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ABSTRACT

Genetic association studies are frequently used to study the genetic basis of numerous human
phenotypes. However, the rapid interrogation of how well a certain genomic region associates across
traits as well as the interpretation of genetic associations is often complex and requires the integration
of multiple sources of annotation, which involves advanced bioinformatic skills. We developed
snpXplorer, an easy-to-use web-server application for exploring Single Nucleotide Polymorphisms
(SNP) association statistics and to functionally annotate sets of SNPs. snpXplorer can superimpose
association statistics from multiple studies, and displays regional information including SNP
associations, structural variations, recombination rates, eQTL, linkage disequilibrium patterns, genes
and gene-expressions per tissue. By overlaying multiple GWAS studies, snpXplorer can be used to
compare levels of association across different traits, which may help the interpretation of variant
consequences. Given a list of SNPs, snpXplorer can also be used to perform variant-to-gene mapping
and gene-set enrichment analysis to identify molecular pathways that are overrepresented in the list of
input SNPs. snpXplorer is freely available at https://snpxplorer.net. Source code, documentation,
example files and tutorial videos are available within the Help section of snpXplorer and at
https://github.com/TesiNicco/snpXplorer.
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Key points:

o snpXplorer shows GWAS summary statistics, regional information and helps deciphering
GWAS outcomes

e snpXplorer interactively compares association levels of a genomic region across phenotypes

e snpXplorer performs variant-to-gene mapping and gene-set enrichment analysis
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INTRODUCTION

Genome-wide association studies (GWAS) and sequencing-based association studies are a powerful
approach to investigate the genetic basis of complex human phenotypes and their heritability.
Facilitated by the cost-effectiveness of both genotyping and sequencing methods and by established
analysis guidelines, the number of genetic association studies has risen steeply in the last decade: as
of February 2021, the GWAS-Catalog, a database of genetic association studies, contained 4,865

publications and 247,051 variant-trait associations.(1)

To understand how genetic factors affect different traits, it is valuable to explore various annotations of
genomic regions as well as how associations relate between different traits. But this requires combining
diverse sources of annotation such as observed structural variations (SV), expression-quantitative-trait-
loci (eQTL), or chromatin context. Moreover, a framework to quickly visualize and compare association
statistics of specific genomic regions across multiple traits is missing, and may be beneficial to the
community of researchers working on human genetics. In addition, the functional interpretation of the
effects of genetic variants on a gene-, protein- or pathway-level is difficult as often genetic variants lie
in non-coding regions of the genome. As a one- to one mapping between genetic variants and affected
genes is not trivial in these circumstances, it might be wise to associate multiple genes with a variant.
Hence, a profound knowledge of biological databases, bioinformatics tools, and programming skills is

often required to interpret GWAS outcomes. Unfortunately, not everyone is equipped with these skills.

To assist human geneticists, we have developed snpXplorer, a web-server application written in R that
allows (i) the rapid exploration of any region in the genome with customizable genomic features, (ii) the
superimposition of summary statistics from multiple genetic association studies, and (iii) the functional
annotation and pathway enrichment analysis of SNP sets in an easy-to-use user interface.

METHODS
WEB SERVER STRUCTURE

snpXplorer is a web-server application based on the R package shiny that offers an exploration section
and a functional annotation section. The exploration section represents the main interface (Figure 1)
and provides an interactive exploration of a (set of) GWAS data sets. The functional annotation section
takes as input any list of SNPs, runs a functional annotation and enrichment analysis in the background,

and send the results by email.
Exploration section

First, input data must be chosen, which can either be one of the available summary statistics datasets
and/or the user can upload their own association dataset. One of the main novelties in snpXplorer is
the possibility to select multiple association datasets as inputs (including data uploaded by the user).

