

1 The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple
2 international mouse facilities

3

4 Short title: Tarsal injury in C57BL/6N male mice

5

6 Eleanor Herbert², Michelle Stewart¹, Marie Hutchison¹, Ann M. Flenniken^{4,5}, Dawei Qu^{4,5},
7 Lauryl M. J. Nutter^{4,6}, Colin McKerlie^{4,6}, Liane Hobson¹, Brenda Kick³, Bonnie Lyons³, Jean-
8 Paul Wiegand³, Rosalinda Doty³, Juan Antonio Aguilar-Pimentel⁷, Martin Hrabe de
9 Angelis^{7,8,9}, Mary Dickinson¹⁰, John Seavitt¹⁰, Jacqueline K. White³, Cheryl L Scudamore¹,
10 Sara Wells^{1*}

11

12

13

14 Affiliations

15 ¹ Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK

16 ² Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire,
17 UK AL9 7TA, UK

18 ³ The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA

19 ⁴ The Centre for Phenogenomics, Toronto, ON, Canada, M5T 3H7

20 ⁵ Lunenfeld-Tanenbaum Research Institute, Sinai Health, 600 University Avenue, Toronto,
21 ON, Canada, M5G 1X5

22 ⁶ The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8

23 ⁷ German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München,
24 Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

25 ⁸ School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8,
26 85354 Freising, Germany

27 ⁹ German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg,
28 Germany

29 ¹⁰Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA

30

31 * corresponding author

32 Email: s.wells@har.mrc.ac.uk

33 **Abstract**

34 Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in adult
35 male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to
36 severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and
37 lameness. Contraction of digits and gait abnormalities were noted in multiple cases.
38 Radiographical and histological examination revealed caudal dislocation of the calcaneus
39 and partial dislocation of the calcaneoquartal (calcaneous-tarsal bone IV) joint. The
40 detection, frequency, and cause of this pathology in five large mouse production and
41 phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for
42 Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine,
43 USA) are discussed.

44

45 **Introduction**

46 Inbred strains of laboratory mice are used to standardise the genetic background of mutant
47 mouse strains to reduce data variability. Produced by >20 consecutive generations of sibling
48 mating, the controlled homogeneity of inbred strains such as C57BL/6N is accompanied by
49 the fixing of spontaneous mutations in inbred genomes. Many monogenic mutations have
50 been identified in inbred mouse strains, including those causing retinal degeneration in C3H
51 strains (Schmidt, Lolley, & Racz, 1973) and age-related deafness in C57BL/6 strains
52 (Johnson, Erway, Cook, Willott, & Zheng, 1997). The characterisation of these mutations has
53 allowed their impact on individual research programs to be assessed and alternative genetic
54 backgrounds used if they interfered with the primary purpose of the studies. Conversely
55 there are reports of sporadic, low-level defects in inbred lines which are likely due to
56 oligogenic or polygenic effects and exhibit variable penetrance thus only observed or
57 measured in a proportion of the population of an inbred colony (Sundberg, Silva, Li, Cox, &
58 King, 2004). These include complex behaviours such as aggression (Miczek, Maxson, Fish,
59 & Faccidomo, 2001), hyperactivity (Võikar, Kõks, Vasar, & Rauvala, 2001), morphological
60 anomalies such as sternal segment dislocation (Adissu, Medhanie, Morikawa, & White,

61 2015) and developmental defects such as hydrocephalus (<https://www.jax.org/news-and->
62 [insights/2003/july/hydrocephalus-in-laboratory-mice](https://www.jax.org/news-and-insights/2003/july/hydrocephalus-in-laboratory-mice)).

