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Abstract

Recent advancements in in situ methods, such as multiplexed in sifzu RNA hybridization
and in situ RNA sequencing, have deepened our understanding of the way biological processes
are spatially organized in tissues. Automated image processing and spot-calling algorithms for
analyzing in situ transcriptomics images have many parameters which need to be tuned for
optimal detection. Having ground truth datasets (images where there is very high confidence on
the accuracy of the detected spots) is essential for evaluating these algorithms and tuning their
parameters.

We present a first-in-kind open-source toolkit and framework for in situ transcriptomics
image analysis that incorporates crowdsourced annotations, alongside expert annotations, as a
source of ground truth for the analysis of in situ transcriptomics images. The kit includes tools
for preparing images for crowdsourcing annotation to optimize crowdsourced workers’ ability to
annotate these images reliably, performing QC on worker annotations, extracting candidate
parameters for spot-calling algorithms from sample images, tuning parameters for spot-calling
algorithms, and evaluating spot-calling algorithms and worker performance. These tools are
wrapped in a modular pipeline with a flexible structure that allows users to take advantage of
crowdsourced annotations from any source of their choice. We tested the pipeline using real and
synthetic in situ transcriptomics images and annotations from the Amazon Mechanical Turk
system obtained via Quanti.us. Using real images from in situ experiments and simulated images
produced by one of the tools in the kit, we studied worker sensitivity to spot characteristics and
established rules for annotation quality control (QC). We explored and demonstrated the use of

ground truth generated in this way for validating spot-calling algorithms and tuning their
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parameters, and confirmed that consensus crowdsourced annotations are a viable substitute for

expert-generated ground truth for these purposes.

Data Availability

The In Situ Transcriptomics Annotation (INSTA) pipeline software is available from

https://github.com/czbiohub/instapipeline. The SpotIlmage software is available from

https://github.com/czbiohub/spotimage. The figures and data for this project are available from

https://github.com/czbiohub/instapaper.

Introduction

Diversity of form follows diversity of function in biological tissues. The anatomy and
cellular properties of each tissue come from cell-specific gene expression patterns.(1) To
understand important biological processes, such as development, wound healing, and disease, it
is necessary to study the 3-dimensional spatial architecture of biological tissues and their gene
expression patterns at the cellular (or even subcellular) level. Recent advancements in in situ
methods(2-9) (e.g., DNA(10-13), RNA(10,14,15), and protein(10,16) measurements in tissue
sections) have deepened our understanding of the way biological processes are spatially
organized in tissues. In particular, recent in situ transcriptomics tools, such as multiplexed in situ
RNA hybridization and in situ RNA sequencing, have facilitated the spatial mapping of gene
expression with subcellular resolution.(1)

In situ transcriptomics methods utilize the binding of fluorescent probes to specific RNA

target molecules with high complementarity within cultured cells and tissue sections. Extracting
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the positions of the fluorescent probes, which appear in microscopy images as bright spots,
presents a key image processing challenge. Automated spot detection is not trivial due to noise
arising from light scattering and background autofluorescence.(17) Although automated image
processing and spot-calling algorithms exist (for brevity, from now on, we will use the term
“spot-calling algorithm” to refer to the whole image processing and spot-finding pipeline), they
have many parameters which need to be tuned for optimal detection.(18-22) Having ground truth
datasets (images where there is very high confidence on the accuracy of the detected spots) is

essential for evaluating these algorithms and tuning their parameters.

Studies typically use synthetic images to evaluate or test the performance of any spot
detector because ground truth does not inherently exist for real images.(17) The typical way of
generating ground truth datasets for real images is having an expert inspect the images and
annotate the valid spot locations by hand.(17) In cases where manual annotation of a large in situ
transcriptomics image dataset by an expert is unfeasible, it is necessary to have alternative
sources of ground truth. One proposed solution to this problem is iterative human-in-the-loop
deep learning workflows, where ground truth generated by spot-calling algorithms can be
manually refined.(23) Since valid spot locations can often be apparent even to minimally-trained,
non-expert human eyes, we propose that crowdsourcing is a feasible way to generate large, high

quality ground truth datasets.