These will be displayed on top of each other with different colours. The available summary statistics will
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be kept updated. As of February 2021, snpXplorer includes genome-wide summary statistics of 23
human traits classified in 5 disease categories: neurological traits (Alzheimer’s disease, family history
of Alzheimer's disease, autism, depression, and ventricular volume),(2—6) cardiovascular traits
(coronary artery disease, systolic blood pressure, body-mass index and diabetes),(7-10) immune-
related traits (severe COVID infections, Lupus erythematosus, inflammation biomarkers and
asthma),(11-14) cancer-related traits (breast, lung, prostate cancers, myeloproliferative neoplasms and
Lymphocytic leukaemia),(15-18) and physiological traits (parental longevity, height, education, bone-
density and vitamin D intake).(9, 19-22) These summary statistics underwent a process of
harmonization: we use the same reference genome (GRCh37, hg19) for all SNP positions, and in case
a study was aligned to the GRCh38 (hg38), we translate the coordinates using the liftOver tool.(23) In
addition, we only store chromosome, position and p-value information for each SNP-association. The
user may upload own association statistics to display within snpXplorer: the file must have at least
chromosome-, position-, and p-value columns, and the size should not exceed 600Mb. snpXplorer
automatically recognizes the different columns, supports PLINK (v1.9+ and v2.0+) association files,(24)

and we provide several example files in the Help section of the web-server.

After selecting the input type, the user should set the preferred genome version. By default, GRCh37 is
used, however, all available annotation sources are available also for GRCh38, and snpXplorer can
translate genomic coordinates from one reference version to another. In order to browse the genome,
the user can either input a specific genomic position, gene name, variant identifier, or select the scroll

option, which allows to interactively browse the genome.

The explorative visualisation consists of 3 separate panels showing (i) the SNP summary statistics of
the selected input data (Figure 1A), (ii) the structural variants in the region of interest (Figure 1B), and
(iii) the tissue-specific RNA-expression (Figure 1C). The first (and main) visualization panel shows the
association statistics of the input data in the region of interest: genomic positions are shown on the x-
axis and association significance (in —log,, scale) is reported on the y-axis. Both the x-axis and the y-
axis can be interactively adjusted to extend or contract the genomic window to be displayed. Linkage
disequilibrium (LD) patterns are optionally shown for the most significant variant in the region, the input
variant, or a different variant of choice. The linkages are calculated using the genotypes of the
individuals from the 1000Genome project, with the possibility to select the populations to include.(25)
There are two ways to visualise the data: by default, each variant-association is represented as a dot,
with dot-sizes optionally reflecting p-values. Alternatively, associations can be shown as p-value profiles:
to do so, (/) the selected region is divided in bins, (ii) a local maximum is found in each bin based on
association p-value, and (i) a polynomial regression model is fitted to the data, using the p-value of all
local maximum points as dependent variable and their genomic position as predictors. Regression
parameters, including the number of bins and the smoothing value, can be adjusted. Gene names from
RefSeq (v98) are always adapted to the plotted region.(26) Finally, recombination rates from HapMap
II, which give information about recombination frequency during meiosis, are optionally shown in the

main plot interface.(27)
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74  The second panel shows structural variations (SV) in the region of interest. These are extracted from
75 three studies that represent the state-of-the-art regarding the estimation of major structural variations
76  across the genome using third-generation sequencing technologies (i.e. long read sequencing).(28-30)
77 Structural variations are represented as segments: the size of the segment codes for the maximum
78  difference in allele sizes of the SVs as observed in the selected studies. Depending on the different
79 studies, structural variations are annotated as insertions, deletions, inversions, copy number alterations,
80 duplications, mini-, micro- and macro-satellites, and mobile element insertions (Alu elements, LINE1
81  elements, and SVAs).

82  The third panel shows tissue-specific RNA-expression (from the Genotype-Tissue-expression
83  consortium, GTEX) of the genes displayed in the selected genomic window.(31) The expression of these
84 genes across 54 human tissues is scaled and reported as a heatmap. Hierarchical clustering is applied
85  on both the genes and the tissues, and the relative dendrograms are reported on the sides of the

86 heatmap.
87

88 The side panel allows the user to interact with the exploration section. In order to guide the user through
89 all the available inputs and options, help messages automatically appear upon hovering over items.
90 The side panel reports (i) the top 10 variants with highest significance (together with the trait they belong
91 to, in case multiple studies were selected), and (ii) the top eQTLs associations (by default, eQTLs in
92 blood are shown, and this can be optionally changed), and cross-references including GeneCards,
93 GWAS-catalog, and LD-hub.(1, 32, 33) Finally, download buttons allow to download a high-quality
94  image of the different visualisation panels as well as the tables reporting the top SNP and eQTL

95  associations, the SVs in the selected genomic window, and the LD table.
96  Functional annotation section

