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Abstract

Signals often ultimately affect the transcription of genes, and often, two different signals can
affect the transcription of the same gene. In such cases, it is natural to ask how the combined
transcriptional response compares to the individual responses. Mechanistic models can
predict a range of combined responses, with the most commonly applied models predicting
additive or multiplicative responses, but systematic genome-wide evaluation of these
predictions are not available. Here, we performed a comprehensive analysis of the
transcriptional response of human MCF-7 cells to two different signals (retinoic acid and
TGF-B), applied individually and in combination. We found that the combined responses
exhibited a range of behaviors, but clearly favored both additive and multiplicative combined
transcriptional responses. We also performed paired chromatin accessibility measurements to
measure putative transcription factor occupancy at regulatory elements near these genes. We
found that increases in chromatin accessibility were largely additive, meaning that the
combined accessibility response was the sum of the accessibility responses to each signal
individually. We found some association between super-additivity of accessibility and
multiplicative or super-multiplicative combined transcriptional responses, while sub-additivity
of accessibility associated with additive transcriptional responses. Our findings suggest that
mechanistic models of combined transcriptional regulation must be able to reproduce a range
of behaviors.
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Introduction

Suppose a cell at baseline expresses 100 copies of mMRNA of gene X. If you give signal
A, the cell expresses 200 copies of gene X. Give signal B, and you see 300 copies. What
happens when you give both signals at the same time? Do the effects add (gene X increases to
400 copies)? Multiply (600 copies)? Additive and to some extent multiplicative
phenomenological models have seen widespread use due to their simple mechanistic basis.
However, there is little systematic empirical evidence that either of these phenomenological
models of combined responses are in general valid or should be favored in any way.

Part of the appeal of the additive and multiplicative phenomenological models is their
emergence from simple and natural mechanistic models of transcriptional regulation. For
instance, additive behavior naturally emerges from a model in which transcription factors can
independently recruit polymerase to the promoter (Scholes et al. 2017; Bothma et al. 2015;
Bender et al. 2012). Specifically, if signal A and signal B each induce the binding of different
transcription factors to the enhancers of gene X, and these each independently result in an
increased rate of binding of the polymerase to the promoter, then the total rate of binding
would be the sum of the two independent contributions. (This additive prediction assumes that
the binding events are not so frequent as to saturate the promoter.) Consistent with this
behavior, the deletion of pairs of enhancers at the mouse B-globin locus resulted in additive
reductions in gene expression (Bender et al., 2012), and CRISPRa-based activation of
enhancer subsets resulted in additive increases in gene expression for several genes in an
endometrial cancer cell line (Ginley-Hidinger et al., 2019). However, these experiments are
typically limited to small sets of genes, making it difficult to conclude that additive behavior is
the default, and indeed deviations from additive behavior are prevalent (Bothma et al., 2015;
Ginley-Hidinger et al., 2019; Scholes et al., 2019).

Another oft-cited phenomenological observation is multiplicative integration of two
transcriptional signals. One common model that can readily explain multiplicative integration is
the so-called “thermodynamic model”, in which it is assumed that equilibrium binding levels of
RNA polymerase to the promoter is the control point for transcriptional regulation (Ackers et al.,
1982; Bintu et al., 2005; Phillips et al., 2019; Scholes et al., 2017; Sherman and Cohen, 2012).
In a simple instantiation with two transcription factors, A’ and B’, that mediate the effects of
signals A and B on gene X, each factor individually lowers the binding energy of RNA
polymerase to the promoter, increasing its affinity (Bintu et al., 2005). If both transcription
factors are present, then the changes in binding energy add, and hence, given that the
probability of a transcription factor recruiting RNA polymerase Il depends exponentially on
binding energy, the net change in equilibrium binding levels of RNA polymerase Il would
multiply. Multiplicative activation by two RNA polymerase-binding factors has been seen in
mutant E. coli experiments after Acl and CRP binding sides were placed adjacent to a lacZ
promoter (Joung et al., 1994). In eukaryotes, thermodynamic models have been successful in
predicting how engineered combinations of a few known transcription factor binding
sequences next to a promoter affect the transcription of reporter genes in yeast and mouse
embryonic stem cells, explaining ~50% of the variance in reporter gene expression, and up to
72% of the variance when non-multiplicative interaction terms are included (Fiore and Cohen,
2016; Gertz et al., 2009). However, it is unclear from many of these assays, most of which
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focus on promoter manipulations, how prevalent and general the multiplicative predictions of
the simplest version of the thermodynamic model are, especially given that many combined
responses are known to follow more simple additive predictions.

While potential mechanisms underlying additive and multiplicative behavior are
straightforward, there is no a priori reason to believe that most genes would follow one or the
other, or either at all. Indeed, a larger class of “kinetic” models of transcription (which represent
transcription as a coupled series of chemical reactions with distinct signal-responsive rates)
have been shown to admit a wide variety of behaviors, ranging from sub-addition to
super-multiplication (Scholes et al., 2017). A systematic test of these different
phenomenological types of combined responses has yet to be done, in part because there is a
lack of transcriptome-wide experiments in the literature that treat cells with two signals both
individually and in combination. (A notable exception is (Goldstein et al., 2017), where the
authors use dual-signal treatment and a heuristic approach to find synergistic and antagonistic
genes but do not compare underlying phenomenological models of combined responses.)
Thus, it remains unknown if combinatorial gene regulation is primarily additive, multiplicative, or
a wide distribution of everything in between (and beyond).

Upstream of transcription, it is also unclear how multiple signals coordinately affect
transcription factor binding activity at cis-regulatory elements. For instance, if each signal
results in the binding of a specific set of transcription factors at a particular regulatory region
individually, then do these two different sets of factors bind with the same probability when
both signals are applied? Or are these probabilities affected by potential regulatory interactions
between the signals? And how might these binding probabilities and potential interactions
affect expression of the target genes? There is only limited transcription factor binding data
available for experiments where cells receive multiple signals simultaneously (Goldstein et al.,
2017), and then using ChIP-seq, which only reports binding profiles for specific transcription
factors. Pairing combined response experiments with chromatin accessibility measurements,
which correlate with aggregate transcription factor binding data (Thurman et al., 2012), has the
potential to answer these questions in a more comprehensive manner than ChlP-seq would
allow for.

Experimentally, part of what makes it difficult to compare phenomenological models of
combined responses is that additive and multiplicative models can give nearly indistinguishable
predictions, especially when one or both of the signals’ effects are relatively small. As such,
often experimental data will be consistent with, say, a multiplicative or additive model (or
weighted variants of such models), but it is difficult to exclude the possibility of the other
model, especially when only a limited number of genes are considered (Rothschild et al. 2014;
Kaplan et al. 2008; Geva-Zatorsky et al. 2010; Rapakoulia et al. 2017). With current
genome-wide expression profiling tools, however, it may be possible to query the integration
modes of sufficiently many genes so as to discriminate between additive, multiplicative, and
other phenomenological model predictions for at least some subset of genes, thus enabling a
larger scale view of gene regulation’s tendencies towards specific combined response
behaviors.

Here, we profiled MCF-7 cells with paired RNA-seq and ATAC-seq measurements after
we exposed them to retinoic acid, TGF-3, and both signals. We found that while genes’
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transcriptional responses exhibit a wide variety of behaviors when combining these two
signals, they generally tended towards either addition or multiplication. ATAC-seq peaks, on
the other hand, appeared to prefer addition as the default operation for combining two signal
effects, although a minority of peaks clearly showed sub-additive or super-additive behavior.
Genes with super-additive ATAC-seq peaks nearby were more likely to have a multiplicative or
super-multiplicative transcriptional responses to retinoic acid and TGF-B. These data provide a
comprehensive and systematic view of transcriptional responses to combined signal
treatments.

Results
Upregulated genes gravitate toward addition and multiplication when combining the
transcriptional effects of both signals

To quantitatively measure how gene regulation depends on multiple input signals, we
performed three replicates of a paired RNA-seq and ATAC-seq experiment using MCF-7 cells
(human breast carcinoma; selected for being well-characterized in its response to the two
signals chosen). Prior to sequencing, we treated these cells with three different doses of TGF-3
(1.25, 5, and 10 ng/ml), retinoic acid (50, 200, and 400 nM), or both signals (low, medium, and
high dosages of both TGF-3 and retinoic acid simultaneously) for 72 hours (Figure 1B). We
waited 72 hours to create a larger set of differentially expressed genes to use in subsequent
analyses, and chose doses that led to broad changes in transcription and chromatin
accessibility (Figure 1B; see methods for discussion of doses chosen). Initial analysis showed
that the number of differentially expressed genes and differential peaks increased in a
dose-dependent manner, and that all genes that were upregulated in both individual signal
treatments were also upregulated in the combination treatment (Figure 1B). We focused our
analysis on upregulated genes and upregulated ATAC-seq peaks due to their greater dynamic
range in effect sizes and their more straightforward interpretation in the context of potential
binding of activators to increase the transcription of nearby genes. (Note that our ethanol
“vehicle” controls were performed at three different cell concentrations, and there were no
significantly differentially expressed genes between concentrations. We did not, however, add
the signals to different concentrations of cells or cells at different points in the cell cycle, in
which context the signals may exert differential effects.)