Crowdsourcing refers to the use of web-based systems to recruit random volunteers or
paid workers to perform tasks remotely. Recent work has indicated that carefully crowdsourced

annotations can expedite data processing tasks that have a visual component. Volunteer-based
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citizen science has made substantial contributions to areas of biology from proteomics(24-26) to
ecology(27). When tasks are less intrinsically interesting to volunteers, minimally-trained
workers can complete tasks for small payments through crowdsourcing platforms such as
Amazon’s Mechanical Turk (MTurk), and the consensus annotations (across multiple workers or
“turkers”) can be highly comparable with expert annotations, and sufficiently reliable for use as
training data for detection algorithms.(27-29) Therefore, we hypothesized that consensus from
crowdsourced annotations can be used as a substitute for ground truth to tune and benchmark
spot-calling algorithms. However, there are no published in situ transcriptomics pipelines that
can incorporate ground truth from crowdsourced annotations. Such pipelines should have
mechanisms to prepare images for annotation, process annotations, establish consensus from the

annotations, and generate annotation performance metrics.

In this paper, we present INSTA (IN situ Sequencing and Transcriptomics Annotation),
an open-source toolkit and framework that incorporates crowdsourced annotations alongside
expert annotations as a source of ground truth for the analysis of in situ transcriptomics images.
Using real images from in situ experiments, and simulated images produced by a tool we
developed to generate synthetic, customizable in situ transcriptomics images, we explored
worker sensitivity to the size, quantity, and density of spots, and we established rules for
annotation quality control. Based on these rules, we developed tools for preparing images to
optimize workers’ ability to annotate these images reliably, performing quality control (QC) on
worker annotations to get maximum value from them, extracting candidate parameters for
spot-calling algorithms from sample images, tuning parameters for spot-calling algorithms, and

evaluating spot-calling algorithms and worker performance. We wrapped these tools in a
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modular pipeline with a flexible structure that allows users to take advantage of crowdsourced
annotations. The toolkit includes an annotation ingestion class designed to work with
Quanti.us(28), and it can be easily adapted to work with any crowdsourcing system by creating
custom annotation ingestion classes. We tested the pipeline using images from the in situ
transcriptomics dataset from starfish(30,31), a Python library for analysis of image-based
transcriptomics data developed by the Chan Zuckerberg Initiative, and annotations from MTurk
via Quanti.us. We explored and demonstrated the use of ground truth generated in this way for
validating spot-calling algorithms and tuning their parameters, and confirmed that consensus
crowdsourced annotations are a viable substitute for expert-generated ground truth for these
purposes.

In addition to this pipeline, we created a tool to generate synthetic in situ images, which
we call Spotlmage. This tool receives background images from real in situ experiments and adds
simulated spots to them. The user can vary spot characteristics including size, shape, location,
distribution throughout the image, and signal to noise ratio (SNR). These parametrized synthetic
images are very useful for testing crowdsourced annotations and spot calling algorithms. More

details in Supplementary Text 1.

Materials and Methods

Structure of a modular pipeline for tuning in sifu transcriptomics image

processing with crowdsourced annotations

This section provides a high-level overview of INSTA, a pipeline for crowdsourcing

annotations and for tuning and evaluating spot-calling methods (Figure 1). Greater detail will be
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provided in Sections III and IV, and examples with two different in sifu transcriptomics

chemistries are provided in Sections V and VI.
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Figure 1: INSTA (IN situ Sequencing and Transcriptomics Annotation) is a pipeline for

tuning and validating spot detection methods using crowdsourced annotations.