63 Knowledge of the predisposition of mouse strains to such issues is not only essential for the
64 care and welfare of mice but is an important consideration in phenotyping programs. It is
65 crucial to distinguish incidental effects caused by genetic background, from outcomes arising
66 because of an experimental paradigm (e.g. genetic mutation or physiological challenge) or a
67 combination of background and paradigm together. The International Mouse Phenotyping
68 Consortium (IMPC) (www.mousephenotype.org) is generating a genetically altered (GA)
69 mouse strain carrying a null allele for each protein-coding gene in the mouse to study
70 mammalian gene function (Brown & Moore, 2013). GA strains for this programme are
71 generated on the C57BL/6N genetic background and phenotyping is performed at an early
72 adult time point (up to 17 weeks) and a late adult time point (after 12-18 months) for a subset
73 of strains. Phenotyping and husbandry protocols include the regular assessment of welfare
74 and fitness during handling and cage-changing, and motor function during phenotyping tests
75 (Rogers et al., 2001).

76 In this study, we report the recurrent observation of abnormal hindlimb morphology,
77 accompanied by lameness, in group -housed male mice of C57BL/6N substrains. This report
78 describes the nature of the injury and discusses possible aetiologies. We also provide an
79 estimate of the frequency of occurrence from five large mouse genetics centres in four
80 different countries across two continents and highlight potential consequences for projects
81 where prolonged co-housing of male C57BL/6N mice is a necessity.

82

83 **Materials and Methods**

84 **Ethics Statement**

85 Mice were examined for tarsal injury at five mouse phenotyping centres:
86 MRC Harwell: Animal studies are performed in compliance with guidelines issued by the
87 Medical Research Council (MRC) (UK) in “Responsibility in the Use of Animals for Medical
88 Research” (July 1993). The care and use of all mice in this study were in accordance with

89 UK Home Office regulations, The Animals (Scientific Procedures) Act 1986 Amendment
90 Regulations 2012 (SI 4 2012/3039), and approved by the MRC Harwell Institute Animal
91 Welfare and Ethical Review Body.
92 The Centre for Phenogenomics (TCP): All experimental procedures were approved by the
93 TCP Animal Care Committee (AUP 0279) and were conducted in accordance with the
94 guidelines of the Canadian Council on Animal Care.
95 The Jackson Laboratory (JAX): All experimental procedures were carried out under Protocols
96 14004 and 11005 approved by the JAX Institutional Animal Care and Use Committee
97 (IACUC) with NIH Office of Laboratory Animal Welfare (OLAW) assurance number D16-
98 00170 and Accreditation AAALAC #000096.
99 German Mouse Clinic (GMC): All animal experiments were carried out in accordance with
100 German legal guidelines and following the approval of the responsible animal welfare
101 authorities and the Ethics Board of the District Government of Upper Bavaria, Germany
102 (approval number 46-2016).
103 Baylor College of Medicine (BCM): Animal experiments were carried out in accordance with
104 research protocol AN-5896 and approved by the BCM Institutional Animal Care and Use
105 Committee. The Animal Welfare Assurance at BCM is approved by the Office of Laboratory
106 Animal Welfare (OLAW), and meet the requirements of the Public Health Service Policy on
107 Humane Care and Use of Laboratory Animals (assurance number D16-00475).
108

109 **C57BL/6N substrains used in this study**

110 Mice used at MRC Harwell were C57BL/6NTac mice purchased from originally from Taconic
111 Biosciences, USA and subsequently bred at MRC Harwell. Mice examined at The Jackson
112 Laboratory are sourced from an in-house maintained colony of C57BL/6NJ. Mice used at
113 The Centre for Phenogenomics are C57BL/6NCrl, purchased from Charles River
114 Laboratories, USA and subsequently bred at TCP. Mice at the German Mouse Clinic were
115 C57BL/6NTac purchased from Taconic Biosciences ,Germany and C57BL/6NCrl purchased
116 from Charles River Laboratories, Germany. Mice at Baylor College of Medicine were
117 C57BL/6NJ originally purchased from Charles River Laboratories, USA and subsequently
118 bred at this facility.

119

120 **Mouse housing conditions**

121 Housing conditions in each institution are listed in TABLE S1 of supplementary figures.

122

123 All mice were given food and water *ad libitum*. Adult mice were humanely sacrificed by an
124 overdose of anaesthetic, overdose of carbon dioxide, or by cervical dislocation (according to
125 relevant national and local protocols and guidelines).

