

1 mblImpute: an accurate and robust imputation method for 2 microbiome data

3 Ruochen Jiang¹, Wei Vivian Li^{1,2} and Jingyi Jessica Li^{1,3,4,*}

5 Abstract

6 Microbiome studies have gained increased attention since many discoveries revealed con-
7 nections between human microbiome compositions and diseases. A critical challenge in mi-
8 crobiome research is that excess non-biological zeros distort taxon abundances, complicate
9 data analysis, and jeopardize the reliability of scientific discoveries. To address this issue,
10 we propose the first imputation method, mblImpute, to identify and recover likely non-biological
11 zeros by borrowing information jointly from similar samples, similar taxa, and optional metadata
12 including sample covariates and taxon phylogeny. Comprehensive simulations verified that
13 mblImpute achieved better imputation accuracy under multiple measures than five state-of-
14 the-art imputation methods designed for non-microbiome data. In real data applications, we
15 demonstrate that mblImpute improved the power and reproducibility of identifying disease-
16 related taxa from microbiome data of type 2 diabetes and colorectal cancer.

17 Introduction

18 Microbiome studies explore the collective genomes of microorganisms living in a certain envi-
19 ronment such as soil, sea water, animal skin, and human gut. A large number of studies have
20 confirmed the importance of microbiomes in both natural environment and human bodies [1].
21 For example, new discoveries have revealed the important roles microbiomes play in complex
22 diseases such as obesity [2], diabetes [3], pulmonary disease [4, 5], and cancers [6]. These
23 studies have shown the potential of using human microbiomes as biomarkers for disease diagnosis
24 or therapeutic targets for disease treatment [7].

25 The development of high-throughput sequencing technologies has advanced microbiome stud-
26 ies in the last decade [8]. Microbiome studies primarily use two sequencing technologies: the 16S
27 ribosomal RNA (rRNA) amplicon sequencing and the shotgun metagenomics sequencing. The
28 former specifically sequences 16S rRNAs, which can be used to identify and distinguish microbes

¹ Department of Statistics, University of California, Los Angeles, CA 90095-1554

² Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854

³ Department of Human Genetics, University of California, Los Angeles, CA 90095-7088

⁴ Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766

* To whom correspondence should be addressed. Email: jli@stat.ucla.edu

[9]. The 16S sequencing reads are either clustered into operational taxonomic units (OTUs) [10] or mapped to amplicon sequence variants (ASVs) for a higher resolution [11, 12]. The latter, often referred to as whole-genome sequencing (WGS), sequences all DNAs in a microbiome sample, including whole genomes of microbial species and host DNAs [10, 13–19], and its sequencing reads are mapped to known microbiome genome databases to quantify the abundance of each microbial species. Despite the vast differences between these two technologies, 16S and WGS data can both be processed into a similar data format about abundances of microbes in biological samples: a taxon count matrix with rows as samples (which often correspond to subjects) and columns as taxa (i.e., OTUs for 16S rRNA data and species for WGS data), and each entry corresponds to the number of reads mapped to a taxon in a sample. It is worth noting that the total read count per sample, i.e., the sum of entries in a row of the count matrix, differs by five orders of magnitude between the two technologies: $\sim 10^3$ per sample for 16S rRNA data and $\sim 10^8$ for WGS data [20].

A critical challenge in microbiome data analysis is the existence of excess zeros in taxon counts, a phenomenon prevalent in both 16S rRNA and WGS data [20]. The excess zeros belong to three categories by origin: biological, technical, and sampling zeros [21]. Biological zeros represent true zero abundances of non-existent taxa in samples. In contrast, both technical and sampling zeros are non-biological zeros with different origins: technical zeros arise from pre-sequencing experimental artifacts (e.g., DNA degradation during library preparation and inefficient sequence amplification due to factors such as GC content bias) [22], while sampling zeros are due to limited sequencing depths. Although WGS data have much larger per-sample total read counts than 16S data have, they still suffer from excess zeros because they sequence more nucleic acid sequences (microbial genomes instead of 16S rRNAs) and widespread host DNA contamination reduces the effective sequencing depths for microbial genomes [23–25].

This data sparsity issue has challenged the statistical analysis of microbiome data, as most state-of-the-art methods have poor performance on data containing too many zeros. Adding a pseudo-count of one to zeros is a common, simple approach [26, 27], but it is known to be ad-hoc and suboptimal as it cannot not distinguish biological zeros from technical and sampling zeros [28, 29]. Kaul et al. [30] developed an approach to distinguish these three types of zeros and only correct the sampling zeros; however, their correction is still a simple addition of a pseudo-count of one, ignoring the fact that the (unobserved) actual counts of these sampling zeros may not be exactly one.

In particular, this data sparsity issue has greatly hindered the differentially abundant (DA) taxon analysis, which is to identify the taxa that exhibit significantly different abundances between two groups of samples [13]. Microbiome researchers employ two major types of statistical methods to identify DA taxa. Methods of the first type are based on parametric models [7, 26, 31–38]. For example, the zero-inflated negative Binomial generalized linear model (ZINB-GLM) is used in [7, 31, 32], the DESeq2-phyloseq method uses the negative Binomial regression [33, 34], and the metagenomeSeq method uses the zero-inflated Gaussian model [35]. However, the different

68 parametric model assumptions do not always fit data well [39]. Methods of the second type perform
69 non-parametric statistical tests that do not assume specific distributions, and widely-used methods
70 include the Wilcoxon rank-sum test [14–19] and ANCOM [27]. A major drawback of these non-
71 parametric methods is that a taxon would be called DA if its zero proportions differ significantly
72 between two groups of samples, but this difference is unlikely biologically meaningful due to the
73 prevalence of technical and sampling zeros. Both types of methods consider taxon abundances
74 at one of three scales: counts [7, 31, 32, 34], log-transformed counts [35], and proportions (i.e.,
75 each taxon's count is divided by the total of all taxa's counts in a sample) [26, 27, 36–38]. We note
76 that excess zeros would negatively affect taxon abundances at all the three levels.

77 In addition to DA taxon analysis, other microbiome data analyses, such as the construction
78 of taxon interaction networks [40–43], are also impeded by the data sparsity challenge. If using
79 the zero-inflated modeling approach, each task calls for a specialized model development, which
80 is often complicated or unrealistic for most microbiome researchers. Hence, a flexible and robust
81 approach is needed to address the data sparsity issue for microbiome research.

82 Imputation is a widely-used technique to recover missing data and facilitate data analysis. It
83 has various successful applications in many fields such as recommender systems (e.g., the Netflix
84 challenge [44]), image and speech reconstruction [45–47], imputation of unmeasured epigenomics
85 datasets [48], missing genotype prediction in genome-wide association studies [49], and the
86 more recent gene expression recovery in single-cell RNA-sequencing (scRNA-seq) data analysis
87 [50–54]. Microbiome and scRNA-seq data have similar count matrix structures if one considers
88 samples and taxa as analogs to cells and genes, and both data have excess non-biological zeros.
89 Given the successes of scRNA-seq imputation methods, it is reasonable to hypothesize that
90 imputation will also relieve the data sparsity issue in microbiome data. Although there are methods
91 utilizing matrix completion in the microbiome field, their main purpose is to perform community de-
92 tection or dimension reduction instead of imputation [55, 56]. Two distinct features of microbiome
93 data make direct application of existing imputation methods suboptimal. First, microbiome data
94 are often accompanied by metadata including sample covariates and taxon phylogeny, which,
95 however, cannot be used by existing imputation methods. In particular, phylogenetic information is
96 known to be valuable for microbiome data analysis [57–64], as taxa closely related in a phylogeny
97 are likely to have similar functions and abundances in samples [65–68]. Second, microbiome data
98 has a much smaller number of samples (often in hundreds) than the number of cells (often in
99 tens of thousands) in scRNA-seq data, making those deep-learning based imputation methods
100 inapplicable [54, 69]. On the other hand, the smaller sample size allows microbiome data to afford
101 an imputation method that focuses more on imputation accuracy than computational time.

102 Here we propose *mblImpute*, the first imputation method designed for microbiome data, includ-
103 ing both 16S and WGS data. *mblImpute* identifies and corrects zeros and low counts that are
104 unlikely biological (for ease of terminology, we will refer to them as non-biological zeros in the
105 following text) in microbiome taxon count data. The goal of *mblImpute* is to provide a principled
106 data-driven approach to relieve the data sparsity issue due to excess non-biological zeros. To

107 achieve this, mblImpute leverages three sources of information: a taxon count matrix, sample
108 covariates (e.g., sample library size and subjects' age, gender, and body mass index), and taxon
109 phylogeny, with the latter two sources optional. mblImpute takes a two-step approach (Fig. 1):
110 it first identifies likely non-biological zeros and second imputes them by borrowing information
111 from similar taxa (determined by both phylogeny and counts), similar samples (in terms of taxon
112 counts), and sample covariates if available (see illustration of the imputation step in Supplementary
113 Fig. S1). The imputed data are expected to contain recovered taxon counts and thus facilitate
114 various downstream analyses, such as the identification of DA taxa and the construction of taxon
115 interaction networks. Microbiome researchers can use mblImpute to avoid the hassles of handling
116 excess zeros in individual analysis tasks and to enjoy the flexibility of building up data analysis
117 pipelines.

118 **Results**

119 **mblImpute outperforms non-microbiome imputation methods in re-** 120 **covering missing taxon abundances and empowering DA taxon iden-** 121 **tification**

122 As there are no imputation methods for microbiome data, we benchmarked mblImpute against
123 five state-of-the-art imputation methods designed for non-microbiome data, including four popular
124 scRNA-seq imputation methods (scImpute [50], SAVER [52], MAGIC [51], and ALRA [53]) and a
125 widely-used general imputation method softImpute [70]. We designed two simulation studies, and
126 the common goal was to obtain a “complete” microbiome dataset without non-biological zeros, so
127 that imputation accuracy could be evaluated by comparing the imputed data with the complete
128 data. The first study simulated complete data from a generative model that was fitted to a real
129 WGS dataset of type 2 diabetes (T2D) samples [18], and the second, more realistic simulation
130 study took a sub-dataset with fewer than 15% zeros as the complete data from another real WGS
131 dataset of T2D samples [19]. In both simulation studies (see Supplementary), non-biological
132 zeros were introduced into the complete data by mimicking the observed zero patterns in real
133 datasets, resulting in the zero-inflated data. After applying the six methods to the zero-inflated
134 data in both studies, we compared these methods' imputation accuracy in three aspects: (1) the
135 mean squared error (MSE) between the imputed data and the complete data, (2) the Pearson
136 correlation between each taxon's abundances in the imputed data and those in the complete
137 data, and (3) the Wasserstein distance between the distribution of taxa's abundance means and
138 standard deviations in the imputed data and that in the complete data. Fig. 2a-d illustrate the
139 comparison results, which indicate that mblImpute achieves the best overall performance in all the
140 three aspects. In particular, Fig. 2c-d and Supplementary Fig. S2 show that the imputed data by
141 mblImpute best resemble the complete data, verifying the advantage of mblImpute in recovering

142 missing taxon abundances in microbiome data.

143 We next demonstrated that mblImpute is a robust method. The core of mblImpute is to borrow
144 three-way information from similar samples, similar taxa, and sample covariates to impute non-
145 biological zeros in microbiome data (see Methods). In the aforementioned second simulation
146 study, we broke up similar samples in the real T2D WGS data when we selected the complete
147 data, a situation not optimal for mblImpute; however, mblImpute still outperforms existing imputation
148 methods (Fig. 2a–b). To further test for the robustness of mblImpute, we designed a third simulation
149 study including four simulation schemes, where information useful for imputation was encoded in
150 sample covariates only, samples only, taxa only, or three sources together (see Supplementary).
151 Supplementary Fig. S3a shows that, after applied to the zero-inflated data, mblImpute effectively
152 recovers non-biological zeros and reduces the MSE under every scheme. These results verify the
153 robustness of mblImpute in selectively leveraging information useful for imputation.

154 We designed the fourth simulation to mimic a typical microbiome WGS study that aims to
155 identify DA taxa between two sample groups. We simulated data for 300 taxa in 120 samples, 60
156 per group (see Supplementary). Supplementary Fig. S3b shows the two-dimensional visualization
157 of the complete data (without non-biological zeros), zero-inflated data (with non-biological zeros),
158 and imputed data (after mblImpute was applied to zero-inflated data). Compared with the zero-
159 inflated data, the 120 samples are more clearly separated into two groups after imputation. We
160 next performed the DA taxon analysis to verify that imputation can boost the power of detecting DA
161 taxa from the zero-inflated data. Specifically, we applied three state-of-the-art DA methods: the
162 Wilcoxon rank-sum test, ANCOM, and ZINB-GLM. Among the available DA methods, the Wilcoxon
163 rank-sum test is the most widely-used in microbiome studies [14–19], ANCOM is one of the most-
164 cited microbiome-specific DA method [27], and ZINB-GLM was found as the most desirable count-
165 model-based method in a comparative study [31]. We also implemented the imputation-empowered
166 DA analysis: applying an imputation method to the zero-inflated data, and then identifying DA taxa
167 from the imputed data. We included two imputation methods: mblImpute and softlImpute. We
168 chose softlImpute as the benchmark imputation method in this DA analysis for two reasons: first,
169 softlImpute is a general imputation method unspecific to a particular data type; second, softlImpute
170 was observed to have good performance in the first two simulations (Fig. 2a–d). After imputation,
171 we employed the two-sample *t*-test for DA taxon identification, because each taxon's logarithmic
172 transformed counts (in the complete data) follow a Normal distribution in each sample group (see
173 Supplementary); thus, if imputation is effective, the Normal distributions should be recovered and
174 the *t*-test should be more powerful than the Wilcoxon test. To evaluate the accuracy of DA taxon
175 identification, we used the DA taxa detected by the *t*-test on the complete data as the ground truth.
176 Then we calculated the precision, recall and F_1 score of each method by comparing its detected
177 DA taxa to the ground truth. Under the p-value threshold of 0.1 (Supplementary Fig. S3c left),
178 the two imputation-empowered DA methods achieve better recall and F_1 scores than the three
179 existing DA methods. Although ANCOM has the highest precision, it has the lowest and close-to-
180 zero recall, suggesting that it finds too few DA taxa. Between mblImpute and softlImpute, results

181 under this p-value threshold do not draw a clear conclusion: mblImpute has a better precision
182 but a worse recall, and the two methods have similar F_1 scores. To thoroughly compare the five
183 methods, we plotted their performance at varying thresholds in receiver operating characteristic
184 (ROC) curves (Supplementary Fig. S3c right), which show that mblImpute has the largest area
185 under the curve (AUC) and outperforms the three DA methods and softImpute.

