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Abstract 
 

Recent advancements in ​in situ​ methods, such as multiplexed ​in situ​ RNA hybridization 

and ​in situ ​ RNA sequencing, have deepened our understanding of the way biological processes 

are spatially organized in tissues. Automated image processing and spot-calling algorithms for 

analyzing ​in situ​ transcriptomics images have many parameters which need to be tuned for 

optimal detection. Having ground truth datasets (images where there is very high confidence on 

the accuracy of the detected spots) is essential for evaluating these algorithms and tuning their 

parameters.  

We present a first-in-kind open-source toolkit and framework for ​in situ​ transcriptomics 

image analysis that incorporates crowdsourced annotations, alongside expert annotations, as a 

source of ground truth for the analysis of ​in situ​ transcriptomics images. The kit includes tools 

for preparing images for crowdsourcing annotation to optimize crowdsourced workers’ ability to 

annotate these images reliably, performing QC on worker annotations, extracting candidate 

parameters for spot-calling algorithms from sample images, tuning parameters for spot-calling 

algorithms, and evaluating spot-calling algorithms and worker performance. These tools are 

wrapped in a modular pipeline with a flexible structure that allows users to take advantage of 

crowdsourced annotations from any source of their choice. We tested the pipeline using real and 

synthetic ​in situ ​transcriptomics images and annotations from the Amazon Mechanical Turk 

system obtained via Quanti.us. Using real images from ​in situ​ experiments and simulated images 

produced by one of the tools in the kit, we studied worker sensitivity to spot characteristics and 

established rules for annotation quality control (QC). We explored and demonstrated the use of 

ground truth generated in this way for validating spot-calling algorithms and tuning their 
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parameters, and confirmed that consensus crowdsourced annotations are a viable substitute for 

expert-generated ground truth for these purposes. 

 

Data Availability 

The ​In Situ ​ Transcriptomics Annotation (INSTA) pipeline software is available from 

https://github.com/czbiohub/instapipeline​. The SpotImage software is available from 

https://github.com/czbiohub/spotimage​. The figures and data for this project are available from 

https://github.com/czbiohub/instapaper​. 

 

Introduction 

Diversity of form follows diversity of function in biological tissues. The anatomy and 

cellular properties of each tissue come from cell-specific gene expression patterns.​(1) ​ To 

understand important biological processes, such as development, wound healing, and disease, it 

is necessary to study the 3-dimensional spatial architecture of biological tissues and their gene 

expression patterns at the cellular (or even subcellular) level. Recent advancements in ​in situ 

methods​(2–9) ​ (e.g., DNA ​(10–13) ​, RNA ​(10,14,15) ​, and protein​(10,16) ​ measurements in tissue 

sections) have deepened our understanding of the way biological processes are spatially 

organized in tissues. In particular, recent ​in situ​ transcriptomics tools, such as multiplexed ​in situ 

RNA hybridization and ​in situ​ RNA sequencing, have facilitated the spatial mapping of gene 

expression with subcellular resolution.​(1) 

In situ​ transcriptomics methods utilize the binding of fluorescent probes to specific RNA 

target molecules with high complementarity within cultured cells and tissue sections. Extracting 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.14.201384doi: bioRxiv preprint 

https://github.com/czbiohub/instapipeline
https://github.com/czbiohub/spotimage
https://github.com/czbiohub/instapaper
https://www.zotero.org/google-docs/?E0QL5m
https://www.zotero.org/google-docs/?CBtpud
https://www.zotero.org/google-docs/?7SQ1zt
https://www.zotero.org/google-docs/?hpw1S7
https://www.zotero.org/google-docs/?bqCWAj
https://www.zotero.org/google-docs/?hbpHvV
https://doi.org/10.1101/2020.07.14.201384
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

the positions of the fluorescent probes, which appear in microscopy images as bright spots, 

presents a key image processing challenge. Automated spot detection is not trivial due to noise 

arising from light scattering and background autofluorescence.​(17) ​ Although automated image 

processing and spot-calling algorithms exist (for brevity, from now on, we will use the term 

“spot-calling algorithm” to refer to the whole image processing and spot-finding pipeline), they 

have many parameters which need to be tuned for optimal detection.​(18–22) ​ Having ground truth 

datasets (images where there is very high confidence on the accuracy of the detected spots) is 

essential for evaluating these algorithms and tuning their parameters.  

