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Abstract5

Microbiome studies have gained increased attention since many discoveries revealed con-6

nections between human microbiome compositions and diseases. A critical challenge in mi-7

crobiome research is that excess non-biological zeros distort taxon abundances, complicate8

data analysis, and jeopardize the reliability of scientific discoveries. To address this issue,9

we propose the first imputation method, mbImpute, to identify and recover likely non-biological10

zeros by borrowing information jointly from similar samples, similar taxa, and optional metadata11

including sample covariates and taxon phylogeny. Comprehensive simulations verified that12

mbImpute achieved better imputation accuracy under multiple measures than five state-of-13

the-art imputation methods designed for non-microbiome data. In real data applications, we14

demonstrate that mbImpute improved the power and reproducibility of identifying disease-15

related taxa from microbiome data of type 2 diabetes and colorectal cancer.16

Introduction17

Microbiome studies explore the collective genomes of microorganisms living in a certain envi-18

ronment such as soil, sea water, animal skin, and human gut. A large number of studies have19

confirmed the importance of microbiomes in both natural environment and human bodies [1].20

For example, new discoveries have revealed the important roles microbiomes play in complex21

diseases such as obesity [2], diabetes [3], pulmonary disease [4, 5], and cancers [6]. These22

studies have shown the potential of using human microbiomes as biomarkers for disease diagnosis23

or therapeutic targets for disease treatment [7].24

The development of high-throughput sequencing technologies has advanced microbiome stud-25

ies in the last decade [8]. Microbiome studies primarily use two sequencing technologies: the 16S26

ribosomal RNA (rRNA) amplicon sequencing and the shotgun metagenomics sequencing. The27

former specifically sequences 16S rRNAs, which can be used to identify and distinguish microbes28

1 Department of Statistics, University of California, Los Angeles, CA 90095-1554
2 Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854
3 Department of Human Genetics, University of California, Los Angeles, CA 90095-7088
4 Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766
∗ To whom correspondence should be addressed. Email: jli@stat.ucla.edu

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.07.982314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.982314
http://creativecommons.org/licenses/by-nc-nd/4.0/


[9]. The 16S sequencing reads are either clustered into operational taxonomic units (OTUs) [10]29

or mapped to amplicon sequence variants (ASVs) for a higher resolution [11, 12]. The latter, often30

referred to as whole-genome sequencing (WGS), sequences all DNAs in a microbiome sample,31

including whole genomes of microbial species and host DNAs [10, 13–19], and its sequencing32

reads are mapped to known microbiome genome databases to quantify the abundance of each33

microbial species. Despite the vast differences between these two technologies, 16S and WGS34

data can both be processed into a similar data format about abundances of microbes in biological35

samples: a taxon count matrix with rows as samples (which often correspond to subjects) and36

columns as taxa (i.e., OTUs for 16S rRNA data and species for WGS data), and each entry37

corresponds to the number of reads mapped to a taxon in a sample. It is worth noting that the total38

read count per sample, i.e., the sum of entries in a row of the count matrix, differs by five orders39

of magnitude between the two technologies: ∼ 103 per sample for 16S rRNA data and ∼ 108 for40

WGS data [20].41

A critical challenge in microbiome data analysis is the existence of excess zeros in taxon42

counts, a phenomenon prevalent in both 16S rRNA and WGS data [20]. The excess zeros belong43

to three categories by origin: biological, technical, and sampling zeros [21]. Biological zeros44

represent true zero abundances of non-existent taxa in samples. In contrast, both technical and45

sampling zeros are non-biological zeros with different origins: technical zeros arise from pre-46

sequencing experimental artifacts (e.g., DNA degradation during library preparation and inefficient47

sequence amplification due to factors such as GC content bias) [22], while sampling zeros are due48

to limited sequencing depths. Although WGS data have much larger per-sample total read counts49

than 16S data have, they still suffer from excess zeros because they sequence more nucleic acid50

sequences (microbial genomes instead of 16S rRNAs) and widespread host DNA contamination51

reduces the effective sequencing depths for microbial genomes [23–25].52

This data sparsity issue has challenged the statistical analysis of microbiome data, as most53

state-of-the-art methods have poor performance on data containing too many zeros. Adding a54

pseudo-count of one to zeros is a common, simple approach [26, 27], but it is known to be ad-hoc55

and suboptimal as it cannot not distinguish biological zeros from technical and sampling zeros56

[28, 29]. Kaul et al. [30] developed an approach to distinguish these three types of zeros and only57

correct the sampling zeros; however, their correction is still a simple addition of a pseudo-count58

of one, ignoring the fact that the (unobserved) actual counts of these sampling zeros may not be59

exactly one.60

In particular, this data sparsity issue has greatly hindered the differentially abundant (DA) taxon61

analysis, which is to identify the taxa that exhibit significantly different abundances between two62

groups of samples [13]. Microbiome researchers employ two major types of statistical methods63

to identify DA taxa. Methods of the first type are based on parametric models [7, 26, 31–38].64

For example, the zero-inflated negative Binomial generalized linear model (ZINB-GLM) is used65

in [7, 31, 32], the DESeq2-phyloseq method uses the negative Binomial regression [33, 34], and66

the metagenomeSeq method uses the zero-inflated Gaussian model [35]. However, the different67
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parametric model assumptions do not always fit data well [39]. Methods of the second type perform68

non-parametric statistical tests that do not assume specific distributions, and widely-used methods69

include the Wilcoxon rank-sum test [14–19] and ANCOM [27]. A major drawback of these non-70

parametric methods is that a taxon would be called DA if its zero proportions differ significantly71

between two groups of samples, but this difference is unlikely biologically meaningful due to the72

prevalence of technical and sampling zeros. Both types of methods consider taxon abundances73

at one of three scales: counts [7, 31, 32, 34], log-transformed counts [35], and proportions (i.e.,74

each taxon’s count is divided by the total of all taxa’s counts in a sample) [26, 27, 36–38]. We note75

that excess zeros would negatively affect taxon abundances at all the three levels.76

In addition to DA taxon analysis, other microbiome data analyses, such as the construction77

of taxon interaction networks [40–43], are also impeded by the data sparsity challenge. If using78

the zero-inflated modeling approach, each task calls for a specialized model development, which79

is often complicated or unrealistic for most microbiome researchers. Hence, a flexible and robust80

approach is needed to address the data sparsity issue for microbiome research.81

Imputation is a widely-used technique to recover missing data and facilitate data analysis. It82

has various successful applications in many fields such as recommender systems (e.g., the Netflix83

challenge [44]), image and speech reconstruction [45–47], imputation of unmeasured epigenomics84

datasets [48], missing genotype prediction in genome-wide association studies [49], and the85

more recent gene expression recovery in single-cell RNA-sequencing (scRNA-seq) data analysis86

[50–54]. Microbiome and scRNA-seq data have similar count matrix structures if one considers87

samples and taxa as analogs to cells and genes, and both data have excess non-biological zeros.88

Given the successes of scRNA-seq imputation methods, it is reasonable to hypothesize that89

imputation will also relieve the data sparsity issue in microbiome data. Although there are methods90

utilizing matrix completion in the microbiome field, their main purpose is to perform community de-91

tection or dimension reduction instead of imputation [55, 56]. Two distinct features of microbiome92

data make direct application of existing imputation methods suboptimal. First, microbiome data93

are often accompanied by metadata including sample covariates and taxon phylogeny, which,94

however, cannot be used by existing imputation methods. In particular, phylogenetic information is95

known to be valuable for microbiome data analysis [57–64], as taxa closely related in a phylogeny96

are likely to have similar functions and abundances in samples [65–68]. Second, microbiome data97

has a much smaller number of samples (often in hundreds) than the number of cells (often in98

tens of thousands) in scRNA-seq data, making those deep-learning based imputation methods99

inapplicable [54, 69]. On the other hand, the smaller sample size allows microbiome data to afford100

an imputation method that focuses more on imputation accuracy than computational time.101

Here we propose mbImpute, the first imputation method designed for microbiome data, includ-102

ing both 16S and WGS data. mbImpute identifies and corrects zeros and low counts that are103

unlikely biological (for ease of terminology, we will refer to them as non-biological zeros in the104

following text) in microbiome taxon count data. The goal of mbImpute is to provide a principled105

data-driven approach to relieve the data sparsity issue due to excess non-biological zeros. To106
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achieve this, mbImpute leverages three sources of information: a taxon count matrix, sample107

covariates (e.g., sample library size and subjects’ age, gender, and body mass index), and taxon108

phylogeny, with the latter two sources optional. mbImpute takes a two-step approach (Fig. 1):109

it first identifies likely non-biological zeros and second imputes them by borrowing information110

from similar taxa (determined by both phylogeny and counts), similar samples (in terms of taxon111

counts), and sample covariates if available (see illustration of the imputation step in Supplementary112