186 To further evaluate the performance of mblImpute on 16S rRNA sequencing data, we used a
187 16S simulator sparseDOSSA [71] to generate abundances of 150 taxa in 100 samples under two
188 conditions (see Supplementary). Among these 150 taxa, 45 are predefined as truly DA taxa.
189 We applied six existing DA methods, including the Wilcoxon rank-sum test, the two-sample t -
190 test, ANCOM, ZINB/NB-GLM, DESeq2-phyloseq, and metagenomeSeq. (Note that ZINB-GLM
191 is applied to the zero-inflated data, while NB-GLM is applied to the imputed data because the
192 imputed data are no longer zero inflated.) To evaluate the accuracy of DA taxon identification,
193 we calculated the precision, recall and F_1 score of each method, with or without using mblImpute
194 as a preceding step, by comparing each method's detected DA taxa to the truly DA taxa. Under
195 the p-value threshold of 0.1, the mblImpute-empowered DA methods consistently have better F_1
196 scores than those of the same DA methods without imputation. In particular, mblImpute improves
197 both precision and recall rates of four DA methods: the t -test, ZINB/NB-GLM, DESeq2-phyloseq,
198 and metagenomeSeq (Fig. 2e).

199 **mblImpute improves the reproducibility and reliability of identifying 200 T2D microbiome markers**

201 To demonstrate that mblImpute can benefit the identification of DA taxa in real microbiome data,
202 we applied the six DA methods to two T2D WGS datasets: Qin et al. and Karlsson et al., with
203 or without using mblImpute as a preceding step. We observed that taxon abundance distributions
204 are approximately Normal after imputation (Supplementary Fig. S4). We analyzed the identified
205 T2D-enriched taxa in two aspects. First, we examined the overlap of these identified taxa by
206 each method, with or without mblImpute, between the two datasets. Fig. 3a shows that mblImpute
207 improves the reproducibility of all these DA methods, whose identified T2D-enriched taxa have
208 increased overlaps after mblImpute is used (see Venn diagrams in Supplementary Fig. S5).
209 Second, we investigated whether the T2D-enriched taxa identified in one dataset are reliable
210 biomarkers for predicting T2D in another dataset. Towards this goal, we trained a random forest
211 classifier [72] on one dataset with features as the T2D-enriched taxa identified from the other
212 dataset. Then we calculated the 5-fold cross-validation accuracy, which reflects the reliability of
213 the identified T2D-enriched taxa as biomarkers. Fig. 3b shows that mblImpute improves this
214 reliability for all the DA methods but ANCOM, whose accuracy stays unchanged after mblImpute.
215 The improvement is especially significant for the Wilcoxon rank-sum test, ZINB/NB-GLM, DESeq2-
216 phyloseq, and metagenomeSeq. For example, the classification accuracy of the T2D-enriched
217 taxa identified by DESeq2-phyloseq increases from 62% without mblImpute to 75% with mblImpute.

218 As a positive control, we also evaluated the classification accuracy when no DA methods are
219 used but random forest automatically selects predictive features from all taxa. Encouragingly, we
220 found that the accuracy becomes comparable to the positive control when ZINB/NB-GLM and
221 DESeq2-phyloseq are used after mblImpute. Our results demonstrate that mblImpute improves the
222 reproducibility of DA taxon identification between two T2D datasets, and that the identified DA taxa
223 after mblImpute have better cross-dataset predictive power.

224 Further, We focused on four genera: *Streptococcus*, *Lactobacillus*, *Clostridium*, and *Actino-*
225 *myces*, which have all been previously reported as enriched in T2D [73–79] (see Supplementary
226 for the literature evidence). In these four genera, the mblImpute-empowered *t*-test discovers
227 species-level taxa that are DA and highly enriched in T2D samples but missed by the Wilcoxon test
228 applied to the raw data, as shown in Fig. 4a. Moreover, we observed an interesting phenomenon:
229 some *Clostridium* species taxa (Fig. 4a left panel, the third genus from the top) are no longer
230 detected as enriched in T2D samples after imputation, seemingly violating our claim that mblImpute
231 can empower DA taxon identification as we observed in the fourth simulation. However, by
232 examining the abundance distributions of such taxa, *Clostridium symbiosum* and *Clostridium*
233 *citroniae* for example (Fig. 4a right panel top row), we found that their non-zero abundance
234 distributions are hardly distinguishable between the T2D and control samples, suggesting that
235 they are not informative markers for T2D. Nonetheless, the Wilcoxon test identifies them as DA in
236 the raw data because they have different zero proportions between the T2D and control samples.
237 This result shows that mblImpute can help reduce likely false positive DA taxa identified due to
238 excess non-biological zeros. See Supplementary for a discussion on statistical definitions of DA
239 taxa.

240 We then compared mblImpute with softImpute using *Clostridium symbiosum* and *Clostridium*
241 *citroniae* as examples. We observe that mblImpute retains well the distributions of non-zero
242 abundances (Fig. 4a right panel middle row), while softImpute alters the distributions by in-
243 troducing artificial spikes and shrinking the variance (Fig. 4a right panel bottom row). Such
244 distortion of abundance distributions may mislead the DA analysis. Indeed, we found that the
245 softImpute-empowered *t*-test identifies *Clostridium symbiosum* and *Clostridium citroniae* as DA
246 due to the artificial distortion by softImpute. A possible reason is that softImpute is a low-rank
247 matrix factorization method, which imputes missing matrix entries by assuming a global low-rank
248 matrix structure. In contrast, mblImpute focuses more on local structures, i.e., how a matrix entry
249 depends on other entries in the same row or column. The fact that mblImpute better preserves
250 non-zero abundance distributions makes it a more reliable imputation method than softImpute for
251 microbiome data.

252 **mblImpute preserves distributional characteristics of taxa's non-zero 253 abundances and recovers downsampling zeros**

254 In the T2D WGS data analysis, we have found that mblImpute can well maintain the distributions
255 of taxa's non-zero abundances. To further verify the property of mblImpute in preserving char-
256 acteristics of non-zero abundances, we examined pairwise taxon-taxon relationships in the two
257 T2D WGS datasets: Qin et al. and Karlsson et al. For a pair of taxa, we estimated two Pearson
258 correlations based on the raw data: one using all the samples ("raw all-sample correlation") and the
259 other only using the samples where both taxa have non-zero abundances ("raw non-zero-sample
260 correlation"). We also estimated a Pearson correlation based on the imputed data by mblImpute,
261 using all the samples ("imputed all-sample correlation"). As shown in Fig. 5, there are vast
262 differences between the raw all-sample correlations and the corresponding raw non-zero-sample
263 correlations. However, the imputed all-sample correlations much resemble the corresponding
264 raw non-zero-sample correlations, suggesting that mblImpute well preserves pairwise taxon-taxon
265 correlations encoded in taxa's non-zero abundances.

266 We also explored the linear relationship of each taxon pair using the standard major axis (SMA)
267 regression, which, unlike the least-squares regression, treats two taxa symmetric and considers
268 randomness in both taxa's abundances. For a pair of taxa, we performed two SMA regressions
269 on the raw data: one using all the samples ("raw all-sample regression") and the other using only
270 the samples where both taxa have non-zero abundances ("raw non-zero-sample regression"). We
271 also performed the SMA regression on the imputed data by mblImpute, using all the samples
272 ("imputed all-sample regression"). Fig. 5 shows that the raw all-sample regressions and the raw
273 non-zero-sample regressions return strongly different lines. Especially, the two lines between the
274 two taxa *Eubacterium sirasum* and *Ruminococcus obeum* in the Karlsson et al. data (Fig. 5b
275 bottom left) exhibit slopes of opposite signs. In contrast, the imputed all-sample regressions
276 output lines with similar slopes to those of the raw non-zero-sample regressions. This result
277 again confirms mblImpute's capacity to preserve characteristics of taxa's non-zero abundances
278 in microbiome data.

279 Our results echo existing concerns about spurious taxon-taxon correlations estimated from mi-
280 crobiome data due to excess non-biological zeros [80, 81]. In other words, taxon-taxon correlations
281 cannot be accurately estimated from raw data. Without imputation, an intuitive approach is to use
282 taxa's non-zero abundances to estimate taxon-taxon correlations; however, this approach reduces
283 the sample size for estimating each taxon pair's correlation, as the samples with zero abundances
284 for either taxon would not be used, and it also makes different taxon pairs' correlation estimates
285 rely on different samples. To address these issues, mblImpute provides another approach: its
286 imputed data allow taxon-taxon correlations to be estimated from all the available samples. We
287 have verified this mblImpute approach by the fact that the correlation estimates from the imputed
288 data resemble those from the non-zero abundances in the raw data.

289 In addition, based on the T2D WGS dataset generated by Qin et al., we verified mblImpute's ca-

Removal rate	40%	70%
% of downsampling zeros identified	$95.83\% \pm 0.46\%$	$92.83\% \pm 0.92\%$
Pearson correlation before imputation	0.7565 ± 0.0023	0.5261 ± 0.0016
Pearson correlation after imputation	0.8747 ± 0.0100	0.7582 ± 0.0235

Table 1: Effectiveness of mblImpute in identifying zeros due to downsampling of Qin et al.’s T2D WGS dataset. Two downsampled datasets with removal rates 40% and 70% were constructed. The first row lists the percentages of downsampling zeros identified by mblImpute; the second row lists the Pearson correlations between each of the two downsampled matrices and the original matrix (on the log scale) before imputation; the third row lists the Pearson correlations (on the log scale) after mblImpute was used. For each number, we included its error margin as the 1.96 times of the corresponding standard error over 10 replications of downsampling.

290 capacity to identify non-biological zeros generated by downsampling. In each sample (i.e., each row
291 in the sample-by-taxon count matrix), we assigned every taxon a sampling probability proportional
292 to its count, i.e., the larger the count, the more likely the taxon is to be sampled; based on these
293 probabilities, we sampled 60% or 30% of the non-zero taxon counts, and we set the unsampled
294 counts to zeros (corresponding to a removal rate of 40% or 70%). After mblImpute is applied to the
295 downsampled count matrices, we found that mblImpute correctly identifies 95.83% and 92.83%
296 of the newly introduced non-biological zeros under the two downsampling schemes. Before
297 imputation, the Pearson correlations between the two downsampled matrices and the original
298 matrix (on the log scale) are 0.76 and 0.53. After applying mblImpute to all the three matrices,
299 the correlations are increased to 0.87 and 0.76 (Table 1). This result confirms the effectiveness of
300 mblImpute in recovering zeros due to downsampling.

301 **mblImpute increases the power and reproducibility of identifying mi- 302 crobiome markers for colorectal cancer**

303 Colorectal cancer (CRC) is one of the most frequently diagnosed cancer and a leading cause
304 of cancer mortality worldwide [14, 15]. We applied the six DA methods to four CRC datasets:
305 Zeller et al., Feng et al., Vogtmann et al. , and Yu et al., with or without using mblImpute as a
306 preceding step. We also evaluated two aspects of DA taxon identification as we did in the afore-
307 mentioned T2D analysis: the number of identified DA taxa identified in at least two datasets and the
308 across-dataset classification accuracy when the identified DA taxa are used as features. Fig. 3c
309 shows that mblImpute improves the reproducibility of all these DA methods, whose identified CRC-
310 enriched taxa have increased overlaps after mblImpute is used (see diagrams in Supplementary
311 Fig. S6). Then we investigated whether the CRC-enriched taxa identified in one dataset are
312 reliable biomarkers for predicting CRC in another dataset. We used the same procedures as in
313 the T2D analysis to obtain the classification results based on random forest. Fig. 3d shows that
314 mblImpute improves the across-dataset classification accuracy for all the six DA methods. We
315 again set a positive control by allowing random forest to automatically select predictive features
316 from all taxa, and we found that the accuracy of all DA methods becomes comparable to or even
317 surpasses the positive control after mblImpute is used.

318 We then focused on five genera: *Fusobacterium*, *Peptostreptococcus*, *Prevotella*, *Gemella*,
319 and *Streptococcus*, which have been previously reported as enriched in CRC [82–87] (see Sup-
320 plementary for the literature evidence). In these five genera, the mblImpute-empowered *t*-test
321 discovers species-level taxa that are DA and highly enriched in CRC samples but missed by
322 the Wilcoxon test applied to the raw data, as shown in Fig. 4b. We use *Peptostreptococcus*
323 *anaerobius* as an example to demonstrate the effectiveness of mblImpute in empowering DA taxon
324 identification. This species taxon is identified as enriched in CRC samples by the Wilcoxon test in
325 only two out of the four raw datasets generated by different labs. By closely examining this taxon's
326 abundance distributions (Fig. 4b right panel top row), we observed that non-zero abundances
327 consistently have higher densities in the CRC samples than in the control, suggesting that this
328 taxon should have been identified as DA in all the four datasets. The Wilcoxon test fails to identify
329 it in Zeller et al.'s and Vogtmann et al.'s data because the dominance of zeros obscures the
330 differences between the non-zero abundances in the CRC and control samples. However, these
331 non-zero abundances are informative for distinguishing the CRC samples from the control; that
332 is, if we detect this taxon with a high abundance in a patient, we should be aware of the potential
333 implication of CRC and perform further diagnosis. mblImpute helps amplify the non-zero signals
334 by reducing likely non-biological zeros (Fig. 4b right panel bottom row), thus empowering the
335 identification of this taxon as DA in all the four datasets (i.e., smaller *p*-values after imputation, Fig.
336 4b right panel).