126

127 **Clinical examination**

128 Routine animal care and welfare checks in all facilities involved visually inspecting the mice
129 as part of a daily check and regular handling (typically no less than once every 14 days)
130 during cage changing, or during phenotyping. Mice with an abnormal gait and/or locomotor
131 deficit accompanied by abnormal hindlimb morphology and swelling or reddening of the
132 tarsus were euthanised or selected increased observation to ensure no further deterioration
133 in the welfare of the mouse.

134

135 **Radiography**

136 Lateral views of the affected and contralateral tarsi were taken of representative animals
137 under isoflurane anaesthesia by digital radiography at 26kV for 3 s using a Faxitron

138 MX-20 digital X-ray system or a Faxitron X-Ray Model Ultrafocus 100 (both from Faxitron
139 X-ray Corporation, Lincolnshire, IL, USA). X-ray images were processed using the
140 DicomWorks software (<http://www.dicomworks.com/>).

141

142 **Histopathology**

143 Immediately following euthanasia, tissues from selected mice were fixed in 10% neutral
144 buffered formalin for a minimum of 24 hours. Following fixation, the hindlimbs (affected and
145 contralateral) were stripped of soft tissues, decalcified in formic acid for 96 hours, and
146 processed routinely for histopathologic evaluation. Subsequently, 4–5 µm thick, mid-sagittal
147 sections were stained with haematoxylin and eosin (H&E) for evaluation. Representative
148 images were acquired using an Olympus BX43 microscope with a Micropix Elite 5MP
149 camera and Cytocam software v1.6. All histologic evaluations were performed by a board-
150 certified veterinary pathologist.

151

152 **Results**

153 **Clinical examination**

154 A proportion of male mice of C57BL/6N substrains, housed in social groups were observed
155 to have clinical signs of abnormal hindlimb morphology, together with swelling or reddening
156 of the tarsus and often an abnormal gait. Similar numbers of C57BL/6N females were
157 assessed and no tarsus, hind paw, or gait abnormalities were observed. Gait abnormalities
158 in males ranged from limping with a reduced amount of weight bearing on the affected limb
159 to complete non-weight bearing. Grossly affected tarsi showed a loss of the abrupt right
160 angle formed from the calcaneus and the calcaneal tendon, and there was variable soft
161 tissue swelling sometimes accompanied with redness (Figure 1). Whilst the majority of
162 affected mice had only one abnormal hind paw, 1/21 at MRC Harwell, 4/21 at TCP and
163 15/58 at JAX presented with bilateral tarsal abnormalities.

164 Radiography confirmed caudal dislocation of the calcaneus and new periosteal bone
165 formation (Figure 2). In some animals, there was also calcification within the distal calcaneal
166 tendon.

167 **Histopathology**

168 Histopathological examination identified caudo-dorsal dislocation of the calcaneus with
169 concurrent partial dislocation and hyperextension of the calcaneoquartal joint. In more
170 chronic lesions, the calcaneoquartal joint progressed to new bone formation (Figure 3).
171 There was no difference in overall dislocation of the calcaneus in acute versus chronic
172 lesions.

173

174 **Frequency and variability of occurrence**

175 C57BL/6N mice bred for the IMPC late adult phenotyping programme were examined for
176 tarsal injuries at five international mouse research centres. These mice included GA strains
177 from a wide range of mutant lines examined by the IMPC as well as baseline wild type
178 controls. Due to differences in individual institutional protocol, the ages of the cohorts vary.
179 The frequency of occurrence was between 1.7% and 12.1% of male mice examined
180 between the ages indicated.

	Substrain	Number of mice (male)	Age range (weeks)	Number affected	Earliest age affected (weeks)	Frequency (%)
The Centre for Phenogenomics, Canada	C57BL/6NCrl	235	5-59	21	20	8.9
The Jackson Laboratory, USA	C57BL/6NJ	1440	4-78	58	11	4.0
MRC Harwell Institute, UK	C57BL/6NTac	174	16-59	21	18	12.1
GMC Helmholtz Zentrum,	C57BL/6NTac and	413	4-62	7	45	1.7

Germany	C57BL/6NCrl					
Baylor College of Medicine, USA	C57BL/6NJ	250	16-52	30	20	12

181

182 **Husbandry, housing, and strains affected**

183 Further observations were made and recorded which informed the aetiology of the incidence
184 of the tarsal injury in C57BL/6N mice.

