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Abstract

Uncovering relationships between neural activity and behavior represents a critical
challenge, one that would benefit from facile tools that can capture complex structures
within large datasets. Here we demonstrate a generalizable strategy for capturing such
structures across diverse behaviors: Time-REsolved BehavioralL Embedding

(TREBLE). Using data from synthetic trajectories, adult and larval Drosophila, and mice
we show how TREBLE captures both continuous and discrete behavioral dynamics, can
uncover variation across individuals, detect the effects of optogenetic perturbation in
unbiased fashion, and reveal structure in pose estimation data. By applying TREBLE to
moving mice, and medial entorhinal cortex (MEC) recordings, we show that nearly all
MEC neurons encode information relevant to specific movement patterns, expanding
our understanding of how navigation is related to the execution of locomotion. Thus,
TREBLE provides a flexible framework for describing the structure of complex behaviors

and their relationships to neural activity.
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Main

Accurate descriptions of animal behavior are essential to understanding brain
function. However, naturalistic behavior in freely moving animals is often continuous,
has structure across multiple timescales, and can vary broadly between individuals and
contexts. Thus, statistical tools that can capture and visualize the temporal structural of
behavior, can operate on large data sets derived from many individuals, and are
generalizable across systems and experiments are of central interest.

Advances in tracking technology have enabled measurements of animal
movement from a wide range of species (Datta et al. 2019; Pereira et al. 2020; Mathis et
al. 2020). These datasets are often extremely rich, and include correlated movements
across timescales, features that must be accounted for in efforts to link neural activity to
behavior. In parallel, a variety of sophisticated methods have emerged to parse such
behavioral structure and to measure behavioral changes caused by ever more powerful
experimental perturbations (Brown & de Bivort 2018; Datta et al. 2019; Pereira et al.
2020; Mathis et al. 2020). However, many of these methods are complex to implement,
and require extensive adaptation to specific species, contexts and experimental goals.
As a result, many investigators continue to rely upon either instantaneous measures of
specific behavioral parameters (such as velocities), or standard dimensionality reduction
approaches in which relatively little variance in the behavior is accounted for in the first
two dimensions. We therefore reasoned that an accessible framework that could be
easily applied to a wide variety of species and contexts, and which would allow the
temporal structure of behavior to be embedded and visualized in a low dimensional

manifold, would be of widespread utility.
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Here we describe Time-REsolved BehavioraL Embedding (TREBLE), an easy-to-
use method that can describe the structure of behavior, assess the effects of
experimental perturbations across the entire space of behavioral measurements, and
provide intuitive representations of the relationships between neural activity and
behavior. We reasoned that individual movements, by analogy with some genomic
analyses, could be treated akin to conserved nucleotide sequence blocks of variable
length. In genomics, quantitative and qualitative differences in sequence can be
efficiently revealed by shotgunning long sequences into smaller, overlapping blocks that
preserve local structure (Staden 1979; Wang et al. 2009). These blocks are then
assembled into libraries that densely sample the structure, frequency and surrounding
sequence of each block, while smoothly reconstructing the entire sequence.
Quantitative variation in these features can then be assessed using standardized
computational methods often including dimensionality reduction followed by statistical
testing. Building on this conceptual parallel, we developed TREBLE as a method for
extracting all behavioral sequences from a dataset (analogous to shotgun sequencing),
assembling ‘libraries’, and creating a shared ‘behavior space’ using dimensionality
reduction.

In the TREBLE framework, behavior is first quantitatively measured (Figure 1A).
Relevant measurements such as centroid velocities, or changes in body or limb
position, are computed from video data, and segmented into highly overlapped temporal
windows, the size of which is constrained by the temporal structure of behavior. These
windows are then collected into a large library encompassing all individuals and

experimental perturbations and assembled in a low-dimensional behavior space.
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Depending on window size, this space can flexibly capture a range of temporal
dynamics, ranging from unique trajectories to recurring patterns of movement. The
resulting space can be leveraged to decode complex patterns of movement in a time-
resolved fashion, facilitating analyses such as the rapid comparison of individuals or
identification of neural perturbations and stimulus effects.

Here, we use TREBLE to analyze a wide variety of data sources (synthetic
trajectories, adult and larval fruit flies, mice (with both 2D and 3D pose tracking)) and
applications (behavioral repertoire description, experimental perturbation, intersection of
behavior with imaging and electrophysiological neuron recordings). We show that
TREBLE’s parameters can be rationally chosen using empirical analyses and that the
resulting behavior spaces are regularly structured and display recurrent dynamics.
Individual movement bouts can be easily decoded and classified, the representation of
which can be tailored to a user’s need and allowing for detailed dissections of behavior
into its constituent components. TREBLE can handle data from many individuals and
millions of data points simultaneously, making possible the detection of otherwise
invisible behavioral variation. Finally, we demonstrate the ability of TREBLE to rapidly
uncover neurobehavioral relationships during optogenetic perturbations and neural

imaging in flies, as well as electrophysiological recordings in freely moving mice.

Results
Calibrating TREBLE
To calibrate this approach, we first used a large, synthetic dataset comprised of

correlated random walks to explore the relationships between window size and the
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93 emergent structure of behavior space (Bovet 1988) (Figure 1B; Figures S1A-B).

94 Individual random walks were completely described by a combination of velocity

95 features (translational velocity, angular velocity, and side slip; Figure 1C) with

96 characteristic temporal dependencies determined by the correlated random walk

97 generator (and highlighted by their autocorrelations; Figures 1D-E). We reasoned that

98 window sizes smaller than the underlying correlations within and between velocities

99  would artificially granularize features, while windows larger than the underlying
100 correlations would combine uncorrelated features. Given this, an ‘ideal’ window size
101  should show less variance across trials and display recurrent dynamics, paths through
102 the space that repeat independently in the dataset since stereotyped movements that
103  repeat would necessarily lead to recurrent paths in such a space.
104 To explore this, we assessed the effect of window size on feature representation,
105 sweeping sizes from 10ms (containing 1 window, reflecting an instantaneous
106 measurement of features) to 2 seconds (see Methods). Windows extracted from all
107 replicate walk trajectories were then embedded into behavior space using the UMAP
108 algorithm, a computationally efficient, non-linear dimensionality reduction approach
109 (Mclnnes et al. 2018). The structure of behavior space varied broadly as a function of
110 window size; topologies ranged between disordered (10-30ms), recurrent (40~350ms),
111  and unique paths (450ms ~ 2 seconds) (Figure 1F; Figure S1B). These observations
112  confirmed our initial intuition that window size could have a range of effects on the
113  structure of behavior space and that more ordered spaces could be derived by
114  considering timescales longer than raw/instantaneous measurements.

115
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Figure 1 The TREBLE framework and its application to synthetic data

(A) Outline of the TREBLE framework. Behavioral data are recorded. Relevant features (such as velocities) are extracted these
recordings following which empirical analyses are used to determine the optimal sampling window size. The chosen window size is
then used to create a library spanning all time points in the data set. The resulting window library is embedded into a low-
dimensional behavior space from which recurrent behaviors can be decoded and used for a number of analyses (examples labeled
in red boxes). (B) Example correlated random walk used for parameter tuning (see also Figure S1). (C) Velocity components that
can be calculated from movements in a 2-d plane. The black point at time t denotes the beginning of the trajectory which proceeds
to t+1. The purple arrow corresponds to the angular velocity of this trajectory while the green and yellow arrows represent
translational velocity and side slip, respectively. (D) The observed autocorrelation distribution of angular velocity computed from all
correlated random walks. (E) The observed autocorrelation distribution of translational velocity. (F) Example behavior spaces for a
range of window sizes. Spaces are plotted here by connecting temporally adjacent points (corresponding to feature windows), gray
lines. Darker lines reflect repeated visits along the same pathway. (G) Mean intra-point Euclidean distances as a function of window
size. Mean values (dark gray); Standard error of the mean (shading). (H) Procrustes distance RMSE measures as a function of
window size. Mean values (dark gray); Standard error of the mean (light gray shading). (I) Recurrence plot of behavior spaces
produced from the correlated random walk dataset. The proportion of recurrent points given a range of time delays spanning from 0
to 2 seconds, is indicated by the color of the corresponding bins (ranging from light yellow to dark red). Each window size contains
the distributions for 10 replicate walks. (J) Mean recurrence times as a function of window size. Population mean (large dark circle);

Individual replicates (small light circle).
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153 We next sought to quantify this topological variation. We employed two statistics,
154  one targeting local structural differences and the other focused on global variation. To
155 assess local variation, we measured the average Euclidean distance between

156  temporally adjacent points, reasoning that spaces with smoother paths would display
157  smaller distances with less variance. Mean values of Euclidean distance displayed a
158  trough spanning window sizes of between 450 to 1250ms (Figure 1G). The coefficient of
159 variation (CV) highlighted a broad overlapping region of similarity, spanning window
160 sizes of between 10 to 950ms (Figure S1C). To assess global variation, we measured
161  Procrustes distance (Mclnnes et al. 2018; Dryden & Mardia 1998). This metric

162 compares the difference between configurations of points, used here to quantify the
163  distance between replicate behavior spaces of a given window size. This measure

164  displayed a pattern similar to Euclidean distance, with a large trough between 450 and
165 1250ms, and a consistent CV up to window sizes of 950ms (Figure 1H; Figure S1D).
166  Thus, these metrics allow quantification of the effects of window size, in this case

167 revealing stability in topologies of behavior space across a range of windows.

168 We then explored how the choice of window size affects the temporal

169  progression of trajectories through behavior space by measuring the frequency with
170  which portions of a trajectory were repeated. We delineated a neighborhood around
171  each point in behavior space (see Methods) and determined the amount of time

172 between visits to each neighborhood. This was then represented as the proportion of all
173  neighborhoods that were revisited (Bruno et al. 2017). The distribution of these values
174  was consistent across replicates within a given window size but varied across sizes

175  (Figure 11). Window sizes of 150 to 650ms displayed a dominant return time of
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176  approximately 250ms, with a secondary peak at 1 second (Figure 11). Windows larger
177  than 650ms displayed increasingly noisy return time distributions (Figure 11). Reflecting
178 this, plots of mean recurrence times revealed a structured tuning curve in which the
179 mean and variance were minimized at a window size of 150ms (Figure 1J). Combining
180 these observations, the broad tuning curves in both the spatial and temporal properties
181  of behavior space indicate that while window size can have appreciable effects, this
182  representation of behavior can be robust across multiple parameter values.

