

1 Overlapping neural representations for the position of visible and imagined objects

2

3 Amanda K. Robinson^{a,b,c}, Tijl Grootswagers^{a,b,c}, Sophia M. Shatek^a, Jack Gerboni^a, Alex O. Holcombe^a,
4 Thomas A. Carlson^{a,b}

5

6 ^a School of Psychology, University of Sydney, NSW, 2006, Australia

7 ^b Perception in Action Research Centre, Macquarie University, Sydney, NSW, Australia

8 ^c Department of Cognitive Science, Macquarie University, NSW, 2109, Australia

9

10 **Abstract**

11 Humans can covertly track the position of an object, even if the object is temporarily occluded. What are
12 the neural mechanisms underlying our capacity to track moving objects when there is no physical stimulus
13 for the brain to track? One possibility is that the brain “fills-in” information about imagined objects using
14 internally generated representations similar to those generated by feed-forward perceptual mechanisms.
15 Alternatively, the brain might deploy a higher order mechanism, for example using an object tracking
16 model that integrates visual signals and motion dynamics (Kwon et al., 2015). In the present study, we
17 used electroencephalography (EEG) and time-resolved multivariate pattern analyses to investigate the
18 spatial processing of visible and imagined objects. Participants tracked an object that moved in discrete
19 steps around fixation, occupying six consecutive locations. They were asked to imagine that the object
20 continued on the same trajectory after it disappeared and move their attention to the corresponding
21 positions. Time-resolved decoding of EEG data revealed that the location of the visible stimuli could be
22 decoded shortly after image onset, consistent with early retinotopic visual processes. For processing of
23 unseen/imagined positions, the patterns of neural activity resembled stimulus-driven mid-level visual
24 processes, but were detected earlier than perceptual mechanisms, implicating an anticipatory and more
25 variable tracking mechanism. Encoding models revealed that spatial representations were much weaker
26 for imagined than visible stimuli. Monitoring the position of imagined objects thus utilises similar
27 perceptual and attentional processes as monitoring objects that are actually present, but with different
28 temporal dynamics. These results indicate that internally generated representations rely on top-down
29 processes, and their timing is influenced by the predictability of the stimulus. All data and analysis code
30 for this study are available at <https://osf.io/8v47t/>.

31 **Introduction**

32 Internally-generated representations of the world, as opposed to stimulus-driven representations, are
33 important for day-to-day tasks such as constructing a mental map to give a stranger directions,
34 remembering where you last saw a lost item, or tracking the location of a car that becomes occluded by
35 another vehicle. In these cases, there is little or no relevant perceptual input, yet the brain successfully
36 constructs a picture of relevant visual features such as object form and spatial position. Internally-
37 generated representations have been studied with tasks involving imagery, mental rotation, and
38 perception of occluded objects. Such tasks seem to involve different cognitive strategies, yet their neural
39 mechanisms have some similarities. It is clear that internally-generated representations rely on similar
40 brain regions to stimulus-driven representations (Lee et al., 2012; Reddy et al., 2010) but they appear to
41 have different temporal dynamics (Dijkstra et al., 2018), raising the question of how exactly these internal
42 representations are formed.

43

44 Top-down processing appears to play an important role in generating internally representations. Current
45 theories of mental imagery are based on similarities between perception and imagery, with a greater
46 focus on bottom-up processing in perception and top-down processing in imagery (for review, see
47 Pearson, 2019). Neuroimaging work has shown increases in brain activation within early visual cortical
48 regions when participants engage in imagery, in a similar way to viewing the same stimuli (Kosslyn et al.,
49 1993; Le Bihan et al., 1993), but there is more perception-imagery overlap in higher level brain regions
50 such as ventral temporal cortex (Lee et al., 2012; Reddy et al., 2010). Imagery involves greater flow of
51 information from fronto-parietal to occipital regions than perception, indicating that top-down or
52 feedback-like processes mediate internally generated representations (Dentico et al., 2014; Dijkstra et al.,
53 2017; Mechelli, 2004). During imagery, neural activation within the ventral stream is consistent with
54 generative feedback models of information flow from higher-level to low-level visual regions (Breedlove
55 et al., 2020). Consistent with this account, recent work using magnetoencephalography and time-resolved
56 decoding showed that imagery of faces and houses involves similar patterns of activation as viewing those
57 stimuli, but with different temporal dynamics (Dijkstra et al., 2018). In the Dijkstra et al. (2018) study,
58 imagery-related processing was delayed and more diffuse than perception, which showed multiple
59 distinct processing stages. A follow-up study suggested that the order of perceptual processes is reversed
60 in imagery (Dijkstra et al., 2019). Together, these results suggest that imagery uses at least some of the
61 same mechanisms as perception but is initiated in higher-level brain regions rather than being driven by
62 perceptual input.

63

64 Another mechanism originating in higher-level brain regions that might be intrinsically linked to internal
65 representations is spatial attention. Directing attention to a location enhances processing of stimuli that
66 appear there (Posner, 1980). Reduced amplitude alpha-band (~10Hz) oscillations in visual cortex have
67 been linked to covertly attending to a specific region in space (Worden et al., 2000). Additionally, time-
68 resolved decoding has found that attended locations could be decoded from the neural signal even before
69 a stimulus appeared (Goddard et al., 2019). It follows that spatial imagery tasks that require internal
70 representations of objects with specific positions or orientations, such as in occlusion or mental rotation,
71 might also inherently involve spatial attention. Indeed, alpha-band activity has been found to track spatial
72 locations held in working memory (Foster et al., 2016). Interestingly, a recent study found evidence that
73 imagery and perception share neural processes in the alpha-band frequency linked to high-level visual
74 processing, using a task that did not involve an explicit spatial component (Xie et al., 2020). Imagery and
75 spatial attention therefore seem to share common features; they both appear to rely on top-down
76 processing, with one consequence that perception seems to have higher spatial resolution than both
77 spatial attention (Intriligator and Cavanagh, 2001) and imagery (Breedlove et al., 2020). It is very difficult
78 to untangle the contributions of perceptual processes and spatial attention to internal representations. It
79 seems likely that imagery involves mechanisms related to perception and attention, relying on top-down
80 processing from high-level brain regions.

81
82 One aspect that is likely to affect the top-down generation of an internal representation is how it is
83 prompted and the ability to predict its features in advance, for example when objects become occluded.
84 The processes underlying the representation of occluded objects may be closely related to those in
85 conventional imagery tasks (Nanay, 2010). However, there are some important differences between
86 imagery and occlusion. Imagery can be prompted from short- or long-term memory, which involve
87 different brain regions (Ishai, 2002). Mental imagery can be considered to encompass situations in which
88 there is a visual percept that is not produced via current sensation. In this view, representations held in
89 working memory can therefore involve mental imagery; indeed, percepts in working memory resemble
90 those arising from mental rotation (Albers et al., 2013). In conditions of occlusion, as well as in the case
91 of visual working memory, there is usually some sensory support, such as from a fragment of the object
92 not occluded or full view of the object immediately before occlusion. One possibility is that internally
93 generated representations utilise the same brain networks as perceptual representations, but the
94 temporal dynamics vary with the ability to predict and anticipate details of the stimulus to be generated.

95

96 Tracking the position of a predictably moving object is a common task that may share some top-down
97 processes with static imagery tasks. In particular, prediction is likely to play an important role in both
98 imagery and visual tracking. The ability to predict the movement of a stimulus influences perceptual
99 processing during visual tracking (Blom et al., 2020; Hogendoorn and Burkitt, 2018). Hogendoorn & Burkitt
100 (2018) measured EEG from participants who viewed an apparent motion stimulus that was predictable or
101 unpredictable in its motion trajectory. The position-specific representations occurring 80-90ms after
102 stimulus onset were unaffected by motion predictability, but a later stage of processing (typically 140-
103 150ms after a stimulus is presented) occurred earlier for predictable relative to random sequences by
104 approximately 16ms (Hogendoorn and Burkitt, 2018). Predictability therefore has a marked effect on the
105 temporal dynamics of spatial representations for visible stimuli. For an object appearing in an
106 unpredictable location, the resulting position representation must be a combination of the internal
107 representation of the expected location and the stimulus-driven response to the actual object location
108 (Blom et al., 2020). Disentangling a stimulus prediction from a stimulus-driven response is an important
109 next step in understanding how and when internal representations are formed. Anticipatory mechanisms
110 are likely to influence internally generated spatial representations, but might interact with other effects,
111 for example the delayed processes observed during imagery (Dijkstra et al., 2018).

112

113 In the current study, to understand the nature of internal representations in the brain, we investigated
114 the neural processes underlying visual tracking for visible and imagined objects. Participants covertly
115 tracked the position of a simple moving stimulus and kept tracking its trajectory after it disappeared. Using
116 spatial imagery allowed us to assess the temporal dynamics of internal representations during object
117 tracking in the absence of a stimulus-driven response. EEG and time-resolved multivariate pattern analysis
118 were used to assess the position-specific information contained within the neural signal during visible and
119 imagined stimulus presentations. We successfully decoded the position of the stimuli from all phases of
120 the task. Our results show that the visible and imagined stimuli evoked the same neural response patterns,
121 but with very different temporal dynamics. Further, multivariate encoding models revealed that the
122 spatial representations of imagined stimuli were much weaker than those of visual stimuli. These findings
123 suggest that overlapping mid- and high-level visual processes underlie perceptual and internally
124 generated representations of spatial location, and that these are pre-activated in anticipation of a
125 stimulus.

126

127 **Methods**

128 All stimuli, data and analysis code are available at <https://osf.io/8v47t/>. The experiment consisted of two
129 types of sequences: a pattern estimator and the experimental task. In the pattern estimator sequences,
130 the order of the stimuli was unpredictable, whereas in the experimental task the order was predictable.
131 The pattern estimator sequences were used to obtain position-specific EEG signals that were unlikely to
132 be affected by eye-movements, and were subsequently used to detect position signals in the
133 experimental task.

134

135 ***Participants***

136 Participants were 20 adults recruited from the University of Sydney (12 females; age range 18-52 years)
137 in return for payment or course credit. The study was approved by the University of Sydney ethics
138 committee and informed consent was obtained from all participants. Four participants were excluded
139 from analyses due to excessive eye movements during the pattern estimator sequences.

140

141 ***Stimuli and design***

142 While participants maintained fixation in the centre of the monitor, a stimulus appeared in six distinct
143 positions 4 degrees of visual angle from fixation. The stimulus positions were 0°, 60°, 120°, 180°, 240°
144 and 300° relative to fixation. The stimulus was a black circle with a diameter of 3 degrees of visual angle.
145 Six unfilled circles acted as placeholders, marking all possible positions throughout the trial. Every stimulus
146 presentation was accompanied by a 1000 Hz pure tone presented for 100 ms via headphones. All stimuli
147 were presented using Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in MATLAB. In total,
148 there were 8 blocks of trials, each of which contained two pattern estimator sequences and 36
149 experimental task sequences.

