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Abstract 10 

Humans can covertly track the position of an object, even if the object is temporarily occluded. What are 11 

the neural mechanisms underlying our capacity to track moving objects when there is no physical stimulus 12 

for the brain to track? One possibility is that the brain “fills-in” information about imagined objects using 13 

internally generated representations similar to those generated by feed-forward perceptual mechanisms. 14 

Alternatively, the brain might deploy a higher order mechanism, for example using an object tracking 15 

model that integrates visual signals and motion dynamics (Kwon et al., 2015). In the present study, we 16 

used electroencephalography (EEG) and time-resolved multivariate pattern analyses to investigate the 17 

spatial processing of visible and imagined objects. Participants tracked an object that moved in discrete 18 

steps around fixation, occupying six consecutive locations. They were asked to imagine that the object 19 

continued on the same trajectory after it disappeared and move their attention to the corresponding 20 

positions. Time-resolved decoding of EEG data revealed that the location of the visible stimuli could be 21 

decoded shortly after image onset, consistent with early retinotopic visual processes. For processing of 22 

unseen/imagined positions, the patterns of neural activity resembled stimulus-driven mid-level visual 23 

processes, but were detected earlier than perceptual mechanisms, implicating an anticipatory and more 24 

variable tracking mechanism. Encoding models revealed that spatial representations were much weaker 25 

for imagined than visible stimuli. Monitoring the position of imagined objects thus utilises similar 26 

perceptual and attentional processes as monitoring objects that are actually present, but with different 27 

temporal dynamics. These results indicate that internally generated representations rely on top-down 28 

processes, and their timing is influenced by the predictability of the stimulus. All data and analysis code 29 

for this study are available at https://osf.io/8v47t/.   30 
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Introduction 31 

Internally-generated representations of the world, as opposed to stimulus-driven representations, are 32 

important for day-to-day tasks such as constructing a mental map to give a stranger directions, 33 

remembering where you last saw a lost item, or tracking the location of a car that becomes occluded by 34 

another vehicle. In these cases, there is little or no relevant perceptual input, yet the brain successfully 35 

constructs a picture of relevant visual features such as object form and spatial position. Internally-36 

generated representations have been studied with tasks involving imagery, mental rotation, and 37 

perception of occluded objects. Such tasks seem to involve different cognitive strategies, yet their neural 38 

mechanisms have some similarities. It is clear that internally-generated representations rely on similar 39 

brain regions to stimulus-driven representations (Lee et al., 2012; Reddy et al., 2010) but they appear to 40 

have different temporal dynamics (Dijkstra et al., 2018), raising the question of how exactly these internal 41 

representations are formed. 42 

 43 

Top-down processing appears to play an important role in generating internally representations. Current 44 

theories of mental imagery are based on similarities between perception and imagery, with a greater 45 

focus on bottom-up processing in perception and top-down processing in imagery (for review, see 46 

Pearson, 2019). Neuroimaging work has shown increases in brain activation within early visual cortical 47 

regions when participants engage in imagery, in a similar way to viewing the same stimuli (Kosslyn et al., 48 

1993; Le Bihan et al., 1993), but there is more perception-imagery overlap in higher level brain regions 49 

such as ventral temporal cortex (Lee et al., 2012; Reddy et al., 2010). Imagery involves greater flow of 50 

information from fronto-parietal to occipital regions than perception, indicating that top-down or 51 

feedback-like processes mediate internally generated representations (Dentico et al., 2014; Dijkstra et al., 52 

2017; Mechelli, 2004). During imagery, neural activation within the ventral stream is consistent with 53 

generative feedback models of information flow from higher-level to low-level visual regions (Breedlove 54 

et al., 2020). Consistent with this account, recent work using magnetoencephalography and time-resolved 55 

decoding showed that imagery of faces and houses involves similar patterns of activation as viewing those 56 

stimuli, but with different temporal dynamics (Dijkstra et al., 2018). In the Dijkstra et al. (2018) study, 57 

imagery-related processing was delayed and more diffuse than perception, which showed multiple 58 

distinct processing stages. A follow-up study suggested that the order of perceptual processes is reversed 59 

in imagery (Dijkstra et al., 2019). Together, these results suggest that imagery uses at least some of the 60 

same mechanisms as perception but is initiated in higher-level brain regions rather than being driven by 61 

perceptual input. 62 

 63 
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Another mechanism originating in higher-level brain regions that might be intrinsically linked to internal 64 

representations is spatial attention. Directing attention to a location enhances processing of stimuli that 65 

appear there (Posner, 1980). Reduced amplitude alpha-band (~10Hz) oscillations in visual cortex have 66 

been linked to covertly attending to a specific region in space (Worden et al., 2000). Additionally, time-67 

resolved decoding has found that attended locations could be decoded from the neural signal even before 68 

a stimulus appeared (Goddard et al., 2019). It follows that spatial imagery tasks that require internal 69 

representations of objects with specific positions or orientations, such as in occlusion or mental rotation, 70 

might also inherently involve spatial attention. Indeed, alpha-band activity has been found to track spatial 71 

locations held in working memory (Foster et al., 2016). Interestingly, a recent study found evidence that 72 

imagery and perception share neural processes in the alpha-band frequency linked to high-level visual 73 

processing, using a task that did not involve an explicit spatial component (Xie et al., 2020). Imagery and 74 

spatial attention therefore seem to share common features; they both appear to rely on top-down 75 

processing, with one consequence that perception seems to have higher spatial resolution than both 76 

spatial attention (Intriligator and Cavanagh, 2001) and imagery (Breedlove et al., 2020). It is very difficult 77 

to untangle the contributions of perceptual processes and spatial attention to internal representations. It 78 

seems likely that imagery involves mechanisms related to perception and attention, relying on top-down 79 

processing from high-level brain regions.  80 

 81 

One aspect that is likely to affect the top-down generation of an internal representation is how it is 82 

prompted and the ability to predict its features in advance, for example when objects become occluded. 83 

The processes underlying the representation of occluded objects may be closely related to those in 84 

conventional imagery tasks (Nanay, 2010). However, there are some important differences between 85 

imagery and occlusion. Imagery can be prompted from short- or long-term memory, which involve 86 

different brain regions (Ishai, 2002). Mental imagery can be considered to encompass situations in which 87 

there is a visual percept that is not produced via current sensation. In this view, representations held in 88 

working memory can therefore involve mental imagery; indeed, percepts in working memory resemble 89 

those arising from mental rotation (Albers et al., 2013). In conditions of occlusion, as well as in the case 90 

of visual working memory, there is usually some sensory support, such as from a fragment of the object 91 

not occluded or full view of the object immediately before occlusion. One possibility is that internally 92 

generated representations utilise the same brain networks as perceptual representations, but the 93 

temporal dynamics vary with the ability to predict and anticipate details of the stimulus to be generated. 94 