185 • Female mice: Equivalent numbers of females of the same strain which were part of
186 the same programme of work were also examined but no similar injury was reported.

187 • Males in mating cages or singly-housed: No injury was observed in 584 C57BL/6Ntac
188 males in either mating cages (with one or two females) or single-housed examined
189 between the ages of 16 and 64 weeks (average age 24 weeks) at Harwell.

190

191 **Discussion**

192 Here we report the observation of tarsal injury in male mice with a C57BL/6N genetic
193 background occurring at five large and geographically-dispersed mouse facilities. These
194 injuries were observed in a number of different mutant strains and several wild-type
195 substrains indicating a predisposition for such lesions in mice of C57BL/6N ancestry. A
196 similar deformity has been reported in STR/ort mice with a known genetic abnormality
197 predisposing them to chronic arthropathy used as a model for studying osteoarthritis (Mason
198 et al., 2001). In the STR/ort mice, lameness and hind paw deformity also affected
199 predominantly male mice although the incidence rate was far higher and occurred from a
200 younger age compared with our observations. The radiographic findings and histopathology
201 are consistent with an injury caused by frequent high load tension from the calcaneal tendon
202 through its insertion to the calcaneous leading to a breakdown of the plantar ligaments
203 supporting the calcaneoquartal joint which are weakened in this model by a known collagen
204 abnormality (Staines et al., 2016). There is no known underlying abnormality in the

205 C57BL/6N strains reported here and so it is hypothesised that the lesion is caused by
206 application of an abnormally high load/force through the calcaneal tendon because of
207 behavioural or husbandry practices. It should be noted that all animals in this study are fed
208 on regular maintenance or breeding diets and not on high-fat or obesity inducing regimes.
209 The type of lesion we identified was restricted to group-housed males and its occurrence
210 became more prevalent as the mice aged. However, this may represent an increased
211 opportunity for this injury to occur over time, rather than an increased
212 predisposition/weakness in older males. The absence of any such injury in female mice
213 socially-housed for the same experimental purposes and for the same length of time
214 indicates that this is a sexually dimorphic effect.
215 As these injuries were observed in three different C57BL/6N substrains it is possible that this
216 genetic background is predisposed to tarsal injuries. Male C57BL/6 mice are widely reported
217 to display aggressive behaviours towards cage-mates (Lidster, Owen, Browne, & Prescott,
218 2019). Both threat (thrust and mounting) and aggressive behaviours (boxing, parrying,
219 fighting) are associated with establishing and maintaining dominance hierarchies in group
220 house male mice. Each of these behaviours involve rearing that requires repeated plantar
221 flexion of the hind paw at the tarsus, initiated by high load tension from the common
222 calcaneal tendon. Sporadic and frequent bouts of fighting have also been associated with an
223 increased mechanical load on male tibiae in C57BL/6J mice (Meakin et al., 2013), a strain
224 related to C57BL/6N. However, it is unclear whether the causal feature of the injury we
225 observed is an inherent weakness in the tarsal joint, a consequence of a behavioural
226 characteristic of C57BL/6N male mice, their interaction with the environment, or
227 combinations of these factors.
228 Significant differences in the frequency of observation of tarsal injury between centres may
229 present any number of variances between housing and animal care regimes between the
230 facilities. Investigations into different husbandry protocols may provide insight into ways to
231 reduce occurrence in the future. Euthanasia following discovery of the injury described may
232 have substantial consequences to the study being undertaken. Disruption of an established

233 cage-group by removing an individual may lead to further perturbations in both the
234 behaviour of the existing animals or to the experimental design itself with a reduction in data
235 collected and the potential loss of statistical power.