We defined a master set of 1,398 genes by selecting the set of genes that were
significantly upregulated in any dose of the combination treatment (log2 fold-change = 0.5 and
Benjamini-Hochberg adjusted p value < 0.05) and that had increased expression in all doses of
each individual signal (Figure 1D). If we had selected the full set of all genes upregulated in any
dose of the combined treatment, we would have analyzed a set of 2246 genes (Figure 1D). We
required the change in expression to be positive for both individual signals, however, (i.e., A, >
0 and A > 0) in order to maintain a consistent mapping between our categorical description of
combined responses (e.g., “sub-additive”, “super-multiplicative”) and our continuous “c value”
description of combined responses defined in Box 1 and Figure 1A. Requiring A, > 0 and Ag >
0 in our master set of genes was necessary to guarantee that sub-additive combined
transcriptional responses always had c values less than 0 and that super-multiplicative
responses always had c values greater than 1. Imposing the conditions of A, >0 and A; >0
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removed 37.8% of the 2,246 genes that showed a significant increase in expression in the
combined treatment (Figure 1D), leaving 1396 of the 1398 genes that ultimately fed into our
analyses. Inclusion of genes with negative changes after individual signal treatments would
require a more elaborate analysis framework to encompass the much larger variety of
categorizations of potential responses that would be difficult to characterize with the number of
genes in our analysis. (There were only two genes that were significantly downregulated in the
combined treatment while also having A, > 0 and A; > 0 at all doses of each individual signal
treatment; we elected to also include these two genes in our master set for the total of 1398.)
In our analysis of combined transcriptional responses, we assumed that retinoic acid
and TGF-beta exhibited their effects on common target genes through distinct transcription
factors. To justify this assumption, we confirmed that there was little cross-activation of
pSMAD?2 (which serves as a proxy for the readout of TGF-beta signaling) by performing
immunofluorescence targeting pSMAD2 upon the addition of TGF-beta and retinoic acid
individually (Supplemental Figure 4A-B). We saw that TGF-beta treatment rapidly increased the
nuclear signal of pPSMAD2 (by 40 minutes), which remained above baseline until the final time
point at 72 hours, whereas retinoic acid treatment induced no changes in pSMAD2 signal
relative to baseline (Supplemental Figure 4C-E). Nuclear expression of retinoic acid receptor
alpha, which resides in the nucleus regardless of activation level (Mangelsdorf and Evans
1995), was stable between conditions at all time points (Supplemental Figure 5). Subsequent
transcription factor motif analysis of our ATAC-seq data, however, suggested that retinoic acid
receptor alpha (RARA) is activated by retinoic acid and not TGF-beta (See section titled “Motif
analysis reveals that sub-additive peaks have a depletion of AP-1 and an enrichment of CTCF
motifs while super-additive peaks have an enrichment of SMAD motifs“). This same motif
analysis also suggested that retinoic acid and TGF-beta largely increased the activity of distinct
transcription factors at the 72 hour time point, meaning that the secondary effects of retinoic
acid and TGF-beta are likely mediated through the activity of distinct transcription factors.
Within our master set of 1,398 upregulated genes, we found a variety of different
combined transcriptional response behaviors ranging from sub-addition to super-multiplication
(Figure 1D-F). A transcriptional response is additive when the combined treatment effect
represents the sum of the individual treatment effects, and multiplicative when the combined
treatment represents the product of the individual treatment fold-changes. When both signals
upregulate the expression of a gene, a multiplicative response is always higher than an additive
response (Box 1; Figure 1A). To systematically classify the combined transcriptional responses
at each gene, we used a statistical approach where we assumed each observation of a gene’s
expression value was derived from a Gaussian distribution (see methods). We classified a
combined transcriptional response as sub-additive, additive, multiplicative, or
super-multiplicative by comparing where a “perfect” hypothetical additive or multiplicative
response lay with respect to the 80% confidence interval of the combined treatment's
expression value (Supplemental Figure 7B). If both the hypothetical additive and the
hypothetical multiplicative predictions lay within the confidence interval, we classified the
response as ambiguous (Supplemental Figure 7B). Using this approach, we found that at the
medium dose, 8.7% of genes had sub-additive combined transcriptional responses, 15.1%
had additive responses, 2.1% had between an additive and multiplicative response, 11.7% had
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multiplicative responses, 18.7% had super-multiplicative responses, and 43.7% had
ambiguous responses (Figure 1D), suggesting there is no single dominant category of
combined response behavior. However, while the categories of addition and multiplication are
appealing due to their correspondence to these simple phenomenological models, there is no a
priori reason to believe that all or even most genes should necessarily adhere to either of these
possibilities.

In order to quantitatively describe the combined transcriptional response characteristics
of any gene without any presupposition of additive or multiplicative behavior, we defined a
continuous parameter, hereby referred to as a gene’s combined response factor or “c” value,
that places the gene in an exact location on the spectrum of possible combined response
behaviors (Box 1; Figure 1A). We could then solve for any gene’s ¢ value (within experimental
error) after measuring the individual signal effects and the combined treatment effect. For an
upregulated gene, a c value of 0 would indicate perfect addition, a ¢ value of 1 indicates
perfect multiplication, a ¢ value less than 0 indicates sub-addition, and a ¢ value greater than 1
indicates super-multiplication (see Figure 1A for equation). We wondered what the distribution
of ¢ values would look like across our master set of upregulated genes, and whether this
distribution would tell us anything about genes’ natural inclinations for specific combined
response behaviors. For instance, if this distribution had its main peak at ¢ = 0.5, it would imply
that genes naturally prefer to integrate two signals in a manner that lies between addition and
multiplication. At all doses of combination treatment, we observed a wide peak centered
around c=0 (additive), with a hint of a secondary peak at c=1 (multiplicative), suggesting that
the integration of the effects of two signals is preferentially additive or multiplicative (Figure 1F;
Supplemental Figure 6)).

In order to more rigorously demonstrate the preferences for these two values of c, we
performed a series of simulations and statistical analyses. First, we generated simulated data
taking into account measurement noise to estimate what the expected distributions of ¢ would
look like if signal integration was wholly additive or multiplicative. For each gene, we made
three random draws for expression levels in both signal conditions based on the actual
expression measurements and variance of those measurements to mimic our actual data
(Supplemental Figure 7C). We then computed what we would have measured c to be based on
these simulated measurements. This “null” produced broad peaks centered around c=0 and
c=1, respectively, and a superposition of these two nulls appeared to match our experimentally
measured distribution of ¢ values (Figure 1F). In order to more clearly demonstrate the
existence of a secondary peak at c=1, we subtracted off from the distribution a purely additive
null model (as computed above, fit to the observed distribution). The resultant residual
distribution was a broad peak centered roughly around c=1 (a Gaussian fit to the residual gave
a fit centered at c=1.12 and ¢=1.00 at medium and high doses, respectively), consistent with
our multiplicative simulated data (Figure 1F; Supplemental Figure 6A). We showed that this
residual distribution was not likely to be due to statistical fluctuations by computing a p-value
for the possibility of obtaining as big a residual in a sliding window by random chance
(Supplemental Figure 6B). Overall, while there is the possibility of further peaks within our data,
our data most strongly support the existence of two peaks in the c-value histogram, one
corresponding most closely with an additive model, and the other with a multiplicative model.
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While our superimposed distribution of ¢ values derived from simulated additive and
multiplicative combined responses bears a close resemblance to our observed distribution of ¢
values in the neighborhoods of ¢ = 0 (addition) and ¢ = 1 (multiplication), the tails of the
observed c value distribution are clearly heavier (Figure 1F). These heavier tails illustrate that
biological variation, rather than measurement error, produces a significant amount of
sub-additive (c < 0) and super-multiplicative (c > 1) combined transcriptional responses.

We next wondered how a gene’s combined response factor (c value) depended on
dosage of the input signals. In theory, the ¢ value might remain stable as dosage increases,
monotonically increase or decrease as dosage increases, or may appear to be “random” with
respect to dose, perhaps due to complex unobserved dose-dependent gene regulatory
interactions. To distinguish between these possibilities, we plotted how a set of upregulated
genes’ ¢ values changed as they moved from low to medium to high dose of combination
treatment with retinoic acid and TGF-B (Supplemental Figure 1B-D). To generate a subset of
reliable ¢ value estimates within our master set of genes, we selected genes for which VLTI
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technical variability. We found that most genes’ ¢ values were stable or moderately decreased
with increasing signal dose, suggesting that the function a gene uses to combine two signals is
mostly stable, with a tendency towards “saturation” with increasing dose (i.e., the function
itself moves in the direction of sub-additivity when dosage increases).

Increases in chromatin accessibility are largely additive

Transcriptional regulation is thought to occur largely via the binding of transcription
factors, but it remains unknown how the transcription factors associated with the effects of
individual signals might interact upon the addition of both signals simultaneously. We performed
ATAC-seq on the same populations described earlier, reasoning that the observation that
changes in chromatin accessibility have been shown to correlate with changes in aggregate
transcription factor binding activity (Thurman et al., 2012) meant that we could infer something
about transcription factor binding at these sites. Note that the extent to which changes in
chromatin accessibility quantitatively reflect changes in transcription factor occupancy is
currently unknown, and may depend on the mechanism by which binding of transcription
factors leads to opening of chromatin, such as displacement of nucleosomes by pioneer
factors, recruitment of secondary transcription factors, or recruitment of chromatin remodeling
complexes (Zaret and Carroll 2011; Klemm et al. 2019). Reassuringly, our initial motif
enrichment analysis revealed that retinoic acid receptor alpha (RARA) and three TGF-3
pathway transcription factor motifs (SMAD3, SMAD4, and SMAD9) were highly enriched in their
respective individual signal treatment conditions (Supplemental Figure 2B). Note that our motif
analysis also indicated some degree of activation of RARA by TGF-B and some degree of
activation of SMAD3 and SMAD9 by retinoic acid, which led to even higher enrichment levels
of these factors in the combined treatment condition (Supplemental Figure 2A). We did not,
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however, observe cross-activation of pSMAD2 by retinoic acid in immunofluorescence
experiments (Supplemental Figure 4).

We then wondered how well simple additive and multiplicative phenomenological
predictions corresponded to the increase in chromatin accessibility at upregulated peaks in the
combined treatment. We found that an additive model was generally highly predictive and
matched the observed increases in ATAC-seq fragment counts more accurately than the
multiplicative model; the multiplicative model generally predicted larger changes in accessibility
than we experimentally observed (Supplemental Figure 3). To quantify the degree to which the
additive prediction was accurate, we defined a new metric, the fold-change difference in
accessibility from an additive model prediction, hereby referred to as a peak’s “d” value, to
create a distribution that illustrates the extent to which the size of a peak in the combination
treatment condition deviated from additive model predictions (Figure 2A-B). We found that at
upregulated peaks, our observed distribution of d values was centered at zero, highlighting
how addition appears to be the “default” operation at upregulated peaks (Figure 2C). This
default additive behavior may correspond to a mechanistic model in which each signal
stimulates an independent set of chromatin-opening transcription factors that independently
and rarely bind DNA (Figure 2E).

