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ABSTRACT 

Genetic association studies are frequently used to study the genetic basis of numerous human 
phenotypes. However, the rapid interrogation of how well a certain genomic region associates across 
traits as well as the interpretation of genetic associations is often complex and requires the integration 
of multiple sources of annotation, which involves advanced bioinformatic skills. We developed 
snpXplorer, an easy-to-use web-server application for exploring Single Nucleotide Polymorphisms 
(SNP) association statistics and to functionally annotate sets of SNPs. snpXplorer can superimpose 
association statistics from multiple studies, and displays regional information including SNP 
associations, structural variations, recombination rates, eQTL, linkage disequilibrium patterns, genes 
and gene-expressions per tissue. By overlaying multiple GWAS studies, snpXplorer can be used to 
compare levels of association across different traits, which may help the interpretation of variant 
consequences. Given a list of SNPs, snpXplorer can also be used to perform variant-to-gene mapping 
and gene-set enrichment analysis to identify molecular pathways that are overrepresented in the list of 
input SNPs. snpXplorer is freely available at https://snpxplorer.net. Source code, documentation, 
example files and tutorial videos are available within the Help section of snpXplorer and at 
https://github.com/TesiNicco/snpXplorer. 
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Key points: 

• snpXplorer shows GWAS summary statistics, regional information and helps deciphering 
GWAS outcomes 

• snpXplorer interactively compares association levels of a genomic region across phenotypes 
• snpXplorer performs variant-to-gene mapping and gene-set enrichment analysis 
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INTRODUCTION 1 

Genome-wide association studies (GWAS) and sequencing-based association studies are a powerful 2 
approach to investigate the genetic basis of complex human phenotypes and their heritability. 3 
Facilitated by the cost-effectiveness of both genotyping and sequencing methods and by established 4 
analysis guidelines, the number of genetic association studies has risen steeply in the last decade: as 5 
of February 2021, the GWAS-Catalog, a database of genetic association studies, contained 4,865 6 
publications and 247,051 variant-trait associations.(1)  7 

To understand how genetic factors affect different traits, it is valuable to explore various annotations of 8 
genomic regions as well as how associations relate between different traits. But this requires combining 9 
diverse sources of annotation such as observed structural variations (SV), expression-quantitative-trait-10 
loci (eQTL), or chromatin context. Moreover, a framework to quickly visualize and compare association 11 
statistics of specific genomic regions across multiple traits is missing, and may be beneficial to the 12 
community of researchers working on human genetics. In addition, the functional interpretation of the 13 
effects of genetic variants on a gene-, protein- or pathway-level is difficult as often genetic variants lie 14 
in non-coding regions of the genome. As a one- to one mapping between genetic variants and affected 15 
genes is not trivial in these circumstances, it might be wise to associate multiple genes with a variant. 16 
Hence, a profound knowledge of biological databases, bioinformatics tools, and programming skills is 17 
often required to interpret GWAS outcomes. Unfortunately, not everyone is equipped with these skills. 18 

To assist human geneticists, we have developed snpXplorer, a web-server application written in R that 19 
allows (i) the rapid exploration of any region in the genome with customizable genomic features, (ii) the 20 
superimposition of summary statistics from multiple genetic association studies, and (iii) the functional 21 
annotation and pathway enrichment analysis of SNP sets in an easy-to-use user interface. 22 

 23 

METHODS 24 

WEB SERVER STRUCTURE 25 

snpXplorer is a web-server application based on the R package shiny that offers an exploration section 26 
and a functional annotation section. The exploration section represents the main interface (Figure 1) 27 
and provides an interactive exploration of a (set of) GWAS data sets. The functional annotation section 28 
takes as input any list of SNPs, runs a functional annotation and enrichment analysis in the background, 29 
and send the results by email. 30 