 95 
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Tracking the position of a predictably moving object is a common task that may share some top-down 96 

processes with static imagery tasks. In particular, prediction is likely to play an important role in both 97 

imagery and visual tracking. The ability to predict the movement of a stimulus influences perceptual 98 

processing during visual tracking (Blom et al., 2020; Hogendoorn and Burkitt, 2018). Hogendoorn & Burkitt 99 

(2018) measured EEG from participants who viewed an apparent motion stimulus that was predictable or 100 

unpredictable in its motion trajectory. The position-specific representations occurring 80-90ms after 101 

stimulus onset were unaffected by motion predictability, but a later stage of processing (typically 140-102 

150ms after a stimulus is presented) occurred earlier for predictable relative to random sequences by 103 

approximately 16ms (Hogendoorn and Burkitt, 2018). Predictability therefore has a marked effect on the 104 

temporal dynamics of spatial representations for visible stimuli. For an object appearing in an 105 

unpredictable location, the resulting position representation must be a combination of the internal 106 

representation of the expected location and the stimulus-driven response to the actual object location 107 

(Blom et al., 2020). Disentangling a stimulus prediction from a stimulus-driven response is an important 108 

next step in understanding how and when internal representations are formed. Anticipatory mechanisms 109 

are likely to influence internally generated spatial representations, but might interact with other effects, 110 

for example the delayed processes observed during imagery (Dijkstra et al., 2018).  111 

 112 

In the current study, to understand the nature of internal representations in the brain, we investigated 113 

the neural processes underlying visual tracking for visible and imagined objects. Participants covertly 114 

tracked the position of a simple moving stimulus and kept tracking its trajectory after it disappeared. Using 115 

spatial imagery allowed us to assess the temporal dynamics of internal representations during object 116 

tracking in the absence of a stimulus-driven response. EEG and time-resolved multivariate pattern analysis 117 

were used to assess the position-specific information contained within the neural signal during visible and 118 

imagined stimulus presentations. We successfully decoded the position of the stimuli from all phases of 119 

the task. Our results show that the visible and imagined stimuli evoked the same neural response patterns, 120 

but with very different temporal dynamics. Further, multivariate encoding models revealed that the 121 

spatial representations of imagined stimuli were much weaker than those of visual stimuli. These findings 122 

suggest that overlapping mid- and high-level visual processes underlie perceptual and internally 123 

generated representations of spatial location, and that these are pre-activated in anticipation of a 124 

stimulus. 125 

 126 

Methods 127 
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All stimuli, data and analysis code are available at https://osf.io/8v47t/. The experiment consisted of two 128 

types of sequences: a pattern estimator and the experimental task. In the pattern estimator sequences, 129 

the order of the stimuli was unpredictable, whereas in the experimental task the order was predictable. 130 

The pattern estimator sequences were used to obtain position-specific EEG signals that were unlikely to 131 

be affected by eye-movements, and were subsequently used to detect position signals in the 132 

experimental task.  133 

 134 

Participants 135 

Participants were 20 adults recruited from the University of Sydney (12 females; age range 18-52 years) 136 

in return for payment or course credit. The study was approved by the University of Sydney ethics 137 

committee and informed consent was obtained from all participants. Four participants were excluded 138 

from analyses due to excessive eye movements during the pattern estimator sequences.  139 

 140 

Stimuli and design 141 

While participants maintained fixation in the centre of the monitor, a stimulus appeared in six distinct 142 

positions 4 degrees of visual angle from fixation. The stimulus positions were 0°, 60°, 120°, 180°, 240° 143 

and 300° relative to fixation. The stimulus was a black circle with a diameter of 3 degrees of visual angle. 144 

Six unfilled circles acted as placeholders, marking all possible positions throughout the trial. Every stimulus 145 

presentation was accompanied by a 1000 Hz pure tone presented for 100 ms via headphones. All stimuli 146 

were presented using Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in MATLAB. In total, 147 

there were 8 blocks of trials, each of which contained two pattern estimator sequences and 36 148 

experimental task sequences. 149 

 150 

Pattern estimator 151 

The pattern estimator sequences were designed to extract stimulus-driven position-specific neural 152 

patterns from the EEG signal. Participants viewed 16 pattern estimator sequences (2 per block), each of 153 

which consisted of 10 repetitions of the 6 stimulus positions (Figure 1a). The order of stimuli was 154 

randomised to ensure that for a given stimulus position, the preceding and following stimuli would not 155 

be predictive of that position; for example, comparing the neural patterns evoked by positions 1 and 2 156 

could not be contaminated by preceding and following stimuli because they could both be preceded and 157 

followed by all six positions.  Each stimulus was shown for 100ms and was followed by an inter-stimulus 158 

interval of 200ms. Onset of the stimulus was accompanied by a 100ms tone. Participants were instructed 159 

to passively view the stimuli without moving their eyes from the fixation cross in the centre of the screen. 160 
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 161 

The stimuli were presented in unpredictable patterns so there was no regularity in the positions of the 162 

previous or following stimuli to contribute to the neural patterns extracted for each position. Additionally, 163 

the random sequences ensured that any eye movements would be irregular and thus unlikely to 164 

contribute to the extracted neural signal. Previous work has shown that even the fastest saccades typically 165 

take at least 100ms to initiate (Fischer and Ramsperger, 1984). Furthermore, eye movements do not 166 

appear to affect decoding of magnetoencephalography data until 200ms after a lateralised stimulus is 167 

presented (Quax et al., 2019). Our 100ms stimulus duration was therefore unlikely to generate consistent 168 

eye movements that would affect the early, retinotopic EEG signal of stimulus position. 169 