The input to the pipeline consists of images from a particular in situ transcriptomics

chemistry and a spot detection algorithm to be optimized for that chemistry. An expert
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designates one image as a representative image for the in situ chemistry used, and annotates it.
The remaining images are assigned to the test dataset..

From this small amount of expert input, the tool learns approximately what a spot in this
chemistry should look like. That is, a script extracts parameters which characterize the brightness
(intensity) and size (sigma of a 2D Gaussian approximation of a spot) profiles of the spots of that
chemistry. These parameters are passed to a blob detector that uses scikit-image’s
implementation of the Laplacian of Gaussian algorithm.(18)

The pipeline then processes each test image separately. For each test image:

o The blob detector uses the spot parameters it learned from parameter extraction to
do rough, first-pass spot-calling.

o A script detects the crowded regions and recursively crops the images until the
sub-images are sufficiently uncrowded that a human worker should easily be able
to click on all the spots without getting frustrated or tired.

o All the pieces of the image — the crops and the parent images — are sent to
Quanti.us, which is a platform for crowdsourced image annotation through
Amazon’s Mechanical Turk platform. Custom crowdsourced data ingestion
classes can be written to allow the pipeline to work with any crowdsourced
annotation system.

o Each image is annotated by a user-defined number of workers (typically 20 to 30).
In the annotation analysis stage, all the crowdsourced annotations are clustered

and QC is performed based on characteristics of the spots and clusters to produce
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consensus annotations, which are then reassembled to produce an original image
that has been annotated with high precision and recall.

o These annotations can be used to tune and train other spot detectors. They can
also be used to validate or quantify the performance of the spot detector that this
run of the pipeline attempted to optimize, or of another detector.

o If the optimized spot detector’s performance is satisfactory, the detector may be
useful for other images. If the detector’s performance is unsatisfactory, the
parameters can be modified and the detector can be reevaluated against the
worker annotations.

Two key aspects of the pipeline should be highlighted: First, individual segments of the
pipeline may be used separately for assorted purposes. For example, to simply get annotations
for images without optimizing any spot detectors, the latter portion of the pipeline can be used to
crop images and QC the crowdsourced annotations, with cropping based on spots detected by
some detector that has been deemed sufficiently good for the purpose of preliminary detection.
Second, workers tend to perform poorly on full-size raw images because there are too many
spots and the spots are too close together. The pipeline includes a recursive cropping
functionality that automatically breaks up each image into sections that the workers can handle
effectively.

Section III will discuss the limits of what workers can accurately annotate with regard to
brightness, density, number of spots, etc. Section IV will further discuss ways to prepare images

to optimize worker performance.
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Results

Worker performance is limited by spot crowding, visibility, and quantity

We crowdsource annotations using Quanti.us (30) and perform clustering and quality
control on the annotations to arrive at consensus coordinates for spot locations. Each image sent
to Quanti.us is annotated by 25 workers (Supplementary Text 2). The resulting annotations are
then clustered via Affinity Propagation to find the initial set of annotation clusters - this
algorithm does not require a priori knowledge of the number of clusters.(32,33) Given that some
of the annotations do not correspond to spot locations and some of the annotations cover adjacent
spots (Supplementary Figure 3), we next perform quality control to identify false positives and
unmix adjacent clusters.

To determine if a cluster is a false positive, we threshold the clusters by the number of
annotations in the cluster (Fig. 2a). In annotations of synthetic images we observed that clusters
are distributed bimodally (Supplementary Text 3) by number of annotations. Clusters with few
annotations tend to be incorrect (that is, the cluster centroid is not within a given threshold pixel
radius of the closest actual spot location). So for the first QC step, clusters are sorted by number
of annotations and one-dimensional k-means with k = 2 is applied to find the threshold number of
annotations. All clusters with fewer annotations than this threshold are removed. This
thresholding method tends to be aggressive; we would rather miss spots than “detect” incorrect
spots, since in reality it is inevitable that some spots will be missed anyway when signals are too
faint or overlap. In an experiment with synthetic images, this QC step yielded 100%, 100%, and
100% precision (40%, 13%, and 7% increase compared with the precision obtained without

thresholding clusters by number of annotations) and 51%, 78%, and 99% recall (19%, 12%, and
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0% decrease) for images with mean SNR =5, 10, and 15 respectively (Supplementary Figure
4a).

