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Abstract  

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic 

treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against 

SARS-CoV-2 from existing drugs available for other diseases and, thus, repurpose them for 

treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such 

as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental 

validation, but the actual hit rate is generally rather low with traditional computational methods. 

Here we report a new virtual screening approach with accelerated free energy perturbation-based 

absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting 

SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of 

a new restraint energy distribution (RED) function designed to accelerate the FEP-ABFE 

calculations and make the practical FEP-ABFE-based virtual screening of the existing drug library 

possible for the first time. As a result, out of twenty-five drugs predicted, fifteen were confirmed 

as potent inhibitors of SARS-CoV-2 Mpro. The most potent one is dipyridamole (Ki=0.04 µM) 

which has showed promising therapeutic effects in subsequently conducted clinical studies for 

treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki=0.36 µM) and 

chloroquine (Ki=0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro for the first time. 

We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in 

many other drug repurposing or discovery efforts.  

 

Keywords: Virtual screening, SARS-CoV-2, FEP, drug repurposing, protease, dipyridamole, 

chloroquine 
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Significance Statement 

Drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from 

a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is 

generally rather low with traditional computational methods. It has been demonstrated that a new 

virtual screening approach with accelerated free energy perturbation-based absolute binding free 

energy (FEP-ABFE) predictions can reach an unprecedently high hit rate, leading to successful 

identification of 16 potent inhibitors of SARS-CoV-2 main protease (Mpro) from computationally 

selected 25 drugs under a threshold of Ki = 4 M. The outcomes of this study are valuable for not 

only drug repurposing to treat COVID-19, but also demonstrating the promising potential of the 

FEP-ABFE prediction-based virtual screening approach.   

 

The ongoing pandemic of coronavirus disease 2019 (COVID-19)(1, 2) caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCoV), has become a 

global crisis. To date, there is no specific treatment or vaccine for COVID-19. Thus, there is an 

urgent need to repurpose drugs for treatment of COVID-19.(3) The SARS-CoV-2 replicase gene 

(Orf1) encodes two overlapping translation products, polyproteins 1a and 1ab (pp1a and pp1ab), 

which mediate all of the functions required for the viral replication. The main protease (Mpro) as a 

key enzyme for the viral replication is initially released by the autocleavage of pp1a and pp1ab. 

Then, Mpro cleaves pp1a and pp1ab to release the functional proteins nsp4-nsp16 that are necessary 

for the viral replication.(4) In view of the essential functions of Mpro in the viral life cycle and its 

high level of conservation, SARS-CoV-2 Mpro is a naturally attractive target for treatment of 

COVID-19. Hence, there have been efforts to identify therapeutic candidates targeting Mpro using 

various virtual screening methods based on pharmacophore, molecule docking, and molecular 

simulations.(5) As a result of the reported efforts, six drugs were found to inhibit SARS-CoV-2 
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Mpro with IC50 ranging from 0.67 to 21.4 μM.5 There have been also drug repurposing efforts 

associated with other potential targets of SARS-CoV-2.5-14  

In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, 

usually starts from a virtual screening of existing drugs through computational modeling and 

simulations, followed by experimental validation. However, the actual hit rate of a virtual 

screening using traditional computational methods has been rather low, with vast majority of 

computationally predicted drug candidates being false positives, because it is difficult to reliably 

predict protein-ligand binding free energies. Most recently, Gorgulla et al.(6) reported an 

interesting new virtual screening platform, called VirtualFlow, used to screen numerous 

compounds in order to identify inhibitors of Kelch-like ECH-associated protein 1 (KEAP1), but 

the hit rate was still not very high. Within 590 compounds predicted by the virtual screening, 69 

were found to be KEAP1 binders (with a hit rate of ~11.7% for detectable binding affinity), and 

10 of these compounds were confirmed to be displacers of nuclear factor erythroid-derived 2-

related factor 2 (NRF2) with a half-maximum inhibitory concentration (IC50) < 60 μM (with a hit 

rate of ~1.4% under the threshold of IC50 < 60 μM).(6)  Obviously, the hit rate of a virtual 

screening is dependent on the reliability and accuracy of the receptor-ligand binding free energy 

predictions used in the virtual screening process. So, the key to the success of a virtual screening 

effort is use of a reliable computational approach to accurately predict binding free energies.  