Fig. S1). The imputed data are expected to contain recovered taxon counts and thus facilitate113

various downstream analyses, such as the identification of DA taxa and the construction of taxon114

interaction networks. Microbiome researchers can use mbImpute to avoid the hassles of handling115

excess zeros in individual analysis tasks and to enjoy the flexibility of building up data analysis116

pipelines.117

Results118

mbImpute outperforms non-microbiome imputation methods in re-119

covering missing taxon abundances and empowering DA taxon iden-120

tification121

As there are no imputation methods for microbiome data, we benchmarked mbImpute against122

five state-of-the-art imputation methods designed for non-microbiome data, including four popular123

scRNA-seq imputation methods (scImpute [50], SAVER [52], MAGIC [51], and ALRA [53]) and a124

widely-used general imputation method softImpute [70]. We designed two simulation studies, and125

the common goal was to obtain a “complete” microbiome dataset without non-biological zeros, so126

that imputation accuracy could be evaluated by comparing the imputed data with the complete127

data. The first study simulated complete data from a generative model that was fitted to a real128

WGS dataset of type 2 diabetes (T2D) samples [18], and the second, more realistic simulation129

study took a sub-dataset with fewer than 15% zeros as the complete data from another real WGS130

dataset of T2D samples [19]. In both simulation studies (see Supplementary), non-biological131

zeros were introduced into the complete data by mimicking the observed zero patterns in real132

datasets, resulting in the zero-inflated data. After applying the six methods to the zero-inflated133

data in both studies, we compared these methods’ imputation accuracy in three aspects: (1) the134

mean squared error (MSE) between the imputed data and the complete data, (2) the Pearson135

correlation between each taxon’s abundances in the imputed data and those in the complete136

data, and (3) the Wasserstein distance between the distribution of taxa’s abundance means and137

standard deviations in the imputed data and that in the complete data. Fig. 2a–d illustrate the138

comparison results, which indicate that mbImpute achieves the best overall performance in all the139

three aspects. In particular, Fig. 2c–d and Supplementary Fig. S2 show that the imputed data by140

mbImpute best resemble the complete data, verifying the advantage of mbImpute in recovering141
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missing taxon abundances in microbiome data.142

We next demonstrated that mbImpute is a robust method. The core of mbImpute is to borrow143

three-way information from similar samples, similar taxa, and sample covariates to impute non-144

biological zeros in microbiome data (see Methods). In the aforementioned second simulation145

study, we broke up similar samples in the real T2D WGS data when we selected the complete146

data, a situation not optimal for mbImpute; however, mbImpute still outperforms existing imputation147

methods (Fig. 2a–b). To further test for the robustness of mbImpute, we designed a third simulation148

study including four simulation schemes, where information useful for imputation was encoded in149

sample covariates only, samples only, taxa only, or three sources together (see Supplementary).150

Supplementary Fig. S3a shows that, after applied to the zero-inflated data, mbImpute effectively151

recovers non-biological zeros and reduces the MSE under every scheme. These results verify the152

robustness of mbImpute in selectively leveraging information useful for imputation.153

We designed the fourth simulation to mimic a typical microbiome WGS study that aims to154

identify DA taxa between two sample groups. We simulated data for 300 taxa in 120 samples, 60155

per group (see Supplementary). Supplementary Fig. S3b shows the two-dimensional visualization156

of the complete data (without non-biological zeros), zero-inflated data (with non-biological zeros),157

and imputed data (after mbImpute was applied to zero-inflated data). Compared with the zero-158

inflated data, the 120 samples are more clearly separated into two groups after imputation. We159

next performed the DA taxon analysis to verify that imputation can boost the power of detecting DA160

taxa from the zero-inflated data. Specifically, we applied three state-of-the-art DA methods: the161

Wilcoxon rank-sum test, ANCOM, and ZINB-GLM. Among the available DA methods, the Wilcoxon162

rank-sum test is the most widely-used in microbiome studies [14–19], ANCOM is one of the most-163

cited microbiome-specific DA method [27], and ZINB-GLM was found as the most desirable count-164

model-based method in a comparative study [31]. We also implemented the imputation-empowerd165

DA analysis: applying an imputation method to the zero-inflated data, and then identifying DA taxa166

from the imputed data. We included two imputation methods: mbImpute and softImpute. We167

chose softImpute as the benchmark imputation method in this DA analysis for two reasons: first,168

softImptue is a general imputation method unspecific to a particular data type; second, softImpute169

was observed to have good performance in the first two simulations (Fig. 2a–d). After imputation,170

we employed the two-sample t-test for DA taxon identification, because each taxon’s logarithmic171

transformed counts (in the complete data) follow a Normal distribution in each sample group (see172

Supplementary); thus, if imputation is effective, the Normal distributions should be recovered and173

the t-test should be more powerful than the Wilcoxon test. To evaluate the accuracy of DA taxon174

identification, we used the DA taxa detected by the t-test on the complete data as the ground truth.175

Then we calculated the precision, recall and F1 score of each method by comparing its detected176

DA taxa to the ground truth. Under the p-value threshold of 0.1 (Supplementary Fig. S3c left),177

the two imputation-empowered DA methods achieve better recall and F1 scores than the three178

existing DA methods. Although ANCOM has the highest precision, it has the lowest and close-to-179

zero recall, suggesting that it finds too few DA taxa. Between mbImpute and softImpute, results180
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under this p-value threshold do not draw a clear conclusion: mbImpute has a better precision181

but a worse recall, and the two methods have similar F1 scores. To thoroughly compare the five182

methods, we plotted their performance at varying thresholds in receiver operating characteristic183

(ROC) curves (Supplementary Fig. S3c right), which show that mbImpute has the largest area184

under the curve (AUC) and outperforms the three DA methods and softImpute.185

To further evaluate the performance of mbImpute on 16S rRNA sequencing data, we used a186

16S simulator sparseDOSSA [71] to generate abundances of 150 taxa in 100 samples under two187

conditions (see Supplementary). Among these 150 taxa, 45 are predefined as truly DA taxa.188

We applied six existing DA methods, including the Wilcoxon rank-sum test, the two-sample t-189

test, ANCOM, ZINB/NB-GLM, DESeq2-phyloseq, and metagenomeSeq. (Note that ZINB-GLM190

is applied to the zero-inflated data, while NB-GLM is applied to the imputed data because the191

imputed data are no longer zero inflated.) To evaluate the accuracy of DA taxon identification,192

we calculated the precision, recall and F1 score of each method, with or without using mbImpute193

as a preceding step, by comparing each method’s detected DA taxa to the truly DA taxa. Under194

the p-value threshold of 0.1, the mbImpute-empowered DA methods consistently have better F1195

scores than those of the same DA methods without imputation. In particular, mbImpute improves196

both precision and recall rates of four DA methods: the t-test, ZINB/NB-GLM, DESeq2-phyloseq,197

and metagenomeSeq (Fig. 2e).198

mbImpute improves the reproducibility and reliability of identifying199

T2D microbiome markers200

To demonstrate that mbImpute can benefit the identification of DA taxa in real microbiome data,201

we applied the six DA methods to two T2D WGS datasets: Qin et al. and Karlsson et al., with202

or without using mbImpute as a preceding step. We observed that taxon abundance distributions203

are approximately Normal after imputation (Supplementary Fig. S4). We analyzed the identified204

T2D-enriched taxa in two aspects. First, we examined the overlap of these identified taxa by205

each method, with or without mbImpute, between the two datasets. Fig. 3a shows that mbImpute206

improves the reproducibility of all these DA methods, whose identified T2D-enriched taxa have207

increased overlaps after mbImpute is used (see Venn diagrams in Supplementary Fig. S5).208

Second, we investigated whether the T2D-enriched taxa identified in one dataset are reliable209

biomarkers for predicting T2D in another dataset. Towards this goal, we trained a random forest210

classifier [72] on one dataset with features as the T2D-enriched taxa identified from the other211

dataset. Then we calculated the 5-fold cross-validation accuracy, which reflects the reliability of212

the identified T2D-enriched taxa as biomarkers. Fig. 3b shows that mbImpute improves this213

reliability for all the DA methods but ANCOM, whose accuracy stays unchanged after mbImpute.214

The improvement is especially significant for the Wilcoxon rank-sum test, ZINB/NB-GLM, DESeq2-215

phyloseq, and metagenomeSeq. For example, the classification accuracy of the T2D-enriched216

taxa identified by DESeq2-phyloseq increases from 62% without mbImpute to 75% with mbImpute.217
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As a positive control, we also evaluated the classification accuracy when no DA methods are218

used but random forest automatically selects predictive features from all taxa. Encouragingly, we219

found that the accuracy becomes comparable to the positive control when ZINB/NB-GLM and220

DESeq2-phyloseq are used after mbImpute. Our results demonstrate that mbImpute improves the221

reproducibility of DA taxon identification between two T2D datasets, and that the identified DA taxa222

after mbImpute have better cross-dataset predictive power.223

Further, We focused on four genera: Streptococcus, Lactobacillus, Clostridium, and Actino-224

myces, which have all been previously reported as enriched in T2D [73–79] (see Supplementary225

for the literature evidence). In these four genera, the mbImpute-empowered t-test discovers226

species-level taxa that are DA and highly enriched in T2D samples but missed by the Wilcoxon test227

applied to the raw data, as shown in Fig. 4a. Moreover, we observed an interesting phenomenon:228

some Clostridium species taxa (Fig. 4a left panel, the third genus from the top) are no longer229

detected as enriched in T2D samples after imputation, seemingly violating our claim that mbImpute230

can empower DA taxon identification as we observed in the fourth simulation. However, by231

examining the abundance distributions of such taxa, Clostridium symbiosum and Clostridium232

citroniae for example (Fig. 4a right panel top row), we found that their non-zero abundance233

distributions are hardly distinguishable between the T2D and control samples, suggesting that234

they are not informative markers for T2D. Nonetheless, the Wilcoxon test identifies them as DA in235

the raw data because they have different zero proportions between the T2D and control samples.236