To detect whether a cluster corresponds to multiple spots that are very close together, we
threshold the clusters by the fraction of unique workers who contribute multiple times to the
cluster. We observed that when spots are very close together, the clusters associated with
multiple spots may clump together into one annotation cluster, but some workers do detect that
the spots are supposed to be separate and those workers contribute more than one click within the
region that the clustering algorithm detects as one cluster (See pink clusters in Supplementary
Figure 5). The threshold fraction is found between the main mode of the distribution and the tail
by identifying the point of steepest increase in histogram values. All clusters with a greater
fraction of multiple-clicking workers than this threshold fraction are removed. Therefore, the
fraction of workers who contribute only once can predict whether a cluster is actually clumpy,
even if sometimes the actual spots are so close that most of the workers looking at them interpret
them as one spot and it is not possible to identify that cluster as clumpy (Figure 2b). We declump
each clumpy cluster using two-dimensional k-means (Figure 2b). In the same experiment with
synthetic images, this QC step yielded 64%, 88%, and 94% precision (4%, 1%, and 0% increase
over results without QC) and 67%, 87%, and 96% recall (3%, 3%, and 3% decrease) for images
with mean SNR =5, 10, and 15 respectively (Supplementary Figure 4b).

Performing declumping after false positive detection boosts recall. In the same
experiment with synthetic images, removing small clusters and separating clumpy clusters

yielded 100%, 100%, and 100% precision (40%, 13%, and 7% increase in precision) and 51%,
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78%, and 98% recall (19%, 12%, and 2% decrease in recall) for images with mean SNR =5, 10,

and 15 respectively (Figure 2c).
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Figure 2: QC, including cluster size thresholding and declumping, improves precision,
sometimes at the expense of recall, for images with lower SNR values. (A) Clusters with fewer

workers tend to be incorrect. Sort clusters by number of unique workers annotating them. The
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fraction of workers who contribute once can predict whether a cluster is clumpy (it corresponds
to multiple image spots that are close together). (B) Sort clusters by fraction of unique workers
contributing. Isolate and declump the clusters where many workers contribute more than once,

as the inset demonstrates using real data. (Inset — orange circle: original centroid, green and

purple circles: new centroids found by declumping, green and purple dots: worker annotations
assigned to new centroids by declumping, stars: actual spot locations.) Clumps are declumped
using 2D k-means. For more examples of declumped clusters, see Supplementary Figure 1. (C)
Thresholding clusters by the number of annotations in the cluster and by the fraction of unique
workers who contribute multiple times to the cluster improved recall by 17%, while decreasing

precision by 11% on average, in an experiment with images of mean SNR = 5, 10, and 15 and

average nearest neighbor distance (NND) = 11.5, 15, and 20.5.

neighbor distance was very small, or an image had too many spots, QC was unable to improve

We observed some limits on the utility of QC. When spot visibility was poor, nearest
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precision and recall to acceptable levels since the quality of the raw annotations was so low.
Using the NND-varying and SNR-varying features of our Spotlmage tool, we tested the limits of
spot visibility and crowdedness that workers can accurately annotate. In an experiment with
synthetic images of mean SNR =3, 5,7, 9, and 11, and spot size = 0.5, 1.0, and 1.75 pixels
(Supplementary Figure 6a), small spot sizes required larger mean SNR to achieve recall greater
than 50%. For example, when the spot size (sigma of a gaussian fit to the intensity) was half a
pixel (about 5 microns), recall was zero until SNR > 9 (Supplementary Figure 6b). At lower
SNR values, even spots with large nearest neighbor distances tended to be missed, and as spot
SNR increased, the mean NND of undetected spots decreased (Supplementary Figure 6¢). We
observed that the radius of the symbol that Quanti.us uses to mark spots identified by workers
limits the minimum nearest neighbor distance between spots which we can reasonably expect
workers to discern to 4% of the image’s width. When spots are closer than this quantity, the
mark on one spot obscures neighboring spots. We tested inverting the images (dark spots on a
light background) before submitting them to Quanti.us to see if this would improve worker
performance. A linear regression between recall with inversion and recall without inversion
resulted in a slope of 1.004, with a Pearson’s correlation coefficient of » = 0.985 (Supplementary
Figure 6d), making it clear that inversion is not helpful.

