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Abstract 10 

Uncovering relationships between neural activity and behavior represents a critical 11 

challenge, one that would benefit from facile tools that can capture complex structures 12 

within large datasets. Here we demonstrate a generalizable strategy for capturing such 13 

structures across diverse behaviors: Time-REsolved BehavioraL Embedding 14 

(TREBLE). Using data from synthetic trajectories, adult and larval Drosophila, and mice 15 

we show how TREBLE captures both continuous and discrete behavioral dynamics, can 16 

uncover variation across individuals, detect the effects of optogenetic perturbation in 17 

unbiased fashion, and reveal structure in pose estimation data. By applying TREBLE to 18 

moving mice, and medial entorhinal cortex (MEC) recordings, we show that nearly all 19 

MEC neurons encode information relevant to specific movement patterns, expanding 20 

our understanding of how navigation is related to the execution of locomotion. Thus, 21 

TREBLE provides a flexible framework for describing the structure of complex behaviors 22 

and their relationships to neural activity. 23 
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Main 24 

 Accurate descriptions of animal behavior are essential to understanding brain 25 

function. However, naturalistic behavior in freely moving animals is often continuous, 26 

has structure across multiple timescales, and can vary broadly between individuals and 27 

contexts. Thus, statistical tools that can capture and visualize the temporal structural of 28 

behavior, can operate on large data sets derived from many individuals, and are 29 

generalizable across systems and experiments are of central interest.  30 

 Advances in tracking technology have enabled measurements of animal 31 

movement from a wide range of species (Datta et al. 2019; Pereira et al. 2020; Mathis et 32 

al. 2020).  These datasets are often extremely rich, and include correlated movements 33 

across timescales, features that must be accounted for in efforts to link neural activity to 34 

behavior. In parallel, a variety of sophisticated methods have emerged to parse such 35 

behavioral structure and to measure behavioral changes caused by ever more powerful 36 

experimental perturbations (Brown & de Bivort 2018; Datta et al. 2019; Pereira et al. 37 

2020; Mathis et al. 2020).  However, many of these methods are complex to implement, 38 

and require extensive adaptation to specific species, contexts and experimental goals. 39 

As a result, many investigators continue to rely upon either instantaneous measures of 40 

specific behavioral parameters (such as velocities), or standard dimensionality reduction 41 

approaches in which relatively little variance in the behavior is accounted for in the first 42 

two dimensions. We therefore reasoned that an accessible framework that could be 43 

easily applied to a wide variety of species and contexts, and which would allow the 44 

temporal structure of behavior to be embedded and visualized in a low dimensional 45 

manifold, would be of widespread utility. 46 
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Here we describe Time-REsolved BehavioraL Embedding (TREBLE), an easy-to-47 

use method that can describe the structure of behavior, assess the effects of 48 

experimental perturbations across the entire space of behavioral measurements, and 49 

provide intuitive representations of the relationships between neural activity and 50 

behavior. We reasoned that individual movements, by analogy with some genomic 51 

analyses, could be treated akin to conserved nucleotide sequence blocks of variable 52 

length. In genomics, quantitative and qualitative differences in sequence can be 53 

efficiently revealed by shotgunning long sequences into smaller, overlapping blocks that 54 

preserve local structure (Staden 1979; Wang et al. 2009). These blocks are then 55 

assembled into libraries that densely sample the structure, frequency and surrounding 56 

sequence of each block, while smoothly reconstructing the entire sequence. 57 

Quantitative variation in these features can then be assessed using standardized 58 

computational methods often including dimensionality reduction followed by statistical 59 

testing. Building on this conceptual parallel, we developed TREBLE as a method for 60 

extracting all behavioral sequences from a dataset (analogous to shotgun sequencing), 61 

assembling ‘libraries’, and creating a shared ‘behavior space’ using dimensionality 62 

reduction. 63 

  In the TREBLE framework, behavior is first quantitatively measured (Figure 1A). 64 

Relevant measurements such as centroid velocities, or changes in body or limb 65 

position, are computed from video data, and segmented into highly overlapped temporal 66 

windows, the size of which is constrained by the temporal structure of behavior. These 67 

windows are then collected into a large library encompassing all individuals and 68 

experimental perturbations and assembled in a low-dimensional behavior space. 69 
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Depending on window size, this space can flexibly capture a range of temporal 70 

dynamics, ranging from unique trajectories to recurring patterns of movement. The 71 

resulting space can be leveraged to decode complex patterns of movement in a time-72 

resolved fashion, facilitating analyses such as the rapid comparison of individuals or 73 

identification of neural perturbations and stimulus effects.  74 

 Here, we use TREBLE to analyze a wide variety of data sources (synthetic 75 

trajectories, adult and larval fruit flies, mice (with both 2D and 3D pose tracking)) and 76 

applications (behavioral repertoire description, experimental perturbation, intersection of 77 

behavior with imaging and electrophysiological neuron recordings). We show that 78 

TREBLE’s parameters can be rationally chosen using empirical analyses and that the 79 

resulting behavior spaces are regularly structured and display recurrent dynamics. 80 

Individual movement bouts can be easily decoded and classified, the representation of 81 

which can be tailored to a user’s need and allowing for detailed dissections of behavior 82 

into its constituent components. TREBLE can handle data from many individuals and 83 

millions of data points simultaneously, making possible the detection of otherwise 84 

invisible behavioral variation. Finally, we demonstrate the ability of TREBLE to rapidly 85 

uncover neurobehavioral relationships during optogenetic perturbations and neural 86 

imaging in flies, as well as electrophysiological recordings in freely moving mice. 87 

 88 

Results 89 

Calibrating TREBLE 90 

 To calibrate this approach, we first used a large, synthetic dataset comprised of 91 

correlated random walks to explore the relationships between window size and the 92 
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emergent structure of behavior space (Bovet 1988) (Figure 1B; Figures S1A-B).  93 

Individual random walks were completely described by a combination of velocity 94 

features (translational velocity, angular velocity, and side slip; Figure 1C) with 95 

characteristic temporal dependencies determined by the correlated random walk 96 

generator (and highlighted by their autocorrelations; Figures 1D-E). We reasoned that 97 

window sizes smaller than the underlying correlations within and between velocities 98 

would artificially granularize features, while windows larger than the underlying 99 

correlations would combine uncorrelated features. Given this, an ‘ideal’ window size 100 

should show less variance across trials and display recurrent dynamics, paths through 101 

the space that repeat independently in the dataset since stereotyped movements that 102 

repeat would necessarily lead to recurrent paths in such a space. 103 

To explore this, we assessed the effect of window size on feature representation, 104 

sweeping sizes from 10ms (containing 1 window, reflecting an instantaneous 105 

measurement of features) to 2 seconds (see Methods). Windows extracted from all 106 

replicate walk trajectories were then embedded into behavior space using the UMAP 107 

algorithm, a computationally efficient, non-linear dimensionality reduction approach 108 

(McInnes et al. 2018). The structure of behavior space varied broadly as a function of 109 

window size; topologies ranged between disordered (10-30ms), recurrent (40~350ms), 110 

and unique paths (450ms ~ 2 seconds) (Figure 1F; Figure S1B). These observations 111 

confirmed our initial intuition that window size could have a range of effects on the 112 

structure of behavior space and that more ordered spaces could be derived by 113 

considering timescales longer than raw/instantaneous measurements.  114 

 115 
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 134 
Figure 1 The TREBLE framework and its application to synthetic data 135 
(A) Outline of the TREBLE framework. Behavioral data are recorded. Relevant features (such as velocities) are extracted these 136 
recordings following which empirical analyses are used to determine the optimal sampling window size. The chosen window size is 137 
then used to create a library spanning all time points in the data set. The resulting window library is embedded into a low-138 
dimensional behavior space from which recurrent behaviors can be decoded and used for a number of analyses (examples labeled 139 
in red boxes). (B) Example correlated random walk used for parameter tuning (see also Figure S1). (C) Velocity components that 140 
can be calculated from movements in a 2-d plane. The black point at time t denotes the beginning of the trajectory which proceeds 141 
to t+1. The purple arrow corresponds to the angular velocity of this trajectory while the green and yellow arrows represent 142 
translational velocity and side slip, respectively. (D) The observed autocorrelation distribution of angular velocity computed from all 143 
correlated random walks. (E) The observed autocorrelation distribution of translational velocity. (F) Example behavior spaces for a 144 
range of window sizes. Spaces are plotted here by connecting temporally adjacent points (corresponding to feature windows), gray 145 
lines. Darker lines reflect repeated visits along the same pathway. (G) Mean intra-point Euclidean distances as a function of window 146 
size. Mean values (dark gray); Standard error of the mean (shading). (H) Procrustes distance RMSE measures as a function of 147 
window size. Mean values (dark gray); Standard error of the mean (light gray shading). (I) Recurrence plot of behavior spaces 148 
produced from the correlated random walk dataset. The proportion of recurrent points given a range of time delays spanning from 0 149 
to 2 seconds, is indicated by the color of the corresponding bins (ranging from light yellow to dark red). Each window size contains 150 
the distributions for 10 replicate walks. (J) Mean recurrence times as a function of window size. Population mean (large dark circle); 151 
Individual replicates (small light circle). 152 
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We next sought to quantify this topological variation. We employed two statistics, 153 

one targeting local structural differences and the other focused on global variation. To 154 

assess local variation, we measured the average Euclidean distance between 155 

temporally adjacent points, reasoning that spaces with smoother paths would display 156 

smaller distances with less variance. Mean values of Euclidean distance displayed a 157 

trough spanning window sizes of between 450 to 1250ms (Figure 1G). The coefficient of 158 

variation (CV) highlighted a broad overlapping region of similarity, spanning window 159 

sizes of between 10 to 950ms (Figure S1C). To assess global variation, we measured 160 

Procrustes distance (McInnes et al. 2018; Dryden & Mardia 1998).  This metric 161 

compares the difference between configurations of points, used here to quantify the 162 

distance between replicate behavior spaces of a given window size. This measure 163 

displayed a pattern similar to Euclidean distance, with a large trough between 450 and 164 

1250ms, and a consistent CV up to window sizes of 950ms (Figure 1H; Figure S1D). 165 

Thus, these metrics allow quantification of the effects of window size, in this case 166 

revealing stability in topologies of behavior space across a range of windows.   167 

We then explored how the choice of window size affects the temporal 168 

progression of trajectories through behavior space by measuring the frequency with 169 

which portions of a trajectory were repeated. We delineated a neighborhood around 170 

each point in behavior space (see Methods) and determined the amount of time 171 

between visits to each neighborhood. This was then represented as the proportion of all 172 

neighborhoods that were revisited (Bruno et al. 2017). The distribution of these values 173 

was consistent across replicates within a given window size but varied across sizes 174 