Exploration section 31 

First, input data must be chosen, which can either be one of the available summary statistics datasets 32 
and/or the user can upload their own association dataset. One of the main novelties in snpXplorer is 33 
the possibility to select multiple association datasets as inputs (including data uploaded by the user). 34 
These will be displayed on top of each other with different colours. The available summary statistics will 35 
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be kept updated. As of February 2021, snpXplorer includes genome-wide summary statistics of 23 36 
human traits classified in 5 disease categories: neurological traits (Alzheimer’s disease, family history 37 
of Alzheimer’s disease, autism, depression, and ventricular volume),(2–6) cardiovascular traits 38 
(coronary artery disease, systolic blood pressure, body-mass index and diabetes),(7–10) immune-39 
related traits (severe COVID infections, Lupus erythematosus, inflammation biomarkers and 40 
asthma),(11–14) cancer-related traits (breast, lung, prostate cancers, myeloproliferative neoplasms and 41 
Lymphocytic leukaemia),(15–18) and physiological traits (parental longevity, height, education, bone-42 
density and vitamin D intake).(9, 19–22) These summary statistics underwent a process of 43 
harmonization: we use the same reference genome (GRCh37, hg19) for all SNP positions, and in case 44 
a study was aligned to the GRCh38 (hg38), we translate the coordinates using the liftOver tool.(23) In 45 
addition, we only store chromosome, position and p-value information for each SNP-association. The 46 
user may upload own association statistics to display within snpXplorer: the file must have at least 47 
chromosome-, position-, and p-value columns, and the size should not exceed 600Mb. snpXplorer 48 
automatically recognizes the different columns, supports PLINK (v1.9+ and v2.0+) association files,(24) 49 
and we provide several example files in the Help section of the web-server. 50 

After selecting the input type, the user should set the preferred genome version. By default, GRCh37 is 51 
used, however, all available annotation sources are available also for GRCh38, and snpXplorer can 52 
translate genomic coordinates from one reference version to another. In order to browse the genome, 53 
the user can either input a specific genomic position, gene name, variant identifier, or select the scroll 54 
option, which allows to interactively browse the genome.  55 

The explorative visualisation consists of 3 separate panels showing (i) the SNP summary statistics of 56 
the selected input data (Figure 1A), (ii) the structural variants in the region of interest (Figure 1B), and 57 
(iii) the tissue-specific RNA-expression (Figure 1C). The first (and main) visualization panel shows the 58 
association statistics of the input data in the region of interest: genomic positions are shown on the x-59 

axis and association significance (in −𝑙𝑜𝑔!" scale) is reported on the y-axis. Both the x-axis and the y-60 
axis can be interactively adjusted to extend or contract the genomic window to be displayed. Linkage 61 
disequilibrium (LD) patterns are optionally shown for the most significant variant in the region, the input 62 
variant, or a different variant of choice. The linkages are calculated using the genotypes of the 63 
individuals from the 1000Genome project, with the possibility to select the populations to include.(25) 64 
There are two ways to visualise the data: by default, each variant-association is represented as a dot, 65 
with dot-sizes optionally reflecting p-values. Alternatively, associations can be shown as p-value profiles: 66 
to do so, (i) the selected region is divided in bins, (ii) a local maximum is found in each bin based on 67 
association p-value, and (iii) a polynomial regression model is fitted to the data, using the p-value of all 68 
local maximum points as dependent variable and their genomic position as predictors. Regression 69 
parameters, including the number of bins and the smoothing value, can be adjusted. Gene names from 70 
RefSeq (v98) are always adapted to the plotted region.(26) Finally, recombination rates from HapMap 71 
II, which give information about recombination frequency during meiosis, are optionally shown in the 72 
main plot interface.(27)  73 
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The second panel shows structural variations (SV) in the region of interest. These are extracted from 74 
three studies that represent the state-of-the-art regarding the estimation of major structural variations 75 
across the genome using third-generation sequencing technologies (i.e. long read sequencing).(28–30) 76 
Structural variations are represented as segments: the size of the segment codes for the maximum 77 
difference in allele sizes of the SVs as observed in the selected studies. Depending on the different 78 
studies, structural variations are annotated as insertions, deletions, inversions, copy number alterations, 79 
duplications, mini-, micro- and macro-satellites, and mobile element insertions (Alu elements, LINE1 80 
elements, and SVAs).  81 

