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ABSTRACT

The metabolic heterogeneity, and metabolic interplay between cells and their microenvironment have been
known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput
single cell metabolomics technology, we are yet to establish systematic understanding of intra-tissue metabolic
heterogeneity and cooperation phenomena among cell populations. To mitigate this knowledge gap, we developed a
novel computational method, namely scFEA (single cell Flux Estimation Analysis), to infer single cell fluxome from
single cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a comprehensively reconstructed human
metabolic map into a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq
data, and a novel graph neural network based optimization solver. The intricate information cascade from
transcriptome to metabolome was captured using multi-layer neural networks to fully capitulate the non-linear
dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by
generating an scRNA-seq dataset with matched metabolomics data on cells of perturbed oxygen and genetic
conditions. Application of scFEA on this dataset demonstrated the consistency between predicted flux and metabolic
imbalance with the observed variation of metabolite abundance in the matched metabolomics data. We also applied
scFEA on five publicly available scRNA-seq and spatial transcriptomics datasets and identified context and cell group
specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analysis
including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity
evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell-tissue and
cell-cell metabolic communications.
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INTRODUCTION

Metabolic dysregulation is a hallmark of many disease types including cancer, diabetes, cardiovascular disease
and Alzheimer’s disease (Mattson and Chan 2001; Rask et al. 2001; Matsuzawa 2006; Dunn et al. 2014; Hirschey et al.
2015; Kochanek et al. 2019; Sun et al. 2020a). In cancer, the diseased cells are well understood to rewire their
metabolism and energy production to support rapid proliferation, sustain viability, and promote acquired drug
resistance (Thompson et al. 2005; DeBerardinis et al. 2008; Hanahan and Weinberg 2011; Ward and Thompson 2012).
Here, the diseased cells often react differently to the microenvironmental stress. Such heterogeneity often results in an
increased repertoire of possible cellular responses to compromise the efficacy of drug therapies, and synergistic
cooperation among the cells that can ultimately enhance the survival of the entire population (Bishop et al. 2007;
Lidstrom and Konopka 2010). The metabolome is an excellent indicator of phenotypic heterogeneity due to its high
dynamics and plasticity (Zenobi 2013): one may expect to see a subset of cancerous cells, such as circulating tumor
cells, that display abnormally high metabolic rates compared with many others with normal metabolism, and rare cells
that successfully cope with microenvironmental stress, whereas the others die. Unfortunately, current high-throughput
metabolic profiling has been largely applied to bulk cell or tissue samples, from which we could only observe an
averaged metabolic signal over a large number of cells, while single cell metabolomics is still in its infancy, due by its
relatively low throughput and low sensitivity (Zenobi 2013; Fessenden 2016; Emara et al. 2017; Zampieri et al. 2017;
Ali et al. 2019; Duncan et al. 2019; Ahl et al. 2020). Hence, our understanding of metabolic dysregulation of human
disease has been immensely limited by our technology to study the metabolic landscape at single-cell level and in the
context of their tissue microenvironment (Jaenisch and Bird 2003; Feinberg 2007; Heintzman et al. 2007; Harris et al.
2010; Dunham et al. 2012; Roadmap Epigenomics et al. 2015; Robertson-Tessi et al. 2015; Kim and DeBerardinis
2019).

Single cell RNA-Seq (scRNA-seq) data has been widely utilized to characterize cell type specific transcriptional
states in a complex tissue. Large amount of scRNA-seq data carry the potential to deliver information on a cell’s
functioning state and its underlying phenotypic switches (Vasdekis and Stephanopoulos 2015; Damiani et al. 2019a;
Evers et al. 2019a; Honkoop et al. 2019; Saurty-Seerunghen et al. 2019; Xiao et al. 2019a; Levine et al. 2020;
Rohlenova et al. 2020; Xiao et al. 2020; Zhang et al. 2020). Realizing the strong connections between transcriptomic
and metabolomic profiles (Hirayama et al. 2009; Lee et al. 2012; Mehrmohamadi et al. 2014; Damiani et al. 2019b;
Xiao et al. 2019b; Wagner et al. 2020), scRNA-Seq has found its application in portraying metabolic variations. Most
of the existing studies examined single cell metabolic changes relying on differential expression and enrichment
analysis of key metabolic enzymes and pathways (Vasdekis and Stephanopoulos 2015; Evers et al. 2019a; Honkoop et
al. 2019; Saurty-Seerunghen et al. 2019; Xiao et al. 2019a; Levine et al. 2020; Rohlenova et al. 2020; Xiao et al. 2020),
without considering individual metabolite nodes in a metabolic pathway, or the mass balance constraints of metabolic
network. Studies coupling single cell transcriptomics data and the Flux Balance Analysis (FBA) at steady-state
framework have only recently emerged (Damiani et al. 2019a; Zhang et al. 2020). The FBA describes the potential
flux over the topological structure of a metabolic network, with a set of equations governing the mass balance at
steady state. The advantage of incorporating FBA is two-fold: considering the chemical stoichiometry in FBA could
lead to more accurate estimation of the metabolite abundance; flux estimation for each individual metabolite can be
solved, leading to high-resolution characterization of the metabolic profiling. Damiani et al developed scFBA that
utilizes the cell group specific gene expression status derived from scRNA-seq data to regularize the network topology
for FBA (Damiani et al. 2019a). Wagner et al proposed a method, namely Compass, which maximizes the coherence
between scRNA-seq expression profile and predicted flux in solution space of FBA (Wagner et al. 2020). Compass
characterizes the cell heterogeneity within a genome-scale metabolic model and utilizes neighboring cells to increase
the robustness of single cell FBA. However, as stated in the original works, the stringent flux balance and steady-state
assumption in scFBA and Compass may undermine the rationality of the optimization goal in the case of cancer,
because the cancer cells and other cell types are constantly facing severe “imbalance” for many metabolites, driven by
the substantial level of metabolic stress within the tumor microenvironment. Another limitation of the FBA-based
methods is that the single cells’ gene expression is not used directly to model metabolic flux. Both scFBA and
Compass used single cell gene expression as continuous or discrete constraint to guide the search of an optimal
solution in the solution space of flux balance condition, which ignored the non-linear relationship between gene
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expression and reaction rates governed by Michaelis-Menten kinetic model. In addition, it is noteworthy that these
models are intended for modeling the fluxes for cells of pre-defined groups, instead of at a single cell resolution, and
they are restricted to a small portion of the whole metabolic map. In summary, there is a lack of methodology to
predict the single cell metabolic profile using scRNA-seq data, that could flexibly incorporate the flux balance
constraint and model the non-linear relationship between the metabolome and the transcriptome. Therefore, to unravel
the principles of how malignant transformation affects the metabolic phenotypes of the heterogeneous cell types
within the tumor microenvironment, it is urgent to design advanced computational tools to empower a reliable
estimation of cell-wise metabolic flux and states by designing more appropriate and sophisticated model to translate
single cell transcriptomes to single cell fluxomes (Damiani et al. 2019b; Evers et al. 2019b).