Studies typically use synthetic images to evaluate or test the performance of any spot 

detector because ground truth does not inherently exist for real images.​(17) ​ The typical way of 

generating ground truth datasets for real images is having an expert inspect the images and 

annotate the valid spot locations by hand.​(17) ​ In cases where manual annotation of a large ​in situ 

transcriptomics image dataset by an expert is unfeasible, it is necessary to have alternative 

sources of ground truth. One proposed solution to this problem is iterative human-in-the-loop 

deep learning workflows, where ground truth generated by spot-calling algorithms can be 

manually refined.​(23) ​ Since valid spot locations can often be apparent even to minimally-trained, 

non-expert human eyes,  we propose that crowdsourcing is a feasible way to generate large, high 

quality ground truth datasets. 

Crowdsourcing refers to the use of web-based systems to recruit random volunteers or 

paid workers to perform tasks remotely. Recent work has indicated that carefully crowdsourced 

annotations can expedite data processing tasks that have a visual component. Volunteer-based 
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citizen science has made substantial contributions to areas of biology from proteomics​(24–26)​ to 

ecology​(27)​. When tasks are less intrinsically interesting to volunteers, minimally-trained 

workers can complete tasks for small payments through crowdsourcing platforms such as 

Amazon’s Mechanical Turk (MTurk), and the consensus annotations (across multiple workers or 

“turkers”) can be highly comparable with expert annotations, and sufficiently reliable for use as 

training data for detection algorithms.​(27–29)​ Therefore, we hypothesized that consensus from 

crowdsourced annotations can be used as a substitute for ground truth to tune and benchmark 

spot-calling algorithms. However, there are no published ​in situ​ transcriptomics pipelines that 

can incorporate ground truth from crowdsourced annotations. Such pipelines should have 

mechanisms to prepare images for annotation, process annotations, establish consensus from the 

annotations, and generate annotation performance metrics. 

In this paper, we present INSTA (IN situ Sequencing and Transcriptomics Annotation), 

an open-source toolkit and framework that incorporates crowdsourced annotations alongside 

expert annotations as a source of ground truth for the analysis of ​in situ​ transcriptomics images. 

Using real images from ​in situ​ experiments, and simulated images produced by a tool we 

developed to generate synthetic, customizable ​in situ​ transcriptomics images,​ ​we explored 

worker sensitivity to the size, quantity, and density of spots, and we established rules for 

annotation quality control. Based on these rules, we developed tools for preparing images to 

optimize workers’ ability to annotate these images reliably, performing quality control (QC) on 

worker annotations to get maximum value from them, extracting candidate parameters for 

spot-calling algorithms from sample images, tuning parameters for spot-calling algorithms, and 

evaluating spot-calling algorithms and worker performance. We wrapped these tools in a 
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modular pipeline with a flexible structure that allows users to take advantage of crowdsourced 

annotations. The toolkit includes an annotation ingestion class designed to work with 

Quanti.us​(28)​, and it can be easily adapted to work with any crowdsourcing system by creating 

custom annotation ingestion classes. We tested the pipeline using images from the ​in situ 

transcriptomics dataset from starfish​(30,31)​, a Python library for analysis of image-based 

transcriptomics data developed by the Chan Zuckerberg Initiative, and annotations from MTurk 

via Quanti.us. We explored and demonstrated the use of ground truth generated in this way for 

validating spot-calling algorithms and tuning their parameters, and confirmed that consensus 

crowdsourced annotations are a viable substitute for expert-generated ground truth for these 

purposes. 

In addition to this pipeline, we created a tool to generate synthetic ​in situ​ images, which 

we call SpotImage. This tool receives background images from real ​in situ​ experiments and adds 

simulated spots to them. The user can vary spot characteristics including size, shape, location, 

distribution throughout the image, and signal to noise ratio (SNR). These parametrized synthetic 

images are very useful for testing crowdsourced annotations and spot calling algorithms. More 

details in Supplementary Text 1. 

