarity based on RDMs

RDM(s) for Mode A RDM(s) for Mode B

One-Step Realizing Representational Similarity Analysis

Data from Mode A under different conditions Data from Mode B under different conditions

Save the result as a NIfTI file for fMRI

Figure 1 Overview of NeuroRA. NeuroRA is a Python-based toolbox and requires some
extension packages, including NumPy, SciPy, Matplotlib, Nilearn and MNE-Python. It contains
several main functions: calculating neural pattern similarity (NPS), spatiotemporal pattern
similarity (STPS), inter-subject correlation (ISC), and representation dissimilarity matrix (RDM),
comparing representations among different modalities using RDMs, statistical analysis, saving
results as a NIfTI file for fMRI data, and plotting the results. The blue arrows indicate the data
flow. The specific implementation of these features is listed in the main text.

NeuroRA provides abundant functions. First, NPS function reflects the
correlation of brain activities induced under two different conditions. Second,
STPS function reflects the representational similarity across different space
and time points. Third, ISC function reflects the similarity of brain activity
among multiple subjects under the same condition. Fourth, RDM function
reflects the representation similarity between different conditions/stimuli with
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neural data from a given modality. All values in the matrix are normalized, and
the value at any point in the matrix reflects the dissimilarity of the data
representation under the two conditions corresponding to the row and column
respectively. Points on the diagonal use the same data under the same
conditions, thus the dissimilarity value is 0. Fifth, NeuroRA performs a
correlation analysis between RDMs from different modalities to compare
representations across modalities. This procedure can be applied according to
different parameters; for example, the calculation can be applied for each
subject, for each channel, for each time-point, or a combination of all of them.

In addition to calculating the above values, NeuroRA provides a statistical
module to perform statistical analysis based on those values and a
visualization module to plot the results, such as RDMs, representational
similarities over time, and RSA-results for fMRI. Also, NeuroRA provides a
unique approach to save the result of representational analysis back to fMRI
widely used format, i.e. a NIfT| file obtained with user defined output-threshold.

The pre-required packages for NeuroRA include NumPy, SciPy, Matplotlib,
Nilearn and MNE-Python, which are checked and automatically downloaded
by installing NeuroRA. NumPy assists with matrix-based computation. SciPy
helps with basic statistical analysis. Matplotlib is employed for the plotting
functions. NiBabel is used to read and generate NIfTI files. Users can
download NeuroRA through only one line of command: pip install neurora. The
website for our toolbox is https://neurora.github.io/NeuroRA/, and the GitHub
URL for its source code is https://github.com/neuora/NeuroRA.

Data Structures in NeuroRA

The calculations in NeuroRA are all based on multidimensional matrices,
including deformation, transposition, decomposition, standardization, addition,
and subtraction. The data type in NeuroRA is ndarray, an N-dimensional array
class of NumPy. Therefore, users first convert their neural data into a matrix
(ndarray type) as the input of NeuroRA, with information on the different
dimensions of the matrix, such as the number of subjects, number of
conditions, number of channels, and size of the image (see instructions in the
software for details). Here, we give users some feasible methods for data
conversion for different kinds of neural data in Tabel 1. The outputs of the
functions in NeuroRA are square matrices with the same dimensions as the
input matrix. The input and output data structures of the NeuroRA functions
are shown in the tutorial attached in the website.

Table 1. Recommeded data conversion scheme

Type of Neural Bata Data Conversion Scheme
fMRI Use Nibabel (https://nipy.org/nibabel/) to load fMRI data.
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# load fMRI data as ndarray

data = nib.load(fmrifilename).get_fdata()

Use MATLAB toolbox such as EEGLab (http://sccn.ucsd.edu/eeglab/) to do
preprocessing and obtain .mat files, and use Scipy (https://www.scipy.org) to load
EEG data (.mat).

# load EEG/MEG data as ndarray

EEG/MEG data = sio.loadmat(filename)[“data”]

Or use MNE (https://mne-tools.github.io) to do preprocessing and return
ndarray-type data.

# load EEG/MEG data from an Epoch object

data = epoch.get_datay)

For raw data from device, use Numpy (http://www.numpy.org) to load fNIRS data
(.txt or .csv).