Computational challenges to estimate cell-wise metabolic flux arise from the following aspects: (1) multiple key
factors determine cells” metabolic states, including exogeneous nutrient availability in the tissue microenvironment,
leading to a disjunction of cell type specific markers and metabolic phenotypes, and making conventional single cell
clustering methods inapplicable; (2) the whole metabolic network is of high complexity, hence a proper computational
reduction and reconstruction of the network is needed to reach a balance between resolution of metabolic state
characterization and computational feasibility; (3) the intricate non-linear dependency between transcripts level and
metabolic reaction rates calls for a more sophisticated model to fully capitulate the relationships; and (4) alternations
on different enzymes of a metabolic pathway may result in common metabolic phenotypes, however, exactly which
enzymes share such common effect to the metabolic flux change remains largely unknown.

In this study, we developed a novel computational method, namely single-cell Elux Estimation Analysis (SCFEA),
to estimate the relative rate of metabolic flux at single cell resolution from scRNA-Seq data. Specifically, SCFEA is
empowered by the following computational innovations that can effectively solve the above challenges: (i) an
optimization function derived based upon a probabilistic model to leverage the flux balance constraints among a large
number of single cells with possibly varied metabolic fluxomes, (ii) a metabolic map reduction approach based on
network topology and gene expression status, (iii) a multi-layer neural network model to capture the non-linear
dependency of metabolic flux on the enzymatic gene expressions, and (iv) a novel graph neural network architecture
and solution to maximize the overall flux balance of intermediate substrates through all cells. The central hypotheses
of scFEA are (1) the flux variations of a metabolic module, composed by closely connected reactions, can be modeled
as a non-linear function of the transcriptomic-level changes of the catalyzing enzymes and (2) the total flux imbalance
of all intermediate substrates should be minimized through all single cell samples. The cell-wise fluxome estimated by
SCFEA enables a series of downstream analysis including identification of cell or tissue level metabolic stress,
sensitivity evaluation of enzymes to the metabolic rewiring, and inference of cell-tissue and cell-cell metabolic
exchanges. To validate scFEA, we generated an scCRNA-seq dataset with matched tissue level metabolomic profiles
under different biochemical perturbations. Applications of scFEA on synthetic datasets, the newly generated dataset
with matched scRNA-Seq and metabolic profiles, and six other independent real-world datasets, validated the
prediction accuracy, robustness, and biological interpretability of sScFEA.

RESULTS
Systems biology considerations, hypotheses, and analysis pipeline of sScFEA
The reaction rate of a simple enzyme catalyzed metabolic reaction follows the Michaelis-Menten model:

V= Kcatw , which is a non-linear function of enzyme concentration [E], substrate concentration [S], and
Km+[S]

kinetic parameters K., and K,,. However, existing biotechnology does not enable a simultaneous high throughput
measurement of these hyper-parameters, nor the metabolic flux from single cell samples. In sight of this limitation, we
provide a computational estimation of cell-wise fluxome from a different angle. Based on the Michaelis-Menten
model, the metabolic rate of a reaction depends more on the concentration of enzymes than substrates when the

(s]

substrate concentration is close to saturation, i.e., when ot 5]
m

is large. In addition, the flux balance of intermediate

metabolites largely constrains the fluxome distribution of connected metabolic reactions. Hence, the flux of a reaction
chain is mostly determined by the enzyme variation of the rate limiting steps. However, such rate limiting steps are
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always unknow because the flux distribution, substrate concentration, and kinetic parameters highly depend on the
physiological and biochemical conditions of the cells. Based on these considerations, we developed scFEA, to
estimate cell-wise metabolic flux from scRNA-seq data. SCFEA consists of three major computational components,
namely (1) network reduction and reconstruction, (2) estimation of cell-wise metabolic flux by a graph neural network
based approach, and (3) downstream analyses including estimation of metabolic stress, perturbation of metabolic
genes, and clustering of cells with different metabolic states (Figure 1). The required input of scFEA is an sScCRNA-seq
dataset, while optional inputs, including cell group labels or subset of metabolic reactions of interest, can be specified
for additional analysis.

To reduce the complexity of the metabolic map, we reconstructed it into a factor graph composed by connected
metabolic modules as variables and intermediate metabolites as factors (Figure 1A). Specifically, connected reactions
are merged into one module if changes in their reaction rates do not affect the rates of the other reactions conditional
to a fixed flux rate of the module. In other words, the solution we obtained for estimating the flux of a module stays
the same with or without merging the reactions, under the flux balance condition. This approach increases the
robustness of flux estimation and reduces the computational complexity.

The central computational component of scFEA is a novel graph neural network architecture, which models
cell-wise metabolic flux of each metabolic module by using gene expression levels of the catalyzing enzymes in each
individual cell (Figure 1B). We hypothesize that the metabolic flux throughout all the single cells collected from a
tissue sample should minimize the overall imbalance of the in-/out-flux of intermediate substrates, i.e., maintaining the
maximal flux balance of intermediate substrates through all the cells. The rationality of this assumption is that cells
within the same tissue inevitably exchange the metabolites, and hence the total flux balance of intermediate substrates
throughout all the single cells collected from one tissue sample are more robust than in individual cells. In sCFEA, we
utilize the variations in gene expression to reflect the protein level change of enzymes and transporters. This
hypothesis can also be supported by many existing studies that reveal the high explainability of the transcriptome for
the protein level of enzymes (Schnell 2014; Roadmap Epigenomics et al. 2015; Liu et al. 2016). We assume the flux
variations of a connected metabolic module generally impacts its neighboring modules, which can be reflected by
aggregating the expression variations of the genes in its neighborhood over the metabolic network. The non-linear
dependency between gene expression change and metabolic flux of each module is modeled as a fully connected
neural network of 2-4 layers, which could be considered as a non-linear approximation of the Michaelis-Menten
model. To solve the neural network parameters, scFEA minimizes a loss function that mimics the overall flux
imbalance of all modules in all cells, with further non-negativity and other prior assumptions on the module fluxome.
The large single cell sample size in SCRNA-seq data grants sufficient statistical power to detect the flux variations and
avoids the overfitting of the neural network training (see details in methods). It is noteworthy the parameters of the
neural network of each module describe the impact of each gene’s expression to the predicted flux, which measures
the sensitivity of the metabolic balance to the variations of the genes. Genes with higher impact indicate rate limiting
reactions under the particular context.