150

151 ***Pattern estimator***

152 The pattern estimator sequences were designed to extract stimulus-driven position-specific neural
153 patterns from the EEG signal. Participants viewed 16 pattern estimator sequences (2 per block), each of
154 which consisted of 10 repetitions of the 6 stimulus positions (Figure 1a). The order of stimuli was
155 randomised to ensure that for a given stimulus position, the preceding and following stimuli would not
156 be predictive of that position; for example, comparing the neural patterns evoked by positions 1 and 2
157 could not be contaminated by preceding and following stimuli because they could both be preceded and
158 followed by all six positions. Each stimulus was shown for 100ms and was followed by an inter-stimulus
159 interval of 200ms. Onset of the stimulus was accompanied by a 100ms tone. Participants were instructed
160 to passively view the stimuli without moving their eyes from the fixation cross in the centre of the screen.

161

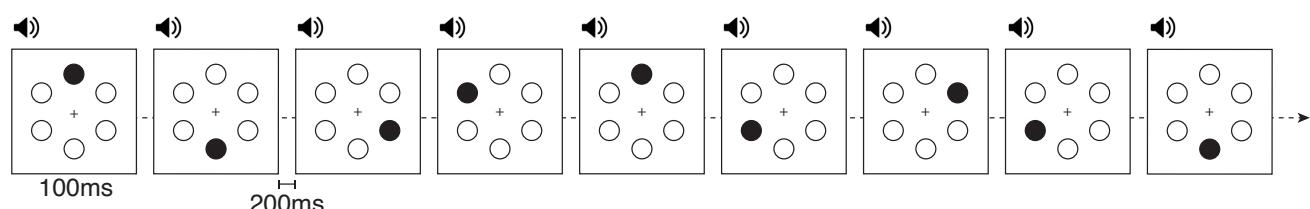
162 The stimuli were presented in unpredictable patterns so there was no regularity in the positions of the
163 previous or following stimuli to contribute to the neural patterns extracted for each position. Additionally,
164 the random sequences ensured that any eye movements would be irregular and thus unlikely to
165 contribute to the extracted neural signal. Previous work has shown that even the fastest saccades typically
166 take at least 100ms to initiate (Fischer and Ramsperger, 1984). Furthermore, eye movements do not
167 appear to affect decoding of magnetoencephalography data until 200ms after a lateralised stimulus is
168 presented (Quax et al., 2019). Our 100ms stimulus duration was therefore unlikely to generate consistent
169 eye movements that would affect the early, retinotopic EEG signal of stimulus position.

170

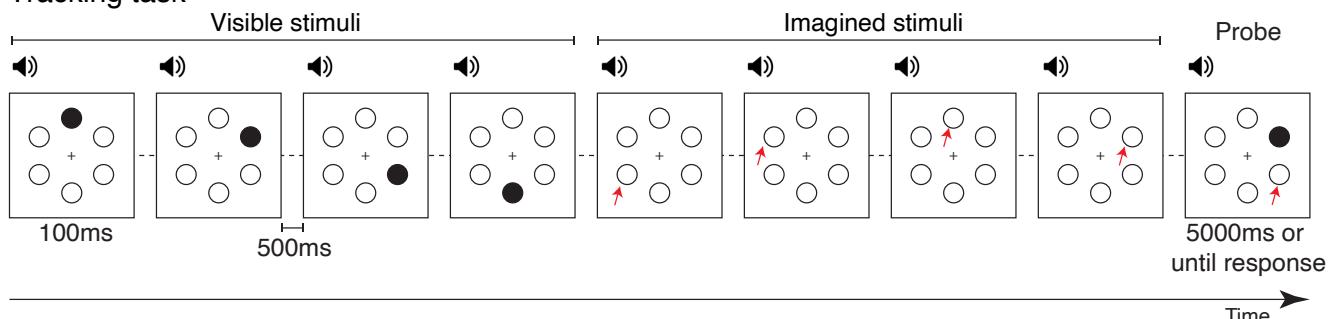
171 To assess whether participants complied with the fixation instruction, we assessed the EEG signal from
172 electrodes AF7 and AF8 (located near the left and right eye, respectively) as a proxy for electrooculogram
173 measurements. We calculated the standard deviation of the AF7 and AF8 signals across each of the 16
174 sequences and then averaged the deviation for the two electrodes. If a participant's average deviation
175 across the 16 sequences exceeded 50 μ V, that individual was considered to be moving their eyes or
176 blinking too often, resulting in poor signal. An amplitude threshold of 100 μ V is commonly used to
177 designate gross artefacts in EEG signal (Luck, 2005), so we adopted an arbitrary standard deviation
178 threshold of 50 μ V (50% of the typical amplitude threshold) to indicate that there were too many artefacts
179 across the entire pattern estimator sequences. Four participants exceeded this standard deviation
180 threshold ($M = 72.72\mu$ V, range = 63.93-82.70 μ V) and were excluded from all analyses. For each of the
181 remaining 16 participants, the median deviation was well below this threshold ($M = 25.92\mu$ V, $SD = 5.64\mu$ V,
182 range = 16.06-37.62 μ V). Thus, the four excluded participants had far more signal artefacts (probably
183 arising from eye movements) than the other participants.

184

A. Pattern estimator



B. Tracking task



185

186 Figure 1. Stimuli and design. A) Pattern estimator. Participants passively viewed rapid sequences in which a black circle stimulus
187 appeared in six locations in random order. A tone accompanied every stimulus onset. B) Tracking task. The stimulus was
188 presented in different locations in predictable sequences. After 4-6 visible locations, participants had to track the location of
189 the “imagined” stimulus by imagining the continuation of the sequence. A tone accompanied every stimulus onset. During the
190 4-6 “imagined” positions, the auditory stimulus continued at the same rate, but only the six placeholder locations were shown.
191 At the end of the sequence, a probe appeared, and participants had to respond if it was in the expected position or whether it
192 was trailing or leading the sequence. This example shows a clockwise sequence with trailing probe. Red arrows (not shown in
193 experiment) designate the expected position of the imagined stimulus.

194

195 *Tracking task*

196 For the experimental task, participants viewed sequences consisting of 4-6 visible stimuli and 4-6
197 “imagined” presentations simulating occluded stimuli (Figure 1b). The positions of the visible stimuli were
198 predictable, presented in clockwise or counter-clockwise sequences. Participants were asked to covertly
199 track the position of the stimulus, and to continue imagining the sequence of positions when the stimulus
200 was no longer visible. At the end of each sequence, there was a 1000 ms blank screen followed by a probe
201 stimulus that was presented in one of the 6 locations. Participants categorised this probe as either (1)
202 *trailing*: one position behind in the sequence, (2) *expected*: the correct location, or (3) *leading*: one
203 position ahead in the sequence. Participants responded using the Z, X or C keys on a keyboard,
204 respectively. Each response was equally likely to be correct, so chance performance was 33.33%.

205

206 **EEG recordings and preprocessing**

207 EEG data were continuously recorded from 64 electrodes arranged in the international 10–10 system for
208 electrode placement (Oostenveld and Praamstra, 2001) using a BrainVision ActiChamp system, digitized
209 at a 1000-Hz sample rate. Scalp electrodes were referenced to Cz during recording. EEGLAB (Delorme and
210 Makeig, 2004) was used to pre-process the data offline, where data were re-referenced to the average of
211 all electrodes. We filtered the data using a Hamming windowed sinc FIR filter with highpass of 0.1Hz and
212 lowpass of 100Hz and then downsampled to 250Hz as in our previous work (Grootswagers et al., 2019;
213 Robinson et al., 2019). Epochs were created for each stimulus presentation ranging from -200 to 1000ms
214 relative to stimulus onset. No further preprocessing steps were applied. Mean neural responses of these
215 epochs show clear event-related potentials in response to the visual and auditory stimuli (see
216 Supplementary Material S5).

217

218 **Decoding analyses**

219 An MVPA decoding pipeline (Grootswagers et al., 2017) was applied to the EEG epochs to investigate
220 position representations of visible and imagined stimuli. All steps in the decoding analysis were
221 implemented in CoSMoMVPA (Oosterhof et al., 2016). A leave-one-block-out (i.e., 8-fold) cross-validation
222 procedure was used for all time-resolved decoding analyses. For each time point, a linear discriminant
223 analysis (LDA) classifier was trained using the pattern estimator data to distinguish between all pairs of
224 positions. LDA covariance was regularised by .01. Channel voltages from the 64 EEG channels were used
225 as features for classification. Each classifier was trained with balanced numbers of trials per stimulus
226 position from the pattern estimator sequences. The classifier was then tested separately on the visible
227 and imagined positions in the experimental task. This provided decoding accuracy over time for each
228 condition. At each time point, mean pairwise accuracy was tested against chance (50%). Importantly,
229 because all analyses used the randomly-ordered pattern estimator data for training the classifier, above
230 chance classification was very unlikely to arise from the predictable sequences or eye movements in the
231 experimental task. For the tracking task, all sequences were included in the decoding analyses regardless
232 of whether the participant correctly classified the position of the probe (i.e., correct and incorrect
233 sequences were analysed). When only correct trials were included, the trends in the results remained the
234 same (see Supplementary Material S1).

235

236 To assess whether neighbouring stimulus positions evoked more similar neural responses, we also
237 calculated decoding accuracy as a function of the distance between position pairs. Each position pair had
238 a radial distance of 60°, 120° or 180° apart. There were six pairs with a distance of 60° (e.g., 0° vs 60°,
239 60° vs 120°, 0° vs 300°), six pairs with a distance of 120° (e.g., 0° vs 120°, 60° vs 180°), and three pairs

240 with a distance of 180° (directly opposing each other, e.g., 0° vs 180°, 60° vs 240°). Decoding accuracy for
241 each pair distance was calculated as the mean of all relevant pair decoding and compared to chance (50%).
242

243 As a final set of decoding analyses, time generalisation (King and Dehaene, 2014) was used to assess
244 whether the patterns of informative neural activity occurred at the same times for the pattern localiser
245 and the visible and imagined stimuli on the tracking task. Classification was performed on all combinations
246 of time points from the pattern estimator epochs and the visible or imagined epochs. Classifiers were
247 trained on all trials from the pattern estimator sequences and tested on visible and imagined stimulus
248 positions.