# load fNIRS data of .txt file as ndarray

fNIRS ;
data = np.loadtxt(txtfilename)
# load fNIRS data of .csv file as ndarray
data = np.loadtxt(csvfilename, delimiter, usecols, unpack)
Use Brainstorm (https://neuroimage.usc.edu/brainstorm/) to do preprocessing and
ECoG/sEEG . . .
obtain .mat files, and use Scipy to load ECoG data (.mat).
Use pyABF (https://github.com/swharden/pyABF) to load electrophysiology data
(-abf).
# the electrophysiology data file name with full address
. abf = pyabf. ABIF(“demo.abf”)
Electrophysiology

# access sweep data
abf.setSweep(sweepNumber, channel)
# get sweep data with sweepY

data = abf.sweepY

Two functions, NumPy.reshape() & NumPy.transpose(), are recommended for further data
transformation

NeuroRA’s Modules and Features

NeuroRA attains various functions to process the representational analysis.
Usually, data must be processed in multi-step ways, and this toolkit highly
integrates these intermediate processes, making it easy to implement. In
NeuroRA, only a simple function is required to complete the following
processes. Users can obtain the required results after a necessary conversion
of the data format.

Meanwhile, we attempt to add some adjustable parameters to meet the
calculation requirements for different experiments and different modalities of
data. Users can flexibly change the input parameters in the function to match
their data format and computing goals.
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NeuroRA mainly includes the following core modules, and more modules
could be added in the future or as requested.

nps_cal: A module to calculate the neural pattern similarity based on
neural data.

stps_cal: A module to calculate the spatiotemporal pattern similarity based
on neural data.

isc_cal: A module to calculate the inter-subject correlation based on neural
data.

rdm_cal: A module to calculate RDM based on multi-modal neural data.

rdm_corr: A module to calculate the correlation coefficient between two
RDMs, based on different algorithms, including Pearson correlation,
Spearman correlation, Kendalls tau correlation, cosine similarity, and
Euclidean distance.

corr_cal_by rdm: A module to calculate the representational similarities
among the RDMs under different modes.

corr_cal: A module to conduct one-step RSA between two different modes
data.

corr_to_nii: A module to save the representational analysis results in a .nii
file for fMRI.

stats_cal: A module to calculate the statistical results.

rsa_plot: A module to plot the results from representational analysis. It
contains the functions of plotting the RDM, plotting the graphs or hotmaps with
results from representational analysis by time sequence based on EEG or
EEG-like (such as MEG) data, plotting the results of fMRI representational
analysis (montage images and surface images).

> Calculate the RDMs

An RDM is a typical approach for comparing representations in neural data. By
extracting data from two different conditions and calculating the correlations
between them, we will obtain the similarity between the two representations
under the two conditions. Subtract the obtained similarity index from 1 and get
the values of the dissimilarity index in RDM (Figure 2). In Fig 2, Different
grating stimuli were observed to product different neural activity signals, and
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the value in RDM presented the dissimilarity of neural activities between two
different stimuli. As shown in the figure, the closer the two grating orientations
were, the lower the dissimilarity would be. In a typical object recognition
experiment, humans and monkeys were allowed to watch the same sets of
visual stimuli (Kriegeskorte, 2008). Researchers calculated the humans’ RDM
based on fMRI data and the monkeys’ RDM based on electrophysiological
data. The results indicated that the neural patterns in RDMs were similar when
humans and monkeys observed stimuli belonged to the same category
(animate or inanimate).

r———— = | 10 r |

| 0.0 00286 00988 0.3147 l |

| Stimulus under Condition i | | Stimulus under Condition m |
l 0.0 - 01236 01398 o8 l

0.0286 00 00217 | 05071 05014 0.6 z

£

w

) 0.0988 00217 00 03326 0s B

-_———— ———— 03147 | 0123c [N oo -r——r— — ——— - |
| 0.2 |

Stimulus under Condition j | Stimulus under Condition k |
| I 0.1398 = 0.5014 0.3326 0.4916 0.0 | I

Figure 2 Schematic diagram for calculating the RDM. Different data can be obtained under
different conditions. The value of the point [/, j] in RDM is obtained by calculating the
dissimilarity (1-correlation coefficient r) between the data under condition i and that under
condition j.