 

Materials and Methods 

Structure of a modular pipeline for tuning ​in situ ​ transcriptomics image 

processing with crowdsourced annotations 

This section provides a high-level overview of INSTA, a pipeline for crowdsourcing 

annotations and for tuning and evaluating spot-calling methods (Figure 1). Greater detail will be 
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provided in Sections III and IV, and examples with two different ​in situ​ transcriptomics 

chemistries are provided in Sections V and VI. 

 

Figure 1:  INSTA (IN situ Sequencing and Transcriptomics Annotation) is a pipeline for 
tuning and validating spot detection methods using crowdsourced annotations. 

 

The input to the pipeline consists of images from a particular ​in situ​ transcriptomics 

chemistry and a spot detection algorithm to be optimized for that chemistry. An expert 
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designates one image as a representative image for the ​in situ ​ chemistry used, and annotates it. 

The remaining images are assigned to the test dataset..  

From this small amount of expert input, the tool learns approximately what a spot in this 

chemistry should look like. That is, a script extracts parameters which characterize the brightness 

(intensity) and size (sigma of a 2D Gaussian approximation of a spot) profiles of the spots of that 

chemistry. These parameters are passed to a blob detector that uses scikit-image’s 

implementation of the Laplacian of Gaussian algorithm.​(18) 

The pipeline then processes each test image separately. For each test image:  

○ The blob detector uses the spot parameters it learned from parameter extraction to 

do rough, first-pass spot-calling. 

○ A script detects the crowded regions and recursively crops the images until the 

sub-images are sufficiently uncrowded that a human worker should easily be able 

to click on all the spots without getting frustrated or tired. 

○ All the pieces of the image – the crops and the parent images – are sent to 

Quanti.us​, which is a platform for crowdsourced image annotation through 

Amazon’s Mechanical Turk platform. Custom crowdsourced data ingestion 

classes can be written to allow the pipeline to work with any crowdsourced 

annotation system. 

○ Each image is annotated by a user-defined number of workers (typically 20 to 30). 

In the annotation analysis stage, all the crowdsourced annotations are clustered 

and QC is performed based on characteristics of the spots and clusters to produce 
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consensus annotations, which are then reassembled to produce an original image 

that has been annotated with high precision and recall. 

○ These annotations can be used to tune and train other spot detectors. They can 

also be used to validate or quantify the performance of the spot detector that this 

run of the pipeline attempted to optimize, or of another detector. 

○ If the optimized spot detector’s performance is satisfactory, the detector may be 

useful for other images. If the detector’s performance is unsatisfactory, the 

parameters can be modified and the detector can be reevaluated against the 

worker annotations. 

Two key aspects of the pipeline should be highlighted: First, individual segments of the 

pipeline may be used separately for assorted purposes. For example, to simply get annotations 

for images without optimizing any spot detectors, the latter portion of the pipeline can be used to 

crop images and QC the crowdsourced annotations, with cropping based on spots detected by 

some detector that has been deemed sufficiently good for the purpose of preliminary detection. 

Second, workers tend to perform poorly on full-size raw images because there are too many 

spots and the spots are too close together. The pipeline includes a recursive cropping 

functionality that automatically breaks up each image into sections that the workers can handle 

effectively. 

Section III will discuss the limits of what workers can accurately annotate with regard to 

brightness, density, number of spots, etc. Section IV will further discuss ways to prepare images 

to optimize worker performance. 
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Results 

Worker performance is limited by spot crowding, visibility, and quantity 

We crowdsource annotations using Quanti.us (30) and perform clustering and quality 

control on the annotations to arrive at consensus coordinates for spot locations. Each image sent 

to Quanti.us is annotated by 25 workers (Supplementary Text 2). The resulting annotations are 

then clustered via Affinity Propagation to find the initial set of annotation clusters - this 

algorithm does not require ​a priori​ knowledge of the number of clusters.​(32,33) ​ Given that some 

of the annotations do not correspond to spot locations and some of the annotations cover adjacent 

spots (Supplementary Figure 3), we next perform quality control to identify false positives and 

unmix adjacent clusters. 

