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Abstract

Metabolic pathways are composed of reaction sequences catalyzed by enzymes. The set of reactions
within and between cells comprises a reactome. Pathways and reactomes can be predicted from or-
ganismal or multi-organismal genomes using rule-based or machine learning methods. While machine
learning methods overcome issues of probability and scale associated with rule-based methods, sev-
eral complications remain that can degrade performance including inadequately labeled training data,
missing feature information, and inherent imbalances in the distribution of pathways within a dataset.
Here, we present leADS (multi-label learning based on active dataset subsampling), a machine learning
method, that uses subsampling to reduce the negative impact of training loss due to class imbalance.
We demonstrate leADs performance using organismal and multi-organismal datasets in relation to
other machine learning pathway prediction methods.

Availability and implementation: leADS is available under the GNU license at
github.com/hallamlab/leADS. A wiki, including a tutorial, is available at
github.com//hallamlab/leADS /wiki

Contact: lshallam@mail.ubc.ca

1 Introduction

The rise of next generation sequencing technologies has motivated innovations in metabolic pathway
prediction methods [I]. These innovations encompass rule-based or heuristic methods including Patho-
Logic [14], and machine learning (ML) methods including PtwML [6] and mlLGPR [20]. In the ML
case, a class imbalance problems exists where certain pathways are more common than others because
they conduct core metabolic functions conserved across the tree of life. These functions are overrepre-
sented in labeled training data relative to more niche-defining or accessory metabolic functions and can
result in training loss with decreased predictive performance. To address this problem, we developed
leADS based on prior work in dataset subsampling [10]. leADS incorporates an ensemble of multi-label
learners [32] to perform hard example mining [27], reducing the negative impact of training loss on
pathway prediction.
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Figure 1: Fig. A)- 1leADS workflow. Fig B)- predictive performance of MinPath, Pathologic, mILGPR,
triUMPF, and 1leADS (with random sampling, full data, and four acquisition functions) on Tier 1 (T1)
organismal genomes and Critical Assessment of Metagenome Interpretation (CAMI) datasets. (x-axis).
Z-axis is average F'1 score. Gray cells indicate that algorithm was not run on that dataset.

2 Methods

1leADS (Fig. [[A.) performs training in three iterative steps:

1)- Building an acquisition model. At the very first iteration, an empty set is initialized with
randomly selected data from a given pathway dataset (Fig. [I]A.1). Then, an ensemble consisting of
g(€ Z>1) members is constructed, where each member g in the ensemble is trained on a randomly
selected subset of the data.

2)- Dataset sub-sampling. During this step, a subset of pathway data is selected using one of
four acquisition functions including entropy (H), mutual information (M), variation ratios (V), or
normalized propensity scored precision at k € Zs1 (nPSP) (Fig. [1]A.2). For each function, the top
per% examples are retrieved, where per%(€ (0,100]) is a prespecified hyperparameter indicating the
subsampling proportion.

3)- Train using sub-sampled data. The selected subset of pathway data from the previous step
are used to train leADS using a multi-label 1-vs-All approach [20] (Fig. [[A.3).

These steps are repeated 7(€ Z>1) times (Fig. ) For each iteration some examples collected from
the previous iteration ¢ — 1 are randomly discarded to enable examples not selected in the top per%
to be used in round ¢. Once training is complete: i)- pathway data with per% examples is produced;
and ii)- the trained model is stored to use in pathway prediction on new datasets. For definitions,
analytical expressions, and optimization, consult Supp. Sections[AT] [A72] and [A73]

We evaluated leADS performance using a corpora of 10 experimental datasets manifesting diverse
multi-label properties, including manually curated organismal genomes, synthetic microbial communi-
ties and low complexity microbial communities. We trained leADS on BioCyc v21 Tier 2 and Tier 3


https://doi.org/10.1101/2020.09.14.297424
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297424; this version posted October 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(T2 &3) under three configurations: i)- random sampling (leADS+R) corresponding to 70% of BioCyc
v21 T2 &3 selected at random, ii)- full configuration (leADS+F) where all BioCyc v21 T2 &3 data
were utilized without subsampling, and iii)- per% = 70% using four acquisition functions: entropy
(leADS+H), mutual information (leADS+M), variation ratios (1eADS+V), and normalized propensity
scored precision (leADS+nPSP). Training for each configuration was run for 10 epochs using g = 10
member size and k = 50 (for leADS+V and leADS+nPSP). For detailed experimental settings, see
Supp. Section Pathway prediction results are reported using the average F'1 score. As shown in
Fig. [IB, leADS resulted in competitive performance compared to other inference methods. Among the
four acquisition functions, nPSP resulted in the highest performance on EcoCyc (0.8874) while random
sampling resulted in the poorest. Interestingly, full was on par with random sampling, reinforcing
the idea that BioCyc T2 &3 contains noise that may hamper proper estimation of leADS coefficients.
On CAMI low complexity metagenomes ([24]), nPSP outperformed other methods (0.6214) Fig. [IB.
Based on these results we recommend using nPSP with g = 10 and k& = 50 settings for optimal leADS
performance. Extensive experimental analysis can be found in Supp. Sections [A-4] and

3 Conclusion

leADS is a novel multi-label ensemble-based approach for hard example mining that constructs a set
of diverse multi-label base learners to jointly improve subselection of examples and overcome class
imbalance during metabolic pathway prediction from genomic sequence information at different levels
of complexity and completion.