97 The functional annotation pipeline consists of a two-step procedure: firstly, genetic variants are linked
98 to likely affected genes (variant-gene mapping); and, secondly, the likely affected genes are tested for
99 pathway enrichment (gene-pathway mapping). In the variant-gene mapping, genetic variants are linked
100 to the most likely affected gene(s) by (/) associating a variant to a gene when the variant is annotated
101  to be coding by the Combined Annotation Dependent Depletion (CADD, v1.3), (i/) annotating a variant
102  to genes based on found expression-quantitative-trait-loci (eQTL) from GTEx (v8, with possibility to
103  choose the tissue(s) of interest), or (iii) mapping a variant to genes that are within distance d from the
104  variant position, starting with d < 50kb, up to d < 500kb, increasing by 50kb until at least one match is
105 found (from RefSeq v98).(26, 31, 34) Note that this procedure might map multiple genes to a single

106 variant, depending on the effect and position of each variant.

107  Then, we first report whether the input SNPs as well as their likely associated genes were previously
108 associated with any trait in the GWAS-Catalog (traits are coded by their Experimental Factor Ontology
109 (EFO) term). For this analysis, we downloaded all significant SNP-trait associations of all studies

110  available in the GWAS-Catalog (v1.0.2, available at https://www.ebi.ac.uk/gwas/docs/file-downloads),



https://doi.org/10.1101/2020.11.11.377879
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.377879; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

111 which includes associations with p<9x10. Given a set of input SNPs associated with a set of genes,
112 this analysis results in a set of traits (provided that the SNPs and/or the genes were previously
113  associated with a trait). Hereto, we plot the number of SNPs in the list of uploaded SNPs that associate
114  with the trait (expressed as a fraction). To correct for multiple genes being associated with a single
115  variant, we estimate these fractions by sampling (500 iterations) one gene from the pool of genes
116 associated with each variant, and averaging the resulting fractions across the sampling. Summary
117  tables of the GWAS-Catalog analysis, including also EFO URI links for cross-referencing are provided

118 as additional output.

119 Next, we report on the structural variations that lie in the vicinity (10kb upstream and downstream) of
120 the input SNPs, and present information such as SV start and end position, SV type, maximum

121  difference in allele size, and genes likely associated with the relative SNPs.

122 Finally, we perform a gene-set enrichment analysis to find molecular pathways enriched within the set
123 of genes associated with the input variants. Also, here we use the mentioned sampling technique to
124 avoid a potential enrichment bias due to multiple genes being mapped to the same variant (this time
125 the sampling is used to calculate p-values for each term). The gene-set enrichment analysis is
126  performed using the Gost function from the R package gprofiler2.(35) The user can specify several
127  gene-set sources, such as Gene Ontology (release 2020-12-08),(36) KEGG (release 2020-12-14),(37)
128 Reactome (release 2020-12-15),(38) and Wiki-pathways (release 2020-12-10).(39) The full table of the
129  gene-set enrichment analysis comprising all tested terms and their relative sampling-based p-values is

130 sent to the user.

131 For each of the selected gene-set sources, the significant enriched terms are plotted (up to FDR<10%).
132 In case the Gene Ontology is chosen as gene-set source, we additionally reduce the visual complexity
133  of the enriched biological processes using (i) the REVIGO tool and (i/) a term-based clustering
134  approach.(40) We do so because the interpretation of gene-set enrichment analyses is typically difficult
135  due to the large number of terms. Clustering enriched terms then helps to get an overview, and thus
136  eases the interpretation of the results. Briefly, REVIGO masks redundant terms based on a semantic
137  similarity measure, and displays enrichment results in an embedded space via eigenvalue
138  decomposition of the pairwise distance matrix. In addition to REVIGO, we developed a term-based
139 clustering approach to remove redundancy between enriched terms. To do so, we first calculate a
140 semantic similarity matrix between all enriched terms, and then apply hierarchical clustering on the
141 obtained distance matrix. We estimate the optimal number of clusters using a dynamic cut tree algorithm
142 and plot the most recurring words of the terms underlying each cluster using wordclouds. We use Lin
143  as semantic distance measure for both REVIGO and our term-based clustering approach.(41, 42)
144 Figures representing REVIGO results, the semantic similarity heatmap (showing relationships between
145 enriched terms), the hierarchical clustering dendrogram, and the wordclouds of each clusters, are
146  generated. Finally, all tables describing REVIGO analysis and our term-based clustering approach
147  (including all enriched terms and their clustering scheme) are produced and sent as additional output
148  to the user for further manipulation. Note that the initial significant GO terms are not removed and also
149 included in the reporting.
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150
151 RESULTS
152  Case Study