Given the general accuracy of the additive model for upregulated peaks, we wondered
to what extent deviations from additive model predictions represented true deviations as
opposed to just measurement error. We produced randomly generated simulated data that
matched the statistical properties of our actual data, assuming that the combined treatment
would result on average in perfectly additive peak sizes (see methods for details). We found
that our observed data are more widely dispersed than the simulations, indicating that a fair
number of peaks are significantly sub-additive or super-additive (Figure 2C). We found that
19% of peaks were sub-additive and 16% of peaks were super-additive when we considered
additive peaks to be those where a perfectly additive prediction lied within the 80% confidence
interval of the measured peak fragment counts (Figure 2D). Thus, most upregulated ATAC-seq
peaks displayed additive or near-additive combined responses, but significant fractions of
peaks also displayed both sub-additive and super-additive combined responses.

Super-additive peaks and pairs of individual signal-dominant peaks are more likely to be found
near genes with multiplicative transcriptional responses

We next wondered if we could uncover the patterns of cis-regulatory element activity
that may dictate how a gene’s regulatory behavior would encode the observed integration of
the transcriptional effects of two signals. We reasoned that the number of upregulated
ATAC-seq peaks near a gene or the manner in which the nearby peaks themselves integrated
the two signals’ effects may predict the gene’s combined transcriptional response behavior.
For each transcriptionally upregulated gene, we counted the number of sub-additive, additive,
and super-additive ATAC-seq peaks within 100 kb of its transcription start site. We found that,
on average, genes that were transcriptionally additive had 2.7x more sub-additive ATAC-seq
peaks nearby than genes with multiplicative transcriptional responses (medium dose, p =
0.0012). Genes with multiplicative and super-multiplicative transcriptional responses had 2.5x
or 2.6x, respectively, more super-additive ATAC-seq peaks nearby than genes with additive


https://doi.org/10.1101/2020.05.26.116962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116962; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

transcriptional responses (Figure 3A, medium dose, p = 0.0016 or p = 0.00016, respectively).
Genes with multiplicative transcriptional responses also had more additive ATAC-seq peaks
nearby than every other combined transcriptional response behavior at each dose we tested,
with 1.3x more additive peaks than genes with additive transcriptional responses (Figure 3A,
medium dose, p = 0.12 compared to additive transcriptional responses, p = 0.00089 compared
to ambiguous transcriptional responses). The most prominent effect in this analysis was the
observation that super-additive peaks are more likely to be near genes with multiplicative and
super-multiplicative transcriptional responses, suggesting that cooperative interactions
between transcription factors at neighboring enhancers may increase the expression of a gene
when both signals are added together; i.e., the gene’s combined response factor.

When both signals affect accessibility at the same region of DNA, interactions between
each signal’s induced transcription factors and associated complexes can make it difficult to
discriminate between mechanistic models of how transcription factors interact to regulate
transcription. However, if the transcription factors affected by retinoic acid or TGF-f bind to
distinct regions of DNA around the same gene, then there are likely no interactions between
induced transcription factors and one can in principle discriminate between a simple
thermodynamic model (prediction: multiplicative transcriptional effects) and an independent
recruitment model (prediction: additive transcriptional effects). To increase the likelihood of
selecting retinoic acid and TGF-B-exclusive transcription factor binding events, we searched
near genes for upregulated peaks that responded exclusively to either retinoic acid or TGF-J3.
(We defined “exclusive” here to mean that the peak size increase for a single signal was =90%
that of the sum of the absolute peak size changes from both individual signals. Note that to
generate a sufficiently large sample, we had to allow the selected genes to have non-exclusive
peaks nearby as well because only 8.0% of gene-adjacent differential peaks met this
exclusivity criteria for retinoic acid and only 3.4% met this criteria for TGF-.) We then
considered how likely genes with different combined transcriptional response behaviors were
to have at least one retinoic acid-dominant and one TGF-3-dominant peak nearby (<100 kb to
the transcription start site). We found that at each dose, genes with multiplicative
transcriptional responses were the most likely to have at least one retinoic-acid-dominant and
one TGF-B-dominant upregulated peak nearby (Figure 3B; 2.4x increase compared to genes
with additive transcriptional responses at high dose, p = 0.044), suggesting that the effects of
independently-upregulated peaks are most likely to act together to multiplicatively regulate
transcription, which is more consistent with the predictions of the thermodynamic model.

Motif analysis reveals that sub-additive peaks have a depletion of AP-1 and an enrichment of
CTCF motifs while super-additive peaks have an enrichment of SMAD motifs

We next wondered if the activity of particular transcription factors was associated with
combined increases in chromatin accessibility that were either sub-additive, additive, or
super-additive. To approach this question, we first identified a set of the 50 transcription
factors with the largest predicted changes in activity in our full set of differential peaks using
the chromVAR package and its associated curated cisBP database of transcription factor
motifs (Schep et al., 2017). These factors included the canonical retinoic acid and TGF-3
effectors RARA, SMAD3, SMAD4, and SMAD9, as well as forkhead box factors and ETS family
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factors (enriched in the retinoic acid condition), AP-1 factors (enriched in the TGF-3 condition),
and HOX and NF-kf factors (enriched in both the retinoic acid and TGF- conditions). We
manually added the CTCF motif to this set of enriched motifs to see if putative insulators
behaved differently than other cis-regulatory elements. For each of these transcription factors,
we calculated a motif enrichment score in each condition (based on the bias-uncorrected
deviation score from chromVAR) that represents the percentage change in ATAC-seq fragment
counts in all peaks that contain the given transcription factor’s motif (Figure 4A). For example,
the motif enrichment score of 0.19 for RARA in the retinoic acid condition means that peaks
containing RARA motifs saw an average increase of 19% in ATAC-seq fragment counts after
retinoic acid treatment (note that to decrease the variability of motif enrichment score
estimates, we pooled together the low, medium, and high doses for each condition). Retinoic
acid and TGF-f treatment thus led to activation of both distinct and shared transcription factor
families, with combination treatment showing similar activation of distinct factors and higher
activation of shared factors (Figure 4A).

We then tested if any of the transcription factor motifs we identified were more enriched
in sub-additive or super-additive peaks compared to additive peaks. Because sub-additive
peaks were on average 8% narrower and super-additive peaks were on average 36% wider
than additive peaks (Figure 4B), we compared the number of motif matches found per 150 bp
of each peak type. When compared to additive peaks, sub-additive peaks showed 21% fewer
total motif matches per 150 bp in our set of enriched motifs (p = 6.6e ") and 7% fewer total
motif matches per 150 bp when using the entire cisBP database (p = 1.5e®), suggesting that
sub-additive peaks are slightly depleted for motifs overall while being even more depleted for
the motifs in our enriched set (Figure 4C). Sub-additive peaks were especially depleted for
SMARCC1 motifs (0.6x the motif density of additive peaks, p = 1.2e7"°) as well as AP-1 subunit
motifs such as JUN (0.6x density, p = 3.4e"®) and FOS (0.6x density, p = 6.2e™'*; Figure 4E).
Sub-additive peaks did, however, show a strong enrichment of CTCF motifs, with 1.6x and
3.2x more motif matches per 150 bp than in additive and super-additive peaks, respectively (p
=2.9e"" and p < 2.2e'°, respectively; Figure 4E), suggesting that insulator proteins like CTCF
may attenuate the combined activity of signal-induced transcription factors or the chromatin
remodeling complexes they may recruit.

Super-additive peaks generally had the same motif densities as additive peaks, with the
exception of an increase in the density of SMAD motifs (1.8x, 1.4x, and 1.5x increase of
SMAD3, SMAD4, and SMAD9 motif density compared to additive peaks; p = 4.4e-4, p = 8.5,
p = 1.5e) and a depletion of several ETS family factors (0.6x the motif density of additive
peaks for ELF1, p = 0.048; Figure 4E). The higher frequency of SMAD motifs in super-additive
peaks suggests that SMAD transcription factors may interact with retinoic acid-induced
chromatin remodeling factors or retinoic acid-induced transcription factors.

We next wondered how strong of an effect each motif had on its “host” peak’s
tendency to have a super- or sub-additive combined response. To estimate this effect, we took
each motif, found all peaks that contained that motif that were upregulated by both TGF-f3 and
retinoic acid individually, and computed the deviation from the additive prediction (d value)
(Figure 4F). Here, we found that the presence of SMAD or NF-K3 motifs resulted in the largest
increases in a peak’s tendency to be super-additive, possibly suggesting that SMAD proteins
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have one of the most potent interactions with a retinoic acid-induced transcription factor or
chromatin remodeling complex in our system. Note that since we observed that both retinoic
acid and TGF-p led to increases in NF-k[3 factor activity (Figure 4A), the increase in d value
associated with NF-kf3 motifs’ could reflect synergistic activation of NF-kf3 factors rather than
cooperative interactions between NF-k factors and other induced transcription or chromatin
remodeling factors.

We hypothesized that cooperative interactions between transcription factors may lead
to super-additive increases in chromatin accessibility. To evaluate if our data supported this
hypothesis, we tested if super-additive peaks were more likely to have both a retinoic
acid-enriched motif and a TGF-B-enriched motif. We defined retinoic acid-enriched factors to
be retinoic acid receptor, FOX, and ETS-family factors, and we defined TGF-B-enriched motifs
to be SMAD, AP-1, BACH, BATF, SMARCC1, NFE2, NFE2L2, MAFF, and MAFK factors. We
found that all categories of peaks (including super-additive) were less likely to have dual-motifs
than expected based on a null distribution we generated by randomly shuffling motif matches
across peaks (Figure 4D, p < 0.001 for sub-additive, additive, and super-additive peaks, see
methods for null distribution details. The higher expected rates of dual motif matches may be
explained by the fact that binding sites for the same transcription factor are often found in
clusters (Gotea et al., 2010); the motif shuffling process disperses these binding sites more
evenly). Super-additive peaks were closer to their higher expected rate than sub-additive and
additive peaks (with super-additive, additive, and sub-additive peaks having dual-motif match
rates that were 10%, 21%, and 27% lower than expected, respectively). While the effect is
modest, the relatively higher rate of dual-motif matches in super-additive peaks provides some
support for the idea that peak super-additivity may result from cooperative interactions
between retinoic acid and TGF-3 transcriptional effectors.

Discussion

Here, we have asked how cells respond transcriptionally to combinations of signals. In
principle, the transcriptional response to such combinations could range over a spectrum of
different possibilities, and the mechanistically-motivated “additive” and “multiplicative” modes
need not be favored. We were thus surprised to see that combined responses did seem to
favor the simple additive and multiplicative phenomenological models.