183

184  Analysis of fruit fly locomotion

185 How does TREBLE perform when applied to biological data? First, we applied
186 the TREBLE to fruit fly locomotor behavior collected from individual animals walking on
187  an air-cushioned ball while exploring a virtual world (Haberkern et al. 2019). We

188  extracted rotational, translational and slip velocity components from these data and

189  applied the empirical window analysis outlined above. Structural variation analysis of
190 behavior space revealed a minima at a window size of 180ms (Figure 2A; Figures S2A-
191  C) while mean recurrence time was minimized at 140ms (Figure 2B; Figures S2D-F).
192  Given that these metrics displayed only a small amount of variation between these two
193  window sizes, we focused further analyses on a behavior space constructed using a
194  window size of 160ms.

195 We constructed a behavior space from the movements of 14 individual walking
196  fruit flies (Figure 2C; 399,869 windows). Individual points in this space corresponded to
197 unique windows with specific combinations of velocity features (Figure 2C).

198

199
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228 Figure 2 Analyzing fruit fly locomotion with TREBLE
229 (A) The coefficient of variation of Procrustes distance as a function of window size. The observed minimum at 180ms is denoted by
230 the red dotted line. (B) Coefficient of variation for the mean (blue line) and maximum (i.e. highest proportion of time bins displaying
231 recurrence; dark red line) recurrence times as a function of window size. The optimal tradeoff between the mean and maximum
232 times is denoted at 140ms with a red dotted line. (C) Fly locomotor behavior space. Each point corresponds to a feature window
233 (399,869 windows in total) as extracted from the 14 individual flies. (D) Pathways through the locomotor behavior space, produced
234 by connecting temporally adjacent windows with partially transparent lines (as in Figure 1F). (E) Walking fruit fly behavior space
235 represented as a vector field. Arrow direction and magnitude correspond to the angle and mean direction taken after visiting each
236 bin. (F) The distribution of translational velocity across behavior space. Darker green corresponds to larger values of translational
237 velocity. (G) The distribution of angular velocity across behavior space. Darker purple corresponds to larger values. (H) The
238 distribution of side slip across behavior space. Darker gold corresponds to larger values. (I) Example bout of stopping. The pathway
239 through behavior space is represented on the left. XY coordinates of the actual bout are plotted on the right. Both representations
240 are colored by elapsed time. (J-L) Same as (I) but for fast turns, forward runs, and slow turns, respectively. (M) Sample trajectory
241 through behavior space as represented by a 1-dimensional coordinate value. (N) Distribution of per-bin standard deviation across
242 locomotor behavior space. Color corresponds to the variance of bin-wise visitation frequency across all 14 flies. (O) Hierarchical
243 clustering of individual fly density maps. The dendrogram on the right represents the relationships between all 14 flies (numbered at
244 the tips of each branch). Individual fly density maps are presented on the left in 1-dimension by converting the density map matrix
245 into a single vector (presented in 2-dimensions in Figure S2J). Darker colors reflect more time spent (‘occupancy’) in a specific

246 region.
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247  Connecting these points based on their temporal order revealed stereotyped paths in
248  which individual flies repeated the same patterns of movement (Figure 2D; Figure S2G).
249  As aresult, the mean vector field produced by these was highly structured (Figure 2E).
250 These pathways traversed regions of space defined by the input velocity features,

251 meaning that position within the space could be used to infer the underlying pattern of
252  movement (Figures 2F-H). Analyzing continuous movement through these regions

253 demonstrated that individual behavioral bouts and sequences could be identified

254  (Figures 2I-L; manually chosen). Finally, consistent with the notion that these

255  sequences were recurrent (Figure 2B), plotting the positions of individual fly trajectories
256  in behavior space over time reveals periodicity (Figure 2M, and data not shown). Taken
257  together, these observations show how TREBLE can be used to identify repeated,

258 intuitive, and interpretable patterns of behavior over time.

259 The capacity of TREBLE to co-embed many trials or individuals in the same

260 space facilitates direct measurements of trial-to-trial or individual-to-individual variation.
261  For example, we found that each of the 14 flies moved in grossly similar ways, as

262 indicated by the fact that 83% of the behavior space was explored by all individuals,
263  while less than 1% of the behavior spaces was explored by only one individual (Figures
264  S2H-I). At the same time, individual trajectories varied greatly in how often they

265 traversed different parts of the space. To measure this, we computed a probability

266  density map for each individual (Figures S2J), and identified small, specific regions of
267  behavior space that had the greatest variance between individuals (Figure 2N; Figures
268  S2H-I). Hierarchical clustering of 1-d vectorized versions of these (Methods) maps

269 revealed a variety of behavioral profiles across individuals (Figure 20). Thus, in this

10
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270  case, behavior space was composed of movement types common to all individuals and
271  could therefore act as template to compare the unique statistics of each.

272

273  Detecting behavioral changes due to optogenetic manipulation

274 To test the ability of TREBLE to detect behavioral changes arising from an

275  experimental manipulation, we analyzed locomotor behavior during optogenetic

276  activation of gustatory sensory neurons expressing Gr5a, a sugar receptor (Haberkern
277  etal. 2019) (Figure 3A; see Methods). To induce local search behavior, a 200 ms

278  optogenetic stimulation was delivered every time a fly reached a pre-specified area and
279  was repeated for every return visit. We processed nineteen optogenetic trials

280 (1,110,025 windows) and co-embedded these windows with those from the control flies
281 (described above) in the same behavior space. The movements contained within

282  optogenetically stimulated trials overlapped extensively with those in control flies, with
283  >97% of the space occupied by both datasets (Figures S2K-L). However, on average,
284  the frequencies with which specific patterns emerged in the two datasets diverged

285 dramatically (Figures 3B-C) and were unevenly distributed across behavior space (per
286  bin Kruskal-Wallis test, see Methods; Figure 3D). These observations suggest that,

287  while the structure of locomotion is conserved overall, these two groups display quite
288 different temporal patterns of behavior.

289 To further explore this difference, we leveraged the continuous, time-resolved
290 nature of TREBLE to map the evolution of average responses to neuronal activation
291 overtime (Figure 3E). Compared to pre-stimulus epochs, overall behavioral responses

292 displayed an initial period of slowing (spanning from 0 to 120ms after stimulus offset),

11
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293 followed by increased turning (120ms to 280ms) (Figure 3E). These dynamics are

294  consistent with known local search behaviors (Haberkern et al. 2019; Corfas et al.

295 2019). Despite these population-level patterns, we noted a surprising amount of

296 behavioral heterogeneity amongst optogenetically activated flies, such that the behavior
297  of some optogenetically activated flies overlapped with that of controls (Figure 3F;

298  Figures S2J-M). Thus, TREBLE can assess the effects of a behavioral perturbation to

299 detect both population and individual level variation.
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320 Figure 3 Identifying behavioral perturbations via optogenetic manipulation
321 (A) Example trajectory for a single optogenetic trial. The fly’s path through the virtual world is represented by the dark grey line. Red
322 dots correspond to locations in which optogenetic stimulation was presented. (B) Average density map computed from the 14 free-
323 walking control flies (darker color corresponds to more time spent in a specific region). (C) Average density map computed from the
324 19 optogenetically activated flies. (D) Bin-wise differences between control and optogenetically activated flies. Color corresponds to
325 the significance (-log10 transformation of the p-value; Kruskal-Wallis test) of the differences in density between the two groups.
326 Darker red corresponds to increasingly significant differences. (E) Time evolving responses to optogenetic stimulation in behavior
327 space. Each space reflects a specific time window before (first space) and after stimulation (each subsequent space). Color
328 corresponds to the average response to stimulation across all 19 flies (represented as normalized density; see methods). Windows
329 span 1 second of time, beginning at the value represented above each space. (F) The behavioral relationships between all free-
330 walking control and optogenetically activated flies. The tree represents the results of hierarchical clustering on the density maps of
331 each individual fly (as in Figure 20). Each branch tip is associated with an individual fly, group is represented by color (Controls =

332 purple; Optogenetic trials = dark green).

12
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333  Identifying structure in more complex feature sets: Locomotion of Drosophila
334 larvae

335 Thus far we have used to TREBLE to analyze behaviors as changes in centroid
336 velocity components. However, pose estimation methods have made analyses of other
337 behavioral features, such as posture or limb movement, increasingly common (Pereira
338 et al. 2020; Mathis et al. 2020). As such, pose estimation methods typically represent
339 behavior in multi-dimensional spaces that may or may not include explicit velocities.
340  With this in mind, we next assessed the ability of the TREBLE framework to capture a
341 high-dimensional combination of postural and velocity features describing larval

342  Drosophila locomotion.

343 Locomotion in Drosophila larvae is characterized by stereotyped changes in size
344  and posture correlated with peristaltic movements and bending that produce forward
345 and backward translation and turning (Clark et al. 2015). To capture this, we tracked
346  Drosophila larvae via machine vision and at each time point calculated 11 complex

347 postural and velocity features following established methods (Figure 4A; n = 72) (Risse
348 etal. 2014, 2017). Given that certain of these features may be correlated, we performed
349  principal component analysis and found that 8 components were sufficient to explain
350 over 90% of the observed variance (Figure S3D). These 8 PCs were then used to run
351 the iterative window procedure, resulting in an optimal window size of 800ms (Figures
352 S3A-C). This produced a 2D behavior space that revealed a strongly oscillatory region
353  (Figure 4B) with highly directional movement (Figure 4C). Analyzing the distribution of
354  the input features revealed that this oscillator corresponded strongly with features of

355 peristaltic locomotion (Figures 4D-G). Specifically, the oscillator appeared to switch
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356 between a regime of lower velocity paired with an increase in the area of the animal’'s
357 shape (i.e. scrunching) and higher velocity with lower overall area (stretching) (Figures

358 4D-G). When oscillating, these regimes produced an individual ‘run’ of crawling (Clark et

359 al. 2018).
360
361 The upper portion of the space, outside the oscillating domain, was split between

362 aregion of increased bending and another associated with pausing (Figure 4D).