A Supplementary Material

This material is divided into five parts: i)- the problem definitions (Section , ii)- the leADS
framework (Section [A.2), iii)- optimization and prediction (Section [A.3), iv)- experimental settings
(Section , and v)- empirical analysis (parameter sensitivity, scalability to the ensemble size, and
metabolic pathway prediction effectiveness) (Section .

A.1 Definitions and Problem Formulation

Here the default vector is considered to be a column vector and is represented by a boldface lowercase
letter (e.g., x) while the matrices are represented by boldface uppercase letters (e.g., X). If a subscript
letter 7 is attached to a matrix, such as X;, it indicates the i-th row of X, which is a row vector. A
subscript character to a vector, x;, denotes an i-th cell of x. Occasional superscript, x(¥), suggests
an index to an example or current epoch during a learning period. With these notations in mind, we
introduce information integral to the problem formulation, starting by defining the multi-label data.

Definition A.1. Multi-label Pathway Dataset [20]. A pathway dataset is represented by S4 =
{(x(i),y(i)) : 1 < i < n} consisting of n examples, where x(*) is a vector indicating the abundance
information corresponding to enzymatic reactions. An enzymatic reaction is denoted by ¢, which is an
element of a set & = {c1, ca, ..., ¢, }, having r possible enzymatic reactions, hence, the vector size x(@ is

r. The abundance of an enzymatic reaction for an example i, say cl(i), is defined as al(i)(e R>¢). The
class labels y(9 = [ygl), ...,yt(l)] € {—1,+1} is a pathway label vector of size ¢ representing the total
number of pathways derived from a set of universal metabolic pathway ). The matrix form of x(¥) and

y(@ are X and Y, respectively. m

Both £ and Y can be retrieved from trusted sources, such as KEGG [12] or MetaCyc [3]. Although
the input space is assumed to be encoded as r-dimensional vector, symbolized as X = R", through
features engineering it can be represented as X = R<.

Problem Statement 1. Given a multi-label dataset, Sa, the goal is to select a subset of S4, denoted
by Sperys, where per% is a prespecified hyperparameter, indicating the proportion of examples to be
chosen from Sya, such that learning on Speyy, incurs similar predictive score (or better) as if it was
trained on full multi-label dataset, S, .
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Figure 2: A schematic diagram indicating the leADS workflow. Using a multi-label pathway dataset (a),
leADS randomly selects examples at the very first iteration (b) then builds ¢ members of an ensemble
(¢c), where each is trained on a randomly selected portion of the training set. Next, leADS applies an
acquisition function (d), based on either: entropy, mutual information, variation ratios, or normalized
propensity scored precision at k, to select per% sub-samples. Then, leADS performs parallel training
steps (e). The process (b-e) is repeated 7 times (f), where during each iteration few examples from per%
are discarded at random (g) to give chance to examples that were not selected in per% to be used for
the next subsequent round for training. If the current iteration ¢ reaches a desired number of rounds 7,
training is terminated and the final model and per% results are presented (h).
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A.2 The leADS Method

In this section, we provide a description of leADS components including: i)- building an acquisition
model, ii)- active dataset sub-sampling, and iii)- learning using the reduced sub-sampled data. These
three steps interact with each other in an iterative process as illustrated in Fig. 2] At the very first
iteration, a set Sg ory, 18 initialized with randomly selected data (Fig. —b). In the next iteration

q, instead of re-initializing S}:q)er% with randomly selected examples, Sg;rl% data collected from the
previous iteration ¢ — 1 is used, constituting a build-up scheme implemented in many active learning
methods [5] [10]. This process is repeated until the maximum number of rounds 7 is reached.

A.2.1 Building an Acquisition Model

Given S84, the objective of this step (Fig. ) is to estimate posterior predictive uncertainty given a
new test example x* for a pathway y; as:

ply; = +1[x*,84) = / p(y; = +1x",0,)p(6,154)00, (A1)

where © € RY*" denotes pathway’s parameters. Notice that Eq involves marginalization over
©, parameters, which is hard to compute [22]. One way to mitigate this issue is to approximate the
above equation using Monte Carlo (MC) techniques [16] by constructing an ensemble, denoted by E,
which consists of g(€ Z>1) models (Fig. ) where each generates multiple examples according to the
following formula:

* 1 S * S
ply; = +1[x*,8a) == Y _p*(y; = +1x*,03)
9 seg
where, (A.2)
1

plyj = +1[x",05) = ———5—
J J 1_"_67@]. X

where @ﬁ] is sampled from ¢(©°) which is considered to be in the same family distribution as the true
hidden variables p(©3|S4). The parameters ©° for the s-th model can be estimated according to the
multi-label 1-vs-All approach [32].