This result shows that mbImpute can help reduce likely false positive DA taxa identified due to237

excess non-biological zeros. See Supplementary for a discussion on statistical definitions of DA238

taxa.239

We then compared mbImpute with softImpute using Clostridium symbiosum and Clostridium240

citroniae as examples. We observe that mbImpute retains well the distributions of non-zero241

abundances (Fig. 4a right panel middle row), while softImpute alters the distributions by in-242

troducing artificial spikes and shrinking the variance (Fig. 4a right panel bottom row). Such243

distortion of abundance distributions may mislead the DA analysis. Indeed, we found that the244

softImpute-empowered t-test identifies Clostridium symbiosum and Clostridium citroniae as DA245

due to the artificial distortion by softImpute. A possible reason is that softImpute is a low-rank246

matrix factorization method, which imputes missing matrix entries by assuming a global low-rank247

matrix structure. In contrast, mbImpute focuses more on local structures, i.e., how a matrix entry248

depends on other entries in the same row or column. The fact that mbImpute better preserves249

non-zero abundance distributions makes it a more reliable imputation method than softImpute for250

microbiome data.251
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mbImpute preserves distributional characteristics of taxa’s non-zero252

abundances and recovers downsampling zeros253

In the T2D WGS data analysis, we have found that mbImpute can well maintain the distributions254

of taxa’s non-zero abundances. To further verify the property of mbImpute in preserving char-255

acteristics of non-zero abundances, we examined pairwise taxon-taxon relationships in the two256

T2D WGS datasets: Qin et al. and Karlsson et al. For a pair of taxa, we estimated two Pearson257

correlations based on the raw data: one using all the samples (“raw all-sample correlation”) and the258

other only using the samples where both taxa have non-zero abundances (“raw non-zero-sample259

correlation”). We also estimated a Pearson correlation based on the imputed data by mbImpute,260

using all the samples (“imputed all-sample correlation”). As shown in Fig. 5, there are vast261

differences between the raw all-sample correlations and the corresponding raw non-zero-sample262

correlations. However, the imputed all-sample correlations much resemble the corresponding263

raw non-zero-sample correlations, suggesting that mbImpute well preserves pairwise taxon-taxon264

correlations encoded in taxa’s non-zero abundances.265

We also explored the linear relationship of each taxon pair using the standard major axis (SMA)266

regression, which, unlike the least-squares regression, treats two taxa symmetric and considers267

randomness in both taxa’s abundances. For a pair of taxa, we performed two SMA regressions268

on the raw data: one using all the samples (“raw all-sample regression”) and the other using only269

the samples where both taxa have non-zero abundances (“raw non-zero-sample regression”). We270

also performed the SMA regression on the imputed data by mbImpute, using all the samples271

(“imputed all-sample regression”). Fig. 5 shows that the raw all-sample regressions and the raw272

non-zero-sample regressions return strongly different lines. Especially, the two lines between the273

two taxa Eubacterium sirasum and Ruminococcus obeum in the Karlsson et al. data (Fig. 5b274

bottom left) exhibit slopes of opposite signs. In contrast, the imputed all-sample regressions275

output lines with similar slopes to those of the raw non-zero-sample regressions. This result276

again confirms mbImpute’s capacity to preserve characteristics of taxa’s non-zero abundances277

in microbiome data.278

Our results echo existing concerns about spurious taxon-taxon correlations estimated from mi-279

crobiome data due to excess non-biological zeros [80, 81]. In other words, taxon-taxon correlations280

cannot be accurately estimated from raw data. Without imputation, an intuitive approach is to use281

taxa’s non-zero abundances to estimate taxon-taxon correlations; however, this approach reduces282

the sample size for estimating each taxon pair’s correlation, as the samples with zero abundances283

for either taxon would not be used, and it also makes different taxon pairs’ correlation estimates284

rely on different samples. To address these issues, mbImpute provides another approach: its285

imputed data allow taxon-taxon correlations to be estimated from all the available samples. We286

have verified this mbImpute approach by the fact that the correlation estimates from the imputed287

data resemble those from the non-zero abundances in the raw data.288

In addition, based on the T2D WGS dataset generated by Qin et al., we verified mbImpute’s ca-289
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Removal rate 40% 70%
% of downsampling zeros indentified 95.83% ± 0.46% 92.83% ± 0.92%
Pearson correlation before imputation 0.7565 ± 0.0023 0.5261 ± 0.0016
Pearson correlation after imputation 0.8747 ± 0.0100 0.7582 ± 0.0235

Table 1: Effectiveness of mbImpute in indentifying zeros due to downsampling of Qin et al.’s T2D WGS dataset. Two
downsampled datasets with removal rates 40% and 70% were constructed. The first row lists the percentages of
downsampling zeros identified by mbImpute; the second row lists the Pearson correlations between each of the two
downsampled matrices and the original matrix (on the log scale) before imputation; the third row lists the Pearson
correlations (on the log scale) after mbImpute was used. For each number, we included its error margin as the 1.96
times of the corresponding standard error over 10 replications of downsampling.

pacity to identify non-biological zeros generated by downsampling. In each sample (i.e., each row290

in the sample-by-taxon count matrix), we assigned every taxon a sampling probability proportional291

to its count, i.e., the larger the count, the more likely the taxon is to be sampled; based on these292

probabilities, we sampled 60% or 30% of the non-zero taxon counts, and we set the unsampled293

counts to zeros (corresponding to a removal rate of 40% or 70%). After mbImpute is applied to the294

downsampled count matrices, we found that mbImpute correctly identifies 95.83% and 92.83%295

of the newly introduced non-biological zeros under the two downsampling schemes. Before296

imputation, the Pearson correlations between the two downsampled matrices and the original297

matrix (on the log scale) are 0.76 and 0.53. After applying mbImpute to all the three matrices,298

the correlations are increased to 0.87 and 0.76 (Table 1). This result confirms the effectiveness of299

mbImpute in recovering zeros due to downsampling.300

mbImpute increases the power and reproducibility of identifying mi-301

crobiome markers for colorectal cancer302

Colorectal cancer (CRC) is one of the most frequently diagnosed cancer and a leading cause303

of cancer mortality worldwide [14, 15]. We applied the six DA methods to four CRC datasets:304

Zeller et al., Feng et al., Vogtmann et al. , and Yu et al., with or without using mbImpute as a305

preceding step. We also evaluated two aspects of DA taxon identification as we did in the afore-306

mentioned T2D analysis: the number of identified DA taxa identified in at least two datasets and the307

across-dataset classification accuracy when the identified DA taxa are used as features. Fig. 3c308

shows that mbImpute improves the reproducibility of all these DA methods, whose identified CRC-309

enriched taxa have increased overlaps after mbImpute is used (see diagrams in Supplementary310

Fig. S6). Then we investigated whether the CRC-enriched taxa identified in one dataset are311

reliable biomarkers for predicting CRC in another dataset. We used the same procedures as in312

the T2D analysis to obtain the classification results based on random forest. Fig. 3d shows that313

mbImpute improves the across-dataset classification accuracy for all the six DA methods. We314

again set a positive control by allowing random forest to automatically select predictive features315

from all taxa, and we found that the accuracy of all DA methods becomes comparable to or even316

surpasses the positive control after mbImpute is used.317
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We then focused on five genera: Fusobacterium, Peptostreptococcus, Prevotella, Gemella,318

and Streptococcus, which have been previously reported as enriched in CRC [82–87] (see Sup-319

plementary for the literature evidence). In these five genera, the mbImpute-empowered t-test320

discovers species-level taxa that are DA and highly enriched in CRC samples but missed by321

the Wilcoxon test applied to the raw data, as shown in Fig. 4b. We use Peptostreptococcus322

anaerobius as an example to demonstrate the effectiveness of mbImpute in empowering DA taxon323

identification. This species taxon is identified as enriched in CRC samples by the Wilcoxon test in324

only two out of the four raw datasets generated by different labs. By closely examining this taxon’s325

abundance distributions (Fig. 4b right panel top row), we observed that non-zero abundances326

consistently have higher densities in the CRC samples than in the control, suggesting that this327

taxon should have been identified as DA in all the four datasets. The Wilcoxon test fails to identify328

it in Zeller et al.’s and Vogtmann et al.’s data because the dominance of zeros obscures the329

differences between the non-zero abundances in the CRC and control samples. However, these330

non-zero abundances are informative for distinguishing the CRC samples from the control; that331

is, if we detect this taxon with a high abundance in a patient, we should be aware of the potential332

implication of CRC and perform further diagnosis. mbImpute helps amplify the non-zero signals333

by reducing likely non-biological zeros (Fig. 4b right panel bottom row), thus empowering the334

identification of this taxon as DA in all the four datasets (i.e., smaller p-values after imputation, Fig.335