 170 

To assess whether participants complied with the fixation instruction, we assessed the EEG signal from 171 

electrodes AF7 and AF8 (located near the left and right eye, respectively) as a proxy for electrooculogram 172 

measurements. We calculated the standard deviation of the AF7 and AF8 signals across each of the 16 173 

sequences and then averaged the deviation for the two electrodes. If a participant’s average deviation 174 

across the 16 sequences exceeded 50μV, that individual was considered to be moving their eyes or 175 

blinking too often, resulting in poor signal. An amplitude threshold of 100 μV is commonly used to 176 

designate gross artefacts in EEG signal (Luck, 2005), so we adopted an arbitrary standard deviation 177 

threshold of 50 μV (50% of the typical amplitude threshold) to indicate that there were too many artefacts 178 

across the entire pattern estimator sequences. Four participants exceeded this standard deviation 179 

threshold (M = 72.72μV, range = 63.93-82.70μV) and were excluded from all analyses. For each of the 180 

remaining 16 participants, the median deviation was well below this threshold (M = 25.92μV, SD = 5.64μV, 181 

range = 16.06-37.62μV). Thus, the four excluded participants had far more signal artefacts (probably 182 

arising from eye movements) than the other participants.  183 

 184 
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 185 
Figure 1. Stimuli and design. A) Pattern estimator. Participants passively viewed rapid sequences in which a black circle stimulus 186 
appeared in six locations in random order. A tone accompanied every stimulus onset. B) Tracking task. The stimulus was 187 
presented in different locations in predictable sequences. After 4-6 visible locations, participants had to track the location of 188 
the “imagined” stimulus by imagining the continuation of the sequence. A tone accompanied every stimulus onset. During the 189 
4-6 “imagined” positions, the auditory stimulus continued at the same rate, but only the six placeholder locations were shown. 190 
At the end of the sequence, a probe appeared, and participants had to respond if it was in the expected position or whether it 191 
was trailing or leading the sequence. This example shows a clockwise sequence with trailing probe. Red arrows (not shown in 192 
experiment) designate the expected position of the imagined stimulus. 193 

 194 

Tracking task 195 

For the experimental task, participants viewed sequences consisting of 4-6 visible stimuli and 4-6 196 

“imagined” presentations simulating occluded stimuli (Figure 1b). The positions of the visible stimuli were 197 

predictable, presented in clockwise or counter-clockwise sequences. Participants were asked to covertly 198 

track the position of the stimulus, and to continue imagining the sequence of positions when the stimulus 199 

was no longer visible. At the end of each sequence, there was a 1000 ms blank screen followed by a probe 200 

stimulus that was presented in one of the 6 locations. Participants categorised this probe as either (1) 201 

trailing: one position behind in the sequence, (2) expected: the correct location, or (3) leading: one 202 

position ahead in the sequence. Participants responded using the Z, X or C keys on a keyboard, 203 

respectively. Each response was equally likely to be correct, so chance performance was 33.33%. 204 

 205 

EEG recordings and preprocessing 206 
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EEG data were continuously recorded from 64 electrodes arranged in the international 10–10 system for 207 

electrode placement (Oostenveld and Praamstra, 2001) using a BrainVision ActiChamp system, digitized 208 

at a 1000-Hz sample rate. Scalp electrodes were referenced to Cz during recording. EEGLAB (Delorme and 209 

Makeig, 2004) was used to pre-process the data offline, where data were re-referenced to the average of 210 

all electrodes. We filtered the data using a Hamming windowed sinc FIR filter with highpass of 0.1Hz and 211 

lowpass of 100Hz and then downsampled to 250Hz as in our previous work (Grootswagers et al., 2019; 212 

Robinson et al., 2019). Epochs were created for each stimulus presentation ranging from -200 to 1000ms 213 

relative to stimulus onset. No further preprocessing steps were applied. Mean neural responses of these 214 

epochs show clear event-related potentials in response to the visual and auditory stimuli (see 215 

Supplementary Material S5). 216 

 217 

Decoding analyses 218 

An MVPA decoding pipeline (Grootswagers et al., 2017) was applied to the EEG epochs to investigate 219 

position representations of visible and imagined stimuli. All steps in the decoding analysis were 220 

implemented in CoSMoMVPA (Oosterhof et al., 2016). A leave-one-block-out (i.e., 8-fold) cross-validation 221 

procedure was used for all time-resolved decoding analyses. For each time point, a linear discriminant 222 

analysis (LDA) classifier was trained using the pattern estimator data to distinguish between all pairs of 223 

positions. LDA covariance was regularised by .01. Channel voltages from the 64 EEG channels were used 224 

as features for classification. Each classifier was trained with balanced numbers of trials per stimulus 225 

position from the pattern estimator sequences. The classifier was then tested separately on the visible 226 

and imagined positions in the experimental task. This provided decoding accuracy over time for each 227 

condition. At each time point, mean pairwise accuracy was tested against chance (50%). Importantly, 228 

because all analyses used the randomly-ordered pattern estimator data for training the classifier, above 229 

chance classification was very unlikely to arise from the predictable sequences or eye movements in the 230 

experimental task. For the tracking task, all sequences were included in the decoding analyses regardless 231 

of whether the participant correctly classified the position of the probe (i.e., correct and incorrect 232 

sequences were analysed). When only correct trials were included, the trends in the results remained the 233 

same (see Supplementary Material S1).   234 

 235 

To assess whether neighbouring stimulus positions evoked more similar neural responses, we also 236 

calculated decoding accuracy as a function of the distance between position pairs. Each position pair had 237 

a radial distance of 60°, 120° or 180° apart. There were six pairs with a distance of 60° (e.g., 0° vs 60° , 238 

60° vs 120°, 0° vs 300°), six pairs with a distance of 120° (e.g., 0° vs 120°, 60° vs 180°), and three pairs 239 
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with a distance of 180° (directly opposing each other, e.g., 0° vs 180°, 60° vs 240°). Decoding accuracy for 240 

each pair distance was calculated as the mean of all relevant pair decoding and compared to chance (50%). 241 

 242 

As a final set of decoding analyses, time generalisation (King and Dehaene, 2014) was used to assess 243 

whether the patterns of informative neural activity occurred at the same times for the pattern localiser 244 

and the visible and imagined stimuli on the tracking task. Classification was performed on all combinations 245 

of time points from the pattern estimator epochs and the visible or imagined epochs. Classifiers were 246 

trained on all trials from the pattern estimator sequences and tested on visible and imagined stimulus 247 

positions.  248 

 249 

Multivariate encoding analyses 250 

As exploratory analyses prompted by reviewers’ comments, we used forward encoding models to 251 

investigate the spatial selectivity of visible and imagined representations across time. Encoding models 252 

can be used with neuroimaging data to investigate neural encoding of many visual feature dimensions 253 

(Sprague and Serences, 2015). Such models have been applied to fMRI data to assess encoding of 254 

features such as colour (Brouwer and Heeger, 2009), orientation (Scolari et al., 2012) and position 255 

(Sprague and Serences, 2013). These methods have also been adapted for use with EEG using neural 256 

responses in the frequency (Foster et al., 2016; Garcia et al., 2013) and temporal domains (Smout et al., 257 