153  To illustrate the performances of snpXplorer, we explored the most recent set of common SNPs
154  associated with late-onset Alzheimer’s disease (AD, N=83 SNPs, Table S1).(43) Using this dataset as
155 case study, we show the benefits of using snpXplorer in a typical scenario. Briefly, AD is the most
156 prevalent type of dementia at old age, and is associated with a progressive loss of cognitive functions,
157  ultimately leading to death. In its most common form (late-onset AD, with age at onset typically >65
158  years), the disease is estimated to be 60-80% heritable. With an attributable risk of ~30%, genetic
159  variants in APOE gene represent the largest common genetic risk factor for AD. In addition to APOE,
160 the genetic landscape of AD now counts 83 common variants that are associated with a slight
161 modification of the risk of AD. Understanding the genes most likely involved in AD pathogenesis as well
162 as the crucial biological pathways is warranted for the development of novel therapeutic strategies for
163 AD patients.

164 We retrieved the list of AD-associated genetic variants in Table 1 of the preprint from Bellenguez et al,
165  2020.(43) This study represent the largest GWAS on AD performed to date, and resulted in 42 novel
166 SNPs reaching genome-wide evidence of association with AD. The exploration section of snpXplorer
167  can be firstly used to inspect the association statistics of the novel SNP-associations in previous studies
168  of the same trait (i.e. International Genomics of Alzheimer Project (IGAP) and family history of AD
169  (proxy_AD)). Specifically, a suggestive degree of association in these regions is expected to be found
170 in earlier studies. As expected, suggestive association signals were already observed for the novel

171  SNPs, increasing the likelihood that these novel SNPs are true associations (Figure S1).

172 After the first explorative analysis, we pasted the variant identifiers (rsIDs) in the annotation section of
173 snpXplorer, specifying rsid as input type, Gene Ontology and Reactome as gene-sets for the enrichment
174  analysis, and Blood as GTEXx tissue for eQTL (i.e. the default value). The N=83 variants were linked to
175 a total of 162 genes, with N=54 variants mapping to 1 gene, N=12 variants mapping to 2 genes, N=7
176 variants mapping to 3 genes, N=2 variants mapping to 4 genes, N=1 variant mapping to 5 genes, N=4
177 variants mapping to 4 genes, and N=1 variant mapping to 7, 8 and 11 genes (Figure S2). N=10 variants
178  were found to be coding variants, N=31 variants were found to be eQTL, and N=42 variants were
179  annotated based on their genomic position. These results are returned to the user in the form of a
180 (human and machine-readable) table, but also in the form of a summary plot (Figure 2A and Figure S2).
181  These graphs not only inform the user about the effect of the SNPs of interest (for example, a direct
182  consequence on the protein sequence in case of coding SNPs, or a regulatory effect in case of eQTLs
183  orintergenic SNPs), but also suggest the presence of more complex regions: for example, Figure S2B
184 indicates the number of genes associated with each SNP, which normally increases for complex, gene-