236 In summary, this report provided a description of an injury to group-housed male C57BL/6N
237 mice observed in five different mouse centres from studies involving large numbers of
238 animals. It is likely that a similar incidence may occur undetected, or be being attributed to
239 experimental protocols, in other facilities using these substrains. The implications of these
240 findings will be study-dependent but have the potential to affect phenotyping results or cause
241 an increase in attrition for ageing studies, resulting in insufficient animals completing the
242 studies. The information that reported here should be used to assist future experimental
243 design for longitudinal studies especially those involving measurements of gait and motor
244 skills.

245

246

247 **Acknowledgements**

248 We thank staff at the five facilities participating in this study for animal husbandry support,
249 necropsy, and histology services. Dr Dona Reddiar for assistance with the manuscript.
250 Funding for the IMPC studies at each centre is provided by NIH grant UM1HG006348-07S2
251 (MRC Harwell and Baylor College of Medicine), MRC grant A410 (MRC Harwell), NIH grant
252 UM1 OD023221 (TCP) and NIH UM1 OD0232221OD023222 (JAX), BMBF Infrafrontier
253 grant 01KX1012 (GMC) and EU Horizon2020: IPAD-MD funding 653961 (GMC).

254

255

256 **References**

257 Adissu, H. A., Medhanie, G. A., Morikawa, L., & White, J. K. (2015). Right Ventricular
258 Epicardial Fibrosis in Mice With Sternal Segment Dislocation, 52(5), 967–976.
259 <https://doi.org/10.1177/0300985814552108>

260 Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F., & Zheng, Q. Y. (1997). A major gene
261 affecting age-related hearing loss in C57BL/6J mice. *Hearing Research*, 114(1–2), 83–92.
262 [https://doi.org/10.1016/S0378-5955\(97\)00155-X](https://doi.org/10.1016/S0378-5955(97)00155-X)

263 Lidster, K., Owen, K., Browne, W. J., & Prescott, M. J. (2019). Cage aggression in group-
264 housed laboratory male mice: an international data crowdsourcing project. *Scientific
265 Reports*, 9(1), 1–12. <https://doi.org/10.1038/s41598-019-51674-z>

266 Meakin, L. B., Sugiyama, T., Galea, G. L., Browne, W. J., Lanyon, L. E., & Price, J. S.
267 (2013). Male mice housed in groups engage in frequent fighting and show a lower response
268 to additional bone loading than females or individually housed males that do not fight. *Bone*,
269 54(1), 113–117. <https://doi.org/10.1016/j.bone.2013.01.029>

270 Miczek, K. A., Maxson, S. C., Fish, E. W., & Faccidomo, S. (2001). Aggressive behavioral
271 phenotypes in mice. *Behavioural Brain Research*, 125(1–2), 167–181.
272 [https://doi.org/10.1016/S0166-4328\(01\)00298-4](https://doi.org/10.1016/S0166-4328(01)00298-4)

273 Schmidt, S. Y., Lolley, R. N., & Racz, E. (1973). Cyclic-nucleotide phosphodiesterase an
274 early defect in inherited retinal degeneration of C3H mice. *Journal of Cell Biology*, 57(1),
275 117–123. <https://doi.org/10.1083/jcb.57.1.117>

276 Sundberg, J. P., Silva, A. K. A., Li, A. R., Cox, A. G. A., & King, L. E. (2004). Adult-Onset
277 Alopecia Areata Is a Complex Polygenic Trait in the C3H / HeJ Mouse Model. *Journal of
278 Investigative Dermatology*, 123(2), 294–297. <https://doi.org/10.1111/j.0022-202X.2004.23222.x>

279 Võikar, V., Kõks, S., Vasar, E., & Rauvala, H. (2001). Strain and gender differences in the
280 behavior of mouse lines commonly used in transgenic studies. *Physiology and Behavior*,
281 72(1–2), 271–281. [https://doi.org/10.1016/S0031-9384\(00\)00405-4](https://doi.org/10.1016/S0031-9384(00)00405-4)