363 Comparing the distribution of features over time to movement in the TREBLE space
364 highlighted the structured relationships between these features (Figure 4H). During
365 crawling (denoted by ‘i’ in Figure 4H) velocity and area oscillate inversely. When a turn
366 s initiated, the animal first pauses (ii), decreasing velocity and stabilizing area, and then
367 begins bending with a corresponding shift in position in behavior space (iii). After the
368 turnis complete, oscillatory crawling begins again (Figure 4H). Overall, oscillatory

369 waves occur with a period of around 1 second (Figure S3E), matching previous

370 observations of Drosophila larval crawling (Heckscher et al. 2012). TREBLE therefore
371 captured the common structural and temporal elements of the Drosophila larval

372  ethogram (Clark et al. 2016) within a single behavior space.

373 The recurrent properties of crawling mirror waves of motor neuron activity

374 (Tastekin et al. 2018; Clark et al. 2018). We therefore wondered if using TREBLE to
375 analyze the output of motor neurons might also yield a corresponding oscillator

376  describing neural dynamics. We used calcium imaging data from fictively crawling

377 larvae (Tastekin et al. 2018) to construct a ‘neural space’ from the activity of seven

378 motor neuron classes (Figure 4l; Figures S3F-K).

379
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380 Figure 4 Larval Drosophila crawling dynamics
381 (A) Cartoon of larval Drosophila movement and accompanying features used for analysis. (B) Pathways through the larval
382 locomotor behavior space (n = 72 larvae). (C) The mean vector field of larval locomotor space. Direction and size of arrow
383 correspond to the mean movement through a given bin in space. Color denotes the angle of the arrow. (D) Probability density
384 function of larval locomotor space plotted as a heatmap. Behaviors annotated qualitatively. (E-G) The distribution of area (E),
385 bending (F), and velocity (G) as a function of larval behavior space (z-scores). Blue corresponds to negative values, red represents
386 positive values. (H) Example distribution of behavior space position (TREBLE coordinate; a.u.), area (z-score; yellow), velocity (z-
387 score; brown), and bending (z-score; read) over a ~10 second epoch of behavior. The approximate durations of behavioral states
388 are annotated via grey shading and labeled above (i: crawl, ii: pause, iii: turn). (I) Pathways through larval neural space (plotted
389 here is an example distribution of a single trial; full space in Figure S3l). (J) Larval neural space plotted as a mean vector field. (K)
390 Example of oscillating position in neural space over a 160 second period of time. (L) Probability density functions of motor neuron
391 activity across behavior space. The plots proceed from posterior (leftmost) to anterior (rightmost) as denoted by the cartoon larvae
392 plotted below (with approximate location of motor neuron segment colored).

393

394  As with the behavior space, we found that motor neuron activity yielded an oscillator
395 (Figure 4l) with directional (Figure 4J) and stereotyped movement (Figure 4K). Bouts of
396 crawling are associated with waves of neural activity, originating in posterior neurons

397 and propagating in the anterior direction (Tastekin et al. 2018; Clark et al. 2018).
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398 Plotting the peak activity of each motor neuron type in the neural space recapitulated
399 this observation (Figure 4L). Peak activity of the posterior neurons occurred in the lower
400 left-hand portion of the space, followed by spatially sequential peaks of the more

401  anterior motor neurons (Figure 4L) moving in the same direction described the mean
402  vector field of the space (Figure 4J). These observations reveal that both the behavioral
403  output and neural dynamics underlying Drosophila larval locomotion can be captured in
404 a common oscillatory framework. In addition, these analyses show that TREBLE can
405 applied to find structure in higher-dimensional neural and behavior data.

406

407 Identifying structure in more complex feature sets: Mouse pose dynamics

408 We next sought to generalize TREBLE to a much more complex form of

409 behavioral data, mouse movements in three dimensions (from Markowitz et al. 2018).
410 To do so, we analyzed mouse behavior measured with 3D imaging via the MoSeq

411  pipeline (Wiltschko et al. 2015; Markowitz et al. 2018). In this pipeline, freely moving
412  mice were imaged in an arena using three orthogonal cameras at 30Hz (Wiltschko et al.
413  2015; Markowitz et al. 2018). These video streams were then processed to produce 17
414  behavioral features (Figure 5A) representing mouse movement in three dimensions

415  (Wiltschko et al. 2015; Markowitz et al. 2018) which we then used as input to the

416 iterative window size procedure. A window size of 130ms was chosen (Figure S4A-C),
417  yielding a behavior space that organized aspects of posture and movement into a

418 recognizable, and recurrent, structure (Figures 5B-J). Analyzing the distribution of input
419 features in behavior space (Figures 5E-J) allowed us to identify portions of the space

420 related to characteristic behaviors such as walking, scrunching, rearing, and pausing
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421  (Figures 5C-D). These designations were corroborated by calculating the average 3D
422  pose of animals as a function of position in behavior space (Figure S4D). These

423  observations indicate that TREBLE can be used to identify structure in high-dimensional
424  pose estimation datasets.

425 In addition to measurements of 3D movement, the MoSeq pipeline also identifies
426  how discrete elements of mouse behavior - behavioral ‘syllables’ — are sequenced over
427  time (Wiltschko et al. 2015; Markowitz et al. 2018). What is the relationship between the
428  continuous representation of 3D behavior provided by TREBLE and the discrete output
429 of the MoSeq pipeline (Markowitz et al. 2018)? Annotating the TREBLE behavior space
430  with the individual syllables identified by MoSeq revealed that the distributions of

431 individual syllables appeared highly compact (Figure 5K; Figure S4E). Syllables

432  produced by MoSeq corresponded to distinct and identifiable behavioral states identified
433 by TREBLE, such as walking (Figure 5K; yellow and blue syllables; first row, fourth and
434  fifth columns) and scrunching (Figure 5K; purple syllable; second row, third column).
435  Furthermore, these distributions were non-random. By comparing the mean nearest
436  neighbor distance for each syllable to a shuffled distribution, we found that the mean
437  distance between points was significantly lower than expected by chance (p < 0.0001;
438 permutation test) for all syllables (see Methods). Therefore, TREBLE and MoSeq

439  capture complementary aspects of behavior - both discrete and continuous — albeit

440 using very broadly different statistical frameworks.

441

442

443

444
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475 Figure 5 Analyzing 3D pose dynamics in mice
476 (A) Cartoon of mouse 3D movement and accompanying features used for analysis. (B) Pathways through mouse 3D pose space (n
477 = 8 mice). (C) The mean vector field of mouse 3D pose space. Direction and size of arrow correspond to the mean movement
478 through a given bin in space. Color denotes the angle of the arrow. (D) Probability density function of mouse 3D pose space plotted
479 as a heatmap. Behaviors annotated qualitatively. (E-J) The distribution of height (E), length (F), width (G), 2D velocity (H), postural
480 PC1 (1), and postural PC2 (J) as a function of larval behavior space. (E-H) Color ranges from grey (minimum value) to red
481 (maximum). (I-J) Blue corresponds to negative values, red represents positive values. (K) The distributions of the 24 most common
482 behavioral syllables (as identified by MoSeq) in behavior space. A probability density function across behavior space was computed
483 for each syllable and then plotted in color on top of the full behavior space (in grey; see Methods). (L) The distribution of mean
484 nearest-neighbors distance between points in behavior space for all syllables (n = 43). Purple denotes the observed values. Orange
485 corresponds to the mean and distribution (lines; lower (25" percentile) and upper (75" percentile) hinges of a boxplot) of shuffled
486 data (10,000 permutations). (M) Visualization of the variables used to construct the regularized generalized linear model. Features
487 are represented by example time series (left) and were compared to movement through behavior space (right). (N) Barplot of
488 coefficient weights from the final model, sorted by weight and colored to match the example time series in (M). (O) Comparison of
489 the actual position in behavior space (grey) to the prediction from the final GLM (red) for an example ~3 second time period. (P)
490 Smoothed scatterplot comparing observed and predicted behavior space positions for the full dataset. Darker blue denotes greater
491 density of points. Dashed red line corresponds to the fit of a regression between observed and predicted values.
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492 Finally, we wondered whether TREBLE was truly capturing the majority of

493  behavioral variation present in this complex dataset. To address this, we created a

494  regularized generalized linear model (GLM) comparing the relationship of the input
495 features to the position in TREBLE behavior space over time (Figure 5M; see Methods).
496  We found that the GLM captured over 90% of the variance in the data, and pose

497  features such as length and width, and related postural principal components,

498  contributed strongly to the model (Figures 5N-P). Position in the TREBLE space could
499  be predicted with a substantial degree of accuracy from the feature set (Figures 50-P),
500 predictability that was consistent across individual trials (Figure S4F). We therefore
501 conclude that TREBLE is able to explain a substantial portion of behavioral variation
502 even in complex feature sets and can robustly represent the 3D dynamics of animal
503 movement in a low-dimensional, continuous framework.

504

505 Using TREBLE to characterize neural encoding of behavior

506 A common, and often difficult, goal in neuroscience is to relate neural activity to
507 behavior. We therefore used TREBLE to identify behavioral coding in 794 medial

508 entorhinal cortical (MEC) neurons recorded during the foraging trials presented above
509 (n =14 mice, 327 trials) (Hardcastle et al. 2017) (Figure 6A). The MEC is hypothesized
510 to support navigation and contains a population of functionally defined neurons that
511 encode a variety of behavioral variables such as an animal’s position in external space
512 (e.g. grid and border cells), head direction, and running speed (Kropff et al. 2015;

513  Sargolini et al. 2006; Solstad et al. 2008; Hafting et al. 2005).
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514 We extracted time-varying velocity measures from positional data of individual
515 mice as they foraged for randomly scattered food rewards in a 1m by 1m box (Figure
516 6A). We then collected windows from these data using the iterative selection procedure
517 to choose a window size of 400ms (Figure S5A-F). As we previously observed with the
518 correlated random walk and Drosophila spaces, the resulting behavior space ordered
519 points by velocity features (Figures S5G-L) and connected them with continuous and
520 directionally recurrent pathways (Figures 6B-D). Moreover, distinct behavioral bouts —
521 such as running, turning, and stopping — could be easily decoded from the space and
522 mapped back onto real XY coordinates (Figure 6E).