(Figure 1I). Window sizes of 150 to 650ms displayed a dominant return time of 175 
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approximately 250ms, with a secondary peak at 1 second (Figure 1I). Windows larger 176 

than 650ms displayed increasingly noisy return time distributions (Figure 1I). Reflecting 177 

this, plots of mean recurrence times revealed a structured tuning curve in which the 178 

mean and variance were minimized at a window size of 150ms (Figure 1J). Combining 179 

these observations, the broad tuning curves in both the spatial and temporal properties 180 

of behavior space indicate that while window size can have appreciable effects, this 181 

representation of behavior can be robust across multiple parameter values.  182 

 183 

Analysis of fruit fly locomotion 184 

How does TREBLE perform when applied to biological data? First, we applied 185 

the TREBLE to fruit fly locomotor behavior collected from individual animals walking on 186 

an air-cushioned ball while exploring a virtual world (Haberkern et al. 2019). We 187 

extracted rotational, translational and slip velocity components from these data and 188 

applied the empirical window analysis outlined above. Structural variation analysis of 189 

behavior space revealed a minima at a window size of 180ms (Figure 2A; Figures S2A-190 

C) while mean recurrence time was minimized at 140ms (Figure 2B; Figures S2D-F). 191 

Given that these metrics displayed only a small amount of variation between these two 192 

window sizes, we focused further analyses on a behavior space constructed using a 193 

window size of 160ms. 194 

We constructed a behavior space from the movements of 14 individual walking 195 

fruit flies (Figure 2C; 399,869 windows). Individual points in this space corresponded to 196 

unique windows with specific combinations of velocity features (Figure 2C).  197 

 198 

 199 
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Figure 2 Analyzing fruit fly locomotion with TREBLE 228 
(A) The coefficient of variation of Procrustes distance as a function of window size. The observed minimum at 180ms is denoted by 229 
the red dotted line. (B) Coefficient of variation for the mean (blue line) and maximum (i.e. highest proportion of time bins displaying 230 
recurrence; dark red line) recurrence times as a function of window size. The optimal tradeoff between the mean and maximum 231 
times is denoted at 140ms with a red dotted line. (C) Fly locomotor behavior space. Each point corresponds to a feature window 232 
(399,869 windows in total) as extracted from the 14 individual flies. (D) Pathways through the locomotor behavior space, produced 233 
by connecting temporally adjacent windows with partially transparent lines (as in Figure 1F). (E) Walking fruit fly behavior space 234 
represented as a vector field. Arrow direction and magnitude correspond to the angle and mean direction taken after visiting each 235 
bin. (F) The distribution of translational velocity across behavior space. Darker green corresponds to larger values of translational 236 
velocity. (G) The distribution of angular velocity across behavior space. Darker purple corresponds to larger values. (H) The 237 
distribution of side slip across behavior space. Darker gold corresponds to larger values. (I) Example bout of stopping. The pathway 238 
through behavior space is represented on the left. XY coordinates of the actual bout are plotted on the right. Both representations 239 
are colored by elapsed time. (J-L) Same as (I) but for fast turns, forward runs, and slow turns, respectively. (M) Sample trajectory 240 
through behavior space as represented by a 1-dimensional coordinate value. (N) Distribution of per-bin standard deviation across 241 
locomotor behavior space. Color corresponds to the variance of bin-wise visitation frequency across all 14 flies. (O) Hierarchical 242 
clustering of individual fly density maps. The dendrogram on the right represents the relationships between all 14 flies (numbered at 243 
the tips of each branch). Individual fly density maps are presented on the left in 1-dimension by converting the density map matrix 244 
into a single vector (presented in 2-dimensions in Figure S2J). Darker colors reflect more time spent (‘occupancy’) in a specific 245 
region. 246 
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Connecting these points based on their temporal order revealed stereotyped paths in 247 

which individual flies repeated the same patterns of movement (Figure 2D; Figure S2G). 248 

As a result, the mean vector field produced by these was highly structured (Figure 2E). 249 

These pathways traversed regions of space defined by the input velocity features, 250 

meaning that position within the space could be used to infer the underlying pattern of 251 

movement (Figures 2F-H). Analyzing continuous movement through these regions 252 

demonstrated that individual behavioral bouts and sequences could be identified 253 

(Figures 2I-L; manually chosen). Finally, consistent with the notion that these 254 

sequences were recurrent (Figure 2B), plotting the positions of individual fly trajectories 255 

in behavior space over time reveals periodicity (Figure 2M, and data not shown). Taken 256 

together, these observations show how TREBLE can be used to identify repeated, 257 

intuitive, and interpretable patterns of behavior over time. 258 

 The capacity of TREBLE to co-embed many trials or individuals in the same 259 

space facilitates direct measurements of trial-to-trial or individual-to-individual variation. 260 

For example, we found that each of the 14 flies moved in grossly similar ways, as 261 

indicated by the fact that 83% of the behavior space was explored by all individuals, 262 

while less than 1% of the behavior spaces was explored by only one individual (Figures 263 

S2H-I). At the same time, individual trajectories varied greatly in how often they 264 

traversed different parts of the space. To measure this, we computed a probability 265 

density map for each individual (Figures S2J), and identified small, specific regions of 266 

behavior space that had the greatest variance between individuals (Figure 2N; Figures 267 

S2H-I). Hierarchical clustering of 1-d vectorized versions of these (Methods) maps 268 

revealed a variety of behavioral profiles across individuals (Figure 2O). Thus, in this 269 
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case, behavior space was composed of movement types common to all individuals and 270 

could therefore act as template to compare the unique statistics of each.  271 

 272 

Detecting behavioral changes due to optogenetic manipulation 273 

 To test the ability of TREBLE to detect behavioral changes arising from an 274 

experimental manipulation, we analyzed locomotor behavior during optogenetic 275 

activation of gustatory sensory neurons expressing Gr5a, a sugar receptor (Haberkern 276 

et al. 2019) (Figure 3A; see Methods). To induce local search behavior, a 200 ms 277 

optogenetic stimulation was delivered every time a fly reached a pre-specified area and 278 

was repeated for every return visit. We processed nineteen optogenetic trials 279 

(1,110,025 windows) and co-embedded these windows with those from the control flies 280 

(described above) in the same behavior space. The movements contained within 281 

optogenetically stimulated trials overlapped extensively with those in control flies, with 282 

>97% of the space occupied by both datasets (Figures S2K-L). However, on average, 283 

the frequencies with which specific patterns emerged in the two datasets diverged 284 

dramatically (Figures 3B-C) and were unevenly distributed across behavior space (per 285 

bin Kruskal-Wallis test, see Methods; Figure 3D). These observations suggest that, 286 

while the structure of locomotion is conserved overall, these two groups display quite 287 

different temporal patterns of behavior. 288 

To further explore this difference, we leveraged the continuous, time-resolved 289 

nature of TREBLE to map the evolution of average responses to neuronal activation 290 

over time (Figure 3E). Compared to pre-stimulus epochs, overall behavioral responses 291 

displayed an initial period of slowing (spanning from 0 to 120ms after stimulus offset), 292 
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followed by increased turning (120ms to 280ms) (Figure 3E). These dynamics are 293 

consistent with known local search behaviors (Haberkern et al. 2019; Corfas et al. 294 

2019). Despite these population-level patterns, we noted a surprising amount of 295 

behavioral heterogeneity amongst optogenetically activated flies, such that the behavior 296 

of some optogenetically activated flies overlapped with that of controls (Figure 3F; 297 

Figures S2J-M). Thus, TREBLE can assess the effects of a behavioral perturbation to 298 

detect both population and individual level variation. 299 

 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 

Figure 3 Identifying behavioral perturbations via optogenetic manipulation 320 
(A) Example trajectory for a single optogenetic trial. The fly’s path through the virtual world is represented by the dark grey line. Red 321 
dots correspond to locations in which optogenetic stimulation was presented. (B) Average density map computed from the 14 free-322 
walking control flies (darker color corresponds to more time spent in a specific region). (C) Average density map computed from the 323 
19 optogenetically activated flies. (D) Bin-wise differences between control and optogenetically activated flies. Color corresponds to 324 
the significance (-log10 transformation of the p-value; Kruskal-Wallis test) of the differences in density between the two groups. 325 
Darker red corresponds to increasingly significant differences. (E) Time evolving responses to optogenetic stimulation in behavior 326 
space. Each space reflects a specific time window before (first space) and after stimulation (each subsequent space). Color 327 
corresponds to the average response to stimulation across all 19 flies (represented as normalized density; see methods). Windows 328 
span 1 second of time, beginning at the value represented above each space. (F) The behavioral relationships between all free-329 
walking control and optogenetically activated flies. The tree represents the results of hierarchical clustering on the density maps of 330 
each individual fly (as in Figure 2O). Each branch tip is associated with an individual fly, group is represented by color (Controls = 331 
purple; Optogenetic trials = dark green).  332 
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Identifying structure in more complex feature sets: Locomotion of Drosophila 333 

larvae 334 

 Thus far we have used to TREBLE to analyze behaviors as changes in centroid 335 

velocity components. However, pose estimation methods have made analyses of other 336 

behavioral features, such as posture or limb movement, increasingly common (Pereira 337 

et al. 2020; Mathis et al. 2020). As such, pose estimation methods typically represent 338 

behavior in multi-dimensional spaces that may or may not include explicit velocities. 339 

With this in mind, we next assessed the ability of the TREBLE framework to capture a 340 

high-dimensional combination of postural and velocity features describing larval 341 

Drosophila locomotion.  342 

Locomotion in Drosophila larvae is characterized by stereotyped changes in size 343 

and posture correlated with peristaltic movements and bending that produce forward 344 

and backward translation and turning (Clark et al. 2015). To capture this, we tracked 345 

Drosophila larvae via machine vision and at each time point calculated 11 complex 346 

postural and velocity features following established methods (Figure 4A; n = 72) (Risse 347 

et al. 2014, 2017). Given that certain of these features may be correlated, we performed 348 

principal component analysis and found that 8 components were sufficient to explain 349 

over 90% of the observed variance (Figure S3D). These 8 PCs were then used to run 350 

the iterative window procedure, resulting in an optimal window size of 800ms (Figures 351 

S3A-C). This produced a 2D behavior space that revealed a strongly oscillatory region 352 

(Figure 4B) with highly directional movement (Figure 4C). Analyzing the distribution of 353 

the input features revealed that this oscillator corresponded strongly with features of 354 

peristaltic locomotion (Figures 4D-G). Specifically, the oscillator appeared to switch 355 
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between a regime of lower velocity paired with an increase in the area of the animal’s 356 

shape (i.e. scrunching) and higher velocity with lower overall area (stretching) (Figures 357 