The free energy perturbation (FEP) simulation of intermolecular interactions (7, 8) is 

recognized a reliable method for binding free energy calculations with satisfactory accuracy,(7-18) 

but the traditional FEP method was limited to simulating some minor structural changes of ligands 

for the relative binding free energy (RBFE) calculations.(9, 19) The RBFE calculations can be 

used to guide lead optimization starting from a promising lead compound (or hit),(9, 19-22) but 
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not suitable for virtual screening of completely different molecular structures to identify new hits 

for drug repurposing. For the virtual screening to identify new hits or leads, it is necessary to 

predict absolute binding free energy (ABFE) for each ligand binding with the target without the 

requirement to use any reference ligand structure. The FEP-ABFE approach has the advantage of 

predicting binding affinities between ligands and their targets more accurately than conventional 

computational methods, such as pharmacophore, molecule docking, and molecular simulations.(23) 

However, the previously used FEP-ABFE calculations are extremely expensive and time-

consuming and, thus, not suitable for virtual screening purposes (that required to screen a large 

number of compounds).(24, 25) 

To make the FEP-ABFE approach practically feasible for our virtual screening and drug 

repurposing effort, here we report a new algorithm using a restraint energy distribution (RED) 

function to accelerate the FEP-ABFE prediction and its first application to a drug repurposing 

effort which targets SARS-CoV-2 Mpro. Our FEP-ABFE prediction-based virtual screening (which 

predicted 25 drugs as potential inhibitors of SARS-CoV-2 Mpro) was followed by in vitro activity 

assays, confirming that 15 out of the 25 drugs can potently inhibit SARS-CoV-2 Mpro with 0.04 to 

3.3 M (with a remarkably high hit rate of 60% under a threshold of Ki = 4 M); nine drugs have 

Ki < 1 M (with a submicromolar hit rate of 36%). Particularly, among these drugs, the most potent 

inhibitor of SARS-CoV-2 Mpro is dipyridamole (DIP, Ki = 0.04 M). Following the computational 

prediction and in vitro activity validation, DIP was tested for its antiviral activity against SARS-

CoV-2 in vitro and in clinical studies for treatment of patients with COVID-19, and the preliminary 

clinical data are promising for its actual therapeutic effects. While the clinical data are reported 

separately elsewhere(26) to timely guide further clinical studies and possibly practical clinical 

application, we describe and discuss in this report the detailed computational and in vitro activity 
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results of DIP along with other promising drugs identified. The encouraging outcomes suggest that 

the FEP-ABFE prediction-based virtual screening is a truly promising approach to drug 

repurposing.  

 

Results and Discussion 

Identification of potent SARS-CoV-2 Mpro inhibitors for drug repurposing  

Prior to the virtual screening for drug repurposing, the accuracy of the accelerated FEP-ABFE 

prediction protocol was validated by using three different protein targets (BRD4, HIV-1 protease, 

and human factor Xa) and 28 ligands with diverse chemical scaffolds. According to the validation 

data, given in Supporting Information (SI) section S7, the accelerated FEP-ABFE algorithm can 

achieve a high accuracy for the ABFE predictions. So, in order to identify potent SARS-CoV-2 

Mpro inhibitors, we first carried out the FEP-ABFE based virtual screening of all existing drugs, 

followed by in vitro activity assays, as shown in Figure 1.  
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Figure 1. The FEP-ABFE based screening for the drug repurposing targeting SARS-CoV-2 Mpro. 

(A) The schedule of FEP-ABFE based screening. (B) Thermodynamic cycle used for the FEP-

ABFE calculations. 

 

Specifically, after all the existing drugs were docked into the binding site of SARS-CoV-2 

Mpro, 100 molecules that had specific interactions with the six key amino acid residues, Cys145, 

His41, Ser144, His163, Gly143, and Gln166, were subjected to further FEP-ABFE calculations. 

Among these 100 drugs, 49, 46, and 5 were electrically neutral, negatively charged, and positively 

charged, respectively. Since the FEP method is known to encounter systematic errors when the 

ligands are not electrically neutral, the drugs selected on the basis of the FEP-ABFE results were 

grouped by their formal charges to ensure that the error is cancelled within each group. In each 

group, the top 20% to 40% of the molecules were selected based on their ABFE values. As a result, 

25 drugs were selected for subsequent in vitro experimental activity testing. According to the in 

vitro results, 15 out of these 25 drugs exhibited considerable potency of inhibiting SARS-CoV-2 

Mpro (Figures 2 and S8). DIP was found to be the most potent inhibitor, with Ki = 0.04 μM. 