The estimated cell-wise metabolic flux enables the prediction of (i) the metabolites or pathways with high
imbalance in certain cell group, (ii) groups of metabolic modules or cells with varied metabolic states, and (iii) the
metabolic genes whose perturbation highly impacts the overall metabolic flux (Figure 1C). In this study, we mainly
focus on solving cell-wise metabolic flux and states, and method validations in human cells. A capability for mouse
data analysis is also provided in the software package of “scFEA”.

Metabolic map reduction and reconstruction

The whole metabolic network in human and mouse have been well studied. However, while databases including
the Kyoto Encyclopedia of Genes and Genomes (KEGG) provide well categorized metabolic pathways and the
comprehensive set of metabolic genes (Kanehisa and Goto 2000), the network topological structure needs to be further
optimized for fluxome estimation, due to the following reasons: (1) the flux balance relationships among different
reactions could vary depending on the optimization goal or computational assumption, such as flux balance condition
of carbon, redox or pH, (2) the network complexity needs to be reduced to enable computational feasibility, and (3) a
manual correction and annotation of the directions of reactions and transporters is in need. In addition, cells of
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different types or physiological states naturally have varied metabolic states. In scFEA, we first manually curated and
annotated the metabolic map of human and mouse retrieved from KEGG database. The global metabolic map of
human and mouse is further reduced and reconstructed into a factor graph based on its topological property. SCFEA
also enables the selection of a connected sub-network in the global metabolic network for flux estimation.

Collection of human and mouse metabolic map. The metabolic map consists of pathways and reactions that fall
under four major types, namely import, metabolism, biosynthesis, and export. To ensure a comprehensive coverage of
the global metabolic map, we collected reactions of metabolism and biosynthesis as well as transporters for import and
export from different data sources. Specifically, metabolic reactions were directly retrieved from metabolic pathways
in KEGG database (Kanehisa and Goto 2000); the transporters and annotations of import and export reactions were
accessed from the transporter classification database (Saier et al. 2006); biosynthesis reactions were collected from the
biosynthesis pathways encoded in KEGG and curated by using additional literatures (see details in Supplementary
Methods). The final metabolic map covers the metabolism, transport, and biosynthesis of carbohydrate, amino acids,
fatty acids and lipids, glycan, and nucleic acids in human and mouse, including 862 genes of 390 enzymes, 1880
reactions, 1219 metabolites, and 116 transporter genes of 35 metabolites in human. Completes gene and reaction lists
of the collected human metabolic map is given in Supplementary Table S1.

Reconsgtruction of metabolic map into a factor graph. The metabolic reaction naturally forms a directed factor
graph when considering the reaction as a variable and each metabolite as a factor. A directed factor graph was first
reconstructed by the stoichiometric matrix of all reactions in the global metabolic map, in which variable, factor, and
directed edge are reactions, metabolites, and whether or not a reaction involves a metabolite as the substrate or product,
respectively. In this study, we use a flux balance assumption of carbon-based metabolites, and hence 273 compounds
that do not affect the flux balance of carbon-based molecules were excluded from the stoichiometric matrix, such as
H20, ATP, NADH, or other co-factors (see complete list in Supplementary Table S1). We further reduced the
complexity of the factor graph based on its topological structure. In this step, connected reactions were merged into a
module if (1) none of the merged intermediate metabolites has more than one in-flux or out-flux reactions that
correspond to more than one module inputs or outputs; and (2) none of the merged intermediate metabolites has an
in-flux or out-flux other than merged reactions or the module input and output. We have proved that under these two
conditions and the flux balance condition, changes of the reactions inside the module will not affect the reactions
outside of the module conditional on a fixed flux rate of the module, i.e., solving the flux of each individual reaction in
a merged module is equivalent to solve the flux of the module (see details in Supplementary Methods). Noted, the
merged reactions will form a variable node containing multiple reactions in the factor graph, while the factor nodes are
still individual metabolites. In addition, we identified certain classes of metabolites, including different types of fatty
acids, pyrimidines, purines, and steroid hormones, form highly connected web-like metabolic pathways. Instead of
solving the flux for each individual metabolite, we consider the metabolites of the same class as one factor. The
network reduction approach enables a more robust flux estimation by estimating the flux of one module instead of
individual reactions, and a more efficient computation over the simplified network topological structure.

We reconstructed the human metabolic map into a factor graph consisting of 169 modules of 22 super module
classes, 862 genes, and 128 metabolites, out of which 66 are intermediate substrates. Here each super module is a
manually curated group of modules of a similar function (Table 1). Detailed information of the factor graphs is listed
in Table 1 and Supplementary Table S1. Figure 2A illustrates the functional group and complete topological structure
of the collected metabolic modules and super modules in human. Figure 2B shows the reconstructed factor graph for
human metabolic map, which is utilized in further flux estimation. Figure 2C illustrates several examples of how
network motifs in the input metabolic network are merged into one metabolic module.

For a given scRNA-seq data and a user defined task, scFEA further refine the task specific metabolic factor graph
by: (1) limiting the analysis to user selected metabolic networks, and (2) exclude the modules without significantly
expressed gene. For (2), scFEA will first determine for all the genes whether they have a significant non-zero
expression state using our in-house Left Truncated Mixture Gaussian model (Wan et al. 2019b) (see details in
Methods). Under the default setting of scFEA, a module is considered as blocked if it becomes disconnected after
removing the reactions whose associated genes do not have a non-zero expression state. The blocked modules will be
excluded from further analysis. On account of the common drop-out events in SCRNA-Seq data, SCFEA also enables a
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more conservative assumption to remove a module only if none of the genes involved in all reactions of this module
has significantly active expressions.

The topological structure of metabolic modules including input, output and intermediate metabolites and genes
associated with each module will be utilized for further flux estimation.