4D-G). When oscillating, these regimes produced an individual ‘run’ of crawling (Clark et 358 

al. 2018).  359 

 360 

The upper portion of the space, outside the oscillating domain, was split between 361 

a region of increased bending and another associated with pausing (Figure 4D). 362 

Comparing the distribution of features over time to movement in the TREBLE space 363 

highlighted the structured relationships between these features (Figure 4H). During 364 

crawling (denoted by ‘i’ in Figure 4H) velocity and area oscillate inversely. When a turn 365 

is initiated, the animal first pauses (ii), decreasing velocity and stabilizing area, and then 366 

begins bending with a corresponding shift in position in behavior space (iii). After the 367 

turn is complete, oscillatory crawling begins again (Figure 4H). Overall, oscillatory 368 

waves occur with a period of around 1 second (Figure S3E), matching previous 369 

observations of Drosophila larval crawling (Heckscher et al. 2012). TREBLE therefore 370 

captured the common structural and temporal elements of the Drosophila larval 371 

ethogram (Clark et al. 2016) within a single behavior space. 372 

 The recurrent properties of crawling mirror waves of motor neuron activity 373 

(Tastekin et al. 2018; Clark et al. 2018). We therefore wondered if using TREBLE to 374 

analyze the output of motor neurons might also yield a corresponding oscillator 375 

describing neural dynamics. We used calcium imaging data from fictively crawling 376 

larvae (Tastekin et al. 2018) to construct a ‘neural space’ from the activity of seven 377 

motor neuron classes (Figure 4I; Figures S3F-K).  378 

 379 
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Figure 4 Larval Drosophila crawling dynamics 380 
(A) Cartoon of larval Drosophila movement and accompanying features used for analysis. (B) Pathways through the larval 381 
locomotor behavior space (n = 72 larvae). (C) The mean vector field of larval locomotor space. Direction and size of arrow 382 
correspond to the mean movement through a given bin in space. Color denotes the angle of the arrow.  (D) Probability density 383 
function of larval locomotor space plotted as a heatmap. Behaviors annotated qualitatively. (E-G) The distribution of area (E), 384 
bending (F), and velocity (G) as a function of larval behavior space (z-scores). Blue corresponds to negative values, red represents 385 
positive values. (H) Example distribution of behavior space position (TREBLE coordinate; a.u.), area (z-score; yellow), velocity (z-386 
score; brown), and bending (z-score; read) over a ~10 second epoch of behavior. The approximate durations of behavioral states 387 
are annotated via grey shading and labeled above (i: crawl, ii: pause, iii: turn).  (I) Pathways through larval neural space (plotted 388 
here is an example distribution of a single trial; full space in Figure S3I).  (J) Larval neural space plotted as a mean vector field. (K) 389 
Example of oscillating position in neural space over a 160 second period of time.  (L) Probability density functions of motor neuron 390 
activity across behavior space. The plots proceed from posterior (leftmost) to anterior (rightmost) as denoted by the cartoon larvae 391 
plotted below (with approximate location of motor neuron segment colored). 392 
 393 

As with the behavior space, we found that motor neuron activity yielded an oscillator 394 

(Figure 4I) with directional (Figure 4J) and stereotyped movement (Figure 4K). Bouts of 395 

crawling are associated with waves of neural activity, originating in posterior neurons 396 

and propagating in the anterior direction (Tastekin et al. 2018; Clark et al. 2018). 397 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2020.09.30.321406doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Plotting the peak activity of each motor neuron type in the neural space recapitulated 398 

this observation (Figure 4L). Peak activity of the posterior neurons occurred in the lower 399 

left-hand portion of the space, followed by spatially sequential peaks of the more 400 

anterior motor neurons (Figure 4L) moving in the same direction described the mean 401 

vector field of the space (Figure 4J). These observations reveal that both the behavioral 402 

output and neural dynamics underlying Drosophila larval locomotion can be captured in 403 

a common oscillatory framework. In addition, these analyses show that TREBLE can 404 

applied to find structure in higher-dimensional neural and behavior data. 405 

 406 

Identifying structure in more complex feature sets: Mouse pose dynamics 407 

 We next sought to generalize TREBLE to a much more complex form of 408 

behavioral data, mouse movements in three dimensions (from Markowitz et al. 2018). 409 

To do so, we analyzed mouse behavior measured with 3D imaging via the MoSeq 410 

pipeline (Wiltschko et al. 2015; Markowitz et al. 2018). In this pipeline, freely moving 411 

mice were imaged in an arena using three orthogonal cameras at 30Hz (Wiltschko et al. 412 

2015; Markowitz et al. 2018). These video streams were then processed to produce 17 413 

behavioral features (Figure 5A) representing mouse movement in three dimensions 414 

(Wiltschko et al. 2015; Markowitz et al. 2018) which we then used as input to the 415 

iterative window size procedure. A window size of 130ms was chosen (Figure S4A-C), 416 

yielding a behavior space that organized aspects of posture and movement into a 417 

recognizable, and recurrent, structure (Figures 5B-J). Analyzing the distribution of input 418 

features in behavior space (Figures 5E-J) allowed us to identify portions of the space 419 

related to characteristic behaviors such as walking, scrunching, rearing, and pausing 420 
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(Figures 5C-D). These designations were corroborated by calculating the average 3D 421 

pose of animals as a function of position in behavior space (Figure S4D). These 422 

observations indicate that TREBLE can be used to identify structure in high-dimensional 423 

pose estimation datasets. 424 

 In addition to measurements of 3D movement, the MoSeq pipeline also identifies 425 

how discrete elements of mouse behavior - behavioral ‘syllables’ – are sequenced over 426 

time (Wiltschko et al. 2015; Markowitz et al. 2018). What is the relationship between the 427 

continuous representation of 3D behavior provided by TREBLE and the discrete output 428 

of the MoSeq pipeline (Markowitz et al. 2018)? Annotating the TREBLE behavior space 429 

with the individual syllables identified by MoSeq revealed that the distributions of 430 

individual syllables appeared highly compact (Figure 5K; Figure S4E). Syllables 431 

produced by MoSeq corresponded to distinct and identifiable behavioral states identified 432 

by TREBLE, such as walking (Figure 5K; yellow and blue syllables; first row, fourth and 433 

fifth columns) and scrunching (Figure 5K; purple syllable; second row, third column). 434 

Furthermore, these distributions were non-random. By comparing the mean nearest 435 

neighbor distance for each syllable to a shuffled distribution, we found that the mean 436 

distance between points was significantly lower than expected by chance (p < 0.0001; 437 

permutation test) for all syllables (see Methods). Therefore, TREBLE and MoSeq 438 

capture complementary aspects of behavior - both discrete and continuous – albeit 439 

using very broadly different statistical frameworks.  440 

 441 

 442 

 443 

 444 
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 474 

Figure 5 Analyzing 3D pose dynamics in mice 475 
(A) Cartoon of mouse 3D movement and accompanying features used for analysis. (B) Pathways through mouse 3D pose space (n 476 
= 8 mice). (C) The mean vector field of mouse 3D pose space. Direction and size of arrow correspond to the mean movement 477 
through a given bin in space. Color denotes the angle of the arrow. (D) Probability density function of mouse 3D pose space plotted 478 
as a heatmap. Behaviors annotated qualitatively. (E-J) The distribution of height (E), length (F), width (G), 2D velocity (H), postural 479 
PC1 (I), and postural PC2 (J) as a function of larval behavior space. (E-H) Color ranges from grey (minimum value) to red 480 
(maximum). (I-J) Blue corresponds to negative values, red represents positive values. (K) The distributions of the 24 most common 481 
behavioral syllables (as identified by MoSeq) in behavior space. A probability density function across behavior space was computed 482 
for each syllable and then plotted in color on top of the full behavior space (in grey; see Methods). (L) The distribution of mean 483 
nearest-neighbors distance between points in behavior space for all syllables (n = 43). Purple denotes the observed values. Orange 484 
corresponds to the mean and distribution (lines; lower (25th percentile) and upper (75th percentile) hinges of a boxplot) of shuffled 485 
data (10,000 permutations). (M) Visualization of the variables used to construct the regularized generalized linear model. Features 486 
are represented by example time series (left) and were compared to movement through behavior space (right). (N) Barplot of 487 
coefficient weights from the final model, sorted by weight and colored to match the example time series in (M). (O) Comparison of 488 
the actual position in behavior space (grey) to the prediction from the final GLM (red) for an example ~3 second time period. (P) 489 
Smoothed scatterplot comparing observed and predicted behavior space positions for the full dataset. Darker blue denotes greater 490 
density of points. Dashed red line corresponds to the fit of a regression between observed and predicted values. 491 
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Finally, we wondered whether TREBLE was truly capturing the majority of 492 

behavioral variation present in this complex dataset. To address this, we created a 493 

regularized generalized linear model (GLM) comparing the relationship of the input 494 

features to the position in TREBLE behavior space over time (Figure 5M; see Methods). 495 

We found that the GLM captured over 90% of the variance in the data, and pose 496 

features such as length and width, and related postural principal components, 497 

contributed strongly to the model (Figures 5N-P). Position in the TREBLE space could 498 

be predicted with a substantial degree of accuracy from the feature set (Figures 5O-P), 499 

predictability that was consistent across individual trials (Figure S4F). We therefore 500 

conclude that TREBLE is able to explain a substantial portion of behavioral variation 501 

even in complex feature sets and can robustly represent the 3D dynamics of animal 502 

movement in a low-dimensional, continuous framework. 503 

 504 

Using TREBLE to characterize neural encoding of behavior 505 

A common, and often difficult, goal in neuroscience is to relate neural activity to 506 

behavior. We therefore used TREBLE to identify behavioral coding in 794 medial 507 

entorhinal cortical (MEC) neurons recorded during the foraging trials presented above 508 

(n = 14 mice, 327 trials) (Hardcastle et al. 2017) (Figure 6A). The MEC is hypothesized 509 

to support navigation and contains a population of functionally defined neurons that 510 

encode a variety of behavioral variables such as an animal’s position in external space 511 

(e.g. grid and border cells), head direction, and running speed (Kropff et al. 2015; 512 

Sargolini et al. 2006; Solstad et al. 2008; Hafting et al. 2005).  513 
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We extracted time-varying velocity measures from positional data of individual 514 

mice as they foraged for randomly scattered food rewards in a 1m by 1m box (Figure 515 