249

250 **Multivariate encoding analyses**

251 As exploratory analyses prompted by reviewers' comments, we used forward encoding models to
252 investigate the spatial selectivity of visible and imagined representations across time. Encoding models
253 can be used with neuroimaging data to investigate neural encoding of many visual feature dimensions
254 (Sprague and Serences, 2015). Such models have been applied to fMRI data to assess encoding of
255 features such as colour (Brouwer and Heeger, 2009), orientation (Scolari et al., 2012) and position
256 (Sprague and Serences, 2013). These methods have also been adapted for use with EEG using neural
257 responses in the frequency (Foster et al., 2016; Garcia et al., 2013) and temporal domains (Smout et al.,
258 2019; Tang et al., 2020, 2018). Here, we used data from the pattern estimator task and multivariate
259 linear regression to model the EEG responses per time point as a weighted sum of six position
260 "channels", each tuned to the experimental positions of 60°, 120°, 180°, 240°, 300°, 360°. These models
261 were then used to estimate channel responses for visible and imagined positions on the tracking task, in
262 order to assess the selectivity of the position representations. Analyses were adapted from encoding
263 analyses of EEG data implemented in Smout, Tang, Garrido and Mattingley (2019) using scripts on the
264 Open Science Framework (<https://doi.org/10.17605/osf.io/a3pfq>) and functions from
265 <https://github.com/Pim-Mostert/decoding-toolbox>.

266

267 Results from encoding analyses are activations (rather than predictions as in decoding), so encoding is
268 more sensitive to noise and artefacts in the data. Additional data cleaning steps were applied to remove
269 noise and artefacts. After epoching, we interpolated electrodes that exceeded 5 standard deviations from
270 the mean kurtosis value. For one dataset, we interpolated one additional channel that remained
271 extremely noisy by visual inspection. In total, six or fewer channels were interpolated per dataset (<10%,
272 $M = 3.5, SE = .56$). To remove artefacts, any epochs that exceeded +/-100µV at any time across the epoch

273 were excluded from the analyses, and for every training/testing fold we randomly subsampled the
274 remaining clean trials so there were equal numbers per position for the pattern estimator (total $M =$
275 640.13, $SE = 46.77$) and equal numbers per position, condition (visible/imagined) and movement direction
276 (clockwise/counter-clockwise) on the tracking task (total $M = 1957.50$, $SE = 177.11$). These steps ensured
277 that the position encoding analyses were based on clean EEG data and could not be biased due to unequal
278 trial numbers.

279

280 For each participant and time point, encoding models were trained using four-fold cross-validation, each
281 time training on 75% of the pattern estimator data and testing on 25% of the test data. This procedure
282 was repeated 100 times with different trial subsampling every time (Smout et al., 2019). These analyses
283 resulted in response profiles across the six stimulus positions (encoding “channels”; 0, 60, 120, 180, 240
284 and 300°) for each trial. Channel responses were then realigned to positions -120 to 180°, where the 0°
285 position channel reflected the correct stimulus position for the trial. We expected that the position
286 representations on the tracking task might also include representations for the previous and next stimuli
287 in the sequence, so we collated the data separately for clockwise and counterclockwise sequences and
288 relabelled the position channels to reflect position relative to stimulus movement. Thus, channels +60,
289 +120 and +180 degrees reflect positions of the next three stimuli in the sequence, and channels -60 and -
290 120 reflect positions of the preceding two stimuli. Mean position channel responses were then calculated
291 per time point for the visible and imagined stimuli.

292

293 To assess the position representations in the neural signal, exponentiated cosines were fit to the encoding
294 response profiles across the six position channels for each participant, condition and time point using the
295 equation:

296
$$y(x) = A * e^{\kappa(\cos(x-\mu)-1)} + B$$

297 which models the expected response profile for position angle x with a distribution with amplitude A
298 (peak response amplitude) with κ concentration (sharpness of the distribution, analogous to standard
299 deviation) that clusters around μ (peak of the function) with baseline offset B . The fitting was
300 implemented using lsqcurvefit in MATLAB with starting values $A = 0.2$ (range -5 to 10), $\kappa = 1$ (0 to 10), μ
301 = 0 (-60° to 60°) and $B = 0$ (-5 to 2). We analysed the amplitude A and peak μ over time for position
302 representations of visible and imagined stimuli.

303

304 **Statistical inference**

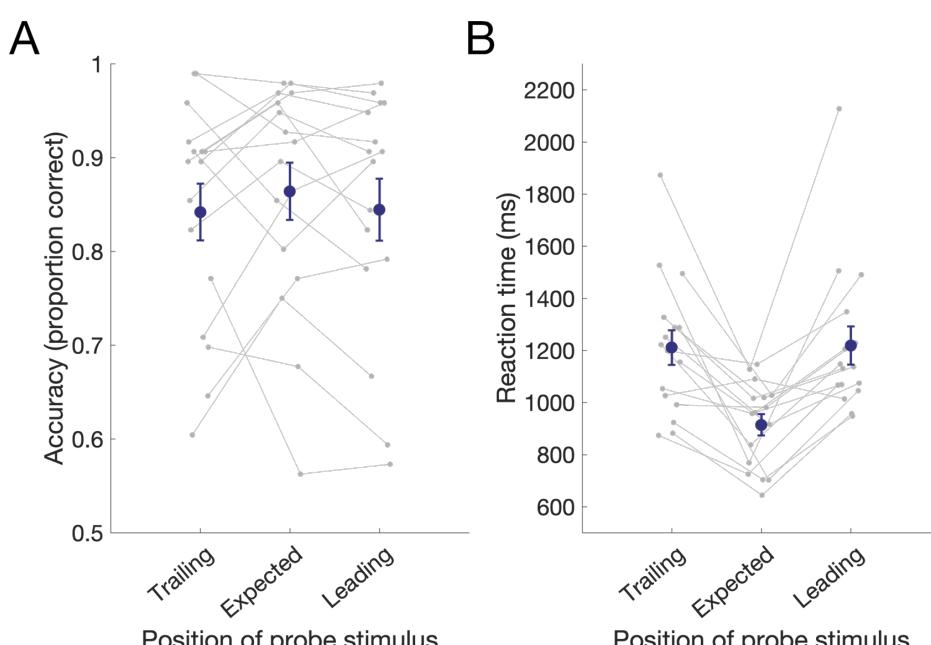
305 To assess the evidence that decoding performance or parameter values differed from chance, we
306 calculated Bayes factors (Dienes, 2011; Jeffreys, 1961; Kass and Raftery, 1995; Rouder et al., 2009;
307 Wagenmakers, 2007). A JZS prior (Rouder et al., 2009) was used with a scale factor of 0.707, meaning that
308 for the alternative hypothesis of above-chance decoding, we expected to see 50% of parameter values
309 falling within $-.707$ and $.707$ standard deviations from chance (Jeffreys, 1961; Rouder et al., 2009; Wetzels
310 and Wagenmakers, 2012; Zellner and Siow, 1980). The Bayes factor (BF) indicates the probability of
311 obtaining the group data given the alternative hypothesis relative to the probability of the data assuming
312 the null hypothesis is true. We used thresholds of $BF > 3$ and $BF > 10$ as increasing evidence for the
313 alternative hypothesis, and $BF < 1/3$ as evidence in favour of the null hypothesis (Jeffreys, 1961; Kass and
314 Raftery, 1995; Wetzels et al., 2011). BFs that lie between those values indicate insufficient evidence to
315 favour either of the two hypotheses.

316

317 **Results**

318 *Behavioural results*

319 Participants performed well on the tracking task, with high mean accuracy for all probe positions (Fig 2A).
320 Response time was calculated within participant as the mean correct response time per probe position.
321 At the group level, response time was faster for the expected probe position relative to the unexpected
322 probe positions (trailing or leading) (Fig 2B). These results indicate that on most trials participants knew
323 where the probe was meant to appear, which required tracking the expected location of the object.
324 Evidently, participants allocated their attention appropriately to the expected position of the stimulus
325 during the imagined portion of the tracking task.

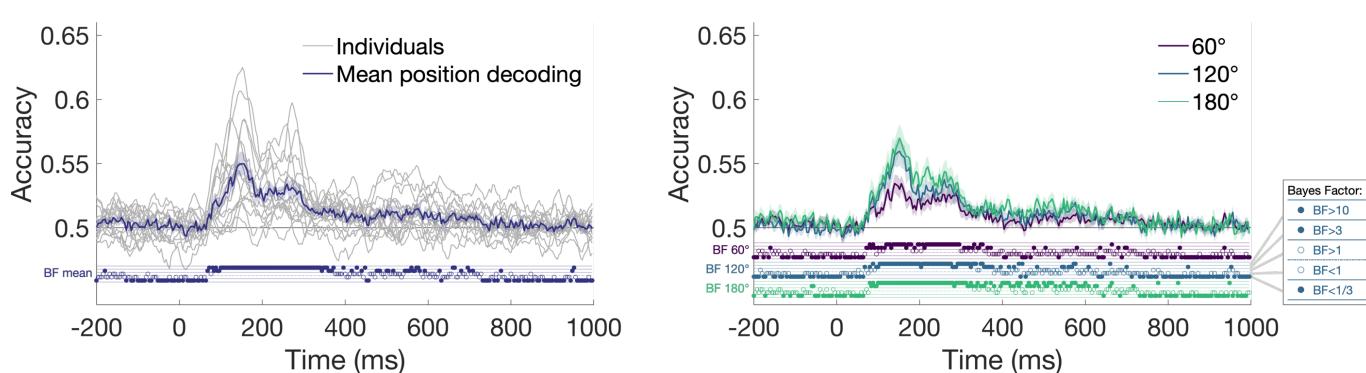


326

327 Figure 2. Behavioural results. A) Accuracy, and B) Response time on the tracking task as a function of final probe position.
328 Individual participant data are plotted in grey, with group mean in navy. Error bars depict one standard error of the mean
329 across participants ($N = 16$).
330

331 *Position decoding using the pattern estimator sequences*

332 The pattern estimator sequences were designed to extract position-specific neural patterns of activity
333 from unpredictable visible stimuli. Time-resolved multivariate pattern analysis (MVPA) was applied to the
334 EEG data from the pattern estimator, which revealed that stimulus position could be decoded above
335 chance from approximately 68ms after stimulus onset and peaked at 150ms (Figure 3), consistent with
336 initial retinotopic processing of position in early visual areas (Di Russo et al., 2003; Hagler et al., 2009). To
337 assess how the physical distance between stimulus positions influenced the neural patterns of activity,
338 we compared the pairwise decodability of position according to the relative angle between stimulus
339 position pairs (i.e., angle of 60°, 120° or 180° between two stimulus positions). The greatest decoding
340 performance was observed for larger angles between stimulus positions.
341



342
343 Figure 3. Position decoding using pattern estimator sequences. Left plot shows group mean decoding and smoothed individual
344 participant decoding for all pairs of positions, and right plot shows mean position decoding as a function of the angular distance
345 between stimulus pairs. Shaded areas show standard error across participants ($N = 16$). Thresholded Bayes factors (BF) for
346 above-chance decoding are displayed above the x-axes for every time point as an open or closed circle in one of four locations
347 (see inset).
348