2019; Tang et al., 2020, 2018). Here, we used data from the pattern estimator task and multivariate 258 

linear regression to model the EEG responses per time point as a weighted sum of six position 259 

“channels”, each tuned to the experimental positions of 60°, 120°, 180°, 240°, 300°, 360°. These models 260 

were then used to estimate channel responses for visible and imagined positions on the tracking task, in 261 

order to assess the selectivity of the position representations. Analyses were adapted from encoding 262 

analyses of EEG data implemented in Smout, Tang, Garrido and Mattingley (2019) using scripts on the 263 

Open Science Framework (https://doi.org/10.17605/osf.io/a3pfq) and functions from 264 

https://github.com/Pim-Mostert/decoding-toolbox.  265 

 266 

Results from encoding analyses are activations (rather than predictions as in decoding), so encoding is 267 

more sensitive to noise and artefacts in the data. Additional data cleaning steps were applied to remove 268 

noise and artefacts. After epoching, we interpolated electrodes that exceeded 5 standard deviations from 269 

the mean kurtosis value. For one dataset, we interpolated one additional channel that remained 270 

extremely noisy by visual inspection. In total, six or fewer channels were interpolated per dataset (<10%, 271 

M = 3.5, SE = .56). To remove artefacts, any epochs that exceeded +/-100µV at any time across the epoch 272 
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were excluded from the analyses, and for every training/testing fold we randomly subsampled the 273 

remaining clean trials so there were equal numbers per position for the pattern estimator (total M = 274 

640.13, SE = 46.77) and equal numbers per position, condition (visible/imagined) and movement direction 275 

(clockwise/counter-clockwise) on the tracking task (total M = 1957.50, SE = 177.11). These steps ensured 276 

that the position encoding analyses were based on clean EEG data and could not be biased due to unequal 277 

trial numbers. 278 

 279 

For each participant and time point, encoding models were trained using four-fold cross-validation, each 280 

time training on 75% of the pattern estimator data and testing on 25% of the test data. This procedure 281 

was repeated 100 times with different trial subsampling every time (Smout et al., 2019). These analyses 282 

resulted in response profiles across the six stimulus positions (encoding “channels”; 0, 60, 120, 180, 240 283 

and 300°) for each trial. Channel responses were then realigned to positions -120 to 180°, where the 0° 284 

position channel reflected the correct stimulus position for the trial. We expected that the position 285 

representations on the tracking task might also include representations for the previous and next stimuli 286 

in the sequence, so we collated the data separately for clockwise and counterclockwise sequences and 287 

relabelled the position channels to reflect position relative to stimulus movement. Thus, channels +60, 288 

+120 and +180 degrees reflect positions of the next three stimuli in the sequence, and channels -60 and -289 

120 reflect positions of the preceding two stimuli. Mean position channel responses were then calculated 290 

per time point for the visible and imagined stimuli. 291 

 292 

To assess the position representations in the neural signal, exponentiated cosines were fit to the encoding 293 

response profiles across the six position channels for each participant, condition and time point using the 294 

equation: 295 

y(x) = A * ek(cos(x-µ)-1) + B 296 

which models the expected response profile for position angle x with a distribution with amplitude A 297 

(peak response amplitude) with k concentration (sharpness of the distribution, analogous to standard 298 

deviation) that clusters around µ (peak of the function) with baseline offset B. The fitting was 299 

implemented using lsqcurvefit in MATLAB with starting values A = 0.2 (range -5 to 10), k = 1 (0 to 10), µ 300 

= 0 (-60° to 60°) and B = 0 (-5 to 2). We analysed the amplitude A and peak µ over time for position 301 

representations of visible and imagined stimuli. 302 

 303 

Statistical inference 304 
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To assess the evidence that decoding performance or parameter values differed from chance, we 305 

calculated Bayes factors (Dienes, 2011; Jeffreys, 1961; Kass and Raftery, 1995; Rouder et al., 2009; 306 

Wagenmakers, 2007). A JZS prior (Rouder et al., 2009) was used with a scale factor of 0.707, meaning that 307 

for the alternative hypothesis of above-chance decoding, we expected to see 50% of parameter values 308 

falling within -.707 and .707 standard deviations from chance (Jeffreys, 1961; Rouder et al., 2009; Wetzels 309 

and Wagenmakers, 2012; Zellner and Siow, 1980). The Bayes factor (BF) indicates the probability of 310 

obtaining the group data given the alternative hypothesis relative to the probability of the data assuming 311 

the null hypothesis is true. We used thresholds of BF > 3 and BF > 10 as increasing evidence for the 312 

alternative hypothesis, and BF < 1/3 as evidence in favour of the null hypothesis (Jeffreys, 1961; Kass and 313 

Raftery, 1995; Wetzels et al., 2011). BFs that lie between those values indicate insufficient evidence to 314 

favour either of the two hypotheses. 315 

 316 

Results 317 

Behavioural results 318 

Participants performed well on the tracking task, with high mean accuracy for all probe positions (Fig 2A). 319 

Response time was calculated within participant as the mean correct response time per probe position. 320 

At the group level, response time was faster for the expected probe position relative to the unexpected 321 

probe positions (trailing or leading) (Fig 2B). These results indicate that on most trials participants knew 322 

where the probe was meant to appear, which required tracking the expected location of the object. 323 

Evidently, participants allocated their attention appropriately to the expected position of the stimulus 324 

during the imagined portion of the tracking task. 325 

 326 
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Figure 2. Behavioural results. A) Accuracy, and B) Response time on the tracking task as a function of final probe position. 327 
Individual participant data are plotted in grey, with group mean in navy. Error bars depict one standard error of the mean 328 
across participants (N = 16). 329 

 330 

Position decoding using the pattern estimator sequences 331 

The pattern estimator sequences were designed to extract position-specific neural patterns of activity 332 

from unpredictable visible stimuli. Time-resolved multivariate pattern analysis (MVPA) was applied to the 333 

EEG data from the pattern estimator, which revealed that stimulus position could be decoded above 334 

chance from approximately 68ms after stimulus onset and peaked at 150ms (Figure 3), consistent with 335 

initial retinotopic processing of position in early visual areas (Di Russo et al., 2003; Hagler et al., 2009). To 336 

assess how the physical distance between stimulus positions influenced the neural patterns of activity, 337 

we compared the pairwise decodability of position according to the relative angle between stimulus 338 

position pairs (i.e., angle of 60°, 120° or 180° between two stimulus positions). The greatest decoding 339 

performance was observed for larger angles between stimulus positions. 340 

 341 

 342 
Figure 3. Position decoding using pattern estimator sequences. Left plot shows group mean decoding and smoothed individual 343 
participant decoding for all pairs of positions, and right plot shows mean position decoding as a function of the angular distance 344 
between stimulus pairs. Shaded areas show standard error across participants (N = 16). Thresholded Bayes factors (BF) for 345 
above-chance decoding are displayed above the x-axes for every time point as an open or closed circle in one of four locations 346 
(see inset). 347 