4b right panel).336

mbImpute increases the similarity of microbial community structure337

between 16S rRNA and WGS data338

We further show that mbImpute can enhance the similarity of taxon-taxon correlations inferred339

from micrbiome data measured by two technologies—16S rRNA sequencing and WGS. We used340

two microbiome datasets of healthy human stool samples: a 16S rRNA dataset from the Human341

Microbiome Project [88] and a WGS dataset from the control samples in Qin et al. We compared342

genus-level taxon-taxon correlations between these two datasets, and we did the comparison343

again after applying mbImpute. Fig. 6 shows that mbImpute increases the similarity between344

the taxon correlation structures in the two datasets. Before imputation, the Pearson correlation345

between the two correlation matrices (one computed from 16S rRNA taxon abundances and346

the other from WGS taxon abundances) is 0.59; mbImpute increases the correlation to 0.64. In347

particular, we observe three taxon groups (highlighted by magenta, green, and purple squares in348

Fig. 6) supported by both 16S rRNA and WGS data after imputation. Notably, in the magenta349

squares, Acidaminococcus has correlations with Dialister and Blautia only after imputation, and350

this result is consistent with the literature: Acidaminococcus and Dialister are both reported to351

have low abundances in healthy human stool samples [89]; Acidaminococcus and Blautia are352

both associated with risks of T2D and obesity, lipid profiles, and homeostatic model assessment of353

insulin resistance [90]. The green squares contain three bile-tolerant genera: Alistipes, Bilophila,354
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and Bacteroides [91]. The raw 16S and WGS data only reveal the correlation between Bacteroides355

and Alistipes, but mbImpute recovers the correlations Bilophila has with Alistipes and Bacteroides.356

The purple squares indicate a strong correlation between Sutterella and Prevotella after imputa-357

tion, yet this correlation is not observed in raw WGS data. We verified this correlation in the358

MACADAM database [92], which contains metabolic pathways associated with microbes. Out of359

1260 pathways, Sutterella and Prevotella are associated with 154 and 278 pathways, respectively,360

and 122 pathways are in common; Fisher’s exact test finds that the overlap is statistically significant361

(p-value < 2.2 × 10−16), suggesting that Sutterella and Prevotella are indeed functionally related.362

Overall, our results indicate that mbImpute can facilitate meta-analysis of 16S and WGS data by363

alleviating the hurdle of excess non-biological zeros.364

Discussion365

A critical challenge in microbiome data analysis is statistical inference of taxon abundance from366

highly sparse and noisy data. Our proposed method, mbImpute, will address this challenge and367

facilitate analysis of both 16S and WGS data. mbImpute works by correcting non-biological zeros368

and retaining taxa’s non-zero abundance distributions after imputation. As the first imputation369

method designed for microbiome data, mbImpute is shown to outperform multiple state-of-the-370

art imputation methods developed for other data types. Regarding applications of mbImpute, we371

demonstrate that the mbImpute-empowered DA analysis has advantages over the existing DA372

methods in three aspects. First, mbImpute increases the power of DA taxon identification by373

recovering the taxa that are missed by the existing methods (due to excess zeros) but should374

be called DA (i.e., having non-zero abundances exhibiting different means between two sample375

groups). Second, mbImpute reduces the false positive taxa, which are identified by the existing376

methods (due to different proportions of zeros) but should not be called DA (i.e., having similar377

non-zero abundances between two sample groups). Third, mbImpute improves the reproducibility378

of DA taxon identification across studies and the consistency of microbial community detection379

between 16S and WGS data. Furthermore, we found literature evidence for the DA taxa identified380

as enriched in T2D or CRC samples after mbImpute was applied, supporting the application381

potential of mbImpute in revealing microbiome markers for disease diagnosis and therapeutics.382

There has been a long-standing concern about sample contamination in microbiome sequenc-383

ing data, e.g. contamination from DNA extraction kits and laboratory reagents [1, 3]. Existing384

studies have attempted to address this issue via calibrated sequencing operations [2, 3, 6] and385

computational methods [4,5]. We recommend researchers to perform contamination removal386

before applying mbImpute. Moreover, by its design, mbImpute is robust to certain types of sample387

contamination that result in outlier taxa and samples. For each outlier taxon, mbImpute would388

borrow little information from other taxa to impute this outlier taxon’s abundances. Similarly,389

mbImpute is robust to the existence of outlier samples that do not resemble any other sample.390

In statistical inference, a popular and powerful technique is the use of indirect evidence by391
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borrowing information from other observations, as seen in regression, shrinkage estimation, em-392

pirical Bayes, among many others [93]. Imputation follows the indirect evidence principle, where393

the most critical issue is to decide what observations to borrow information from so as to improve394

data quality instead of introducing excess biases. To achieve this, mbImpute employs penalized395

regression to selectively leverage similar samples, similar taxa, and sample covariates to impute396

likely non-biological zeros, whose identification also follows the indirect evidence principle by397

incorporating sample covariates into consideration. mbImpute also provides a flexible framework398

to make use of microbiome metadata: it selectively borrows metadata information when available,399

but it does not rely on the existence of metadata (see Methods).400

In the comparison of mbImpute with softImpute, a general matrix imputation method widely401

used in other fields, we observed that softImpute’s imputed taxon abundances exhibit artificial402

spikes and smaller variances than those of the original non-zero abundances, possibly due to its403

low-rank assumption. In contrast, mbImpute is a regression-based method that focuses more on404

local matrix structures, and we found that it retains well the original non-zero abundance distribu-405

tions. We will investigate the methodological differences between mbImpute and softImpute in a406

future study.407

Moreover, we observed that, similar to each taxon’s non-zero abundances, the imputed abun-408

dances exhibit a bell-shaped distribution across samples on the logarithmic scale. This suggests409

that statistical methods utilizing Normal distributional assumptions become suitable and applicable410

to imputed taxon abundances. For example, we have shown that the two-sample t-test works411

well with the imputed data in the identification of DA taxa. In addition to DA analysis, another412

possible use of the imputed microbiome data is to construct a taxon-taxon interaction network, to413

which network analysis methods may be applied to find taxon modules and hub taxa [94]. As a414

preliminary exploration, we constructed Bayesian networks of taxa based on the two T2D datasets415

Qin et al. and Karlsson et al. after applying mbImpute. Interesting shifts are observed in taxon416

interactions from control samples to T2D samples (Supplementary Figs. S7–8). For example,417

two genera, Ruminococcus and Eubacterium, have interactive species in control samples but not418

in T2D samples. In future research, differential network analysis methods can be applied to find419

taxon communities whose interactions differ between two sample groups.420

Methods421

mbImpute methodology422

Here we describe mbImpute, a statistical method that corrects prevalent non-biological zeros in423

microbiome data. As an overview, mbImpute takes an taxon count matrix as input, pre-processes424

the data, identifies the likely non-biological zeros and imputes them based on the input count425

matrix, sample metadata, and taxon phylogeny, and finally outputs an imputed count matrix.426
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Notations427

We denote the sample-by-taxon taxa count matrix as M = (Mij) ∈ Nn×m, where n is the number428

of samples and m is the number of taxa. We denote the sample covariate matrix (i.e., metadata)429

as X ∈ IRn×q, where q denotes the number of covariates plus one (for the intercept). (By default,430

mbImpute includes sample library size as a covariate.) In addition, we define a phylogenetic431

distance matrix of taxa as D = (Djj′) ∈ Nm×m, where Djj′ represents the number of edges432

connecting taxa j and j′ in the phylogenetic tree.433

Data pre-processing434

mbImpute requires every taxon’s counts across samples to be on the same scale before impu-435

tation. If this condition is unmet, normalization is needed. However, how to properly normalize436

microbiome data is challenging, and multiple normalization methods have been developed in437

recent years [29, 95, 96]. To give users the flexibility of choosing an appropriate normalization438

method, mbImpute allows users to directly input a normalized count matrix by specifying that the439

input matrix does not need normalization. Otherwise, mbImpute normalizes samples by library440

size.441

Default normalization (optional) To account for the varying library sizes (i.e., total counts)
of samples, mbImpute first normalizes the count matrix M by row. The normalized count
matrix is denoted as M(N ) = (M

(N )
ij ) ∈ Nn×m, where

M
(N )
ij = 106 · Mij∑m

j′=1Mij′
.