Mathematical formulation of metabolic flux estimation in individual cells

For a clear model setup, we first formulate the metabolic network as a directed factor graph, in which each
metabolic module is represented as a variable, each compound is represented as a factor node carrying a loss function
to evaluate the level of flux balance among modules, and the direction represents if a metabolite is the input or output
of a metabolic module (Figure 2B). We denote FG(CY*K,RMY™M E = {E._x, Erc}) as the factor graph, where
CY€ ={C,,k=1,..,K} is the set of K compounds, RM¥* ={R,.,m =1,..,M} is the set of M metabolic
modules, E._z and Er_. represent direct edges from module R,, to compound C, and from compound Cj to
module R,,, respectively. For the k-th compound C;, we define the set of reactions consuming and producing C; as

F% = (Rl (R = Ck) € Ecog} and FoX = {R,|(C, = Ry) € Egc }, which is derived from the stoichiometric

out

matrix of the whole metabolic map. For an scRNA-seq data set with N cells, we denote Flux,, ; as the flux of the
mth module in the cell j,j =1..N, and F; = {Flux, j, ..., Fluxy ;} as the whole set of the reaction fluxes. Our
computational hypothesis is that total flux imbalance of the intermediate metabolites though all the collected cells
should be minimized, based on which we developed the likelihood function of the flux of all modules through all cells
as:

N K
o) =] [[ | #(ceslr) o(h)

j=1 k=1

2
E<ZmeFicf Pl ;=% - EFﬁgt“””‘m/ ;
, where ¢(Cij|F) = ¢(Crj|Fik Fik) e 2 and ¢(F;) represents the prior

in’ " out

distribution of the fluxome in cell j, and g is a tuning hyperparameter. scFEA models the flux of reach reaction,
Flux,, ;, as a nonlinear function of the expression changes of the genes associated with the module. Denote

G™ ={GI",..,GI"} as the genes associated with the reactions in R,, and GJ* ={G]"; ..,G" ;] as their

expressions in sample j, where i,, stands for the number of genes in R,,. We model Flux,,; = fur (G| 6.,) asa

multi-layer fully connected neural network with the input G, where 6,, denotes the parameters of the neural
network (Figure 3). It is noteworthy that the cell group and tissue context specific distribution of the flux <p(F]-) and
the reaction parameters 0, are always unknown. Here the flux balance assumption leads to a self-constrained loss
function and Flux,, ; = 0 forms a general trivial solution. To provide a robust and rational solution, we introduced
two additional assumptions to Flux,, ;, namely (1) the predicted flux should be non-negative and (2) the total
predicted flux in each large super module tends to have a high correlation with gene expression variation of the super
module (Figure 2A). The second assumption considers the metabolic flux variation of large metabolic modules
among single cells is coherent to their gene expression change, which could be supported by several recent studies
(Damiani et al. 2019a; Wagner et al. 2020). In addition, this assumption effectively avoids the trivial solution. Hence,
instead of directly maximize ¢(C,F), we solve the 8,, and cell-wise flux Flux,, ; by minimizing the following
loss function L:
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N K N M
L= Z Z Z Flux,, ; — z Flux, z Z (|Fluxm,j| - Fluxm,j)
i [ ’ j=1m=1

=1 k= c

J=1 1 mEka m Emet
N N , M 2
Z[l - |cor(Flux5M GESM)l] + ﬁz <Z|Fluxm,j| - TA,-)
j=1 j=1 \m=1

, where A, ¥, a and B are hyperparameters, cor represents Pearson correlation coefficients; Flux*" and GE*™
are two NSM x N matrices, here NSM is number of super modules, Flux3. m,; represents the sum of the flux of the
modules in the super module m, GE% represents the sum of expression of the genes in the super module m, in cell
j»and TA; is a surrogate for total metabolic activity level of cell j, which is assigned as the total expression of metabolic
genes in cell j. The first, second, third and fourth term of L are the loss of flux balance, non-negative flux, the
coherence between predicted flux and total gene expression level of each super-module, and flux scale. Noting genes
may have varied intrinsic expression range, decentralized Pearson correlation is utilized to model the coherence
between gene expression and predicted flux.

It is noteworthy that the above formulation defines a new graph neural network architecture for flux estimation
over a factor graph, where each variable is defined as a neural network of biologically meaningful attributes, i.e., the
genes participating in each metabolic module, and the information aggregation between adjacent variables is
constrained by the balance of chemical mass of the in- and out- flux of each intermediate metabolites. Noted, the
number of intermediate constraints (K) and large sample size (N) of ScRNA-seq data ensures the identifiability of 6,,
for the £, at a certain complexity level. Another advantage of this formulation is that the flux balance loss forms a
self-constraint term that takes chemical stoichiometric into consideration. In addition, our formulation does not require
a prior knowledge of the imports and exports of the whole system, which are always cell and context specific and
unknown. Detailed analysis of the computational feasibility, scalability, tuning of hyperparameters, and options of
additional loss terms are provided in Methods and Discussions.

The challenges to minimize the loss function L include the following: (1) the flux of each module affects the
balance of its input and output and multiple modules are involved in the balance of one intermediate substrate, hence
perturbing one single flux at each step may not converge, and on the other hand (2) the direction for simultaneously
updating a large group of fluxes cannot be theoretically derived. The two challenges prohibit a direct utilization of
back propagation or gradient descending methods. We developed an effective optimization strategy for L by adopting
the idea of information transfer in belief propagation, which has been commonly utilized in analyzing cyclic networks
such as Markov random field (Lan et al. 2006). Specifically, L is minimized by iteratively minimizing the flux
balance of each intermediate metabolite ¢, and the weighted sum of the flux balance of the Hop-2 neighbors of C;
in the factor graph, as the L; defined below:

2

Ly, = z z Flux,, ; — z Fluxm/'}. +2sz z Flux,, j — z Fluxm/'}.
meF,! K

m’ er’k mEF" m’ erCk

out out

, Where C, are the Hop-2 neighbors of €, W, is proportional to the current total imbalance of all the Hop-2
neighbors of C,. except for C, itself (see more details in Methods). Here the Hop-2 neighbors of a compound (or
module) on the factor graph is defined by all other compounds (or modules) having a connection with the modules (or
compounds) who connect to the compound (or module). Such a regional perturbation strategy over the whole graph
can effectively leverage the search of global minimum and computational feasibility.

The output of scFEA includes f;, 8,, for each module and predicted cell-wise metabolic flux Flux,, ;. It is
noteworthy the predicted flux Flux,, ; is a relative measure of unfixed scale. However, Flux,,; is comparable
among cells (Flux,, ) or metabolic modules (Flux ;).