Additive and multiplicative outcomes need not in principle be favored in any way.
Mechanistic models of transcriptional regulation, in particular kinetic models, can yield a range
of phenomenological predictions, spanning these two possibilities and more (Scholes et al.,
2017). The primary reason behind the popularity of the independent recruitment model (which
predicts additive behavior) and the thermodynamic model (which predicts multiplicative
behavior) is their simplicity, hence our surprise. It is of course important to realize that just
because the predictions of a particular mechanistic model match these experimental outcomes
does not mean that there are not other models that may also match our experimental findings.
Indeed, these simple models, which inherently posit that regulation acts via a single
rate-limiting step, are incompatible with recent results demonstrating that regulation can act via
multiple steps, and also typically have not been applied to complex regulatory mechanisms
that involve long-range promoter-enhancer contacts (Bartman et al., 2019; Blau et al., 1996;
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Fuda et al., 2009; Nechaev and Adelman, 2011; Stampfel et al., 2015). Further combined
theoretical and experimental work would be required to determine the experimental signatures
beyond simple additivity or multiplicativity that could distinguish such models from each other.

Although they were the minority of cases, we did observe a large number of
sub-additive and super-multiplicative combined responses. Super-multiplicative combined
responses may reflect cooperative interactions between retinoic acid and TGF-f3 induced
factors, in which binding of a retinoic acid factor to DNA strengthens the binding of a TGF-3
factor to nearby DNA or vice versa. This type of interaction is consistent with our finding that
super-multiplicative gene expression responses are associated with nearby super-additive
ATAC-seq peaks (on the assumption that super-additivity of ATAC-seq peaks reflects
cooperative binding of transcription factors to DNA) (Figure 3A). However, given that ATAC-seq
peaks likely have additional routes to super-additive increases in accessibility (perhaps
involving chromatin remodeling factors affected by our signals), further work would be needed
to demonstrate that super-multiplicative transcriptional responses are indeed a result of direct
binding interactions at enhancers. Sub-additive transcriptional responses have been proposed
to reflect saturation of cis-regulatory elements (Bothma et al., 2015; Scholes et al., 2019).
Saturated cis-regulatory elements would in principle show up as sub-additive ATAC-seq peaks
in our analysis, but we did not observe an increase in sub-additive peaks near genes with
sub-additive combined responses (with the exception of a small increase at high dose; Figure
3A). This lack of association suggests that saturation of DNA binding sites may not be
sufficient to explain sub-additive combined transcriptional responses; instead, the sub-additive
behavior may be a property specifically encoded through the interactions between regulatory
factors. It could also be that chromatin accessibility does not quantitatively reflect saturating
transcription factor binding.

Our combined transcriptional responses were measured using bulk RNA-sequencing,
which averages the transcriptional effects of retinoic acid and TGF-B across millions of cells.
Heterogeneity in the response of individual cells could mean that what we observed, for
instance, as a multiplicative transcriptional response at the population level is actually a
mixture of sub and super-multiplicative transcriptional responses at the single-cell level. Future
studies might combine microfluidic delivery of cell signals with live imaging of transcription to
measure the response to both individual and combined signal treatments in the same single
cells, thereby revealing the extent to which the combined response factor for a given gene
displays cell-to-cell heterogeneity (Zhang et al. 2019). High amounts of heterogeneity could
suggest a need for even greater flexibility in biophysical models of combined transcriptional
responses.

In our dataset, the combined response factor remained largely constant over a range of
doses. This constancy suggests that whatever the functional interaction is between the factors
responsible for the particular mode of combined response, that interaction is quantitatively
maintained through doses (with some evidence for saturation at high dose). Such behavior may
constrain potential models for interactions, because in principle the interactions could be highly
dose dependent. Another open question is whether the mode of combined response for a
particular gene depends on the particular signals applied or contextual factors that may vary
between cell lines. Further studies may reveal these dependencies.
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Another interesting feature of our data was the general lack of strong correspondence
between changes in chromatin accessibility and changes in transcriptional output. While we
were able to identify some trends, we could not find any strict rules for e.g. what transcription
factors associated with what types of combined responses. We found this lack of
correspondence surprising, given that transcription factors are the dominant form of
transcriptional regulation. There are many potential explanations for this observation. One is
that the degree of chromatin accessibility is not as correlated with aggregate transcription
factor occupancy levels as we expected. For instance, it may be that accessibility may only
change for some types of transcription factor-DNA interactions and not others. Another
possibility is that our analysis does not take into account precisely which peaks near a given
gene correspond to regulatory elements and which ones do not. This mapping remains largely
unknown, although information about what pieces of chromatin spatially contact which other
ones may help narrow down the choices (Fulco et al., 2019; Jin et al., 2013; Rao et al., 2014;
Ruf et al., 2011). Finally, it is also simply possible that the rules governing transcriptional output
are highly complex and thus not straightforward to discern from the analyses we performed. In
particular, it could be that the genome sequence itself is simply too limited to provide enough
sampling of the possible configuration space of transcription factor binding motifs to extract
rules. The use of massively parallel reporter assays (Kwasnieski et al., 2014; Patwardhan et al.,
2012) or similar synthetic approaches (Bogard et al., 2019; Rosenberg et al., 2015) may help
reveal such rules.
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Materials and Methods

Key Resources Table
Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
cell line (Homo MCF-7 (breast ATCC ATCC
sapiens) carcinoma) HTB-22,
lot
64125078

Peptide, TGF-beta Sigma T7039
recombinant
protein
chemical all trans Sigma R2625
compound, drug retinoic acid
cell culture Charcoal- Gemini 100-119
reagent stripped FBS
commercial assay miRNeasy RNA | Qiagen 217004
or kit extraction kit
commercial assay NEBNext New E7490
or kit Poly(A) mRNA England

Magnetic Biolabs

Isolation

Module
commercial assay NEBNext Ultra New E7770
or kit I RNA Library England

Prep Kit for Biolabs

lllumina
Sequence- NEBNext New E7600
based reagent Multiplex England

Oligos for Biolabs

lllumina
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commercial assay Tagment DNA lllumina 20034197
or kit Enzyme and
Buffer
Sequence- ATAC-seq Integrated See
based reagent indices DNA (Buenrostro et
(custom Technologie al. 2013) for
oligos) S custom index
sequences
antibody Rabbit Sigma HPA058282
anti-human
RARA
antibody Rabbit Cell 18338T
anti-human Signaling
pSMAD2 Technology
antibody Goat Thermo A-21244
anti-rabbit Fisher
I9G, Alexa Scientific
Fluor 647

Cell culture and signal delivery

We acquired one vial of MCF-7 cells from ATCC (lot 64125078), which we expanded in
DMEM/F12 with 5% FBS and 1% penicillin/streptomycin. Prior to adding retinoic acid and
TGF-B, the cells experienced a total of 13 passages and one freeze/thaw cycle. Because
normal FBS can have significant amounts of retinoic acid (Napoli, 1986), we cultured the cells
in a modified medium containing charcoal-stripped FBS, with each batch consisting of 50 ml
charcoal-stripped FBS (Gemini, 100-119), 5 ml penicillin/streptomycin (Invitrogen, 15140-122),
and 500 ml DMEM/F12 (Gibco, 10565018). We grew the MCF-7 cells in this charcoal-stripped
FBS-containing medium for a total of 70 or 71 days prior to treating them with retinoic acid and
TGF-B. Our MCF-7 cells were negative for mycoplasma contamination after all RNA and ATAC
sequencing experiments.

For our dose-response experiment, we split two ~80% confluent 10 cm dishes equally
into 12 different 10 cm dishes, and waited 24 hours prior to adding media containing retinoic
acid (Sigma, R2625), TGF-B (Sigma, T7039), or both signals. Because the cells grew faster
when exposed to retinoic acid and slower when exposed to TGF-3, we included two additional
control conditions that had 50% and 150% of the starting cell density to test for potential
cell-density effects (these additional conditions covered the range of cell-densities seen at the
endpoint of our experiments). We treated cells for 72 hours in three doses of retinoic acid
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(50nM, 200 nM, and 400 nM), TGF-B (1.25 ng/ml, 5 ng/ml, 10 ng/ml), or both signals (50 nM
retinoic acid + 1.25 ng/ml TGF-3, 200 nM RA + 5 ng/ml TGF-3, 400 nM RA + 10 ng/ml TGF-p).
The medium dose we chose for TGF-beta, 5 ng/ml, is used in several studies of MCF-7 cells
(Mahdi et al. 2015; Noman et al. 2017; Tian and Schiemann 2017), and the medium dose we
used for retinoic acid, 200 nM, is between the 100 nM dose used in (Hua et al. 2009) and the 1
uM dose used in (Cunliffe et al. 2003). All conditions had the same 0.0125% concentration of
ethanol. At 72 hours, we then trypsinized the cells in each well, removing 50,000 of them for
immediate ATAC-seq library preparation and lysing the rest of them in Qiazol (storing
immediately at -80°C) for subsequent RNA extraction and bulk RNA-seq library preparation.

Immunofluorescence experiments and imaging

For immunofluorescence experiments, we seeded 8-well glass chambers (Lab-tek 12-565-470)
with hormone-starved MCF-7 cells for 24 hours before treating the cells with the medium dose
of TGF-beta (5 ng/ml), retinoic acid (200 nM), or vehicle (0.0125% ethanol). Following
treatment, we fixed cells for 12 minutes in 3.7% formaldehyde (Sigma F1635) diluted in 1x
PBS. We stored samples at 4C in 1x PBS, then performed the immunofluorescence protocol
exactly as described by Cell Signaling Technology, using a dilution of 1:800 for the primary
anti-pSMAD2 antibody (Cell Signaling Technology 18338T), 1:200 for the primary anti-RARA
antibody (Sigma HPA058282), and 1:1000 for the goat anti-rabbit secondary antibody
conjugated with Alexa Fluor 647 (Thermo Fisher Scientific A-21244). In brief, we blocked
samples with 5% goat serum for 60 minutes, incubated with primary antibody overnight at 4C,
washed three times with 1X PBS for 10 minutes each, incubated with secondary antibody at
room temperature for 90 minutes in the dark, then washed the cells another three times in 1X
PBS. We stained cellular nuclei with DAPI prior to imaging. We imaged the cells with an
inverted Nikon TI-E microscope with a 20x Plan-Apo A (Nikon MRD00205) objective and with
DAPI and Atto647N filter sets. We collected all images at 20x magnification.