Following the computational prediction and in vitro activity confirmation, DIP was further tested 

for its antiviral activity against SARS-CoV-2, demonstrating that DIP dose-dependently 

suppressed the SARS-CoV-2 replication with EC50 = 0.1 M. The antiviral activity was consistent 

with the inhibitory activity against Mpro. In addition, DIP was also tested clinically in treatment of 

patients with COVID-19, resulting in promising therapeutic data that are reported separately 

elsewhere (along with the raw antiviral activity data)(26) due to the urgent need of further clinical 

studies and possibly practical clinical application. 

The FEP-ABFE results calculated for all the confirmed potent SARS-CoV-2 Mpro inhibitors 

are given in Table 1 in comparison with the subsequently determined experimental activity data. 
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As seen in Table 1, 13 out of the 15 FEP-ABFE predicted binding free energies were within 2 

kcal/mol of the corresponding experimental values, and for the other two (disulfiram and 

maribavir), the deviations were all about 2.2 kcal/mol. Specially for disulfiram, according to its 

molecular structure, it might be a covalent inhibitor of Mpro, which could be part of the reason of 

the relatively larger computational error. However, further studies are needed for disulfiram to 

draw a more reliable conclusion. Overall, for the 15 protein-ligand binding complexes, the mean 

unsigned error (MUE) was about 1.2 kcal/mol. For comparison, we also carried out the MM-PBSA 

and MM-GBSA calculations on the 15 binding complexes, and the MUE values for both of the 

two methods were larger than 17.0 kcal/mol. Thus, the FEP-ABFE method is indeed much more 

accurate than both the MM-PBSA and MM-GBSA methods for the drug repurposing prediction. 
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Table 1. Summary of the FEP-ABFE, MM-PBSA, and MM-GBSA calculation results (in kcal/mol) for the experimentally confirmed SARS-CoV-2 Mpro 

inhibitors. The unsigned error (UE) and mean unsigned error (MUE) values are also given. Gexp values were calculated from their corresponding Ki values.  

Name IC50 (µM)d Ki
 (µM)b Gexp  GFEP-ABFE UEFEP-ABFE

c GMM-PBSA UEMM-PBSA
c GMM-GBSA UEMM-GBSA

c 

Dipyridamole (DIP) 0.6±0.01  0.04±0.001 -10.1   -8.6  1.5  -23.7  13.6  -34.5  24.4  

Candesartan cilexetil 2.8±0.3  0.18±0.02  -9.2   -8.4  0.8  -36.1  26.9  -38.3  29.1  

Hydroxychloroquine 2.9±0.3  0.36±0.21a -8.7   -9.8  0.7  -24.0  14.9  -28.7  19.6  

Chloroquine 3.9±0.2  0.56±0.12a -8.5  -10.0  1.5  -24.6  16.1  -33.2  24.7  

Disulfiram 4.7±0.4 (9.35±0.18)e 0.31±0.03 -8.8   -6.6  2.2  -23.0  14.2  -24.3  15.5  

Montelukast sodium 7.3±0.5  0.48±0.04  -8.6   -7.5  1.1  -39.5  30.9  -41.5  32.9  

Atazanavir 7.5±0.3 (10)e 0.49±0.02  -8.6   -7.6  1.0  -33.0  24.4  -39.2  30.6  

Oxytetracycline 15.2±0.9  0.99±0.06  -8.2   -8.9  0.7  -10.0  1.8  -14.6  6.4  

Valacyclovir hydrochloride 16.7±0.9  1.09±0.06  -8.1   -6.2  1.9  -20.8  12.7  -18.3  10.2  

Roxatidine acetate hydrochloride 20.3±0.4  1.33±0.02  -8.0   -7.1  0.9  -29.2  21.2  -30.5  22.5  