The third panel shows tissue-specific RNA-expression (from the Genotype-Tissue-expression 82 
consortium, GTEx) of the genes displayed in the selected genomic window.(31) The expression of these 83 
genes across 54 human tissues is scaled and reported as a heatmap. Hierarchical clustering is applied 84 
on both the genes and the tissues, and the relative dendrograms are reported on the sides of the 85 
heatmap.  86 

 87 

The side panel allows the user to interact with the exploration section. In order to guide the user through 88 
all the available inputs and options, help messages automatically appear upon hovering over items. 89 
The side panel reports (i) the top 10 variants with highest significance (together with the trait they belong 90 
to, in case multiple studies were selected), and (ii) the top eQTLs associations (by default, eQTLs in 91 
blood are shown, and this can be optionally changed), and cross-references including GeneCards, 92 
GWAS-catalog, and LD-hub.(1, 32, 33) Finally, download buttons allow to download a high-quality 93 
image of the different visualisation panels as well as the tables reporting the top SNP and eQTL 94 
associations, the SVs in the selected genomic window, and the LD table. 95 

Functional annotation section 96 

The functional annotation pipeline consists of a two-step procedure: firstly, genetic variants are linked 97 
to likely affected genes (variant-gene mapping); and, secondly, the likely affected genes are tested for 98 
pathway enrichment (gene-pathway mapping). In the variant-gene mapping, genetic variants are linked 99 
to the most likely affected gene(s) by (i) associating a variant to a gene when the variant is annotated 100 
to be coding by the Combined Annotation Dependent Depletion (CADD, v1.3), (ii) annotating a variant 101 
to genes based on found expression-quantitative-trait-loci (eQTL) from GTEx (v8, with possibility to 102 

choose the tissue(s) of interest), or (iii) mapping a variant to genes that are within distance 𝑑 from the 103 

variant position, starting with 𝑑 ≤ 50𝑘𝑏, up to 𝑑 ≤ 500𝑘𝑏, increasing by 50𝑘𝑏 until at least one match is 104 
found (from RefSeq v98).(26, 31, 34) Note that this procedure might map multiple genes to a single 105 
variant, depending on the effect and position of each variant.  106 

Then, we first report whether the input SNPs as well as their likely associated genes were previously 107 
associated with any trait in the GWAS-Catalog (traits are coded by their Experimental Factor Ontology 108 
(EFO) term). For this analysis, we downloaded all significant SNP-trait associations of all studies 109 
available in the GWAS-Catalog (v1.0.2, available at https://www.ebi.ac.uk/gwas/docs/file-downloads), 110 
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which includes associations with p<9x10-6. Given a set of input SNPs associated with a set of genes, 111 
this analysis results in a set of traits (provided that the SNPs and/or the genes were previously 112 
associated with a trait). Hereto, we plot the number of SNPs in the list of uploaded SNPs that associate 113 
with the trait (expressed as a fraction). To correct for multiple genes being associated with a single 114 
variant, we estimate these fractions by sampling (500 iterations) one gene from the pool of genes 115 
associated with each variant, and averaging the resulting fractions across the sampling. Summary 116 
tables of the GWAS-Catalog analysis, including also EFO URI links for cross-referencing are provided 117 
as additional output. 118 

Next, we report on the structural variations that lie in the vicinity (10𝑘𝑏 upstream and downstream) of 119 
the input SNPs, and present information such as SV start and end position, SV type, maximum 120 
difference in allele size, and genes likely associated with the relative SNPs. 121 