337 **mblImpute increases the similarity of microbial community structure 338 between 16S rRNA and WGS data**

339 We further show that mblImpute can enhance the similarity of taxon-taxon correlations inferred
340 from microbiome data measured by two technologies—16S rRNA sequencing and WGS. We used
341 two microbiome datasets of healthy human stool samples: a 16S rRNA dataset from the Human
342 Microbiome Project [88] and a WGS dataset from the control samples in Qin et al. We compared
343 genus-level taxon-taxon correlations between these two datasets, and we did the comparison
344 again after applying mblImpute. Fig. 6 shows that mblImpute increases the similarity between
345 the taxon correlation structures in the two datasets. Before imputation, the Pearson correlation
346 between the two correlation matrices (one computed from 16S rRNA taxon abundances and
347 the other from WGS taxon abundances) is 0.59; mblImpute increases the correlation to 0.64. In
348 particular, we observe three taxon groups (highlighted by magenta, green, and purple squares in
349 Fig. 6) supported by both 16S rRNA and WGS data after imputation. Notably, in the magenta
350 squares, *Acidaminococcus* has correlations with *Dialister* and *Blautia* only after imputation, and
351 this result is consistent with the literature: *Acidaminococcus* and *Dialister* are both reported to
352 have low abundances in healthy human stool samples [89]; *Acidaminococcus* and *Blautia* are
353 both associated with risks of T2D and obesity, lipid profiles, and homeostatic model assessment of
354 insulin resistance [90]. The green squares contain three bile-tolerant genera: *Alistipes*, *Bilophila*,

355 and *Bacteroides* [91]. The raw 16S and WGS data only reveal the correlation between *Bacteroides*
356 and *Alistipes*, but mblImpute recovers the correlations *Bilophila* has with *Alistipes* and *Bacteroides*.
357 The purple squares indicate a strong correlation between *Sutterella* and *Prevotella* after imputa-
358 tion, yet this correlation is not observed in raw WGS data. We verified this correlation in the
359 MACADAM database [92], which contains metabolic pathways associated with microbes. Out of
360 1260 pathways, *Sutterella* and *Prevotella* are associated with 154 and 278 pathways, respectively,
361 and 122 pathways are in common; Fisher's exact test finds that the overlap is statistically significant
362 (p -value $< 2.2 \times 10^{-16}$), suggesting that *Sutterella* and *Prevotella* are indeed functionally related.
363 Overall, our results indicate that mblImpute can facilitate meta-analysis of 16S and WGS data by
364 alleviating the hurdle of excess non-biological zeros.

365 Discussion

366 A critical challenge in microbiome data analysis is statistical inference of taxon abundance from
367 highly sparse and noisy data. Our proposed method, mblImpute, will address this challenge and
368 facilitate analysis of both 16S and WGS data. mblImpute works by correcting non-biological zeros
369 and retaining taxa's non-zero abundance distributions after imputation. As the first imputation
370 method designed for microbiome data, mblImpute is shown to outperform multiple state-of-the-
371 art imputation methods developed for other data types. Regarding applications of mblImpute, we
372 demonstrate that the mblImpute-empowered DA analysis has advantages over the existing DA
373 methods in three aspects. First, mblImpute increases the power of DA taxon identification by
374 recovering the taxa that are missed by the existing methods (due to excess zeros) but should
375 be called DA (i.e., having non-zero abundances exhibiting different means between two sample
376 groups). Second, mblImpute reduces the false positive taxa, which are identified by the existing
377 methods (due to different proportions of zeros) but should not be called DA (i.e., having similar
378 non-zero abundances between two sample groups). Third, mblImpute improves the reproducibility
379 of DA taxon identification across studies and the consistency of microbial community detection
380 between 16S and WGS data. Furthermore, we found literature evidence for the DA taxa identified
381 as enriched in T2D or CRC samples after mblImpute was applied, supporting the application
382 potential of mblImpute in revealing microbiome markers for disease diagnosis and therapeutics.

383 There has been a long-standing concern about sample contamination in microbiome sequenc-
384 ing data, e.g. contamination from DNA extraction kits and laboratory reagents [1, 3]. Existing
385 studies have attempted to address this issue via calibrated sequencing operations [2, 3, 6] and
386 computational methods [4,5]. We recommend researchers to perform contamination removal
387 before applying mblImpute. Moreover, by its design, mblImpute is robust to certain types of sample
388 contamination that result in outlier taxa and samples. For each outlier taxon, mblImpute would
389 borrow little information from other taxa to impute this outlier taxon's abundances. Similarly,
390 mblImpute is robust to the existence of outlier samples that do not resemble any other sample.

391 In statistical inference, a popular and powerful technique is the use of indirect evidence by

392 borrowing information from other observations, as seen in regression, shrinkage estimation, em-
393 empirical Bayes, among many others [93]. Imputation follows the indirect evidence principle, where
394 the most critical issue is to decide what observations to borrow information from so as to improve
395 data quality instead of introducing excess biases. To achieve this, mblImpute employs penalized
396 regression to selectively leverage similar samples, similar taxa, and sample covariates to impute
397 likely non-biological zeros, whose identification also follows the indirect evidence principle by
398 incorporating sample covariates into consideration. mblImpute also provides a flexible framework
399 to make use of microbiome metadata: it selectively borrows metadata information when available,
400 but it does not rely on the existence of metadata (see Methods).

401 In the comparison of mblImpute with softImpute, a general matrix imputation method widely
402 used in other fields, we observed that softImpute's imputed taxon abundances exhibit artificial
403 spikes and smaller variances than those of the original non-zero abundances, possibly due to its
404 low-rank assumption. In contrast, mblImpute is a regression-based method that focuses more on
405 local matrix structures, and we found that it retains well the original non-zero abundance distribu-
406 tions. We will investigate the methodological differences between mblImpute and softImpute in a
407 future study.

408 Moreover, we observed that, similar to each taxon's non-zero abundances, the imputed abun-
409 dances exhibit a bell-shaped distribution across samples on the logarithmic scale. This suggests
410 that statistical methods utilizing Normal distributional assumptions become suitable and applicable
411 to imputed taxon abundances. For example, we have shown that the two-sample *t*-test works
412 well with the imputed data in the identification of DA taxa. In addition to DA analysis, another
413 possible use of the imputed microbiome data is to construct a taxon-taxon interaction network, to
414 which network analysis methods may be applied to find taxon modules and hub taxa [94]. As a
415 preliminary exploration, we constructed Bayesian networks of taxa based on the two T2D datasets
416 Qin et al. and Karlsson et al. after applying mblImpute. Interesting shifts are observed in taxon
417 interactions from control samples to T2D samples (Supplementary Figs. S7–8). For example,
418 two genera, *Ruminococcus* and *Eubacterium*, have interactive species in control samples but not
419 in T2D samples. In future research, differential network analysis methods can be applied to find
420 taxon communities whose interactions differ between two sample groups.

421 **Methods**

422 **mblImpute methodology**

423 Here we describe mblImpute, a statistical method that corrects prevalent non-biological zeros in
424 microbiome data. As an overview, mblImpute takes an taxon count matrix as input, pre-processes
425 the data, identifies the likely non-biological zeros and imputes them based on the input count
426 matrix, sample metadata, and taxon phylogeny, and finally outputs an imputed count matrix.

427 **Notations**

428 We denote the sample-by-taxon taxa count matrix as $\mathbf{M} = (M_{ij}) \in \mathbb{N}^{n \times m}$, where n is the number
429 of samples and m is the number of taxa. We denote the sample covariate matrix (i.e., metadata)
430 as $\mathbf{X} \in \mathbb{R}^{n \times q}$, where q denotes the number of covariates plus one (for the intercept). (By default,
431 mblImpute includes sample library size as a covariate.) In addition, we define a phylogenetic
432 distance matrix of taxa as $\mathbf{D} = (D_{jj'}) \in \mathbb{N}^{m \times m}$, where $D_{jj'}$ represents the number of edges
433 connecting taxa j and j' in the phylogenetic tree.

434 **Data pre-processing**

435 mblImpute requires every taxon's counts across samples to be on the same scale before impu-
436 tation. If this condition is unmet, normalization is needed. However, how to properly normalize
437 microbiome data is challenging, and multiple normalization methods have been developed in
438 recent years [29, 95, 96]. To give users the flexibility of choosing an appropriate normalization
439 method, mblImpute allows users to directly input a normalized count matrix by specifying that the
440 input matrix does not need normalization. Otherwise, mblImpute normalizes samples by library
441 size.

Default normalization (optional) To account for the varying library sizes (i.e., total counts)
of samples, mblImpute first normalizes the count matrix \mathbf{M} by row. The normalized count
matrix is denoted as $\mathbf{M}^{(\mathcal{N})} = (M_{ij}^{(\mathcal{N})}) \in \mathbb{N}^{n \times m}$, where

$$M_{ij}^{(\mathcal{N})} = 10^6 \cdot \frac{M_{ij}}{\sum_{j'=1}^m M_{ij'}}.$$

After this normalization, every sample has a total count of 10^6 .

442

First, mblImpute filters out taxa that have too few non-zero counts to avoid imputing these
taxa's zeros, which are likely biological. This filtering step is exactly the same as how Kaul et al.
[30] define structural zeros, i.e., true zeros. More specifically, taxon j would be filtered out if the
95% confidence interval of its expected non-zero proportion does not cover zero:

$$\tilde{p}_j - 1.96 \sqrt{\frac{\tilde{p}_j(1 - \tilde{p}_j)}{n}} > 0,$$

443 where \tilde{p}_j is the observed non-zero proportion of taxon j . This filtering step is called the binomial
444 test. In the mblImpute package, users can choose the filtering threshold.

Next, mblImpute applies the logarithmic transformation to the normalized counts so as to
reduce the effects of extremely large counts [97]. The resulted log-transformed normalized matrix
is denoted as $\mathbf{Y} = (Y_{ij}) \in \mathbb{N}^{n \times m}$, with

$$Y_{ij} = \log_{10} \left(M_{ij}^{(\mathcal{N})} + 1.01 \right),$$

445 where the value 1.01 is added to make $Y_{ij} > 0$ to avoid the occurrence of infinite values in a later
446 parameter estimation step, following Li and Li [50, 98]. This logarithmic transformation allows us
447 to fit a continuous probability distribution to the transformed data, thus simplifying the statistical
448 modeling. In the following text, we refer to \mathbf{Y} as the sample-by-taxon abundance matrix.

449 **mblImpute step 1: identification of taxon abundances that need imputation**

mblImpute assumes that each taxon's abundances (across samples within a sample group), i.e., a column in \mathbf{Y} , follow a mixture model. The model consists of two components: a Gamma distribution for the taxon's false zero and low abundances and a Normal distribution for the taxon's actual abundances, with the Normal mean incorporating sample covariate information (including sample library size as a covariate). Specifically, mblImpute assumes that the abundance of taxon j in sample i , Y_{ij} , follows the following mixture distribution:

$$Y_{ij} \sim p_j \cdot \Gamma(\alpha_j, \beta_j) + (1 - p_j) \cdot \mathcal{N}(X_{i \cdot}^T \gamma_j, \sigma_j^2),$$

450 where $p_j \in (0, 1)$ is the missing rate, i.e., the probability that taxon j is falsely undetected, $\Gamma(\alpha_j, \beta_j)$
451 denotes the Gamma distribution with shape parameter $\alpha_j > 0$ and rate parameter $\beta_j > 0$, and
452 $\mathcal{N}(X_{i \cdot}^T \gamma_j, \sigma_j^2)$ denotes the Normal distribution with mean $X_{i \cdot}^T \gamma_j$ and standard deviation $\sigma_j > 0$.
453 In other words, with probability p_j , Y_{ij} is a missing value that needs imputation; with probability
454 $1 - p_j$, Y_{ij} does not need imputation but reflects the actual abundance of taxon j in sample i .
455 mblImpute models the Normal mean parameter as a linear function of sample covariates: $X_{i \cdot}^T \gamma_j$,
456 where $X_{i \cdot} \in \mathbb{R}^q$ denotes the i -th row in the covariate matrix \mathbf{X} , i.e., the covariates of sample i ,
457 and $\gamma_j \in \mathbb{R}^q$ represents the q -dimensional covariate effect vector of taxon j . This allows a taxon
458 to have similar expected (actual) abundances in samples with similar covariates.

459 The intuition behind this model is that taxon j 's actual abundance in a sample (i.e., subject) is
460 drawn from a Normal distribution, whose mean depicts the expected abundance given the sample
461 covariates. However, due to the under-sampling issue in sequencing, false zero or low counts
462 could have been introduced into the data, creating another mode near zero in taxon j 's abundance
463 distribution. mblImpute models that mode using a Gamma distribution with mean α_j / β_j , which is
464 close to zero.

465 mblImpute fits this mixture model to taxon j 's abundances using the Expectation-Maximization
466 (EM) algorithm to obtain the maximum likelihood estimates \hat{p}_j , $\hat{\alpha}_j$, $\hat{\beta}_j$, $\hat{\gamma}_j$, and $\hat{\sigma}_j^2$. Supplementary
467 Fig. S9 shows four examples where the fitted mixture model well captures the bimodality of an in-
468 dividual taxon's abundance distribution. However, some taxa are observed to have an abundance
469 distribution containing a single mode that can be well modelled by a Normal distribution. When
470 that occurs, the EM algorithm would encounter a convergence issue. To fix this, mblImpute uses
471 a likelihood ratio test (LRT) to first decide if the Gamma-Normal mixture model fits to taxon j 's
472 abundances significantly better than a Normal distribution $Y_{ij} \sim \mathcal{N}(X_{i \cdot}^T \eta_j, \omega_j^2)$ does. Given the
473 maximum likelihood estimates $\hat{\eta}_j$ and $\hat{\omega}_j^2$ and under the assumption that Y_{ij} 's are all independent,

474 the LRT statistic of taxon j is:

$$\Lambda_j = -2 \ln \frac{\prod_{i=1}^n f_N(Y_{ij}; X_i^\top \hat{\eta}_j, \hat{\omega}_j^2)}{\prod_{i=1}^n [\hat{p}_j \cdot f_\Gamma(Y_{ij}; \hat{\alpha}_j, \hat{\beta}_j) + (1 - \hat{p}_j) \cdot f_N(Y_{ij}; X_i^\top \hat{\gamma}_j, \hat{\sigma}_j^2)]},$$

475 which asymptotically follows a Chi-square distribution with 3 degrees of freedom (because the
 476 mixture model has three more parameters than in the Normal model) under the null hypothesis
 477 that the Normal model is the correct model. If the LRT p-value ≤ 0.05 , mblImpute uses the mixture
 478 model to decide which of taxon j 's abundances need imputation. Specifically, mblImpute decides if
 479 Y_{ij} needs imputation based on the estimated posterior probability that Y_{ij} comes from the Gamma
 480 component:

$$d_{ij} = \frac{\hat{p}_j \cdot f_\Gamma(Y_{ij}; \hat{\alpha}_j, \hat{\beta}_j)}{\hat{p}_j \cdot f_\Gamma(Y_{ij}; \hat{\alpha}_j, \hat{\beta}_j) + (1 - \hat{p}_j) \cdot f_N(Y_{ij}; X_i^\top \hat{\gamma}_j, \hat{\sigma}_j^2)},$$

481 where $\Gamma(\cdot; \hat{\alpha}_j, \hat{\beta}_j)$ and $f_N(\cdot; X_i^\top \hat{\gamma}_j, \hat{\sigma}_j^2)$ represent the probability density functions of the estimated
 482 Gamma and Normal components in the mixture model. Otherwise, if the LRT p-value > 0.05 ,
 483 mblImpute concludes that none of taxon j 's abundances need imputation and sets $d_{1j} = \dots =$
 484 $d_{nj} = 0$.