523 We related MEC neuron activity to movement in the behavior space defined by
524 TREBLE. To do so, we first created a 2-dimensional behavioral tuning curve for each
525 neuron. Each cell’s average activity was mapped as a function of the animal’s position
526 in behavior space, revealing a wide variety of patterns (Figure S5M). Correlation

527 coefficients were then calculated by comparing each neuron’s activity with a 1-

528 dimensional representation of behavior space position (64 x 64 grid: Methods). Strongly
529 positive or negative correlations thus reflect that a given’s neuron activity is increased in
530 different portions of behavior space (Figure 6F-H), of which a number were identified.
531 Consistent with the MEC'’s role in navigation, permutation tests revealed that these

532  correlations were overwhelmingly non-random, with only 63 of the 794 MEC neurons
533 displaying non-significant relationships with locomotor behavior after multiple test

534  correction (Figure 61). Furthermore, clustering neural activity patterns across behavior
535 space revealed multiple distinct types of relationships between MEC neurons and

536 locomotor behavior (Figure 6J; Figure S5M). Most neurons were active in relatively
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537 small and specific regions of behavior space, suggesting that they encode information
538 relevant to particular locomotor movements (Figure S5M). Other neurons displayed

539 distributed activity across behavior space, consistent with less selective coding of

540 locomotor information (Figure S5M). Thus, these various patterns can be considered 2-
541 dtuning curves, representing the relationship between neural activity and behavior for
542  each neuron.

543 To what extent do these patterns reflect previously described representations of
544  navigational coding in the MEC? To address this, we intersected TREBLE correlations
545  with other commonly calculated MEC coding variables (speed, head direction, spatial
546  stability, border proximity; see Methods). Unsurprisingly, we found that behavior space
547  correlated with speed coding (Figure 6K) compared to the other measures (Figures 6L-
548 N). However, a more precise measure of coding capacity requires a comparison

549  between the amount of information jointly shared between position in behavior space,
550 speed score, and neural activity. To do this, we computed the mutual information (Ml)
551 between TREBLE position and neural activity for each neuron and then related these
552 measures to the commonly calculated MEC coding variable (Figures 60-R). Higher Ml
553  values here indicate that spatial coordinates in behavior space contain more information
554  about a given neuron’s activity, reflecting stronger behavioral coding. Strikingly, Ml was
555 uncorrelated with speed score (Figure 60), indicating that encoding of locomotor

556 behavior was not solely related to variation in speed. This raised the possibility that

557 these neurons may encode information about other locomotor variables including longer

558 timescale and more complex maneuvers.
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Figure 6 Mapping mouse navigational coding

(A) Example trajectory for of a foraging mouse with paired spike recordings via an implanted electrode (drawn). (B) Mouse
locomotor behavior space, each point corresponds to a temporal window. (C) Pathways through mouse locomotor behavior space,
produced by connecting temporally adjacent windows with partially transparent lines. (D) Mouse locomotor behavior space
represented as a vector field. Arrow direction and magnitude correspond to the angle and mean direction taken after visiting each
bin. Arrows are colored by the degree of the direction vector (corresponding to circle in upper left-hand corner). (E) Example
behavior bouts decoded from behavior space. Pathways through behavior space are plotted on the left. Bout starts are indicated by
the open circle, ends by the closed circle. Positions in real XY space are plotted on the right. (F) Example 2-d tuning curve of a
neuron that is negatively correlated with behavior space (activity measured as spikes/second; labeled with a green dot for reference
in later figures). Colors range from blue to red, corresponding to minimum activity (blue) to maximum activity (red). Pearson
correlation (r) is denoted above the plot. (G) Example 2-d tuning curve of a neuron that is positively correlated with behavior space
(activity measured as spikes/second; labeled with a purple dot for reference in later figures). Colors range from blue to red,

corresponding to minimum activity (blue) to maximum activity (red). Pearson correlation (r) is denoted above the plot. (H)
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605 Distribution of correlation coefficients between neural activity and behavior space position for all MEC neurons (activity measured as
606 spikes/second). (I) Distribution of p-values (Bonferroni corrected) resulting from permutation tests (10,000 shuffles) of the

607 correlations plotted in (h). The red dotted line indicates p = 0.05. (J) Clustered 2-d tuning curves for all neurons. The heatmap
608 corresponds to a linearized version of the 2-d tuning curve, colored by average activity as a function of position in behavior space.
609 (K) Scatterplot of the relationship between the correlation coefficient of the relationship between behavior space and neural activity
610 (y-axis) and speed score (x-axis). Pearson correlation (r) is denoted above the plot. (L) Scatterplot of the relationship between the
611 correlation coefficient and spatial stability. (M) Scatterplot of the relationship between the correlation coefficient and head direction
612 (HD) mean vector length. (N) Scatterplot of the relationship between the correlation coefficient and border score. (0) Scatterplot of
613 the relationship between the mutual information (MI) of behavior space and neural activity (y-axis) and speed score (x-axis). (P)
614 Scatterplot of the relationship between MI and spatial stability. (Q) Scatterplot of the relationship between MI and head direction
615 (HD) mean vector length. (R) Scatterplot of the relationship between MI and border score.

616

617 Using TREBLE to identify temporal variation in the neural coding of behavior

618 Neural activity can relate to continuous behaviors on a variety of timescales, the
619 discovery of which is an area of active interest (Datta et al. 2019; Krakauer et al. 2017,
620 Glaser & Kording 2016). We therefore wanted to test the ability of TREBLE to provide a
621  path for relating neural activity with behavior and took advantage of the apparent rich
622  capacity of MEC neurons to encode locomotor behavior over a variety of timescales.
623 To do this, we first computed the cross-correlation of TREBLE position and

624  activity for each neuron (Figures 7A-C). This analysis identifies when a neuron’s activity
625  correlates with position in behavior space by calculating correlations between the two
626  variables using a sliding window centered around a temporal offset of zero (i.e.

627  simultaneity). We found a variety of temporal offsets in the cross-correlation

628  distributions for each neuron. Peak correlations could both precede (Figure 7A) and
629 follow (Figure 7B) changes in behavior. Clustering the distribution of these cross-

630 correlation coefficients revealed a variety of neural classes, including negative, positive,
631 and even mixed negative and positive cross-correlation profiles (Figure 7C; Figure

632 S6A). Notably, cross-correlation peaks could be of varying widths; some were tightly

633 centered (e.g. Figures 7A-B) while others displayed correlations lasting seconds (Figure
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634  S6A). Therefore, in addition to their instantaneous relationships, the activity of MEC

635 neurons can covary with behavior over a range of temporal scales and offsets.
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636 Figure 7 Temporal variation in mouse navigational coding
637 (A) Cross-correlation distribution of a neuron that is negatively correlated with behavior space (same as in 6F). (B) Cross-correlation
638 distribution of a neuron that is positively correlated with behavior space (same as in 6G). (C) Hierarchical clustering of cross-
639 correlation distributions across all neurons. Color corresponds to the correlation coefficient, blue indicating negative and red
640 indicating positive correlations. The y-axis represents time before and after instantaneity, ranging from 8 seconds before to 8
641 seconds after. The x-axis corresponds to the relationships of all MEC cells based on their cross-correlations with behavior (which
642 are shown via the colored heatmap). In essence, each column contains the same information as 7A-B but here represents the
643 distributions using variation in color over time, rather than a 1-d tuning curve. (D) Correlation coefficient distribution as a function of

644 varied window sizes for the neuron plotted in 6G and 7B. (E-F) same as (D) but for entropy (E) and mutual information (Ml). (G)

645 Distribution of Ml for all neurons, comparing the maximally informative window size (in gold) and that measured from spikes (grey).
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646 (H) Barplot of the distribution of Ml maximized window sizes for all neurons. (I) Example neural activity trace (using MI maximized
647 window size) and corresponding percentile cutoffs (at 75%, 80%), 90%, 95%, and 99%). (J) Temporal distributions in behavior space
648 (1 second windows) surrounding peaks in activity (75%, 90%, and 99% cutoffs). (K) Entropy distributions of surrounding activity

649 bouts corresponding to each percentile (labeled and colored on plot). Normalized entropy measures are shown to be able to

650 compare across percentiles with different sample sizes. (L) Hierarchical clustering of entropy distributions across all neurons.

651 Colored bars indicate clusters as measured using dynamic tree trimming (see Methods). (M) Example mean entropy distributions for
652 four clusters identified using dynamic tree trimming. Plotted are the distributions for the 75% (top) and 99% (bottom) cutoffs. Mean
653 and standard error are plotted as well as sample sizes (above).

654

655 Given this observation we hypothesized that individual MEC neurons may most

656  reliably encode behavior over specific timescales. To test this, we calculated each

657 neuron’s activity over a range of temporal windows and measured their associations
658  with behavior space via correlation, mutual information (Ml), and entropy (i.e. how

659 narrowly neural activity was distributed across behavior space) (Figures 7D-F). For

660  most neurons, the strength of the correlation between activity and behavior as well as
661  entropy plateaued (Figures 7D, 7F) while Ml displayed a clear, and at times very

662  specific, maximum value as a function of temporal window size (Figure 7F; Figure S6B).
663  This pattern suggested that, given temporal binning that maximized MI, neural activity
664  could be more specifically associated with distinct regions in behavior space. This was a
665 general pattern: across all neurons the Ml maximized window size encoded more

666 information than instantaneous spikes (Figure 7F). The distribution of these MI

667 maximized window sizes varied broadly, ranging from instantaneous spiking to window
668  sizes up to 2 seconds, reflecting the diversity of patterns observed in the cross-

669  correlation analyses (Figure 7G; Figure 7C). MEC neurons thus possess specific and, in
670 some cases, finely tuned temporal scales over which their activity most informatively

671 encodes movement.
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672 Finally, we asked whether these temporal relationships might be further refined
673 by considering how the magnitude of each neuron’s activity constrains its behavioral
674 coding. Do extrema in neuronal firing rates reflect specific behaviors? To answer this
675 question, we calculated percentile cutoffs for each neuron’s activity across the trial

676  using the MI maximized window sizes (Figure 71). We then examined whether

677  increasing activity rates were associated with consistent changes in movement through
678  behavior space, indicating increasing behavioral specificity. To do so, we analyzed the
679 distribution of movements within behavior space by computing the entropy of the

680 distribution associated with neural activity bouts above each cutoff (Figures 7J-K). In
681 this metric, lower entropy values correspond to increased stereotypy in behavior space.
682 For many neurons, as activity increased the corresponding behavior space entropy

683 decreased, meaning that high levels of neuronal activity tended to be associated with
684  specific behavioral patterns (Figure 7K; Figure S6C). Hierarchical clustering of these
685 entropy distributions separated neurons into coherent groups with temporally similar
686  profiles (Figures 7L-M). Notably, a number of clusters displayed entropy minima that
687  were significantly offset from zero, meaning that peaks in neural activity could either
688 precede or follow changes in behavior (Figure 7M; Figure S6C). Taken together, these
689  results demonstrate that MEC neurons can encode locomotor information on temporally
690 varying scales, both before and after changes in behaviors occur. Moreover, these

691 analyses demonstrate how TREBLE can be used to uncover the relationship between
692  neuron activity and continuous behavior across a rich neural dataset from freely moving
693 animals.