Omeprazole 21.0±1.0  1.37±0.06  -8.0   -6.5  1.5  -22.3  14.3  -24.4  16.4  

Indinavir 43.1±2.8  2.82±0.18  -7.6   -8.3  0.7  -28.8  21.2  -35.4  27.8  

Sulfacetamide ~50 ~3.27 -7.5   -7.0  0.5  -14.8  7.3  -13.9  6.4  

Cimetidine ~50 ~3.27 -7.5   -6.0  1.5  -26.2  18.7  -27.8  20.3  

Maribavir ~50 ~3.27 -7.5  -5.3 2.2 -25.4 19.5 -31.0 25.7 

MUE -  -  - 1.2  - 17.2  - 20.8  

a Ki values for hydroxychloroquine and chloroquine were determined using the Dixon plots using the data in Figure 3.  
b Ki values for other molecules were converted from IC50 based on the assumption of the competitive inhibition without covalent binding. 
c UEFEP-ABFE = |GFEP-ABFE  Gexp|; UEMM-PBSA = |GMM-PBSA  Gexp|; UEMM-GBSA = |GMM-GBSA  Gexp| 
d IC50 values when the substrate concentration was 20 µM.  
e IC50 values in the brackets are obtained from other published works, and the published values are close to our experiment results.(27-29)
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Notably, candesartan cilexetil with Ki = 0.18 M against SARS-CoV-2 Mpro is a prodrug for its 

labeled use (treatment of hypertension and congestive heart failure). Hence, we also computationally 

and experimentally examined its metabolite, candesartan (the active drug corresponding to the prodrug 

for the labeled use) which was not in the drug library screened. Interestingly, candesartan was also 

predicted and confirmed as a potent inhibitor of SARS-CoV-2 Mpro, with a slightly lower inhibitory 

activity against SARS-CoV-2 Mpro (Ki = 0.62 M). So, it is interesting to note that for potential 

treatment of patients with COVID-19, the prodrug candesartan cilexetil would serve as a more active 

molecular species against SARS-CoV-2 Mpro compared to candesartan itself.  

Altogether, a total of 16 potent inhibitors of SARS-CoV-2 Mpro were identified in this study, and 

their molecular structures and in vitro inhibitory activity data are shown in Figures 2 and S8. Among 

these 16 compounds, nine (with names shown in black in Figure 2) were identified as potential 

candidate treatments of patients with COVID-19 for the first time in this study. The remaining seven 

drugs, including hydroxychloroquine, chloroquine, disulfiram, montelukast sodium, atazanavir, 

indinavir, and maribavir, were also proposed as potential candidate treatments for patients with 

COVID-19 in previous studies.(27, 29-32) However, within these seven drugs, only disulfiram and 

atazanavir were previously identified as SARS-CoV-2 Mpro inhibitors, whereas the other five drugs 

were either reported to be active in vitro against SARS-CoV-2 without knowing the specific targets or 

predicted by computational modeling only without knowing their actual experimental activity. All 

these drugs were confirmed to be potent SARS-CoV-2 Mpro inhibitors in this study. Overall, a total of 

14 compounds were confirmed as potent SARS-CoV-2 Mpro inhibitors for the first time in this study.  

Within the SARS-CoV-2 Mpro inhibitors identified, DIP is the most potent one with Ki = 0.04 M 

(or 40 nM). The computationally modeled structure of DIP binding with SARS-CoV-2 is depicted in 

Figure S9 (showing the roles of key residues of the protease, including Thr25, Asn142, Gly143, Ser144, 

His163, and Glu166, for binding with DIP). 
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Figure 2. Molecular structures and Ki values of 16 confirmed SARS-CoV-2 Mpro inhibitors. The seven 

compounds in blue were also proposed as potential treatments for patients with COVID. Within the 

seven compounds, disulfiram and atazanavir were reported to be SARS-CoV-2 Mpro inhibitors with 

the reported IC50 listed in Table 1;(31, 32) hydroxychloroquine, chloroquine, and indinavir were 

reported to be active in vitro against COVID-19, but their molecular targets were not reported;(27-29) 
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montelukast sodium and maribavir was only predicted by calculations(29, 30) without experimental 

activity data reported. Disulfiram served as the positive control for the in vitro activity (its IC50 value 

is 5.72 M in the literature and 4.7 M in this work when the concentration of the same substrate used 

was as high as 20 µM).  