Based on the d_{ij} 's, mblImpute defines a set Ω of (sample, taxon) pairs whose abundances are
 unlikely missing and thus do not need imputation:

$$\Omega = \{(i, j) : d_{ij} < d_{\text{thre}}, i = 1, \dots, n; j = 1, \dots, m\},$$

and a complement set Ω^c containing other (sample, taxon) pairs whose abundances need imputation:

$$\Omega^c = \{(i, j) : d_{ij} \geq d_{\text{thre}}, i = 1, \dots, n; j = 1, \dots, m\}.$$

485 Although $d_{\text{thre}} = 0.5$ is used as the default threshold on d_{ij} 's to decide the abundances that need
 486 imputation, mblImpute is fairly robust to this threshold choice because most d_{ij} 's are concentrated
 487 around 0 or 1. We show this phenomenon in Supplementary Fig. S10, which displays the
 488 distribution of all the d_{ij} 's in the data from Zeller et al. [14], Feng et al. [15], Yu et al. [16], Vogtmann
 489 et al. [17], Qin et al. [19], and Karlsson et al. [18].

490 To summarize, mblImpute does not impute all zeros in the taxon count matrix; instead, it first
 491 identifies the abundances that are likely missing using a mixture-modelling approach, and it then
 492 only imputes these values in the next step.

493 mblImpute step 2: imputation of the missing taxon abundances

In step 1, mblImpute identifies a set Ω of the (sample, taxon) pairs whose abundances do not need
 imputation. To impute the abundances in Ω^c , mblImpute first learns inter-sample and inter-taxon
 relationships from Ω by training a predictive model for Y_{ij} , the abundance of taxon j in sample
 i . The rationale is that taxon j should have similar abundances in similar samples, and that in

every sample, the taxa similar to taxon j should have abundances similar to taxon j 's abundance. In addition, sample covariates are assumed to carry predictive information of taxon abundances. Hence, for interpretability and stability reasons, mblImpute uses a linear model to combine the predictive power of similar taxa, similar samples, and sample covariates:

$$Y_{ij} = Y_{i\cdot}^T \kappa_j + Y_{\cdot j}^T \tau_i + X_{i\cdot}^T \zeta_j + \epsilon_{ij},$$

where $Y_{i\cdot} \in \mathbb{R}^m$ denotes the m taxa's abundances in sample i , $Y_{\cdot j} \in \mathbb{R}^n$ denotes taxon j 's abundances in the n samples, $X_{i\cdot} \in \mathbb{R}^q$ denotes sample i 's covariates (including the intercept), and ϵ_{ij} is the error term. The parameters to be estimated include $\kappa_j \in \mathbb{R}^m$, $\tau_i \in \mathbb{R}^n$ and $\zeta_j \in \mathbb{R}^q$, $i = 1, \dots, n$; $j = 1, \dots, m$. Note that κ_j represents the m taxa's coefficients (i.e., weights) for predicting taxon j , with the j -th entry set to zero, so that taxon j would not predict itself; τ_i represents the n samples' coefficients (i.e., weights) for predicting sample i , with the i -th entry set to zero, so that sample i would not predict itself; ζ_j represents the coefficients of sample covariates for predicting taxon j . In the model, the first term $Y_{i\cdot}^T \kappa_j$ borrows information across taxa, the second term $Y_{\cdot j}^T \tau_i$ borrows information across samples, and the third term $X_{i\cdot}^T \zeta_j$ borrows information from sample covariates. The total number of unknown parameters is $m(m-1) + n(n-1) + mq$, while our data \mathbf{Y} and \mathbf{X} together have $nm + nq$ values only. Given that often $m \gg n$, the parameter estimation problem is high dimensional, as the number of parameters far exceeds the number of data points. mblImpute performs regularized parameter estimation by using the Lasso-type ℓ_1 penalty, which leads to good prediction and simultaneously selects predictors (i.e., similar samples and similar taxa) to ease interpretation. That is, mblImpute estimates the above parameters by minimizing the following loss function:

$$L(\{\kappa_j, \zeta_j\}_{j=1}^m, \{\tau_i\}_{i=1}^n) := \sum_{(i,j) \in \Omega} \left[Y_{ij} - \left(Y_{i\cdot}^T \kappa_j + Y_{\cdot j}^T \tau_i + X_{i\cdot}^T \zeta_j \right) \right]^2 + \lambda \left(\sum_{j=1}^m \sum_{j' \neq j}^m D_{jj'}^\psi |\kappa_{jj'}| + \sum_{i=1}^n \sum_{i' \neq i}^n |\tau_{ii'}| \right),$$

494 where $\lambda, \psi \geq 0$ are tuning parameters chosen by cross-validation, $D_{jj'}$ represents the phylogenetic
 495 distance between taxa j and j' , $\kappa_{jj'}$ represents the j' -th element of κ_j , and $\tau_{ii'}$ represents the i' -th
 496 element of τ_i . Here $D_{jj'}^\psi$, i.e., $D_{jj'}$ to the power of ψ , represents the penalty weight of $|\kappa_{jj'}|$. The
 497 intuition is that if two taxa are closer in the phylogenetic tree, they are more closely related in
 498 evolution and tend to have more similar DNA sequences and biological functions [99, 100], and
 499 thus we want to borrow more information between them. For example, if $D_{j_1 j_2} > D_{j_1 j_3}$, i.e.,
 500 taxa j_1 and j_2 are farther away than taxa j_1 and j_3 in the phylogenetic tree, then the estimate of
 501 $\kappa_{j_1 j_2}$ will be more likely shrunk to zero than the estimate of $\kappa_{j_1 j_3}$, and mblImpute would use taxon
 502 j_3 's abundance more than taxon j_2 's to predict taxon j_1 's abundance. The tuning parameter ψ
 503 is introduced because the distance $D_{jj'}$, the number of edges connecting taxa j and j' , may not
 504 be the best penalty weight for prediction purpose. Choosing ψ by cross-validation is expected to
 505 enhance the prediction accuracy.

mblImpute performs the estimation using the R package `glmnet` [101] and obtains the param-

eter estimates: $\hat{\kappa}_j \in \mathbb{R}^m$, $\hat{\tau}_i \in \mathbb{R}^n$, and $\hat{\zeta}_j \in \mathbb{R}^q$, $i = 1, \dots, n$; $j = 1, \dots, m$. Finally, for $(i, j) \in \Omega^c$, the abundance of taxon j in sample i is imputed as:

$$\hat{Y}_{ij} = Y_{i \cdot}^T \hat{\kappa}_j + Y_{\cdot j}^T \hat{\tau}_i + X_{i \cdot}^T \hat{\zeta}_j,$$

506 and mblImpute does not alter Y_{ij} if $(i, j) \in \Omega$.

Note that mblImpute does not require the availability of the sample covariate matrix \mathbf{X} or the phylogenetic tree. In the absence of sample covariates, the loss function becomes

$$L(\{\kappa_j\}_{j=1}^m, \{\tau_i\}_{i=1}^n) := \sum_{(i,j) \in \Omega} \left(Y_{ij} - \left(Y_{i \cdot}^T \kappa_j + Y_{\cdot j}^T \tau_i \right) \right)^2 + \lambda \left(\sum_{j=1}^m \sum_{j' \neq j}^m D_{jj'}^\psi |\kappa_{jj'}| + \sum_{i=1}^n \sum_{i' \neq i}^n |\tau_{ii'}| \right),$$

minimizing which returns the parameter estimates: $\hat{\kappa}_j \in \mathbb{R}^m$ and $\hat{\tau}_i \in \mathbb{R}^n$, $i = 1, \dots, n$; $j = 1, \dots, m$. Finally, for $(i, j) \in \Omega^c$, the abundance of taxon j in sample i is imputed as:

$$\hat{Y}_{ij} = Y_{i \cdot}^T \hat{\kappa}_j + Y_{\cdot j}^T \hat{\tau}_i,$$

507 and mblImpute does not alter Y_{ij} if $(i, j) \in \Omega$. In the absence of the phylogenetic tree, mblImpute
508 sets $D_{jj'} = 1$ for all $j \neq j' \in \{1, \dots, m\}$.

509 When m is large, mblImpute does not estimate $m(m-1) + n(n-1) + mq$ parameters but uses
510 the following strategy to increase its computational efficiency. For each taxon j , mblImpute selects
511 the k taxa closest to it (excluding itself) in phylogenetic distance and sets the other $(n-k)$ taxa's
512 coefficients in κ_j to zero. This strategy reduces the number of parameters to $mk + n(n-1) + mq$
513 and the computational complexity from $O(m^2)$ to $O(m)$.

514 In summary, mblImpute step 2 includes two phases: training on Ω and prediction (imputation)
515 on Ω^c , as illustrated in Supplementary Fig. S1.

516 Imputation methods

517 We compared mblImpute with five existing imputation methods designed for non-microbiome data:
518 softImpute and four scRNA-seq imputation methods (scImpute, SAVER, MAGIC, and ALRA). All
519 these imputation methods take a count matrix as input and output an imputed count matrix with the
520 same dimensions.

521 softImpute

522 We used R package softImpute (version 1.4) and the following command to impute an taxon
523 count matrix (a sample-by-taxon matrix):

524 `complete(taxa_count_matrix, softImpute(taxa_count_matrix, rank.max = cv.rankmax))`
525 where `rank.max` was chosen by 10-fold cross-validation.

526 **scImpute**

527 We used R package scImpute (version 0.0.9) with the input as a taxon-by-sample count matrix
528 (transpose of the matrix in Fig. 1):
529 scimpute(count_path = "taxa_count_matrix_trans.csv", Kcluster = 1, out_dir = "sim_imp")
530 where taxa_count_matrix_trans.csv is the input file containing the transposed taxon count ma-
531 trix.

532 **SAVER**

533 We used R package SAVER (version 1.1.2) with the input as a taxon-by-sample count matrix
534 (transpose of the matrix in Fig. 1):
535 saver(t(taxa_count_matrix), ncores = 1, estimates.only = TRUE)

536 **MAGIC**

537 We used Python package MAGIC (version 2.0.3) and the following commands to impute an taxon
538 count matrix:

```
539 magic_op = magic.MAGIC()  
540 magic_op.set_params(n_pca = 40)  
541 magic_op.fit_transform(taxa_count_matrix)
```

542 **ALRA**

543 We applied R functions normalize_data, choose_k, and alra, which were released on Aug 10,
544 2019 at <https://github.com/KlugerLab/ALRA>, and the following commands to impute an taxon
545 count matrix:

```
546 normalized_mat = normalize_data(taxa_count_matrix)  
547 k_chosen = choose_k(normalized_mat, K = 49, noise_start = 44)$k  
548 alra(normalized_mat, k = k_chosen)$A_norm_rank_k_cor_sc
```

549 **DA analysis methods**

550 In both simulation and real data studies, we compared the mblImpute-empowered *t*-test and
551 the softImpute-empowered *t*-test, which apply to log-transformed taxon abundances. We fur-
552 ther compared five existing DA methods: the Wilcoxon rank-sum test, ANCOM, ZINB/NB-GLM,
553 metagenomSeq and DESeq2-phyloseq, which apply to taxon counts, with or without using mblIm-
554 pute as a preceding step. Each method calculates a p-value for each taxon and identifies the DA
555 taxa by setting a p-value threshold to control the false discovery rate (FDR). See Supplementary
556 for the statistical definitions of DA taxa.

557 **Wilcoxon rank-sum test**

558 We implemented the Wilcoxon rank-sum test using the R function `pairwise.wilcox.test` in the
559 package `stats` (version 3.5.1). For each taxon, we performed the test on its counts in two
560 sample groups to obtain a p-value, which suggests if this taxon is DA between the two groups.

561 In simulations, we used the following command to implement a two-sided test for each taxon:

```
562 pairwise.wilcox.test(x = taxon_counts, g = condition, p.adjust.method = "none")
```

563 In real data analysis, we used the following command to implement a one-sided test to find if a
564 taxon is disease-enriched (the first condition is the disease condition) and obtained a p-value:

```
565 pairwise.wilcox.test(x = taxon_counts, g = condition, p.adjust.method = "none",  
566 alternative = "greater")
```

567 **ANCOM**

568 We used the `ANCOM.main` function released on Sep 27, 2019 at <https://github.com/FrederickHuangLin/ANCOM> [27]. Since this function does not provide an option for a one-sided test, we used its default
569 settings and reported its identified DA taxa based on a two-sided test with a significance level 0.1
570 (sig = 0.1), in both simulations and real data analysis. We note that no external FDR control was
571 implemented. Specifically, we used the following command to obtain the result of ANCOM:

```
572 ANCOM.main(taxa_count_matrix, covariate_matrix, adjusted = F, repeated = F, main.var  
573 = "condition", adj.formula = NULL, repeat.var = NULL, multcorr = 2, sig = 0.1, prev.cut  
574 = 0.90, longitudinal = F)
```

575 where `taxa_count_matrix` is a sample-by-taxon count matrix and `covariate_matrix` is a sample-
576 by-covariate matrix, same as the input of `mblImpute`.

578 **ZINB-GLM**

579 We implemented the ZINB-GLM method using the R function `zeroinfl` in the package `pscl`
580 (version 1.5.2). For each taxon, the `condition` variable is a group indicator (treatment or control)
581 included as a predictor in the generalized linear model (GLM). The partial Wald test was used to
582 test if the coefficient of the `condition` variable is significantly different from 0. For each taxon, we
583 used the following command to implement the ZINB-GLM method:

```
584 summary(zinb <- zeroinfl(taxa_count_matrix[,i] ~ condition, dist = "negbin"))
```

585 In simulations, we used the output two-sided p-value for each taxon. In real data analysis, we
586 were interested in the disease-enriched taxa, so we converted the output two-sided p-value into a
587 one-side p-value as follows:

588

- If the estimated coefficient is non-negative, we divided the p-value by two;
- 589 • otherwise, we set the p-value to 1.