To determine if a cluster is a false positive, we threshold the clusters by the number of 

annotations in the cluster (Fig. 2a). In annotations of synthetic images we observed that clusters 

are distributed bimodally (Supplementary Text 3) by number of annotations. Clusters with few 

annotations tend to be incorrect (that is, the cluster centroid is not within a given threshold pixel 

radius of the closest actual spot location). So for the first QC step, clusters are sorted by number 

of annotations and one-dimensional ​k-​means with ​k ​= 2 is applied to find the threshold number of 

annotations. All clusters with fewer annotations than this threshold are removed. This 

thresholding method tends to be aggressive; we would rather miss spots than “detect” incorrect 

spots, since in reality it is inevitable that some spots will be missed anyway when signals are too 

faint or overlap. In an experiment with synthetic images, this QC step yielded 100%, 100%, and 

100% precision (40%, 13%, and 7% increase compared with the precision obtained without 

thresholding clusters by number of annotations) and 51%, 78%, and 99% recall (19%, 12%, and 
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0% decrease) for images with mean SNR = 5, 10, and 15 respectively (Supplementary Figure 

4a).  

To detect whether a cluster corresponds to multiple spots that are very close together, we 

threshold the clusters by the fraction of unique workers who contribute multiple times to the 

cluster. We observed that when spots are very close together, the clusters associated with 

multiple spots may clump together into one annotation cluster, but some workers do detect that 

the spots are supposed to be separate and those workers contribute more than one click within the 

region that the clustering algorithm detects as one cluster (See pink clusters in Supplementary 

Figure 5). The threshold fraction is found between the main mode of the distribution and the tail 

by identifying the point of steepest increase in histogram values. All clusters with a greater 

fraction of multiple-clicking workers than this threshold fraction are removed. Therefore, the 

fraction of workers who contribute only once can predict whether a cluster is actually clumpy, 

even if sometimes the actual spots are so close that most of the workers looking at them interpret 

them as one spot and it is not possible to identify that cluster as clumpy (Figure 2b). We declump 

each clumpy cluster using two-dimensional ​k​-means (Figure 2b).  In the same experiment with 

synthetic images, this QC step yielded 64%, 88%, and 94% precision (4%, 1%, and 0% increase 

over results without QC) and 67%, 87%, and 96% recall (3%, 3%, and 3% decrease) for images 

with mean SNR = 5, 10, and 15 respectively (Supplementary Figure 4b). 

Performing declumping after false positive detection boosts recall. In the same 

experiment with synthetic images, removing small clusters and separating clumpy clusters 

yielded 100%, 100%, and 100% precision (40%, 13%, and 7% increase in precision) and 51%, 
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78%, and 98% recall (19%, 12%, and 2% decrease in recall) for images with mean SNR = 5, 10, 

and 15 respectively (Figure 2c).  

 

 

Figure 2: QC, including cluster size thresholding and declumping, improves precision, 
sometimes at the expense of recall, for images with lower SNR values. (A) ​Clusters with fewer 
workers tend to be incorrect. Sort clusters by number of unique workers annotating them.​ ​The 
fraction of workers who contribute once can predict whether a cluster is clumpy (it corresponds 
to multiple image spots that are close together). ​(B)​ Sort clusters by fraction of unique workers 
contributing. Isolate and declump the clusters where many workers contribute more than once, 
as the inset demonstrates using real data.​ ( ​Inset – orange circle: original centroid, green and 
purple circles: new centroids found by declumping, green and purple dots: worker annotations 
assigned to new centroids by declumping, stars: actual spot locations.) Clumps are declumped 
using 2D k-means. For more examples of declumped clusters, see Supplementary Figure 1.​ ​(C) 
Thresholding clusters by the number of annotations in the cluster and by the fraction of unique 
workers who contribute multiple times to the cluster improved recall by 17%, while decreasing 
precision by 11% on average, in an experiment with images of mean SNR = 5, 10, and 15 and 
average nearest neighbor distance (NND) ​≈​ 11.5, 15, and 20.5. 

 

We observed some limits on the utility of QC. When spot visibility was poor, nearest 

neighbor distance was very small, or an image had too many spots, QC was unable to improve 
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precision and recall to acceptable levels since the quality of the raw annotations was so low. 