Finally, we perform a gene-set enrichment analysis to find molecular pathways enriched within the set 122 
of genes associated with the input variants. Also, here we use the mentioned sampling technique to 123 
avoid a potential enrichment bias due to multiple genes being mapped to the same variant (this time 124 
the sampling is used to calculate p-values for each term). The gene-set enrichment analysis is 125 
performed using the Gost function from the R package gprofiler2.(35) The user can specify several 126 
gene-set sources, such as Gene Ontology (release 2020-12-08),(36) KEGG (release 2020-12-14),(37) 127 
Reactome (release 2020-12-15),(38) and Wiki-pathways (release 2020-12-10).(39) The full table of the 128 
gene-set enrichment analysis comprising all tested terms and their relative sampling-based p-values is 129 
sent to the user. 130 

For each of the selected gene-set sources, the significant enriched terms are plotted (up to FDR<10%). 131 
In case the Gene Ontology is chosen as gene-set source, we additionally reduce the visual complexity 132 
of the enriched biological processes using (i) the REVIGO tool and (ii) a term-based clustering 133 
approach.(40) We do so because the interpretation of gene-set enrichment analyses is typically difficult 134 
due to the large number of terms. Clustering enriched terms then helps to get an overview, and thus 135 
eases the interpretation of the results. Briefly, REVIGO masks redundant terms based on a semantic 136 
similarity measure, and displays enrichment results in an embedded space via eigenvalue 137 
decomposition of the pairwise distance matrix. In addition to REVIGO, we developed a term-based 138 
clustering approach to remove redundancy between enriched terms. To do so, we first calculate a 139 
semantic similarity matrix between all enriched terms, and then apply hierarchical clustering on the 140 
obtained distance matrix. We estimate the optimal number of clusters using a dynamic cut tree algorithm 141 
and plot the most recurring words of the terms underlying each cluster using wordclouds. We use Lin 142 
as semantic distance measure for both REVIGO and our term-based clustering approach.(41, 42) 143 
Figures representing REVIGO results, the semantic similarity heatmap (showing relationships between 144 
enriched terms), the hierarchical clustering dendrogram, and the wordclouds of each clusters, are 145 
generated. Finally, all tables describing REVIGO analysis and our term-based clustering approach 146 
(including all enriched terms and their clustering scheme) are produced and sent as additional output 147 
to the user for further manipulation. Note that the initial significant GO terms are not removed and also 148 
included in the reporting. 149 
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 150 

RESULTS 151 

Case Study 152 

To illustrate the performances of snpXplorer, we explored the most recent set of common SNPs 153 
associated with late-onset Alzheimer’s disease (AD, N=83 SNPs, Table S1).(43) Using this dataset as 154 
case study, we show the benefits of using snpXplorer in a typical scenario. Briefly, AD is the most 155 
prevalent type of dementia at old age, and is associated with a progressive loss of cognitive functions, 156 
ultimately leading to death. In its most common form (late-onset AD, with age at onset typically >65 157 
years), the disease is estimated to be 60-80% heritable. With an attributable risk of ~30%, genetic 158 
variants in APOE gene represent the largest common genetic risk factor for AD. In addition to APOE, 159 
the genetic landscape of AD now counts 83 common variants that are associated with a slight 160 
modification of the risk of AD. Understanding the genes most likely involved in AD pathogenesis as well 161 
as the crucial biological pathways is warranted for the development of novel therapeutic strategies for 162 
AD patients.  163 

We retrieved the list of AD-associated genetic variants in Table 1 of the preprint from Bellenguez et al, 164 
2020.(43) This study represent the largest GWAS on AD performed to date, and resulted in 42 novel 165 
SNPs reaching genome-wide evidence of association with AD. The exploration section of snpXplorer 166 
can be firstly used to inspect the association statistics of the novel SNP-associations in previous studies 167 
of the same trait (i.e. International Genomics of Alzheimer Project (IGAP) and family history of AD 168 
(proxy_AD)). Specifically, a suggestive degree of association in these regions is expected to be found 169 
in earlier studies. As expected, suggestive association signals were already observed for the novel 170 
SNPs, increasing the likelihood that these novel SNPs are true associations (Figure S1).  171 