6A). We then collected windows from these data using the iterative selection procedure 516 

to choose a window size of 400ms (Figure S5A-F). As we previously observed with the 517 

correlated random walk and Drosophila spaces, the resulting behavior space ordered 518 

points by velocity features (Figures S5G-L) and connected them with continuous and 519 

directionally recurrent pathways (Figures 6B-D). Moreover, distinct behavioral bouts – 520 

such as running, turning, and stopping – could be easily decoded from the space and 521 

mapped back onto real XY coordinates (Figure 6E).  522 

We related MEC neuron activity to movement in the behavior space defined by 523 

TREBLE. To do so, we first created a 2-dimensional behavioral tuning curve for each 524 

neuron. Each cell’s average activity was mapped as a function of the animal’s position 525 

in behavior space, revealing a wide variety of patterns (Figure S5M). Correlation 526 

coefficients were then calculated by comparing each neuron’s activity with a 1-527 

dimensional representation of behavior space position (64 x 64 grid: Methods). Strongly 528 

positive or negative correlations thus reflect that a given’s neuron activity is increased in 529 

different portions of behavior space (Figure 6F-H), of which a number were identified. 530 

Consistent with the MEC’s role in navigation, permutation tests revealed that these 531 

correlations were overwhelmingly non-random, with only 63 of the 794 MEC neurons 532 

displaying non-significant relationships with locomotor behavior after multiple test 533 

correction (Figure 6I). Furthermore, clustering neural activity patterns across behavior 534 

space revealed multiple distinct types of relationships between MEC neurons and 535 

locomotor behavior (Figure 6J; Figure S5M). Most neurons were active in relatively 536 
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small and specific regions of behavior space, suggesting that they encode information 537 

relevant to particular locomotor movements (Figure S5M). Other neurons displayed 538 

distributed activity across behavior space, consistent with less selective coding of 539 

locomotor information (Figure S5M). Thus, these various patterns can be considered 2-540 

d tuning curves, representing the relationship between neural activity and behavior for 541 

each neuron.   542 

To what extent do these patterns reflect previously described representations of 543 

navigational coding in the MEC? To address this, we intersected TREBLE correlations 544 

with other commonly calculated MEC coding variables (speed, head direction, spatial 545 

stability, border proximity; see Methods). Unsurprisingly, we found that behavior space 546 

correlated with speed coding (Figure 6K) compared to the other measures (Figures 6L-547 

N). However, a more precise measure of coding capacity requires a comparison 548 

between the amount of information jointly shared between position in behavior space, 549 

speed score, and neural activity. To do this, we computed the mutual information (MI) 550 

between TREBLE position and neural activity for each neuron and then related these 551 

measures to the commonly calculated MEC coding variable (Figures 6O-R). Higher MI 552 

values here indicate that spatial coordinates in behavior space contain more information 553 

about a given neuron’s activity, reflecting stronger behavioral coding. Strikingly, MI was 554 

uncorrelated with speed score (Figure 6O), indicating that encoding of locomotor 555 

behavior was not solely related to variation in speed. This raised the possibility that 556 

these neurons may encode information about other locomotor variables including longer 557 

timescale and more complex maneuvers.  558 
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Figure 6 Mapping mouse navigational coding 592 
(A) Example trajectory for of a foraging mouse with paired spike recordings via an implanted electrode (drawn). (B) Mouse 593 
locomotor behavior space, each point corresponds to a temporal window. (C) Pathways through mouse locomotor behavior space, 594 
produced by connecting temporally adjacent windows with partially transparent lines. (D) Mouse locomotor behavior space 595 
represented as a vector field. Arrow direction and magnitude correspond to the angle and mean direction taken after visiting each 596 
bin. Arrows are colored by the degree of the direction vector (corresponding to circle in upper left-hand corner). (E) Example 597 
behavior bouts decoded from behavior space. Pathways through behavior space are plotted on the left. Bout starts are indicated by 598 
the open circle, ends by the closed circle. Positions in real XY space are plotted on the right. (F) Example 2-d tuning curve of a 599 
neuron that is negatively correlated with behavior space (activity measured as spikes/second; labeled with a green dot for reference 600 
in later figures). Colors range from blue to red, corresponding to minimum activity (blue) to maximum activity (red). Pearson 601 
correlation (r) is denoted above the plot. (G) Example 2-d tuning curve of a neuron that is positively correlated with behavior space 602 
(activity measured as spikes/second; labeled with a purple dot for reference in later figures). Colors range from blue to red, 603 
corresponding to minimum activity (blue) to maximum activity (red). Pearson correlation (r) is denoted above the plot. (H) 604 
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Distribution of correlation coefficients between neural activity and behavior space position for all MEC neurons (activity measured as 605 
spikes/second). (I) Distribution of p-values (Bonferroni corrected) resulting from permutation tests (10,000 shuffles) of the 606 
correlations plotted in (h). The red dotted line indicates p = 0.05. (J) Clustered 2-d tuning curves for all neurons. The heatmap 607 
corresponds to a linearized version of the 2-d tuning curve, colored by average activity as a function of position in behavior space. 608 
(K) Scatterplot of the relationship between the correlation coefficient of the relationship between behavior space and neural activity 609 
(y-axis) and speed score (x-axis). Pearson correlation (r) is denoted above the plot. (L) Scatterplot of the relationship between the 610 
correlation coefficient and spatial stability. (M) Scatterplot of the relationship between the correlation coefficient and head direction 611 
(HD) mean vector length. (N) Scatterplot of the relationship between the correlation coefficient and border score. (O) Scatterplot of 612 
the relationship between the mutual information (MI) of behavior space and neural activity (y-axis) and speed score (x-axis). (P) 613 
Scatterplot of the relationship between MI and spatial stability. (Q) Scatterplot of the relationship between MI and head direction 614 
(HD) mean vector length. (R) Scatterplot of the relationship between MI and border score. 615 
 616 

Using TREBLE to identify temporal variation in the neural coding of behavior 617 

  Neural activity can relate to continuous behaviors on a variety of timescales, the 618 

discovery of which is an area of active interest (Datta et al. 2019; Krakauer et al. 2017; 619 

Glaser & Kording 2016). We therefore wanted to test the ability of TREBLE to provide a 620 

path for relating neural activity with behavior and took advantage of the apparent rich 621 

capacity of MEC neurons to encode locomotor behavior over a variety of timescales.  622 

To do this, we first computed the cross-correlation of TREBLE position and 623 

activity for each neuron (Figures 7A-C). This analysis identifies when a neuron’s activity 624 

correlates with position in behavior space by calculating correlations between the two 625 

variables using a sliding window centered around a temporal offset of zero (i.e. 626 

simultaneity). We found a variety of temporal offsets in the cross-correlation 627 

distributions for each neuron. Peak correlations could both precede (Figure 7A) and 628 

follow (Figure 7B) changes in behavior. Clustering the distribution of these cross-629 

correlation coefficients revealed a variety of neural classes, including negative, positive, 630 

and even mixed negative and positive cross-correlation profiles (Figure 7C; Figure 631 

S6A). Notably, cross-correlation peaks could be of varying widths; some were tightly 632 

centered (e.g. Figures 7A-B) while others displayed correlations lasting seconds (Figure 633 
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S6A). Therefore, in addition to their instantaneous relationships, the activity of MEC 634 

neurons can covary with behavior over a range of temporal scales and offsets. 635 

Figure 7 Temporal variation in mouse navigational coding 636 
(A) Cross-correlation distribution of a neuron that is negatively correlated with behavior space (same as in 6F). (B) Cross-correlation 637 
distribution of a neuron that is positively correlated with behavior space (same as in 6G). (C) Hierarchical clustering of cross-638 
correlation distributions across all neurons. Color corresponds to the correlation coefficient, blue indicating negative and red 639 
indicating positive correlations. The y-axis represents time before and after instantaneity, ranging from 8 seconds before to 8 640 
seconds after. The x-axis corresponds to the relationships of all MEC cells based on their cross-correlations with behavior (which 641 
are shown via the colored heatmap). In essence, each column contains the same information as 7A-B but here represents the 642 
distributions using variation in color over time, rather than a 1-d tuning curve. (D) Correlation coefficient distribution as a function of 643 
varied window sizes for the neuron plotted in 6G and 7B. (E-F) same as (D) but for entropy (E) and mutual information (MI). (G) 644 
Distribution of MI for all neurons, comparing the maximally informative window size (in gold) and that measured from spikes (grey). 645 
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(H) Barplot of the distribution of MI maximized window sizes for all neurons. (I) Example neural activity trace (using MI maximized 646 
window size) and corresponding percentile cutoffs (at 75%, 80%, 90%, 95%, and 99%). (J) Temporal distributions in behavior space 647 
(1 second windows) surrounding peaks in activity (75%, 90%, and 99% cutoffs). (K) Entropy distributions of surrounding activity 648 
bouts corresponding to each percentile (labeled and colored on plot). Normalized entropy measures are shown to be able to 649 
compare across percentiles with different sample sizes. (L) Hierarchical clustering of entropy distributions across all neurons. 650 
Colored bars indicate clusters as measured using dynamic tree trimming (see Methods). (M) Example mean entropy distributions for 651 
four clusters identified using dynamic tree trimming. Plotted are the distributions for the 75% (top) and 99% (bottom) cutoffs. Mean 652 
and standard error are plotted as well as sample sizes (above). 653 
 654 

Given this observation we hypothesized that individual MEC neurons may most 655 

reliably encode behavior over specific timescales. To test this, we calculated each 656 

neuron’s activity over a range of temporal windows and measured their associations 657 

with behavior space via correlation, mutual information (MI), and entropy (i.e. how 658 

narrowly neural activity was distributed across behavior space) (Figures 7D-F). For 659 

most neurons, the strength of the correlation between activity and behavior as well as 660 

entropy plateaued (Figures 7D, 7F) while MI displayed a clear, and at times very 661 

specific, maximum value as a function of temporal window size (Figure 7F; Figure S6B). 662 

This pattern suggested that, given temporal binning that maximized MI, neural activity 663 

could be more specifically associated with distinct regions in behavior space. This was a 664 

general pattern: across all neurons the MI maximized window size encoded more 665 

information than instantaneous spikes (Figure 7F). The distribution of these MI 666 

maximized window sizes varied broadly, ranging from instantaneous spiking to window 667 

sizes up to 2 seconds, reflecting the diversity of patterns observed in the cross-668 

correlation analyses (Figure 7G; Figure 7C). MEC neurons thus possess specific and, in 669 

some cases, finely tuned temporal scales over which their activity most informatively 670 

encodes movement.  671 
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Finally, we asked whether these temporal relationships might be further refined 672 

by considering how the magnitude of each neuron’s activity constrains its behavioral 673 

coding. Do extrema in neuronal firing rates reflect specific behaviors? To answer this 674 

question, we calculated percentile cutoffs for each neuron’s activity across the trial 675 

using the MI maximized window sizes (Figure 7I). We then examined whether 676 

increasing activity rates were associated with consistent changes in movement through 677 

behavior space, indicating increasing behavioral specificity. To do so, we analyzed the 678 

distribution of movements within behavior space by computing the entropy of the 679 

distribution associated with neural activity bouts above each cutoff (Figures 7J-K). In 680 

this metric, lower entropy values correspond to increased stereotypy in behavior space. 681 