Immunofluorescence image analysis

To quantify the nuclear pPSMAD2 and RARA signal in our immunofluorescence experiments, we
developed a custom image analysis pipeline in python that was centered around the usage of
Cellpose (Stringer et al. 2020) to detect the nuclear boundaries of each cell. We first used the
DAPI channel to manually select three to six high-quality images per condition. High quality
images had minimal stacking of cells, little correlation between DAPI and immunofluorescence
signal, and had well-focused nuclei throughout the image. We then used the DAPI channel
images as input to Cellpose, with an expected diameter parameter of 32 pixels. Using
Cellpose’s identified nuclear boundaries, we then calculated the average intensity inside each
nucleus using the corresponding immunofluorescence channel (pSMAD2 or RARA). To correct
for differences in background, we then subtracted the average intensity of the annulus
surrounding each nucleus in each image, using a disc-shaped structured element, the scipy
binary_dilation function, and the nuclear mask matrix defined by Cellpose to generate the
surrounding annulus for each nucleus. We then used this normalized nuclear intensity value for
comparing the pSMAD2 and RARA levels between each condition.
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RNA extraction, library preparation and sequencing

We extracted RNA from previously frozen MCF-7 cell Qiazol lysates using the Qiagen
miRNeasy kit (217004). We then used the NEBNext Ultra || RNA Library Prep Kit for lllumina
(E7770) with the NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490) and NEBNext
Multiplex Oligos for lllumina (E7600) to prepare individual libraries. We then pooled our three
replicates’ libraries together and performed paired-end sequencing on an lllumina NextSeq
500, using a 75-cycle NextSeq 500/550 High Output Kit v2.5 (20024906), yielding ~15 million
read pairs per sample.

RNA-sequencing analysis pipeline

We aligned reads to the hg38 assembly using STAR v2.7.1a and counted uniquely
mapped reads with HTSeq v0.6.1 and the hg38 GTF file from Ensembl (release 90). We
performed differential expression analysis using DESeq2 v1.22.2 (Love et al., 2014) in R 3.5.1,
using a minimum absolute-value log-fold-change of 0.5 and a q value of 0.05. For genes with
multiple possible transcription start sites, we used the genomic coordinates of the “canonical”
transcription start site available in the knownCanonical table from GENCODE v29 in the UCSC
Table Browser.

ATAC library preparation and sequencing

At the endpoint of each cell condition, we immediately performed the Omni-ATAC
protocol (Corces et al., 2017) on 50,000 live MCF-7 cells, using lllumina Tagment DNA Enzyme
TDE1 (20034197) at the tagmentation step and double-sided bead purification at the endpoint
with Agencourt AMPure XP magnetic beads (A63880). The exact protocol we used is available
in the protocols folder at https://github.com/emsanford/combined_responses_paper. We then
performed paired-end sequencing using one 75-cycle NextSeq 500/550 High Output Kit v2.5
(20024906) for each replicate, yielding ~42 million read pairs per sample.

ATAC-sequencing analysis

We created a paired-end read analysis pipeline using the ENCODE ATAC-seq v1
pipeline specifications (available at
https://www.encodeproject.org/documents/c008d7bd-5d60-4a23-a833-67c5dfab006a/@@do
whnload/attachment/ATACSeqgPipeline.pdf). Briefly, we aligned our ATAC-seq reads to the hg38
assembly using bowtie2 v2.3.4.1, filtered out low-quality alignments with samtools v1.1,
removed duplicate read pairs with picard 1.96, and generated artificial single-ended text-based
alignment files containing inferred Tn5 insertion points with custom python scripts and
bedtools v2.25.0. To call peaks, we used MACS2 2.1.1.20160309 with the command, “macs2
callpeak --nomodel --nolambda --keep-dup all --call-summits -B --SPMR --format BED -q 0.05
--shift 75 --extsize 150”. While we created this pipeline for use on the Penn Medicine
Academic Computing Services’ high performance cluster, it is also publicly available at
github.com/arjunrajlaboratory/atac-seq_pipeline_paired-end. Our pipeline generates a series of
post-sequencing quality control metrics, which we have provided in Supplementary Table 1.

Since we had three biological replicates per ATAC-seq condition, we used an
established “majority rule” to retain only the peak summits that were found in at least two
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replicates (Yang et al., 2014) (we used a peak size of 150 bp, centered on MACS2 summit
locations, to mimic the span of one nucleosome). Using these condition-specific peak files, we
then used bedtools to create one “master consensus peak file” by merging each condition’s
peak summit file together in a manner that disallowed overlapping peaks. We then used the
number of ATAC-seq fragment counts at each peak in this master consensus peak file for
differential peak analysis.

We wrote a custom peak analysis algorithm that took advantage of our additional
ethanol control conditions to estimate a false discovery rate for differential peak identification.
In this algorithm, we first count the number of ATAC-seq reads at each peak in the master
consensus peak file. We then normalize the fragment counts at each peak to correct for
differences in total sequencing depth. In this normalization step, we divide the number of reads
in peaks for a given sample by samples fotal number of reads in peaks . Then, for each condition,

average number of reads in peaks across all samples

we calculate the average number of normalized read counts at each peak. Following this, we fill
in an estimated false discovery rate in each cell of a 50x50 grid containing 50
exponentially-spaced steps of minimum fold-change values (ranging from 1.1 to 10) and 50
exponentially-spaced steps of minimum number of hormalized fragment counts in the
condition with the larger number of counts (ranging from 10 to 237). To calculate the estimated
false discovery rate, we counted the number of differential peaks between signal-treated
conditions and the normal density ethanol control as well as the number of differential peaks
between additional ethanol controls (50% and 150% starting cell density) and the normal
density ethanol control. We then used the average number of differential peaks in the
additional controls to estimate the number of false positive peaks per experimental condition,
then calculated the final estimated false discovery rate (FDR) for a given parameter pair using

the following formula:
. _ (number of conditions)(estimated number of false positive peaks per condition)
estimated FDR = total number of differential peaks in experimental conditions

After calculating the estimated FDR for each cell of the 50x50 grid, we then pooled together
the differential peaks contained in any cell containing an FDR less than 0.25%. After pooling
together the peaks in each of these cells and counting the number of differential peaks in the
signal-treated conditions and additional controls, the combined estimated FDR was 0.65%. We
then noticed that our original peak set’s fixed nucleosomal peak size of 150 bp led to many
genomic regions containing several adjacent peaks that appeared to form a single, larger peak.
Because of this, we merged our peaks together when they were within 250 base pairs of each
other, then we performed a second round of the same differential peak calling algorithm on the
merged peaks, requiring a minimum fold change of 1.5 and a minimum normalized fragment
count value of 30. In this final peak set, there are a total of 34,323 differential peaks, with a
pooled estimated false discovery rate of 0.43%.

We performed motif analysis on our set of differential peaks using chromVAR v1.5.0
(Schep et al., 2017), its associated curated cisBP database of transcription factor motifs, and
the motifmatchR Bioconductor package. We treated each replicate as one sample for a given
condition, and we pooled together the different dosages of the same signal(s) to decrease the
variance of the transcription factor motif deviation scores for retinoic acid, TGF-3, and
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combined treatment. We slightly modified the chromVAR code to extract an internal metric that
equals the fractional change in fragment counts at motif-containing peaks for a given motif.

Statistical model for categorical classification of combined responses

For a given gene in a given experimental condition, we assumed that its transcripts per
million (TPM) value for one replicate was drawn from a Gaussian distribution. We estimated the
parameters of these Gaussian distributions to create an 80% confidence interval for which to
compare additive and multiplicative predictions. For each dosage of the combination
treatment, we classified a gene as sub-additive if the additive and multiplicative predictions
were higher than the 80% confidence interval, additive if only the additive prediction laid in the
confidence interval, multiplicative if only the multiplicative prediction laid in the interval,
super-multiplicative if both additive and multiplicative predictions were below the confidence
interval, and ambiguous if both the additive and the multiplicative prediction laid within the
interval.

To estimate the mean expression value of a gene in an experimental condition (e.g., 200
nM retinoic acid), we simply calculated the average TPM value across the three replicates. To
improve our variance estimates, we took advantage of an observation we made during
extensive manual review that the coefficient of variation (CV) appeared to be the same between
each dosage we tested for retinoic acid, TGF-3, and combined treatment (Supplemental Figure
7E-F). We then assumed that each dosage of a condition shared one CV term, which we
calculated by averaging each dose’s CV estimate using the unbiased estimator:

CV (gene, signal, dosage) = (1 + ‘%l)j-;

CV (gene, signal) = ,172 CV (gene, signal, dosage,,)
1

Where n is the number of replicates (3 in our case), s is the sample standard deviation, and x
is the mean of the measured TPM values, and m is the number of doses tested (3 in our case).
Finally, we used this averaged CV estimate to estimate a variance parameter for the Gaussian
distribution we assumed to underlie the TPM values for a given gene and signal. For a given
gene, dosage, and signal, our final estimated Gaussian distribution was:

TPM(gene, signal, dosage) ~ Gaussian( X, x CV (gene, Signal))z)

ene, signal, dosage> Xgene, signal, dosage
Where Xge signal, dosage 1S the measured average TPM value for a given gene exposed to a
specific dose of retinoic acid, TGF-, or combination treatment. The benefit of using our shared
CV term across dosages was to move from using the information from 3 samples to using the
information from 9 samples when estimating the variances of these distributions.

To classify ATAC-seq peaks as sub-additive, additive, or super-additive, we used the
same approach described above for RNA-seq TPM values, but with a given peak’s normalized
fragment count value. We then classified peaks as sub-additive or super-additive if the additive
prediction was higher than or lower than (respectively) the estimated Gaussian distribution’s
80% confidence interval.