 348 

Position decoding on the tracking task 349 

To assess the similarity in position representations for visible and imagined (simulated occluded) stimuli, 350 

the classifier was trained on data from the visible pattern estimator stimuli and tested on data from the 351 

tracking task for the visible and imagined stimuli. Crucially, position could be decoded for both visible and 352 

imagined stimuli, suggesting that similar neural processes underpin perceptual and internal 353 

representations of stimulus position. For visible stimuli, the pattern of decoding results echoed those of 354 

the pattern estimator, with decoding evident from approximately 76ms and peaking at 152ms, 355 
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presumably reflecting visual coding of position in ventral visual areas of the brain (Figure 4a, left). When 356 

decoding was split according to the distance between the pair of positions, results looked similar to the 357 

pattern estimator results (Figure 4A, right).  358 

 359 

A different pattern of results was observed for the imagined stimuli. Here, decoding was not above chance 360 

until approximately 152ms and consisted of a low, broad “peak” (Figure 4B). There was considerable 361 

variation in decoding accuracy across participants (Figure 4B, left; see also Supplementary Material S6). 362 

Although decoding accuracy was low, there was considerable evidence that accuracy was above chance 363 

(see Supplementary Material S2 for Bayes Factors in more detail). Reliable above chance cross-decoding 364 

from the visible pattern estimator stimuli to the imagined stimuli on the tracking task indicates that 365 

overlapping processes underlie stimulus-driven and internally-generated representations of spatial 366 

location. But this decoding of the internal representation of position was later and less accurate than 367 

position decoding for visible stimuli. Similar to the pattern estimator and visible decoding results, 368 

positions that were further apart were more decodable (Figure 4b, right). Notably, neighbouring positions 369 

(60° apart) showed little evidence of position decoding, suggesting that the representations of position 370 

were spatially diffuse for the imagined stimuli, unlike for the visible stimuli.  371 

 372 

 373 
Figure 4. Position decoding from object tracking task. A) Visible stimuli. B) Imagined stimuli. Left plots show group mean 374 
decoding and smoothed individual participant decoding for all pairs of positions, and right plots show mean position decoding 375 
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as a function of the angular distance between position pairs. Shaded areas show standard error across participants (N = 16). 376 
Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for every time point as an open or 377 
closed circle in one of four locations (see inset). 378 

 379 

The previous analyses were performed using electrodes covering the whole head, which meant that there 380 

was a possibility that non-neural artefacts such as eye movements might contribute to the classification 381 

results (Quax et al., 2019). Saccadic artefacts tend to be localised to frontal electrodes, close to the eyes 382 

(Lins et al., 1993). To assess if the EEG signal contributing to the position-specific neural information 383 

originated from posterior regions of the brain (e.g., occipital cortex), as expected, we conducted the same 384 

time-resolved decoding analyses using a subset of electrodes from the back half of the head. We used 28 385 

electrodes that were likely to pick up the largest signal from occipital, temporal and parietal areas (and 386 

were less likely to be contaminated with frontal or muscular activity). The electrodes were CPz, CP1, CP2, 387 

CP3, CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, O2, TP7, TP8, TP9 388 

and TP10. As can be seen in Figure 5, the same trend of results was seen using this subset of electrodes 389 

compared with the whole head analyses in Figure 4. Specifically, Bayes Factors revealed evidence that 390 

position of imagined stimuli was decodable approximately 136-244 ms, which is slightly earlier than the 391 

whole brain results. Decoding was also most evident for positions that were a distance of 120° or 180° 392 

apart (Figure 5b). Interestingly, imagery decoding was more prolonged for the whole-brain decoding than 393 

posterior analyses, which could reflect higher-order cognitive processing of stimulus position in more 394 

anterior regions of the brain, or increased power due to more features (electrodes) included in the whole 395 

brain analysis. Analyses restricted to frontal electrodes showed later, more diffuse coding for visible 396 

stimuli relative to the posterior analysis, and little evidence for position coding of imagined stimuli (see 397 

Supplementary Material S3). Thus, position-specific neural information for visible and imagined stimuli 398 

was evident specifically over posterior regions of the brain, consistent with visual cortex representing 399 

stimulus-driven and internal representations of spatial location. 400 

 401 
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 402 
Figure 5. Position decoding from object tracking task using only posterior electrodes. A) Visible stimuli. B) Imagined stimuli. 403 
Left plots show group mean decoding and smoothed individual participant decoding for all pairs of positions, and right plots 404 
show mean position decoding as a function of the angular distance between stimulus pairs. Shaded areas show standard error 405 
across participants (N = 16). Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for 406 
every time point as an open or closed circle in one of four locations (see inset). 407 

 408 

The results of the time-resolved analyses showed that position-specific neural patterns for visible stimuli 409 

generalised to imagined stimuli, but with different temporal dynamics. To assess the possibility that 410 

neural processes were more temporally variable for imagined than for visible stimuli, we performed whole 411 

brain (64-channel) time-generalisation analyses by training the classifier on all time points of the pattern 412 

estimator and testing on all time points from the tracking task. As expected, position could be decoded 413 

from both visible and imagined stimulus presentations, but with marked differences in their dynamics 414 

(Figure 6). For the visible stimuli, most of the above-chance decoding was symmetric on the diagonal, 415 

indicating that the position-specific processes occurred at approximately the same time for visible stimuli 416 

in the pattern localiser and the tracking task (Figure 6A, top), even though the inter-stimulus intervals for 417 

stimuli in the training and test sets were different. Interestingly, there was also some above-diagonal 418 

decoding indicating that some neural signals observed in the pattern localiser occurred substantially 419 

earlier in the tracking task, which may reflect prediction based on the previous stimuli. Also likely 420 

reflecting anticipation of the stimulus position, generalisation occurred for time points prior to onset of 421 

the visible stimulus in the tracking task. About 800-1000ms after the tracking stimulus was presented, 422 
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there is some evidence of below chance decoding, indicating a different stimulus position was 423 

systematically predicted. This is likely to reflect processing of the next stimulus in the tracking task, which 424 

was presented at 600ms on the plot (stim +1 vertical line).   425 

 426 

Time generalisation for the imagined stimulus position was not centred on the diagonal, reflecting 427 

different temporal dynamics for the predicted internal representations than for the stimulus-driven 428 

processing of the pattern estimator. Decoding generalisation was also much more diffuse and relied on 429 

processes approximately 120-750 ms after stimulus onset in the pattern estimator (Figure 6A, middle). 430 