We also sought to understand the total number of spots that workers can annotate in one
image. In an experiment with SNR =3, 5, 7 and number of spots per image between 50 and 225,
the number of clicks per worker per image increased as the number of spots in the image
increased, until it leveled off at around 120 on average, suggesting that 120 was the upper bound

on the total number of spots workers were willing to click for the payment offered in these
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experiments ($0.05 per image) (Supplementary Figure 7a). As the number of spots increased
beyond 50, the fraction of spots that workers were willing to click decreased. On average,
workers annotated almost all spots for images with 50 spots but only about 60% of all spots for
images with 200 spots (Supplementary Figure 7b). However, even though each worker annotated
a smaller fraction of the spots as the number of spots in the image increased, most spots were
still getting annotations from at least half the workers (Supplementary Figure 7c). In other words,
some workers detected spots which other workers missed.

These effects of spot visibility, crowding, and quantity on worker performance are
intuitive, but these results provide quantitative metrics to understand worker performance as a
function of image quality, and objective guidelines for image pre-processing that allow us to
optimize the performance for a given image dataset. In the next section, we present the methods

we developed to prepare images which workers are more likely to annotate reliably.

Image pre-processing improves workers’ ability to annotate images reliably

Given the guidelines we identified for the spot density, total number of spots and number
of spots that can be accurately annotated in a given image, raw in sifu transcriptomics images
would need to be pre-processed in order to meet the guidelines.

In the first preparation step, the raw images are pre-processed with filters to enhance
contrast between spots and the rest of the image (Figure 3a). This process is described in greater
detail in Supplementary Text 4. In the second step, the filtered images are automatically

subdivided (“autocropped”) to produce child images with sufficiently small spot densities and
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large nearest neighbor distances to be effectively annotated by workers (Figure 3b).l In an
experiment with a real single molecule fluorescence in situ hybridization (smFISH) image with
268 spots of typical contrast and density, annotated by 25 workers, applying cropping resulted in
precision and recall of 97% and 87%, improvements of 50% and 64% respectively, over the

un-cropped image (Figure 3c).

! More details in Supplementary Information.
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Figure 3: Images are filtered and autocropped so that they are easier for workers to annotate.
(A) Raw images are pre-processed with a gaussian high pass filter, a Laplace filter, and a
maximum intensity projection over z. (B) Crowded spots detected and bound. Rough, first-pass
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spot-calling enables the detection of crowded spots and subsequent autocropping. (C) True
positive = consensus in concordance with expert annotation, false positive = consensus not in
concordance with expert annotation, and false negative = no consensus found for an expert
annotation. The distance between a correct consensus annotation and the nearest expert
annotation is no more than the user-defined correctness threshold. The distance between a
detected expert annotation and the nearest consensus annotation is also no more than the
user-defined correctness threshold. (D) Applying cropping resulted in precision and recall of
97% and 87%, improvements of 50% and 64%, respectively, over the un-cropped image.