After this normalization, every sample has a total count of 106.
442

First, mbImpute filters out taxa that have too few non-zero counts to avoid imputing these
taxa’s zeros, which are likely biological. This filtering step is exactly the same as how Kaul et al.
[30] define structural zeros, i.e., true zeros. More specifically, taxon j would be filtered out if the
95% confidence interval of its expected non-zero proportion does not cover zero:

p̃j − 1.96

√
p̃j(1− p̃j)

n
> 0 ,

where p̃j is the observed non-zero proportion of taxon j. This filtering step is called the binomial443

test. In the mbImpute package, users can choose the filtering threshold.444

Next, mbImpute applies the logarithmic transformation to the normalized counts so as to
reduce the effects of extremely large counts [97]. The resulted log-transformed normalized matrix
is denoted as Y = (Yij) ∈ Nn×m, with

Yij = log10

(
M

(N )
ij + 1.01

)
,
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where the value 1.01 is added to make Yij > 0 to avoid the occurrence of infinite values in a later445

parameter estimation step, following Li and Li [50, 98]. This logarithmic transformation allows us446

to fit a continuous probability distribution to the transformed data, thus simplifying the statistical447

modeling. In the following text, we refer to Y as the sample-by-taxon abundance matrix.448

mbImpute step 1: identification of taxon abundances that need imputation449

mbImpute assumes that each taxon’s abundances (across samples within a sample group), i.e.,
a column in Y, follow a mixture model. The model consists of two components: a Gamma
distribution for the taxon’s false zero and low abundances and a Normal distribution for the taxon’s
actual abundances, with the Normal mean incorporating sample covariate information (including
sample library size as a covariate). Specifically, mbImpute assumes that the abundance of taxon
j in sample i, Yij , follows the following mixture distribution:

Yij ∼ pj · Γ (αj , βj) + (1− pj) · N
(
XT
i·γj , σ

2
j

)
,

where pj ∈ (0, 1) is the missing rate, i.e., the probability that taxon j is falsely undetected, Γ (αj , βj)450

denotes the Gamma distribution with shape parameter αj > 0 and rate parameter βj > 0, and451

N
(
XT
i·γj , σ

2
j

)
denotes the Normal distribution with mean XT

i·γj and standard deviation σj > 0.452

In other words, with probability pj , Yij is a missing value that needs imputation; with probability453

1 − pj , Yij does not need imputation but reflects the actual abundance of taxon j in sample i.454

mbImpute models the Normal mean parameter as a linear function of sample covariates: XT
i·γj ,455

where Xi· ∈ IRq denotes the i-th row in the covariate matrix X, i.e., the covariates of sample i,456

and γj ∈ IRq represents the q-dimensional covariate effect vector of taxon j. This allows a taxon457

to have similar expected (actual) abundances in samples with similar covariates.458

The intuition behind this model is that taxon j’s actual abundance in a sample (i.e., subject) is459

drawn from a Normal distribution, whose mean depicts the expected abundance given the sample460

covariates. However, due to the under-sampling issue in sequencing, false zero or low counts461

could have been introduced into the data, creating another mode near zero in taxon j’s abundance462

distribution. mbImpute models that mode using a Gamma distribution with mean αj/βj , which is463

close to zero.464

mbImpute fits this mixture model to taxon j’s abundances using the Expectation-Maximization465

(EM) algorithm to obtain the maximum likelihood estimates p̂j , α̂j , β̂j , γ̂j , and σ̂2
j . Supplementary466

Fig. S9 shows four examples where the fitted mixture model well captures the bimodality of an in-467

dividual taxon’s abundance distribution. However, some taxa are observed to have an abundance468

distribution containing a single mode that can be well modelled by a Normal distribution. When469

that occurs, the EM algorithm would encounter a convergence issue. To fix this, mbImpute uses470

a likelihood ratio test (LRT) to first decide if the Gamma-Normal mixture model fits to taxon j’s471

abundances significantly better than a Normal distribution Yij ∼ N
(
XT
i·ηj , ω

2
j

)
does. Given the472

maximum likelihood estimates η̂j and ω̂2
j and under the assumption that Yij ’s are all independent,473
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the LRT statistic of taxon j is:474

Λj = −2 ln
∏n

i=1 fN (Yij ;XT
i·η̂j ,ω̂

2
j )∏n

i=1[p̂j ·fΓ(Yij ;α̂j ,β̂j)+(1−p̂j)·fN (Yij ;XT
i·γ̂j ,σ̂

2
j )]

,

which asymptotically follows a Chi-square distribution with 3 degrees of freedom (because the475

mixture model has three more parameters than in the Normal model) under the null hypothesis476

that the Normal model is the correct model. If the LRT p-value ≤ 0.05, mbImpute uses the mixture477

model to decide which of taxon j’s abundances need imputation. Specifically, mbImpute decides if478

Yij needs imputation based on the estimated posterior probability that Yij comes from the Gamma479

component:480

dij =
p̂j ·fΓ(Yij ;α̂j ,β̂j)

p̂j ·fΓ(Yij ;α̂j ,β̂j)+(1−p̂j)·fN (Yij ;XT
i·γ̂j ,σ̂

2
j )
,

where Γ(·; α̂j , β̂j) and fN (·;XT
i· γ̂j , σ̂

2
j ) represent the probability density functions of the estimated481

Gamma and Normal components in the mixture model. Otherwise, if the LRT p-value > 0.05,482

mbImpute concludes that none of taxon j’s abundances need imputation and sets d1j = · · · =483

dnj = 0.484

Based on the dij ’s, mbImpute defines a set Ω of (sample, taxon) pairs whose abundances are
unlikely missing and thus do not need imputation:

Ω = {(i, j) : dij < dthre, i = 1, . . . , n; j = 1, . . . ,m} ,

and a complement set Ωc containing other (sample, taxon) pairs whose abundances need impu-
tation:

Ωc = {(i, j) : dij ≥ dthre, i = 1, . . . , n; j = 1, . . . ,m} .

Although dthre = 0.5 is used as the default threshold on dij ’s to decide the abundances that need485

imputation, mbImpute is fairly robust to this threshold choice because most dij ’s are concentrated486

around 0 or 1. We show this phenomenon in Supplementary Fig. S10, which displays the487

distribution of all the dij ’s in the data from Zeller et al. [14], Feng et al. [15], Yu et al. [16], Vogtmann488

et al. [17], Qin et al. [19], and Karlsson et al. [18].489

To summarize, mbImpute does not impute all zeros in the taxon count matrix; instead, it first490

identifies the abundances that are likely missing using a mixture-modelling approach, and it then491

only imputes these values in the next step.492

mbImpute step 2: imputation of the missing taxon abundances493

In step 1, mbImpute identifies a set Ω of the (sample, taxon) pairs whose abundances do not need
imputation. To impute the abundances in Ωc, mbImpute first learns inter-sample and inter-taxon
relationships from Ω by training a predictive model for Yij , the abundance of taxon j in sample
i. The rationale is that taxon j should have similar abundances in similar samples, and that in
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every sample, the taxa similar to taxon j should have abundances similar to taxon j’s abundance.
In addition, sample covariates are assumed to carry predictive information of taxon abundances.
Hence, for interpretability and stability reasons, mbImpute uses a linear model to combine the
predictive power of similar taxa, similar samples, and sample covariates:

Yij = YT
i· κj + YT

·j τi +XT
i·ζj + εij ,

where Yi· ∈ IRm denotes the m taxa’s abundances in sample i, Y·j ∈ IRn denotes taxon j’s
abundances in the n samples, Xi· ∈ IRq denotes sample i’s covariates (including the intercept),
and εij is the error term. The parameters to be estimated include κj ∈ IRm, τi ∈ IRn and ζj ∈
IRq, i = 1, . . . , n; j = 1, . . . ,m. Note that κj represents the m taxa’s coefficients (i.e., weights)
for predicting taxon j, with the j-th entry set to zero, so that taxon j would not predict itself; τi
represents the n samples’ coefficients (i.e., weights) for predicting sample i, with the i-th entry
set to zero, so that sample i would not predict itself; ζj represents the coefficients of sample
covariates for predicting taxon j. In the model, the first term YT

i· κj borrows information across
taxa, the second term YT

·j τi borrows information across samples, and the third term XT
i·ζj borrows

information from sample covariates. The total number of unknown parameters is m(m−1)+n(n−
1) + mq, while our data Y and X together have nm + nq values only. Given that often m � n,
the parameter estimation problem is high dimensional, as the number of parameters far exceeds
the number of data points. mbImpute performs regularized parameter estimation by using the
Lasso-type `1 penalty, which leads to good prediction and simultaneously selects predictors (i.e.,
similar samples and similar taxa) to ease interpretation. That is, mbImpute estimates the above
parameters by minimizing the following loss function:

L
(
{κj , ζj}mj=1, {τi}ni=1

)
:=

∑
(i,j)∈Ω

[
Yij −

(
YT
i· κj + YT

·j τi +XT
i·ζj

)]2
+ λ

 m∑
j=1

m∑
j′ 6=j

Dψ
jj′ |κjj′ |+

n∑
i=1

n∑
i′ 6=i
|τii′ |

 ,

where λ, ψ ≥ 0 are tuning parameters chosen by cross-validation,Djj′ represents the phylogenetic494

distance between taxa j and j′, κjj′ represents the j′-th element of κj , and τii′ represents the i′-th495

element of τi. Here Dψ
jj′ , i.e., Djj′ to the power of ψ, represents the penalty weight of |κjj′ |.The496

intuition is that if two taxa are closer in the phylogenetic tree, they are more closely related in497

evolution and tend to have more similar DNA sequences and biological functions [99, 100], and498

thus we want to borrow more information between them. For example, if Dj1j2 > Dj1j3 , i.e.,499

taxa j1 and j2 are farther away than taxa j1 and j3 in the phylogenetic tree, then the estimate of500

κj1j2 will be more likely shrunk to zero than the estimate of κj1j3 , and mbImpute would use taxon501

j3’s abundance more than taxon j2’s to predict taxon j1’s abundance. The tuning parameter ψ502

is introduced because the distance Djj′ , the number of edges connecting taxa j and j′, may not503

be the best penalty weight for prediction purpose. Choosing ψ by cross-validation is expected to504

enhance the predication accuracy.505

mbImpute performs the estimation using the R package glmnet [101] and obtains the param-