For many neurons, as activity increased the corresponding behavior space entropy 682 

decreased, meaning that high levels of neuronal activity tended to be associated with 683 

specific behavioral patterns (Figure 7K; Figure S6C). Hierarchical clustering of these 684 

entropy distributions separated neurons into coherent groups with temporally similar 685 

profiles (Figures 7L-M). Notably, a number of clusters displayed entropy minima that 686 

were significantly offset from zero, meaning that peaks in neural activity could either 687 

precede or follow changes in behavior (Figure 7M; Figure S6C). Taken together, these 688 

results demonstrate that MEC neurons can encode locomotor information on temporally 689 

varying scales, both before and after changes in behaviors occur. Moreover, these 690 

analyses demonstrate how TREBLE can be used to uncover the relationship between 691 

neuron activity and continuous behavior across a rich neural dataset from freely moving 692 

animals.   693 

 694 
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Discussion 695 

Technological developments have led to substantial shifts in how researchers are 696 

attempting to unlock the development, expression, and evolution of animal behavior. 697 

Facilitated by high throughput data analysis, a number of ambitious conceptual projects 698 

have recently been proposed. These include considering behavior as a natural 699 

extension of physics (Brown & de Bivort 2018), attempting to capture many species’ 700 

complete behavioral repertoires (Anderson & Perona 2014), or even reconciling the two 701 

dominant lineages of behavioral research, comparative psychology and ethology (Datta 702 

et al. 2019). Achieving these goals requires the study of individuals across a diversity of 703 

animal species, in both controlled and naturalistic contexts, and in conjunction with 704 

other data streams, critically including neural activity. Given this, behavioral analytical 705 

methods that are statistically robust, broadly applicable, and easily linked to the function 706 

of nervous systems are of general interest. Here we show how TREBLE can produce 707 

low-dimensional representations of behavior that capture key features of the temporal 708 

structure of animal movements and poses, allow one to visualize the phenotypic 709 

consequences of perturbations, and reveal relationships to neural activity.  By analogy 710 

with genomics, these “heatmaps” can constitute analytical endpoints, but can also guide 711 

the subsequent development of more targeted hypotheses.    712 

 All analytical methods for parsing behavior inherently make tradeoffs between 713 

computational ease, temporal resolution, and generalizability. TREBLE does not require 714 

extensive model fitting, is agnostic to feature type, and can accommodate many millions 715 

of data points. Moreover, we describe how the key parameters needed, such as window 716 

size, can be systematically explored and rationally chosen to capture behavioral 717 
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structure of interest. By cutting behavior into defined temporal windows that are 718 

extremely densely sampled, TREBLE simultaneously captures both long and short 719 

temporal structures in behavior. Furthermore, representation of these can be handled 720 

flexibly. For example, here we represent temporal structure in two ways: 1) as 721 

continuously varying time series and 2) as information theoretic summary measures of 722 

entire distributions over time (using entropy and mutual information). It is also possible 723 

for users to discretize TREBLE’s output simply by segmenting movement through 724 

behavior space into sub regions. Finally, TREBLE is generalizable in three different 725 

ways. First, as we demonstrate, the framework can be applied to a variety of movement 726 

sources, including synthetic trajectories and multiple animal species. Second, the 727 

position of TREBLE in analysis pipelines is adjustable. While TREBLE can be 728 

implemented as a standalone method for behavioral analysis from beginning to end, it 729 

can also be used as a screening tool for identifying statistically significant behavioral 730 

variation to be followed by other approaches specifically tailored to the question of 731 

interest. Finally, as we show using optogenetic activation in flies and neural recordings 732 

in mouse MEC, TREBLE can be used to find meaningful links between nervous 733 

systems and behavior in a variety of contexts. This versatile nature of the TREBLE 734 

framework therefore opens up the possibility for customizable high-throughput 735 

behavioral analyses. 736 

 TREBLE can uncover otherwise opaque behavioral variation by directly 737 

comparing behavioral data across many individuals and conditions. Here, we show that 738 

free walking fruit flies possess substantial variation in locomotor dynamics and that this 739 

variation is associated with specific regions of behavior space. Surprisingly, we find that 740 
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this variation in free walking behavior overlaps with the diversity of responses observed 741 

after an optogenetic perturbation. A limited set of pre-determined behavioral 742 

measurements, as would have been used typically, may have missed this variation. 743 

Similarly, even unbiased statistical methods, without clear grounds for comparison 744 

across animals or experimental conditions, would have been unlikely to have detected 745 

these patterns. This highlights the benefit of using unsupervised statistical descriptions 746 

such as TREBLE for assessing the structure of behavior across diverse individuals. 747 

Furthermore, we envision that TREBLE might be employed on control data sets to 748 

measure variability across baseline individuals in order to facilitate statistical power 749 

calculations across the full range of behavioral dynamics that might be present. Such 750 

catalogs of variability could be thus be developed across species’ wildtype behavioral 751 

repertoires, allowing researchers to better account for inborn variance or threshold 752 

effects in applications such as genetic mapping, behavioral manipulations, and neural 753 

perturbations (Lopez-Alonso et al. 2015; Ayroles et al. 2015; Buchanan et al. 2015).  754 

 Associating neural activity with continuous behavior presents two key challenges. 755 

First, identifying the specific aspects of behavior that activity corresponds to is difficult to 756 

determine in the context of a large behavior repertoire. Second, the temporal scales 757 

over which this relationship occurs can be hard to know a priori. Here, we show how 758 

TREBLE can be used to address these issues by characterizing the oscillatory patterns 759 

of motor neuron activity during larval Drosophila crawling and the coding of locomotor 760 

behavior in mouse medial entorhinal cortex (MEC) neurons as proofs of concept.  761 

In the latter case, we find that TREBLE captures known components of speed 762 

coding in MEC neurons while also uncovering extensive variation in temporal and rate-763 
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based coding. Previous work has found that MEC neurons prospectively code for 764 

changes in an animal’s speed and position ~50-80ms in the future (Kropff et al. 2015). 765 

Our analyses add to these findings, suggesting that MEC neurons can encode changes 766 

both before and after behavioral events, doing so across a variety of timescales. These 767 

patterns may reflect the presence a multitude of temporal encoding strategies for 768 

behavior in the MEC, similar to what has been seen in basal ganglia movement 769 

selection (Markowitz et al. 2018; Jin & Costa 2015), orofacial rhythms (Moore et al. 770 

2013), and whole-brain activity during C. elegans locomotion (Kaplan et al. 2020). We 771 

speculate that this may arise from some MEC neurons encoding short time-scale 772 

behavioral events (e.g. turning left or right) while others update based on longer-term 773 

navigational behaviors such as goal-oriented searching or foraging. These results 774 

demonstrate how TREBLE can be leveraged to identify specific aspects of behavior that 775 

are associated with the activity of individual neurons and to uncover the temporal 776 

structure of such relationships. More broadly, we anticipate that TREBLE may be useful 777 

in uncovering the statistical structure of behaviorally relevant activity across many 778 

diverse populations of neurons.  779 

 There are a number of areas in which TREBLE may be further developed and 780 

employed. First, movement through behavior space may be classified on timescale that 781 

are longer than those presented here, affording descriptions of behavioral state over 782 

time or the emergence of behavior in development. Second, the ability of TREBLE to 783 

co-embed multiple individuals with temporal resolution may make it particularly 784 

amenable to studying social and collective behavioral dynamics. Third, by readily 785 

capturing variability in behavior, TREBLE may be amenable to exploring differences 786 
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across individuals arising from factors imbuing variance such as reaction norms, 787 

behavioral syndromes, and environmental or genetic variation. Finally, it is especially 788 

intriguing to consider how TREBLE may be further leveraged to jointly infer neural 789 

coding principles by applying the framework to the structure of behavioral and neural 790 

dynamics in parallel.  791 
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Methods 833 

Datasets 834 

Correlated random walks were produced using the TrajGenerate function in 835 

the trajr R package (McLean 2018). Ten replicate walks were produced per 836 

parameter tested (e.g. window size), sampled at a rate of 100 frames per second and 837 

consisting of 10,000 frames. All walks were generated using the same underlying 838 

angular and linear error distributions (Normal distribution; Mean = trajectory length; 839 

Standard deviation = 0.5 (angular)/0.2 (linear)). 840 

Details of the Drosophila walking dataset can be found in Haberkern et al. 2019. 841 

Briefly, animals in the free-walking dataset (‘WTB hybrid’ genotype) were allowed to 842 

explore a circular matt acrylic platform (radius 11.4 cm) surrounded by a siliconized 843 

acrylic cylinder to prevent climbing. Videos were recorded from 120 cm above the 844 

platform using a Flea3 camera at 12.3 Hz with a spatial resolution ~40 pixel/cm. Trials 845 

lasted 10 minutes after a 1-2 minute acclimation period. 846 

The local search data were produced from female flies possessing 847 

optogenetically-accessible sugar receptor neurons (Gr64f-Gal4 > ChrimsonR). Animals 848 

were allowed to explore a virtual landscape consisting of distributed ‘cone forest’ while 849 

walking on a circular treadmill. Treadmill movement data (fly’s position and velocity) 850 

were collected at 360 Hz. Optogenetic stimulation was triggered whenever a fly crossed 851 

within a 10mm radius of a given cone and persisted for 200ms.  852 

 For the Drosophila larvae analyses, embryos were collected for 1 h on 853 

standard 3.0% agar molasses collection caps covered with a thin layer of wet yeast. 854 

Twenty-four hours later, hatched embryos were transferred to standard cornmeal fly 855 
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food. After forty-eight hours (L2 larval stage), animals were collected and transferred to 856 

a Petri dish with1.2% agar and relocated to a behavioral room kept at 23°C and 60% 857 

humidity. Ten to fifteen minutes after acclimation to the room, groups of 5 to 10 larvae 858 

were transferred to a 30 x 30 cm 1.2% agar arena. After 15 to 30 seconds, locomotion 859 

was recorded using a FIM imaging system (Risse et al 2013, https://www.uni 860 

muenster.de) at 10 fps for 5 minutes. The FIM system was equipped with an azA2040-861 

25gm (Basler) camera and a LM16HC-SW (Kowa) lens. Individual larvae were then 862 

tracked using FIMtrack software (Risse et al 2013). 863 

Details of the mouse 3D pose dataset can be found in Marowitz et al. 2018 and 864 