Method validation on a sScRNA-seq data with perturbed metabolic conditions and matched metabolomics data
To validate the cell-wise flux estimated by scFEA, we generated an sSCRNA-seq dataset consisting of 162
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patient-derived pancreatic cancer cells (Pa03c cell) under two crossed experimental conditions: APEX1 knockdown
(APEX1 KD) or control, and under hypoxia or normoxia conditions (see detailed experimental procedure and data
processing in Methods). Metabolomics profiling of 14 metabolites, namely glucose, glucose-1 phosphate, glucose-6
phosphate, pyruvate, and lactate in the glycolysis pathway, citrate, 2-oxoglutarate, succinate, fumarate, malate in the
TCA cycle, and amino acids glutamate, glutamine, serine, and ornithine were collected on bulk wildtype Pa0O3c cells
and APEX1 inhibition cells under the normoxia conditions, each with three replicates (Supplementary Table S2). We
utilized the Smart-seg2-fluidigm protocol for single cell RNA sequencing for saturated gene detection of each single
cell, to enable a more accurate modeling of metabolic flux. APEX1 is a multifunctional protein that interacts with
multiple transcriptional factors (TFs) to regulate cellular responses to hypoxia and oxidative stress (Kelley et al. 2012).
Our previous studies identified significant roles of APEX1 in the regulation of Pa03c cells’ response to metabolic
environment changes (Shah et al. 2017; Wan et al. 2019a).

To the best of our knowledge, scFEA is the first computational tool to estimate metabolic flux at single cell level.
Without baseline methods for comparisons, we validate sCFEA by examining the consistency between the metabolic
flux variation predicted by scFEA and experimental observations. We identified 126 up- and 443 down- regulated
genes in APEX1 KD vs Control under the normoxia condition, and 260 up- and 1496 down- regulated genes under
hypoxia condition. Pathway enrichment analysis showed that the TCA cycle pathway (normoxia: p=0.003, hypoxia:
p=1.12e-07) and oxidative phosphorylation (normoxia: p=3.17e-4, hypoxia: p=1.77e-08,) are significantly enriched by
down regulated genes, under both normoxia and hypoxia conditions. This suggests that the knock down of APEX1
may lead to inhibited cellular aerobic respiration. In addition, genes regulated by HIF1A (hypoxia-inducible factor
1-alpha), including glycolysis and TCA cycle genes, were observed to be up- and down-regulated respectively, in
comparison to the hypoxia vs normoxia conditions in the control Pa03c cells. This is consistent to the common
knowledge of hypoxia response. Out of the 14 metabolites, we have seen increase of abundance in glucose, glucose-1
phosphate, glucose-6 phosphate, and lactate, and decrease in 2-oxoglutarate, succinate, fumarate, and malate in
APEX1-KD vs control cells under the normoxia condition. In summary, analysis of the single cell gene expression and
bulk cell metabolomic data revealed that knockdown of APEX1 affects the cells’ glucose metabolism and inhibits the
cells’ TCA cycle pathway, under both normoxia and hypoxia condition. Figure 4A illustrates the variation of genes
and metabolites involved in glycolysis, pentose phosphorylation, TCA cycle, glutaminolysis and aspartate metabolism
pathways in APEX1-KD vs control under normoxia condition. We conducted a gRT-PCR experiment to confirm the
down regulated genes in glycolysis, TCA cycle and oxidative phosphorylation pathways (Supplementary Figure S1).
Complete list of differentially expressed genes and pathway enrichment results were provided in Supplementary Table
S3.

Consistency between the scFEA predicted flux variation and the metabolomics data. We applied scFEA to the
aforementioned scRNA-seq data of the four conditions. We first focus on the normoxia conditions where matched
single cell expression and metabolomics data are available. sScFEA predicted decreased metabolic flux for the modules
in glycolysis and TCA cycle in APEX1-KD vs control, i.e., glucose — D-Glucose 1-phosphate (G1P) —
alpha-D-Glucose 6-phosphate (G6P) — glyceraldhyde-3P (G3P) — 3-Phospho-D-glyceroyl phosphate (3PD) —
pyruvate — Acetyl-CoA — citrate — 2-Oxoglutarate (20G) — succinate-CoA — succinate — fumarate —
Malate — oxaloacetate (OAA) and pyruvate — lactate, where particularly, the reactions towards the downstream of
this reaction chain has even lower flux in APEX1-KD (Figure 4B). We examined the correlation between the
averaged predicted flux change with the observed metabolomic change of intermediate metabolites in glycolysis and
TCA cycle pathways in APEX1-KD vs control cells under normoxia condition and observed a Pearson Correlation
Coefficient (PCC) of 0.86 (p=0.006) (Figure 4B), suggesting the high consistency between predicted flux variation
with the observed metabolic changes. Using metabolomics data, we observed increase of production for glucose, G1P,
G3P and lactate, and decrease of production for 20G, succinate, fumarate, and malate in APEX1-KD vs control
(Figure 4C). By Michaelis Menten model, the substrates of largely varied concentration determine the reaction rate in
a non-linear manner (close to linear when the reaction is less saturated). Hence, variations in the concentration of the
metabolites with one dominating out-flux could partially reflect the changes of the out-flux rate. We also correlated the
metabolomic change with the averaged expression change of the enzymes catalyzing the reactions. However, no
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significant correlation was observed (PCC=-0.03, p=0.943, Figure 4C), suggesting that single cell gene expression
itself, without considering the constraints from the intricate metabolic network as in scFEA, doesn’t produce a good
estimate of single cell metabolic landscape. In addition, SSGSEA (single sample gene set enrichment analysis) has
been utilized to model cell-wise pathway activity in SCRNA-seq data (Chen et al. 2020). The correlation between the
metabolomic changes and the differences in averaged ssGSEA score in APEX1-KD vs control cells is (PCC=0.42,
p=0.299) (Supplementary Figure S2). Here scFEA leveraged the non-linear relationships between gene expression and
enzymatic reaction rate, and the flux balance constraints of the metabolites, hence its predicted metabolic flux is more
consistent to the true metabolomics changes.