Statistical model for simulated additive and multiplicative predictions
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To simulate new ATAC-seq and RNA-seq measurements, for each gene and condition
we randomly sampled three new observations from a folded Gaussian distribution (folded to
avoid negative expression or normalized fragment count values) with the parameters we
previously estimated for the purpose of categorically classifying combined response behaviors.
For the combined treatment, we set the mean of the distribution to be either a perfectly
additive or perfectly multiplicative prediction. We then calculated the average of the three new
simulated observations and used these average values to determine a gene’s c value at a given
dose or an ATAC-seq peak’s d-value at a given dose. Using this process, we calculated 250
simulated c values for each dose of each upregulated gene in our master set and 10 simulated
d values for each ATAC-seq peak that was upregulated individually by retinoic acid and TGF-.
In the simulated data mixture model where genes can be strictly additive or multiplicative, at
each we randomly assigned a gene to be additive or multiplicative based on the ratio of the
dose-specific frequencies we observed in the categorical classification of the combined
response.

Use of simulated data to infer the location of a secondary peak in the observed combined
response factor (c value) histogram

To generate a hypothetical plot of observed ¢ values in which the primary peak of
additive responses centered at ¢ = 0 was depleted, we subtracted the additive component of a
c value histogram generated by simulated data. These simulated c values were generated
using gene and condition-specific Gaussian distributions in a process outlined above and in
Supplemental Figure 7. At each dose, we simulated data as a mixture of additive and
multiplicative combined responses, setting the exact proportion of simulated additive versus
multiplicative combined responses based on the ratio of additive to multiplicative combined
transcriptional responses seen at each dose of the observed data (Figure 1E; Supplemental
Figure 7B). We then scaled the size of this “mixed” simulated c¢ value distribution to the peak
heights at c = 0 and ¢ = 1 in the observed c value histogram by minimizing the squared
distance between the simulated and observed histogram bars directly abuttingc =0and c =1
(4 histogram bars total). We then subtracted the additive component of the simulated ¢ value
distribution and locally (in the range of ¢ = -4 to ¢ = 5) fit a Gaussian density function to the
residual histogram using the nls function in R.

We also estimated the probability of obtaining the number of combined transcriptional
responses in each bin of our observed c value histogram if all combined responses were
additive. To do this, we scaled the peak height of our observed data at ¢ = 0 to the peak height
of an additively simulated distribution of ¢ values. We then repeatedly (1,000 times) ran new
simulations of additive combined responses, simulating one observation per gene in our
master set of 1,384 genes. We used a bin width of 0.25 and allowed for overlapping bins.
Because the probability of obtaining the observed number of counts was extremely low for
many bins and because the variability in the number of observations in a given bin was well
described by a Poisson distribution (outside the range of -0.3 < ¢ < 0.3), we used a Poisson
cumulative density function to estimate the probability of witnessing the number of observed
counts (or greater) in each c value bin of the simulated additive data.
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Generating a null distribution for dual-motif matches

To generate a null distribution for dual-motif matches, we first separated our set of
upregulated peaks into sub-additive, additive, and super-additive peaks. Within these peak
subsets, we counted the number of retinoic acid-dominant (FOX, and ETS-family factors),
TGF-B-dominant (SMAD, AP-1, BACH, BATF, SMARCC1, NFE2, NFE2L2, MAFF, and MAFK),
and neither-signal-dominant (HOX, NFKB, CDX, CTCF, BCL, and GRHL1) motifs at each peak.
Due to similar features of their position-weight matrices, we avoided over-counting similar
motifs by reporting the maximum number of motif matches for a single type of motif within a
group of motifs. The motif groups we used were as follows: retinoic acid receptor consisted of
RARA, group FOX consisted of FOXA1, FOXA2, FOXA3, FOXC2, FOXDS3; group ETS consisted
of SPI, SPIB, SPIC, EHF, ELF1, ELF2, ELF3, ELF4, ELF5; group SMAD consisted of SMADS,
SMAD4, SMAD9; group AP-1 consisted of JUN, JUNB, JUND, JDP2, FOS, FOSB, FOSLA1,
FOSL2, BACH1, BACH2, BATF (note the inclusion of non-canonical AP-1 factors due to their
similar motif position weight matrices); group SMARCC1 consisted of SMARCC1; group NFE
consisted of NFE2, NFE2L2; group MAF consisted of MAFF, MAFK; group HOX consisted of
HOXA13, HOXB13, HOXC10, HOXC12, HOXC13, HOXD13; group NFKB consisted of NFKB1,
REL, RELA; group CDX consisted of CDX1, CDX2; group CTCF consisted of CTCF; group BCL
consisted of BCL11A, BCL11B; group GRHL1 consisted of GRHL1. For example, if a peak had
three JUN motifs, two FOS motifs, two JDP2 motifs, and one BACH1 motif, we would count
this as three AP-1 motifs. We then randomly shuffled these grouped motif matches within each
peak set, with each peak retaining its original number of total motif matches (thus a peak with
zero motif matches also had zero motif matches and a peak with four grouped motif matches
always had four grouped motif matches after each random shuffle). After each of 1,000 random
shuffles, we calculated the fraction of peaks in each peak set that contained both a retinoic
acid-dominant and a TGF-B dominant motif.

Statistical analysis

With the exception of DESeqg2’s adjusted p value and our manually calculated p value for the
null distribution we generated for dual-motif matches at upregulated ATAC-seq peaks, we
calculated all reported p values in the figures and main text using Welch's unequal variances
t-test in R. (Note that we did not correct for multiple comparisons.)

Data and code availability

All custom data analysis code is available at

https://github.com/emsanford/combined responses paper

Raw ATAC-seq and RNA-seq data is available at
https://www.dropbox.com/sh/fhx7huyhhtf8fux/AACKW5Bd7k34uy6Rrk3k0WZ4a?dI=0&Ist=
The ATAC-seq pipeline we used is available at
https://github.com/arjunrajlaboratory/atac-seq pipeline paired-end

The RNA-seq pipeline we used is available at
https://github.com/arjunrajlaboratory/RajlLabSeqgTools
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Box 1: mathematical description of additive versus multiplicative
combined transcriptional responses

Suppose that gene X is expressed at baseline and increases its transcription in response to either signal A
or signal B:

expression of gene X at baseline = Xpaseline
expression of gene X after receiving signal A = Xpaseline + A4

expression of gene X after receiving signal B = Xpaseline + AB

If the combined transcriptional response to receiving both signals A and B were additive, the increase in
transcription of gene X would reflect the sum of the effects A4 and Ap:

additive combined response of gene X to signals A and B = Xpaseline + Aa + Ap

If the combined response were multiplicative, the increase in transcription of gene X would reflect the product
of the fold change experienced under signals A and B:

multiplicative combined response = Xpaseline X fold-change 4 x fold-changep
Xbaseline + AA % Xbaseline + AB
Xbaseline Xbaseline

= Xbasclinc X

Multiplying out the terms of the previous expression, we see that the difference between an multiplicative
and additive combined response is exactly %:

.. . Xbaseline + AA Xbaseline + AB
multiplicative response = Xpaseline X X

Xbaseline Xbaseline
_ Xlgase]ine + (Xbaseline X AA) + (Xbaseline X AB) + (AA X AB)
- Xbasclinc X X2
baseline
_ Xgasehne + (Xbaseline X AA) + (Xbaseline X AB) + (AA X AB)
Xbaseline
AA X AB
= Xbaseline + AA + AB +
Xbaseline
Ag XA
= additive response + SAZTE
Xbaseline

We defined a term, ¢, the combined response factor, that can be determined after measuring a gene’s
expression at baseline and in response to both single and combined signal treatments:

AAXAB

gene X’s combined response = Xpaseline + A4 + Ap + ¢ X
Xbaseline

For a gene that increases transcription in response to both signals, the combined response is perfectly additive
when ¢ = 0, perfectly multiplicative when ¢ = 1, sub-additive when ¢ < 0, and super-multiplicative when
¢ > 1. Thus, a gene’s combined response factor, which can be solved for after profiling gene expression
in unperturbed and signal-treated cells, provides us with a metric for describing combined transcriptional
responses along a continuum that spans addition and multiplication.
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Box 1: Mathematical formulation of an additive combined response, multiplicative
combined response, and the combined response factor (c value)
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Figure 1: Addition and multiplication are enriched modes of signal integration in
upregulated genes. A. Example of additive vs. multiplicative effects on expression of
hypothetical gene X, mathematical formulation of the combined response factor, and
illustration of how the value of the combined response factor (c value) reflects whether a
combined gene expression response is sub-additive, additive, multiplicative, or
super-multiplicative. B. Schematic of signal response experiments in MCF-7 cells. Briefly, we
treated MCF-7 cells with three different dosages of retinoic acid, TGF-f3, or both signals for 72
hours, then performed bulk RNA-seq and ATAC-seq at the endpoint. We show the number of
differentially expressed genes and peaks for each dose of each condition as well as the overlap
between the sets of differentially expressed genes and differential peaks. C. Five example
genes representing sub-additive to super-multiplicative combined transcriptional responses,
where we show each gene’s transcripts per million (TPM) value for each replicate after single or
combined signal treatments. Horizontal grey bars show the average TPM value, and error bars
represent the 80% confidence interval of the estimated underlying Gaussian distribution of
each dosage and condition (see Methods for parameter estimation details). D. lllustrated
definition of master set of upregulated genes. E. Frequency of each type of combined
response behavior for each dosage in the master set of genes. F. Simulated, observed, and
residual histograms of ¢ value distributions for the medium and high doses. In the simulated
mixture model, we randomly simulated combined responses to be either additive or
multiplicative based on the relative frequency of additive vs. multiplicative combined
transcriptional responses that we observed at each dose in 1E. Annotated percentages at
broken bars represent the fraction of ¢ values in the tail beyond the limits of the x axis of the
graph. *for all ¢ value analyses, 14 genes with a control TPM of zero were removed from the
master set of genes, as they end up misleadingly having c values of exactly 0 regardless of the
effects of retinoic acid and TGF-beta.
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Figure 2: Addition is the default operation at upregulated differential peaks. A. Example
tracks of ATAC-seq data. Tracks illustrate the ATAC-seq fragment counts per million, with each
value representing the average number of fragment ends per million within 75 bp of a given
genomic coordinate. Annotated peak values represent the peak integral (the total number of
normalized fragment counts measured within the peak), which we use to calculate the peak’s d
value. B. Schematic illustrating examples of two peak’s d values, where each d value
represents the fold-change difference between the measured number of ATAC-seq counts in
the combination treatment and the predicted number of ATAC-seq fragment counts when
using an additive model. C. Expected vs. observed distributions of the fold-change difference
from an additive prediction for each peak. We generated the expected distribution by
simulating 10 new observations for each peak from the distributions we estimated our original
upregulated peaks to have come from, setting the mean of the combined treatment to a
perfectly additive prediction (Methods). D. Classification of ATAC-seq peaks that were
upregulated individually by retinoic acid and TGF-3. We considered a given peak to be additive
when the additive model prediction lied within the 80% confidence interval of our estimated
distribution of the given peak’s normalized fragment counts in the combined treatment
condition. E. Schematic illustrating how combined binding responses may be additive when
transcription factor binding is independent and rare.
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Figure 3
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Figure 3: Super-additive ATAC-seq peaks are enriched near genes with multiplicative and
super-multiplicative combined transcriptional responses. A. For each type of combined
gene expression response, we show the average number of upregulated sub-additive, additive,
and super-additive ATAC-seq peaks within 100 kb of the gene’s transcription start site. B. For
each combined transcriptional response behavior, we show the percentage of genes that have
at least one peak that responds exclusively to retinoic acid and at least one peak that responds
exclusively to TGF-B (where both peaks must lie within 100 kb of the gene’s transcription start
site). For an upregulated peak to be considered a mutually exclusive response, the change in
ATAC-seq fragment counts in the individual treatment condition must be at least 9x larger in
the major signal effect than the minor signal effect. *p < 0.05; **p < 0.01; **p < 0.002; ***p <
0.0002. All p values were calculated using Student's t-test. All error bars represent the 90%
confidence interval estimated using 10,000 empirical bootstrap samples of the peak sets used
in each analysis.