590 **metagenomeSeq**

591 We used two R packages, `metagenomeSeq` combined with `phyloseq`. Specifically, we used the
592 following command to obtain the result:

```
593 mseq_obj <- phyloseq_to_metagenomeSeq(physeq2)  
594 pd <- pData(mseq_obj)  
595 mod <- model.matrix(~ 1 + condition, data = pd)  
596 ran_seq <- fitFeatureModel(mseq_obj, mod)
```

597 where `physeq2` is an object created from a count matrix and metadata using the `phyloseq` pack-
598 age.

599 **DESeq2-phyloseq**

600 We used the `DESeq2` package combined with `phyloseq`. Specifically, we used the following com-
601 mand to obtain the result of `DESeq2`:

```
602 Deseq2_obj <- phyloseq_to_deseq2(physeq2, ~ condition)  
603 results <- DESeq(Deseq2_obj, test="Wald", fitType="parametric")
```

604 where `physeq2` is an object created from a count matrix and metadata using the `phyloseq` pack-
605 age.

606 **mblImpute-empowered *t*-test and softImpute-empowered *t*-test**

607 For `mblImpute`-empowered *t*-test, we applied `mblImpute` (in R package `mbImpute`, version 0.0.1)
608 to samples in each sample group and then collected the sample groups together to obtain the
609 imputed data, which have the same dimensions as the original data.

610 For `softImpute`-empowered *t*-test, we applied `softImpute` (in R package `softImpute`, version
611 1.4) to samples in each sample group and then collected the sample groups together to obtain
612 the imputed data, which have the same dimensions as the original data. Specifically, we used the
613 following command to obtain the imputed data for a sample group (condition 1):

```
614 complete(raw_data_condition1, softImpute(raw_data_condition1, rank.max = cv.rankmax))
```

615 where `rank.max` was chosen by 10-fold cross-validation.

616 Then for each taxon, we performed the two-sample *t*-test on the imputed data of the scale

$$\log_{10}(\text{imputed count} + 1.01)$$

617 instead of the original count matrix to obtain a p-value, which suggests if this taxon is DA between
618 the two groups. In simulations, we used the following command to implement a two-sided test for
619 each taxon:

```
620 pairwise.t.test(x = taxon_imputed, g = condition, p.adjust.method = "none")
```

621 In real data analysis, we used the following command to implement a one-sided test to find if a
622 taxon is disease-enriched (the first condition is the disease condition) and obtained a p-value:

623 `pairwise.t.test(x = taxon_imputed, g = condition, p.adjust.method = "none",`
624 `alternative = "greater")`

625 For the Wilcoxon rank-sum test, ZINB-GLM, and mblImpute-empowered or softImpute-empowered
626 *t*-test, after obtaining the p-values of all taxa and collecting them into a vector `p_values`, we
627 adjusted them for FDR control using the R function `p.adjust` in the package `stats` (version 3.5.1):
628 `p.adjust(p_values, method = "fdr")`

629 Then we set the FDR threshold to 0.1 in both simulation and real data analysis. The taxa
630 whose adjusted p-values did not exceed this threshold were called DA. ANCOM directly outputs
631 the DA taxa. DESeq2-phyloseq uses the Benjamini-Hochberg procedure to control the FDR under
632 0.1. For metagenomeSeq, we thresholded its FDR adjusted p-values at 0.1.

633 T2D and CRC datasets

634 We applied mblImpute to six real microbiome datasets, each corresponding to an independent
635 study on the relationship between microbiomes and the occurrence of a human disease. All these
636 six datasets were generated by the whole genome shotgun sequencing and are available in the R
637 package `curatedMetagenomicData` [102]. We compared the disease-enriched DA taxa identified
638 by each of four DA methods, namely the Wilcoxon rank-sum test, ANCOM, ZINB-GLM, and the
639 mblImpute-empowered *t*-test. Below is the description of the six datasets and our analysis.

640 Two datasets are regarding T2D [18, 19]. The Karlsson *et al.* data contain 145 fecal samples
641 from 70-year-old European women for studying the relationship between human gut microbiome
642 compositions and T2D status. The samples/subjects are in three groups: 53 women with T2D, 49
643 women with impaired glucose tolerance (IGT), and 43 women as the normal control (CON). The
644 twelve sample covariates include the study condition, the subject's age, the number of reads in
645 each sample, the triglycerides level, the hba1c level, the ldl (low-density lipoprotein cholesterol)
646 level, the c peptide level, the cholesterol level, the glucose level, the adiponectin level, the hscrp
647 level, and the leptin level. In our analysis, we considered the 344 taxa at the species level with
648 phylogenetic information available in the R package `curatedMetagenomicData`. Qin *et al.* [19]
649 performed deep shotgun metagenomic sequencing on 369 Chinese T2D patients and non-diabetic
650 controls (CON). The three sample covariates include the study condition, the body mass index, and
651 the number of reads in each sample. We analyzed 469 taxa at the species level with phylogenetic
652 information. From both datasets, we identified T2D-enriched taxa by comparing the T2D and CON
653 groups.

654 Four datasets are regarding CRC [14–17]. Zeller *et al.* [14] and Feng *et al.* [15] studied CRC-
655 related microbiomes in three conditions: CRC, small adenoma (ADE; diameter < 10 mm), and
656 control (CON). Zeller *et al.* [14] sequenced the fecal samples of patients across two countries
657 (France and Germany) in these three groups: 191 patients with CRC, 66 patients with ADE, and 42
658 patients in CON. The sample covariates include the study condition, the subject's age category,
659 gender, body mass index and country, and the number of reads in each sample. We included 486
660 taxa at the species level with phylogenetic information. Feng *et al.* [15] sequenced samples from

661 154 human subjects aged between 45–86 years old in Australia, including 46 patients with CRC,
662 47 patients with ADE, and 61 in CON. The sample covariates include the study condition, the
663 subject's age category, gender and body mass index, and number of reads in each sample. We
664 included 449 taxa at the species level in our analysis. Yu et al. [16] and Vogtmann et al. [17] studied
665 CRC-related microbiomes in two conditions: CRC vs. CON. In detail, Yu et al. [16] sequenced 128
666 Chinese samples, including 75 patients with CRC and 53 patients in CON. The sample covariates
667 include the study condition and the number of reads in each sample. We studied 417 taxa at the
668 species level. Vogtmann et al. [17] included 104 samples from Washington DC and sequenced
669 their fecal samples, including 52 with CRC and 52 in CON. The sample covariates include the
670 study condition, the subject's age category, gender and body mass index, and number of reads in
671 each sample. We included 412 taxa at the species level. From all the four datasets, we identified
672 CRC-enriched taxa by comparing the CRC and CON groups.

673 **Software and code**

674 The `mbImpute` R package and the code for simulation and real data analysis are available at
675 <https://github.com/ruochenj/mblImpute>

676 **Acknowledgements**

677 The authors would like to thank Dr. Hongzhe Li at University of Pennsylvania for pointing us to this
678 research direction. The authors also appreciate the comments and feedback from the members
679 of the Junction of Statistics and Biology at UCLA (<http://jsb.ucla.edu>).

680 **Funding**

681 This work was supported by the following grants: National Science Foundation DMS-1613338
682 and DBI-1846216, NIH/NIGMS R01GM120507, PhRMA Foundation Research Starter Grant in
683 Informatics, Johnson & Johnson WiSTEM2D Award, and Sloan Research Fellowship (to J.J.L.).

684 **References**

- 685 [1] Katherine R Amato. An introduction to microbiome analysis for human biology applications.
686 American Journal of Human Biology, 29(1):e22931, 2017.
- 687 [2] Peter J Turnbaugh, Ruth E Ley, Michael A Mahowald, Vincent Magrini, Elaine R Mardis, and
688 Jeffrey I Gordon. An obesity-associated gut microbiome with increased capacity for energy
689 harvest. nature, 444(7122):1027, 2006.

690 [3] Buck S Samuel and Jeffrey I Gordon. A humanized gnotobiotic mouse model of host–
691 archaeal–bacterial mutualism. *Proceedings of the National Academy of Sciences*, 103(26):
692 10011–10016, 2006.

693 [4] Jakob Stokholm, Martin J Blaser, Jonathan Thorsen, Morten A Rasmussen, Johannes
694 Waage, Rebecca K Vinding, Ann-Marie M Schoos, Asja Kunøe, Nadia R Fink, Bo L
695 Chawes, et al. Maturation of the gut microbiome and risk of asthma in childhood. *Nature
696 communications*, 9(1):1–10, 2018.

697 [5] Alexa A Pragman, Hyeun Bum Kim, Cavan S Reilly, Christine Wendt, and Richard E
698 Isaacson. The lung microbiome in moderate and severe chronic obstructive pulmonary
699 disease. *PLoS one*, 7(10):e47305, 2012.

700 [6] Elaine Holmes, Jia V Li, Thanos Athanasiou, Hutan Ashrafi, and Jeremy K Nicholson.
701 Understanding the role of gut microbiome–host metabolic signal disruption in health and
702 disease. *Trends in microbiology*, 19(7):349–359, 2011.

703 [7] Zhang Xinyan, Mallick Himel, and Yi Nengjun. Zero-inflated negative binomial regression
704 for differential abundance testing in microbiome studies. *Journal of Bioinformatics and
705 Genomics*, (2 (2)), 2016. ISSN 2530-1381. doi: 10.18454/jbg.2016.2.2.1. URL <http://journal-biogen.org/article/view/12>.

707 [8] John Besser, Heather A Carleton, Peter Gerner-Smidt, Rebecca L Lindsey, and Eija Trees.
708 Next-generation sequencing technologies and their application to the study and control of
709 bacterial infections. *Clinical microbiology and infection*, 24(4):335–341, 2018.

710 [9] M Luz Calle. Statistical analysis of metagenomics data. *Genomics & informatics*, 17(1),
711 2019.

712 [10] Juan Jovel, Jordan Patterson, Weiwei Wang, Naomi Hotte, Sandra O’Keefe, Troy Mitchel,
713 Troy Perry, Dina Kao, Andrew L Mason, Karen L Madsen, et al. Characterization of the gut
714 microbiome using 16s or shotgun metagenomics. *Frontiers in microbiology*, 7:459, 2016.

715 [11] Benjamin J Callahan, Paul J McMurdie, Michael J Rosen, Andrew W Han, Amy Jo A
716 Johnson, and Susan P Holmes. Dada2: high-resolution sample inference from illumina
717 amplicon data. *Nature methods*, 13(7):581–583, 2016.

718 [12] Benjamin J Callahan, Paul J McMurdie, and Susan P Holmes. Exact sequence variants
719 should replace operational taxonomic units in marker-gene data analysis. *The ISME journal*,
720 11(12):2639–2643, 2017.

721 [13] Hongzhe Li. Microbiome, metagenomics, and high-dimensional compositional data analysis.
722 *Annual Review of Statistics and Its Application*, 2:73–94, 2015.

723 [14] Georg Zeller, Julien Tap, Anita Y Voigt, Shinichi Sunagawa, Jens Roat Kultima, Paul I
724 Costea, Aurélien Amiot, Jürgen Böhm, Francesco Brunetti, Nina Habermann, et al. Potential
725 of fecal microbiota for early-stage detection of colorectal cancer. *Molecular systems biology*,
726 10(11), 2014.

727 [15] Qiang Feng, Suisha Liang, Huijue Jia, Andreas Stadlmayr, Longqing Tang, Zhou Lan,
728 Dongya Zhang, Huihua Xia, Xiaoying Xu, Zhuye Jie, et al. Gut microbiome development
729 along the colorectal adenoma–carcinoma sequence. *Nature communications*, 6:6528, 2015.

730 [16] Jun Yu, Qiang Feng, Sunny Hei Wong, Dongya Zhang, Qiao yi Liang, Youwen Qin, Longqing
731 Tang, Hui Zhao, Jan Stenvang, Yanli Li, et al. Metagenomic analysis of faecal microbiome
732 as a tool towards targeted non-invasive biomarkers for colorectal cancer. *Gut*, 66(1):70–78,
733 2017.

734 [17] Emily Vogtmann, Xing Hua, Georg Zeller, Shinichi Sunagawa, Anita Y Voigt, Rajna Hercog,
735 James J Goedert, Jianxin Shi, Peer Bork, and Rashmi Sinha. Colorectal cancer and the
736 human gut microbiome: reproducibility with whole-genome shotgun sequencing. *PLoS one*,
737 11(5), 2016.

738 [18] Fredrik H Karlsson, Valentina Tremaroli, Intawat Nookaew, Göran Bergström, Carl Johan
739 Behre, Björn Fagerberg, Jens Nielsen, and Fredrik Bäckhed. Gut metagenome in european
740 women with normal, impaired and diabetic glucose control. *Nature*, 498(7452):99–103,
741 2013.

742 [19] Junjie Qin, Yingrui Li, Zhiming Cai, Shenghui Li, Jianfeng Zhu, Fan Zhang, Suisha Liang,
743 Wenwei Zhang, Yuanlin Guan, Dongqian Shen, et al. A metagenome-wide association study
744 of gut microbiota in type 2 diabetes. *Nature*, 490(7418):55–60, 2012.

745 [20] Matteo Calgaro, Chiara Romualdi, Levi Waldron, Davide Risso, and Nicola Vitulo. Assess-
746 ment of single cell rna-seq statistical methods on microbiome data. *BioRxiv*, 2020.

747 [21] Barak Brill, Amnon Amir, and Ruth Heller. Testing for differential abundance in compositional
748 counts data, with application to microbiome studies. *arXiv preprint arXiv:1904.08937*, 2019.

749 [22] Justin D Silverman, Kimberly Roche, Sayan Mukherjee, and Lawrence A David. Naught all
750 zeros in sequence count data are the same. *BioRxiv*, page 477794, 2020.

751 [23] Joana Pereira-Marques, Hout Anne, Rui Manuel Ferreira, Michiel Weber, Ines Pinto-Ribeiro,
752 Leen-Jan van Doorn, Cornelis Willem Knetsch, and Ceu Figueiredo. Impact of host dna
753 and sequencing depth on the taxonomic resolution of whole metagenome sequencing for
754 microbiome analysis. *Frontiers in microbiology*, 10:1277, 2019.