The application of calculating RDM is not restricted. NeuroRA achieves
computations based on multiple modal neural data from behavioral data to
brain imaging data (Figure 3).

Calculate the RDMs by subject Calculate the RDMs by channel

Channel 1
Get one RDM Sublect 1 a - Get one RDM E..?r
]
ubje u Channel 2

Subject2 5 B r

Behavioral EEG, MEG, fNIRS L}

' Data Data :

" Channel n

Subject
Calculate the RDMs by time Calculate the RDMs by subject

ECoG, sEEG,
Electrophysiology
Data

ROM fMRI

"
Data
Searchlight
Each calculation unit has a Subject 1 .|
Subject 2
= I L
For ROI
Get one RDM -
Subjectn

Figure 3 Range of the feature of calculating the RDM. NeuroRA is capable of calculating
data in a variety of modes, including behavior, fMRI, EEG, MEG, fNIRS, ECoG, sEEG, and
electrophysiology. The red bold lines denote the ability to perform calculations between two
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modes. The example referred to by the pink clip denotes the alternative calculation methods of
the corresponding mode.

Assuming that the measured data from a certain condition under a total of n
experimental conditions are denoted as d,,d,, ..., d,, then the following RDM
of nxn can be calculated by the corresponding function under the rdm_cal
module from our toolkit:

Dy Di; - Dig
RDM =| : : :

Dni Dnz ' Dpg

where D;; denotes the dissimilarity between the data under condition / and
that under condition j. The dissimilarity (D;;) is calculated as follows:

D;j = 1 — similarity(d;, d;)

In certain cases, researchers must calculate RDM separately for each
participant, or they may calculate RDM independently for each channel or
each time point (Henriksson et al., 2019; Hall-McMaster et al., 2019). We
resolve these issues at the beginning of NeuroRA. The toolkit provides several
input parameters in the functions that allow users to make the corresponding
changes in order to get RDM/RDMs by different subjects or channels or
time-points or searchlight (for fMRI) or specific ROl (for fMRI) (Figure 3).
Users can change the calculation parameters according to their requirements,
and consequently, the corresponding output formats change.

> Representational analysis among different RDMs

NeuroRA provides a convenient way to calculate cross-modality similarity by
computing the similarities between two RDMs from different modalities. We
offer several solutions to calculate the similarity (or correlation coefficient),
including Pearson correlation, Spearman correlation, Kendalls tau correlation,
cosine similarity, and Euclidean distance. Users can freely change parameters
to select different computing methods.

In these calculation process, we first reform the square matrices into
vectors and then calculate similarities (Figure 4). Some previous studies
calculated the correlation coefficient between two RDMs by using the diagonal
values, which makes the result deceptively high (Ritchie et al., 2017). We
avoid this by removing the diagonal values and include only half of the matrix
to reduce the duplication, as the upper and lower halves of the RDM are
actually identical (Figure 4).
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Furthermore, NeuroRA provides a permutation test to determine whether
the two RDMs are related. The permutation test is based on random shuffling
of data and is suitable for data with a small sample size (Efron and Tibshirani,
1994). We first shuffle the values in the two RDMs and re-calculate the
similarity matrix between the two RDMs. By repeating this procedure 5000
times (the number of iterations here can be defined by users), we get the final
p-values from this permutation distribution.

RDM for Mode 4

Vector A
(shape: [28, 1])

RDM for Mode B

Vector B
(shape: [28, 1])

JU3IOJ207) UOTIEB[3.LIO)
a3 ae[noe)

Figure 4 Schematic diagram for calculation between two RDMs. Step 1: Obtain two
RDMs from different modal data. Step 2: Extract the points of the upper diagonal (within the
grey line). Step 3: Spread them as vectors. Step 4: Calculate the correlation coefficient or
conduct a permutation test between two vectors. The former returns the correlation coefficient
and the p-value, and the latter returns only the p-value.