High consistency of the predicted metabolic dress with experimentally observed metabolomic changes scFEA
predicted in and out flux for each metabolite allows us to investigate the cell-wise metabolic stress, which was defined
as the imbalance of the in-/out-fluxes of each intermediate metabolites in each cell. Figure 4D shows that the G1P,
G6P and lactate were accumulating while 20G, succinate, succinyl-CoA, and fumarate were depleted in APEX1-KD
vs control. A PCC of 0.75 (p=0.004) was observed between the predicted metabolic stress and the true metabolic
change, on 12 metabolites with both measured metabolomic profile and predicted metabolic stress, demonstrating a
high accuracy of the predicted metabolic stress level. Detailed predicted and observed metabolic imbalance were
provided in Supplementary Table S2. Figure 4E shows the predicted cell-wise fluxome of the glycolysis and TCA
cycle modules for cells of the four conditions. We observed, in general, higher flux of the glycolytic modules than the
TCA cycle modules, with the largest average flux gap seen on Pyruvate — Acetyl-CoA and Acetyl-CoA — Citrate.
In addition, the flux of the downstream reactions (citrate — 20G - succinyl-CoA — succinate) of the TCA cycle is
lower than the upstream reactions (succinate — fumarate — malate —» OAA). A possible explanation for the leaky
metabolic flux is that some of the intermediate substrates’ flow to other branches, majorly for biosynthesis of amino
acids. Among the four conditions, we identified that the hypoxia control group has the highest flux rate of glycolysis
and TCA cycle modules. Clearly, the inhibition of APEX1 significantly decreased the metabolism rate of glucose.
Combined with the accumulations of glycolytic substrates and depletions of TCA cycle substrates identified by the
metabolic stress and metabolomics data analysis, our speculate that the knock-down of APEX1 may directly impact
the downstream part of glycolysis, the whole TCA cycle and further oxidative phosphorylation, leading to
accumulation of G1P and G6P as a result of the blockage. Up regulation of glucose transporters was also observed in
APEX1 KD vs control, further suggesting the accumulation of glycolytic substrates.

Perturbation analysis of flux deterministic genes. We also conducted a perturbation analysis to tease out the key genes
with high impact on each metabolic module (see details in Methods). The following genes were identified to have the
highest impact on metabolic flux: HK1 and HK2 (Glucose—G6P, EC: 2.7.1.1), ALDOA, PFKL and GPI (G6P—G3P,
EC: 5.3.1.9), GAPDH and PGK1 (G3P—-3PD, EC: 1.2.1.12, 2.7.2.3), ENO1, PGAM1, and PKM (3PD—Pyruvate, EC:
5.4.2.11, 4.2.1.11), PDHA2 (Pyruvate—Acetyl-Coa, EC: 1.2.4.1), LDHA (Pyruvate—Lactate, EC: 1.1.1.27), ACLY
(Acetyl-CoA+OAA — Citrate, EC: 2.3.3.8), IDH2 (Citrate » 20G, EC: 1.1.1.42), DLD and OGDH
(20G—-Succinyl-CoA, EC: 1.2.4.2), SUCLGLI (Succinyl-CoA—Succinate, EC: 6.2.1.4), SDHA (Succinate—Fumarate,
EC: 1.3.5.1), FH (Fumarate—»Malate, EC: 4.2.1.2), MDH1 (Malate—OAA, EC: 1.1.1.37). Detailed results of the
perturbation analysis were illustrated in Supplementary Figure S3. A gRT-PCR experiment was conducted to confirm
the down regulation of the above key metabolic genes, including HK1, PFKL, ACLY, SDHA, and IDH2
(Supplementary Figure S1). We also correlated the predicted high impact enzyme in the modules containing multiple
enzymes (seven in total) with the rate limiting enzymes reported in Rate-Limiting Enzymes database (RLEdb) (Zhao
et al. 2009). We observed the six out of the seven predicted high impact enzymes, namely 2.7.1.1, 1.2.1.12, 2.7.2.3,
5.4.2.11,1.2.4.1, and 1.2.4.2, have been reported, suggesting a significant enrichment (p=0.0005 by Fisher’s exact test)
of our predictions to previously reported rate limiting enzymes. We further conducted a module level perturbation
analysis by increasing or decreasing the expression of genes in a certain module (Methods). Non-surprisingly, a
decrease of expression on genes of the downstream part of glycolysis pathway in the control cells will lower the flux
of the TCA cycle, causing the accumulation of glycolytic intermediate substrates and depletion of TCA cycle
metabolites, which is consistent to our experimental observations.
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Detecting groups of metabolic modules with similar variations and cells with distinct metabolic states. We also
applied scFEA to a larger metabolic map, with the 11 metabolic super modules and transporters, and then examined
the high-level organization of the modules. Based on only the metabolic network connectivity, Figure 4F illustrated
five distinct groups of metabolic modules derived using a spectral clustering method purely based on their network
topology (see Methods), namely (1) glycolysis, (2) TCA cycle and glutamine metabolism related modules, (3) tyrosine
and serine metabolism, (4) urea cycle related modules, and (5) acetyl-coA related metabolisms such as fatty acids and
propanoyl-CoA metabolisms. To examine the high level structure based on the flow of flux, we further conducted a
clustering analysis of the metabolic modules by considering both the network connectivity and flux similarity. The
distance between two modules R; and R; is defined as ad(R;, R;) + (1 — a)d" (R, R;), where d(R;,R;) is their
normalized spectral distance, and d”(R;, R;) is their normalized similarity in estimated flux through all the normoxia
cells (see Methods). Here @ = 0.3 is used in the analysis. Figure 4G shows the metabolic module clusters by
integrating topological structure and flux similarity. Four distinct clusters were identified, including (1) glycolysis and
fatty acids metabolism of decreased flux and accumulated substrates in APEX1-KD vs control, (2) TCA cycle and
pyruvate metabolism decreased flux and depleted substrates, and (3) metabolism of amino acids and other metabolites
with unchanged flux and metabolites, and (4) a few other modules of 0 flux rates, respectively. This observation
further validated the rationale of scFEA predicted fluxome.

We also conducted cell clustering based on the metabolomic modules with varied flux (Methods).
Non-surprisingly, the cells clusters were aligned with experimental conditions, forming five group of cells of high,
intermediate, and low, low metabolic rates, high lactate production and low TCA-cycle (Supplementary Figure S4).