https://doi.org/10.1101/2020.05.26.116962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116962; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 4

A ATAC-seq signal _j\t‘

motif locations

«=+,, 4——retinoic acid and TGF-3

o TeRp
i */\retinoic acid

ethanol control

x

| I 1
FOXA1 JUN SMAD3 FOXA1

retinoic acid treatment
50% retinoic acid receptor alpha

0%

SMAD proteins (TGF-B signal transducers) TGF-B treatment
50!

2

o
B

combination retinoic acid + TGF-f treatment

50%

at the set of peaks that contain a specific motif match

o
3

percent change from control in ATAC-seq fragment counts

< [ ) ZOoOONpM@OM-™— N - O W - N MmN M [ =) — 1 < — - Q NN LY <O ~MOWL~NOMSLWSS N
o] [alalya) DzZlowdd I I & << <00 - - = - mw J Q X X Wwdwic -~ TooITlLiLilulxon
< X X X SQ000Q Xom [alya) [ - Qg 333333 F
g 23 S338EQ230 295 33383 XXR{RR £TE g 88 zﬁggdd OooUDLLDD LW
R LL @oao L 900000 2Z < = @ o
| L | \I tTIT T |2 L |
%)
AP-1 subunits forkhead box Hox genes NF-kB ETS family
B average peak width C average motif density by type of upregulated peak D 'g = frequency of dual-motif matches
by type of upregulated peak £9 by type of upregulated peak
v yp preg P all enriched motifs all cisBP database motifs g E vive preg P
= o a 3t measured percentage ;
£ 400 - 400 o 20 . < & expected percentage 10%
£ °n own o g 40% lower
he] 5T O | 5T 0 @ S
= ' Q32 Q32 c?
% 200 5§ 58200 Eosg Elva
1 L
2 028 oz & 20%
[0} o8 @ DL 9 ©
= S®G S®TG Lw
g e 2 52
= = 9/
E 5 @ 8 e e e "8 YT e 8 e e ©
) ef”%\ P\ 1S & i s 1S & i s 83 & & &
I ISP SHES S S8 o 8 8
SO S S S SO S S S
S s N IS & & > S & & & «,'Zrb
> & > & & 3 &
& & o
1]
o § average density of specific motifs by type of upregulated peak
e o
® 3 02
EZ | A/add\tivec;)eaks
% K /super-a ditive peaks
o
Eg o1 /
°3 '
o)
€T o
2% f 838 3228887y DfE Y988 292822 BHS § XY 5 NULYFOD FogspogIgsy
°% £ 232 33360833 505 X3xXx £80008 Pr3 O 35 5 LR::ifiI 555iddcdoab
o %%% o “CL o LLLILL O0O000O0 = < 555880
N — | L | \I trrtT IJ L | % L |
AP-1 subunits forkhead box Hox genes NF-kB ETS family
F compination Irca{ma}mtﬂ
additive prediction
peak set all dual-upregulated peaks peaks with SMAD3 motifs peaks with ETS2 motifs peaks with CTCF motifs
(N = 8,288) (N = 235) (N =767) (N = 1542)
median d value 0.004 0.25 0.007 -0.09
£
K median d value in set of upregulated peaks containing a given motif (medium dose)
o -
$zo00 o3 B
> = oo Lo, 2
o5 g0 T e e e e T
< g o W, bW
T O < o <t O maoN m - o - o W - A MmN ® =) — < — - N NN LY - MmO
w o I Bl ol el ol sl o Q xX X w d T an
5 1f 222 33399883 So3 55383 329898 Pf@ § 55 7 Lpis 555
E T 333 c o e Fa@ PRPRRPP 085555 = < L==
N L | lI tTTT IJ L | (% L

AP-1 subunits forkhead box Hox genes NF-kB ETS family


https://doi.org/10.1101/2020.05.26.116962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116962; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 4: Sub-additive peaks are depleted for AP-1 motifs, enriched for CTCF motifs,
while super-additive peaks are enriched for SMAD motifs. A. Motif enrichment analysis in
each condition for the top 50 most variable transcription factor motifs identified by chromVAR.
(CTCF was manually added to this set, making the total 51). Y-axis represents the percentage
change in ATAC-seq signal at motif-containing peaks compared to ethanol control samples.
For each condition, we pooled together the replicates for each of the three dosages, resulting
in nine replicates each for retinoic acid, TGF-f3, and combination treatment. B. Average peak
width of peaks upregulated individually by retinoic acid and TGF-3 by type of combined
response. C. Average motif density in each type of peak upregulated individually by retinoic
acid and TGF-B, using the enriched motif set and the full cisBP database. D. Expected vs.
measured percentage of dual-motif matches (one retinoic acid-dominant motif and one TGF-f3
dominant motif) for each type of upregulated peak. We calculated the expected percentage by
randomly shuffling motif matches within each peak set (see methods for details). Error bars
represent the 5th and 95th percentile of the null distribution for expected percentages and the
90% bootstrapped confidence interval for measured percentages. E. Motif density by type of
upregulated peak for each motif in our enriched set. F. For a given enriched motif, the median
d value at medium dose for all upregulated peaks that contain the motif (higher d values
indicate more super-additivity in peaks containing a given motif; the median d value for all
upregulated peaks was 0.004). All error bars (except for the error bars for expected
percentages in D) represent the 90% confidence interval estimated using 1,000 empirical
bootstrap samples of the peak sets used in each analysis.
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Supplemental Figure 1: The combined response factor tends to remain stable or
decrease with increasing signal dosage. A. Mathematical expression showing how we
determine the value of the combined response factor (c value) for a given gene and signal
dosage. TPM = transcripts per million. B. Histograms illustrating the distribution of c value
changes as dosage increases. C. Same histograms as in B, focusing on a subset of genes with
stable c value estimates. D. Sparklines showing the ¢ value at low, medium, and high dosage
for each gene in the subset of genes outlined in panel C.
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Supplemental Figure 2: Canonical retinoic acid and TGF-pB signaling motifs (RARA,
SMADS3, SMAD4, SMADY) are enriched in their respective signal treatment conditions. A.
Motif enrichment scores for canonical retinoic acid and TGF-f effectors. The score reflects the
average percent change in ATAC-seq fragment counts compared to ethanol control when a
peak contains the given motif. B. chromVAR variability scores (Schep et al. 2017) for all 870
motifs in the curated cisBP motif database for each experimental condition (Weirauch et al.
2014). RARA had the 13th highest variability in the retinoic acid condition and SMAD3, SMAD4,
and SMADS9 had 17th, 16th, and 14th highest chromVAR variability scores, respectively, in the
TGF-B condition. For both panels A and B, we included all 9 ethanol controls (including low
and high cell density controls) and all 9 replicates of each experimental condition (pooling
together low, medium, and high dose) when calculating these scores.
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Supplemental Figure 3: The combined response of peaks upregulated individually by
retinoic acid and TGF-B is more consistent with an additive model than a multiplicative
model. For each dose, histograms of the difference between the observed normalized
fragment counts at each upregulated peak and their respective additive or multiplicative
predictions. The observed differences are centered at zero for the main probability mass for the
additive model but not for the multiplicative model.
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Supplemental Figure 4: TGF-beta, and not retinoic acid, leads to an increase in nuclear
pPSMAD2 levels in MCF-7 cells. A. Schematic describing immunofluorescence experiment
design. B. Example images of pPSMAD2 immunofluorescence for the medium dose of
TGF-beta, retinoic acid, or control cells at each time point. C. Computational analysis workflow
schematic, which describes how we use the cellpose segmentation algorithm in the DAPI
channel to identify nuclear boundaries for measuring average nuclear signal intensity in the
pSMAD2 immunofluorescence channel. D. Summary statistics of normalized pSMAD2 nuclear
intensity, where each point represents the average immunofluorescence signal intensity of one
nucleus. Black horizontal bars used to define a “pSMAD2 high” threshold are 1000 au above
the median nuclear intensity value across all conditions in the same time point. E. Fraction of
cells that are pSMAD2-high across time for each condition, separated by replicate. *0 hour
time point is a pseudo-time point that we generated from additional images taken in the control
condition at the 40 minute (replicate 1) or 2 hour time point (replicate 2).
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Supplemental Figure 5
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Supplemental Figure 5: Nuclear retinoic acid receptor alpha levels are stable across
treatment conditions. A. Schematic describing immunofluorescence experiment design. B.
Example images of RARA immunofluorescence for each condition (medium dose of retinoic
acid, TGF-beta, or control) at each time point. C. Computational analysis workflow schematic,
which describes how we use the cellpose segmentation algorithm in the DAPI channel to
identify nuclear boundaries for measuring average nuclear signal intensity in the RARA
immunofluorescence channel. D. Summary statistics of normalized RARA nuclear intensity,
where each point represents the average immunofluorescence signal intensity of one nucleus.