Using the NND-varying and SNR-varying features of our SpotImage tool, we tested the limits of 

spot visibility and crowdedness that workers can accurately annotate. In an experiment with 

synthetic images of mean SNR = 3, 5, 7, 9, and 11, and spot size = 0.5, 1.0, and 1.75 pixels 

(Supplementary Figure 6a), small spot sizes required larger mean SNR to achieve recall greater 

than 50%. For example, when the spot size (sigma of a gaussian fit to the intensity) was half a 

pixel (about 5 microns), recall was zero until SNR >  9 (Supplementary Figure 6b). At lower 

SNR values, even spots with large nearest neighbor distances tended to be missed, and as spot 

SNR increased, the mean NND of undetected spots decreased (Supplementary Figure 6c). We 

observed that the radius of the symbol that Quanti.us uses to mark spots identified by workers 

limits the minimum nearest neighbor distance between spots which we can reasonably expect 

workers to discern to 4% of the image’s width. When spots are closer than this quantity, the 

mark on one spot obscures neighboring spots. We tested inverting the images (dark spots on a 

light background) before submitting them to Quanti.us to see if this would improve worker 

performance. A linear regression between recall with inversion and recall without inversion 

resulted in a slope of 1.004, with a Pearson’s correlation coefficient of ​r​ = 0.985 (Supplementary 

Figure 6d), making it clear that inversion is not helpful. 

We also sought to understand the total number of spots that workers can annotate in one 

image. In an experiment with SNR = 3, 5, 7 and number of spots per image between 50 and 225, 

the number of clicks per worker per image increased as the number of spots in the image 

increased, until it leveled off at around 120 on average, suggesting that 120 was the upper bound 

on the total number of spots workers were willing to click for the payment offered in these 
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experiments ($0.05 per image) (Supplementary Figure 7a). As the number of spots increased 

beyond 50, the fraction of spots that workers were willing to click decreased. On average, 

workers annotated almost all spots for images with 50 spots but only about 60% of all spots for 

images with 200 spots (Supplementary Figure 7b). However, even though each worker annotated 

a smaller fraction of the spots as the number of spots in the image increased, most spots were 

still getting annotations from at least half the workers (Supplementary Figure 7c). In other words, 

some workers detected spots which other workers missed. 

These effects of spot visibility, crowding, and quantity on worker performance are 

intuitive, but these results provide quantitative metrics to understand worker performance as a 

function of image quality, and objective guidelines for image pre-processing that allow us to 

optimize the performance for a given image dataset. In the next section, we present the methods 

we developed to prepare images which workers are more likely to annotate reliably. 

 

Image pre-processing improves workers’ ability to annotate images reliably 

Given the guidelines we identified for the spot density, total number of spots and number 

of spots that can be accurately annotated in a given image, raw ​in situ​ transcriptomics images 

would need to be pre-processed in order to meet the guidelines.  

In the first preparation step, the raw images are pre-processed with filters to enhance 

contrast between spots and the rest of the image (Figure 3a). This process is described in greater 

detail in Supplementary Text 4. In the second step, the filtered images are automatically 

subdivided (“autocropped”) to produce child images with sufficiently small spot densities and 
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large nearest neighbor distances to be effectively annotated by workers (Figure 3b).  In an 1

experiment with a real single molecule fluorescence ​in situ​ hybridization (smFISH) image with 

268 spots of typical contrast and density, annotated by 25 workers, applying cropping resulted in 

precision and recall of 97% and 87%, improvements of 50% and 64% respectively, over the 

un-cropped image (Figure 3c). 

1 More details in Supplementary Information. 
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Figure 3: Images are filtered and autocropped so that they are easier for workers to annotate. 
(A) ​Raw images are pre-processed with a gaussian high pass filter, a Laplace filter, and a 
maximum intensity projection over z. ​(B) ​Crowded spots detected and bound. Rough, first-pass 
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spot-calling enables the detection of crowded spots and subsequent autocropping. ​(C) ​True 
positive = consensus in concordance with expert annotation, false positive = consensus not in 
concordance with expert annotation, and false negative = no consensus found for an expert 
annotation. The distance between a correct consensus annotation and the nearest expert 
annotation is no more than the user-defined correctness threshold. The distance between a 
detected expert annotation and the nearest consensus annotation is also no more than the 
user-defined correctness threshold. ​(D) ​Applying cropping resulted in precision and recall of 
97% and 87%, improvements of 50% and 64%, respectively, over the un-cropped image.  