349 *Position decoding on the tracking task*

350 To assess the similarity in position representations for visible and imagined (simulated occluded) stimuli,
351 the classifier was trained on data from the visible pattern estimator stimuli and tested on data from the
352 tracking task for the visible and imagined stimuli. Crucially, position could be decoded for both visible and
353 imagined stimuli, suggesting that similar neural processes underpin perceptual and internal
354 representations of stimulus position. For visible stimuli, the pattern of decoding results echoed those of
355 the pattern estimator, with decoding evident from approximately 76ms and peaking at 152ms,

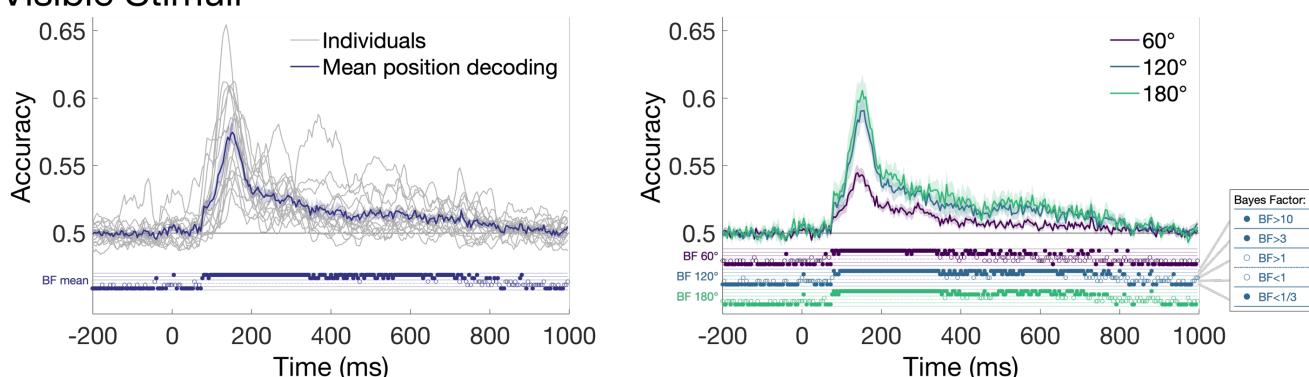
356 presumably reflecting visual coding of position in ventral visual areas of the brain (Figure 4a, left). When
357 decoding was split according to the distance between the pair of positions, results looked similar to the
358 pattern estimator results (Figure 4A, right).

359

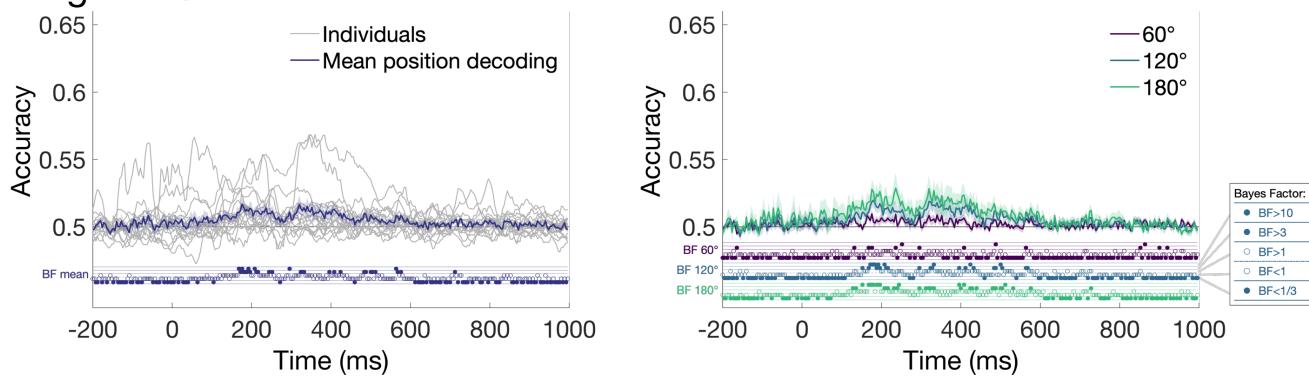
360 A different pattern of results was observed for the imagined stimuli. Here, decoding was not above chance
361 until approximately 152ms and consisted of a low, broad “peak” (Figure 4B). There was considerable
362 variation in decoding accuracy across participants (Figure 4B, left; see also Supplementary Material S6).
363 Although decoding accuracy was low, there was considerable evidence that accuracy was above chance
364 (see Supplementary Material S2 for Bayes Factors in more detail). Reliable above chance cross-decoding
365 from the visible pattern estimator stimuli to the imagined stimuli on the tracking task indicates that
366 overlapping processes underlie stimulus-driven and internally-generated representations of spatial
367 location. But this decoding of the internal representation of position was later and less accurate than
368 position decoding for visible stimuli. Similar to the pattern estimator and visible decoding results,
369 positions that were further apart were more decodable (Figure 4b, right). Notably, neighbouring positions
370 (60° apart) showed little evidence of position decoding, suggesting that the representations of position
371 were spatially diffuse for the imagined stimuli, unlike for the visible stimuli.

372

A. Visible Stimuli



B. Imagined Stimuli



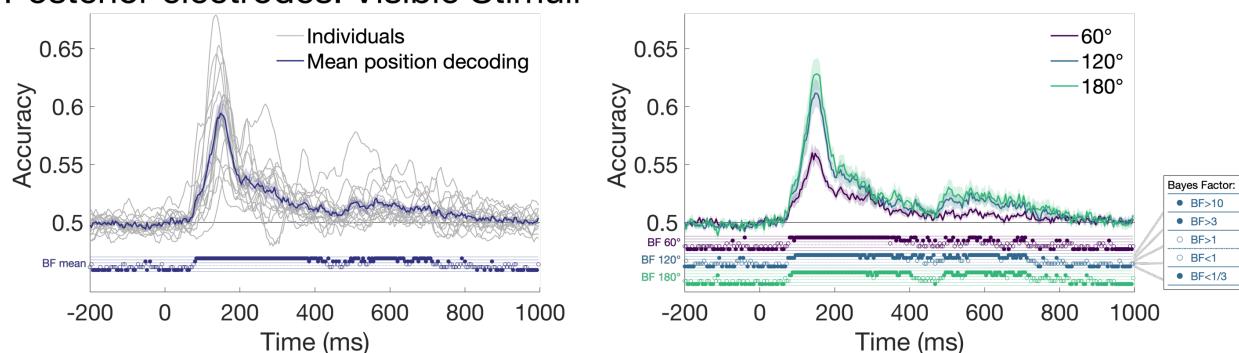
373

374 Figure 4. Position decoding from object tracking task. A) Visible stimuli. B) Imagined stimuli. Left plots show group mean
375 decoding and smoothed individual participant decoding for all pairs of positions, and right plots show mean position decoding

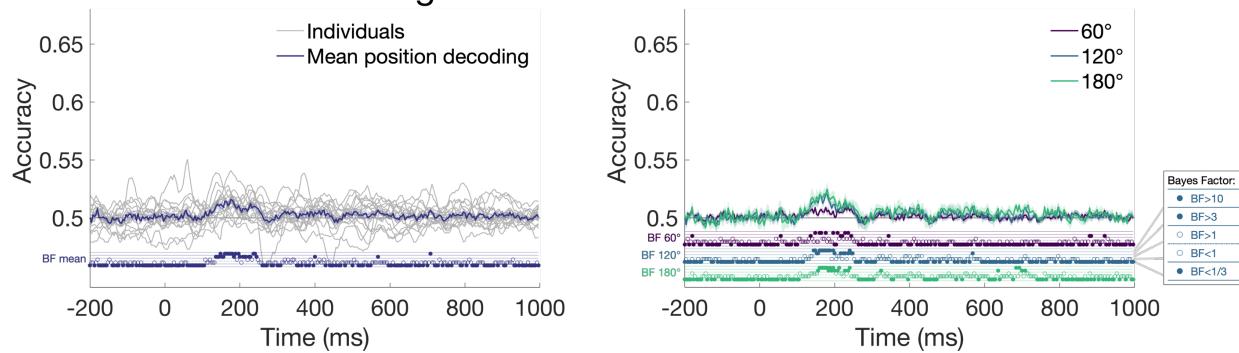
376 as a function of the angular distance between position pairs. Shaded areas show standard error across participants ($N = 16$).
377 Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for every time point as an open or
378 closed circle in one of four locations (see inset).
379
380 The previous analyses were performed using electrodes covering the whole head, which meant that there
381 was a possibility that non-neural artefacts such as eye movements might contribute to the classification
382 results (Quax et al., 2019). Saccadic artefacts tend to be localised to frontal electrodes, close to the eyes
383 (Lins et al., 1993). To assess if the EEG signal contributing to the position-specific neural information
384 originated from posterior regions of the brain (e.g., occipital cortex), as expected, we conducted the same
385 time-resolved decoding analyses using a subset of electrodes from the back half of the head. We used 28
386 electrodes that were likely to pick up the largest signal from occipital, temporal and parietal areas (and
387 were less likely to be contaminated with frontal or muscular activity). The electrodes were CPz, CP1, CP2,
388 CP3, CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, O2, TP7, TP8, TP9
389 and TP10. As can be seen in Figure 5, the same trend of results was seen using this subset of electrodes
390 compared with the whole head analyses in Figure 4. Specifically, Bayes Factors revealed evidence that
391 position of imagined stimuli was decodable approximately 136-244 ms, which is slightly earlier than the
392 whole brain results. Decoding was also most evident for positions that were a distance of 120° or 180°
393 apart (Figure 5b). Interestingly, imagery decoding was more prolonged for the whole-brain decoding than
394 posterior analyses, which could reflect higher-order cognitive processing of stimulus position in more
395 anterior regions of the brain, or increased power due to more features (electrodes) included in the whole
396 brain analysis. Analyses restricted to frontal electrodes showed later, more diffuse coding for visible
397 stimuli relative to the posterior analysis, and little evidence for position coding of imagined stimuli (see
398 Supplementary Material S3). Thus, position-specific neural information for visible and imagined stimuli
399 was evident specifically over posterior regions of the brain, consistent with visual cortex representing
400 stimulus-driven and internal representations of spatial location.

401

A. Posterior electrodes: Visible Stimuli



B. Posterior electrodes: Imagined Stimuli



402

403 Figure 5. Position decoding from object tracking task using only posterior electrodes. A) Visible stimuli. B) Imagined stimuli.
 404 Left plots show group mean decoding and smoothed individual participant decoding for all pairs of positions, and right plots
 405 show mean position decoding as a function of the angular distance between stimulus pairs. Shaded areas show standard error
 406 across participants ($N = 16$). Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for
 407 every time point as an open or closed circle in one of four locations (see inset).