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.07.982314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.982314
http://creativecommons.org/licenses/by-nc-nd/4.0/


eter estimates: κ̂j ∈ IRm, τ̂i ∈ IRn, and ζ̂j ∈ IRq, i = 1, . . . , n; j = 1, . . . ,m. Finally, for (i, j) ∈ Ωc,
the abundance of taxon j in sample i is imputed as:

Ŷ ij = YT
i· κ̂j + YT

·j τ̂i +XT
i· ζ̂j ,

and mbImpute does not alter Yij if (i, j) ∈ Ω.506

Note that mbImpute does not require the availability of the sample covariate matrix X or the
phylogenetic tree. In the absence of sample covariates, the loss function becomes

L
(
{κj}mj=1, {τi}ni=1

)
:=

∑
(i,j)∈Ω

(
Yij −

(
YT
i· κj + YT

·j τi

))2
+ λ

 m∑
j=1

m∑
j′ 6=j

Dψ
jj′ |κjj′ |+

n∑
i=1

n∑
i′ 6=i
|τii′ |

 ,

minimizing which returns the parameter estimates: κ̂j ∈ IRm and τ̂i ∈ IRn, i = 1, . . . , n; j =

1, . . . ,m. Finally, for (i, j) ∈ Ωc, the abundance of taxon j in sample i is imputed as:

Ŷ ij = YT
i· κ̂j + YT

·j τ̂i ,

and mbImpute does not alter Yij if (i, j) ∈ Ω. In the absence of the phylogenetic tree, mbImpute507

sets Djj′ = 1 for all j 6= j′ ∈ {1, . . . ,m}.508

When m is large, mbImpute does not estimate m(m− 1) +n(n− 1) +mq parameters but uses509

the following strategy to increase its computational efficiency. For each taxon j, mbImpute selects510

the k taxa closest to it (excluding itself) in phylogenetic distance and sets the other (n − k) taxa’s511

coefficients in κj to zero. This strategy reduces the number of parameters to mk + n(n− 1) +mq512

and the computational complexity from O(m2) to O(m).513

In summary, mbImpute step 2 includes two phases: training on Ω and prediction (imputation)514

on Ωc, as illustrated in Supplementary Fig. S1.515

Imputation methods516

We compared mbImpute with five existing imputation methods designed for non-microbiome data:517

softImpute and four scRNA-seq imputation methods (scImpute, SAVER, MAGIC, and ALRA). All518

these imputation methods take a count matrix as input and ouput an imputed count matrix with the519

same dimensions.520

softImpute521

We used R package softImpute (version 1.4) and the following command to impute an taxon522

count matrix (a sample-by-taxon matrix):523

complete(taxa count matrix, softImpute(taxa count matrix, rank.max = cv.rankmax))524

where rank.max was chosen by 10-fold cross-validation.525
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scImpute526

We used R package scImpute (version 0.0.9) with the input as a taxon-by-sample count matrix527

(transpose of the matrix in Fig. 1):528

scimpute(count path = "taxa count matrix trans.csv", Kcluster = 1, out dir = "sim imp")529

where taxa count matrix trans.csv is the input file containing the transposed taxon count ma-530

trix.531

SAVER532

We used R package SAVER (version 1.1.2) with the input as a taxon-by-sample count matrix533

(transpose of the matrix in Fig. 1):534

saver(t(taxa count matrix), ncores = 1, estimates.only = TRUE)535

MAGIC536

We used Python package MAGIC (version 2.0.3) and the following commands to impute an taxon537

count matrix:538

magic op = magic.MAGIC()539

magic op.set params(n pca = 40)540

magic op.fit transform(taxa count matrix)541

ALRA542

We applied R functions normalize data, choose k, and alra, which were released on Aug 10,543

2019 at https://github.com/KlugerLab/ALRA, and the following commands to impute an taxon544

count matrix:545

normalized mat = normalize data(taxa count matrix)546

k chosen = choose k(normalized mat, K = 49, noise start = 44)$k547

alra(normalized mat, k = k chosen)$A norm rank k cor sc548

DA analysis methods549

In both simulation and real data studies, we compared the mbImpute-empowered t-test and550

the softImpute-empowered t-test, which apply to log-transformed taxon abundances. We fur-551

ther compared five existing DA methods: the Wilcoxon rank-sum test, ANCOM, ZINB/NB-GLM,552

metagenomSeq and DESeq2-phyloseq, which apply to taxon counts, with or without using mbIm-553

pute as a preceding step. Each method calculates a p-value for each taxon and identifies the DA554

taxa by setting a p-value threshold to control the false discovery rate (FDR). See Supplementary555

for the statistical definitions of DA taxa.556
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Wilcoxon rank-sum test557

We implemented the Wilcoxon rank-sum test using the R function pairwise.wilcox.test in the558

package stats (version 3.5.1). For each taxon, we performed the test on its counts in two559

sample groups to obtain a p-value, which suggests if this taxon is DA between the two groups.560

In simulations, we used the following command to implement a two-sided test for each taxon:561

pairwise.wilcox.test(x = taxon counts, g = condition, p.adjust.method = "none")562

In real data analysis, we used the following command to implement a one-sided test to find if a563

taxon is disease-enriched (the first condition is the disease condition) and obtained a p-value:564

pairwise.wilcox.test(x = taxon counts, g = condition, p.adjust.method = "none",565

alternative = "greater")566

ANCOM567

We used the ANCOM.main function released on Sep 27, 2019 at https://github.com/FrederickHuangLin/568

ANCOM [27]. Since this function does not provide an option for a one-sided test, we used its default569

settings and reported its identified DA taxa based on a two-sided test with a significance level 0.1570

(sig = 0.1), in both simulations and real data analysis. We note that no external FDR control was571

implemented. Specifically, we used the following command to obtain the result of ANCOM:572

ANCOM.main(taxa count matrix, covariate matrix, adjusted = F, repeated = F, main.var573

= "condition", adj.formula = NULL, repeat.var = NULL, multcorr = 2, sig = 0.1, prev.cut574

= 0.90, longitudinal = F)575

where taxa count matrix is a sample-by-taxon count matrix and covariate matrix is a sample-576

by-covariate matrix, same as the input of mbImpute.577

ZINB-GLM578

We implemented the ZINB-GLM method using the R function zeroinfl in the package pscl579

(version 1.5.2). For each taxon, the condition variable is a group indicator (treatment or control)580

included as a predictor in the generalized linear model (GLM). The partial Wald test was used to581

test if the coefficient of the condition variable is significantly different from 0. For each taxon, we582

used the following command to implement the ZINB-GLM method:583

summary(zinb <- zeroinfl(taxa count matrix[,i] ∼ condition, dist = "negbin"))584

In simulations, we used the output two-sided p-value for each taxon. In real data analysis, we585

were interested in the disease-enriched taxa, so we converted the output two-sided p-value into a586

one-side p-value as follows:587

• If the estimated coefficient is non-negative, we divided the p-value by two;588

• otherwise, we set the p-value to 1.589
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metagenomeSeq590

We used two R packages, metagenomeSeq combined with phyloseq. Specifically, we used the591

following command to obtain the result:592

mseq obj <- phyloseq to metagenomeSeq(physeq2)593

pd <- pData(mseq obj)594

mod <- model.matrix(∼ 1 + condition, data = pd)595

ran seq <- fitFeatureModel(mseq obj, mod)596

where physeq2 is an object created from a count matrix and metadata using the phyloseq pack-597

age.598

DESeq2-phyloseq599

We used the DESeq2 package combined with phyloseq. Specifically, we used the following com-600

mand to obtain the result of DESeq2:601

Deseq2 obj <- phyloseq to deseq2(physeq2, ∼ condition)602

results <- DESeq(Deseq2 obj, test="Wald", fitType="parametric")603

where physeq2 is an object created from a count matrix and metadata using the phyloseq pack-604

age.605

mbImpute-empowered t-test and softImpute-empowered t-test606

For mbImpute-empowered t-test, we applied mbImpute (in R package mbImpute, version 0.0.1)607

to samples in each sample group and then collected the sample groups together to obtain the608

imputed data, which have the same dimensions as the original data.609

For softImpute-empowered t-test, we applied softImpute (in R package softImpute, version610

1.4) to samples in each sample group and then collected the sample groups together to obtain611

the imputed data, which have the same dimensions as the original data. Specifically, we used the612

following command to obtain the imputed data for a sample group (condition 1):613

complete(raw data condition1, softImpute(raw data condition1, rank.max = cv.rankmax))614

where rank.max was chosen by 10-fold cross-validation.615

Then for each taxon, we performed the two-sample t-test on the imputed data of the scale616

log10(imputed count + 1.01)

instead of the original count matrix to obtain a p-value, which suggests if this taxon is DA between617

the two groups. In simulations, we used the following command to implement a two-sided test for618

each taxon:619

pairwise.t.test(x = taxon imputed, g = condition, p.adjust.method = "none")620

In real data analysis, we used the following command to implement a one-sided test to find if a621

taxon is disease-enriched (the first condition is the disease condition) and obtained a p-value:622
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pairwise.t.test(x = taxon imputed, g = condition, p.adjust.method = "none",623

alternative = "greater")624

For the Wilcoxon rank-sum test, ZINB-GLM, and mbImpute-empowered or softImpute-empowered625

t-test, after obtaining the p-values of all taxa and collecting them into a vector p values, we626

adjusted them for FDR control using the R function p.adjust in the package stats (version 3.5.1):627

p.adjust(p values, method = "fdr")628

Then we set the FDR threshold to 0.1 in both simulation and real data analysis. The taxa629

whose adjusted p-values did not exceed this threshold were called DA. ANCOM directly outputs630

the DA taxa. DESeq2-phyloseq uses the Benjamini-Hochberg procedure to control the FDR under631