After the first explorative analysis, we pasted the variant identifiers (rsIDs) in the annotation section of 172 
snpXplorer, specifying rsid as input type, Gene Ontology and Reactome as gene-sets for the enrichment 173 
analysis, and Blood as GTEx tissue for eQTL (i.e. the default value). The N=83 variants were linked to 174 
a total of 162 genes, with N=54 variants mapping to 1 gene, N=12 variants mapping to 2 genes, N=7 175 
variants mapping to 3 genes, N=2 variants mapping to 4 genes, N=1 variant mapping to 5 genes, N=4 176 
variants mapping to 4 genes, and N=1 variant mapping to 7, 8 and 11 genes (Figure S2). N=10 variants 177 
were found to be coding variants, N=31 variants were found to be eQTL, and N=42 variants were 178 
annotated based on their genomic position. These results are returned to the user in the form of a 179 
(human and machine-readable) table, but also in the form of a summary plot (Figure 2A and Figure S2). 180 
These graphs not only inform the user about the effect of the SNPs of interest (for example, a direct 181 
consequence on the protein sequence in case of coding SNPs, or a regulatory effect in case of eQTLs 182 
or intergenic SNPs), but also suggest the presence of more complex regions: for example, Figure S2B 183 
indicates the number of genes associated with each SNP, which normally increases for complex, gene-184 
dense regions such as HLA-region or IGH-region.  185 
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In order to prioritize candidate genes, the authors of the original publication integrated (i) eQTLs and 186 
colocalization (eQTL coloc) analyses combined with expression transcriptome-wide association studies 187 
(eTWAS) in AD-relevant brain regions; (ii) splicing quantitative trait loci (sQTLs) and colocalization 188 
(sQTL coloc) analyses combined with splicing transcriptome-wide association studies (sTWAS) in AD-189 
relevant brain regions; (iii) genetic-driven methylation as a biological mediator of genetic signals in blood 190 
(MetaMeth).(43) In order to compare the SNP-gene annotation of the original study with that of 191 
snpXplorer, we counted the total number of unique genes associated with the SNPs (i) in the original 192 
study (N=97), (ii) using our annotation procedure (N=136), and (iii) the intersection between these gene 193 
sets (N=79). When doing so, we excluded regions mapping to the HLA-gene cluster and IGH-gene 194 
clusters (3 SNPs in total) as the original study did not report gene names but rather HLA-cluster and 195 
IGH-cluster. Nevertheless, our annotation procedure correctly assigned HLA-related genes and IGH-196 
related genes with these SNPs. The number of intersecting genes was significantly higher than what 197 
could be expected by chance (p=0.03, based on one-tail p-value of binomial test, Table S2). For 6 SNPs, 198 
the gene annotated by our procedure did not match the gene assigned in the original study. Specifically, 199 
for 4/6 of these SNPs, we found significant eQTLs in blood (rs60755019 with ADCY10P1, rs7384878 200 
with PILRB, STAG3L5P, PMS2P1, GIGYF1, and EPHB4 genes, rs56407236 with FAM157C gene, and 201 
rs2526377 with TRIM37 gene), while the original study reported the closest genes as most likely gene 202 
(rs60755019 with TREML2 gene, rs7384878 with SPDYE3 gene, rs56407236 with PRDM7 gene and 203 
rs2526377 with TSOAP1 gene). In addition, we annotated SNPs rs76928645 and rs139643391 to 204 
SEC61G and WDR12 genes (closest genes), while the original study, using eQTL and TWAS in AD-205 
relevant brain regions, annotated these SNPs to EGFR and ICA1L/CARF genes. While the latter two 206 
SNPs were likely mis-annotated in our procedure (due to specific datasets used for the annotation), our 207 
annotation of the former 4 SNPs seemed robust, and further studies will have to clarify the annotation 208 
of these SNPs.  209 