 

There are limits on how much an image can be cropped to increase recall. Somes spots 

are so close together that the spots themselves appear to clump in the parent image, so no amount 

of zooming in would enable them to be separated.  The user should also keep in mind that in the 

Quanti.us website cropped images are upscaled by interpolation to a size which workers can 

annotate, so the pixels in the upscaled image which the workers are annotating are not a perfect 

representation of the original data. The user should also consider the relationship between the 

number of crops and the overall cost of the experiment. Annotations from Quanti.us cost only 

five cents per worker per image (in 2020), but many workers may be needed to ensure good 

coverage and proper clustering and de-clumping of clusters. 

 

Helper images 

Because images from experiments using RCA (Rolling Circle Amplification, an ​in situ 

transcriptomics chemistry which is described in Supplementary Text 5) have a lot of variation in 

spot sizes, we sought to investigate whether we could improve the quality of the worker 

annotations by providing better guidance at the crowdsourcing interface, and whether including 

the parent image with the crops removed in the stack (e.g. second image from left, 

Supplementary Figure 8B) affects worker accuracy. The parent image appears to the workers on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.14.201384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.201384
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

the Quanti.us interface at the same size as the crops, so the spots in the parent image appear 

much smaller to the workers than the spots in the crops. Additionally, we designed four different 

helper images – two variants, with or without circles drawn around the correct spots – which 

illustrate what the workers should click (Supplementary Figure 10).  

On average, the inclusion of helper images increased precision by 14% (95% with helper 

images and 81% without) and decreased recall by 16% (59% with helper images and 76% 

without) (Supplementary Figure 11). When the spots in the helper image were circled, precision 

was 0.4% higher and recall was 3.4% higher. Workers expressed little preference between the 

two variants of helper images. On average, precision and recall with images of the first variant 

were only 0.5% greater and 4% less than precision and recall of the second variant, respectively. 

However, including the parent image in the stack, which workers would also annotate, decreased 

both precision and recall by 6% and 4% respectively. 

These results suggest that the workers were less likely to click spots they felt unsure 

about when helper images were provided. These results also demonstrate that for some images it 

is disadvantageous to show the workers the parent image, as it confuses them because of the 

drastic difference in scale between the parent image and the crops. 

These image preparation steps complete the pipeline described in Section II (Figure 1). 

The performance of the pipeline will now be demonstrated with a vignette, using the rolling 

circle amplification (RCA) chemistry. 

 

The results of validating spot calling algorithms using crowdsourced ground 

truth are comparable to the results using expert annotations 
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We tested the usage of crowdsourced annotations resulting from the pipeline as ground 

truth to validate spot calling algorithms. Using available images from RCA experiments, we 

sought to evaluate how well crowdsourced annotations agree with expert annotations to assess 

the generalizability of the tuned spot-calling parameters. 

To produce the crowdsourced annotations, the inputs to the annotation generation 

pipeline were: One sample image with the RCA chemistry, expert spot location annotations for 

that image, and three test images without annotations. All images were downloaded from an ​in 

situ ​ sequencing (ISS) experiment in the starfish database.​(34) ​ The spots which an expert had 

annotated in the sample image were analyzed to extract spot detection parameters intaken by 

starfish’s BlobDetector method, which implements the Laplacian of Gaussian spot detection 

approach. These parameters were used for first-pass blob detection on the test images, and the 

resulting blob coordinates were used to autocrop the test images. All crops were then sent to 

Quanti.us to be annotated by 25 workers each. Further details are explained in Supplementary 

Text 6. 