0.1. For metagenomeSeq, we thresholded its FDR adjusted p-values at 0.1.632

T2D and CRC datasets633

We applied mbImpute to six real microbiome datasets, each corresponding to an independent634

study on the relationship between microbiomes and the occurrence of a human disease. All these635

six datasets were generated by the whole genome shotgun sequencing and are available in the R636

package curatedMetagenomicData [102]. We compared the disease-enriched DA taxa identified637

by each of four DA methods, namely the Wilcoxon rank-sum test, ANCOM, ZINB-GLM, and the638

mbImpute-empowered t-test. Below is the description of the six datasets and our analysis.639

Two datasets are regarding T2D [18, 19]. The Karlsson et al. data contain 145 fecal samples640

from 70-year-old European women for studying the relationship between human gut microbiome641

compositions and T2D status. The samples/subjects are in three groups: 53 women with T2D, 49642

women with impaired glucose tolerance (IGT), and 43 women as the normal control (CON). The643

twelve sample covariates include the study condition, the subject’s age, the number of reads in644

each sample, the triglycerides level, the hba1c level, the ldl (low-density lipoprotein cholesterol)645

level, the c peptide level, the cholesterol level, the glucose level, the adiponectin level, the hscrp646

level, and the leptin level. In our analysis, we considered the 344 taxa at the species level with647

phylogenetic information available in the R package curatedMetagenomicData. Qin et al. [19]648

performed deep shotgun metagenomic sequencing on 369 Chinese T2D patients and non-diabetic649

controls (CON). The three sample covariates include the study condition, the body mass index, and650

the number of reads in each sample. We analyzed 469 taxa at the species level with phylogenetic651

information. From both datasets, we identified T2D-enriched taxa by comparing the T2D and CON652

groups.653

Four datasets are regarding CRC [14–17]. Zeller et al. [14] and Feng et al. [15] studied CRC-654

related microbiomes in three conditions: CRC, small adenoma (ADE; diameter < 10 mm), and655

control (CON). Zeller et al. [14] sequenced the fecal samples of patients across two countries656

(France and Germany) in these three groups: 191 patients with CRC, 66 patients with ADE, and 42657

patients in CON. The sample covariates include the study condition, the subject’s age category,658

gender, body mass index and country, and the number of reads in each sample. We included 486659

taxa at the species level with phylogenetic information. Feng et al. [15] sequenced samples from660
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154 human subjects aged between 45–86 years old in Australia, including 46 patients with CRC,661

47 patients with ADE, and 61 in CON. The sample covariates include the study condition, the662

subject’s age category, gender and body mass index, and number of reads in each sample. We663

included 449 taxa at the species level in our analysis. Yu et al. [16] and Vogtmann et al. [17] studied664

CRC-related microbiomes in two conditions: CRC vs. CON. In detail, Yu et al. [16] sequenced 128665

Chinese samples, including 75 patients with CRC and 53 patients in CON. The sample covariates666

include the study condition and the number of reads in each sample. We studied 417 taxa at the667

species level. Vogtmann et al. [17] included 104 samples from Washington DC and sequenced668

their fecal samples, including 52 with CRC and 52 in CON. The sample covariates include the669

study condition, the subject’s age category, gender and body mass index, and number of reads in670

each sample. We included 412 taxa at the species level. From all the four datasets, we identified671

CRC-enriched taxa by comparing the CRC and CON groups.672

Software and code673

The mbImpute R package and the code for simulation and real data analysis are available at674

https://github.com/ruochenj/mbImpute675
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Costea, Aurélien Amiot, Jürgen Böhm, Francesco Brunetti, Nina Habermann, et al. Potential724

of fecal microbiota for early-stage detection of colorectal cancer. Molecular systems biology,725

10(11), 2014.726

[15] Qiang Feng, Suisha Liang, Huijue Jia, Andreas Stadlmayr, Longqing Tang, Zhou Lan,727

Dongya Zhang, Huihua Xia, Xiaoying Xu, Zhuye Jie, et al. Gut microbiome development728

along the colorectal adenoma–carcinoma sequence. Nature communications, 6:6528, 2015.729

[16] Jun Yu, Qiang Feng, Sunny Hei Wong, Dongya Zhang, Qiao yi Liang, Youwen Qin, Longqing730

Tang, Hui Zhao, Jan Stenvang, Yanli Li, et al. Metagenomic analysis of faecal microbiome731

as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, 66(1):70–78,732

2017.733

[17] Emily Vogtmann, Xing Hua, Georg Zeller, Shinichi Sunagawa, Anita Y Voigt, Rajna Hercog,734

James J Goedert, Jianxin Shi, Peer Bork, and Rashmi Sinha. Colorectal cancer and the735

human gut microbiome: reproducibility with whole-genome shotgun sequencing. PloS one,736

11(5), 2016.737

[18] Fredrik H Karlsson, Valentina Tremaroli, Intawat Nookaew, Göran Bergström, Carl Johan738
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[66] T Michael Anderson, Marc-André Lachance, and William T Starmer. The relationship of877

phylogeny to community structure: the cactus yeast community. The American Naturalist,878

164(6):709–721, 2004.879

[67] Campbell O Webb, David D Ackerly, Mark A McPeek, and Michael J Donoghue. Phylogenies880

and community ecology. Annual review of ecology and systematics, 33(1):475–505, 2002.881

[68] Evan Weiher and Paul A Keddy. Assembly rules, null models, and trait dispersion: new882

questions from old patterns. Oikos, pages 159–164, 1995.883

[69] Cédric Arisdakessian, Olivier Poirion, Breck Yunits, Xun Zhu, and Lana X Garmire.884

Deepimpute: an accurate, fast, and scalable deep neural network method to impute single-885

cell rna-seq data. Genome biology, 20(1):1–14, 2019.886

[70] T Hastie and R Mazumder. softimpute: Matrix completion via iterative soft-thresholded svd.887

R package version, 1:p1, 2015.888

[71] B Ren, E Schwager, TL Tickle, and C Huttenhower. Sparsedossa: Sparse data observations889

for simulating synthetic abundance. 2016.890

[72] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,891

2(3):18–22, 2002.892

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.07.982314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.982314
http://creativecommons.org/licenses/by-nc-nd/4.0/


[73] RCV Casarin, A Barbagallo, T Meulman, VR Santos, EA Sallum, FH Nociti, PM Duarte,893

MZ Casati, and RB Gonçalves. Subgingival biodiversity in subjects with uncontrolled type-2894

diabetes and chronic periodontitis. Journal of periodontal research, 48(1):30–36, 2013.895

[74] Ninh T Nguyen, Xuan-Mai T Nguyen, John Lane, and Ping Wang. Relationship between896

obesity and diabetes in a us adult population: findings from the national health and nutrition897

examination survey, 1999–2006. Obesity surgery, 21(3):351–355, 2011.898

[75] Ivana Semova, Juliana D Carten, Jesse Stombaugh, Lantz C Mackey, Rob Knight, Steven A899

Farber, and John F Rawls. Microbiota regulate intestinal absorption and metabolism of fatty900