With the resulting list of input SNPs and (likely) associated genes, we probed the GWAS-Catalog and 210 
the datasets of structural variations for previously reported associations. We found a marked enrichment 211 
in the GWAS-Catalog for Alzheimer’s disease, family history of Alzheimer’s disease, and lipoprotein 212 
measurement (Figure S3, Table S3 and Table S4). The results of this analysis are relevant to the user 213 
as they indicate other traits that were previously associated with the input SNPs. As such, they may 214 
suggest relationships between different traits, for example in our case study they suggest the 215 
involvement of cholesterol and lipid metabolism in AD, a known relationship.(44) Next, we searched for 216 
all structural variations in a region of 10kb surrounding the input SNPs, and we found that for 39/83 217 
SNPs, a larger structural variations was present in the vicinity (Table S5), including the known VNTR 218 
(variable number of tandem repeats) in ABCA7 gene,(45) and the known CNV (copy number variation) 219 
in CR1, HLA-DRA, and PICALM genes (Table S5).(46–48) This information may be particularly 220 
interesting for experimental researchers investigating the functional effect of SVs, and could be used to 221 
prioritize certain genomic regions. Because of the complex nature of large SVs, these regions have 222 
been largely unexplored, however technological improvements now make it possible to accurately 223 
measure SV alleles. 224 
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We then performed our (sampling-based) gene-set enrichment analysis using Gene Ontology Biological 225 
Processes (GO:BP, default setting) and Reactome as gene-set sources, and Blood as tissue for the 226 
eQTL analysis. After averaging p-values across the number of iterations, we found N=132 significant 227 
pathways from Gene Ontology (FDR<1%) and N=4 significant pathways from Reactome (FDR<10%) 228 
(Figure S4 and Table S6). To facilitate the interpretation of the gene-set enrichment results, we 229 
clustered the significantly enriched terms from Gene Ontology based on a semantic similarity measure 230 
using REVIGO (Figure 2B) and our term-based clustering approach (Figure 2C). Both methods are 231 
useful as they provide an overview of the most relevant biological processes associated with the input 232 
SNPs. Our clustering approach found five main clusters of GO terms (Figure 2C and Figure S5). We 233 
generated wordclouds to guide the interpretation of the set of GO terms of each cluster (Figure 2C). 234 
The five clusters were characterized by (1) trafficking and migration at the level of immune cells, (2) 235 
activation of immune response, (3) organization and metabolic processes, (4) beta-amyloid metabolism 236 
and (5) amyloid and neurofibrillary tangles formation and clearance (Figure 2C). All these processes 237 
are known to occur in the pathogenesis of Alzheimer’s disease from other previous studies.(43, 44, 49, 238 
50) We observed that clusters generated by REVIGO are more conservative (i.e. only terms with a high 239 
similarity degree were merged) as compared to our term-based clustering which generates a higher-240 
level overview. In the original study (Table S15 from (43)), the most significant gene sets related to 241 
amyloid and tau metabolism, lipid metabolism and immunity. In order to calculate the extent of term 242 
overlap between results from the original study and our approach, we calculated semantic similarity 243 
between all pairs of significantly enriched terms in both studies. In addition to showing pairwise 244 
similarities between all terms, this analysis also shows how the enriched terms in the original study 245 
relate to the clusters found using our term-based approach. We observed patterns of high similarity 246 
between the significant terms in both studies (Figure S6). For example, terms in the “Activation of 247 
immune system” and the “Beta-amyloid metabolism” clusters (defined with our term-based approach), 248 
reported high similarities with specific subsets of terms from the original study. This was expected as 249 
these clusters represent the most established biological pathways associated with AD. The cluster 250 
“Trafficking of immune cells” had high similarity with a specific subset of terms from the original study, 251 
yet we also observed similarities with the “Activation of immune system” cluster, in agreement with the 252 
fact that these clusters were relatively close also in tree structure (Figure 2C). Similarly, high similarities 253 
were observed between the ”Beta-amyloid metabolism” and the “Amyloid formation and clearance” 254 
clusters. Finally, the “Metabolic processes” had high degree of similarity with a specific subset of terms, 255 
but also with terms related to “Activation of immune system” cluster. Altogether, we showed that (i) 256 
enriched terms from the original study and our study had a high degree of similarity, and (ii) that the 257 
enriched terms of the original study resembled the structure of our clustering approach. The complete 258 
analysis of 83 genetic variants took about 30 minutes to complete. 259 