408

409 The results of the time-resolved analyses showed that position-specific neural patterns for visible stimuli
 410 generalised to imagined stimuli, but with different temporal dynamics. To assess the possibility that
 411 neural processes were more temporally variable for imagined than for visible stimuli, we performed whole
 412 brain (64-channel) time-generalisation analyses by training the classifier on all time points of the pattern
 413 estimator and testing on all time points from the tracking task. As expected, position could be decoded
 414 from both visible and imagined stimulus presentations, but with marked differences in their dynamics
 415 (Figure 6). For the visible stimuli, most of the above-chance decoding was symmetric on the diagonal,
 416 indicating that the position-specific processes occurred at approximately the same time for visible stimuli
 417 in the pattern localiser and the tracking task (Figure 6A, top), even though the inter-stimulus intervals for
 418 stimuli in the training and test sets were different. Interestingly, there was also some above-diagonal
 419 decoding indicating that some neural signals observed in the pattern localiser occurred substantially
 420 earlier in the tracking task, which may reflect prediction based on the previous stimuli. Also likely
 421 reflecting anticipation of the stimulus position, generalisation occurred for time points prior to onset of
 422 the visible stimulus in the tracking task. About 800-1000ms after the tracking stimulus was presented,

423 there is some evidence of below chance decoding, indicating a different stimulus position was
424 systematically predicted. This is likely to reflect processing of the next stimulus in the tracking task, which
425 was presented at 600ms on the plot (stim +1 vertical line).

426

427 Time generalisation for the imagined stimulus position was not centred on the diagonal, reflecting
428 different temporal dynamics for the predicted internal representations than for the stimulus-driven
429 processing of the pattern estimator. Decoding generalisation was also much more diffuse and relied on
430 processes approximately 120-750 ms after stimulus onset in the pattern estimator (Figure 6A, middle).
431 Decoding again preceded the onset of the tone in the tracking task, reflecting an anticipation effect. There
432 was also below chance decoding at later time points, indicating that the classifier was predicting a
433 different stimulus position at times when the next stimulus would be processed. Comparison between
434 visible and imagined position showed higher decoding for the imagined stimuli preceding the tone, but
435 higher decoding for the visible stimuli after the stimulus and tone were presented (Figure 6A, bottom).

436

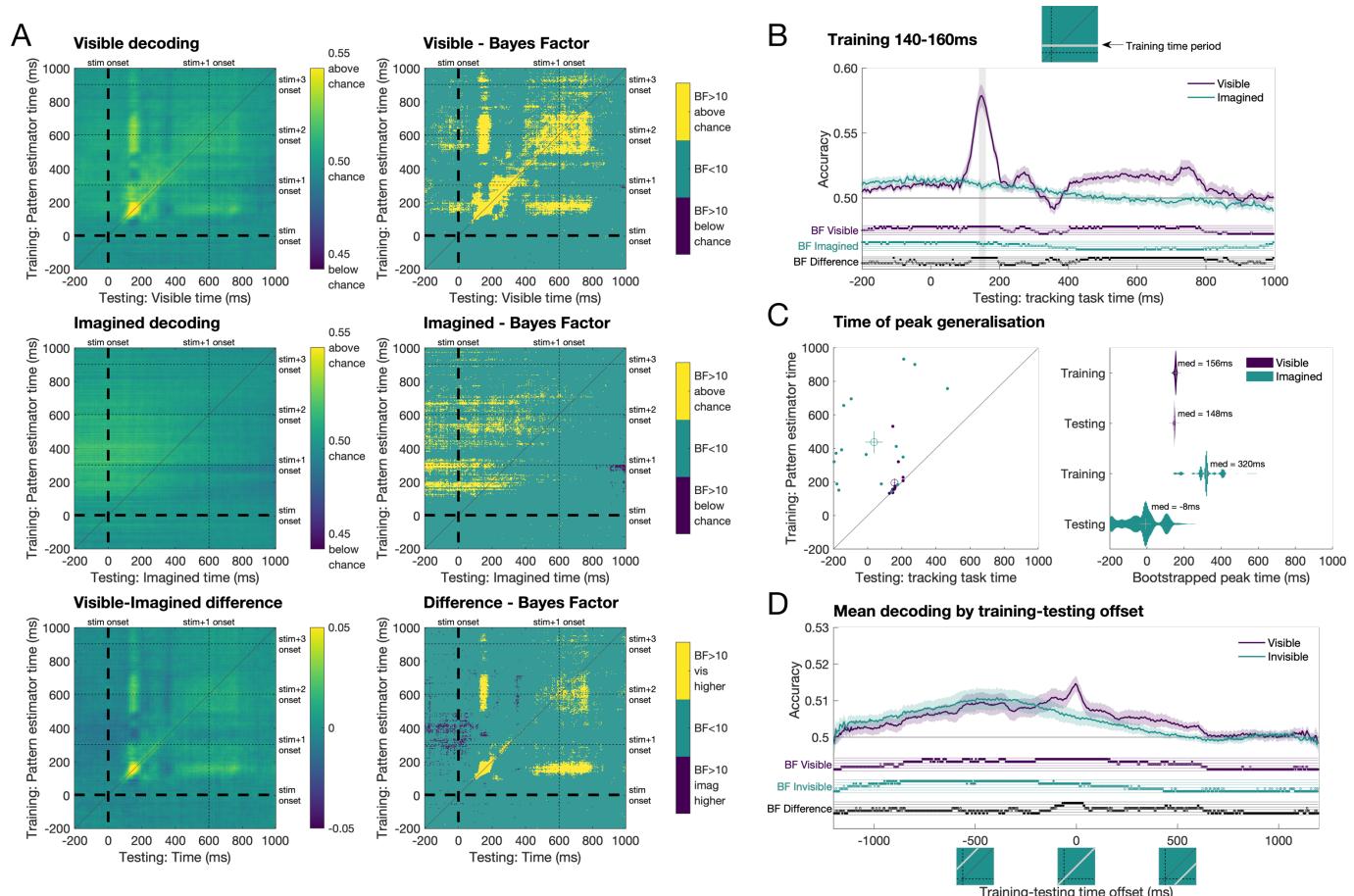
437 The dynamics of the time generalisation results give insight into the processing underlying perceptual and
438 imagined position representations. Using decoding models trained on the pattern estimator at 140-160ms
439 (approximately the time of peak position decoding), we looked at decoding accuracy for each time point
440 on the tracking task. It is clear that visible representations show stimulus-evoked position specific
441 responses, with largest decoding at the same time period as the training times (Figure 6B). Imagined
442 representations, however, show much more diffuse responses that ramp up earlier than those of visible
443 stimuli, with imagined decoding highest before 0ms, the time of the tone. Interestingly, this plot
444 resembled within-condition decoding results (i.e., training and testing on visible or imagined stimuli from
445 the training task; see Supplementary Material S4).

446

447 The time generalisation results show that position representations seem to emerge earlier for imagined
448 than visible stimuli. For peak decoding times per participant (Figure 6C, left), visible position was most
449 separable when training and testing approximately the same time points (about 150ms), whereas
450 imagined position relied on later training than testing times, and showed much more variability across
451 participants. To further assess peak decoding times, we bootstrapped the group 1000 times with
452 replacement and calculated the times of peak generalisation to assess the distribution. Figure 6C (right)
453 shows that visible decoding showed training and testing peaks at approximately 150ms with very little
454 variation across the 1000 iterations. Imagined representations, by contrast, peaked after 300ms for
455 training and 0ms for testing. Finally, assessing decoding accuracy by training-testing lag revealed that

456 imagined decoding was higher when training on later time points than testing times, whereas visible
 457 decoding was highest at approximately 0 ms offset (i.e., same training and testing times; Figure 6D). These
 458 results suggest that imagined representations rely on high level perceptual and cognitive processes that
 459 are implemented earlier in time. Overall, the time generalisation results suggest that during the imagined
 460 stimulus portion of the tracking task, which relied on internal representations of position, the neural
 461 dynamics were more anticipatory and variable than perceptual processes.

462



463

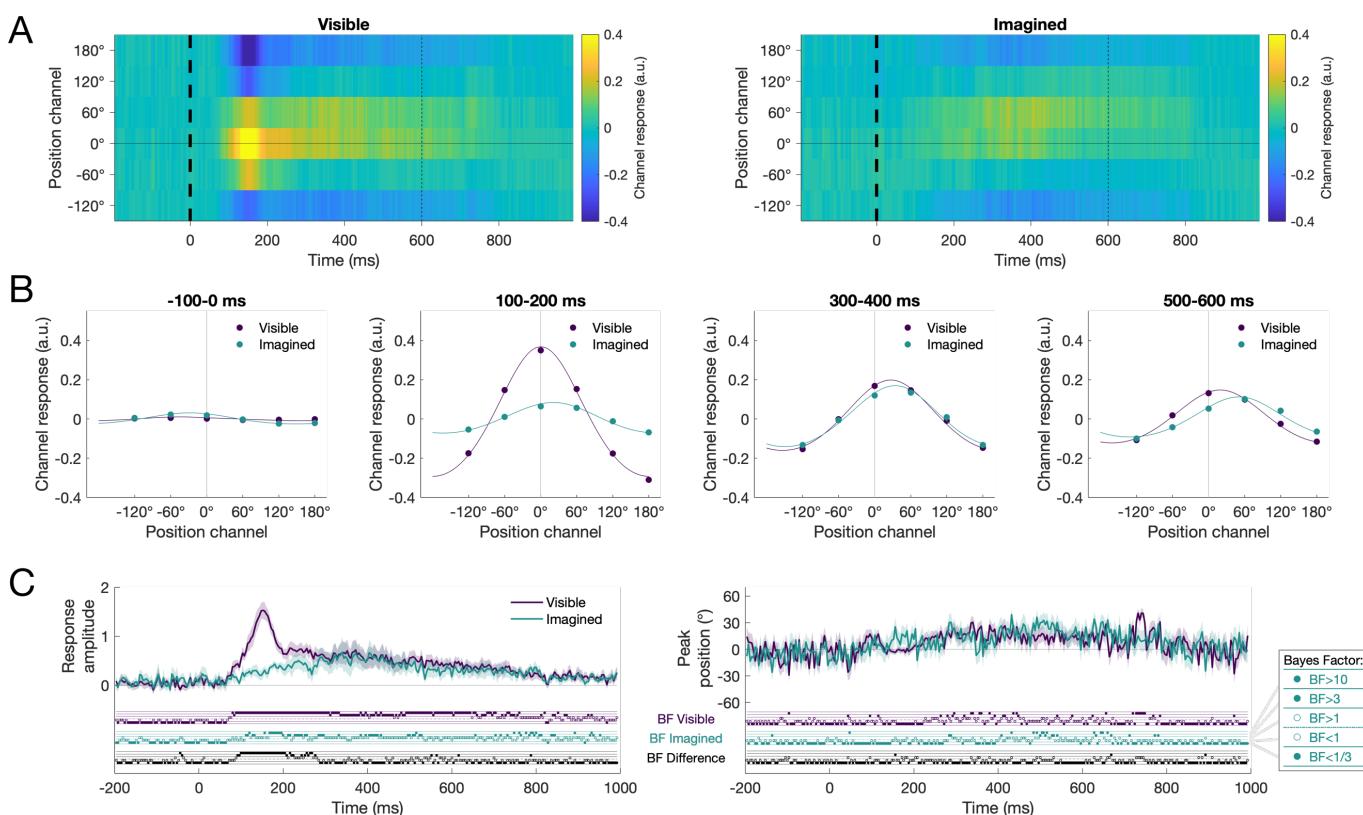
464 Figure 6. Time generalisation results. A) Decoding stimulus position for visible stimuli and imagined stimuli. Left plots show
 465 decoding for visible, imagined and visible-imagined difference, and right plots show associated Bayes Factors. Decoding was
 466 performed by training on data from the pattern estimator sequences of visible stimuli and testing on the experimental trials,
 467 for all pairs of time points. B) Decoding accuracy using training times 140-160ms on the pattern estimator and testing all time
 468 points for visible and imagined stimuli. C) Peak decoding times for training and testing processes. Left plot shows peak decoding
 469 times per participant, and right plot shows distribution of peak times after bootstrapping the group 1000 times. D) Mean
 470 decoding accuracy for different training-testing time offsets. Highest decoding for visible stimuli occurred around 0ms offset,
 471 indicating processes occurred at the same time points for the pattern estimator and visible stimuli on the tracking task. In
 472 comparison, the highest decoding for imagined stimuli occurred earlier in the test set than the training set.