A.2.2 Subsampling Dataset

During this step (Fig. ), a subset of S4, denoted as Sge_rl% C 84, is picked for each member in
E using an acquisition function f : x — R where per% is a pre-specified threshold, indicating the
proportion of examples to be chosen from Sy, at iteration g — 1.

Four acquisition functions used in subsampling are described that incorporate predictive uncer-
tainty distribution from the previous step: entropy, mutual information, variation ratios, and nor-
malized PSPQk. For each function, we retrieve top per% examples that contain high acquisition (or

uncertainty) values.

1. Entropy (H) [25]. This function measures the uncertainty of an example given the predictive
distribution of that example:
H = —pTlog(p) (A.3)

where p is a vector of predictive probabilities over ¢ pathways.

2. Mutual information (M) [28]. This function looks for low mutual information between g
models, encouraging examples with high disagreement to be selected during the data acquisition
process:

1
M=H—=-3"N (A.4)

s€g

where H® denotes the entropy obtained from an individual member of E for an example before
marginalization. Since entropy is always positive, the maximum possible value for M is H.

However, when the models make similar predictions, then %Zii H® — H, resulting in M —
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0, which is its minimum value ([3]). Note that this formula is similar to multi-label negative
correlation learning ([26]), which estimates pairwise negative correlation of each learner’s error
with respect to errors of other members in F.

3. Variation ratios (V) [7]. This function measures the number of members in E that disagree
with the majority vote for an example according to k desired pathway size, where larger values
indicate higher uncertainty:

1
V_l_WZ

s€g

({argp;? 1< gk}) ﬁV’
(A.5)

V= 1\@296 <{arg p;i1<j< k:})

where V' corresponds the disagreement of k pathways across g models, where k € Z~ is a pre-
specified number of pathways to be considered in computing the mode operation.

4. Normalized propensity scored precision at k& (nPSP@Fk). This is a modified version of
PSP@k [11], which measures the average precision of top k relevant pathways given an instance
1 where larger values indicate less uncertainty:

nPSPQ@k =1 — Norm(1 Z YJ)
k. pPs:
j€ranky (p) J (A6)
B 1
P T T, + 1)t

where Norm(.) scales the score within [0, 1]. The term p is a vector of predictive probabilities over
t pathways, ranky(p) returns the indices of k largest value in p, ranked in a descending order,
where k € Z~¢ is a hyperparameter. ps; is the propensity score for the j-th pathway, where
n; is the number of the positive training instances for the pathway j. In the context of extreme
multi-label problems, PSP@Fk was used to derive an upper bound for missing/miss-classified labels
[30], and is reported to be the best suited metric for long-tail distribution in which a significant

portion of labels are tail labels [23] [2].

A.2.3 Train on the Reduced Dataset

During this step (Fig. ), each member in F is assigned to train on randomly selected examples from
Sg;rl% , which is expected to contain hard examples that are difficult to learn and classify. This process
is repeated 7 times (Fig. [2f), where during each iteration the top per% are selected based on their
acquisition values for the next round of training. However, leADS discard few examples (v € (0,1))
from Sge_rl% to increase coverage of information from all examples for the next round (Fig. )

A.3 Optimization and Prediction

The objective function in Eq. can be solved by decomposing into ¢ independent binary classifi-
cation problems according to the multi-label 1-vs-All approach enabling parallel training. Consider
optimization for a member s:

min S5 log (1 i e—yﬁ-n@jrxm) IR CHIPR (A7)

i€Ens jet JEt

where ||.|[3 is the Ly regularization term, which is the sum of the Euclidean norms of columns of
©. The Ly ; norm imposes sparsity on the model’s parameters to minimize the negative effect of label
correlations, where A(€ Rs¢) is employed to govern relative contributions of Ly 1 and the log-loss term.
Although the joint formula in Eq [A.7 is convex, the logistic log-loss function still posses a problem
where there exists no analytical solution for it. To address this problem, we apply mini-batch gradient
descent [I§], which begins with some initial random guess for leADS parameters, and performs iterative
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Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain
AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337  Arabidopsis
thaliana
EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707  Escherichia
coli K-12 sub-
str.MG1655
HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370  Homo sapiens
LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397  Leishmania
major
Friedlin
TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355  Trypanosoma
brucei
YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371  Saccharomyces
cerevisiae
BioCyc 9429 1833617 194.4657  0.0001 1512 0.1604 9000227  954.5261 0.0001 2766 0.2934 0.2037  BioCyc v21
(T2 & 3)
Symbiont 3 - - - - - 304 101.3333 0.3333 130 43.3333 - Composed

of Moranella
and Trem-
blaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750  0.4388  Simulated
microbiomes
of low com-
plexity
HOT 4 - - - - - 182675  26096.4286 0.1429 1442 206.0000 - Metagenomic
Hawaii Ocean
Time-series
(10m,  75m,
110m, and
500m)