Method validation and robustness analysis on synthetic and independent real-world data

Method validation on independent real-world data. We also validated scFEA on an independent sScRNA-seq data of
perivascular adipose tissue derived mesenchymal stem cells (PV-ADSC) (GSE132581) (Gu et al. 2019). To the best of
our knowledge, this data set plus our newly generated data sets are the only two sScRNA-seq data with matched tissue
level targeted metabolomics profiling available in the public domain. We first re-conducted cell clustering analysis and
identified two distinct cell clusters corresponding to the PV-ADSC of different level of differentiation, as reported in
the original work (Figure 5A). Due to the small sample size (85 cells), scFEA was applied to estimate the fluxome of
glycolysis and TCA cycle pathways. We observed an increased flux of glycolytic reactions (p<1.56e-6), lactate
production (p=0.002), and the reactions from cis-aconitate to oxaloacetate in TCA cycle (p<0.02) in the more
differentiated (MD) PV-ADSC vs the PV-ADSC of high stemness (HS) while the reactions from acetyl-CoA to citrate
were insignificantly changed (p=0.887) (Figure 5B). Our predicted flux variations between the two cell clusters are
consistent to the metabolomic observations made in the original work, i.e., the glycolytic intermediate metabolites,
lactate production, and metabolites in the later part of TCA cycle were evaluated in the more differentiated PV-ADSC
and citrate was not significantly changed. We also analyzed the metabolic modules of two amino acids super modules
with metabolomics profile reported in the original study, namely valine and isoleucine metabolism and glutamate and
glutathione metabolism (Supplementary Figure S5). Elevated valine and isoleucine metabolic flux in MD vs HS
PV-ADSC has been predicted by scFEA, which is consistent to the original report. scFEA also predicted an increased
flux of the modules from glutathione — glutamate — glutamine — TCA cycle, this could explain the increased flux
rate of TCA cycle but less increase in citrate production. The original study only reported a depletion of glutathione and
glutamate, our metabolic stress analysis also predicted more decreased glutathione and glutamate in MD vs HS
PV-ADSC. Our analysis suggested the evaluated glutamate and glutathione metabolism is to fuel the substrate source
for TCA cycle in MD cells, which depleted the concentration of glutathione and glutamate.

Method validation on randomly shuffled gene expression profile. In scFEA, we assume that the flux distribution in
each single cell should be constrained by the flux balance condition while the reaction rate of each module could be
modeled as a non-linear function of the gene expressions involved in this module. These two assumptions suggested
that the distribution of the gene expressions involved in the metabolic modules was essentially determined by the
metabolic flux distribution and constrained by the flux balance condition. One existing evidence directly supports our
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assumptions is that the expression of closely related metabolic genes always tend to be co-up or co-down regulated
(van der Knaap and Verrijzer 2016; Li et al. 2018). To further validate our assumption, we randomly shuffle the
expression profile of each gene in a certain proportion (10%, 20%, 40%, 60% and 80%) of cells in our pancreatic
cancer cell line data, and applied scFEA to each perturbed data (see details in Supplementary Methods). We observed
that the minimized total loss is positively associated with the level of perturbations (Figure 5C) and the original
scRNA-seq data achieved the smallest total loss, which partially support our underlying assumption.

Method validation on synthetic data. We also conducted a synthetic data based experiment and demonstrated that the
loss function and solution strategy of scFEA can accurately estimate cell-wise metabolic flux from scRNA-seq data.
We first randomly generated 1000 cells having different flux distribution of 169 connected modules from the solution
space satisfying flux balance condition of these modules. The expression profile of the genes involved in each module
was reversely simulated by assuming its flux follows a fixed non-linear function of the gene expressions. Two levels
of errors were added to the flux and gene expression level. Detailed data simulation approach was provided in
Supplementary Methods. We applied scFEA on the simulated single cell gene expression profile and compared the
fluxome predicted by scFEA and known fluxome. We observed that scFEA predicted fluxes are highly consistent to
the true flux distribution, on both directions of the cells and metabolic modules (Figure 5D). Specifically, more than
70% single cells achieved at least 0.5774 (p=0.05) sample-wise correlation and more than 70% modules achieved at
least 0.5778 (p=0.05) module-wise correlation. Our analysis demonstrated that under the assumption of scFEA, i.e., if
the flux balance constraint and non-linear dependency between gene expression and metabolic hold, the formulation
and solution strategy of scFEA could accurately estimate the cell-wise fluxome from single cell gene expression data.

Robustness analysis based on perturbed sample inputs, cross-validation, and analysis of hyperparameters. We also
tested the robustness of scFEA by 2-/5-/10-fold cross validations on the pancreatic cancer cell line data. Our analysis
suggested that both total loss of the testing data does not change significantly when the number of input cells varied
from 50% to 100% of all the cells (Figure 5E). For hyperparameters tuning, scFEA used Adam as the optimizer,
which can automatically adjust the learning rate. To choose the most suitable hyperparameters of the four terms in the
loss function, we conducted experiments by changing the relative scale of any two terms and fixing the rest two on the
pancreatic cancer cell line data. We update two hyperparameters relative ratio from 10 to 1000. Our experiments
suggested a similar optimal solution can always be achieved under our hyperparameter perturbation range
(Supplementary Figure S6). Figure 5F showcases the convergency of the four loss terms and total loss in the model
fitting of the pancreatic cancer cell line data. In addition, the applications on six real-world data (see further results)
and simulated data suggested that the default hyperparameters always generate results of good convergency of the
total loss and high biological implications. The default hyperparameters of the current version and details in
hyperparameter tunning codes were provided via https://github.com/changwn/scFEA.

Robustness analysis with respect to different level of drop-out. In the network reduction and reconstruction step,
connected reactions were merged to form one metabolic module. The neural network model enables a non-linear
dependency between gene expression and module flux. Hence, the flux rate could be determined by an “OR”
operation of the high expression of any gene involved in the module, i.e., sSCFEA utilizes neighboring genes on the
metabolic map to infer the metabolic flux of connected metabolic reactions, which increases robustness to dropout
events and prediction accuracy. To further examine the method’s robustness, we simulated different levels of
additional dropout events to our pancreatic cancer cell line data. Our data was collected by using the
Smart-seg2-fluidigm protocol, whose original ratio of zero expressions of the metabolic genes is 50.22%. We
simulated additional drop-out rate ranging from 4.34% to 34.78%, to reach a typical drop-out level of a droplet based
scRNA-seq data (~85%), and applied scFEA (see details in Supplementary Methods). We observed the total loss
slightly increases from 0.1649 to 0.2722 when the zero ratio increased from 50% to 85% (Figure 5G). The
module-wise and cell-wise correlation between the flux estimated from the original data and the perturbed data are
consistently higher than 0.7437 and 0.8505 (Figure 5H), suggesting the high robust of scFEA with respect to different
level of drop-out events.
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Application of scFEA on scRNA-seq data of tumor microenvironment revealed distinct metabolic stress, exchange
and varied metabolic statesin cancer and stromal cells.