 

Molecular mechanism for the antiviral activity of chloroquine and hydroxychloroquine against 

SARS-CoV-2 

Notably, chloroquine and hydroxychloroquine are currently under clinical trials for treatment of 

patients with COVID-19. Particularly, chloroquine was reported to inhibit SARS-CoV-2 with EC50 of 

0.1  1.13 M,(26)(27) although the exact molecular mechanism and drug target(s) have not been 

confirmed. Concerning the molecular mechanism for their known antiviral activity, chloroquine or 

hydroxychloroquine was previously proposed to inhibit acidification of endosome and viral 

endocytosis.(33, 34) However, vesicular stomatitis virus (VSV), which was a model virus belonging 

to Rhabdoviridae and had a similar endocytosis process as coronavirus, was not as sensitive as SARS-

CoV-2 to hydroxychloroquine and chloroquine (Figure S10); no significant inhibition was observed 

for hydroxychloroquine or chloroquine at a concentration 6.25 M. Comparing to VSV, coronavirus 

is much more sensitive to chloroquine and hydroxychloroquine. Hydroxychloroquine inhibited SARS-

CoV-2 at EC50 of 0.72 M and chloroquine reduced SARS-CoV replication to 53% at 1.0 μM.(35) We 

were always wondering if chloroquine and its analogue hydroxychloroquine would directly target a 

viral protein of coronavirus. Here, we demonstrated in this report for the first time that chloroquine 

and its analogues inhibited the main protease (Mpro) activity, which is an essential and conserved 

enzyme in Coronaviridae. Chloroquine and hydroxychloroquine are potent inhibitors of SARS-CoV-

2 Mpro with Ki = 0.56 and 0.36 M, respectively (see Figure 3). Here, we cautiously concluded that 

chloroquine and hydroxychloroquine prevented SARS-CoV-2 infection by inhibition of Mpro in 

addiction to the well-known mechanism of abrogation of viral endocytosis. Moreover, norovirus, 
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which belonged to Caliciviridae and encoded a viral 3C-like protein similar to Mpro of coronavirus, 

was hypersensitive to chloroquine treatment.(36) It furtherly supported that chloroquine and its 

analogues would inhibit viral 3C-like protease and inhibit viral replication. The Ki value of 0.36 M 

for hydroxychloroquine against SARS-CoV-2 Mpro is slightly lower than the reported EC50 of 0.72 M 

against SARS-CoV-2, which is consistent with the possible molecular mechanism that the antiviral 

activity of hydroxychloroquine against SARS-CoV-2 is mainly due to the inhibitory activity against 

SARS-CoV-2 Mpro. Overall, hydroxychloroquine or chloroquine is expected to have both some 

beneficial effect associated with its antiviral activity due to the SARS-CoV-2 Mpro inhibition and 

adverse side effects associated with other complicated mechanisms of the drug.  

Further, in light of our finding that these drugs are potent SARS-CoV-2 Mpro inhibitors, it would 

be interesting to design hydroxychloroquine analogs that can more potently and selectively inhibit 

SARS-CoV-2 Mpro without the unwanted adverse effects of hydroxychloroquine. Similar drug 

development strategies may also apply to development of analogs of other confirmed SARS-CoV-2 

Mpro inhibitors such as DIP and candesartan cilexetil with further improved potency and selectivity for 

SARS-CoV-2 Mpro.  

 

Figure 3. Chloroquine and hydroxychloroquine were identified as SARS-CoV-2 Mpro inhibitors with 

Ki = 0.56 and 0.36 M, respectively. Ki was determined according to the enzymatic kinetics using the 

Dixon plots. 
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Conclusion 

By using the accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) 

predictions for drug repurposing targeting SARS-CoV-2 Mpro, followed by experimental validation, 

we successfully identified a total of 16 potent inhibitors of SARS-CoV-2 Mpro from existing drugs, 

including 14 SARS-CoV-2 Mpro inhibitors that were confirmed (with Ki = 0.04 to 3.3 µM) for the first 

time in this study. The identified most potent SARS-CoV-2 Mpro inhibitor is dipyridamole (with Ki = 

0.04 µM) which is currently under clinical studies for treatment of patients with COVID-19, with the 

promising therapeutic effects reported in a separate report. Among other newly identified SARS-CoV-

2 Mpro inhibitors, prodrug candesartan cilexetil and the corresponding drug candesartan both can 

potently inhibit SARS-CoV-2 Mpro. Interestingly, prodrug candesartan cilexetil (with Ki = 0.18 µM) is 

even more potent than candesartan itself (with Ki = 0. 62 µM) for inhibiting SARS-CoV-2 Mpro.  

Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were found to 

potently inhibit SARS-CoV-2 Mpro for the first time in this study, suggesting that the previously known 

antiviral activity of hydroxychloroquine or chloroquine might be mainly due to the inhibitory activity 

against SARS-CoV-2 Mpro, in addition to other well-known mechanisms. Further, based on the finding 

that these drugs are potent SARS-CoV-2 Mpro inhibitors, it would be interesting to design 

hydroxychloroquine analogs that can more potently and selectively inhibit SARS-CoV-2 Mpro to 

improve its antiviral activity and avoid the unwanted adverse effects of hydroxychloroquine associated 

with other mechanisms. Similarly, the identified other drugs, such as dipyridamole and candesartan 

cilexetil etc., can also be used as promising starting drug structures to design new drug candidates with 

further improved potency and selectivity for SARS-CoV-2 Mpro.  

In summary, the virtual screening through accelerated FEP-ABFE predictions has demonstrated 

an excellent accuracy, with a remarkably high hit rate of 60% under a threshold of Ki = 4 M. We 
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anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other 

drug repurposing or discovery efforts.  

 

Methods 

Virtual screening based on accelerated FEP-ABFE approach 

The accelerated FEP-ABFE approach was based on the use of a new restraint energy distribution 

(RED) function. The RED function was derived to accelerate the FEP-ABFE calculations, and the 

accelerated FEP-ABFE approach are extensively tested and evaluated; see details given in Supporting 

Information (SI) sections S1 to S7. Briefly, the RED function accelerated FEP-ABFE approach was 

extensively tested and showed remarkable accuracy. Compared to the previously reported FEP-ABFE 

approaches which normally use 42 λ values(24, 25), the RED function accelerated FEP-ABFE can be 

calculated by using just 16 λ values. With such acceleration, the application of FEP-ABFE calculation 

in virtual screening was made possible. The accuracy of the accelerated 16-λ-FEP-ABFE calculation 

was then tested against 28 ligands with diverse chemical scaffolds, as given in SI section S7. The test 

results suggested that the accelerated FEP-ABFE algorithm can achieve a remarkable accuracy, which 

encouraged us to perform the FEP-ABFE prediction-based practical virtual screening to identify 

SARS-CoV-2 Mpro inhibitors for drug repurposing. 

During the virtual screening, molecular docking was first performed by using the crystal structure 

(PDB ID: 6LU7)(31) of SARS-CoV-2 Mpro which causes COVID-19. More than 2500 small molecules 

in the existing drug library (including all FDA-approved drugs) were screened by docking method, 

and 100 ligands were selected by molecular docking and further evaluated by RED function 

accelerated FEP-ABFE calculations. Compounds with the highest binding free energies were selected 

for further in vitro activity assays. The detailed method for FEP-ABFE based virtual screening is given 

in SI section S1. The derivation of the RED function and extensive evaluations of the accelerated FEP-

ABFE method are given in detail in SI section S2 to S7. 
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In vitro activity assays of the SARS-CoV-2 Mpro inhibitors 

The pGEX4T1-Mpro plasmid was constructed (AtaGenix, Wuhan) and transfected into the E. coli 

strain BL21 (CodonPlus, Stratagene). A GST-tagged protein was purified by GST-glutathione affinity 

chromatography and cleaved with thrombin. The purity of the recombinant protein was greater than 

95% as assessed by SDS–PAGE. The catalytic activity of Mpro was measured by continuous kinetic 

assays, using an identical fluorogenic substrate MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 (Apetide Co., 

Ltd, Shanghai, China). The fluorescence intensity was monitored with a Multifunctional Enzyme 

Marker (SpectraMax®i3x, Molecular Devices, U.S.A.) using wavelengths of 320 and 405 nm for 

excitation and emission, respectively. The experiments were performed in a 100 μL reaction system 

with a buffer consisting of 50 mM Tris-HCl (pH 7.3), 1 mM EDTA. To determine IC50 for each 

compound, the compound was diluted in 100% DMSO to the desired concentrations, solution 

containing Mpro (at the final concentration of 500 nM) was dispensed into black 96-well plates with 

glass-bottom (Jing’an, Shanghai, China) and was incubated with 1 μL compound at room temperature 

for 10 min. The reaction was initiated by adding the substrate (at the final concentration of 20 μM). 

Fluorescence was monitored once every 45 s. Initial reaction velocities were calculated by fitting the 

linear portion of the curves (within the first 5 min of the progress curves) to a straight line using the 

program SoftMax Pro and were converted to enzyme activity (substrate cleaved)/second. 
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