Table 1: Experimental data set properties. The notations |S|, L(S), LCard(S), LDen(S), DL(S), and
PDL(S) represent: number of instances, number of pathway labels, pathway labels cardinality, pathway
labels density, distinct pathway labels, and proportion of distinct pathway labels for S, respectively.
The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic
reactions € in S. PLR(S) represents a ratio of L(S) to R(S). The last column denotes the domain of S.

updates to each individual parameter to minimize Eq. E where the derivative for each ©] € O has
the following formula:

i=n® _ (%) (2) s
1 vy x S}
VO =— I | + AL (A.8)
7on® ; <1+ey§-)9fx‘”> 2[|65]l2

For prediction, we apply a cut-off threshold £ € R>( to retain only pathways having higher proba-
bility values than ¢, ie., £(x) = {j : p(y; = +1|x,03%) > {,Vj € t,Vs € g}, where p(y; = +1[x,03) =
1

—e5 T Tx() "
14+e OJ

A.4 Experimental Setup

In this section, we describe an experimental framework used to demonstrate leADS pathway prediction
performance across multiple datasets spanning the genomic information hierarchy [20]. leADS was
written in the Python programming language (v3). Unless otherwise specified all tests were conducted
on a Linux server using 10 cores of Intel Xeon CPU E5-2650.

A.4.1 Description of Datasets

We used a corpora of 10 organismal and multi-organismal datasets including BioCyc v21 T2 & 3 [4],
T1 PGDBs from the BioCyc collection (EcoCyc (v21), HumanCyc (v19.5), AraCyc (v18.5), Yeast-
Cyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5)), symbiont genomes describing distributed
metabolic pathways for 9 amino acid biosynthesis between the two symbiotic bacteria: Moranella
(GenBank NC-015735) living inside Tremblaya (GenBank NC-015736) [21], genomes used in the CAMI
initiative [24], and whole genome shotgun sequences from HOTS at 25m, 75m, 110m (sunlit) and 500m
(dark) ocean depth intervals [29], to benchmark leADS. MetaCyc database version 21 [3] (composed
of 2526 base pathways and 3650 enzymatic reactions) was used as a trusted source to refine these
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datasets by including only those pathways that intersect with this version of MetaCyc. The pre-
processed experimental datasets can be obtained from https://doi.org/10.6084/m9.figshare.16752685.
Table [I| summarizes the general characteristics of the applied datasets. For each dataset S, we use |S|
and L(S) to represent the number of instances and pathway labels, respectively. In addition, we also
present some characteristics of the multi-label datasets, which are denoted as:

1. Label cardinality (LCard(S) = 1 Zzz? Z;j I[Y;; # —1]), where I is an indicator function. It

T n

denotes the average number of pathways in S.

2. Label density (LDen(S) = LC‘%‘%(S)) This is simply obtained through normalizing LCard(S) by

the number of total pathways in S.
3. Distinct pathway labels (DL(S)). This notation indicates the number of distinct pathways in S.

4. Proportion of distinct pathway labels (PDL(S) = D‘LS(IS) ). It represents the normalized version of

DL(S), and is obtained by dividing DL(.) with the number of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic
reactions £ in S. Finally, PLR(S) represents a ratio of L(S) to R(S).

A.4.2 Parameter Settings

We used pathway2vec [I9] to obtain pathway and EC features using “crt” as the embedding method
with the following settings: the number of memorized domain was 3, the explore and the in-out
hyperparameters were 0.55 and 0.84, respectively, the number of sampled path instances was 100, the
walk length was 100, the embedding dimension size was m = 128, the neighborhood size was 5, the
size of negative examples was 5, and the used configuration of MetaCyc was “uec”, indicating links
among ECs were trimmed. The obtained features were used to leverage correlations among ECs and
pathways for training leADS (see Section . We then trained leADS using the following default
settings (unless otherwise mentioned): the learning rate was 0.0001, the batch size was 50, the number
of epochs was 3, the number of models was g = 3, the proportion of examples (per%) to be selected was
30%, the rate of examples to be discarded was v = 0.1, the number of subsampled pathways for each
member was 500, and the cutoff threshold for predictions was 0.5. For the regularized hyperparameter
A, we performed 10-fold cross-validation on BioCyc T2 &3 data and found the settings A = 10 to be
optimum according to results obtained on golden T1 and CAMI datasets.