NeuroRA can also perform calculations based on multiple RDMs.
Consequently, we can expand it to conditions with multiple RDMs. When you
obtain a behavioral RDM from behavioral data and wish to compare it with
other modal data, a problem may arise as more than one RDM can be
obtained based on other modal data, such as EEG or fMRI. Our toolbox
provides “searchlight” computation to perform correlation analysis between
RDM from one Mode (behavior, or any of neural data) and RDM from other
Modes (each individual brain region, time interval, or others) one by one
(Figure 3). For example, calculations based on EEG data can obtain one RDM
per channel or time interval or both (Figure 5). Table 2 is a script example for
using NeuroRA to calculate the similarities between behavioral RDM and EEG
RDM per channel. Another simple example is when the users want to see
which brain regions are highly correlated with behavioral performance or a
coding model, they can get one behavioral/model RDM based on behavioral
response time or accuracy and they may also get many fMRlI RDMs from
different regions. Users can put these two kinds of RDMs (behavioral/model
RDM and fMRI RDMs) into our function, and they will get results showing the
regions that are highly correlated with behavioral/model patterns based on
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thresholds of significance (p value) or correlation values set by users. (Tabel 3,
more details on fMRI calculation are described in the next section). These
convenient functions of ergodic computation cover the vast majority of
cross-modal research needs.

Based on one channel’s data

similarities for one channel

| (Similarity, Similarityt, ..., Similarityt) |

1.5 2.0
Time (s)

2.5

Figure 5 Schematic diagram for calculating similarities between RDM from different
Modes across time and channel for EEG and EEG-like (such as MEG, sEEG, et al.) data.
NeuroRA calculates the similarities between RDMs for mode A (EEG and EEG-like data) and
one RDM for mode B (such as behavior). Such calculation can be performed across each
time-point and each channel. Each value in time-channel result-image (bottom right)
corresponds to a similarity index (for example, the Pearson correlation) between RDMs from
two Modes.
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Table 2 Scripts of representational analysis between behavioral data and EEG data for
each channel in NeuroRA. Users can input data from different modes and obtain the
correlation between results of the two modes. If users want to conduct calculation for each
time-points, they can set the parameters: time_opt, time_win & time_step in function eegRDM
and bhvANDeeg_corr.

1 from neurora.rdm_cal import bhvRDM, eegRDM

2 from neurora.corr_cal_by_rdm import rdms_corr

3

4 # calculate the behavioral RDM for each subject

5 # the shape of bhv_data should be [n_conditions, n_subjects, n_trials|

6 # the shape of bhv_rdms will be [n_subjects, n_conditions, n_conditions]

7 I bhv_rdms = bhvRDM(bhv_data, sub_opt=1)

8 # calculate the eeg RDMs for each channel & each subject

9 # the shape of eeg_data should be [n_conditions, n_subjects, n_trials, n_channels, n_times]

Scheme 1

10 # the shape of eeg_rdms will be [n_subjects, n_channels, n_conditions, n_conditions]
11 I ceg_rdms = eegRDM(eeg_data, sub_opt=1, chl_opt=1)
12 # initialize the correlation coeflicients
13 I corrs = np.zeros([n_subjects, n_channels, 2], dtype=np.float)
14 # calculate the correlation coefficients between behavioral RDM and eeg RDMs
15 # the shape of corrs is [n_subjects, n_channels, 2], 2 represents a r-value & a p-value
16 I for sub in range(n_subjects):
17 I corrs[sub] = rdm_corr(bhv_rdms[sub], eeg_rdms[sub])
~ 18 from neurora.corr_cal import bhvANDeeg_corr
(0]
£ 19
_GCJ 20 # calculate the correlation coefficients between behavioral RDM and eeg RDMs
((})) 21 I corrs = bhvANDeeg_corr(bhv_data, eeg_data, sub_opt=1, chl_opt=1)

To maximally simplify users’ experience, our toolbox offers a one-step
option between different modes (Tabel 2 Scheme 2 is a one-step example for
calculating a similarity index between behavior and EEG). Users can input
data from two modalities, and the toolbox will return the final results of
representation analysis. This will be very convenient and efficient when the
users do not need to obtain the RDMs in the intermediate stages.