185  dense regions such as HLA-region or IGH-region.
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186 In order to prioritize candidate genes, the authors of the original publication integrated (i) eQTLs and
187  colocalization (eQTL coloc) analyses combined with expression transcriptome-wide association studies
188  (eTWAS) in AD-relevant brain regions; (ii) splicing quantitative trait loci (sQTLs) and colocalization
189  (sQTL coloc) analyses combined with splicing transcriptome-wide association studies (sTWAS) in AD-
190 relevant brain regions; (iii) genetic-driven methylation as a biological mediator of genetic signals in blood
191  (MetaMeth).(43) In order to compare the SNP-gene annotation of the original study with that of
192 snpXplorer, we counted the total number of unique genes associated with the SNPs (i) in the original
193  study (N=97), (ii) using our annotation procedure (N=136), and (iii) the intersection between these gene
194  sets (N=79). When doing so, we excluded regions mapping to the HLA-gene cluster and /GH-gene
195  clusters (3 SNPs in total) as the original study did not report gene names but rather HLA-cluster and
196  IGH-cluster. Nevertheless, our annotation procedure correctly assigned HLA-related genes and IGH-
197 related genes with these SNPs. The number of intersecting genes was significantly higher than what
198 could be expected by chance (p=0.03, based on one-tail p-value of binomial test, Table S2). For 6 SNPs,
199 the gene annotated by our procedure did not match the gene assigned in the original study. Specifically,
200  for 4/6 of these SNPs, we found significant eQTLs in blood (rs60755019 with ADCY710P1, rs7384878
201  with PILRB, STAG3L5P, PMS2P1, GIGYF1, and EPHB4 genes, rs56407236 with FAM157C gene, and
202 rs2526377 with TRIM37 gene), while the original study reported the closest genes as most likely gene
203 (rs60755019 with TREML?2 gene, rs7384878 with SPDYE3 gene, rs56407236 with PRDM7 gene and
204  rs2526377 with TSOAP1 gene). In addition, we annotated SNPs rs76928645 and rs139643391 to
205 SEC61G and WDR12 genes (closest genes), while the original study, using eQTL and TWAS in AD-
206  relevant brain regions, annotated these SNPs to EGFR and /ICA1L/CARF genes. While the latter two
207  SNPs were likely mis-annotated in our procedure (due to specific datasets used for the annotation), our
208 annotation of the former 4 SNPs seemed robust, and further studies will have to clarify the annotation
209  of these SNPs.

210  With the resulting list of input SNPs and (likely) associated genes, we probed the GWAS-Catalog and
211 the datasets of structural variations for previously reported associations. We found a marked enrichment
212 in the GWAS-Catalog for Alzheimer’s disease, family history of Alzheimer’s disease, and lipoprotein
213  measurement (Figure S3, Table S3 and Table S4). The results of this analysis are relevant to the user
214 as they indicate other traits that were previously associated with the input SNPs. As such, they may
215 suggest relationships between different traits, for example in our case study they suggest the
216 involvement of cholesterol and lipid metabolism in AD, a known relationship.(44) Next, we searched for
217  all structural variations in a region of 10kb surrounding the input SNPs, and we found that for 39/83
218  SNPs, a larger structural variations was present in the vicinity (Table S5), including the known VNTR
219 (variable number of tandem repeats) in ABCA7 gene,(45) and the known CNV (copy number variation)
220 in CR1, HLA-DRA, and PICALM genes (Table S5).(46-48) This information may be particularly
221  interesting for experimental researchers investigating the functional effect of SVs, and could be used to
222 prioritize certain genomic regions. Because of the complex nature of large SVs, these regions have
223 been largely unexplored, however technological improvements now make it possible to accurately

224 measure SV alleles.
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225  We then performed our (sampling-based) gene-set enrichment analysis using Gene Ontology Biological
226  Processes (GO:BP, default setting) and Reactome as gene-set sources, and Blood as tissue for the
227  eQTL analysis. After averaging p-values across the number of iterations, we found N=132 significant
228  pathways from Gene Ontology (FDR<1%) and N=4 significant pathways from Reactome (FDR<10%)
229  (Figure S4 and Table S6). To facilitate the interpretation of the gene-set enrichment results, we
230 clustered the significantly enriched terms from Gene Ontology based on a semantic similarity measure
231  using REVIGO (Figure 2B) and our term-based clustering approach (Figure 2C). Both methods are
232 useful as they provide an overview of the most relevant biological processes associated with the input
233 SNPs. Our clustering approach found five main clusters of GO terms (Figure 2C and Figure S5). We
234  generated wordclouds to guide the interpretation of the set of GO terms of each cluster (Figure 2C).
235  The five clusters were characterized by (1) trafficking and migration at the level of immune cells, (2)
236  activation ofimmune response, (3) organization and metabolic processes, (4) beta-amyloid metabolism
237  and (5) amyloid and neurofibrillary tangles formation and clearance (Figure 2C). All these processes
238 are known to occur in the pathogenesis of Alzheimer’s disease from other previous studies.(43, 44, 49,
239 50) We observed that clusters generated by REVIGO are more conservative (i.e. only terms with a high
240  similarity degree were merged) as compared to our term-based clustering which generates a higher-
241  level overview. In the original study (Table S15 from (43)), the most significant gene sets related to
242 amyloid and tau metabolism, lipid metabolism and immunity. In order to calculate the extent of term
243 overlap between results from the original study and our approach, we calculated semantic similarity
244 between all pairs of significantly enriched terms in both studies. In addition to showing pairwise
245 similarities between all terms, this analysis also shows how the enriched terms in the original study
246 relate to the clusters found using our term-based approach. We observed patterns of high similarity
247  between the significant terms in both studies (Figure S6). For example, terms in the “Activation of
248  immune system” and the “Beta-amyloid metabolism” clusters (defined with our term-based approach),
249 reported high similarities with specific subsets of terms from the original study. This was expected as
250 these clusters represent the most established biological pathways associated with AD. The cluster
251  “Trafficking of immune cells” had high similarity with a specific subset of terms from the original study,
252  yet we also observed similarities with the “Activation of immune system” cluster, in agreement with the
253  fact that these clusters were relatively close also in tree structure (Figure 2C). Similarly, high similarities
254  were observed between the "Beta-amyloid metabolism” and the “Amyloid formation and clearance”
255 clusters. Finally, the “Metabolic processes” had high degree of similarity with a specific subset of terms,
256 but also with terms related to “Activation of immune system” cluster. Altogether, we showed that (/)
257 enriched terms from the original study and our study had a high degree of similarity, and (ii) that the
258 enriched terms of the original study resembled the structure of our clustering approach. The complete