A.4.3 Incorporating enzyme features

We applied the RUST-norm (“crt”) random walk method from pathway2vec [19] that uses a unit-circle
equation to obtain enzyme features with settings provided in Section Then, we use enzyme
features to concatenate each example ¢ according to:

20 — x o L OR (A.9)
T

where @ indicates the vector concatenation operation, E € R"*™ corresponds the feature matrix of
enzymes and m = 128. The addition of features results in a dimension of size r + m, where r = 3650.
We expect by incorporating enzymatic reaction features into the original  dimensional example x(%),
the modified x() summarizes informative characteristics, which are expected to be useful in pathway
prediction.

A.5 Results and Discussion

A.5.1 Parameter Sensitivity

Experimental setup. In this section, the impact of two user defined hyperparameters (k and per%)
were evaluated on the CAMI dataset using acquisition functions described in Section [A:2:2] In the case
of k, a range of values between {5, 10, 15,20, 30, 40, 50, 70,90, 100} was tested in relation to pathway
size for variation ratios in Eq. or top k relevant pathways for nPSP in Eq. In the case of
per% different subsampling proportions between {30%, 50%, 70%} were tested by selecting BioCyc T2
&3 data at random. For variation ratios and nPSP, the values of k£ were fixed based on the optimum
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Figure 3: The impact of k on leADS performance on the CAMI dataset by varying k €
{5,10, 15, 20, 30, 40, 50, 70,90, 100} using variation ratios and nPSP as acquisition functions is demon-
strated in Fig. while the effect of four acquisition functions and random sampling by varying sample
size according to per% € {30%, 50%, 70%} is shown in Fig.

results obtained from the previous experiment. All other hyperparameters, were set according to the
configurations described in Section and results were reported using average F1 scores.
Experimental results. Fig. shows the impact of k for both variation ratios and nPSP acquisition
functions. Although both functions have similar disagreement metrics, the optimum performance for
variation ratios is at £ = 15 while the optimum for nPSP is at k = 40. This discrepancy in k values
likely results from the effects of subsampling pathways and examples that are allocated randomly to
each member in E. After several rounds of experiments, we found k& = 50 to be optimum for both
variation ratios and nPSP. Next, we examined the effect of per% on 1leADS’s performances using four
acquisition functions and random sampling, where we fixed k£ = 50 for variation ratios and nPSP. From
Fig. it is evident that leADS performance generally improves by including more examples for each
acquisition function, although the entropy function resulted in a marginal improvement. In contrast,
random sampling had no performance benefit across the sample size range tested. In summary, this
experiment suggests to consider using per% = 70% for any configurations and k£ = 50 for both variation
ratios and nPSP.

A.5.2 Scalability to the Ensemble Size

Experimental setup. In this section, time complexity of training was determined when the model size
varied as g € {1,2,3,5,10,15,20, 50}, simultaneously. Performance was evaluated on the CAMI dataset
as described above using the average F1 score metric for each configuration of g. per% was set to 30%
of BioCyc v21 T2 &3 data for training under the four acquisition functions. In the case of random
sampling, 1eADS was trained on 30% of randomly selected BioCyc v21 T2 &3 data. Performance
was expected to improve proportionally to the member size in F (due to the dual effects of pathways
and examples that are being allocated randomly to each base learner) with concomitant increase in
computational time. See section for configuration settings.

Experimental results. Results in Fig. are consistent with expectations, with gradual inclusion
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Figure 4: Fig. [4alshows the average F1 score reported on CAMI data as the ensemble size g varies across
{1,2,3,5,10,15,20,50} while the elapsed computational time (in minutes) per epoch (averaged over 3
epochs) is demonstrated in Fig. based on the same ensemble size variation.

of more members in E improving leADs performance. Although random sampling observed to have
the lowest computational time complexity, nonetheless, this method resulted the lowest performance
according to the average F1 metric (Fig. . Among the four acquisition functions, variation ratios
required an additional mode operation, contributing to increased training time. Based on these results,
we suggest to set the member size between [3,10] € Z~o while increasing pathway subsampling size
accordingly (e.g. 2000 for 10 members) to improve prediction outcomes and reduce both computational
complexity (training and inference) and model size.

A.5.3 Metabolic Pathway Prediction

Experimental setup. In this section, pathway prediction performance was evaluated using parameter
settings described in Section Three training configurations were tested: i)- per% = 70% under
the four acquisition functions, ii)- random sampling corresponding to 70% of BioCyc T2 &3 selected at
random, and iii)- full configuration where all BioCyc T2 &3 data were utilized without subsampling.
After training, pathway prediction results were reported on golden T1 data using four evaluation
metrics: Hamming loss, average precision, average recall, and average F1 score. 1leADS performance
was compared to three pathway prediction algorithms: i)- MinPath v1.2 [31], ii)- PathoLogic v21 [I3];
and iii)- mlILGPR [20] on the T1 data. In addition, we compared leADS performance to other methods
on multi-organismal datasets including symbiont, CAMI low complexity and HOTS datasets. For all
experiments, the number of epochs was 10, the member size was g = 10, the subsampled pathway size
was 2000, and k was 50 (for variation ratios and nPSP). See Section for additional configuration
settings.