755 [24] Microbiome Human. Project consortium 2012. *Structure, function and diversity of the*
756 *healthy human microbiome*. *Nature*, 486:207–214.

757 [25] Jason Lloyd-Price, Anup Mahurkar, Gholamali Rahnavard, Jonathan Crabtree, Joshua
758 Orvis, A Brantley Hall, Arthur Brady, Heather H Creasy, Carrie McCracken, Michelle G
759 Giglio, et al. Strains, functions and dynamics in the expanded human microbiome project.
760 *Nature*, 550(7674):61–66, 2017.

761 [26] Fan Xia, Jun Chen, Wing Kam Fung, and Hongzhe Li. A logistic normal multinomial
762 regression model for microbiome compositional data analysis. *Biometrics*, 69(4):1053–
763 1063, 2013.

764 [27] Siddhartha Mandal, Will Van Treuren, Richard A White, Merete Eggesbø, Rob Knight, and
765 Shyamal D Peddada. Analysis of composition of microbiomes: a novel method for studying
766 microbial composition. *Microbial ecology in health and disease*, 26(1):27663, 2015.

767 [28] Matthew CB Tsilimigras and Anthony A Fodor. Compositional data analysis of the
768 microbiome: fundamentals, tools, and challenges. *Annals of epidemiology*, 26(5):330–335,
769 2016.

770 [29] Sophie Weiss, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, Antonio
771 Gonzalez, Catherine Lozupone, Jesse R Zaneveld, Yoshiki Vázquez-Baeza, Amanda
772 Birmingham, et al. Normalization and microbial differential abundance strategies depend
773 upon data characteristics. *Microbiome*, 5(1):27, 2017.

774 [30] Abhishek Kaul, Siddhartha Mandal, Ori Davidov, and Shyamal D Peddada. Analysis of
775 microbiome data in the presence of excess zeros. *Frontiers in microbiology*, 8:2114, 2017.

776 [31] Lizhen Xu, Andrew D Paterson, Williams Turpin, and Wei Xu. Assessment and selection of
777 competing models for zero-inflated microbiome data. *PloS one*, 10(7), 2015.

778 [32] Jun Chen, Emily King, Rebecca Deek, Zhi Wei, Yue Yu, Diane Grill, and Karla Ballman.
779 An omnibus test for differential distribution analysis of microbiome sequencing data.
780 *Bioinformatics*, 34(4):643–651, 2018.

781 [33] Paul J McMurdie and Susan Holmes. phyloseq: an r package for reproducible interactive
782 analysis and graphics of microbiome census data. *PloS one*, 8(4):e61217, 2013.

783 [34] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change
784 and dispersion for rna-seq data with deseq2. *Genome biology*, 15(12):550, 2014.

785 [35] Joseph N Paulson, O Colin Stine, Héctor Corrada Bravo, and Mihai Pop. Differential
786 abundance analysis for microbial marker-gene surveys. *Nature methods*, 10(12):1200–
787 1202, 2013.

788 [36] Xiaoling Peng, Gang Li, and Zhenqiu Liu. Zero-inflated beta regression for differential
789 abundance analysis with metagenomics data. *Journal of Computational Biology*, 23(2):
790 102–110, 2016.

791 [37] Timothy W Randolph, Sen Zhao, Wade Copeland, Meredith Hullar, and Ali Shojaie. Kernel-
792 penalized regression for analysis of microbiome data. *The annals of applied statistics*, 12
793 (1):540, 2018.

794 [38] Zhigang Li, Katherine Lee, Margaret R Karagas, Juliette C Madan, Anne G Hoen, A James
795 O'malley, and Hongzhe Li. Conditional regression based on a multivariate zero-inflated
796 logistic-normal model for microbiome relative abundance data. *Statistics in biosciences*, 10
797 (3):587–608, 2018.

798 [39] Stijn Hawinkel, Federico Mattiello, Luc Bijnens, and Olivier Thas. A broken promise:
799 microbiome differential abundance methods do not control the false discovery rate. *Briefings
800 in bioinformatics*, 20(1):210–221, 2019.

801 [40] M Claire Horner-Devine, Jessica M Silver, Mathew A Leibold, Brendan JM Bohannan,
802 Robert K Colwell, Jed A Fuhrman, Jessica L Green, Cheryl R Kuske, Jennifer BH Martiny,
803 Gerard Muyzer, et al. A comparison of taxon co-occurrence patterns for macro-and
804 microorganisms. *Ecology*, 88(6):1345–1353, 2007.

805 [41] Albert Barberán, Scott T Bates, Emilio O Casamayor, and Noah Fierer. Using network
806 analysis to explore co-occurrence patterns in soil microbial communities. *The ISME journal*,
807 6(2):343–351, 2012.

808 [42] Jarishma K Gokul, Andrew J Hodson, Eli R Saetnan, Tristram DL Irvine-Fynn, Philippa J
809 Westall, Andrew P Detheridge, Nozomu Takeuchi, Jennifer Bussell, Luis AJ Mur, and Arwyn
810 Edwards. Taxon interactions control the distributions of cryoconite bacteria colonizing a high
811 arctic ice cap. *Molecular ecology*, 25(15):3752–3767, 2016.

812 [43] Ilma Tapio, Daniel Fischer, Lucia Blasco, Miika Tapio, R John Wallace, Ali R Bayat, Laura
813 Ventto, Minna Kahala, Enyew Negussie, Kevin J Shingfield, et al. Taxon abundance,
814 diversity, co-occurrence and network analysis of the ruminal microbiota in response to
815 dietary changes in dairy cows. *PloS one*, 12(7), 2017.

816 [44] James Bennett, Stan Lanning, et al. The netflix prize. In *Proceedings of KDD cup and
817 workshop*, volume 2007, page 35. Citeseer, 2007.

818 [45] Sarat C Dass and Vijayan N Nair. Edge detection, spatial smoothing, and image reconstruc-
819 tion with partially observed multivariate data. *Journal of the American Statistical Association*,
820 98(461):77–89, 2003.

821 [46] Friedrich Faubel, John McDonough, and Dietrich Klakow. Bounded conditional mean impu-
822 tation with gaussian mixture models: A reconstruction approach to partly occluded features.
823 In *2009 IEEE International Conference on Acoustics, Speech and Signal Processing*, pages
824 3869–3872. IEEE, 2009.

825 [47] Valeria Rulloni, Oscar Bustos, and Ana Georgina Flesia. Large gap imputation in remote
826 sensed imagery of the environment. *Computational Statistics & Data Analysis*, 56(8):2388–
827 2403, 2012.

828 [48] Jason Ernst and Manolis Kellis. Large-scale imputation of epigenomic datasets for
829 systematic annotation of diverse human tissues. *Nature biotechnology*, 33(4):364, 2015.

830 [49] Jonathan Marchini and Bryan Howie. Genotype imputation for genome-wide association
831 studies. *Nature Reviews Genetics*, 11(7):499–511, 2010.

832 [50] Wei Vivian Li and Jingyi Jessica Li. An accurate and robust imputation method scimpute for
833 single-cell rna-seq data. *Nature communications*, 9(1):1–9, 2018.

834 [51] David Van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J
835 Carr, Cassandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Patabiraman, et al.
836 Recovering gene interactions from single-cell data using data diffusion. *Cell*, 174(3):716–
837 729, 2018.

838 [52] Mo Huang, Jingshu Wang, Eduardo Torre, Hannah Dueck, Sydney Shaffer, Roberto
839 Bonasio, John I Murray, Arjun Raj, Mingyao Li, and Nancy R Zhang. Saver: gene expression
840 recovery for single-cell rna sequencing. *Nature methods*, 15(7):539–542, 2018.

841 [53] George C Linderman, Jun Zhao, and Yuval Kluger. Zero-preserving imputation of scRNA-seq
842 data using low-rank approximation. *bioRxiv*, page 397588, 2018.

843 [54] Gökçen Eraslan, Lukas M Simon, Maria Mircea, Nikola S Mueller, and Fabian J Theis.
844 Single-cell rna-seq denoising using a deep count autoencoder. *Nature communications*, 10
845 (1):1–14, 2019.

846 [55] Cameron Martino, James T Morton, Clarisse A Marotz, Luke R Thompson, Anupriya
847 Tripathi, Rob Knight, and Karsten Zengler. A novel sparse compositional technique reveals
848 microbial perturbations. *MSystems*, 4(1), 2019.

849 [56] Yun Cai, Hong Gu, and Toby Kenney. Learning microbial community structures with
850 supervised and unsupervised non-negative matrix factorization. *Microbiome*, 5(1):110,
851 2017.

852 [57] László Zsolt Garamszegi. *Modern phylogenetic comparative methods and their application
853 in evolutionary biology: concepts and practice*. Springer, 2014.

854 [58] Liam J Revell. phytools: an R package for phylogenetic comparative biology (and other
855 things). *Methods in ecology and evolution*, 3(2):217–223, 2012.

856 [59] Steven W Kembel, Peter D Cowan, Matthew R Helmus, William K Cornwell, Helene Morlon,
857 David D Ackerly, Simon P Blomberg, and Campbell O Webb. Picante: R tools for integrating
858 phylogenies and ecology. *Bioinformatics*, 26(11):1463–1464, 2010.

859 [60] David Orme, R Freckleton, G Thomas, T Petzoldt, S Fritz, N Isaac, et al. The caper package:
860 comparative analysis of phylogenetics and evolution in r. *R package version*, 5(2):1–36,
861 2013.

862 [61] Gregory B Gloor and Gregor Reid. Compositional analysis: a valid approach to analyze
863 microbiome high-throughput sequencing data. *Canadian journal of microbiology*, 62(8):
864 692–703, 2016.

865 [62] Jun Chen, Frederic D Bushman, James D Lewis, Gary D Wu, and Hongzhe Li. Structure-
866 constrained sparse canonical correlation analysis with an application to microbiome data
867 analysis. *Biostatistics*, 14(2):244–258, 2013.

868 [63] Tao Wang and Hongyu Zhao. Constructing predictive microbial signatures at multiple
869 taxonomic levels. *Journal of the American Statistical Association*, 112(519):1022–1031,
870 2017.

871 [64] Jian Xiao, Hongyuan Cao, and Jun Chen. False discovery rate control incorporating phylo-
872 genetic tree increases detection power in microbiome-wide multiple testing. *Bioinformatics*,
873 33(18):2873–2881, 2017.

874 [65] Alex D Washburne, James T Morton, Jon Sanders, Daniel McDonald, Qiyun Zhu, Angela M
875 Oliverio, and Rob Knight. Methods for phylogenetic analysis of microbiome data. *Nature
876 microbiology*, 3(6):652–661, 2018.

877 [66] T Michael Anderson, Marc-André Lachance, and William T Starmer. The relationship of
878 phylogeny to community structure: the cactus yeast community. *The American Naturalist*,
879 164(6):709–721, 2004.

880 [67] Campbell O Webb, David D Ackerly, Mark A McPeek, and Michael J Donoghue. Phylogenies
881 and community ecology. *Annual review of ecology and systematics*, 33(1):475–505, 2002.

882 [68] Evan Weiher and Paul A Keddy. Assembly rules, null models, and trait dispersion: new
883 questions from old patterns. *Oikos*, pages 159–164, 1995.

884 [69] Cédric Arisdakessian, Olivier Poirion, Breck Yunits, Xun Zhu, and Lana X Garmire.
885 Deepimpute: an accurate, fast, and scalable deep neural network method to impute single-
886 cell rna-seq data. *Genome biology*, 20(1):1–14, 2019.

887 [70] T Hastie and R Mazumder. softimpute: Matrix completion via iterative soft-thresholded svd.
888 *R package version*, 1:p1, 2015.

889 [71] B Ren, E Schwager, TL Tickle, and C Huttenhower. Sparsedossa: Sparse data observations
890 for simulating synthetic abundance. 2016.

891 [72] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. *R news*,
892 2(3):18–22, 2002.

893 [73] RCV Casarin, A Barbagallo, T Meulman, VR Santos, EA Sallum, FH Nociti, PM Duarte,
894 MZ Casati, and RB Gonçalves. Subgingival biodiversity in subjects with uncontrolled type-2
895 diabetes and chronic periodontitis. *Journal of periodontal research*, 48(1):30–36, 2013.

896 [74] Ninh T Nguyen, Xuan-Mai T Nguyen, John Lane, and Ping Wang. Relationship between
897 obesity and diabetes in a us adult population: findings from the national health and nutrition
898 examination survey, 1999–2006. *Obesity surgery*, 21(3):351–355, 2011.

899 [75] Ivana Semova, Juliana D Carten, Jesse Stombaugh, Lantz C Mackey, Rob Knight, Steven A
900 Farber, and John F Rawls. Microbiota regulate intestinal absorption and metabolism of fatty
901 acids in the zebrafish. *Cell host & microbe*, 12(3):277–288, 2012.

902 [76] Ruth E Ley, Fredrik Bäckhed, Peter Turnbaugh, Catherine A Lozupone, Robin D Knight, and
903 Jeffrey I Gordon. Obesity alters gut microbial ecology. *Proceedings of the National Academy
904 of Sciences*, 102(31):11070–11075, 2005.

905 [77] Marlene Remely, Simone Dworzak, Berit Hippe, Jutta Zwielehner, E Aumüller, Helmut Brath,
906 and Alexander Haslberger. Abundance and diversity of microbiota in type 2 diabetes and
907 obesity. *J Diabetes Metab*, 4(253):2, 2013.

908 [78] Nadja Larsen, Finn K Vogensen, Frans WJ Van Den Berg, Dennis Sandris Nielsen,
909 Anne Sofie Andreasen, Bente K Pedersen, Waleed Abu Al-Soud, Søren J Sørensen, Lars H
910 Hansen, and Mogens Jakobsen. Gut microbiota in human adults with type 2 diabetes differs
911 from non-diabetic adults. *PloS one*, 5(2), 2010.

912 [79] Yaohua Yang, Qiuyin Cai, Wei Zheng, Mark Steinwandel, William J Blot, Xiao-Ou Shu, and
913 Jirong Long. Oral microbiome and obesity in a large study of low-income and african-
914 american populations. *Journal of oral microbiology*, 11(1):1650597, 2019.