473

474 *Encoding analyses*

475 We used forward encoding to assess the spatial representations in the neural signal for visible and
476 imagined stimuli. Encoding models were trained on EEG data from the pattern estimator sequences and
477 applied to the tracking task separately for each condition and time point. This exploratory analysis
478 resulted in activations per condition for six encoding channels representing the experimental positions.
479 Figure 7A depicts mean response profiles per condition, which show higher responses for the actual
480 stimulus position (0°) relative to the other positions, indicating that visible and imagined position were
481 encoded according to the same processes as the pattern estimator. Plots of the response profiles at
482 representative time periods show position information emerges over time but appears to shift towards
483 to next stimulus position in the sequence (denoted by 60°) at later time periods (Figure 7B). Fitting a
484 model to the channel responses at each time point resulted in two relevant parameters of the spatial
485 coding of the neural signal. The amplitude of the model fit, the peak response amplitude, emerged over
486 time and was reliably above zero for both visible and imagined stimuli, although it emerged slightly later
487 for imagined stimuli (Figure 7C, left). This plot resembled position decoding over time. Importantly,
488 amplitude was reliably higher for visible than imagined position from approximately 100-276ms,
489 indicating that the neural representations of position are stronger for physical rather than internally
490 generated stimuli. Modelling of the response profiles also revealed for peak position (i.e., the centre of
491 the model fit) there was some evidence of a shift away from the current stimulus position in the positive
492 direction for both visible and imagined stimuli (Figure 7C, right). This positive shift was evident from about
493 300ms, suggesting that the position representations at this time were more consistent with the *upcoming*
494 stimulus position. Together, these encoding analyses complement the decoding results by showing that
495 visible and imagined spatial position are encoded using stimulus-driven processes, and that imagined
496 stimuli elicit considerably weaker spatial representations than visible stimuli.

497



498

499 Figure 7. Position response profiles for visible and imagined stimuli using encoding models trained on the random pattern
500 estimator stimuli. A) Activations of each encoding position channel for visible and imagined stimuli, plotted as relationship to
501 the presented stimulus position. For the visible and imagined conditions, there was higher activation for position channels
502 closer to the correct position (0°), indicating that the neural representation of stimulus position was captured by the encoding
503 model. B) Model fitting of channel responses for some representative time periods show the emergence of spatial information
504 over time, with a shift towards the next stimulus position. C) Parameters of the model fits over time. Left: Response amplitude
505 at each time point for visible and imagined stimuli. There was reliable spatial signal for both conditions, but the temporal
506 dynamics varied. Right: Peak position for the model fit generally reflected a peak at 0° for visible and imagined stimuli,
507 although after 250ms there was some evidence of positive shifts towards the upcoming stimulus position.

508

509 Discussion

510 In this study, we assessed the neural underpinnings of internally-generated representations of spatial
511 location. Participants viewed predictable sequences of a moving stimulus and imagined the sequence
512 continuing when the stimulus disappeared. Time-resolved multivariate analyses revealed that patterns of
513 activity associated with visual processing in random sequences were also associated with processing of
514 visible and imagined spatial stimulus positions in the tracking task, but with different temporal dynamics.
515 Specifically, the neural correlates of imagined position (i.e., internally-generated representations) were
516 anticipatory and more temporally diffuse than those of visible position (i.e., sensory-driven
517 representations). Taken together, this study provides evidence that internal representations of spatial

518 position rely on mechanisms of visual processing, but that these are applied with different temporal
519 dynamics to actual perceptual processes.

520

521 The results of this study suggest that similar perceptual and cognitive processes are implemented for
522 processing position of visible and imagined (e.g., occluded) stimuli. This adds to previous neuroimaging
523 work using high level objects by showing that internally-generated spatial representations appear to use
524 the same visual perceptual processes as viewed stimuli (Dijkstra et al., 2018). What neural processes are
525 responsible for this low-level spatial imagery? We found generalisation from the pattern estimator to the
526 visible tracked stimuli began at approximately 76ms, but for imagined stimuli the generalisation did not
527 occur until 120ms (Figure 6A). This suggests that internal spatial representations do not originate with
528 early retinotopic processes such as that of the first stages of processing in V1, but are implemented by
529 higher order processes potentially via feedback and recurrent processes. Above-chance generalisation for
530 visible and imagined stimuli was maintained until approximately 750ms after the pattern estimator
531 stimulus was presented, indicating that position-specific information represented throughout the visual
532 hierarchy has some similarity for stimulus-driven and internally generated representations. It is important
533 to note, however, that the time generalisation results did not show evidence of distinct, progressive
534 stages of processing for the imagined representations. In contrast, the visible stimuli showed different
535 clusters of above-chance decoding on the diagonal of the time-generalisation results, indicating that there
536 were distinct stages of processing. These results are similar to those observed in Dijkstra et al., (2018)
537 during imagery of faces and houses. Recent work has suggested that imagery involves a flow of
538 information from higher- to lower-level brain regions in succession through the ventral stream (Breedlove
539 et al., 2020). We did not find any evidence of this reversal of perceptual processes in imagery; rather, our
540 results suggest that internal representations activate different perceptual stages simultaneously.
541 However, new analysis methods might yield more insight into the information flow through different brain
542 regions during imagery (Dijkstra et al., 2019).

543

544 For both visible and imagined stimuli, more distant stimulus positions could more easily be discriminated
545 by the EEG signals. Decoding for neighbouring positions (60° apart) was generally much lower than
546 decoding for positions that were further apart. This is consistent with the retinotopic organization of visual
547 cortices (Tootell et al., 1998), where closer areas of space are represented in neighbouring regions of
548 cortex, leading to more similar spatial patterns of activation that are measured on the scalp with EEG
549 (Carlson et al., 2011). Time generalisation results also showed that neural patterns of activity from the
550 pattern estimator sequences generalised to neighbouring positions in the visible condition, highlighting

551 the neural similarity for close spatial representations (see ~750ms in Figure 6B). Interestingly, however,
552 decoding for the closest positions was particularly low for the imagined stimuli, indicating that internally
553 generated representations of position are more spatially diffuse than perceptual representations.
554 Multivariate encoding analyses verified that the neural representations of spatial position for both visible
555 and imagined stimuli were encoded using stimulus-driven processes (modelled using data from the
556 pattern estimator sequences), but that imagined representations of position were weaker than stimulus-
557 driven representations from 100-276 ms. Weaker spatial signal in imagery is consistent with
558 representations originating in higher-level regions of the visual hierarchy, which have larger receptive
559 fields (Breedlove et al., 2020). Together, these results suggest that there are common, retinotopic
560 mechanisms for processing position of both visible and imagined stimuli, but with important differences
561 in the origin of the representations leading to much greater precision for visible stimuli.

562

563 A cognitive process that might contribute to the extracted position-specific signal in the current study is
564 that of spatial attention. In our experimental task, participants were explicitly asked to track the position
565 of the stimulus, and they performed well, suggesting they were directing their attention to the location
566 of the stimulus. Spatial attention influences the amplitude of early EEG responses (for review, see
567 Mangun, 1995), and MEG classification work has shown that spatial attention enhances object decoding
568 at early stages of processing (Goddard et al., 2019). Top-down spatial attention also results in more diffuse
569 spatial representations than stimulus processing (Intriligator and Cavanagh, 2001). Our decoding and
570 encoding results were obtained from training on the pattern estimator, so our results are focused on
571 processes common to the pattern estimator and the tracking task. In the pattern estimator, there was no
572 explicit task and therefore no incentive to specifically attend to stimulus position. However, there was
573 only one stimulus presented at a time and the saliency of the onsets were likely to attract attention, albeit
574 in a different fashion to the cued positions in the experimental tracking task. As such, the pattern
575 estimator and tracking task had different spatial attention demands, but that does not rule out spatial
576 attention as a source of overlap between the two types of sequences. It is difficult to untangle perceptual
577 and attentional mechanisms during imagery, and it is possible that internal spatial representations rely
578 on processes that are common to perception and attention. The current results are consistent with
579 previous work on imagery using paradigms that are unlikely to rely on spatial attention (Dijkstra et al.,
580 2018; Xie et al., 2020), so it seems likely that perceptual mechanisms are at least a considerable source of
581 overlap for neural patterns on the random pattern estimator sequences and the imagined positions on
582 the tracking task. Future work could attempt to disentangle the role of perceptual and attentional

583 processes in spatial imagery with a manipulation to reduce attention during the pattern estimator or using
584 valid and invalid cues for spatial position.