Experimental results. As shown in Table[2] leADS resulted in competitive performance compared to
other pathway inference algorithms based on average F1 scores. For each column in Table [2| a boldface
number represents the best evaluation metric score while an underlined number indicates the best score
between leADS variants. Among the four acquisition functions, leADS+nPSP resulted in the highest
average F1 scores for EcoCyc (0.8874), HumanCyc (0.8333), and TrypanoCyc (0.6897) which are also
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Hamming Loss |

Methods EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
leADS+R 0.0574 0.0796 0.1528 0.0796 0.0515 0.0685
leADS+F 0.0471 0.0732 0.1576 0.0736 0.0396 0.0566
leADS+H 0.0265 0.0610 0.1453 0.0756 0.0471 0.0606
leADS+M 0.0289 0.0499 0.1425 0.0657 0.0408 0.0542
leADS+V 0.0301 0.0424 0.1394 0.0649 0.0368 0.0507
leADS+nPSP | 0.0261 0.0364 0.1457 0.0653 0.0333 0.0499
Average Precision 1
Methods EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
leADS+R 0.7516 0.6383 0.7199 0.5714 0.3799 0.5039
leADS+F 0.7994 0.6767 0.7171 0.6352 0.4606 0.5611
leADS+H 0.9380 0.6997 0.7299 0.5872 0.4192 0.5423
leADS+M 0.9239 0.7508 0.7757 0.6684 0.4529 0.5779
leADS+V 0.9231 0.7654 0.8110 0.6720 0.4828 0.6009

leADS+nPSP | 0.9319 0.8425 0.8198 0.7078 0.5102 0.6061
Average Recall 1

Methods EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
leADS+R 0.7883 0.6452 0.3980 0.4891 0.7816 0.7429
leADS+F 0.8176 0.6452 0.3627 0.4410 0.8736 0.8400
leADS+H 0.8371 0.7849 0.4451 0.5590 0.9540 0.8057
leADS+M 0.8306 0.8208 0.4137 0.5459 0.8851 0.8057
leADS+V 0.8208 0.8889 0.4039 0.5546 0.9655 0.8000
leADS+nPSP | 0.8469 0.8244 0.3569 0.4760 0.8621 0.8000
Average F1 1
Methods EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
leADS+R 0.7695 0.6417 0.5126 0.5271 0.5113 0.6005
leADS+F 0.8084 0.6606 0.4818 0.5206 0.6032 0.6728
leADS+H 0.8847 0.7399 0.5530 0.5727 0.5825 0.6483
leADS+M 0.8748 0.7842 0.5396 0.6010 0.5992 0.6730
leADS+V 0.8690 0.8226 0.5393 0.6077 0.6437 0.6863
leADS+nPSP | 0.8874 0.8333 0.4973 0.5692 0.6410 0.6897

Table 2: Predictive performance of each comparing algorithm on 6 benchmark datasets. leADS+F: leADS
with full data, leADS+R: leADS with random sampling, leADS+H: leADS with entropy, leADS+M:
leADS with mutual information, leADS+)V: leADS with variation ratios, and leADS+nPSP: leADS with
normalized propensity scored precision. For each performance metric, ‘]’ indicates the smaller score is
better while ‘17 indicates the higher score is better. Values in boldface represent the best performance
score while the underlined score indicates the best performance among leADS variances.

the highest scores among all models tested. On the other hand, random sampling achieved the poorest
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Figure 5: Schematic representation or distributed amino acid biosynthesis in the mealybug symbiotic
system. A) indicates a simplified version of the L-lysine biosynthetic pathway from MetaCyc including
locus ids and enzyme commission (EC) numbers for each step in the pathway starting from L-aspartate
conversion. The specific steps encoded by Moranella (red), Tremblaya (blue) or both (purple) endosym-
bionts are shown as coloured circles in a simplified glyph structure based on McCuthcheon [21]. Missing
steps are indicated in grey. B) Breakdown of essential amino acid biosynthetic pathways in the mealy-
bug symbiosis using simplified glyph structures. C) Corresponding pathway prediction outcomes using
PathoLogic, mILGPR, and leADS (with random sampling, full data, and four acquisition functions).
Black circles indicate predicted pathways by associated models while open circles indicate pathways that
were not recovered by models. The size of circles corresponds to pathway coverage information used in
metabolic inference.

overall performance scores. Interestingly, leADS+F in Table [2] was on par with random sampling,
reinforcing the idea that BioCyc v21 T2 &3 contain noisy data that hampered proper estimation of
leADS coefficients. Through subsampling examples, leADS was able to reduce noise and improve the
prediction performance on golden T1 data.