There are limits on how much an image can be cropped to increase recall. Somes spots
are so close together that the spots themselves appear to clump in the parent image, so no amount
of zooming in would enable them to be separated. The user should also keep in mind that in the
Quanti.us website cropped images are upscaled by interpolation to a size which workers can
annotate, so the pixels in the upscaled image which the workers are annotating are not a perfect
representation of the original data. The user should also consider the relationship between the
number of crops and the overall cost of the experiment. Annotations from Quanti.us cost only

five cents per worker per image (in 2020), but many workers may be needed to ensure good

coverage and proper clustering and de-clumping of clusters.

Helper images

Because images from experiments using RCA (Rolling Circle Amplification, an in situ
transcriptomics chemistry which is described in Supplementary Text 5) have a lot of variation in
spot sizes, we sought to investigate whether we could improve the quality of the worker
annotations by providing better guidance at the crowdsourcing interface, and whether including
the parent image with the crops removed in the stack (e.g. second image from left,

Supplementary Figure 8B) affects worker accuracy. The parent image appears to the workers on
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the Quanti.us interface at the same size as the crops, so the spots in the parent image appear
much smaller to the workers than the spots in the crops. Additionally, we designed four different
helper images — two variants, with or without circles drawn around the correct spots — which
illustrate what the workers should click (Supplementary Figure 10).

On average, the inclusion of helper images increased precision by 14% (95% with helper
images and 81% without) and decreased recall by 16% (59% with helper images and 76%
without) (Supplementary Figure 11). When the spots in the helper image were circled, precision
was 0.4% higher and recall was 3.4% higher. Workers expressed little preference between the
two variants of helper images. On average, precision and recall with images of the first variant
were only 0.5% greater and 4% less than precision and recall of the second variant, respectively.
However, including the parent image in the stack, which workers would also annotate, decreased
both precision and recall by 6% and 4% respectively.

These results suggest that the workers were less likely to click spots they felt unsure
about when helper images were provided. These results also demonstrate that for some images it
is disadvantageous to show the workers the parent image, as it confuses them because of the
drastic difference in scale between the parent image and the crops.

These image preparation steps complete the pipeline described in Section II (Figure 1).
The performance of the pipeline will now be demonstrated with a vignette, using the rolling

circle amplification (RCA) chemistry.

The results of validating spot calling algorithms using crowdsourced ground

truth are comparable to the results using expert annotations
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We tested the usage of crowdsourced annotations resulting from the pipeline as ground
truth to validate spot calling algorithms. Using available images from RCA experiments, we
sought to evaluate how well crowdsourced annotations agree with expert annotations to assess
the generalizability of the tuned spot-calling parameters.

To produce the crowdsourced annotations, the inputs to the annotation generation
pipeline were: One sample image with the RCA chemistry, expert spot location annotations for
that image, and three test images without annotations. All images were downloaded from an in
situ sequencing (ISS) experiment in the starfish database.(34) The spots which an expert had
annotated in the sample image were analyzed to extract spot detection parameters intaken by
starfish’s BlobDetector method, which implements the Laplacian of Gaussian spot detection
approach. These parameters were used for first-pass blob detection on the test images, and the
resulting blob coordinates were used to autocrop the test images. All crops were then sent to
Quanti.us to be annotated by 25 workers each. Further details are explained in Supplementary
Text 6.

We sought to evaluate how well the resulting crowdsourced annotations agreed with
expert annotations. Precision and recall for the consensus annotations, based on an expert’s
evaluations of the test images, were 95% and 70%, 92% and 89%, and 81% and 76% for images
ISS md0 chl z0, ISS rmd0 ch3 z0, and ISS rndl chl z0 respectively (Figure 4). The Jaccard
similarity indices (intersection over union) between the consensus annotations and the expert
annotations were 71%, 85%, and 68%, respectively. We then sought to understand how well the
consensus annotations and the expert annotations agreed with each other by evaluating the level

of concurrence between different experts and between the same expert annotating the same
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image twice six months apart (at times t, and t,= t, + 6 mos.)(Supplementary Text 7). The
Jaccard indices (intersection over union) for Expert #1 at t, and Expert #1 at t,, Expert #1 at t,
and Expert #2 at t,, and Expert #1 at t, and Expert #2 at t, were 73%, 78%, and 82% respectively
(Supplementary Figure 12). Thus, the agreement we saw between the consensus and expert
annotations for the RCA images are in the same range as the intra- and inter-expert Jaccard

indices.