> Searchlight across the whole brain and save results as a NIfTI file for
fMRI data

In the field of cognitive neuroscience, fMRI research constitutes a large
proportion. Researchers typically wish to calculate RDMs for different brain
regions. Users can conduct representational analysis for ROIs or searchlight
across the whole brain for fMRI data based on NeuroRA (Figure 6).
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Figure 6 Schematic diagram for searchlight calculation for fMRI data based on
NeuroRA. Inside the area with dark brown borders is the calculating process for each
searchlight process. Inside the area with light brown borders is the calculating process for
each ROI. For each searchlight step, users define the size and strides of the calculation unit.
After computations between the RDMs within the searchlight blob for fMRI and the RDM for
other modes (e.g. behavioral data, computer simulated data), a NIfTI file can be obtained. At
the bottom left is a demo of the resulting NIfTI file drawn with NeuroELF (http://neuroelf.net),

and color-coded regions indicate strength of representation similarity between two modes. For
each ROI, users can calculate the RDM based on the voxels in ROI and get similarity between
ROI RDM and the RDM for other modes.

For each searchlight step, users can customize the size of the basic
calculation unit [k, k,, k,]. Each k indicates the number of voxels along the
corresponding axis. The strides between different calculation unit must be
decided as [s,, sy, s;]. The strides refer to how far the calculation unit is moved
before another computation is made. Each s indicates how many voxels exist
between two adjacent calculation units along the corresponding axis. For the
fMRI data of size [X, Y, Z], the kernel size is usually set to be more than one
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voxel, so each voxel can exist in multiple kernels (calculation units). Therefore,
N computations are required here:

N = (X — k) /sl + DX(|(Y = ky) /5| + DXUAZ = k) /5.) + 1)

This implies that N RDMs must be calculated, which are each related to
the corresponding calculation unit. After obtaining searchlight RDMs, users
can calculate the similarities between fMRI and other modes. In NeuroRA, the
final correlation coefficient of one voxel is the mean value of the correlation
coefficients calculated by all kernels that contain this voxel.

Table 3 Script of searchlight representational analysis between fMRI data and a coding
model in NeuroRA. The calculation parameters of fMRI data are ksize=[3, 3, 3] and
strides=[1, 1, 1]. Users can just input different data and obtain the correlation results between

two modes.
1 from neurora.rdm_cal import fmriRDM
2 from neurora.corr_cal_by_rdm import fmrirdms_corr
3 Import numpy as np
4
5 # calculate the searchlight fMRI RDMs for each subject
6 # the shape of fmri_data should be [n_conditions, n_subjects, nx, ny, nz
7 # nx, ny, nz represent the size of fMRI-img
8 # here, the size of calculation unit is [3, 3, 3] and the strides for calculating is [1, 1, 1]
9 # the shape of fmri_rdms will be [n_subjects, n_x, n_y, n_z]|
10 # n_x, n_y, n_z represent the number of calculation units for searchlight along the x, y, z axis.
11 I fmri_rdms = fmriRDM(fmri_data, ksize=(3, 3, 3], strides=[1, 1, 1], sub_opt=1)
12 # initialize the correlation coeflicients
13 I corrs = np.zeros([n_subjects, n_x, n_y, n_z, 2], dtype=np.float)
14 # calculate the correlation coeflicients between searchlight fIMRI RDMs and a model RDM
15 # the shape of model_rdm should be [n_conditions, n_conditions]
16 # the shape of corrs will be [n_subjetcs, n_x, n_y, n_z, 2], 2 represents a r-value & a p-value

17 I for sub in range(n_subjects):

18 I corrs[sub] = fmrirdms_corr(model_rdm, fmri_rdms[sub]

)
/

Tabel 3 is a script demo to understand how to conduct a searchlight based
analysis for fMRI data. We could first calculate the fMRI RDMs within each
searchlight blob, and then obtain similarities between fMRI RDMs and a
coding model RDM all over the whole brain.

NeuroRA provides functions to save the results as a NIfTI file with
thresholding parameters as well (Table 4). Users can set certain thresholds for
p-values, r-values or t-values. Also, users can select Family-Wise-Error (FWE)
or False-Discovery-Rate (FDR) correction methods to control for multiple
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comparisons across the whole brain. Furthermore, users can choose whether
to smooth the results, whether to plot automatically, etc. For example, if the
threshold for p value is set as 0.05, the final NIfTI file returned will be filtered
with p < 0.05, and all voxels with p>=0.05 will be set as 0.

Table 4 Script of saving the calculation results as a NIfTI file for fMRI data. Users can get
the correlation results based on the script in Tabel 3. The NIfTI file can be obtained by
entering some necessary parameters.