We sought to evaluate how well the resulting crowdsourced annotations agreed with 

expert annotations. Precision and recall for the consensus annotations, based on an expert’s 

evaluations of the test images, were 95% and 70%, 92% and 89%, and 81% and 76% for images 

ISS_rnd0_ch1_z0, ISS_rnd0_ch3_z0, and ISS_rnd1_ch1_z0 respectively (Figure 4). The Jaccard 

similarity indices (intersection over union) between the consensus annotations and the expert 

annotations were 71%, 85%, and 68%, respectively. We then sought to understand how well the 

consensus annotations and the expert annotations agreed with each other by evaluating the level 

of concurrence between different experts and between the same expert annotating the same 
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image twice six months apart (at times t​0​ and t​1​= t​0​ + 6 mos.)(Supplementary Text 7). The 

Jaccard indices (intersection over union) for Expert #1 at t​0​ and Expert #1 at t​1​, Expert #1 at t​0 

and Expert #2 at t​1​, and Expert #1 at t​1​ and Expert #2 at t​1​ were 73%, 78%, and 82% respectively 

(Supplementary Figure 12). Thus, the agreement we saw between the consensus and expert 

annotations for the RCA images are in the same range as the intra- and inter-expert Jaccard 

indices. 

 

 

Figure 4: The ​in situ ​transcriptomics annotation pipeline was tested using RCA (Rolling 
Circle Amplification)  images from an ​in situ ​sequencing (ISS) experiment in the starfish 
database.​ Worker consensus annotations for RCA test image ISS_rnd0_ch3_z0 achieved 92% 
precision and 89% recall based on expert consensus annotations. The Jaccard similarity index 
(intersection over union) between the consensus annotations and the expert annotations was 
0.85. 
 

We also sought to assess the generalizability of the tuned spot-calling parameters and the 

potential utility of using crowd-sourced annotations to generate ground truth for a large number 

of images. To do this, we ran starfish’s BlobDetector method using the spot parameters which 

had been extracted in this vignette on thirteen other images from starfish’s RCA dataset which 
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had not been annotated by experts. By visual inspection, these images had a greater variation in 

spot size, brightness, and quantity than the other images. As ground truth, we used consensus 

annotations for these images. The precision of the BlobDetector method was 82 ​±​ 10%, and the 

recall was 68  ​± ​17% (mean ​± standard deviation, ​Supplementary Figure 14). These results 

suggest that when a set of spot parameters tuned to a particular channel and field of view for a 

chemistry are used for other channels and fields of view for the same chemistry, the spots 

detected are likely to be correct but fewer spots may be detected. 

The finding that the Jaccard indices for the consensus and expert annotations for the RCA 

images were similar to the  intra- and inter-expert Jaccard indices strongly suggests that 

consensus annotations can be used in place of expert annotations. We also found that spot 

parameters found for a given chemistry using consensus annotations as ground truth can be used 

to automatically find spots with precision (82 ​±​ 10%, mean ​± standard deviation ​) comparable to 

the agreement between two experts annotating the same image (82%). Together, these findings 

are especially useful for the processing of large datasets that would be infeasible for an expert to 

annotate by hand. 

 

Crowdsourced ground truth is useful for tuning and validating spot calling 

parameters  

This section tests the usage of crowdsourced annotations resulting from the pipeline as 

ground truth to tune and validate their parameters. Ground truth is essential for testing how well 

a spot-calling algorithm generalizes to other ​in situ​ transcriptomics chemistries and tuning 

parameters (Supplementary Text 8). We tested whether consensus and expert annotations 
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function similarly well as ground truth to tune parameters for spot-calling algorithms, using the 

RCA dataset from starfish.(31) We also bootstrapped our consensus and expert annotations for 

the RCA dataset to explore the minimum number of ground truth annotations needed to 

effectively tune a spot-calling algorithm. 

Usage of consensus annotations and expert annotations as ground truth to tune the LMP 

(starfish’s LocalMaxPeakfinder) stringency parameter, which controls the intensity cutoff to 

detect a peak, resulted in similar precision vs. stringency trends, as well as recall vs. stringency 

trends (Figure 5). The optimal stringency parameter found using consensus annotations as 

ground truth resulted in a lower precision and slightly higher recall (89.4% and 95.4% 

respectively, compared with 94.3% and 94.8% from using expert annotations as ground truth – 

5.3% and 0.63% difference respectively). These results reflect the fact that some of the spots 

annotated by the worker consensus were not annotated by the more conservative expert. 
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Figure 5. The optimal “stringency” parameter for starfish’s LocalMaxPeakfinder (LMP) with 
Rolling Circle Amplification (RCA) images from the starfish database resulted in lower 
precision and slightly higher recall (89.4% and 95.4% respectively) when consensus 
annotations were used as ground truth for parameter tuning, compared with 94.3% and 94.8% 
precision and recall which were achieved when expert annotations were used as ground truth 
for parameter tuning. 