Precision = 0.92 Recall = 0.89

o e e
® true positive true positive o ¢ "o®
® false positive false negative
' ) )

\ )
‘“ ® ‘. %.
L

o (7] o"‘

Figure 4: The in situ transcriptomics annotation pipeline was tested using RCA (Rolling
Circle Amplification) images from an in situ sequencing (ISS) experiment in the starfish
database. Worker consensus annotations for RCA test image ISS rnd0 _ch3 z0 achieved 92%
precision and 89% recall based on expert consensus annotations. The Jaccard similarity index
(intersection over union) between the consensus annotations and the expert annotations was

0.85.

We also sought to assess the generalizability of the tuned spot-calling parameters and the
potential utility of using crowd-sourced annotations to generate ground truth for a large number
of images. To do this, we ran starfish’s BlobDetector method using the spot parameters which

had been extracted in this vignette on thirteen other images from starfish’s RCA dataset which
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had not been annotated by experts. By visual inspection, these images had a greater variation in
spot size, brightness, and quantity than the other images. As ground truth, we used consensus
annotations for these images. The precision of the BlobDetector method was 82 + 10%, and the
recall was 68 + 17% (mean + standard deviation, Supplementary Figure 14). These results
suggest that when a set of spot parameters tuned to a particular channel and field of view for a
chemistry are used for other channels and fields of view for the same chemistry, the spots
detected are likely to be correct but fewer spots may be detected.

The finding that the Jaccard indices for the consensus and expert annotations for the RCA
images were similar to the intra- and inter-expert Jaccard indices strongly suggests that
consensus annotations can be used in place of expert annotations. We also found that spot
parameters found for a given chemistry using consensus annotations as ground truth can be used
to automatically find spots with precision (82 + 10%, mean + standard deviation) comparable to
the agreement between two experts annotating the same image (82%). Together, these findings
are especially useful for the processing of large datasets that would be infeasible for an expert to

annotate by hand.

Crowdsourced ground truth is useful for tuning and validating spot calling

parameters

This section tests the usage of crowdsourced annotations resulting from the pipeline as
ground truth to tune and validate their parameters. Ground truth is essential for testing how well
a spot-calling algorithm generalizes to other in situ transcriptomics chemistries and tuning

parameters (Supplementary Text 8). We tested whether consensus and expert annotations
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function similarly well as ground truth to tune parameters for spot-calling algorithms, using the
RCA dataset from starfish.(31) We also bootstrapped our consensus and expert annotations for
the RCA dataset to explore the minimum number of ground truth annotations needed to
effectively tune a spot-calling algorithm.

Usage of consensus annotations and expert annotations as ground truth to tune the LMP
(starfish’s LocalMaxPeakfinder) stringency parameter, which controls the intensity cutoff to
detect a peak, resulted in similar precision vs. stringency trends, as well as recall vs. stringency
trends (Figure 5). The optimal stringency parameter found using consensus annotations as
ground truth resulted in a lower precision and slightly higher recall (89.4% and 95.4%
respectively, compared with 94.3% and 94.8% from using expert annotations as ground truth —
5.3% and 0.63% difference respectively). These results reflect the fact that some of the spots

annotated by the worker consensus were not annotated by the more conservative expert.
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Figure 5. The optimal “stringency” parameter for starfish’s LocalMaxPeakfinder (LMP) with
Rolling Circle Amplification (RCA) images from the starfish database resulted in lower
precision and slightly higher recall (89.4% and 95.4% respectively) when consensus
annotations were used as ground truth for parameter tuning, compared with 94.3% and 94.8%
precision and recall which were achieved when expert annotations were used as ground truth
for parameter tuning.