Decoding again preceded the onset of the tone in the tracking task, reflecting an anticipation effect. There 431 

was also below chance decoding at later time points, indicating that the classifier was predicting a 432 

different stimulus position at times when the next stimulus would be processed. Comparison between 433 

visible and imagined position showed higher decoding for the imagined stimuli preceding the tone, but 434 

higher decoding for the visible stimuli after the stimulus and tone were presented (Figure 6A, bottom).  435 

 436 

The dynamics of the time generalisation results give insight into the processing underlying perceptual and 437 

imagined position representations. Using decoding models trained on the pattern estimator at 140-160ms 438 

(approximately the time of peak position decoding), we looked at decoding accuracy for each time point 439 

on the tracking task. It is clear that visible representations show stimulus-evoked position specific 440 

responses, with largest decoding at the same time period as the training times (Figure 6B). Imagined 441 

representations, however, show much more diffuse responses that ramp up earlier than those of visible 442 

stimuli, with imagined decoding highest before 0ms, the time of the tone. Interestingly, this plot 443 

resembled within-condition decoding results (i.e., training and testing on visible or imagined stimuli from 444 

the training task; see Supplementary Material S4).  445 

 446 

The time generalisation results show that position representations seem to emerge earlier for imagined 447 

than visible stimuli. For peak decoding times per participant (Figure 6C, left), visible position was most 448 

separable when training and testing approximately the same time points (about 150ms), whereas 449 

imagined position relied on later training than testing times, and showed much more variability across 450 

participants. To further assess peak decoding times, we bootstrapped the group 1000 times with 451 

replacement and calculated the times of peak generalisation to assess the distribution. Figure 6C (right) 452 

shows that visible decoding showed training and testing peaks at approximately 150ms with very little 453 

variation across the 1000 iterations. Imagined representations, by contrast, peaked after 300ms for 454 

training and 0ms for testing. Finally, assessing decoding accuracy by training-testing lag revealed that 455 
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imagined decoding was higher when training on later time points than testing times, whereas visible 456 

decoding was highest at approximately 0 ms offset (i.e., same training and testing times; Figure 6D). These 457 

results suggest that imagined representations rely on high level perceptual and cognitive processes that 458 

are implemented earlier in time. Overall, the time generalisation results suggest that during the imagined 459 

stimulus portion of the tracking task, which relied on internal representations of position, the neural 460 

dynamics were more anticipatory and variable than perceptual processes. 461 

 462 

 463 
Figure 6. Time generalisation results. A) Decoding stimulus position for visible stimuli and imagined stimuli. Left plots show 464 
decoding for visible, imagined and visible-imagined difference, and right plots show associated Bayes Factors. Decoding was 465 
performed by training on data from the pattern estimator sequences of visible stimuli and testing on the experimental trials, 466 
for all pairs of time points. B) Decoding accuracy using training times 140-160ms on the pattern estimator and testing all time 467 
points for visible and imagined stimuli. C) Peak decoding times for training and testing processes. Left plot shows peak decoding 468 
times per participant, and right plot shows distribution of peak times after bootstrapping the group 1000 times. D) Mean 469 
decoding accuracy for different training-testing time offsets. Highest decoding for visible stimuli occurred around 0ms offset, 470 
indicating processes occurred at the same time points for the pattern estimator and visible stimuli on the tracking task. In 471 
comparison, the highest decoding for imagined stimuli occurred earlier in the test set than the training set.  472 

 473 

Encoding analyses 474 
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We used forward encoding to assess the spatial representations in the neural signal for visible and 475 

imagined stimuli. Encoding models were trained on EEG data from the pattern estimator sequences and 476 

applied to the tracking task separately for each condition and time point. This exploratory analysis 477 

resulted in activations per condition for six encoding channels representing the experimental positions. 478 

Figure 7A depicts mean response profiles per condition, which show higher responses for the actual 479 

stimulus position (0°) relative to the other positions, indicating that visible and imagined position were 480 

encoded according to the same processes as the pattern estimator. Plots of the response profiles at 481 

representative time periods show position information emerges over time but appears to shift towards 482 

to next stimulus position in the sequence (denoted by 60°) at later time periods (Figure 7B). Fitting a 483 

model to the channel responses at each time point resulted in two relevant parameters of the spatial 484 

coding of the neural signal. The amplitude of the model fit, the peak response amplitude, emerged over 485 

time and was reliably above zero for both visible and imagined stimuli, although it emerged slightly later 486 

for imagined stimuli (Figure 7C, left). This plot resembled position decoding over time. Importantly, 487 

amplitude was reliably higher for visible than imagined position from approximately 100-276ms, 488 

indicating that the neural representations of position are stronger for physical rather than internally 489 

generated stimuli. Modelling of the response profiles also revealed for peak position (i.e., the centre of 490 

the model fit) there was some evidence of a shift away from the current stimulus position in the positive 491 

direction for both visible and imagined stimuli (Figure 7C, right). This positive shift was evident from about 492 

300ms, suggesting that the position representations at this time were more consistent with the upcoming 493 

stimulus position. Together, these encoding analyses complement the decoding results by showing that 494 

visible and imagined spatial position are encoded using stimulus-driven processes, and that imagined 495 

stimuli elicit considerably weaker spatial representations than visible stimuli. 496 

 497 
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 498 
Figure 7. Position response profiles for visible and imagined stimuli using encoding models trained on the random pattern 499 
estimator stimuli. A) Activations of each encoding position channel for visible and imagined stimuli, plotted as relationship to 500 
the presented stimulus position. For the visible and imagined conditions, there was higher activation for position channels 501 
closer to the correct position (0°), indicating that the neural representation of stimulus position was captured by the encoding 502 
model. B) Model fitting of channel responses for some representative time periods show the emergence of spatial information 503 
over time, with a shift towards the next stimulus position. C) Parameters of the model fits over time. Left: Response amplitude 504 
at each time point for visible and imagined stimuli. There was reliable spatial signal for both conditions, but the temporal 505 
dynamics varied. Right: Peak position for the model fit generally reflected a peak at 0 degrees for visible and imagined stimuli, 506 
although after 250ms there was some evidence of positive shifts towards the upcoming stimulus position. 507 