585

586 To investigate the neural processes underlying spatial imagery, this study focused on spatial
587 representations that were common to two different types of sequences: the pattern estimator and the
588 tracking task. All analyses were performed by obtaining patterns of neural activity associated with spatial
589 position from the randomly ordered pattern estimator stimuli and assessing how these patterns are
590 similar to the position representations of visible and imagined stimuli during the tracking task. Training
591 encoding and decoding models on an independent task allowed us to draw conclusions about the nature
592 of the position representations during tracking without the confound of prediction. Our results show that
593 spatial imagery implements similar neural processes as viewing stimuli. However, it is possible that spatial
594 imagery also contains *different* information to the pattern estimator. As an exploratory analysis, we
595 investigated the temporal dynamics of position representations by decoding within condition (visible and
596 imagined) on the tracking task (see Supplementary Material S4). This cross-validated decoding is
597 somewhat problematic due to the predictable nature of the sequence, so decoding is above chance
598 throughout the whole time period. However, the dynamics are still informative; specifically, within-
599 condition decoding revealed very similar dynamics to the original decoding analysis. Within-visible
600 decoding had a peak at 150ms, resembling the time-resolved analyses from training the pattern estimator
601 and testing the visible stimuli on the same time points (as in Figure 4A). Within-imagined decoding was
602 highest around 0ms, resembling the time-generalisation results from training on mid- and high-level
603 processes of the pattern estimator (e.g., Figure 6B). These results suggest that neural processes as
604 measured in the pattern estimator do capture most of the relevant neural processes implemented during
605 stimulus tracking for visible and imagined stimuli.

606

607 Spatial imagery representations were evident using multivariate decoding and encoding analyses, but the
608 magnitudes of the effects were very small. One likely contributing factor to the small effects is the
609 temporal jitter in the neural representations evoked by imagery both within and across participants. Time-
610 locked analyses assess reliable patterns of neural activity occurring at the exact same time across trials.
611 Imagery, as an internally-generated process, is likely to be much more temporally variable than
612 perception, resulting in smaller, more diffuse time-locked neural signals. There is also the likelihood that
613 different participants will use different strategies, resulting in variation from participant to participant.
614 Temporal variability is a challenge in all research involving mental imagery. Indeed, in a face versus house
615 imagery experiment, Dijkstra and colleagues (2018) found <60% accuracy for imagined decoding

616 compared with nearly 90% for viewed stimuli. To minimise temporal variation in imagery in the current
617 experiment, we used tones to guide participants in the timing of the task. Participants had to covertly
618 track stimulus position on thousands of trials (>1400 visible + >1400 imagined per participant; see
619 Supplementary Material S1 for details), and this large number of trials ensured that we had the power to
620 capture the neural processes associated with spatial imagery representations, despite the temporal
621 variation. Decoding accuracy was low, but accuracy is not an effect size (Hebart and Baker, 2017). Our
622 analyses show there were reliable spatial imagery representations that shared neural patterns with
623 stimulus-driven representations. Importantly, temporal jitter for imagery cannot explain the observed
624 temporal dynamics for processing of imagined position (as seen in the time generalisation plots in Figure
625 6), because jitter would predict only the x-axis of the time-generalisation plots being smeared relative to
626 the visible condition. The observed imagery results appear to be diffuse in terms of the contributions of
627 the pattern estimator (training; y-axis) processes, reflecting processing occurring at different times in
628 visible and imagined parts of the task.

629

630 One factor that we tried to control in this study was eye movements. Recent work has shown that even
631 when participants were instructed to maintain central fixation, the spatial position of a peripheral
632 stimulus could be decoded from eye movements, and the eye movements appeared to account for
633 variance in the MEG signal from 200ms after the stimulus was presented (Quax et al., 2019). To reduce
634 the likelihood of eye movements influencing our spatial representation results, one countermeasure we
635 implemented was using independent sequences of randomly ordered visible stimuli (pattern estimator
636 sequences) to extract position-specific patterns from the EEG signal and used these to generalise to the
637 tracking task. Thus, only neural signals in common between the pattern estimator and the tracking task
638 could result in above chance decoding. The position sequences in the pattern estimator (training set) were
639 randomised, so any incidental eye movements were unlikely to consistently vary with position. The
640 tracking task implemented both clockwise and counter-clockwise sequences, so if there were eye
641 movements, across the whole experiment a given position would have two completely different eye
642 movement patterns. Above-chance cross-decoding from the pattern estimator to the tracking task was
643 therefore unlikely to be driven by eye movements. Second, all stimuli were presented briefly (100ms
644 duration), and for a short 200ms inter-stimulus interval during the pattern estimator. This rapid
645 presentation rate reduced the likelihood that participants would overtly move their eyes, as even the
646 fastest saccades take at least 100ms to initiate (Fischer and Ramsperger, 1984). Third, we excluded
647 participants that appeared to move their eyes excessively during the pattern estimator sequences, which
648 were the sequences used for training the classifier. Finally, we conducted an additional analysis using only

649 posterior electrodes to validate that the neural patterns of activity informative for spatial position were
650 consistent with processes within the visual system (e.g., from occipital cortex). Decoding from posterior
651 electrodes was similar to the whole-brain results. Furthermore, a similar analysis using only frontal
652 electrodes showed later, more diffuse position decoding for visible stimuli, and insufficient evidence for
653 position decoding of imagined stimuli (see Supplementary Material S3), indicating that frontal signal or
654 artefacts did not drive decoding of spatial position for visible or imagined stimuli. Taken together, our
655 finding that spatial position generalised from the pattern estimator to the tracking task from relatively
656 early stages of processing indicates that it was actually a neural representation of spatial location that
657 was driving the classifier rather than any overt eye movements.

658

659 In conclusion, in this study we successfully showed that the position of predictable visible and imagined
660 stimuli can be modelled using patterns of neural activity extracted from independent visible stimuli. Our
661 findings suggest that internally generated spatial representations involve mid- and high-level perceptual
662 processes. The visible stimuli that we used relied on early retinotopic visual processes, yet we found no
663 evidence of generalisation from very early processes (90-120ms) to the imagined stimuli. The stimuli we
664 used were much simpler than the vivid, complex objects used in previous work, but we found similar
665 stages of processing generalised from perceptual to internally-generated representations (Dijkstra et al.,
666 2018), suggesting a general role of mid- and high-level perceptual processing in internally-generated
667 representations such as those implemented during imagery or occlusion. Our finding that neural
668 representations of spatial location were weaker and occurred earlier for imagined objects than for the
669 unpredictable objects indicates an important role of prediction in generating internal representations.
670 Together, our findings suggest that similar neural mechanisms underlie internal representations and
671 stimulus-driven mechanisms, but the timing of these processes is dependent on the predictability of the
672 stimulus.

673

674 **Acknowledgements**

675 This research was supported by an Australian Research Council Discovery Early Career Research Award
676 (DE200101159) to A.K.R. and Australian Research Council Discovery Projects (DP160101300 and
677 DP200101787) to T.A.C. The authors acknowledge the Sydney Informatics Hub and the University of
678 Sydney's high performance computing cluster Artemis for providing the high performance computing
679 resources that contributed to these research results. We thank Alexander Sulfaro for insightful
680 discussions about the study.

681

682 **Additional information**

683 All data, code, and Supplementary Material can be found on the Open Science Framework:

684 <https://osf.io/8v47t/>.

685 **References**

686 Albers, A.M., Kok, P., Toni, I., Dijkerman, H.C., de Lange, F.P., 2013. Shared representations for
687 working memory and mental imagery in early visual cortex. *Curr. Biol.* 23, 1427–1431.
688 <https://doi.org/10.1016/j.cub.2013.05.065>

689 Blom, T., Feuerriegel, D., Johnson, P., Bode, S., Hogendoorn, H., 2020. Predictions drive neural
690 representations of visual events ahead of incoming sensory information. *Proc. Natl. Acad. Sci.*
691 117, 7510–7515. <https://doi.org/10.1073/pnas.1917777117>

692 Brainard, D.H., 1997. The psychophysics toolbox. *Spat. Vis.* 10, 433–436.

693 Breedlove, J.L., St-Yves, G., Olman, C.A., Naselaris, T., 2020. Generative Feedback Explains Distinct
694 Brain Activity Codes for Seen and Mental Images. *Curr. Biol.*
695 <https://doi.org/10.1016/j.cub.2020.04.014>

696 Brouwer, G.J., Heeger, D.J., 2009. Decoding and Reconstructing Color from Responses in Human Visual
697 Cortex. *J. Neurosci.* 29, 13992–14003. <https://doi.org/10.1523/JNEUROSCI.3577-09.2009>

698 Carlson, T.A., Hogendoorn, H., Kanai, R., Mesik, J., Turrey, J., 2011. High temporal resolution decoding
699 of object position and category. *J. Vis.* 11, 9–9. <https://doi.org/10.1167/11.10.9>

700 Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG
701 dynamics including independent component analysis. *J. Neurosci. Methods* 134, 9–21.
702 <https://doi.org/10.1016/j.jneumeth.2003.10.009>

703 Dentico, D., Cheung, B.L., Chang, J.-Y., Guokas, J., Boly, M., Tononi, G., Van Veen, B., 2014. Reversal
704 of cortical information flow during visual imagery as compared to visual perception. *NeuroImage*
705 100, 237–243. <https://doi.org/10.1016/j.neuroimage.2014.05.081>

706 Di Russo, F., Martinez, A., Hillyard, S.A., 2003. Source analysis of event-related cortical activity during
707 visuo-spatial attention. *Cereb. Cortex* 13, 486–499.