Wiltschko et al. 2015. Depth and position were collected using a Microsoft Kinect V2 865 

while individual mice explored a circular arena (collected at 30Hz; 512x424 pixels frame 866 

size). The mouse’s center and orientation were estimated using an ellipse fit. An 80 x 80 867 

pixel box was then drawn around the mouse and used to rotate the frame so that the 868 

mouse was always facing the righthand side. These cropped and adjusted frames were 869 

then used as input for principal component analysis from which the top 10 of these 870 

postural PCs were used for downstream analyses. 871 

Details of the mouse behavior and MEC dataset can be found in Hardcastle et al. 872 

2017. Behavior and neural recordings were collected from two cohorts of adult wildtype 873 

mice: 5 male and 2 female C57BL/6 mice (405 MEC cells recorded) and 7 male 874 

C57BL/6J:129SVEV mice (389 MEC cells). Two polymide-coated platinum iridium 90%-875 

10% tetrodes were implanted in each mouse prior to the experimental period. 876 

Behavioral data were collected approximately one week after surgery in large open 877 

environments with black walls containing chocolate flavored cereal to induce foraging 878 
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(sizes varying; see Hardcastle et al. 2017 for details). The majority of recording 879 

sessions lasted between 30-35 minutes with a small number ranging in time between 12 880 

and 122 minutes. During each session, position, head direction, and running speed 881 

were recorded every 20ms and single unite spikes were recorded at a 10kHz sampling 882 

rate. 883 

 884 

Generation of correlated random walk behavior spaces 885 

The trajectories and velocity distributions of replicate correlated random walks 886 

were extracted using the custom function iterative_umap. First, a novel walk 887 

trajectory was generated using TrajGenerate (as described above). Instantaneous 888 

velocity components were then calculated (translation, angular velocity, sideways 889 

velocity) and sampled using windows of a specified width (denoted here as w) and step 890 

size (denoted here as s). The sampling procedure was as follows.  891 

First, given frame i, the velocity components were extracted for frames i:i+w. 892 

Angular and sideways velocity values were normalized to the first frame in the window 893 

so that each velocity vector to originate from zero. Since we weren’t concerned with 894 

information pertaining to turn direction (i.e. left vs. right) the proceeding velocity values 895 

were then adjusted so that the second frame was always positive. The resulting velocity 896 

vectors were linearized and concatenated, resulting in a single vector of length 3w. This 897 

procedure was then repeated iteratively every s frames for the length of the trial (t). 898 

After each iteration the concatenated vectors were appended to a matrix with 3w rows 899 

to ultimately create t/s columns.  900 
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This procedure yielded a library of densely sampled velocity fragments 901 

corresponding to behavioral dynamics for each moment in the trial.  The R 902 

implementation of the UMAP algorithm (McInnes et al. 2018) was then used to embed 903 

these fragments into a low-dimensional behavior space (each point in space 904 

corresponding to a window). The resulting space thus provided a 2-dimensional xy 905 

position for each point/window in the trajectory. For downstream analyses we computed 906 

simplified positional information for each space using the bin_space function. This 907 

function decomposes behavior space into a grid of desired size (n bins x n bins). For 908 

example, for a desired grid of 16 bins x 16 bins, a new set of xy coordinates will be 909 

calculated corresponding to 16 intervals spanning the minimum/maximum xy 910 

coordinates in the original space. The position of each point in the space will then be 911 

compared to the new coordinates and associated with the closest bin, in this example 912 

case generating a reduced set of 16x16, or 256, unique bins.  913 

 914 

Analyzing correlated random walk parameter space 915 

We assessed the relationship of parameter choice and behavior space structure 916 

by sweeping the two main window sampling parameters: window width and step size. 917 

We examined 24 different window widths, ranging from 10ms to 2 seconds (10-40ms 918 

sampled at 10ms steps; 50ms-2 seconds sampled at 100ms steps). Ten correlated 919 

random walk replicates were generated for each window size and then processed and 920 

embedded into behavior space using the iterative_umap function. We also 921 

explored the effect of step size by producing replicate behavior spaces from trajectories 922 

sampled at step sizes varying from 10 ms (i.e. 1 frame) to 1 second, separated by 100 923 
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millisecond intervals. Again, for each step size 10 correlated random walk replicates 924 

were generated, processed, and embedded into behavior space using the 925 

iterative_umap function. 926 

Intra-point Euclidean distance was calculated for each space by comparing the 927 

spatial position of temporally adjacent points.  Specifically, the position of a given point 928 

(corresponding to a unique temporal window) in behavior space (xt, yt) was compared 929 

to the position of the next point/window in time (xt+1, yt+1). The Euclidean distance 930 

between these points was then calculated and stored into a vector, allowing for the 931 

distribution of distances to be compared across replicates and parameter conditions. 932 

The coefficient of variation was also calculated for these measures to control for 933 

substantial variation in the magnitude of effect; this was done by dividing the 934 

distribution’s standard deviation by its mean. 935 

Procrustes distance was used to measure the similarity between replicate 936 

behavior spaces of a certain parameter combination (Dryden & Mardia 1998). Briefly, 937 

this method treats spaces and their component points as a set of landmarks for pairwise 938 

comparison. To do so, pairs of behavior spaces are scaled to be similar sizes then 939 

shifted and rotated to possess the same position and orientation in space (Dryden & 940 

Mardia 1998). The distance between corresponding points in the two adjusted landmark 941 

sets is then calculated using Procrustes distance (reported here as Root Mean Square 942 

Error; RMSE). We performed this procedure and calculated Procrustes distance for all 943 

pairwise combinations of the 10 replicate behavior spaces within a given parameter set. 944 

Coefficient of variation for this measure was also calculated as above. 945 
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To assess recurrence, we measured the average return time for all points in each 946 

space. We first used the binning procedure outlined above to create a 32x32 grid so 947 

that the resulting space was composed of 1024 unique bins. We then computed a 948 

distance threshold to delineate a “neighborhood” around each bin (5% smallest intra-bin 949 

distance). For a given bin, each time the trajectory passed through its threshold the 950 

event was recorded and its duration stored. This distribution of return delays was 951 

analyzed by computing the proportion of points that displayed a return for a given time 952 

delay. For example, given a delay of 150ms, all bins would be scanned and the 953 

proportion possessing returns that occurred took between 150 and 160ms would be 954 

calculated. We calculated proportions in this manner for delays between 0ms and 2 955 

seconds at 10ms intervals (as plotted in Figure 1I). Mean recurrence time was 956 

measured by collecting all observed return times for each replicate and calculating the 957 

mean. 958 

 959 

Generation of free-walking fruit fly behavior spaces 960 

The movement trajectories of 20 female WTB flies walking in a circular area were 961 

collected from Haberkern et al. 2019. For each fly we computed velocity components as 962 

above and interpolated the resulting vectors from 12.3 Hz to 50 Hz to increase 963 

smoothness in the downstream behavior space. Initial analyses suggested the removal 964 

of 6 trials due to missing data or lack of substantial movement, resulting in a final 965 

dataset of 14 flies.  966 

As above, we performed an empirical test to decide on the optimal window size 967 

for behavior space creation. To do so, we sampled the first 2000 frames from each trial 968 
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(to increase computational efficiency) and swept through window sizes ranging from 969 

20ms to 1 second (70 ms step size), creating a single behavior space for each of the 14 970 

flies per window size. The resulting spaces were then directly compared using the 971 

Euclidean distance, Procrustes distance, and recurrence metrics previously described 972 

(Figure S2). 973 

 974 

Analyzing free-walking fruit fly behavior spaces 975 

After sweeping window parameters, we generated a behavior space composed 976 

of all 14 free-walking trials using a window size of 160ms (399,869 windows). We then 977 

used bin_space to calculate point coordinates in a 64x64 grid. Stereotypy in 978 

movement through the space was visualized using a vector field transformation (Figure 979 

2D). All instances in which trajectories through the space passed into a given bin were 980 

collected and then used to calculate the mean x and y vectors of the trajectory leaving 981 

the bin. These mean values were then represented visually using arrows that originated 982 

out of the corresponding bin, the direction and magnitude of which were dictated by the 983 

mean x and y vectors. Velocity distributions across the space (Figures. 2F-H) were 984 

visualized by calculating the mean value for each velocity component per window. 985 

These values were then used as input to the color function determining the hue of each 986 

point in the space.  987 

Intra-fly variation in behavior space was assessed using the reduced 64x64 grid. 988 

For each fly we calculated the number of times its trajectory passed through a given bin, 989 

in addition to a binary measure of whether that bin was visited at all (‘0’ if not; ‘1’ if 990 

visited at least once). The continuous counts of bin visits were then used to calculate 991 
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bin-wise mean and variance across all flies, the latter of which is visualized in Figure 3F. 992 

The binary measure was used to assess variation in overall space occupancy across 993 

flies (Figure S2).  994 

We used 2-dimensional histograms to compare the overall behavioral patterns of 995 

individual flies. To do so, we created an individual map for each trial comparing the 996 

binned distributions of x and y coordinates via 2-dimensional kernel density estimation 997 

using the function kde2d (bandwidth = 2; 32 grid points in each direction) in the MASS 998 

R package. To facilitate comparisons across trials, the resulting density maps were 999 

normalized to the max density value of each and then linearized so that each was 1000 

represented by a single vector of density values. The relationships between trials were 1001 

inferred by calculating a distance matrix of these density vectors which was then used 1002 

as input for hierarchical clustering (hclust function; Figure 3G).  1003 

 1004 

Generation of optogenetic local search behavior spaces 1005 

The movement trajectories of 19 Gr64f-Gal4 > ChrimsonR flies in virtual reality 1006 

was collected from Haberkern et al. 2019. We processed and calculated velocity from 1007 

these files as above, down sampling from 360 to 50 Hz to match the sampling rate of 1008 

the free-walking dataset (for downstream comparisons). Windows were extracted from 1009 

all 19 trials using the same width (160 ms) as above, yielding a library of 1,110,025 1010 

windows. We then used the predict function in the UMAP R package to embed all 1011 

windows, one fly at a time, using the free-walking fly behavior space as a template. This 1012 

procedure produced a combined behavior space composed of 33 trials (1,509,894 1013 

windows) that facilitated comparisons across experimental conditions and individuals.  1014 
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Variation in space occupancy between free-walking and local search trials was 1015 

assessed using 2-d density maps. As before, we used bin_space to get new 1016 

coordinates for each trial, and then calculated density maps using kde2d (bandwidth = 1017 

1; 200 grid points in each direction), which were then normalized by dividing each 1018 

density estimate by the maximum value in the map. As in Figure 3G these density maps 1019 

were then linearized, combined in a matrix, and clustered using Euclidean distance and 1020 

hierarchical clustering to produce the tree in Figure 4F. 1021 

 1022 

Analyzing optogenetic local search behavior spaces 1023 

We used a bin-wise Kruskal-Wallis test to statistically analyze differences in 1024 

space occupancy between the two groups. For a given fly/trial we calculated the percent 1025 

occupancy at each bin (number of visits to bin divided by total number of windows). A 1026 