694
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695 Discussion

696 Technological developments have led to substantial shifts in how researchers are
697 attempting to unlock the development, expression, and evolution of animal behavior.
698  Facilitated by high throughput data analysis, a number of ambitious conceptual projects
699 have recently been proposed. These include considering behavior as a natural

700 extension of physics (Brown & de Bivort 2018), attempting to capture many species’

701  complete behavioral repertoires (Anderson & Perona 2014), or even reconciling the two
702 dominant lineages of behavioral research, comparative psychology and ethology (Datta
703 etal. 2019). Achieving these goals requires the study of individuals across a diversity of
704  animal species, in both controlled and naturalistic contexts, and in conjunction with

705 other data streams, critically including neural activity. Given this, behavioral analytical
706  methods that are statistically robust, broadly applicable, and easily linked to the function
707  of nervous systems are of general interest. Here we show how TREBLE can produce
708 low-dimensional representations of behavior that capture key features of the temporal
709  structure of animal movements and poses, allow one to visualize the phenotypic

710  consequences of perturbations, and reveal relationships to neural activity. By analogy
711 with genomics, these “heatmaps” can constitute analytical endpoints, but can also guide
712 the subsequent development of more targeted hypotheses.

713 All analytical methods for parsing behavior inherently make tradeoffs between
714  computational ease, temporal resolution, and generalizability. TREBLE does not require
715  extensive model fitting, is agnostic to feature type, and can accommodate many millions
716  of data points. Moreover, we describe how the key parameters needed, such as window

717  size, can be systematically explored and rationally chosen to capture behavioral
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718  structure of interest. By cutting behavior into defined temporal windows that are

719 extremely densely sampled, TREBLE simultaneously captures both long and short

720 temporal structures in behavior. Furthermore, representation of these can be handled
721  flexibly. For example, here we represent temporal structure in two ways: 1) as

722 continuously varying time series and 2) as information theoretic summary measures of
723  entire distributions over time (using entropy and mutual information). It is also possible
724  for users to discretize TREBLE’s output simply by segmenting movement through

725 behavior space into sub regions. Finally, TREBLE is generalizable in three different
726  ways. First, as we demonstrate, the framework can be applied to a variety of movement
727  sources, including synthetic trajectories and multiple animal species. Second, the

728 position of TREBLE in analysis pipelines is adjustable. While TREBLE can be

729 implemented as a standalone method for behavioral analysis from beginning to end, it
730 can also be used as a screening tool for identifying statistically significant behavioral
731  variation to be followed by other approaches specifically tailored to the question of

732 interest. Finally, as we show using optogenetic activation in flies and neural recordings
733  in mouse MEC, TREBLE can be used to find meaningful links between nervous

734  systems and behavior in a variety of contexts. This versatile nature of the TREBLE

735 framework therefore opens up the possibility for customizable high-throughput

736  behavioral analyses.

737 TREBLE can uncover otherwise opaque behavioral variation by directly

738 comparing behavioral data across many individuals and conditions. Here, we show that
739  free walking fruit flies possess substantial variation in locomotor dynamics and that this

740 variation is associated with specific regions of behavior space. Surprisingly, we find that

28


https://doi.org/10.1101/2020.09.30.321406
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321406; this version posted March 12, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

available under aCC-BY-NC-ND 4.0 International license.

this variation in free walking behavior overlaps with the diversity of responses observed
after an optogenetic perturbation. A limited set of pre-determined behavioral
measurements, as would have been used typically, may have missed this variation.
Similarly, even unbiased statistical methods, without clear grounds for comparison
across animals or experimental conditions, would have been unlikely to have detected
these patterns. This highlights the benefit of using unsupervised statistical descriptions
such as TREBLE for assessing the structure of behavior across diverse individuals.
Furthermore, we envision that TREBLE might be employed on control data sets to
measure variability across baseline individuals in order to facilitate statistical power
calculations across the full range of behavioral dynamics that might be present. Such
catalogs of variability could be thus be developed across species’ wildtype behavioral
repertoires, allowing researchers to better account for inborn variance or threshold
effects in applications such as genetic mapping, behavioral manipulations, and neural
perturbations (Lopez-Alonso et al. 2015; Ayroles et al. 2015; Buchanan et al. 2015).

Associating neural activity with continuous behavior presents two key challenges.
First, identifying the specific aspects of behavior that activity corresponds to is difficult to
determine in the context of a large behavior repertoire. Second, the temporal scales
over which this relationship occurs can be hard to know a priori. Here, we show how
TREBLE can be used to address these issues by characterizing the oscillatory patterns
of motor neuron activity during larval Drosophila crawling and the coding of locomotor
behavior in mouse medial entorhinal cortex (MEC) neurons as proofs of concept.

In the latter case, we find that TREBLE captures known components of speed

coding in MEC neurons while also uncovering extensive variation in temporal and rate-
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764  based coding. Previous work has found that MEC neurons prospectively code for

765 changes in an animal’s speed and position ~50-80ms in the future (Kropff et al. 2015).
766  Our analyses add to these findings, suggesting that MEC neurons can encode changes
767  both before and after behavioral events, doing so across a variety of timescales. These
768  patterns may reflect the presence a multitude of temporal encoding strategies for

769  behavior in the MEC, similar to what has been seen in basal ganglia movement

770  selection (Markowitz et al. 2018; Jin & Costa 2015), orofacial rhythms (Moore et al.

771 2013), and whole-brain activity during C. elegans locomotion (Kaplan et al. 2020). We
772  speculate that this may arise from some MEC neurons encoding short time-scale

773  behavioral events (e.g. turning left or right) while others update based on longer-term
774  navigational behaviors such as goal-oriented searching or foraging. These results

775 demonstrate how TREBLE can be leveraged to identify specific aspects of behavior that
776  are associated with the activity of individual neurons and to uncover the temporal

777  structure of such relationships. More broadly, we anticipate that TREBLE may be useful
778 in uncovering the statistical structure of behaviorally relevant activity across many

779  diverse populations of neurons.

780 There are a number of areas in which TREBLE may be further developed and
781 employed. First, movement through behavior space may be classified on timescale that
782 are longer than those presented here, affording descriptions of behavioral state over
783  time or the emergence of behavior in development. Second, the ability of TREBLE to
784  co-embed multiple individuals with temporal resolution may make it particularly

785 amenable to studying social and collective behavioral dynamics. Third, by readily

786  capturing variability in behavior, TREBLE may be amenable to exploring differences
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787  across individuals arising from factors imbuing variance such as reaction norms,
788 behavioral syndromes, and environmental or genetic variation. Finally, it is especially
789 intriguing to consider how TREBLE may be further leveraged to jointly infer neural
790 coding principles by applying the framework to the structure of behavioral and neural
791 dynamics in parallel.
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833 Methods

834 Datasets

835 Correlated random walks were produced using the TrajGenerate function in
836 the trajr R package (McLean 2018). Ten replicate walks were produced per

837 parameter tested (e.g. window size), sampled at a rate of 100 frames per second and
838 consisting of 10,000 frames. All walks were generated using the same underlying

839 angular and linear error distributions (Normal distribution; Mean = trajectory length;

840  Standard deviation = 0.5 (angular)/0.2 (linear)).

841 Details of the Drosophila walking dataset can be found in Haberkern et al. 2019.
842  Briefly, animals in the free-walking dataset (‘WTB hybrid’ genotype) were allowed to
843  explore a circular matt acrylic platform (radius 11.4 cm) surrounded by a siliconized
844  acrylic cylinder to prevent climbing. Videos were recorded from 120 cm above the

845 platform using a Flea3 camera at 12.3 Hz with a spatial resolution ~40 pixel/cm. Trials
846 lasted 10 minutes after a 1-2 minute acclimation period.

847 The local search data were produced from female flies possessing

848 optogenetically-accessible sugar receptor neurons (Gr64f-Gal4 > ChrimsonR). Animals
849 were allowed to explore a virtual landscape consisting of distributed ‘cone forest’ while
850 walking on a circular treadmill. Treadmill movement data (fly’s position and velocity)
851 were collected at 360 Hz. Optogenetic stimulation was triggered whenever a fly crossed
852  within a 10mm radius of a given cone and persisted for 200ms.

853 For the Drosophila larvae analyses, embryos were collected for 1 h on

854  standard 3.0% agar molasses collection caps covered with a thin layer of wet yeast.

855  Twenty-four hours later, hatched embryos were transferred to standard cornmeal fly
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856 food. After forty-eight hours (L2 larval stage), animals were collected and transferred to
857 a Petri dish with1.2% agar and relocated to a behavioral room kept at 23°C and 60%
858 humidity. Ten to fifteen minutes after acclimation to the room, groups of 5 to 10 larvae
859  were transferred to a 30 x 30 cm 1.2% agar arena. After 15 to 30 seconds, locomotion
860 was recorded using a FIM imaging system (Risse et al 2013, https://www.uni

861 muenster.de) at 10 fps for 5 minutes. The FIM system was equipped with an azA2040-
862 25gm (Basler) camera and a LM16HC-SW (Kowa) lens. Individual larvae were then

863 tracked using FIMtrack software (Risse et al 2013).

864 Details of the mouse 3D pose dataset can be found in Marowitz et al. 2018 and
865  Wiltschko et al. 2015. Depth and position were collected using a Microsoft Kinect V2
866  while individual mice explored a circular arena (collected at 30Hz; 512x424 pixels frame
867 size). The mouse’s center and orientation were estimated using an ellipse fit. An 80 x 80
868 pixel box was then drawn around the mouse and used to rotate the frame so that the
869 mouse was always facing the righthand side. These cropped and adjusted frames were
870 then used as input for principal component analysis from which the top 10 of these

871 postural PCs were used for downstream analyses.