259  analysis of 83 genetic variants took about 30 minutes to complete.
260
261  DISCUSSION

262 Despite the fact that many summary statistics of genetic studies have been publicly released, the

263  integration of such a large amount of data is often difficult and requires specific tools and knowledge.
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264 Even simple tasks, such as the rapid interrogation of how well a certain genomic region associates with
265 a specific trait or multiple traits can be frustrating and time consuming. Our main objective to develop
266  snpXplorer was the need for an easy-to-use and user-friendly framework to explore, analyse and
267 integrate outcomes of GWAS and other genetic studies. snpXplorer showed to be a robust tool that can
268 support a complete GWAS analysis, from the exploration of specific regions of interest to the variant-

269  to-gene annotation, gene-set enrichment analysis and interpretation of associated biological pathways.

270  To our knowledge, the only existing web-server that offers a similar explorative framework as
271 snpXplorer is the GWAS-Atlas.(51) GWAS-Atlas was primarily developed as a database of publicly
272 available GWAS summary statistics. It offers possibilities to visualise Manhattan and quantile-quantile
273  (QQ) plots, to perform downstream analyses using MAGMA statistical framework, and to study genetic
274  correlation between traits by means of LD score regression.(52, 53) However, snpXplorer was
275 developed mainly for visualisation purposes, and thus incorporate multiple unique features such as the
276 possibility to visualise multiple GWAS datasets simultaneously or to upload an external association
277  dataset for additional comparisons with existing datasets. Moreover, snpXplorer annotates these
278  visualisations with several genomic features such as structural variations, recombination rates, LD
279 patterns and eQTLs. All the relevant information showed in snpXplorer, such as top SNP information,
280 eQTL tables, LD tables and structural variants can be easily downloaded for further investigations.
281 Further, we would like to stress the relevance of overlaying the GWAS results with structural variants
282  found by third-generation sequencing. Such structural variations have already been shown to play a
283 significant role for several traits, in particular for neurodegenerative diseases, and snpXplorer is thus
284  far the only web-server where such information can be visualized in the context of GWAS summary
285  statistics.(45, 46, 54, 55)