Kruskal-Wallis test was then used to compare the percent occupancies of the individual 1027 

trials between free-walking and local search flies from which the test statistic and 1028 

accompanying p-values were collected. We used Bonferroni correction to adjust these 1029 

p-values, controlling for the number of tests performed (4,096). The adjusted p-values 1030 

were then used to visually assess regions of greater differentiation between the free 1031 

walking and local search trials, plotted as the -log10 transformation of the p-values (as 1032 

seen in Figure 3F).  1033 

Time-evolving responses to optogenetic stimulation were assessed using density 1034 

maps. To do so, we sampled the behavior space trajectories of each trial before and 1035 

after all bouts of optogenetic stimulation. For each bout of stimulation, we extracted 1036 

positions in behavior space for the second before stimulation in order to represent a 1037 
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baseline behavioral distribution. We then extracted positions immediately after 1038 

stimulation using 1 second windows and step size of 100ms, from 0ms to 1 second 1039 

afterward (Figure 4E). We combined positions across bouts and individuals within 1040 

window to produce an aggregated response profile using kernel density estimation 1041 

(bandwidth = 2; 64 grid points in each direction; common x and y limits across 1042 

windows). If individuals displayed common behavioral responses to stimulation in a 1043 

specific window, then the related density map should show structure in its distribution 1044 

(i.e. concentrated red regions in Figure 4E).   1045 

 1046 

Larval Drosophila analysis 1047 

 FIMtrack (Risse et al. 2014; Risse et al. 2017) was used to track the behavior of 1048 

72 Drosophila larvae while crawling on an agar surface (collected at 10Hz). FIMtrack 1049 

outputs a number of per-frame measurements representation an animal’s shape and 1050 

orientation. We selected primary measurements reflecting larval size, shape, and 1051 

velocity (Figure 4A) in addition to the angular velocity of the head, midpoint, and tail for 1052 

analysis. Due to variation in the mean of size measurements (i.e. area, perimeter, radii, 1053 

spine length) over individual trials, these measures were detrended using the ma 1054 

function in the R package forecast (window size = 10) after which all measures were 1055 

then converted to z-scores. Given that the information of some of these features may be 1056 

redundant, a principal component analysis was used to find an appropriate number of 1057 

axes that could explain the variation in the dataset. We found that 8 principal 1058 

components explained >90% of the variance in the feature set. These top 8 components 1059 

were used as input to the iterative window procedure, sweeping a range of windows 1060 
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between 100ms and 5 seconds. As before the resulting spaces were compared using 1061 

Euclidean distance, Procrustes distance, and recurrence metrics (Figures S3A-C). After 1062 

analyzing these metrics, a window size of 800ms was chosen for all downstream 1063 

analyses. 1064 

 The full behavior space was plotted as vector field and with features highlighted 1065 

in the fashion described above in the analyses of adult Drosophila behavior. Behavior 1066 

labels and movement patterns through the behavior space (Figure 4D) were 1067 

qualitatively assessed. Temporal patterns in the movement through behavior space 1068 

were assessed via autocorrelation (Figure S3E). Autocorrelation was measured using 1069 

the acf function in R (lag size = 100).  1070 

 We used calcium imaging data from Tastekin et al. 2018 to examine neural 1071 

activity during larval locomotion. We analyzed motor neuron activity (7 neurons per 1072 

side) of larvae that were performing fictive locomotion (collected at 4-5Hz). Neural 1073 

activity was measured using GcamP6f expressed in glutamatergic neurons (CG9887-1074 

lexA > GCamP6f) during optogenetic activation of PDM-DN neurons (PDM-1075 

DN>CsChrimson::mVenus) which induces stopping behavior. For each time point 1076 

calcium fluorescence was converted to ΔF/F and then converted to z-scores for 1077 

comparison across trials. A window size of 1 second was chosen for behavior space 1078 

creation after the iterative window procedure. All trials were embedded in the same 1079 

space and features/vector fields were plotted as previously described. 1080 

 1081 

Mouse 3D behavior analysis 1082 
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 Mouse 3D behavior data were previously published in Markowitz et al. 2018. In 1083 

each trial, the mouse 3D posture was measured using the MoSeq pipeline (Wiltschko et 1084 

al. 2015) from which the following features were calculated and used in this analysis: 1085 

height, length, width, velocity (2-dimensional), velocity (3-dimensional), velocity (theta), 1086 

and 10 postural principal components calculated from an 80 pixel x 80 pixel 1087 

representation of the mouse’s position and height in 3D space. These features were 1088 

then used an input to the iterative window procedure and a range of window sizes 1089 

between 33ms and 1.66 seconds was examined (Figures S4A-C). A final window size of 1090 

133ms was chosen. 1091 

The full behavior space was plotted as vector field and with features highlighted 1092 

as described above. Behavior labels and movement patterns through the behavior 1093 

space (Figure 5D) were qualitatively assessed. The distributions of MoSeq syllables in 1094 

behavior space (Figures 5K, S4E) were assessed by associating the timing of each 1095 

syllable’s occurrence with the corresponding xy positions in behavior space. These 1096 

were then used to calculate a 2-dimensional probability density function of the xy 1097 

coordinates in space (100x100 grid). The density at each point in the 100x100 grid was 1098 

then dividing by the maximum value so that the distribution varied between 0 and 1. The 1099 

top 95% of these values were then plotted as a heatmap over the full behavior space 1100 

distribution (Figures 5K, S4E). 1101 

The dispersion of syllables in behavior space was assessed via nearest neighbor 1102 

distance using the function nndist (k = 1) in the R package spatstat (Baddeley et 1103 

al. 2015). The significance of per-syllable dispersion was then computed via 1104 

permutation tests. For each syllable, the mean nearest neighbor (nn) distance was 1105 
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calculated. The timing of syllable occurrence was then randomly shuffled 10,000 times. 1106 

During each permutation the distribution of the shuffled data in behavior space was 1107 

measured and used to calculate mean nn distance. Significance was assessed by 1108 

computing p-values comparing the number of occurrences in which the shuffle nn 1109 

distances were smaller than the observed mean nn distance, divided the number of 1110 

permutations. Bonferroni correction was then used to adjust the p-values given the 1111 

number of syllables tested.  1112 

A regularized generalized linear model was used to examine the relationship 1113 

between mouse 3D pose behavior space and the original input features. The model was 1114 

created with the R package glmnet (Friedman et al. 2010) using position in behavior 1115 

space as the outcome variable and the features (height, length, width, velocity (2-1116 

dimensional), velocity (3-dimensional), velocity (theta), 10 PCs) as predictors. The set 1117 

training set was composed of 75% of the data. We used 10-fold cross-validation via the 1118 

caret (Kuhn 2016) package to compute the optimal alpha and lambda values for 1119 

regularizing coefficient weights. The fit of the final model (r2) was computed by 1120 

comparing the predicted behavior space positions in the remaining 25% of the data to 1121 

the actual values. To measure variability across mice, individual models were also 1122 

created for each trial in the same fashion, the fits of which are compared in Figure S4F. 1123 

 1124 

Generation of mouse 2D locomotor behavior space 1125 

Behavior data and neural recordings were previously published in from 1126 

Hardcastle et al. 2017. For each cell, full trial spike event data (collected at 10kHz) and 1127 

positional coordinates (collected at 50Hz) were extracted. As above, velocity 1128 
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components over the course of the whole trial were computed from the positional 1129 

coordinates. We then used the empirical window-size test to identify the optimal window 1130 

size for behavior space creation. 30 trials were randomly sampled for the iterative 1131 

window test. The first 3000 frames of each trial were used to sweep through window 1132 

sizes ranging from 20ms to 1 second (40ms step size; Figures S5A-F). The resulting 1133 

spaces were then directly compared using the Euclidean distance, Procrustes distance, 1134 

and recurrence metrics (Figures 6A-F). After analyzing these metrics a window size of 1135 

400ms was chosen for all downstream analyses.  1136 

Given the large size of the dataset (41,850,995 windows) we opted to perform a 1137 

seed-embedding procedure to produce individual behavior spaces for each trial. To do 1138 

so, we extracted and combined together the first 5,000 windows from each trial and 1139 

created a seed behavior space using UMAP. We then individually embedded the 1140 

remaining windows for each trial using the predict function in the R implementation of 1141 

UMAP. Time points and XY coordinates corresponding to movement through these 1142 

individual behavior spaces were then combined and used jointly for overall annotation of 1143 

the mouse locomotion (As seen in Figures 6B-E). This all-trial behavior space was used 1144 

to calculate 64x64 bin coordinates, allowing all mouse trials to be directly compared 1145 

within the same behavior space architecture. Vector field representation (Figure 6D) 1146 

and physical XY space movement decoding (Figure 6E) were computed as previously 1147 

described.  1148 

The spike times for all cells in a given trial were then associated with the 1149 

corresponding behavioral timepoints. To do so, spike rates were calculated over 20ms 1150 

bins corresponding to the sampling rate of mouse positional data (50Hz) and, thus, the 1151 
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rate of movement through behavior space. The rate of activity was also calculated over 1152 

1 second (1Hz) scales to explore the extent to which broad temporal differences might 1153 

be present between neural activity and behavior. For each cell/trial pair the Pearson 1154 

correlation between behavior space position and firing rate was calculated. The 1155 

significance of these correlations was measured using permutation tests. For each cell, 1156 

the spike rate data were shuffled 10,000 times and then correlated with position in 1157 

behavior space. These correlations were used to calculate p-values by comparing the 1158 

number of times shuffled correlations were greater than the observed value, divided by 1159 

the number of permutations (10,000; Figure 5I). 2-dimendionsal tuning curves (as in 1160 

Figures 6F-G and Figure S5M) were computed for each cell by calculating the mean 1161 

spike rate in each bin using the 64x64 representation previously calculated. Mutual 1162 

information between the cells and behavior space was calculated (in bits) by comparing 1163 

the resulting 2-d tuning curves to the distribution of average occupancy time per bin for 1164 

each trial using the function mi.plugin from the R package entropy. The canonical 1165 

MEC coding variables (speed score, spatial stability, head direction, border score; 1166 

Figures 6K-R) used were previously computed following Hardcastle et al. 2017. Cross-1167 

correlations between neural activity and behavior space position were calculated with 1168 

the function ccf in R (lag of 16 seconds as seen in Figure 7C). 1169 

Temporal variation in the association of neural activity and behavior space (as in 1170 