https://doi.org/10.1101/2020.05.26.116962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116962; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplemental Figure 6

observed c value distribution simulated c value distribution

A

(fromc=-4toc=5)

(additive / multiplicative mixture)

cale simulated distribution

observed c value distribution

s
to observed peak heights
atc=0andc=1

P o

subtract additive component
of simulated ¢ value distribution ~
from observed distribution

simulated c value distribution

flt Gaussuan to

b, Ol il Ui~ ||||I|

residual distribution after subtracting additive

4% 4% (additive / multiplicative mixture, scaled) 4% component of simulated distribution
perfect addition perfect multiplication
o >
T 2% 2% 2%
g @ genes simulated genes simulated
- | || | | || | as additive || ||| || as multiplicative
0% ] e .|I..||I||I“|I : I ||| I IIIIII il S pp— II'II I |.||II L
-4 -2 0 1 3 5 -4 -2 0 1 3 5
4% 4% 4%
8
[
E So% 2% 2%
T 2
Q
i i||I||| il
vl il il fnflinala. . |. oorl ,
-4 -2 0 1 3 5 -4 -2 0 1 3 5
4% F 4% 4%
= 2 2% 2% 2%
g ) ‘ ||| |h | || || i
0% . Lot III|||| HIHIE | ||I||I||IIII|||||I||II... oS pp—— ||'|| o |I|||II||||-=-_........... =) Il I.I || |” il ful
-4 5 -4 2 3 5 -4 2 1 3 5
combined response factor (c value) ¢ value c value
observed c value distribution  simulated ¢ value distribution each bin ~ Poisson
(N =1384) (additive only) (A=avg num counts after what is the probability log(p value)
estimate distribution of the 1000 simulations of getting = the number
number of genes in each bin . of 1384 genes) of observed data counts .
i ' | when simulating N = 1384 / scale to observed in the simulated
i o ”
- i“l | "Ih.lll m addltlve combined responses S value distribution” additive data?
observed c value distribution simulated c value distribution probability of getting = num observed data counts
(assuming all responses additive, scaled) in simulated additive c value distribution
4% 4% 0 ~.,' ~oe . :...,'
— RGN RS
82 E SR R o
o S g . o B
3 32% 2% o-100 TR
88 || || | o local minimum at . LI
R c=1.31 L
||.||| I ||i I||.||I||||.|||u. ol
5 -4 -2 0 1 3 5
4% 4% 0], o~ o~
H s e . ﬁ'u' Fie .
3 (AR N *
g > : % - T
'g S . c L W
3 & i || global minimum at Goeeet e e
i | |||I| Il o
-
L |II i l |||||||.|L e all ~_
-4 -2 0 1 3 5 -4 -2 0 1 3 5
4% 4% 0] v _wm st
TN s, P, ¢ X -
° o - . : o
g3 3 e R
S O > N Tl e e *
£ 2 2% 2% o o EEERENS
2 9 =2 : e .t
< = | || ||| | | | | 81001 giobal minimum at . L]
c=1.00 1 .
1 [T — — . ;
-4 -2 3 5 -4 -2 0 1 3 5
combined response factor (c value) c value midpoint of ¢ value bin (bin width = 0.25)
mean and variance estimates of the number of genes in each c value bin after performing 1000 simulations of 1384 genes with additive combined responses
S c low dose medium dose high dose
3£
B 2 200
2= mean 200 200
® 3 ] variance
— 0
o9 0o 100 100
o C
Q2 0
g2 o 0 0
S 4 2 5 -4 2 5 -4 -2

0 1 3
midpoint of ¢ value bin (bin width = 0.25)

0 1 3
midpoint of ¢ value bin (bin width = 0.25)

0 1 3
midpoint of ¢ value bin (bin width = 0.25)


https://doi.org/10.1101/2020.05.26.116962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116962; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplemental Figure 6: A secondary peak occurs at or near perfectly multiplicative
combined transcriptional responses (c = 1) after subtracting a distribution of simulated
additive responses from the observed distribution of ¢ values. A. For each dose, the
observed c value distribution (in the range from ¢ = -4 to ¢ = 5), simulated c value distribution
when transcriptional responses are assumed to be either additive or multiplicative, and residual
distributions after the additive component of the simulated data is subtracted. Blue lines
illustrate the best-fit Gaussian to the residual distribution (see Methods for details). B. At each
dose, a c value distribution generated by simulated additive responses is matched to the
height of the peak at ¢ = 0 in the observed data. Then, the probability of witnessing the number
of combined responses in each of the bins in the observed histogram is estimated under the
null model that all combined responses are additive. Due to the limits of computational power
and the extremely low probabilities of witnessing the number of observations as the bins move
further away from c = 0, we assumed Poisson distribution was descriptive of the number of
simulated observations that lied in a given ¢ value bin (this assumption is justified by panel C,
where the mean and variance of the number of simulated responses in each bin are nearly
identical outside the narrow range of -0.3 < ¢ < 0.3). C. At each dose, the mean and variance
of the number of simulated additive ¢ values found in each c value bin.
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Supplemental Figure 7: Explanatory schematics for model of gene expression variation,
classification of combined responses, and simulating new additive or multiplicative
combined responses. A. Schematic illustrating how we estimate the 80% confidence interval
of a Gaussian distribution underlying our gene expression measurements. B. lllustration of how
we use the 80% confidence interval to classify combined responses in Figure 1E as
sub-additive, additive, multiplicative, super-multiplicative, or ambiguous. C. Diagram showing
how we simulate new observations by using the Gaussian distributions we estimated to
underlie each condition and dose’s gene expression measurements. D. Schematic showing
how we combine many simulated combined responses from each gene in our master set (less
any gene with a control TPM measurement of 0) to create a new distribution of simulated c
values. E. Example genes illustrating how the variance of a gene expression measurement
often depends on the signal(s) given. F. Correlation matrix showing the Pearson correlation
between coefficient of variation (CV) estimates between each condition, with black boxes
outlining correlations between different doses of the same signal(s).
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Supplemental Table 1. Post-sequencing ATAC-seq metrics for each sample.

Final
number of Percent of

Initial read pairs  Estimated reads within

number of (aligned, library size from 500 bp of a

read pairs filtered, Picard PCR Percent RefSeq

(before duplicates MarkDuplicates bottleneck mitochondrial transcription
Condition Replicate alignment) removed) report coefficient reads start site
EtOH-control rep1 47,581,870 | 39,444,496 262,895,599 0.94 2.8% 11.9%
EtOH-control-halfDensity rep1 41,086,622 = 34,396,506 250,581,572 0.95 2.4% 11.5%
EtOH-control-highDensity  rep1 44,072,790 | 36,117,206 231,669,308 0.95 4.5% 11.6%
RA-low-dose rep1 41,260,701 | 33,591,663 217,146,943 0.95 5.3% 10.7%
RA-med-dose rep1 31,647,052 | 26,123,190 179,897,280 0.95 5.8% 11.0%
RA-high-dose rep1 42,261,199 33,811,647 199,969,660 0.95 7.6% 11.4%
TGF-B-low-dose rep1 37,747,257 | 31,026,429 202,820,143 0.94 3.9% 10.5%
TGF-B-med-dose rep1 44,624,493 | 36,419,357 224,406,039 0.94 4.3% 10.2%
TGF-B-high-dose rep1 38,094,133 | 31,396,736 208,404,962 0.95 4.8% 10.9%
Both-low-dose rep1 52,387,369 40,479,658 211,802,845 0.95 10.1% 10.5%
Both-med-dose rep1 49,853,358 | 39,318,933 225,987,476 0.95 8.9% 10.5%
Both-high-dose rep1 42,206,009 | 33,786,922 204,244,183 0.95 8.1% 10.2%
EtOH-control rep2 38,083,282 31,779,309 226,734,741 0.94 2.5% 11.5%
EtOH-control-halfDensity rep2 43,361,513 36,593,932 269,862,386 0.94 1.5% 10.6%
EtOH-control-highDensity | rep2 39,698,228 | 33,195,307 255,254,502 0.95 1.8% 11.2%
RA-low-dose rep2 36,715,104 | 30,292,869 207,792,170 0.95 4.6% 10.8%
RA-med-dose rep2 40,558,424 | 33,800,414 250,171,599 0.95 3.7% 10.4%
RA-high-dose rep2 41,414,691 34,358,578 244,841,654 0.95 4.0% 10.7%
TGF-B-low-dose rep2 44,817,804 | 36,658,961 215,298,493 0.93 3.4% 10.3%
TGF-B-med-dose rep2 39,929,259 | 33,087,956 238,242,632 0.95 3.5% 10.2%
TGF-B-high-dose rep2 46,205,287 | 38,202,058 251,952,977 0.94 2.8% 10.8%
Both-low-dose rep2 40,462,498 33,185,265 250,065,164 0.96 51% 8.8%
Both-med-dose rep2 44,699,468 | 35,917,746 219,591,584 0.95 7.7% 9.8%
Both-high-dose rep2 48,925,327 | 39,315,827 229,690,180 0.94 6.1% 10.9%
EtOH-control rep3 42,812,546 | 35,309,638 231,408,229 0.94 3.2% 12.3%
EtOH-control-halfDensity rep3 41,813,530 34,814,520 258,011,226 0.95 3.0% 11.6%
EtOH-control-highDensity  rep3 40,546,148 | 33,264,452 204,352,162 0.94 4.1% 12.5%
RA-low-dose rep3 32,762,330 26,916,331 179,857,516 0.95 6.1% 11.4%
RA-med-dose rep3 50,878,299 40,363,941 221,908,252 0.94 7.4% 11.4%
RA-high-dose rep3 44,212,167 33,875,013 165,272,130 0.94 10.7% 11.7%
TGF-B-low-dose rep3 45,587,448 37,129,061 231,608,100 0.94 4.7% 11.3%

TGF-B-med-dose rep3 38,493,959 | 31,108,095 182,114,358 0.94 5.7% 11.1%
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TGF-B-high-dose rep3 30,124,631 24,795,889 163,300,521 0.94 4.7% 11.4%
Both-low-dose rep3 50,426,925 38,748,904 196,832,887 0.94 10.3% 10.9%
Both-med-dose rep3 44,423,642 | 34,365,274 183,838,974 0.95 11.0% 10.8%

Both-high-dose rep3 42,164,691 32,326,317 169,428,244 0.95 11.2% 10.6%
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