1 from neurora.nii_save import corr_save_nii
2
3 # corrs represents the similarities (correlation coeflicients) between fMRI and other mode
4 # the shape of corrs should be [n_x, n_y, n_z, 2]
5 # filename represents the filename of the result .nii file
6 # affine represents the information of the fMRI-image array data in a reference space
7 # here, the size of fMRI-image is [60, 60, 60], the size of calculation unit is [3, 3, 3] and the
8 # strides for calculating is [1, 1, 1]
9 I filename = “demo_result.nii”
10 I corr_save_nii(corrs, filename, affine, size=[60, 60, 60], size=[60, 60, 60], ksize=[3, 3, 3],
11 I strides=[1, 1, 1], p=0.05, correct_method="FDR’)

12 # The output is an [60, 60, 60] NumPy-array

13 # And a .nii file named ‘demo-results.nii” has been generated

» Other Representational Analysis

In addition to RSA, users can conduct analysis of NPS, STPS and ISC with
NeuroRA. Our toolkits have separate modules to conduct these calculations.
Just like RSA from multiple modalities, the calculations for representational
analysis above support EEG-like data as well as fMRI data. Users can calculate
the results for each channel/region, each time-point from a time series, each
ROI or searchlight blobs (for fMRI) as they wish by selecting different functions
and setting specific parameters. These calculations are used in a similar way to
calculate RDM or RSA in the above sections. Users can use help() (a built-in
function in Python) to see and understand the detailed description of the
purpose of the specific function or module, and users can get more information
from our tutorial documents.

> Statistical Analysis

NeuroRA provides functions for statistical analysis based on the
calculations mentioned above. The inputs are the r-value & p-value maps for
each subject, and the output will be the statistical results (a t-value & p-value
map) (Table 5). Besides, we add permutation test to all processes of statistical
analysis. This means the statistical significance could be assessed through a
permutation test by randomly shuffling the data and calculated the results for
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many iterations (for example 5000) to draw a distribution. Real data exceeding
95% of the distribution are regarded significant. Users can independently
choose to use permutation test or not and change the iteration number by set
parameters in related functions.

Table 5 Example of statistical analysis for channel-time based EEG calculation and
searchlight fMRI calculation.

Type of Calculation Example Script

from Il(‘lll‘()ril.STiltSi('Ell imporr stats

. # the shape of corrs should be [n_subs, n_chls, n_ts, 2]
channel-time based EEG , ) o
stats(corrs, permutation="True, iter=1000)

calculation
# The output is an [n_chls, n_ts, 2] NumPy-array
# 2 represents a t-value and a p-value
from neurora.stats_cal import stats_fmri
searchlight fMRI # the shape of corrs should be [n_subs, n_x, n_y, n_z, 2
calculation stats_fmri(corrs, permutation="True, iter=10000)

# The output is an [n_x, n_y, n_z, 2] NumPy-array

> Visualization of Results

NeuroRA provides several functions to visualize the results in rsa_plot
module (Figure 7). These allow users to use our toolkit to plot whatever they
select.

The basic option is to visualize RDMs by function plot rdm() or
plot_rdm_withvalue(). Users can select different colormaps and set up the
threshold for correlation coefficients to appear. The more advanced option for
EEG and EEG-like data is to visualize the results across different time points
by function plot _corrs_by time() and plot_corrs_hotmap(), etc. The similarity
index is obtained from each time point and cascaded together. The former is a
graph and the latter is a hotmap. Also, NeuroRA has options for plotting fMRI
results on a brain. Users can use plot_brainrsa_montage() and some other
functions to plot 2-D results and use plot_brainrsa_surface() to plot 3-D results.
The implementation of visualization requires the Pyplot module in the
Matplotlib and nilearn package.
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Figure 7 Typical features of visualization. Left-top: Plot the RDM by function plot_rdm()
and plot_rdm_withvalue(). Right-top: Plot the results by time sequence by function
plot_corrs_by time() and plot_corrs_by_hotmap(). Left-down: Plot the 2-D fMRI results by
function plot_brainrsa_montage(). Right-down: Plot the 3-D fMRI results by function
plot_brainrsa_surface().