872 Details of the mouse behavior and MEC dataset can be found in Hardcastle et al.
873  2017. Behavior and neural recordings were collected from two cohorts of adult wildtype
874 mice: 5 male and 2 female C57BL/6 mice (405 MEC cells recorded) and 7 male

875 C57BL/6J:129SVEV mice (389 MEC cells). Two polymide-coated platinum iridium 90%-
876  10% tetrodes were implanted in each mouse prior to the experimental period.

877  Behavioral data were collected approximately one week after surgery in large open

878 environments with black walls containing chocolate flavored cereal to induce foraging
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879 (sizes varying; see Hardcastle et al. 2017 for details). The majority of recording

880 sessions lasted between 30-35 minutes with a small number ranging in time between 12
881 and 122 minutes. During each session, position, head direction, and running speed

882  were recorded every 20ms and single unite spikes were recorded at a 10kHz sampling
883 rate.

884

885  Generation of correlated random walk behavior spaces

886 The trajectories and velocity distributions of replicate correlated random walks
887  were extracted using the custom function iterative umap. First, a novel walk

888 trajectory was generated using TrajGenerate (as described above). Instantaneous
889 velocity components were then calculated (translation, angular velocity, sideways

890 velocity) and sampled using windows of a specified width (denoted here as w) and step
891 size (denoted here as s). The sampling procedure was as follows.

892 First, given frame i, the velocity components were extracted for frames i: i+w.
893  Angular and sideways velocity values were normalized to the first frame in the window
894  so that each velocity vector to originate from zero. Since we weren’t concerned with
895 information pertaining to turn direction (i.e. left vs. right) the proceeding velocity values
896 were then adjusted so that the second frame was always positive. The resulting velocity
897  vectors were linearized and concatenated, resulting in a single vector of length 3w. This
898 procedure was then repeated iteratively every s frames for the length of the trial (t).
899  After each iteration the concatenated vectors were appended to a matrix with 3w rows

900 to ultimately create t/s columns.
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901 This procedure yielded a library of densely sampled velocity fragments

902 corresponding to behavioral dynamics for each moment in the trial. The R

903 implementation of the UMAP algorithm (Mclnnes et al. 2018) was then used to embed
904 these fragments into a low-dimensional behavior space (each point in space

905 corresponding to a window). The resulting space thus provided a 2-dimensional xy

906 position for each point/window in the trajectory. For downstream analyses we computed
907 simplified positional information for each space using the bin space function. This
908 function decomposes behavior space into a grid of desired size (n bins x n bins). For
909 example, for a desired grid of 16 bins x 16 bins, a new set of xy coordinates will be

910 calculated corresponding to 16 intervals spanning the minimum/maximum xy

911 coordinates in the original space. The position of each point in the space will then be
912 compared to the new coordinates and associated with the closest bin, in this example
913 case generating a reduced set of 16x16, or 256, unique bins.

914

915 Analyzing correlated random walk parameter space

916 We assessed the relationship of parameter choice and behavior space structure
917 by sweeping the two main window sampling parameters: window width and step size.
918 We examined 24 different window widths, ranging from 10ms to 2 seconds (10-40ms
919 sampled at 10ms steps; 50ms-2 seconds sampled at 100ms steps). Ten correlated
920 random walk replicates were generated for each window size and then processed and
921 embedded into behavior space using the iterative umap function. We also

922  explored the effect of step size by producing replicate behavior spaces from trajectories

923 sampled at step sizes varying from 10 ms (i.e. 1 frame) to 1 second, separated by 100
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924  millisecond intervals. Again, for each step size 10 correlated random walk replicates
925 were generated, processed, and embedded into behavior space using the

926 iterative umap function.

927 Intra-point Euclidean distance was calculated for each space by comparing the
928 spatial position of temporally adjacent points. Specifically, the position of a given point
929 (corresponding to a unique temporal window) in behavior space (x., y.)was compared
930 to the position of the next point/window in time (x..1, y+1). The Euclidean distance

931 between these points was then calculated and stored into a vector, allowing for the

932 distribution of distances to be compared across replicates and parameter conditions.
933  The coefficient of variation was also calculated for these measures to control for

934  substantial variation in the magnitude of effect; this was done by dividing the

935 distribution’s standard deviation by its mean.

936 Procrustes distance was used to measure the similarity between replicate

937 behavior spaces of a certain parameter combination (Dryden & Mardia 1998). Briefly,
938 this method treats spaces and their component points as a set of landmarks for pairwise
939 comparison. To do so, pairs of behavior spaces are scaled to be similar sizes then

940 shifted and rotated to possess the same position and orientation in space (Dryden &
941 Mardia 1998). The distance between corresponding points in the two adjusted landmark
942  sets is then calculated using Procrustes distance (reported here as Root Mean Square
943  Error; RMSE). We performed this procedure and calculated Procrustes distance for all
944  pairwise combinations of the 10 replicate behavior spaces within a given parameter set.

945  Coefficient of variation for this measure was also calculated as above.
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946 To assess recurrence, we measured the average return time for all points in each
947 space. We first used the binning procedure outlined above to create a 32x32 grid so
948 that the resulting space was composed of 1024 unique bins. We then computed a

949  distance threshold to delineate a “neighborhood” around each bin (5% smallest intra-bin
950 distance). For a given bin, each time the trajectory passed through its threshold the

951 event was recorded and its duration stored. This distribution of return delays was

952 analyzed by computing the proportion of points that displayed a return for a given time
953 delay. For example, given a delay of 150ms, all bins would be scanned and the

954  proportion possessing returns that occurred took between 150 and 160ms would be
955 calculated. We calculated proportions in this manner for delays between Oms and 2

956 seconds at 10ms intervals (as plotted in Figure 11). Mean recurrence time was

957 measured by collecting all observed return times for each replicate and calculating the
958 mean.

959

960 Generation of free-walking fruit fly behavior spaces

961 The movement trajectories of 20 female WTB flies walking in a circular area were
962 collected from Haberkern et al. 2019. For each fly we computed velocity components as
963 above and interpolated the resulting vectors from 12.3 Hz to 50 Hz to increase

964 smoothness in the downstream behavior space. Initial analyses suggested the removal
965 of 6 trials due to missing data or lack of substantial movement, resulting in a final

966 dataset of 14 flies.

967 As above, we performed an empirical test to decide on the optimal window size

968 for behavior space creation. To do so, we sampled the first 2000 frames from each trial
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969 (to increase computational efficiency) and swept through window sizes ranging from
970 20ms to 1 second (70 ms step size), creating a single behavior space for each of the 14
971 flies per window size. The resulting spaces were then directly compared using the

972  Euclidean distance, Procrustes distance, and recurrence metrics previously described
973  (Figure S2).

974

975 Analyzing free-walking fruit fly behavior spaces

976 After sweeping window parameters, we generated a behavior space composed
977  of all 14 free-walking trials using a window size of 160ms (399,869 windows). We then
978 used bin_ space to calculate point coordinates in a 64x64 grid. Stereotypy in

979 movement through the space was visualized using a vector field transformation (Figure
980 2D). All instances in which trajectories through the space passed into a given bin were
981 collected and then used to calculate the mean x and y vectors of the trajectory leaving
982 the bin. These mean values were then represented visually using arrows that originated
983 out of the corresponding bin, the direction and magnitude of which were dictated by the
984 mean x and y vectors. Velocity distributions across the space (Figures. 2F-H) were

985 visualized by calculating the mean value for each velocity component per window.

986 These values were then used as input to the color function determining the hue of each
987  pointin the space.

988 Intra-fly variation in behavior space was assessed using the reduced 64x64 grid.
989 For each fly we calculated the number of times its trajectory passed through a given bin,
990 in addition to a binary measure of whether that bin was visited at all (‘0 if not; ‘1’ if

991 visited at least once). The continuous counts of bin visits were then used to calculate
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992  bin-wise mean and variance across all flies, the latter of which is visualized in Figure 3F.
993 The binary measure was used to assess variation in overall space occupancy across
994 flies (Figure S2).
995 We used 2-dimensional histograms to compare the overall behavioral patterns of
996 individual flies. To do so, we created an individual map for each trial comparing the
997 binned distributions of x and y coordinates via 2-dimensional kernel density estimation
998 using the function kde2d (bandwidth = 2; 32 grid points in each direction) in the MASS
999 R package. To facilitate comparisons across trials, the resulting density maps were
1000 normalized to the max density value of each and then linearized so that each was
1001 represented by a single vector of density values. The relationships between trials were
1002 inferred by calculating a distance matrix of these density vectors which was then used
1003  as input for hierarchical clustering (hclust function; Figure 3G).
1004
1005 Generation of optogenetic local search behavior spaces
1006 The movement trajectories of 19 Gr64f-Gal4 > ChrimsonR flies in virtual reality
1007 was collected from Haberkern et al. 2019. We processed and calculated velocity from
1008 these files as above, down sampling from 360 to 50 Hz to match the sampling rate of
1009 the free-walking dataset (for downstream comparisons). Windows were extracted from
1010  all 19 trials using the same width (160 ms) as above, yielding a library of 1,110,025
1011  windows. We then used the predict function inthe UMAP R package to embed all
1012  windows, one fly at a time, using the free-walking fly behavior space as a template. This
1013  procedure produced a combined behavior space composed of 33 trials (1,509,894

1014  windows) that facilitated comparisons across experimental conditions and individuals.
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1015 Variation in space occupancy between free-walking and local search trials was
1016  assessed using 2-d density maps. As before, we used bin space to get new

1017  coordinates for each trial, and then calculated density maps using kde2d (bandwidth =
1018  1; 200 grid points in each direction), which were then normalized by dividing each

1019 density estimate by the maximum value in the map. As in Figure 3G these density maps
1020 were then linearized, combined in a matrix, and clustered using Euclidean distance and
1021  hierarchical clustering to produce the tree in Figure 4F.