Metabolic interactions are integral to microbial community structure and function. In some cases
these interactions are related to production of public goods by a subset of community members that
provision non-producing members, or through the removal of end products enabling unfavorable re-
actions to proceed [§]. In other cases enzymatic steps within a multi-step pathway are distributed
between multiple community members resulting in emergent metabolic properties that are robust to
loss of individual members [I7]. To evaluate leADS performance on metabolic pathways distributed
between organisms we used the reduced genomes of mealybug symbionts Moranella (GenBank NC-
015735) and Tremblaya (GenBank NC-015736) [21]. Fig. illustrates the distributed genes for the
Lysine biosynthesis pathway. The two symbiont genomes in combination encode intact biosynthetic
pathways for 9 essential amino acids (Fig. where a grey circle corresponds the missing gene by
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Metric mlILGPR | 1eADS+R 1eADS+F 1leADS+H leADS+M 1leADS+V 1leADS+nPSP
Hamming Loss (J) 0.0975 0.0577 0.0553 0.0402 0.0398 0.0399 0.0397
Average Precision (1) | 0.3570 0.5245 0.5468 0.7515 0.7558 0.7550 0.7569
Average Recall (1) 0.7827 0.5212 0.5284 0.5260 0.5306 0.5268 0.5334
Average F1 (1) 0.4866 0.5174 0.5320 0.6151 0.6199 0.6167 0.6214

Table 3: Predictive performance of mlILGPR and leADS on CAMI low complexity data. leADS+F: leADS
with full data, leADS+R: leADS with random sampling, leADS+H: leADS with entropy, leADS+M:
leADS with mutual information, leADS+)V: leADS with variation ratios, and leADS+nPSP: leADS with
normalized propensity scored precision. Values in boldface represent the best performance score while
the underlined score indicates the best performance among leADS variances.

MetaPathways software [15]). PathoLogic, mILGPR, and leADS were used to predict pathways on
individual symbiont genomes and a concatenated dataset consisting of both symbiont genomes, and
resulting amino acid biosynthetic pathway distributions were determined (Fig. ) PathoLogic and
leADS predicted 6 of the expected amino acid biosynthetic pathways on the composite genome while
mlILGPR predicted 8 pathways. The L-phenylalanine biosynthesis I pathway was not inferred because
the associated genes were reported to be missing during the ORF prediction process while Chorismate
biosynthesis I was not incorporated during training (Fig. @ All models inferred false positive path-
ways for individual symbiont genomes (Moranella and Tremblaya) despite reduced pathway coverage
information (mapping enzymes onto associated 9 amino acid biosynthetic pathways) relative to the
composite genome (Fig. . Although it is possible for leADS to reduce type I error by incorporating
taxonomy-based predictions using rules, such pruning can also increase false-negative (type II error)
pathway predictions in multi-organismal datasets [9].

To evaluate performance on more complex multi-organismal genomes we compared leADS to mlL-
GPR using the CAMI low complexity dataset [24] and to PathoLogic and mILGPR using the HOTS
dataset [29]. In the case of CAMI, leADS+nPSP outperformed other methods resulting in an aver-
age F1 score of 0.6214 (Table . In the case of HOTS, leADS+R, leADS+F, leADS+H, leADS+M,
leADS+V, and leADS+nPSP predicted a total of 60, 67, 63, 68, 67, and 68 pathways among a subset of
180 selected water column pathways [9], while PathoLogic and mILGPR inferred 54 and 62 pathways,
respectively (Figs |§|, and . These observations indicate that leADS with subsampling improves
pathway prediction outcomes by reducing training loss due to the class-imbalance problem in BioCyc
v21 data. Based on these results we recommend using nPSP with ¢ = 10 and k = 50 settings for
optimal leADS performance.

Availability of Data and Materials

The leADS source code is available under the GNU License at github.com/hallamlab/leADS. A wiki,
including a tutorial, is available at |github.com//hallamlab/leADS /wiki.
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Figure 6: Comparison between Mccutcheon and colleagues [21] reported distributed genes in 9 amino
acid pathways in the Candidatus Moranella endobia and Candidatus Tremblaya princeps genomes with
MetaPathways v2.5 [15]. Circles represent detected presence of the pathway enzymes in Moranella (red),
Tremblaya (blue), both genomes (purple), or missing (grey).
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Figure 7: Comparative study of predicted pathways for symbiont data between PathoLogic, mILGPR,
and leADS (with random sampling, full data, and four acquisition functions). Filled red, blue, and
purple circles represent detected presence of the pathway in Moranella, Tremblaya, and both genomes,
respectively. The size of circles corresponds the pathway coverage information.
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Figure 8: Comparative study of predicted pathways for HOTS 25m dataset between PathoLogic, mILGPR,
and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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Figure 9: Comparative study of predicted pathways for HOTS 75m dataset between PathoLogic, mILGPR,
and leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.