acids in the zebrafish. Cell host & microbe, 12(3):277–288, 2012.901
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Figure 1: An illustration of mbImpute. After mbImpute identifies likely non-biological zeros, it imputes them (e.g.
the abundance of taxon 2 in sample 2) by jointly borrowing information from similar samples, similar taxa, and sample
covariates if available (details in Methods).
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Figure 2: mbImpute outperforms state-of-the-art imputation methods designed for non-microbiome data and
enhances the identification of DA taxa. (a) Mean squared error (MSE) and (b) mean Pearson correlation of taxon
abundances between the complete data and the zero-inflated data (“No imputation,” the baseline) or the imputed data
by each imputation method (mbImpute, softImpute, scImpute, SAVER, MAGIC, and ALRA) in Simulations 1 and 2 (see
Supplementary). (c)-(d) For each taxon, the mean and standard deviation (SD) of its abundances were calculated for
the complete data, the zero-inflated data, and the imputed data by each imputation method in Simulation 1; (c) shows
the distributions of the taxon mean / SD and the Wasserstein distance between every distribution and the complete
distribution; (d) shows the taxa in two coordinates, mean vs. SD, and the Euclidean distance between the taxa in
every (zero-inflated or imputed) dataset and the complete data in these two coordinates. (e) Accuracy (Precision,
recall and F1 scores) of six DA methods (Wilcoxon rank-sum test, t-test, ANCOM, ZINB/NB-GLM, DESeq2-phyloseq,
metagenomeSeq) on raw data (light color) and imputed data by mbImpute (dark color) in Simulation 4.
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Figure 3: mbImpute increases the reproducibility of DA taxon identification and the accuracy of sample
classification in cross-data studies. (a) The overlapping proportion (taxa identified as DA in both of the datasets
/ total number of taxa identified in either of the datasets) of identified T2D-enriched taxa between two T2D datasets
[18, 19] for six DA methods, Wilcoxon rank-sum test (Wilcoxon), t-test, ANCOM, ZINB/NB-GLM (ZINB/NB), DESeq2-
phyloseq (DESeq2), metagenomeSeq, before (light color) and after imputation (dark color). (b) The proportion of
CRC-enriched taxa identified in at least two datasets among four CRC data [14–17] by the six DA methods before (light
color) and after imputation (dark color). (c) The barplots show classification accuracy of prediction using random forest
algorithm on the T2D status of Qin et al. by using the identified DA taxa in Karlsson et al. using six DA methods before
(light color) and after imputation (dark color). The dotted horizontal line shows the prediction accuracy using random
forest that automatically selects predictive features from all the taxa in Qin et al. to predict T2D statues. (d) The barplots
show classification accuracy of prediction using random forest on the T2D status of Yu et al. by using the identified DA
taxa in Zeller et al. using six DA methods before (light color) and after imputation (dark color). The dotted horizontal line
shows the prediction accuracy using random forest that automatically selects predictive features from all the taxa in Yu
et al. to predict CRC statues.
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Table 1. Identified T2D-encriched taxa at strain level in two real data.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains
Qin et al. Karlsson et al. Qin et al. Karlsson et al.

Streptococcus Literature evidence: (Casarin et al., 2013; Remely et al., 2013)

-mutans 3 3 3 3

-vestibularis 7 7 3 3

Lactobacillus Literature evidence: (Remely et al., 2013; Semova et al., 2012)

-gasseri 3 7 3 3

-rhamnosus 7 7 3 3

-vaginalis 7 7 3 3

-oris 7 7 3 3

Clostridium Literature evidence: (Remely et al., 2013)

-symbiosum 3 7 7 7

-citroniae 3 7 7 7

-asparagiforme 3 3 7 7

-bolteae 3 3 3 7

-bartlettii 7 7 3 7

-clostridioforme 7 3 3 3

-methylpentosum 7 7 3 3

Actinomyces Literature evidence: (Casarin et al., 2013; Yang et al., 2019)

-turicensis 7 7 3 3

-viscosus 7 7 3 7
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Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Publication: (Allen and Jobin, 2014; Dulal and Keku, 2014)
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-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/17 — 9:53 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Publication: (Allen and Jobin, 2014; Dulal and Keku, 2014)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Publication: (Allen and Jobin, 2014; Nakatsu et al., 2015)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Publication: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Publication: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Publication: (Dulal and Keku, 2014)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/17 — 9:53 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Publication: (Allen and Jobin, 2014; Dulal and Keku, 2014)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Publication: (Allen and Jobin, 2014; Nakatsu et al., 2015)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Publication: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Publication: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Publication: (Dulal and Keku, 2014)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/17 — 9:53 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Publication: (Allen and Jobin, 2014; Dulal and Keku, 2014)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Publication: (Allen and Jobin, 2014; Nakatsu et al., 2015)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Publication: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Publication: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Publication: (Dulal and Keku, 2014)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

i
i

“Real_data_summary_CRC” — 2020/1/18 — 18:31 — page 1 — #1 i
i

i
i

i
i

1

Table 1. Summary of identified CRC-encriched taxa at strain level.
3: identified in the current data; 7: not identified in current data.

Raw Data Imputed Data
Enriched

taxa species/strains Zeller et al. Feng et al. Yu et al. Vogtmann et al. Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Fusobacteria Literature evidence: (Allen and Jobin, 2014; Dulal and Keku, 2014; Nakatsu et al., 2015)

-nucleatum 3 3 3 3 3 3 3 3
-necrophorum 7 3 7 7 3 3 7 7
-mortiferum 7 7 7 7 3 7 3 7
-periodonticum 7 7 7 7 3 7 3 7

Peptostreptococcus Literature evidence: (Allen and Jobin, 2014; Nakatsu et al., 2015; Wu et al., 2013)

-anaerobius 7 3 3 7 3 3 3 3
-stomatis 3 3 3 7 3 3 3 3

Prevotella Literature evidence: (Sobhani et al., 2011)

-bivia 7 7 7 7 3 3 3 3
-intermedia 7 3 3 7 3 3 3 3
-stercorea 7 7 7 7 7 3 3 7

Gemella Literature evidence: (Nakatsu et al., 2015)

-morbilloru 3 3 3 7 3 7 3 3
-haemolysans 7 7 7 7 7 7 3 3

Streptococcus Literature evidence: (Dulal and Keku, 2014; Wang et al., 2012)

-gallolyticus 7 7 7 7 3 7 7 3
-constellatus 7 7 3 7 7 7 3 3
-oligofermentans 7 7 7 7 7 3 3 7
-perioris 7 7 7 7 7 3 3 7

1 Introduction

b

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

CRC

control

s__Peptostreptococcus_anaerobius_raw

0

20

40

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_mbImp

0

20

40

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_raw

0

20

40

60

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_mbImp

0

20

40

60

0 2 4 6
counts

co
un
t condition

CRC

control

s__Peptostreptococcus_anaerobius_raw

0

20

40

60

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_mbImp

0

20

40

60

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_raw

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

CRC

s__Peptostreptococcus_anaerobius_mbImp

Condition
CRC

Control

1.5!"##$ ***

9.6!"% *

5.7!"& ***

3.1!"% **

9.8!"'( ***

3.7!"#

5!")' ***

1

raw data

mbImpute

Zeller et al. Feng et al. Yu et al. Vogtmann et al.

Peptostreptococcus anaerobius

raw data

mbImpute

softImpute

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_raw

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_raw

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_sImp

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_mbImp

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_mbImp

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_sImp

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_citroniae_raw

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_mbImp

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_sImp

0

20

40

60

80

0 2 4 6
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_raw

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_mbImp

0

10

20

30

0 1 2 3 4 5
counts

co
un
t condition

control

T2D

s__Clostridium_symbiosum_sImp

5.8!"% * 0.132.9!", ***

0.15 0.82 1

1.4!"% ** 0.05 ** 0.77

1

0.17

0.18

Clostridium symbiosum Clostridium citroniae

Qin et al. Karlsson et al. Qin et al. Karlsson et al.

Condition
CRC

Control

Fusobacteria

Peptostrptococcus

Prevotella

Gemella

Streptococcus

Streptococcus

Lactobacillus

Clostridium

Actinomyces

Figure 4: mbImpute increases the power and reproducibility of DA taxon identification in T2D and CRC WGS
datasets. (a) Example T2D-enriched taxa identified by the Wilcoxon test on the raw data vs. the t-test on the imputed
data by mbImpute. Literature evidence supporting the enrichment of these genera is listed. Check marks and crosses
indicate the enriched and non-enriched taxa identified in each of the two datasets. Two speciess in the Clostridium
genus are marked by left arrows, and their abundance (log-transformed, see Methods) distributions are plotted for the
raw data (top), the imputed data by mbImpute (middle), and the imputed data by softImpute (bottom). (b) Example CRC-
enriched taxa identified by the Wilcoxon test on the raw data vs. the t-test on the imputed data by mbImpute. Literature
evidence supporting the enrichment of these genera is listed. Check marks and crosses indicate the enriched and
non-enriched taxa identified in each of the four datasets. Peptostreptococcus anaerobius is marked by a left arrow,
and its log-transformed abundance distributions are plotted for the raw data (top) and the imputed data by mbImpute
(bottom).
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Figure 5: mbImpute preserves distributional characteristics of taxa’s non-zero abundances. (a) Top: two scatter
plots show the relationship between the abundances of Dorea formicigenerans and Ruminococcus torques in Qin
et al.’s control samples, with or without using mbImpute as a preceding step. The left plot shows two standard major
axis (SMA) regression lines and two corresponding Pearson correlations based on the raw data (balck: based on all the
samples; blue: based on only the samples where both taxa have non-zero abundances). The right plot shows the SMA
regression line (blue) and the Pearson correlation using all the samples in the imputed data. Bottom: two scatter plots
for the same two taxa in Qin et al.’s T2D samples, with lines and legends defined the same as in the Top panel. (b)
Four scatter plots show the SMA regression lines and correlations between Eubacterium sirasum and Ruminococcus
obeum in Karlsson et al.’s control and T2D samples, with lines and legends defined the same as in (a).
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Figure 6: mbImpute improves the consistency in estimating taxon-taxon correlations between 16S and WGS
data of microbiome composition in the healthy human stool samples. Four Pearson correlation matrices are
calculated based on genus-level taxa’s abundances in 16S and WGS data, with or without using mbImpute as a
preceding step. Before imputation, the Pearson correlation between the two correlation matrices is 0.59, and this
correlation increases to 0.64 after imputation. For illustration purposes, each heatmap shows square roots of Pearson
correlations, with the bottom 40% of values truncated to 0. The magenta, green, and purple squares highlight three
taxon groups, each of which contains strongly correlated taxa and is consistent between the 16S and WGS data after
imputation.
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