 508 

Discussion 509 

In this study, we assessed the neural underpinnings of internally-generated representations of spatial 510 

location. Participants viewed predictable sequences of a moving stimulus and imagined the sequence 511 

continuing when the stimulus disappeared. Time-resolved multivariate analyses revealed that patterns of 512 

activity associated with visual processing in random sequences were also associated with processing of 513 

visible and imagined spatial stimulus positions in the tracking task, but with different temporal dynamics. 514 

Specifically, the neural correlates of imagined position (i.e., internally-generated representations) were 515 

anticipatory and more temporally diffuse than those of visible position (i.e., sensory-driven 516 

representations). Taken together, this study provides evidence that internal representations of spatial 517 
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position rely on mechanisms of visual processing, but that these are applied with different temporal 518 

dynamics to actual perceptual processes. 519 

 520 

The results of this study suggest that similar perceptual and cognitive processes are implemented for 521 

processing position of visible and imagined (e.g., occluded) stimuli. This adds to previous neuroimaging 522 

work using high level objects by showing that internally-generated spatial representations appear to use 523 

the same visual perceptual processes as viewed stimuli (Dijkstra et al., 2018). What neural processes are 524 

responsible for this low-level spatial imagery? We found generalisation from the pattern estimator to the 525 

visible tracked stimuli began at approximately 76ms, but for imagined stimuli the generalisation did not 526 

occur until 120ms (Figure 6A). This suggests that internal spatial representations do not originate with 527 

early retinotopic processes such as that of the first stages of processing in V1, but are implemented by 528 

higher order processes potentially via feedback and recurrent processes. Above-chance generalisation for 529 

visible and imagined stimuli was maintained until approximately 750ms after the pattern estimator 530 

stimulus was presented, indicating that position-specific information represented throughout the visual 531 

hierarchy has some similarity for stimulus-driven and internally generated representations. It is important 532 

to note, however, that the time generalisation results did not show evidence of distinct, progressive 533 

stages of processing for the imagined representations. In contrast, the visible stimuli showed different 534 

clusters of above-chance decoding on the diagonal of the time-generalisation results, indicating that there 535 

were distinct stages of processing.  These results are similar to those observed in Dijkstra et al., (2018) 536 

during imagery of faces and houses. Recent work has suggested that imagery involves a flow of 537 

information from higher- to lower-level brain regions in succession through the ventral stream (Breedlove 538 

et al., 2020). We did not find any evidence of this reversal of perceptual processes in imagery; rather, our 539 

results suggest that internal representations activate different perceptual stages simultaneously. 540 

However, new analysis methods might yield more insight into the information flow through different brain 541 

regions during imagery (Dijkstra et al., 2019). 542 

 543 

For both visible and imagined stimuli, more distant stimulus positions could more easily be discriminated 544 

by the EEG signals. Decoding for neighbouring positions (60° apart) was generally much lower than 545 

decoding for positions that were further apart. This is consistent with the retinotopic organization of visual 546 

cortices (Tootell et al., 1998), where closer areas of space are represented in neighbouring regions of 547 

cortex, leading to more similar spatial patterns of activation that are measured on the scalp with EEG 548 

(Carlson et al., 2011). Time generalisation results also showed that neural patterns of activity from the 549 

pattern estimator sequences generalised to neighbouring positions in the visible condition, highlighting 550 
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the neural similarity for close spatial representations (see ~750ms in Figure 6B). Interestingly, however, 551 

decoding for the closest positions was particularly low for the imagined stimuli, indicating that internally 552 

generated representations of position are more spatially diffuse than perceptual representations. 553 

Multivariate encoding analyses verified that the neural representations of spatial position for both visible 554 

and imagined stimuli were encoded using stimulus-driven processes (modelled using data from the 555 

pattern estimator sequences), but that imagined representations of position were weaker than stimulus-556 

driven representations from 100-276 ms. Weaker spatial signal in imagery is consistent with 557 

representations originating in higher-level regions of the visual hierarchy, which have larger receptive 558 

fields (Breedlove et al., 2020). Together, these results suggest that there are common, retinotopic 559 

mechanisms for processing position of both visible and imagined stimuli, but with important differences 560 

in the origin of the representations leading to much greater precision for visible stimuli. 561 

 562 

A cognitive process that might contribute to the extracted position-specific signal in the current study is 563 

that of spatial attention. In our experimental task, participants were explicitly asked to track the position 564 

of the stimulus, and they performed well, suggesting they were directing their attention to the location 565 

of the stimulus. Spatial attention influences the amplitude of early EEG responses (for review, see 566 

Mangun, 1995), and MEG classification work has shown that spatial attention enhances object decoding 567 

at early stages of processing (Goddard et al., 2019). Top-down spatial attention also results in more diffuse 568 

spatial representations than stimulus processing (Intriligator and Cavanagh, 2001). Our decoding and 569 

encoding results were obtained from training on the pattern estimator, so our results are focused on 570 

processes common to the pattern estimator and the tracking task. In the pattern estimator, there was no 571 

explicit task and therefore no incentive to specifically attend to stimulus position. However, there was 572 

only one stimulus presented at a time and the saliency of the onsets were likely to attract attention, albeit 573 

in a different fashion to the cued positions in the experimental tracking task. As such, the pattern 574 

estimator and tracking task had different spatial attention demands, but that does not rule out spatial 575 

attention as a source of overlap between the two types of sequences. It is difficult to untangle perceptual 576 

and attentional mechanisms during imagery, and it is possible that internal spatial representations rely 577 

on processes that are common to perception and attention. The current results are consistent with 578 

previous work on imagery using paradigms that are unlikely to rely on spatial attention (Dijkstra et al., 579 