We also provide several code demos in NeuroRA on the publicly available
datasets. One is based on visual-92-categories-task MEG datasets (Cichy et
al., 2014). The other one is based on Haxby fMRI datasets (Haxby, 2001). In
these demos, user can learn how to use NeuroRA to perform representational
analysis and plot the essential results, including calculating RDMs from
different time points (Fig 8a), correlations over the time series (Fig 8b), ROI
calculation (Fig 8c, here use a ventral temporal mask), searchlight calculation
between the brain activities and a ‘animate-inanimate’ coding model (Fig 8d)
and so on. These demos contain several critical sections: loading data &
preprocessing, calculating RDMs, calculating the neural similarities or
similarity matrix and plotting. Users can download the tutorial in NeuroRA
website and find further details.
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Figure 8 Demo results. (a) The RDMs of Oms, 100ms, 200ms, 300ms and 400ms based
on all 302 channels’ MEG data. (b) Use the neural representations of 200ms and 800ms
to calculate the similarities with all time-points’ neural representations. (c) The RDM for
ROI (ventral temporal). (d) The searchlight results between a ‘animate-inanimate’ coding
model RDM and searchlight RDMs. In this coding model RDM, we assume that there are
consistent representations among animate objects and among inanimate objects.

User Support

To report any bugs in the code or submit any queries or suggestions about our
toolbox, users  can use the issue tracker on  GitHub:
https://github.com/neurora/NeuroRA/issues. We will reply and act accordingly
as soon as possible.

Discussion

RSA provides a novel way of observing big data, which is powerful in the field
of cognitive neuroscience. An increasing number of studies have used such
multivariate analysis to obtain novel information that could not be observed
through univariate analysis (Mahmoudi et al., 2012; Sui et al., 2012; Haxby et
al., 2014). More importantly, research based on different modalities must be
assessed simultaneously, and RSA offers a perfect way to quantitatively
compare results from different modalities with distinctive dimensions,
resolutions, and even different species (Cichy and Pantazis, 2017; Salmela et
al., 2016).

In the present study, we have developed a Python-based toolbox that can
perform representation analysis for neural data from many different modalities.
Compared with other toolkits or modules that can also implement RSA, our
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toolbox has much wider application, stronger computational performance, and
more convenient and complete functions, especially for the analysis of
multi-modal data and cross-modal comparisons. Moreover, it is open source,
free to use, and cross-platform.

For detailed information on each module and function in our toolbox,
including the format of input data, the choice of parameters, and the format of
output data, users can refer to our toolbox tutorial. To further understand the
specific implementation of each function in the toolbox, people can read the
source code directly. If users encounter any problems or difficulties during use,
they can consult NeuroRA'’s tutorials and email our developers.

Although NeuroRA has already realized the essential functions for RSA
analysis, there are still several limitations to be addressed in the future. First,
NeuroRA is not yet designed to process the raw data. However, users can
utilize other toolbox such as EEGLAB (Delorme and Makeig, 2004), MNE
(Gramfort et al., 2013), and Nibabel (Brett et al., 2016), to import data and
transfer them into a format fit for NeuroRA. We plan to develop an integrated
format conversion function in the next version. Second, there is still significant
room for improving the computational performance of NeuroRA, especially in
the iterative calculation of fMRI data, which is often slow. This is due to nested
loops in the code structure when we need to traverse the data from the entire
brain and iterate the random shuffle many times. In the future, we will reduce
the time by optimizing functions with GPUs. Third, there is currently no
graphical user interface (GUI) right now, which we plan to design and
implement based on PyQt in a future version. Users could then obtain the final
results by dragging the data file to a specific location in the GUI with the mouse
and filling in the relevant parameters.

Through NeuroRA, for the first time, we provide a method for researchers
to perform representation analysis with neural data from many different
modalities. However, this is only a starting point. With the development of the
algorithm to compute representational analysis, we will include new methods,
as well as new visualization tools. We hope that many interesting findings can
be observed through our toolbox and we would like to collaborate with
researchers that are interested in this tool to improve the toolbox further.

Information Sharing Statement

NeuroRA is available at https://pypi.org/project/neurora/. The website for
NeuroRA is https://neurora.github.io/NeuroRA/, and the tutorial of the toolbox
can be download here. The code for our toolbox NeuroRA can be accessed on
GitHub: https://github.com/neurora/NeuroRA.
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