 260 

DISCUSSION 261 

Despite the fact that many summary statistics of genetic studies have been publicly released, the 262 
integration of such a large amount of data is often difficult and requires specific tools and knowledge. 263 
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Even simple tasks, such as the rapid interrogation of how well a certain genomic region associates with 264 
a specific trait or multiple traits can be frustrating and time consuming. Our main objective to develop 265 
snpXplorer was the need for an easy-to-use and user-friendly framework to explore, analyse and 266 
integrate outcomes of GWAS and other genetic studies. snpXplorer showed to be a robust tool that can 267 
support a complete GWAS analysis, from the exploration of specific regions of interest to the variant-268 
to-gene annotation, gene-set enrichment analysis and interpretation of associated biological pathways.  269 

To our knowledge, the only existing web-server that offers a similar explorative framework as 270 
snpXplorer is the GWAS-Atlas.(51) GWAS-Atlas was primarily developed as a database of publicly 271 
available GWAS summary statistics. It offers possibilities to visualise Manhattan and quantile-quantile 272 
(QQ) plots, to perform downstream analyses using MAGMA statistical framework, and to study genetic 273 
correlation between traits by means of LD score regression.(52, 53) However, snpXplorer was 274 
developed mainly for visualisation purposes, and thus incorporate multiple unique features such as the 275 
possibility to visualise multiple GWAS datasets simultaneously or to upload an external association 276 
dataset for additional comparisons with existing datasets. Moreover, snpXplorer annotates these 277 
visualisations with several genomic features such as structural variations, recombination rates, LD 278 
patterns and eQTLs. All the relevant information showed in snpXplorer, such as top SNP information, 279 
eQTL tables, LD tables and structural variants can be easily downloaded for further investigations. 280 
Further, we would like to stress the relevance of overlaying the GWAS results with structural variants 281 
found by third-generation sequencing. Such structural variations have already been shown to play a 282 
significant role for several traits, in particular for neurodegenerative diseases, and snpXplorer is thus 283 
far the only web-server where such information can be visualized in the context of GWAS summary 284 
statistics.(45, 46, 54, 55)  285 

We do acknowledge that for an in-depth functional annotation analysis of GWAS, the possibility of 286 
integrating additional ad-hoc information (such as eQTLs, sQTLs, eTWAS and sTWAS from specific 287 
disease-related regions) may improve the analysis, but such data is not always available, is time 288 
consuming and requires deep knowledge. Several online and offline tools have been developed with a 289 
similar goal, e.g. SNPnexus, ANNOVAR, FUMA and Ensembl VEP.(56–59) Some of these tools are 290 
characterized by a larger list of annotation sources, for example implementing multiple tools for variant 291 
effect prediction (e.g. SNPnexus, Ensembl VEP or ANNOVAR), or more extensive pathway enrichment 292 
analyses at the tissue- and cell-type level (e.g. FUMA). We have shown that snpXplorer provides similar 293 
results in terms of annotation capabilities and gene-set enrichment analysis as compared to existing 294 
tools. Yet, snpXplorer has several unique features for the functional annotation section, such as the 295 
extensive interpretation analysis implemented in REVIGO, our term-based clustering approach and the 296 
wordcloud visualisation, or the possibility to associate multiple genes with each SNP during gene-set 297 
enrichment analysis. Moreover, snpXplorer development will continue by implementation of additional 298 
annotation sources and analyses. Altogether, we showed that snpXplorer is a promising functional 299 
annotation tool to support a typical GWAS analysis. As such, it has been previously applied for the 300 
annotation and downstream analysis of genetic variants associated with Alzheimer’s disease and 301 
human longevity.(42, 60)  302 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2021. ; https://doi.org/10.1101/2020.11.11.377879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.377879
http://creativecommons.org/licenses/by-nc/4.0/