282

283

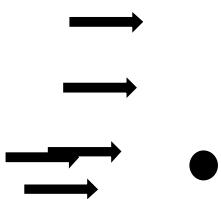
284 **Supplementary Table**

285 **(see excel)**

286

287 **Figure legends**

288 Figure 1. Dorsal view of unaffected right tarsus and rounded, swollen tarsus (readers left)

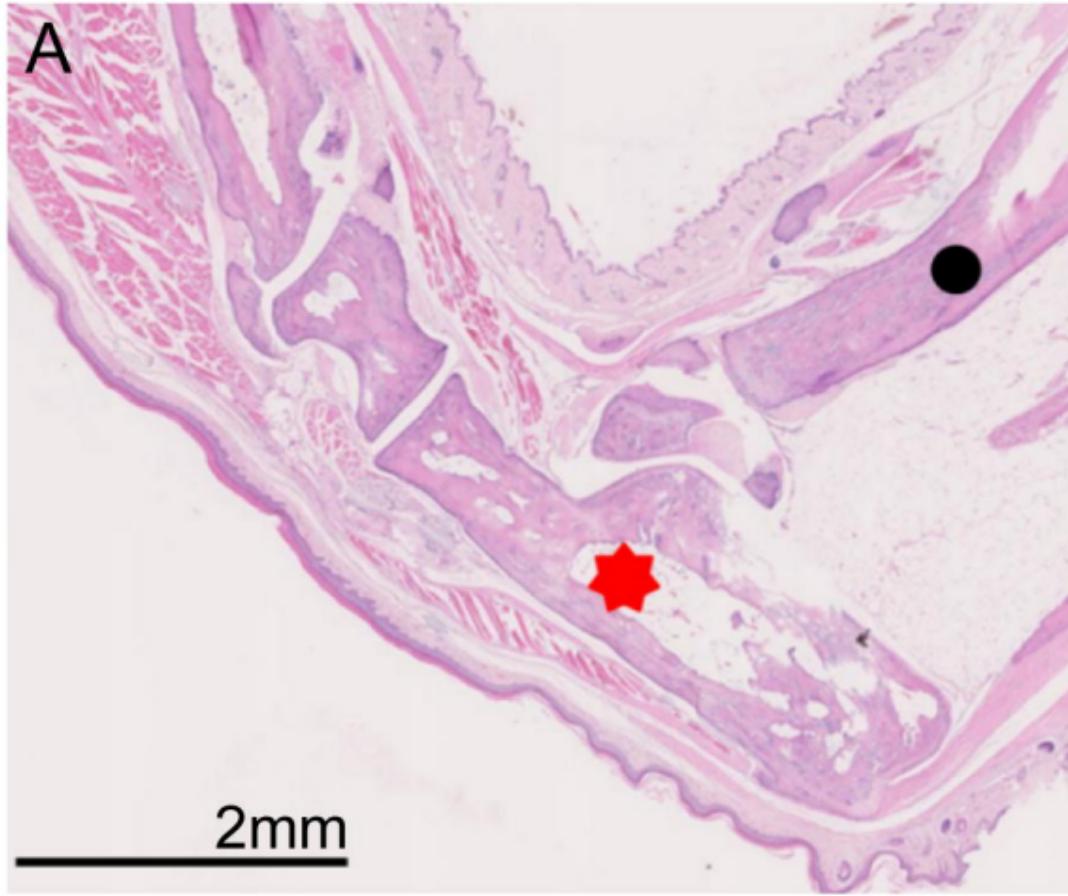

289

290 Figure 2. (a) Xray image of the normal position of the calcaneus (arrow) within the tarsal joint
291 and (b) with caudo-dorsal dislocation of the calcaneus

292

293 Figure 3. (a) The unaffected tarsus with the calcaneus (red star) forming an approximate 90°
294 angle with the tibia (black circle), (b) Affected tarsus (red star) with dislocation of the
295 calcaneus caudo-dorsally to form an approximate 15° angle with the tibia (black circle). The
296 black arrow indicates the direction of movement of the calcaneus. Scale bar = 2mm.

297



A

B