915 [80] Eric Z Chen and Hongzhe Li. A two-part mixed-effects model for analyzing longitudinal
916 microbiome compositional data. *Bioinformatics*, 32(17):2611–2617, 2016.

917 [81] Mehdi Layeghifard, David M Hwang, and David S Guttman. Disentangling interactions in
918 the microbiome: a network perspective. *Trends in microbiology*, 25(3):217–228, 2017.

919 [82] Emma Allen-Vercoe and Christian Jobin. Fusobacterium and enterobacteriaceae: important
920 players for crc? *Immunology letters*, 162(2):54–61, 2014.

921 [83] Tingting Wang, Guoxiang Cai, Yunping Qiu, Na Fei, Menghui Zhang, Xiaoyan Pang, Wei Jia,
922 Sanjun Cai, and Liping Zhao. Structural segregation of gut microbiota between colorectal
923 cancer patients and healthy volunteers. *The ISME journal*, 6(2):320–329, 2012.

924 [84] Na Wu, Xi Yang, Ruifen Zhang, Jun Li, Xue Xiao, Yongfei Hu, Yanfei Chen, Fengling Yang,
925 Na Lu, Zhiyun Wang, et al. Dysbiosis signature of fecal microbiota in colorectal cancer
926 patients. *Microbial ecology*, 66(2):462–470, 2013.

927 [85] Santosh Dulal and Temitope O Keku. Gut microbiome and colorectal adenomas. *Cancer*
928 *journal (Sudbury, Mass.)*, 20(3):225, 2014.

929 [86] Geicho Nakatsu, Xiangchun Li, Haokui Zhou, Jianqiu Sheng, Sunny Hei Wong, William
930 Ka Kai Wu, Siew Chien Ng, Ho Tsoi, Yujuan Dong, Ning Zhang, et al. Gut mucosal
931 microbiome across stages of colorectal carcinogenesis. *Nature communications*, 6:8727,
932 2015.

933 [87] Iradj Sobhani, Julien Tap, Françoise Roudot-Thoraval, Jean P Roperch, Sophie Letulle,
934 Philippe Langella, Gerard Corthier, Jeanne Tran Van Nhieu, and Jean P Furet. Microbial
935 dysbiosis in colorectal cancer (crc) patients. *PLoS one*, 6(1), 2011.

936 [88] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob Knight, and
937 Jeffrey I Gordon. The human microbiome project. *Nature*, 449(7164):804–810, 2007.

938 [89] Kameron Y Sugino, Nigel Paneth, and Sarah S Comstock. Michigan cohorts to determine
939 associations of maternal pre-pregnancy body mass index with pregnancy and infant
940 gastrointestinal microbial communities: late pregnancy and early infancy. *PLoS one*, 14
941 (3):e0213733, 2019.

942 [90] Qian Yang, Shi Lin Lin, Man Ki Kwok, Gabriel M Leung, and C Mary Schooling. The roles of
943 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and
944 their risk factors: a mendelian randomization study. *American Journal of Epidemiology*, 187
945 (9):1916–1922, 2018.

946 [91] Lawrence A David, Corinne F Maurice, Rachel N Carmody, David B Gootenberg, Julie E
947 Button, Benjamin E Wolfe, Alisha V Ling, A Sloan Devlin, Yug Varma, Michael A Fischbach,
948 et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature*, 505(7484):
949 559–563, 2014.

950 [92] Malo Le Boulch, Patrice Déhais, Sylvie Combes, and Géraldine Pascal. The macadam
951 database: a metabolic pathways database for microbial taxonomic groups for mining
952 potential metabolic capacities of archaeal and bacterial taxonomic groups. *Database*, 2019,
953 2019.

954 [93] Bradley Efron and Trevor Hastie. *Computer age statistical inference*, volume 5. Cambridge
955 University Press, 2016.

956 [94] R Poudel, A Jumpponen, Dan C Schlatter, TC Paulitz, BB McSpadden Gardener, Linda L
957 Kinkel, and KA Garrett. Microbiome networks: a systems framework for identifying candidate
958 microbial assemblages for disease management. *Phytopathology*, 106(10):1083–1096,
959 2016.

960 [95] Li Chen, James Reeve, Lujun Zhang, Shengbing Huang, Xuefeng Wang, and Jun Chen.
961 Gmpr: A robust normalization method for zero-inflated count data with application to
962 microbiome sequencing data. PeerJ, 6:e4600, 2018.

963 [96] Ohad Manor and Elhanan Borenstein. Musicc: a marker genes based framework for
964 metagenomic normalization and accurate profiling of gene abundances in the microbiome.
965 Genome biology, 16(1):53, 2015.

966 [97] Inés Martínez, James M Lattimer, Kelcie L Hubach, Jennifer A Case, Junyi Yang, Casey G
967 Weber, Julie A Louk, Devin J Rose, Gayaneh Kyureghian, Daniel A Peterson, et al. Gut
968 microbiome composition is linked to whole grain-induced immunological improvements. The
969 ISME journal, 7(2):269–280, 2013.

970 [98] Wei Vivian Li and Jingyi Jessica Li. A statistical simulator scdesign for rational scRNA-seq
971 experimental design. Bioinformatics, 35(14):i41–i50, 2019.

972 [99] Jamie Waese, Nicholas J Provart, and David S Guttman. Topo-phylogeny: Visualizing
973 evolutionary relationships on a topographic landscape. PLoS one, 12(5):e0175895, 2017.

974 [100] Jian Xiao, Li Chen, Stephen Johnson, Yue Yu, Xianyang Zhang, and Jun Chen. Predictive
975 modeling of microbiome data using a phylogeny-regularized generalized linear mixed model.
976 Frontiers in microbiology, 9:1391, 2018.

977 [101] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. glmnet: Lasso and elastic-net
978 regularized generalized linear models. R package version, 1(4), 2009.

979 [102] Edoardo Pasolli, Lucas Schiffer, Paolo Manghi, Audrey Renson, Valerie Obenchain, Duy Tin
980 Truong, Francesco Beghini, Faizan Malik, Marcel Ramos, Jennifer B Dowd, et al. Accessible,
981 curated metagenomic data through experimenthub. Nature methods, 14(11):1023, 2017.

982 Figures

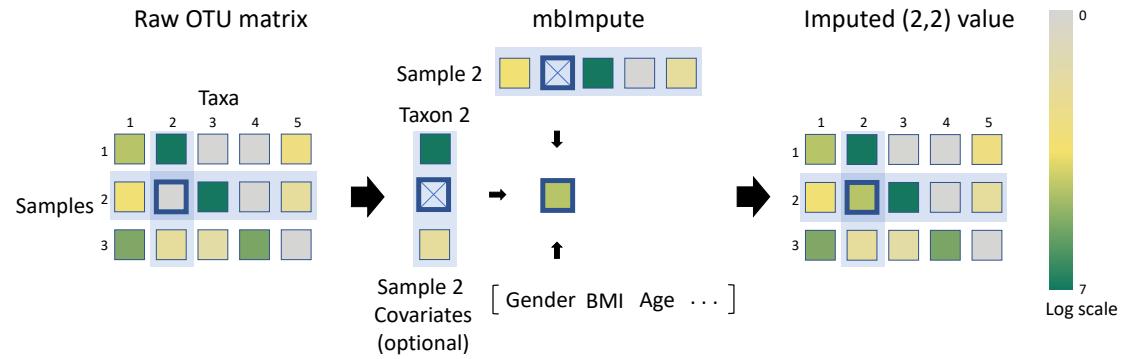


Figure 1: An illustration of mblImpute. After mblImpute identifies likely non-biological zeros, it imputes them (e.g. the abundance of taxon 2 in sample 2) by jointly borrowing information from similar samples, similar taxa, and sample covariates if available (details in Methods).

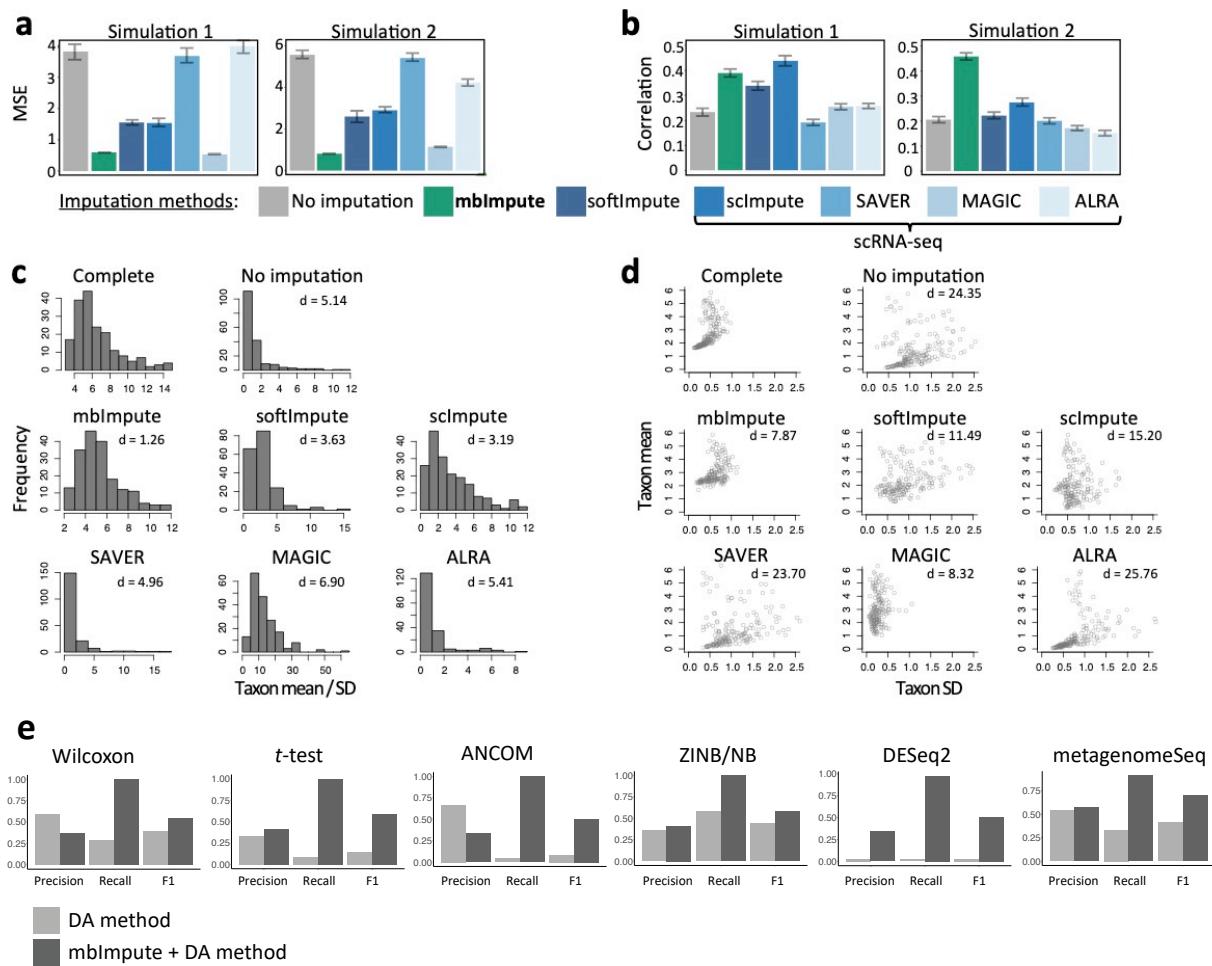


Figure 2: mblImpute outperforms state-of-the-art imputation methods designed for non-microbiome data and enhances the identification of DA taxa. (a) Mean squared error (MSE) and (b) mean Pearson correlation of taxon abundances between the complete data and the zero-inflated data (“No imputation,” the baseline) or the imputed data by each imputation method (mblImpute, softImpute, sclImpute, SAVER, MAGIC, and ALRA) in Simulations 1 and 2 (see Supplementary). (c)-(d) For each taxon, the mean and standard deviation (SD) of its abundances were calculated for the complete data, the zero-inflated data, and the imputed data by each imputation method in Simulation 1; (c) shows the distributions of the taxon mean / SD and the Wasserstein distance between every distribution and the complete distribution; (d) shows the taxa in two coordinates, mean vs. SD, and the Euclidean distance between the taxa in every (zero-inflated or imputed) dataset and the complete data in these two coordinates. (e) Accuracy (Precision, recall and F₁ scores) of six DA methods (Wilcoxon rank-sum test, t-test, ANCOM, ZINB/NB-GLM, DESeq2-phyloseq, metagenomeSeq) on raw data (light color) and imputed data by mblImpute (dark color) in Simulation 4.