286  We do acknowledge that for an in-depth functional annotation analysis of GWAS, the possibility of
287  integrating additional ad-hoc information (such as eQTLs, sQTLs, eTWAS and sTWAS from specific
288  disease-related regions) may improve the analysis, but such data is not always available, is time
289  consuming and requires deep knowledge. Several online and offline tools have been developed with a
290  similar goal, e.g. SNPnexus, ANNOVAR, FUMA and Ensembl VEP.(56-59) Some of these tools are
291 characterized by a larger list of annotation sources, for example implementing multiple tools for variant
292  effect prediction (e.g. SNPnexus, Ensembl VEP or ANNOVAR), or more extensive pathway enrichment
293  analyses at the tissue- and cell-type level (e.g. FUMA). We have shown that snpXplorer provides similar
294 results in terms of annotation capabilities and gene-set enrichment analysis as compared to existing
295  tools. Yet, snpXplorer has several unique features for the functional annotation section, such as the
296  extensive interpretation analysis implemented in REVIGO, our term-based clustering approach and the
297  wordcloud visualisation, or the possibility to associate multiple genes with each SNP during gene-set
298 enrichment analysis. Moreover, snpXplorer development will continue by implementation of additional
299 annotation sources and analyses. Altogether, we showed that snpXplorer is a promising functional
300 annotation tool to support a typical GWAS analysis. As such, it has been previously applied for the
301 annotation and downstream analysis of genetic variants associated with Alzheimer's disease and
302  human longevity.(42, 60)
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303 Future updates

304 For future updates, we plan to keep updated and increase the list of summary statistics available to be
305 displayed in the exploration section. In its current version, the exploration section of snpXplorer requires
306 the user to define a region of interest to look, while genome-wide comparisons are not considered.
307 However, it is our intention to implement a genome-wide comparison across GWAS studies that, given
308 a set of input GWASs and a significance threshold alpha, reports all SNPs with a p<alpha across the
309 studies, allowing for a more rapid visualisation of overlapping SNP-associations. Moreover, we plan to
310 increase the number of annotation sources and available options in the annotation section (for example,
311 including methylation-QTL, protein-QTL and splicing-QTL). Finally, we are also working towards adding
312 a framework to calculate weighted polygenic risk scores given a set of individuals’ genotypes and a

313  reference study to take variant effect-sizes from.
314

315  AVAILABILITY

316  snpXplorer is an open-source web-server available at https://snpxplorer.net. Tutorial videos, full

317 documentation and link to code are available in the Help page of the web-server. snpXplorer is running
318 as from March-2020, was tested both within and outside our group, and runs steadily on both Unix and
319  Windows most common browsers (Safari, Google Chrome, Microsoft Edge, Internet Explorer, and
320  Firefox). For certain steps, snpXplorer does rely on external tools and sources (e.g. REVIGO), and
321 consequently depends on their availability. Although discouraged, the tool can also be installed locally
322  on your machine: additional information on how to do it are available in our github at

323 https://github.com/TesiNicco/snpXplorer, however, we note that for the stand-alone version additional

324  files should be downloaded separately, for example, all summary statistics. snpXplorer requires R
325  (v3.5+) and python (v3+) correctly installed and accessible in your system. snpXplorer uses the
326  following R packages: shiny, data.table, stringr, ggplot2, liftOver, colourpicker, rvest, plotrix, parallel,
327  SNPlocs.Hsapiens.dfSNP144.GRCh37, Ime4, ggsci, RColorBrewer, gprofiler2, GOSemSim, GO.db,
328 org.Hs.eg.db, pheatmap, circlize, devtools, treemap, basicPlotteR, gwascat, GenomicRanges,
329  rtracklayer, Homo.sapiens, BiocGenerics, and the following python libraries: re, werkzeug, robobrowser,

330 pygosemsim, numpy, csv, networkx and sys.
331
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Figure 1: snpXplorer exploration section. A. First and main visualisation interface reporting summary statistics
of multiple genetic studies as shown with p-value profiles. B. Structural variants within the region of interest are
reported as segments and colored according to their type C. Tissue-specific RNA-expression (from Genotype-

Tissue-Expression, GTEXx) of the genes displayed in the region of interest.
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Figure 2: Results of the functional annotation of N=83 variants associated with Alzheimer’s disease (AD).

A. The circular summary figure shows the type of annotation of each genetic variant used as input (coding, eQTL

or annotated by their positions) as well as each variant’s minor allele frequency and chromosomal distribution. B.

REVIGO plot, showing the remaining GO terms after removing redundancy based on a semantic similarity measure.

The colour of each dot codes for the significance (the darker, the more significant), while the size of the dot codes

for the number of similar terms removed from REVIGO. C. Results of our term-based clustering approach. We

used Lin as semantic similarity measure to calculate similarity between all GO terms. We then used ward-d2 as

clustering algorithm, and a dynamic cut tree algorithm to highlight clusters. Finally, for each cluster we generated

wordclouds of the most frequent words describing each cluster.
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