 

Supplementary Text 9 shows that the training behavior of the expert and crowdsourced 

annotations is very similar. That is, performance converges to roughly the same level and at 

roughly the same rate.  Fifteen ground truth annotations were enough to get 99.1% and 98.1% of 

the maximum precision performance when the annotations were produced by experts and worker 

consensus, respectively. With the same number of annotations, 97.6% and 96.6% of the 

maximum recall performance was achieved with annotations produced by experts and worker 

consensus, respectively. Together with the result that consensus annotations and expert 

annotations resulted in similar precision vs. stringency and recall vs. stringency trends when used 

as ground truth to tune the LMP stringency parameter (Figure 5), this suggests that consensus 

annotations are a viable substitute for expert-generated ground truth for both parameter tuning 

and algorithm validation. 

 

Discussion 

We developed INSTA, a pipeline to prepare ​in situ​ transcriptomics images for 

crowdsourced annotation and integrated these pipeline components into an open-source toolkit 

which takes an ​in situ​ image dataset or a spot detector as input, prepares the images for 

crowdsourcing annotation, receives the annotations, and outputs consensus locations for the 

spots and/or optimized parameters for the detector. The pipeline was designed to be flexible 
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enough to easily include components of the user’s choice (e.g. custom crowdsourced annotation 

ingestion classes) and to accommodate manual user intervention at different points in the 

pipeline. We also created a tool (SpotImage) to generate simulated ​in situ​ images with adjustable 

parameters, such as spot density and SNR. Using simulated and real ​in situ ​ transcriptomics 

images, we developed QC rules for crowdsourced annotations based on observable aspects of the 

annotation data, such as cluster characteristics, and used these rules to develop QC methods to 

optimize consensus precision and recall. We also gained insight into critical aspects of how the 

quantity, size, SNR, and crowdedness of spots in images all influence worker behavior and thus 

annotation quality.  

We demonstrated the pipeline using RCA images, resulting in consensus annotations with 

high precision and recall compared to expert annotations. We also demonstrated that consensus 

and expert annotations are equally suitable as ground truth. While consensus annotations are 

useful when large amounts of ground truth are needed to check or validate the performance of 

spot-calling algorithms, a few dozen expert annotations alone may be sufficient to tune a 

spot-calling algorithm such as Starfish’s BlobDetector, even if that would not be enough to 

properly validate the algorithm (obtain statistically significant measures of precision and recall). 

Crowdsourced ground truth is vital for validating algorithm performance on a large dataset with 

many images, or even just one image with thousands of spots. 

The pipeline only requires user intervention for the reviewing and editing of autocrops. 

We believe it is particularly important for the user to have the option to intervene at this stage 

rather than leave the pipeline as an end-to-end black box. While it would be theoretically ideal to 

automatically learn cropping parameters which maximize accuracy, minimize the number of 
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crops used (and therefore cost incurred), and generalize perfectly to all images of a given 

chemistry, spot distribution characteristics vary too much between the individual ​in situ 

transcriptomics images of most chemistries for this to be reasonable. The researcher needs the 

opportunity to balance the tradeoff between crop detail and crowdsourcing cost. If a cheap 

experiment yields a very large dataset with many images, a user may be less concerned with 

maximizing data extracted from each image, but if each image costs more to produce, the 

researcher might wish to be more detailed with cropping (Supplementary Text 10). 

Even without budgetary constraints, auto-cropping is only useful to a certain extent 

because zooming and scaling crops up to the size where they can be displayed for annotation 

inherently involves interpolation; at a certain point the workers may be annotating a crop that is 

not faithful to the original image. The toolkit user should be able to intervene before this point. 

INSTA can be used to annotate publicly-available image datasets, especially for 

researchers who do not have access to wet labs. The sample data available through starfish would 

be a good starting point. We will update pipeline usage and guidelines if we experiment with 

processing images of other, more challenging chemistries, and strive to make the pipeline usage 

as generalizable to other chemistries as possible.  
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