 11 

Future updates 303 

For future updates, we plan to keep updated and increase the list of summary statistics available to be 304 
displayed in the exploration section. In its current version, the exploration section of snpXplorer requires 305 
the user to define a region of interest to look, while genome-wide comparisons are not considered. 306 
However, it is our intention to implement a genome-wide comparison across GWAS studies that, given 307 
a set of input GWASs and a significance threshold alpha, reports all SNPs with a p<alpha across the 308 
studies, allowing for a more rapid visualisation of overlapping SNP-associations. Moreover, we plan to 309 
increase the number of annotation sources and available options in the annotation section (for example, 310 
including methylation-QTL, protein-QTL and splicing-QTL). Finally, we are also working towards adding 311 
a framework to calculate weighted polygenic risk scores given a set of individuals’ genotypes and a 312 
reference study to take variant effect-sizes from. 313 

 314 

AVAILABILITY 315 

snpXplorer is an open-source web-server available at https://snpxplorer.net. Tutorial videos, full 316 

documentation and link to code are available in the Help page of the web-server. snpXplorer is running 317 
as from March-2020, was tested both within and outside our group, and runs steadily on both Unix and 318 
Windows most common browsers (Safari, Google Chrome, Microsoft Edge, Internet Explorer, and 319 
Firefox). For certain steps, snpXplorer does rely on external tools and sources (e.g. REVIGO), and 320 
consequently depends on their availability. Although discouraged, the tool can also be installed locally 321 
on your machine: additional information on how to do it are available in our github at 322 
https://github.com/TesiNicco/snpXplorer, however, we note that for the stand-alone version additional 323 
files should be downloaded separately, for example, all summary statistics. snpXplorer requires R 324 
(v3.5+) and python (v3+) correctly installed and accessible in your system. snpXplorer uses the 325 
following R packages: shiny, data.table, stringr, ggplot2, liftOver, colourpicker, rvest, plotrix, parallel, 326 
SNPlocs.Hsapiens.dfSNP144.GRCh37, lme4, ggsci, RColorBrewer, gprofiler2, GOSemSim, GO.db, 327 
org.Hs.eg.db, pheatmap, circlize, devtools, treemap, basicPlotteR, gwascat, GenomicRanges, 328 
rtracklayer, Homo.sapiens, BiocGenerics, and the following python libraries: re, werkzeug, robobrowser, 329 
pygosemsim, numpy, csv, networkx and sys.  330 
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FIGURES 

 

Figure 1: snpXplorer exploration section. A. First and main visualisation interface reporting summary statistics 

of multiple genetic studies as shown with p-value profiles. B. Structural variants within the region of interest are 

reported as segments and colored according to their type C. Tissue-specific RNA-expression (from Genotype-
Tissue-Expression, GTEx) of the genes displayed in the region of interest. 
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Figure 2: Results of the functional annotation of N=83 variants associated with Alzheimer’s disease (AD). 
A. The circular summary figure shows the type of annotation of each genetic variant used as input (coding, eQTL 

or annotated by their positions) as well as each variant’s minor allele frequency and chromosomal distribution. B. 
REVIGO plot, showing the remaining GO terms after removing redundancy based on a semantic similarity measure. 
The colour of each dot codes for the significance (the darker, the more significant), while the size of the dot codes 

for the number of similar terms removed from REVIGO. C. Results of our term-based clustering approach. We 

used Lin as semantic similarity measure to calculate similarity between all GO terms. We then used ward-d2 as 
clustering algorithm, and a dynamic cut tree algorithm to highlight clusters. Finally, for each cluster we generated 

wordclouds of the most frequent words describing each cluster. 
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