1022

1023  Analyzing optogenetic local search behavior spaces

1024 We used a bin-wise Kruskal-Wallis test to statistically analyze differences in

1025 space occupancy between the two groups. For a given fly/trial we calculated the percent
1026  occupancy at each bin (number of visits to bin divided by total number of windows). A
1027  Kruskal-Wallis test was then used to compare the percent occupancies of the individual
1028 trials between free-walking and local search flies from which the test statistic and

1029 accompanying p-values were collected. We used Bonferroni correction to adjust these
1030  p-values, controlling for the number of tests performed (4,096). The adjusted p-values
1031  were then used to visually assess regions of greater differentiation between the free
1032  walking and local search trials, plotted as the -log10 transformation of the p-values (as
1033  seen in Figure 3F).

1034 Time-evolving responses to optogenetic stimulation were assessed using density
1035 maps. To do so, we sampled the behavior space trajectories of each trial before and
1036  after all bouts of optogenetic stimulation. For each bout of stimulation, we extracted

1037 positions in behavior space for the second before stimulation in order to represent a
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1038 baseline behavioral distribution. We then extracted positions immediately after

1039  stimulation using 1 second windows and step size of 100ms, from Oms to 1 second
1040 afterward (Figure 4E). We combined positions across bouts and individuals within

1041  window to produce an aggregated response profile using kernel density estimation
1042  (bandwidth = 2; 64 grid points in each direction; common x and y limits across

1043  windows). If individuals displayed common behavioral responses to stimulation in a
1044  specific window, then the related density map should show structure in its distribution
1045 (i.e. concentrated red regions in Figure 4E).

1046

1047 Larval Drosophila analysis

1048 FIMtrack (Risse et al. 2014; Risse et al. 2017) was used to track the behavior of
1049 72 Drosophila larvae while crawling on an agar surface (collected at 10Hz). FIMtrack
1050 outputs a number of per-frame measurements representation an animal’s shape and
1051 orientation. We selected primary measurements reflecting larval size, shape, and

1052  velocity (Figure 4A) in addition to the angular velocity of the head, midpoint, and tail for
1053  analysis. Due to variation in the mean of size measurements (i.e. area, perimeter, radii,
1054  spine length) over individual trials, these measures were detrended using the ma

1055 function in the R package forecast (window size = 10) after which all measures were
1056 then converted to z-scores. Given that the information of some of these features may be
1057 redundant, a principal component analysis was used to find an appropriate number of
1058 axes that could explain the variation in the dataset. We found that 8 principal

1059 components explained >90% of the variance in the feature set. These top 8 components

1060 were used as input to the iterative window procedure, sweeping a range of windows
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1061 between 100ms and 5 seconds. As before the resulting spaces were compared using
1062  Euclidean distance, Procrustes distance, and recurrence metrics (Figures S3A-C). After
1063  analyzing these metrics, a window size of 800ms was chosen for all downstream
1064 analyses.

1065 The full behavior space was plotted as vector field and with features highlighted
1066 in the fashion described above in the analyses of adult Drosophila behavior. Behavior
1067 labels and movement patterns through the behavior space (Figure 4D) were

1068 qualitatively assessed. Temporal patterns in the movement through behavior space
1069  were assessed via autocorrelation (Figure S3E). Autocorrelation was measured using
1070 the acf functionin R (lag size = 100).

1071 We used calcium imaging data from Tastekin et al. 2018 to examine neural
1072  activity during larval locomotion. We analyzed motor neuron activity (7 neurons per
1073  side) of larvae that were performing fictive locomotion (collected at 4-5Hz). Neural
1074  activity was measured using GcamP6f expressed in glutamatergic neurons (CG9887-
1075 lexA > GCamP6f) during optogenetic activation of PDM-DN neurons (PDM-

1076  DN>CsChrimson::mVenus) which induces stopping behavior. For each time point
1077  calcium fluorescence was converted to AF/F and then converted to z-scores for

1078 comparison across trials. A window size of 1 second was chosen for behavior space
1079 creation after the iterative window procedure. All trials were embedded in the same
1080 space and features/vector fields were plotted as previously described.

1081

1082 Mouse 3D behavior analysis
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1083 Mouse 3D behavior data were previously published in Markowitz et al. 2018. In
1084  each trial, the mouse 3D posture was measured using the MoSeq pipeline (Wiltschko et
1085 al. 2015) from which the following features were calculated and used in this analysis:
1086  height, length, width, velocity (2-dimensional), velocity (3-dimensional), velocity (theta),
1087 and 10 postural principal components calculated from an 80 pixel x 80 pixel

1088 representation of the mouse’s position and height in 3D space. These features were
1089 then used an input to the iterative window procedure and a range of window sizes

1090 between 33ms and 1.66 seconds was examined (Figures S4A-C). A final window size of
1091 133ms was chosen.

1092 The full behavior space was plotted as vector field and with features highlighted
1093 as described above. Behavior labels and movement patterns through the behavior

1094  space (Figure 5D) were qualitatively assessed. The distributions of MoSeq syllables in
1095 behavior space (Figures 5K, S4E) were assessed by associating the timing of each
1096 syllable’s occurrence with the corresponding xy positions in behavior space. These

1097  were then used to calculate a 2-dimensional probability density function of the xy

1098 coordinates in space (100x100 grid). The density at each point in the 100x100 grid was
1099 then dividing by the maximum value so that the distribution varied between 0 and 1. The
1100 top 95% of these values were then plotted as a heatmap over the full behavior space
1101  distribution (Figures 5K, S4E).

1102 The dispersion of syllables in behavior space was assessed via nearest neighbor
1103  distance using the function nndist (k = 1) in the R package spatstat (Baddeley et
1104 al. 2015). The significance of per-syllable dispersion was then computed via

1105 permutation tests. For each syllable, the mean nearest neighbor (nn) distance was
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1106  calculated. The timing of syllable occurrence was then randomly shuffled 10,000 times.
1107 During each permutation the distribution of the shuffled data in behavior space was
1108 measured and used to calculate mean nn distance. Significance was assessed by

1109 computing p-values comparing the number of occurrences in which the shuffle nn

1110 distances were smaller than the observed mean nn distance, divided the number of
1111  permutations. Bonferroni correction was then used to adjust the p-values given the
1112  number of syllables tested.

1113 A regularized generalized linear model was used to examine the relationship
1114  between mouse 3D pose behavior space and the original input features. The model was
1115 created with the R package glmnet (Friedman et al. 2010) using position in behavior
1116  space as the outcome variable and the features (height, length, width, velocity (2-

1117 dimensional), velocity (3-dimensional), velocity (theta), 10 PCs) as predictors. The set
1118 training set was composed of 75% of the data. We used 10-fold cross-validation via the
1119 caret (Kuhn 2016) package to compute the optimal alpha and lambda values for
1120  regularizing coefficient weights. The fit of the final model (r?) was computed by

1121  comparing the predicted behavior space positions in the remaining 25% of the data to
1122  the actual values. To measure variability across mice, individual models were also
1123  created for each trial in the same fashion, the fits of which are compared in Figure S4F.
1124

1125 Generation of mouse 2D locomotor behavior space

1126 Behavior data and neural recordings were previously published in from

1127 Hardcastle et al. 2017. For each cell, full trial spike event data (collected at 10kHz) and

1128 positional coordinates (collected at 50Hz) were extracted. As above, velocity
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1129 components over the course of the whole trial were computed from the positional

1130 coordinates. We then used the empirical window-size test to identify the optimal window
1131  size for behavior space creation. 30 trials were randomly sampled for the iterative

1132 window test. The first 3000 frames of each trial were used to sweep through window
1133  sizes ranging from 20ms to 1 second (40ms step size; Figures S5A-F). The resulting
1134  spaces were then directly compared using the Euclidean distance, Procrustes distance,
1135 and recurrence metrics (Figures 6A-F). After analyzing these metrics a window size of
1136  400ms was chosen for all downstream analyses.

1137 Given the large size of the dataset (41,850,995 windows) we opted to perform a
1138 seed-embedding procedure to produce individual behavior spaces for each trial. To do
1139  so, we extracted and combined together the first 5,000 windows from each trial and
1140 created a seed behavior space using UMAP. We then individually embedded the

1141  remaining windows for each trial using the predict function in the R implementation of
1142  UMAP. Time points and XY coordinates corresponding to movement through these
1143  individual behavior spaces were then combined and used jointly for overall annotation of
1144  the mouse locomotion (As seen in Figures 6B-E). This all-trial behavior space was used
1145 to calculate 64x64 bin coordinates, allowing all mouse trials to be directly compared
1146  within the same behavior space architecture. Vector field representation (Figure 6D)
1147 and physical XY space movement decoding (Figure 6E) were computed as previously
1148  described.

1149 The spike times for all cells in a given trial were then associated with the

1150 corresponding behavioral timepoints. To do so, spike rates were calculated over 20ms

1151  bins corresponding to the sampling rate of mouse positional data (50Hz) and, thus, the
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1152  rate of movement through behavior space. The rate of activity was also calculated over
1153 1 second (1Hz) scales to explore the extent to which broad temporal differences might
1154  be present between neural activity and behavior. For each cell/trial pair the Pearson
1155 correlation between behavior space position and firing rate was calculated. The

1156  significance of these correlations was measured using permutation tests. For each cell,
1157 the spike rate data were shuffled 10,000 times and then correlated with position in

1158 behavior space. These correlations were used to calculate p-values by comparing the
1159 number of times shuffled correlations were greater than the observed value, divided by
1160 the number of permutations (10,000; Figure 5l1). 2-dimendionsal tuning curves (as in
1161  Figures 6F-G and Figure S5M) were computed for each cell by calculating the mean
1162  spike rate in each bin using the 64x64 representation previously calculated. Mutual
1163 information between the cells and behavior space was calculated (in bits) by comparing
1164  the resulting 2-d tuning curves to the distribution of average occupancy time per bin for
1165 each trial using the function mi.plugin from the R package entropy. The canonical
1166 MEC coding variables (speed score, spatial stability, head direction, border score;

1167  Figures 6K-R) used were previously computed following Hardcastle et al. 2017. Cross-
1168 correlations between neural activity and behavior space position were calculated with
1169 the function ccf in R (lag of 16 seconds as seen in Figure 7C).