Figures 7D-H) was assessed by calculating the correlation coefficient, entropy, and 1171 

mutual information between the two across a range of windows (0-4 seconds, 20ms 1172 

steps). Correlations and mutual information were calculated for each window size as 1173 

above. Shannon entropy (in bits) was calculated using the distribution of mean firing 1174 
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values from 2-d neural tuning curve for each window (using the entropy function from 1175 

the entropy R package). MI maximized window sizes were chosen for each cell using 1176 

the timescale at which the maximum mutual information between behavior space 1177 

position and neural activity occurred.  1178 

Rate-based differences in coding were assessed using the MI maximized window 1179 

sizes identifying above. For each cell, we calculated the activity rates corresponding to 1180 

the 75th, 80th, 90th, 95th, and 99th percentiles. We then identified the time points at 1181 

which each cell’s activity occurred above the respective percentile. The corresponding 1182 

positions in behavior space were then extracted in 8 second windows surrounding each 1183 

timepoint (from 4 seconds before to 4 seconds after; 20ms bins). 2-d tuning curves were 1184 

then constructed from the distribution of points in behavior space for all events that 1185 

occurred across the corresponding 20ms bins. For example, the behavior space 1186 

positions occurring 100-80ms before all events above the 99th percentile would be 1187 

compared, followed by the same calculation for all events occurring 80-60ms before, 1188 

then 60-40ms before, etc. This procedure would thus produce 400 2-d tuning curves per 1189 

percentile, corresponding to a sampling rate of 50Hz over a course of 8 seconds. The 1190 

Shannon entropy (in bits) of each 2-d tuning curve was then calculated and plotted as a 1191 

curve over time to detected consistent changes in its distribution (Figure 7K). To 1192 

compare these entropy distributions across all cells each was divided by its maximum 1193 

value. The normalized entropy measures for the 75th and 99th percentile values were 1194 

then used as input to hierarchically cluster all cells. Clusters were identified using a 1195 

dynamic tree cutting algorithm via the cutreeHybrid function in the R package 1196 

dynamicTreeCut (minimum cluster size of 10) (Langfelder et al. 2007).  1197 
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Figure S1 Correlated random walk iterative window tests 1353 

(A) A set of 100 example correlated random walks used for parameter tuning. Each is 1354 

10,000 frames long and sampled at 100 FPS.  1355 

(B) Trajectories through behavior space are plotted for each of the 10 correlated 1356 

random walk replicates per window size tested. Replicates are arranged in rows while 1357 

window sizes are arranged in columns. Trajectories were visualized by connecting 1358 

temporally adjacent points in behavior space with lines. Recurrent dynamics are 1359 

represented by highly overlapping lines, reflecting repeated excursions through those 1360 

specific paths.  1361 

(C) Coefficient of variation of mean intra-point Euclidean distance as a function of 1362 

window size.  1363 

(D) Coefficient of variation of Procrustes distance RMSE as a function of window size.  1364 
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Figure S2 Assessing structural and temporal components of the free-walking fly 1385 

dataset 1386 

(A) Procrustes distance RMSE measures as a function of window size. The darker line 1387 

corresponds to the mean value while the shading reflects standard error.  1388 

(B) Mean intra-point Euclidean distances. The darker line corresponds to the mean 1389 

value while the shading reflects standard error.  1390 

(C) Coefficient of variation of mean intra-point Euclidean distance as a function of 1391 

window size.  1392 

(D) Recurrence plot of behavior spaces produced from the free-walking dataset. The 1393 

proportion of recurrent points given a range of time delays ranging from 0 to 4 seconds 1394 

is indicated by the color of the corresponding bins (from light yellow to dark red). Each 1395 

horizontal window size bar includes all 14 flies tested.  1396 

(E) Mean recurrence times for all 14 flies as a function of window size. The larger circle 1397 

corresponds to the population mean while smaller circles correspond to each fly.  1398 

(F) Maximum recurrence times for all 14 flies as a function of window size. Each point 1399 

reflects the bin in which the largest proportion of points displayed recurrence. The larger 1400 

circle corresponds to the population mean while smaller circles correspond to each fly.  1401 

(G) Pathways through the locomotor behavior space for all 14 control flies, produced by 1402 

connecting temporally adjacent windows with partially transparent lines.  1403 

(H) Bar plot comparing the percent of behavior space bins that were visited by at least n 1404 

individuals. Bars are color coded from blue to red to correspond to (C).  1405 

(I) Locomotor behavior space binned to a 64x64 grid. Each bin is colored corresponding 1406 

to the number of individuals that visited it.  1407 

(J) Density maps for all control flies. Each behavior space corresponds to an individual 1408 

and is colored by the kernel density estimate generated for that fly’s trajectory in 1409 

behavior space. Darker color corresponds to a greater density in a given region.  1410 

(K) Bar plot comparing the percentage of bins in a 64x64 gridded behavior space that 1411 

were visited by control flies (purple), optogenetically activated flies (green), or both 1412 

(grey).  1413 

(L) Behavior space colored by the distribution of overlapping and unique bins. Each bin 1414 

is colored by the designations in the bar plot.  1415 
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(M) Density maps for optogenetically activated flies. Each behavior space corresponds 1416 

to a unique fly (n = 19) and is colored by the kernel density estimate generated for that 1417 

fly’s trajectory through behavior space. Darker colors correspond to a greater density in 1418 

a given region.  1419 
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Figure S3 Drosophila larvae behavioral and neural spaces 1448 

(A-C) Procrustes distance (A), mean Euclidean distance (B), and mean recurrence time 1449 

(C) as a function of window size for the crawling Drosophila larvae behavior space. The 1450 

darker line corresponds to the mean value while the shading reflects standard error. 1451 

(D) Scatterplot of the percent variation explained by increasing numbers of principal 1452 

components representing the 11 input features used. Dashed line corresponds to 90% 1453 

variation explained. 1454 

(E) Example distribution of the autocorrelation of position in larval behavior space over 1455 

200 seconds. Position was represented by single value encoding of the 64x64 binned 1456 

behavior larval space and then used as input to the autocorrelation calculation. 1457 

(F-H) Procrustes distance (F), mean Euclidean distance (BG, and mean recurrence 1458 

time (H) as a function of window size for the crawling Drosophila larvae neural space. In 1459 

this case, the iterative windows procedure was run using fluorescence traces from 7 1460 

motor neurons as input. The darker line corresponds to the mean value while the 1461 

shading reflects standard error. 1462 

(I) The full larval Drosophila neural space, containing 5 independent trials. 1463 

(J) The full larval Drosophila neural space, colored by individual trials (denoted in 1464 

legend in upper right hand corner). 1465 

(K) Larval Drosophila neural space represented as a mean vector field. Color 1466 

corresponds to the angle of each vector (reflected by colored circle in the upper left 1467 

hand corner). 1468 
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 1479 
Figure S4 Mouse 3D pose behavior space 1480 

(A-C) Procrustes distance (A), mean Euclidean distance (B), and mean recurrence time 1481 

(C) as a function of window size. The darker line corresponds to the mean value while 1482 

the shading reflects standard error. 1483 

(D) Heatmaps representing mean 3D pose as a function of behavior space position 1484 

(grouped into 25 unique bins). Time points in which each bin was visited were extracted 1485 

and then associated with the corresponding moments in the raw 3D imaging data. 1486 

These instances were then averaged, producing a mean 3D posture per bin, 1487 

represented here as a heatmap (yellow = further from imaging camera; darker red = 1488 

closer/higher).  1489 

(E) The distributions of the full set of behavioral syllables (identified by MoSeq) in 1490 

behavior space. A probability density function across behavior space was computed for 1491 

each syllable and then plotted in color on top of the full behavior space (in grey; as in 1492 

Figure 5K). 1493 
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(F) Fits (r2) of generalized linear models comparing input features and behavior space 1494 

position for individual trials/mice. The fit of the model using all trials is denoted by the 1495 

grey dashed line. 1496 
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Figure S5 Mouse locomotor behavior space and its association with MEC activity 1526 

(A) Procrustes distance RMSE measures as a function of window size. The darker line 1527 

corresponds to the mean value while the shading reflects standard error.  1528 

(B) Mean intra-point Euclidean distances. The darker line corresponds to the mean 1529 

value while the shading reflects standard error.  1530 

(C) Coefficient of variation of mean intra-point Euclidean distance as a function of 1531 

window size.  1532 

(D) Recurrence plot of behavior spaces taken from 30 random mouse trials. The 1533 

proportion of recurrent points given a range of time delays ranging from 0 to 4 seconds 1534 

is indicated by the color of the corresponding bins (from light yellow to dark red). Each 1535 

horizontal window size bar includes all 30 mice tested.  1536 

(E) Mean recurrence times as a function of window size. The larger circle corresponds 1537 

to the population mean while smaller circles correspond to each mouse trial.  1538 

(F) Maximum recurrence times as a function of window size. Each point reflects the bin 1539 

in which the largest proportion of points displayed recurrence. The larger circle 1540 

corresponds to the population mean while smaller circles correspond to each mouse 1541 

trial.  1542 

(G) Mouse locomotor behavior space, each point corresponds to a temporal window.  1543 

(H) Pathways through mouse locomotor behavior space, produced by connecting 1544 

temporally adjacent windows with partially transparent lines.  1545 

(I) Mouse locomotor behavior space represented as a vector field. Arrow direction and 1546 

magnitude correspond to the angle and mean direction taken after visiting each bin.  1547 

(J) Arrow direction and magnitude correspond to the angle and mean direction taken 1548 

after visiting each bin. Arrows are colored by the degree of the direction vector 1549 

(corresponding to circle in upper left-hand corner).  1550 

(K) Distribution of translational velocity across mouse behavior space (darker green 1551 

corresponds to higher values).  1552 

(L) Distribution of angular velocity across mouse behavior space (darker purple 1553 

corresponds to higher values).  1554 
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(M) 2-d tuning curves of neural activity (1 second bins) for all MEC neurons. The 1555 

ordering of tuning curve position was determined by hierarchical clustering (i.e. more 1556 

similar tuning curves are placed adjacent to each other). 1557 
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Figure S6: Variation in temporal and rate-based associations between MEC 1589 

neurons and behavior 1590 

(A) Example cross-correlations between behavior space position and MEC neuron 1591 

activity over a 16 second time window. The dotted grey line corresponds to time point 1592 

zero. The solid grey line reflects a correlation coefficient of zero.  1593 

(B) Example mutual information (MI) tuning curves as a function of binning size of 1594 

neural activity. For comparison purposes, MI is presented as a normalized value in 1595 

which each distribution has been divided by its maximum value.  1596 

(C) Mean entropy distributions of ten clusters identified using dynamic tree trimming. 1597 

Plotted are the distributions for the 75% (top) and 99% (bottom) cutoffs. Mean and 1598 

standard error are plotted as well as sample sizes, as in Figure 7E. 1599 
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