2018; Xie et al., 2020), so it seems likely that perceptual mechanisms are at least a considerable source of 580 

overlap for neural patterns on the random pattern estimator sequences and the imagined positions on 581 

the tracking task. Future work could attempt to disentangle the role of perceptual and attentional 582 
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processes in spatial imagery with a manipulation to reduce attention during the pattern estimator or using 583 

valid and invalid cues for spatial position. 584 

 585 

To investigate the neural processes underlying spatial imagery, this study focused on spatial 586 

representations that were common to two different types of sequences: the pattern estimator and the 587 

tracking task. All analyses were performed by obtaining patterns of neural activity associated with spatial 588 

position from the randomly ordered pattern estimator stimuli and assessing how these patterns are 589 

similar to the position representations of visible and imagined stimuli during the tracking task. Training 590 

encoding and decoding models on an independent task allowed us to draw conclusions about the nature 591 

of the position representations during tracking without the confound of prediction. Our results show that 592 

spatial imagery implements similar neural processes as viewing stimuli. However, it is possible that spatial 593 

imagery also contains different information to the pattern estimator. As an exploratory analysis, we 594 

investigated the temporal dynamics of position representations by decoding within condition (visible and 595 

imagined) on the tracking task (see Supplementary Material S4). This cross-validated decoding is 596 

somewhat problematic due to the predictable nature of the sequence, so decoding is above chance 597 

throughout the whole time period. However, the dynamics are still informative; specifically, within-598 

condition decoding revealed very similar dynamics to the original decoding analysis. Within-visible 599 

decoding had a peak at 150ms, resembling the time-resolved analyses from training the pattern estimator 600 

and testing the visible stimuli on the same time points (as in Figure 4A). Within-imagined decoding was 601 

highest around 0ms, resembling the time-generalisation results from training on mid- and high-level 602 

processes of the pattern estimator (e.g., Figure 6B). These results suggest that neural processes as 603 

measured in the pattern estimator do capture most of the relevant neural processes implemented during 604 

stimulus tracking for visible and imagined stimuli.  605 

 606 

Spatial imagery representations were evident using multivariate decoding and encoding analyses, but the 607 

magnitudes of the effects were very small. One likely contributing factor to the small effects is the 608 

temporal jitter in the neural representations evoked by imagery both within and across participants. Time-609 

locked analyses assess reliable patterns of neural activity occurring at the exact same time across trials. 610 

Imagery, as an internally-generated process, is likely to be much more temporally variable than 611 

perception, resulting in smaller, more diffuse time-locked neural signals. There is also the likelihood that 612 

different participants will use different strategies, resulting in variation from participant to participant. 613 

Temporal variability is a challenge in all research involving mental imagery. Indeed, in a face versus house 614 

imagery experiment, Dijkstra and colleagues (2018) found <60% accuracy for imagined decoding 615 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.03.02.974162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974162
http://creativecommons.org/licenses/by/4.0/


 23 

compared with nearly 90% for viewed stimuli. To minimise temporal variation in imagery in the current 616 

experiment, we used tones to guide participants in the timing of the task. Participants had to covertly 617 

track stimulus position on thousands of trials (>1400 visible + >1400 imagined per participant; see 618 

Supplementary Material S1 for details), and this large number of trials ensured that we had the power to 619 

capture the neural processes associated with spatial imagery representations, despite the temporal 620 

variation. Decoding accuracy was low, but accuracy is not an effect size (Hebart and Baker, 2017). Our 621 

analyses show there were reliable spatial imagery representations that shared neural patterns with 622 

stimulus-driven representations. Importantly, temporal jitter for imagery cannot explain the observed 623 

temporal dynamics for processing of imagined position (as seen in the time generalisation plots in Figure 624 

6), because jitter would predict only the x-axis of the time-generalisation plots being smeared relative to 625 

the visible condition. The observed imagery results appear to be diffuse in terms of the contributions of 626 

the pattern estimator (training; y-axis) processes, reflecting processing occurring at different times in 627 

visible and imagined parts of the task.  628 

 629 

One factor that we tried to control in this study was eye movements. Recent work has shown that even 630 

when participants were instructed to maintain central fixation, the spatial position of a peripheral 631 

stimulus could be decoded from eye movements, and the eye movements appeared to account for 632 

variance in the MEG signal from 200ms after the stimulus was presented (Quax et al., 2019). To reduce 633 

the likelihood of eye movements influencing our spatial representation results, one countermeasure we 634 

implemented was using independent sequences of randomly ordered visible stimuli (pattern estimator 635 

sequences) to extract position-specific patterns from the EEG signal and used these to generalise to the 636 

tracking task. Thus, only neural signals in common between the pattern estimator and the tracking task 637 

could result in above chance decoding. The position sequences in the pattern estimator (training set) were 638 

randomised, so any incidental eye movements were unlikely to consistently vary with position. The 639 

tracking task implemented both clockwise and counter-clockwise sequences, so if there were eye 640 

movements, across the whole experiment a given position would have two completely different eye 641 

movement patterns. Above-chance cross-decoding from the pattern estimator to the tracking task was 642 

therefore unlikely to be driven by eye movements. Second, all stimuli were presented briefly (100ms 643 

duration), and for a short 200ms inter-stimulus interval during the pattern estimator. This rapid 644 

presentation rate reduced the likelihood that participants would overtly move their eyes, as even the 645 

fastest saccades take at least 100ms to initiate (Fischer and Ramsperger, 1984). Third, we excluded 646 

participants that appeared to move their eyes excessively during the pattern estimator sequences, which 647 

were the sequences used for training the classifier. Finally, we conducted an additional analysis using only 648 
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posterior electrodes to validate that the neural patterns of activity informative for spatial position were 649 

consistent with processes within the visual system (e.g., from occipital cortex). Decoding from posterior 650 

electrodes was similar to the whole-brain results. Furthermore, a similar analysis using only frontal 651 

electrodes showed later, more diffuse position decoding for visible stimuli, and insufficient evidence for 652 

position decoding of imagined stimuli (see Supplementary Material S3), indicating that frontal signal or 653 

artefacts did not drive decoding of spatial position for visible or imagined stimuli. Taken together, our 654 

finding that spatial position generalised from the pattern estimator to the tracking task from relatively 655 

early stages of processing indicates that it was actually a neural representation of spatial location that 656 

was driving the classifier rather than any overt eye movements. 657 

 658 

In conclusion, in this study we successfully showed that the position of predictable visible and imagined 659 

stimuli can be modelled using patterns of neural activity extracted from independent visible stimuli. Our 660 

findings suggest that internally generated spatial representations involve mid- and high-level perceptual 661 

processes. The visible stimuli that we used relied on early retinotopic visual processes, yet we found no 662 

evidence of generalisation from very early processes (90-120ms) to the imagined stimuli. The stimuli we 663 

used were much simpler than the vivid, complex objects used in previous work, but we found similar 664 

stages of processing generalised from perceptual to internally-generated representations (Dijkstra et al., 665 

2018), suggesting a general role of mid- and high-level perceptual processing in internally-generated 666 

representations such as those implemented during imagery or occlusion. Our finding that neural 667 

representations of spatial location were weaker and occurred earlier for imagined objects than for the 668 

unpredictable objects indicates an important role of prediction in generating internal representations. 669 

Together, our findings suggest that similar neural mechanisms underlie internal representations and 670 

stimulus-driven mechanisms, but the timing of these processes is dependent on the predictability of the 671 

stimulus. 672 
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