1170 Temporal variation in the association of neural activity and behavior space (as in
1171  Figures 7D-H) was assessed by calculating the correlation coefficient, entropy, and
1172  mutual information between the two across a range of windows (0-4 seconds, 20ms
1173  steps). Correlations and mutual information were calculated for each window size as

1174  above. Shannon entropy (in bits) was calculated using the distribution of mean firing
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1175  values from 2-d neural tuning curve for each window (using the entropy function from
1176 the entropy R package). Ml maximized window sizes were chosen for each cell using
1177 the timescale at which the maximum mutual information between behavior space

1178  position and neural activity occurred.

1179 Rate-based differences in coding were assessed using the Ml maximized window
1180 sizes identifying above. For each cell, we calculated the activity rates corresponding to
1181  the 75th, 80th, 90th, 95th, and 99" percentiles. We then identified the time points at
1182  which each cell’s activity occurred above the respective percentile. The corresponding
1183  positions in behavior space were then extracted in 8 second windows surrounding each
1184  timepoint (from 4 seconds before to 4 seconds after; 20ms bins). 2-d tuning curves were
1185 then constructed from the distribution of points in behavior space for all events that

1186  occurred across the corresponding 20ms bins. For example, the behavior space

1187  positions occurring 100-80ms before all events above the 99" percentile would be

1188 compared, followed by the same calculation for all events occurring 80-60ms before,
1189 then 60-40ms before, etc. This procedure would thus produce 400 2-d tuning curves per
1190 percentile, corresponding to a sampling rate of 50Hz over a course of 8 seconds. The
1191  Shannon entropy (in bits) of each 2-d tuning curve was then calculated and plotted as a
1192  curve over time to detected consistent changes in its distribution (Figure 7K). To

1193 compare these entropy distributions across all cells each was divided by its maximum
1194  value. The normalized entropy measures for the 75" and 99" percentile values were
1195 then used as input to hierarchically cluster all cells. Clusters were identified using a

1196  dynamic tree cutting algorithm via the cutreeHybrid function in the R package

1197 dynamicTreeCut (minimum cluster size of 10)(Langfelder et al. 2007).
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1353  Figure S1 Correlated random walk iterative window tests

1354  (A) A set of 100 example correlated random walks used for parameter tuning. Each is
1355 10,000 frames long and sampled at 100 FPS.

1356  (B) Trajectories through behavior space are plotted for each of the 10 correlated

1357 random walk replicates per window size tested. Replicates are arranged in rows while
1358  window sizes are arranged in columns. Trajectories were visualized by connecting
1359 temporally adjacent points in behavior space with lines. Recurrent dynamics are

1360 represented by highly overlapping lines, reflecting repeated excursions through those
1361  specific paths.

1362  (C) Coefficient of variation of mean intra-point Euclidean distance as a function of
1363  window size.

1364 (D) Coefficient of variation of Procrustes distance RMSE as a function of window size.
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1385 Figure S2 Assessing structural and temporal components of the free-walking fly
1386 dataset

1387  (A) Procrustes distance RMSE measures as a function of window size. The darker line
1388  corresponds to the mean value while the shading reflects standard error.

1389  (B) Mean intra-point Euclidean distances. The darker line corresponds to the mean
1390 value while the shading reflects standard error.

1391  (C) Coefficient of variation of mean intra-point Euclidean distance as a function of

1392  window size.

1393 (D) Recurrence plot of behavior spaces produced from the free-walking dataset. The
1394  proportion of recurrent points given a range of time delays ranging from 0 to 4 seconds
1395 s indicated by the color of the corresponding bins (from light yellow to dark red). Each
1396  horizontal window size bar includes all 14 flies tested.

1397  (E) Mean recurrence times for all 14 flies as a function of window size. The larger circle
1398 corresponds to the population mean while smaller circles correspond to each fly.

1399  (F) Maximum recurrence times for all 14 flies as a function of window size. Each point
1400 reflects the bin in which the largest proportion of points displayed recurrence. The larger
1401 circle corresponds to the population mean while smaller circles correspond to each fly.
1402  (G) Pathways through the locomotor behavior space for all 14 control flies, produced by
1403  connecting temporally adjacent windows with partially transparent lines.

1404  (H) Bar plot comparing the percent of behavior space bins that were visited by at least n
1405 individuals. Bars are color coded from blue to red to correspond to (C).

1406 () Locomotor behavior space binned to a 64x64 grid. Each bin is colored corresponding
1407  to the number of individuals that visited it.

1408 (J) Density maps for all control flies. Each behavior space corresponds to an individual
1409 and is colored by the kernel density estimate generated for that fly’s trajectory in

1410 behavior space. Darker color corresponds to a greater density in a given region.

1411  (K) Bar plot comparing the percentage of bins in a 64x64 gridded behavior space that
1412 were visited by control flies (purple), optogenetically activated flies (green), or both

1413 (grey).

1414 (L) Behavior space colored by the distribution of overlapping and unique bins. Each bin

1415 is colored by the designations in the bar plot.
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1416 (M) Density maps for optogenetically activated flies. Each behavior space corresponds
1417 to a unique fly (n = 19) and is colored by the kernel density estimate generated for that
1418  fly’s trajectory through behavior space. Darker colors correspond to a greater density in
1419  a given region.
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1448  Figure S3 Drosophila larvae behavioral and neural spaces

1449  (A-C) Procrustes distance (A), mean Euclidean distance (B), and mean recurrence time
1450 (C) as a function of window size for the crawling Drosophila larvae behavior space. The
1451  darker line corresponds to the mean value while the shading reflects standard error.
1452 (D) Scatterplot of the percent variation explained by increasing numbers of principal
1453  components representing the 11 input features used. Dashed line corresponds to 90%
1454  variation explained.

1455  (E) Example distribution of the autocorrelation of position in larval behavior space over
1456 200 seconds. Position was represented by single value encoding of the 64x64 binned
1457  behavior larval space and then used as input to the autocorrelation calculation.

1458  (F-H) Procrustes distance (F), mean Euclidean distance (BG, and mean recurrence
1459 time (H) as a function of window size for the crawling Drosophila larvae neural space. In
1460 this case, the iterative windows procedure was run using fluorescence traces from 7
1461  motor neurons as input. The darker line corresponds to the mean value while the

1462  shading reflects standard error.

1463  (I) The full larval Drosophila neural space, containing 5 independent trials.

1464  (J) The full larval Drosophila neural space, colored by individual trials (denoted in

1465 legend in upper right hand corner).

1466  (K) Larval Drosophila neural space represented as a mean vector field. Color

1467  corresponds to the angle of each vector (reflected by colored circle in the upper left
1468  hand corner).
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1479
1480 Figure S4 Mouse 3D pose behavior space

1481  (A-C) Procrustes distance (A), mean Euclidean distance (B), and mean recurrence time
1482  (C) as a function of window size. The darker line corresponds to the mean value while
1483  the shading reflects standard error.

1484 (D) Heatmaps representing mean 3D pose as a function of behavior space position
1485  (grouped into 25 unique bins). Time points in which each bin was visited were extracted
1486  and then associated with the corresponding moments in the raw 3D imaging data.

1487  These instances were then averaged, producing a mean 3D posture per bin,

1488 represented here as a heatmap (yellow = further from imaging camera; darker red =
1489  closer/higher).

1490 (E) The distributions of the full set of behavioral syllables (identified by MoSeq) in

1491  behavior space. A probability density function across behavior space was computed for
1492  each syllable and then plotted in color on top of the full behavior space (in grey; as in
1493  Figure 5K).
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1494  (F) Fits (r?) of generalized linear models comparing input features and behavior space
1495  position for individual trials/mice. The fit of the model using all trials is denoted by the
1496  grey dashed line.
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1526  Figure S5 Mouse locomotor behavior space and its association with MEC activity
1527  (A) Procrustes distance RMSE measures as a function of window size. The darker line
1528  corresponds to the mean value while the shading reflects standard error.

1529  (B) Mean intra-point Euclidean distances. The darker line corresponds to the mean
1530 value while the shading reflects standard error.

1531  (C) Coefficient of variation of mean intra-point Euclidean distance as a function of

1532  window size.

1533 (D) Recurrence plot of behavior spaces taken from 30 random mouse trials. The

1534  proportion of recurrent points given a range of time delays ranging from 0 to 4 seconds
1535 s indicated by the color of the corresponding bins (from light yellow to dark red). Each
1536  horizontal window size bar includes all 30 mice tested.

1537  (E) Mean recurrence times as a function of window size. The larger circle corresponds
1538  to the population mean while smaller circles correspond to each mouse trial.

1539  (F) Maximum recurrence times as a function of window size. Each point reflects the bin
1540 in which the largest proportion of points displayed recurrence. The larger circle

1541  corresponds to the population mean while smaller circles correspond to each mouse
1542  trial.

1543  (G) Mouse locomotor behavior space, each point corresponds to a temporal window.
1544  (H) Pathways through mouse locomotor behavior space, produced by connecting

1545 temporally adjacent windows with partially transparent lines.

1546 () Mouse locomotor behavior space represented as a vector field. Arrow direction and
1547  magnitude correspond to the angle and mean direction taken after visiting each bin.
1548  (J) Arrow direction and magnitude correspond to the angle and mean direction taken
1549  after visiting each bin. Arrows are colored by the degree of the direction vector

1550 (corresponding to circle in upper left-hand corner).

1551  (K) Distribution of translational velocity across mouse behavior space (darker green
1552  corresponds to higher values).

1553 (L) Distribution of angular velocity across mouse behavior space (darker purple

1554  corresponds to higher values).
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1555 (M) 2-d tuning curves of neural activity (1 second bins) for all MEC neurons. The
1556  ordering of tuning curve position was determined by hierarchical clustering (i.e. more
1557  similar tuning curves are placed adjacent to each other).
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1589  Figure S6: Variation in temporal and rate-based associations between MEC
1590 neurons and behavior

1591  (A) Example cross-correlations between behavior space position and MEC neuron
1592  activity over a 16 second time window. The dotted grey line corresponds to time point
1593  zero. The solid grey line reflects a correlation coefficient of zero.

1594  (B) Example mutual information (MI) tuning curves as a function of binning size of
1595 neural activity. For comparison purposes, Ml is presented as a normalized value in
1596  which each distribution has been divided by its maximum value.

1597  (C) Mean entropy distributions of ten clusters identified using dynamic tree trimming.
1598 Plotted are the distributions for the 75% (top) and 99% (bottom) cutoffs. Mean and
1599 standard error are plotted as well as sample sizes, as in Figure 7E.
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