708 Dienes, Z., 2011. Bayesian Versus Orthodox Statistics: Which Side Are You On? *Perspect. Psychol. Sci.*
709 6, 274–290. <https://doi.org/10.1177/1745691611406920>

710 Dijkstra, N., Ambrogioni, L., Gerven, M.A.J. van, 2019. Neural dynamics of perceptual inference and its
711 reversal during imagery. *bioRxiv* 781294. <https://doi.org/10.1101/781294>

712 Dijkstra, N., Mostert, P., de Lange, F.P., Bosch, S., van Gerven, M.A.J., 2018. Differential temporal
713 dynamics during visual imagery and perception. *eLife* 7, 1–16.
714 <https://doi.org/10.7554/eLife.33904.001>

715 Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M.A.J., Friston, K., 2017. Distinct Top-down and
716 Bottom-up Brain Connectivity During Visual Perception and Imagery. *Sci. Rep.* 7.
717 <https://doi.org/10.1038/s41598-017-05888-8>

718 Fischer, B., Ramsperger, E., 1984. Human express saccades: extremely short reaction times of goal
719 directed eye movements. *Exp. Brain Res.* 57. <https://doi.org/10.1007/BF00231145>

720 Foster, J.J., Sutterer, D.W., Serences, J.T., Vogel, E.K., Awh, E., 2016. The topography of alpha-band
721 activity tracks the content of spatial working memory. *J. Neurophysiol.* 115, 168–177.
722 <https://doi.org/10.1152/jn.00860.2015>

723 Garcia, J.O., Srinivasan, R., Serences, J.T., 2013. Near-real-time feature-selective modulations in human
724 cortex. *Curr. Biol. CB* 23, 515–522. <https://doi.org/10.1016/j.cub.2013.02.013>

725 Goddard, E., Carlson, T.A., Woolgar, A., 2019. Spatial and feature-selective attention have qualitatively
726 different effects on population-level tuning. *bioRxiv* 530352. <https://doi.org/10.1101/530352>

727 Grootswagers, T., Robinson, A.K., Carlson, T.A., 2019. The representational dynamics of visual objects
728 in rapid serial visual processing streams. *NeuroImage* 188, 668–679.
729 <https://doi.org/10.1016/j.neuroimage.2018.12.046>

730 Grootswagers, T., Wardle, S.G., Carlson, T.A., 2017. Decoding Dynamic Brain Patterns from Evoked
731 Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging
732 Data. *J. Cogn. Neurosci.* 29, 677–697. https://doi.org/10.1162/jocn_a_01068

733 Hagler, D.J., Halgren, E., Martinez, A., Huang, M., Hillyard, S.A., Dale, A.M., 2009. Source estimates
734 for MEG/EEG visual evoked responses constrained by multiple, retinotopically-mapped stimulus
735 locations. *Hum. Brain Mapp.* 30, 1290–1309. <https://doi.org/10.1002/hbm.20597>

736 Hebart, M.N., Baker, C.I., 2017. Deconstructing multivariate decoding for the study of brain function.
737 *NeuroImage* 1–15. <https://doi.org/10.1016/j.neuroimage.2017.08.005>

738 Hogendoorn, H., Burkitt, A.N., 2018. Predictive coding of visual object position ahead of moving objects
739 revealed by time-resolved EEG decoding. *NeuroImage* 171, 55–61.
740 <https://doi.org/10.1016/j.neuroimage.2017.12.063>

741 Intriligator, J., Cavanagh, P., 2001. The spatial resolution of visual attention. *Cognit. Psychol.* 43, 171–
742 216. <https://doi.org/10.1006/cogp.2001.0755>

743 Ishai, A., 2002. Visual Imagery of Famous Faces: Effects of Memory and Attention Revealed by fMRI.
744 *NeuroImage* 17, 1729–1741. <https://doi.org/10.1006/nimg.2002.1330>

745 Jeffreys, H., 1961. *Theory of probability*. Oxford University Press.

746 Kass, R.E., Raftery, A.E., 1995. Bayes factors. *J. Am. Stat. Assoc.* 90, 773–795.

747 King, J.R., Dehaene, S., 2014. Characterizing the dynamics of mental representations: The temporal
748 generalization method. *Trends Cogn. Sci.* 18, 203–210. <https://doi.org/10.1016/j.tics.2014.01.002>

749 Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., others, 2007. What's new in
750 Psychtoolbox-3. *Perception* 36, 1.

751 Kosslyn, S.M., Alpert, N.M., Thompson, W.L., Maljkovic, V., Weise, S.B., Chabris, C.F., Hamilton,
752 S.E., Rauch, S.L., Buonanno, F.S., 1993. Visual Mental Imagery Activates Topographically
753 Organized Visual Cortex: PET Investigations. *J. Cogn. Neurosci.* 5, 263–287.
754 <https://doi.org/10.1162/jocn.1993.5.3.263>

755 Kwon, O.-S., Tadin, D., Knill, D.C., 2015. Unifying account of visual motion and position perception.
756 Proc. Natl. Acad. Sci. 112, 8142–8147. <https://doi.org/10.1073/pnas.1500361112>

757 Le Bihan, D., Turner, R., Zeffiro, T.A., Cuénod, C.A., Jezzard, P., Bonnerot, V., 1993. Activation of
758 human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl.
759 Acad. Sci. U. S. A. 90, 11802–11805.

760 Lee, S.H., Kravitz, D.J., Baker, C.I., 2012. Disentangling visual imagery and perception of real-world
761 objects. NeuroImage 59, 4064–4073. <https://doi.org/10.1016/j.neuroimage.2011.10.055>

762 Lins, O.G., Picton, T.W., Berg, P., Scherg, M., 1993. Ocular artifacts in EEG and event-related potentials
763 I: Scalp topography. Brain Topogr. 6, 51–63. <https://doi.org/10.1007/BF01234127>

764 Luck, S.J., 2005. An Introduction to the Event-Related Potential Technique. The MIT Press, Cambridge,
765 Massachusetts.

766 Mangun, G.R., 1995. Neural mechanisms of visual selective attention. Psychophysiology 32, 4–18.
767 <https://doi.org/10.1111/j.1469-8986.1995.tb03400.x>

768 Mechelli, A., 2004. Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and
769 Imagery. Cereb. Cortex 14, 1256–1265. <https://doi.org/10.1093/cercor/bhh087>

770 Nanay, B., 2010. Perception and imagination: amodal perception as mental imagery. Philos. Stud. 150,
771 239–254. <https://doi.org/10.1007/s11098-009-9407-5>

772 Oostenveld, R., Praamstra, P., 2001. The five percent electrode system for high-resolution EEG and ERP
773 measurements. Clin. Neurophysiol. 112, 713–719. [https://doi.org/10.1016/S1388-2457\(00\)00527-7](https://doi.org/10.1016/S1388-2457(00)00527-7)

775 Oosterhof, N.N., Connolly, A.C., Haxby, J.V., 2016. CoSMoMVPA: Multi-Modal Multivariate Pattern
776 Analysis of Neuroimaging Data in Matlab/GNU Octave. Front. Neuroinformatics 10.
777 <https://doi.org/10.3389/fninf.2016.00027>

778 Pearson, J., 2019. The human imagination: the cognitive neuroscience of visual mental imagery. Nat.
779 Rev. Neurosci. <https://doi.org/10.1038/s41583-019-0202-9>

780 Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: Transforming numbers into
781 movies. Spat. Vis. 10, 437–442.

782 Posner, M.I., 1980. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25.
783 <https://doi.org/10.1080/00335558008248231>

784 Quax, S.C., Dijkstra, N., van Staveren, M.J., Bosch, S.E., van Gerven, M.A.J., 2019. Eye movements
785 explain decodability during perception and cued attention in MEG. NeuroImage 195, 444–453.
786 <https://doi.org/10.1016/j.neuroimage.2019.03.069>

787 Reddy, L., Tsuchiya, N., Serre, T., 2010. Reading the mind's eye: Decoding category information during
788 mental imagery. NeuroImage 50, 818–825. <https://doi.org/10.1016/j.neuroimage.2009.11.084>

789 Robinson, A.K., Grootswagers, T., Carlson, T.A., 2019. The influence of image masking on object
790 representations during rapid serial visual presentation. *bioRxiv* 515619.
791 <https://doi.org/10.1101/515619>

792 Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G., 2009. Bayesian t tests for accepting and
793 rejecting the null hypothesis. *Psychon. Bull. Rev.* 16, 225–237.

794 Scolari, M., Byers, A., Serences, J.T., 2012. Optimal deployment of attentional gain during fine
795 discriminations. *J. Neurosci. Off. J. Soc. Neurosci.* 32, 7723–7733.
796 <https://doi.org/10.1523/JNEUROSCI.5558-11.2012>

797 Smout, C.A., Tang, M.F., Garrido, M.I., Mattingley, J.B., 2019. Attention promotes the neural encoding
798 of prediction errors. *PLOS Biol.* 17, e2006812. <https://doi.org/10.1371/journal.pbio.2006812>

799 Sprague, T.C., Serences, J.T., 2015. Using Human Neuroimaging to Examine Top-down Modulation of
800 Visual Perception, in: Forstmann, B.U., Wagenmakers, E.-J. (Eds.), *An Introduction to Model-
801 Based Cognitive Neuroscience*. Springer, New York, NY, pp. 245–274.
802 https://doi.org/10.1007/978-1-4939-2236-9_12

803 Sprague, T.C., Serences, J.T., 2013. Attention modulates spatial priority maps in the human occipital,
804 parietal and frontal cortices. *Nat. Neurosci.* 16, 1879–1887. <https://doi.org/10.1038/nn.3574>

805 Tang, M.F., Ford, L., Arabzadeh, E., Enns, J.T., Visser, T.A.W., Mattingley, J.B., 2020. Neural dynamics
806 of the attentional blink revealed by encoding orientation selectivity during rapid visual
807 presentation. *Nat. Commun.* 11, 434. <https://doi.org/10.1038/s41467-019-14107-z>

808 Tang, M.F., Smout, C.A., Arabzadeh, E., Mattingley, J.B., 2018. Prediction Error and Repetition
809 Suppression Have Distinct Effects on Neural Representations of Visual Information. *bioRxiv*
810 213710–213710. <https://doi.org/10.1101/213710>

811 Tootell, R.B., Hadjikhani, N.K., Vanduffel, W., Liu, a K., Mendola, J.D., Sereno, M.I., Dale, a M.,
812 1998. Functional analysis of primary visual cortex (V1) in humans. *Proc. Natl. Acad. Sci. U. S. A.*
813 95, 811–817. <https://doi.org/10.1073/pnas.95.3.811>

814 Wagenmakers, E.-J., 2007. A practical solution to the pervasive problems of p values. *Psychon. Bull.
815 Rev.* 14, 779–804. <https://doi.org/10.3758/BF03194105>

816 Wetzels, R., Matzke, D., Lee, M.D., Rouder, J.N., Iverson, G.J., Wagenmakers, E.-J., 2011. Statistical
817 Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests. *Perspect.
818 Psychol. Sci.* 6, 291–298. <https://doi.org/10.1177/1745691611406923>

819 Wetzels, R., Wagenmakers, E.-J., 2012. A default Bayesian hypothesis test for correlations and partial
820 correlations. *Psychon. Bull. Rev.* 19, 1057–1064. <https://doi.org/10.3758/s13423-012-0295-x>

821 Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V., 2000. Anticipatory biasing of visuospatial attention
822 indexed by retinotopically specific alpha-band electroencephalography increases over occipital
823 cortex. *J. Neurosci. Off. J. Soc. Neurosci.* 20, RC63.

824 Xie, S., Kaiser, D., Cichy, R.M., 2020. Visual Imagery and Perception Share Neural Representations in
825 the Alpha Frequency Band. *Curr. Biol.* 0. <https://doi.org/10.1016/j.cub.2020.04.074>

826 Zellner, A., Siow, A., 1980. Posterior odds ratios for selected regression hypotheses, in: Bernardo, J.M.,
827 DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (Eds.), *Bayesian Statistics: Proceedings of the First*
828 *InternationalMeeting*. University of Valencia Press, Valencia, pp. 585–603.

829