19


https://doi.org/10.1101/2020.09.14.297424
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297424; this version posted October 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MetaCyc Pathways

Biosynthesis homocysteine and cysteine interconversion [Amino acids] | . e o o o o o | Predicted
L-selenocysteine biosynthesis Il (archaea and eukaryotes) [Amino acids] { @ @ ® o o o o o . No
glycine biosynthesis IV [Amino acids] 1 L L] [ ] L] L] L] L] . Yes
glycogen biosynthesis | (from ADP-D-Glucose) [Carbohydrates] | @ [ ] ® © o o o o L
ADP-L-<i>glycero</i>-&beta;-D-<i>manno</i>-heptose biosynthesis [Carbohydrates] . . . . . . . . bund
CMP-<i>N</i>-acetylneuraminate biosynthesis | (eukaryotes) [Carbohydrates] { = . . . - . . . Abundance
CMP-<i>N</i>-acetylneuraminate biosynthesis Il (bacteria) [Carbohydrates] | « . . . . . . . ; gD
pyridoxal 5'-phosphate biosynthesis Il [Cofactors] - @ =] e e e o o ® 40
thiamine diphosphate biosynthesis IV (eukaryotes) [Cofactors] . . (] . . . . . ® 60
lipoate biosynthesis and incorporation | [Cofactors] - @ @ ® ®© ¢ & ¢ O @30
<i>trans, trans</i>-farnesyl diphosphate biosynthesis [Cofactors] - e ° . [ ] e o ° @ 100
glutathione biosynthesis [Cofactors] - @ ® e O o o o o
biotin biosynthesis from 8-amino-7-oxononanoate | [Cofactors] - @ [ ] e o e o e o
thiamine diphosphate biosynthesis | (E. coli) [Cofactors] - @ [ ] e @ e e o o
menagquinol-8 biosynthesis [Cofactors] | e . . . . . . .
UDP-<i>N</i>-acetyl-D-galactosamine biosynthesis Il [Cofactors] - . . . . . . .
thiamine diphosphate biosynthesis Il (Bacillus) [Cofactors] - @ [ ] e o e o e o
mycothiol biosynthesis [Cofactors] - e . . . . . . .
coenzyme B/coenzyme M regeneration [Cofactors] - e @ . . . . . .
phosphopantothenate biosynthesis |l (archaebacteria) [Cofactors] - @ ] @ e o e o °
5,6-dimethylbenzimidazole biosynthesis Il (anaerobic) [Cofactors] | « . . . . . .
5,6-dimethylbenzimidazole biosynthesis | (aerobic) [Cofactors] - = . . . . . . .
coenzyme M biosynthesis | [Cofactors] 1 e . . . . . . .
salidroside biosynthesis [Secondary metabolites] - & . L] . (] . . .
flavonoid biosynthesis [Secondary metabolites] - « . . . . . . .
diploterol and cycloartenol biosynthesis [Secondary metabolites] - = . . . . . . .
. L-threcnine degradation lll (toc methylglyoxal) [Amino acids] - = . . . . . .
DeQ radation L-threonine degradation Il [Amino acids] - ® L] (] [ ] L] [ ] L] .
methane oxidation to methanol | [C1 compounds] | = . . . . . . .
reductive monocarboxylic acid cycle [C1 compounds] | = . . . ® . . .
D-mannose degradation [Carbohydrates] { . . . . . . .
L-rhamnose degradation Il [Carbohydrates] - = . . . . . . .
citrate degradation [Carboxylates] - = . . . . . . .
2-methyicitrate cycle Il [Carboxylates] | @ L] ® . @ ® . ]
acetate formation from acetyl-CoA Il [Carboxylates] -+ e . . . . . . .
hydrogen production VIIl [Hydrogen production amino acids] 1 = . s . . . . .
L-methionine degradation Ill [Hydrogen production amino acids] . (] L] (] . . .
ammonia oxidation | (aerobic) [Non-carbon nutrients] 4 = . . . . . . .
nitrate reduction IV (dissimilatory) [Non-carbon nutrients] - = . . . . . . .
nitrite-dependent anaerobic methane oxidation [Non-carbon nutrients] . . . . . . . .
guanosine nucleotides degradation Ill [Nucleotides] L] L [ ] (] L] °
D-sorbitol degradation | [Secondary metabolites] . . . . . .
ribitol degradation [Secondary metabolites] . . . . . . . .
pyruvate fermentation to (<i>S</i>)-acetoin [Fermentation] - @ @ ® ® ® ® & O
Energy photosynthesis light reactions [Photosynthesis] - @ @ o o0 0 00
g & 528820
g 9 2 5 ® ® ©
o = 5 c £
£ E bl wos o5
€ €%
— b
ERE
=
=

Figure 10: Comparative study of predicted pathways for HOTS 110m dataset between PathoLogic, mlL-
GPR, and 1leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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Figure 11: Comparative study of predicted pathways for HOTS 500m dataset between PathoLogic, mlL-
GPR, and 1leADS (with random sampling, full data, and four acquisition functions). Black circles indicate
predicted pathways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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