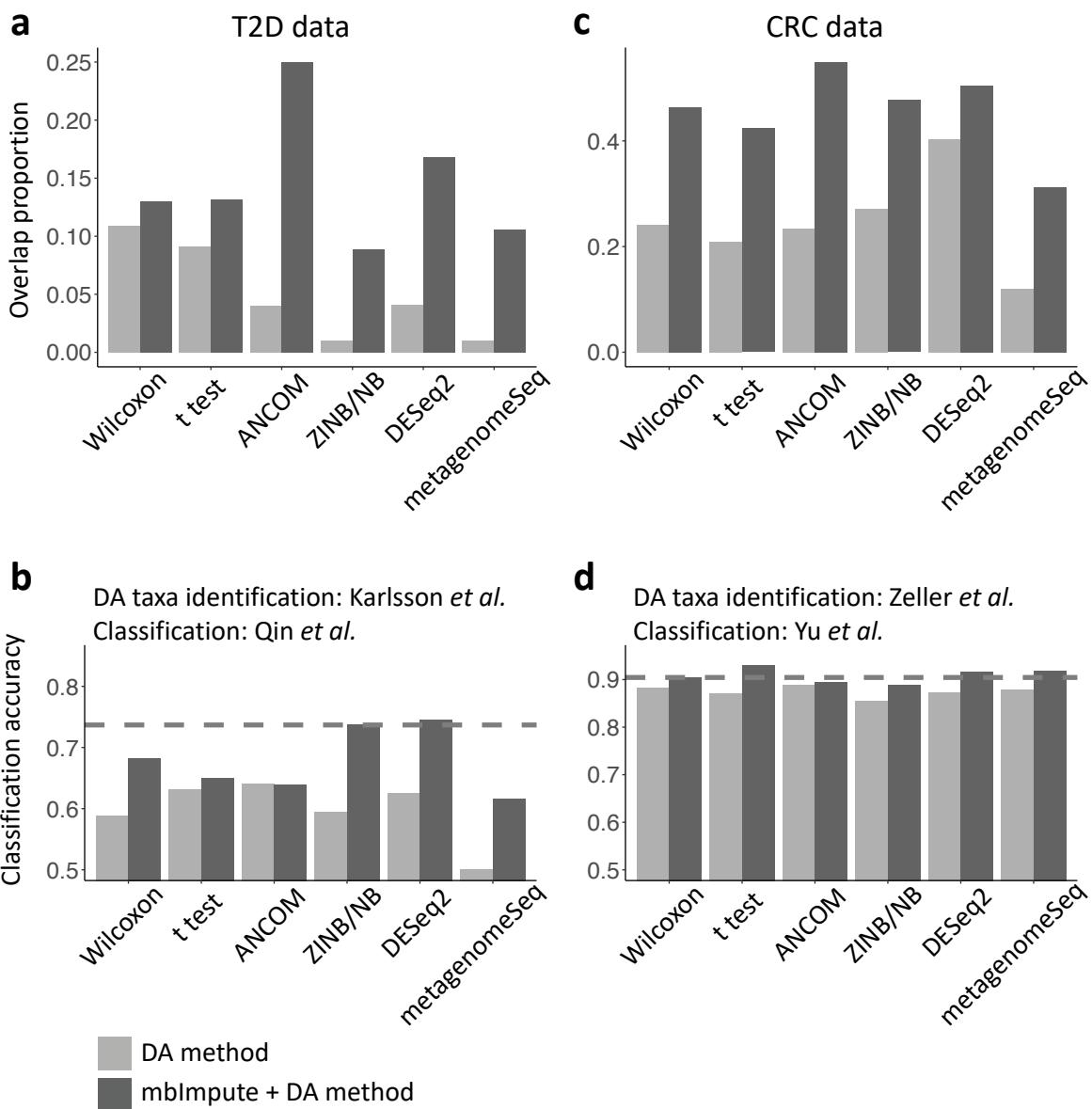
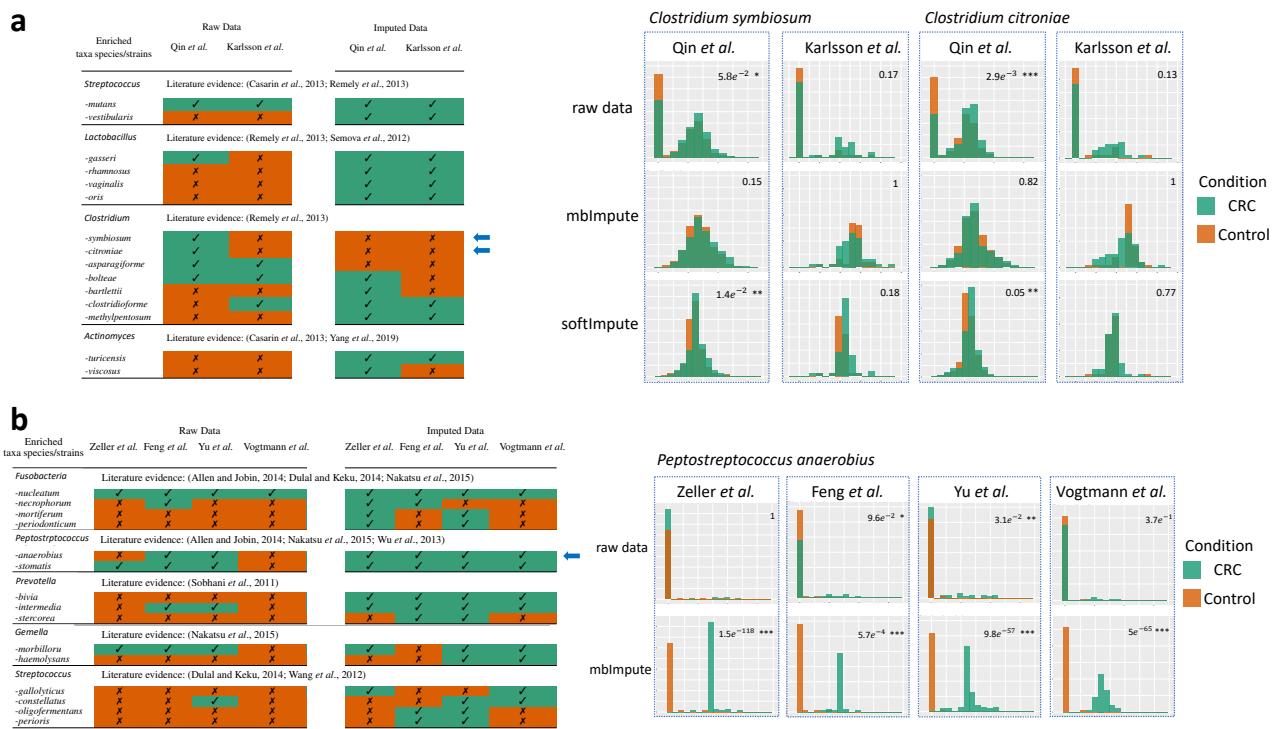


Figure 3: mblImpute increases the reproducibility of DA taxon identification and the accuracy of sample classification in cross-data studies. (a) The overlapping proportion (taxa identified as DA in both of the datasets / total number of taxa identified in either of the datasets) of identified T2D-enriched taxa between two T2D datasets [18, 19] for six DA methods, Wilcoxon rank-sum test (Wilcoxon), *t*-test, ANCOM, ZINB/NB-GLM (ZINB/NB), DESeq2-phyloseq (DESeq2), metagenomeSeq, before (light color) and after imputation (dark color). (b) The proportion of CRC-enriched taxa identified in at least two datasets among four CRC data [14–17] by the six DA methods before (light color) and after imputation (dark color). (c) The barplots show classification accuracy of prediction using random forest algorithm on the T2D status of Qin *et al.* by using the identified DA taxa in Karlsson *et al.* using six DA methods before (light color) and after imputation (dark color). The dotted horizontal line shows the prediction accuracy using random forest that automatically selects predictive features from all the taxa in Qin *et al.* to predict T2D statuses. (d) The barplots show classification accuracy of prediction using random forest on the T2D status of Yu *et al.* by using the identified DA taxa in Zeller *et al.* using six DA methods before (light color) and after imputation (dark color). The dotted horizontal line shows the prediction accuracy using random forest that automatically selects predictive features from all the taxa in Yu *et al.* to predict CRC statuses.



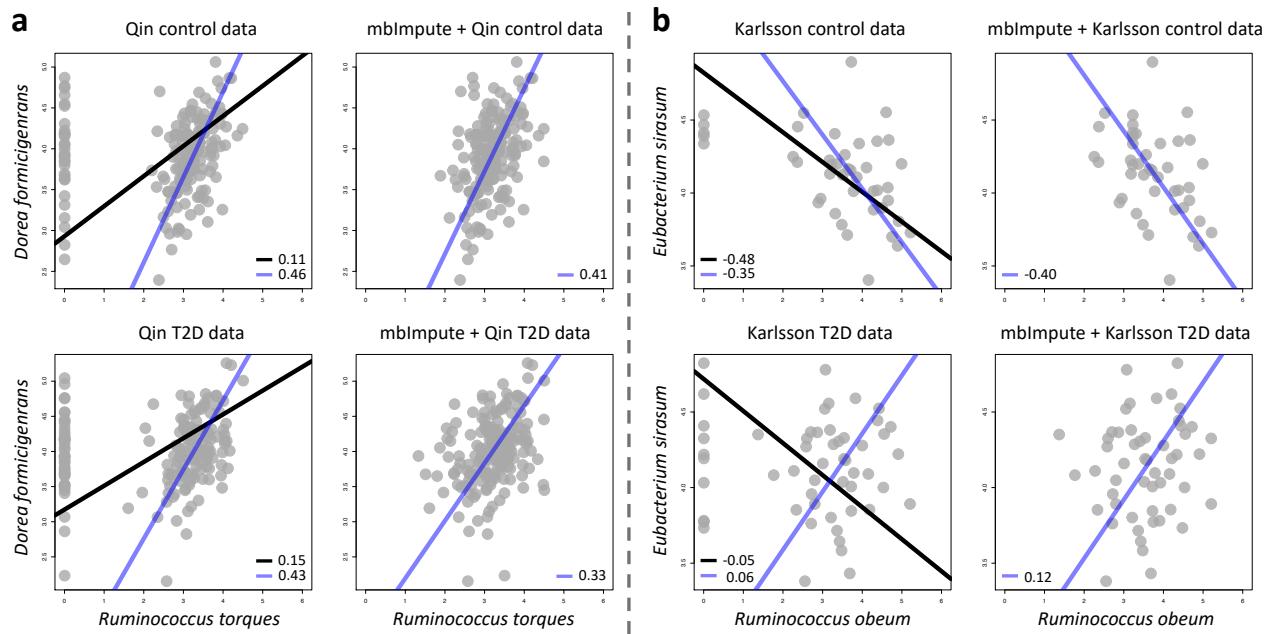


Figure 5: mbImpute preserves distributional characteristics of taxa's non-zero abundances. (a) Top: two scatter plots show the relationship between the abundances of *Dorea formicigenerans* and *Ruminococcus torques* in Qin et al.'s control samples, with or without using mbImpute as a preceding step. The left plot shows two standard major axis (SMA) regression lines and two corresponding Pearson correlations based on the raw data (black: based on all the samples; blue: based on only the samples where both taxa have non-zero abundances). The right plot shows the SMA regression line (blue) and the Pearson correlation using all the samples in the imputed data. Bottom: two scatter plots for the same two taxa in Qin et al.'s T2D samples, with lines and legends defined the same as in the Top panel. (b) Four scatter plots show the SMA regression lines and correlations between *Eubacterium sirasum* and *Ruminococcus obeum* in Karlsson et al.'s control and T2D samples, with lines and legends defined the same as in (a).

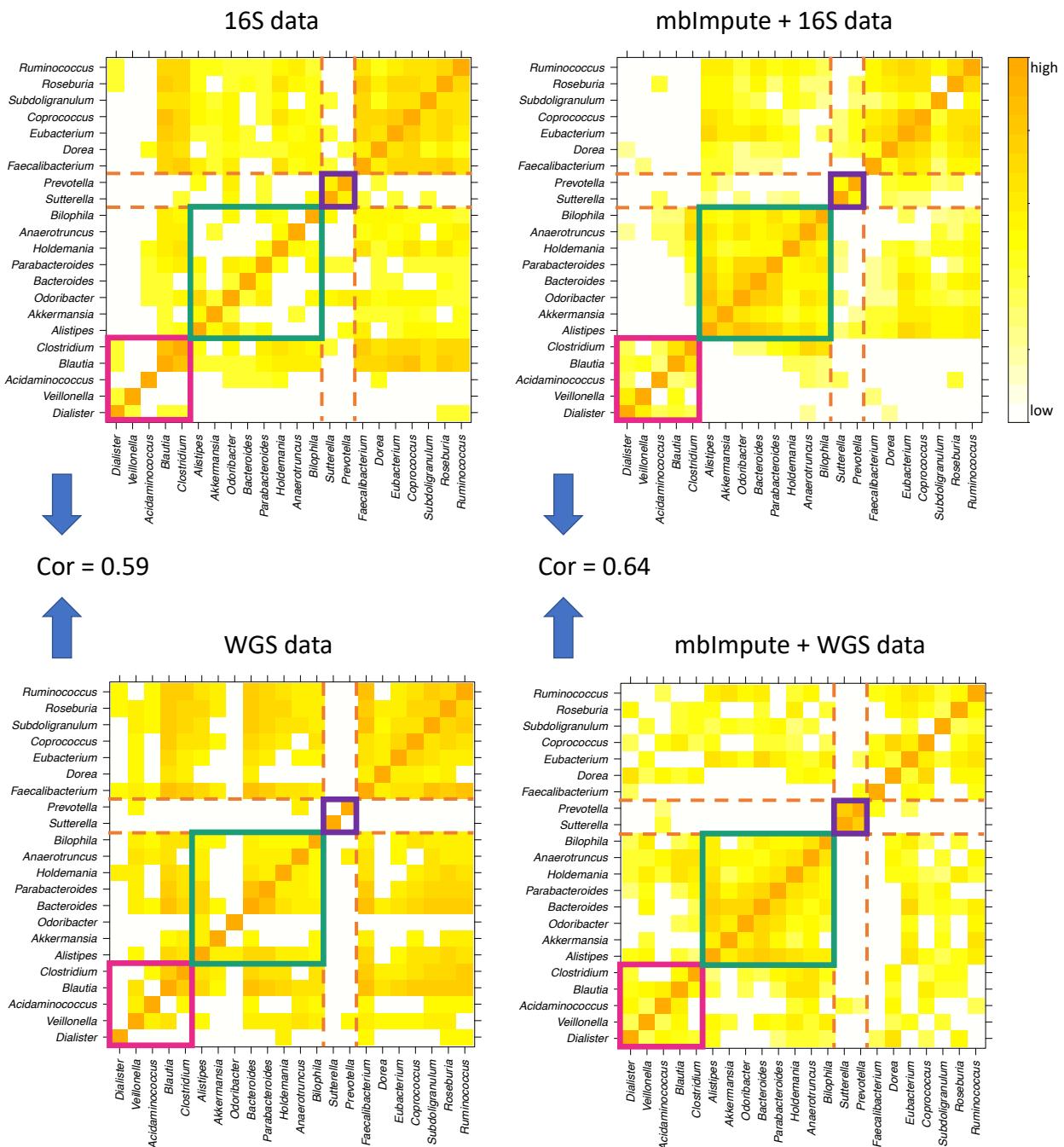


Figure 6: mblImpute improves the consistency in estimating taxon-taxon correlations between 16S and WGS data of microbiome composition in the healthy human stool samples. Four Pearson correlation matrices are calculated based on genus-level taxa's abundances in 16S and WGS data, with or without using mblImpute as a preceding step. Before imputation, the Pearson correlation between the two correlation matrices is 0.59, and this correlation increases to 0.64 after imputation. For illustration purposes, each heatmap shows square roots of Pearson correlations, with the bottom 40% of values truncated to 0. The magenta, green, and purple squares highlight three taxon groups, each of which contains strongly correlated taxa and is consistent between the 16S and WGS data after imputation.