Supplementary Text 9 shows that the training behavior of the expert and crowdsourced
annotations is very similar. That is, performance converges to roughly the same level and at
roughly the same rate. Fifteen ground truth annotations were enough to get 99.1% and 98.1% of
the maximum precision performance when the annotations were produced by experts and worker
consensus, respectively. With the same number of annotations, 97.6% and 96.6% of the
maximum recall performance was achieved with annotations produced by experts and worker
consensus, respectively. Together with the result that consensus annotations and expert
annotations resulted in similar precision vs. stringency and recall vs. stringency trends when used
as ground truth to tune the LMP stringency parameter (Figure 5), this suggests that consensus

annotations are a viable substitute for expert-generated ground truth for both parameter tuning

and algorithm validation.

Discussion

We developed INSTA, a pipeline to prepare in situ transcriptomics images for
crowdsourced annotation and integrated these pipeline components into an open-source toolkit
which takes an in sifu image dataset or a spot detector as input, prepares the images for
crowdsourcing annotation, receives the annotations, and outputs consensus locations for the

spots and/or optimized parameters for the detector. The pipeline was designed to be flexible
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enough to easily include components of the user’s choice (e.g. custom crowdsourced annotation
ingestion classes) and to accommodate manual user intervention at different points in the
pipeline. We also created a tool (Spotlmage) to generate simulated in situ images with adjustable
parameters, such as spot density and SNR. Using simulated and real in situ transcriptomics
images, we developed QC rules for crowdsourced annotations based on observable aspects of the
annotation data, such as cluster characteristics, and used these rules to develop QC methods to
optimize consensus precision and recall. We also gained insight into critical aspects of how the
quantity, size, SNR, and crowdedness of spots in images all influence worker behavior and thus
annotation quality.

We demonstrated the pipeline using RCA images, resulting in consensus annotations with
high precision and recall compared to expert annotations. We also demonstrated that consensus
and expert annotations are equally suitable as ground truth. While consensus annotations are
useful when large amounts of ground truth are needed to check or validate the performance of
spot-calling algorithms, a few dozen expert annotations alone may be sufficient to tune a
spot-calling algorithm such as Starfish’s BlobDetector, even if that would not be enough to
properly validate the algorithm (obtain statistically significant measures of precision and recall).
Crowdsourced ground truth is vital for validating algorithm performance on a large dataset with
many images, or even just one image with thousands of spots.

The pipeline only requires user intervention for the reviewing and editing of autocrops.
We believe it is particularly important for the user to have the option to intervene at this stage
rather than leave the pipeline as an end-to-end black box. While it would be theoretically ideal to

automatically learn cropping parameters which maximize accuracy, minimize the number of
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crops used (and therefore cost incurred), and generalize perfectly to all images of a given
chemistry, spot distribution characteristics vary too much between the individual in situ
transcriptomics images of most chemistries for this to be reasonable. The researcher needs the
opportunity to balance the tradeoff between crop detail and crowdsourcing cost. If a cheap
experiment yields a very large dataset with many images, a user may be less concerned with
maximizing data extracted from each image, but if each image costs more to produce, the
researcher might wish to be more detailed with cropping (Supplementary Text 10).

Even without budgetary constraints, auto-cropping is only useful to a certain extent
because zooming and scaling crops up to the size where they can be displayed for annotation
inherently involves interpolation; at a certain point the workers may be annotating a crop that is
not faithful to the original image. The toolkit user should be able to intervene before this point.

INSTA can be used to annotate publicly-available image datasets, especially for
researchers who do not have access to wet labs. The sample data available through starfish would
be a good starting point. We will update pipeline usage and guidelines if we experiment with
processing images of other, more challenging chemistries, and strive to make the pipeline usage

as generalizable to other chemistries as possible.
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