In this section, we majorly focused on validating the computational concept and applicability of scFEA on five
real-world datasets, including two scRNA-seq data of cancer microenvironment, one single nuclei RNA-seq data of
brain tissue, and one spatial transcriptomics data of breast cancer tissue. The data information is detailed in
Supplementary Methods. All 169 metabolic modules across the whole metabolomic network was utilized in the
analysis. Due to the lack of matched metabolomics information, we focused on demonstrating the capability of scFEA
in inferring metabolic flux, metabolic stress, and cell groups and metabolic modules having distinct variations on these
data sets.

Application on scRNA-seq data of cancer microenvironment. We applied scFEA on two publicly available sSCRNA-seq
datasets collected from the microenvironment of melanoma (GSE72056) and head and neck cancer (GSE103322). In
both data sets, we generated UMP based cell and cell group visualization by using predicted fluxomes of the 169
modules (Figure 6A-D). Interestingly, we identified that the metabolic flux distributions are quite homogeneous
within cancer cells, but very distinctive comparing to immune and stromal cells in both data sets (Figure 6A, C).
Distinct cell clusters of immune and stromal cells correspond to varied metabolic fluxomes were also identified
(Figure 6B, D). A possible explanation is that cancer cells having a reprogrammed metabolism are more robust to the
biochemical variations than immune and stromal cells in the tumor microenvironment.

We observed that the malignant cells have the highest metabolic rates in most metabolic reactions comparing to
other cell types in both melanoma and head and neck cancer, especially for the glucose and amino acids metabolic
modules (Figure 6E, F). On average, the estimated flux of TCA cycle and lactate production account for 43.4% and
52.5% of the glycolysis flux in head and neck cancer and 65.3% and 46.1% of the glycolysis flux (with additional
carbon flow from other metabolites such as glutaminolysis) in melanoma, respectively, while the ratio of lactate
production is much lower in other cell types. Our observation clearly suggested the existence of Warburg effect and
metabolic shift in cancer cells, which is consistent to our previous findings of high lactate production in melanoma
(Xu et al. 2012).

We identified that the malignant cells have the highest metabolic stress, which is defined as the total imbalance of
intermediate substrates, followed by fibroblast and endothelial cells, and then immune cells. Similar to the pancreatic
cancer cell line data, we identified that both cancer and stromal cells in both cancer types tend to have depleted
glucose, G1P and G6P. In addition, cancer cells tend to suffer from a high depletion level of acetyl-coA. On the other
hand, TCA cycle intermediates and amino acids tend to be accumulated in cancer cells. These observations are
consistent to the findings derived from quantitative metabolomics data collected on solid cancer (Hirayama et al.
2009).

Interestingly, we noticed that the direction of imbalance for most intermediate metabolites seem to be the same
throughout different cell types, though the imbalance level is much lower in stromal cells comparing to cancer cells. A
possible explanation is that these cells were collected in a small region of the same microenvironment, subject to
similar microenvironmental stresses, such as hypoxia and altered pH level, which causes a similar impact on the
metabolic landscape of cells of different types. The predicted cell type specific fluxome and imbalance level of
metabolites were given in Supplementary Table S4.

Application on droplet based scRNA-seq data of Alzheimer's disease. We also applied scFEA on the ROSMAP
snRNA-seq data (single nuclei RNA sequencing) collected from cells in the central nervous systems of Alzheimer's
disease (AD) patients and healthy donors (Mathys et al. 2019). Specifically, the ROSMAP snRNA-seq data was
collected by using the 10x Genomics Chromium droplet-based protocol. Comparing to the Smart-seq based
scRNA-seq data, droplet based data often have lower total expression signals and higher dropout rate. SCFEA has been
successfully applied on this data set. Changes of the total loss over the running epochs suggested the total loss
converge to a small value during the training of the scFEA model (Figure 6G). Specifically, the flux balance loss
forms the major loss term in the beginning of the training and quickly converge to a small value, suggesting a solution



https://doi.org/10.1101/2020.09.23.310656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310656; this version posted March 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of high flux balance has been successfully identified in this data set. We identified that metabolic activity in neuron
cells is higher than in other brain cell types. Cell clusters of different metabolic states were computed (Figure 6H), in
which a large cluster consisting of cells with more activated metabolism has been identified (green labeled). We
further studied on the metabolic stress of this cell cluster, which is enriched by neuron cells from AD patients (Figure
6l). We found that glucose, glycolytic and TCA cycle substrates, and glutathione are among the top accumulated
metabolites. Suppressed glycolysis and dysfunctional TCA cycle that may lead to increased glucose and other
intermediate metabolites, and elevated glutathione in response to reactive oxygen species, have been reported in AD
(Atamna and Frey Il 2007; Mandal et al. 2019; Le Douce et al. 2020). On the other hand, molecules involve in DNA
synthesis and valine/leucine/isoleucine metabolism are most depleted in the AD neuron cells, which are consistent to
the recently reported observations of suppressed DNA synthesis and valine metabolism in AD (Yurov et al. 2011; Polis
and Samson 2020). More interestingly, we predicted aspartate and metabolites involved in glycosaminoglycan
synthesis are greatly depleted in the AD neuron cells. Previous studies reported the association of these metabolites to
AD (Doraiswamy 2003) (Huynh et al. 2019), however, their abundance change has been less studied. We anticipate
that the cell-wise metabolic stress prediction enabled by scFEA could offer novel and systematic insight for biomarker
prioritization.

Application on spatial transcriptomics data. Distinct cell clusters of different metabolic states were identified in the
cancer microenvironment data (GSE72056 and GSE103322). We speculate that the different metabolic states are
caused by varied biochemical conditions, such as hypoxia or oxidative stress level, in the tumor microenvironment. To
further validate this hypothesis and the method, we applied scFEA on a spatial transcriptomics data of human breast
cancer collected from 10x genomics visium protocol. Clearly, cells that are spatially near each other should be
exposed to similar biochemical stress conditions. We predicted spatial spot specific metabolic flux, by first applying
SCFEA on the spatial the gene expression profile and then conducting associations of the predicted flux with spatial
positions. scFEA identified two distinct spatial regions of high lactate production flux (Figure 6J) and six spatial
regions of high TCA cycle flux (Figure 6K). Ratio of pyruvate — lactate flux and pyruvate —» TCA cycle flux were
computed, and the two high lactate production regions were predicted as of high hypoxia level, which were further
validated by the high expression level of HIF1A regulated genes in cells of these regions.

DISCUSSION

Despite a plethora of knowledge we have gained on metabolic dysregulation for many disease types, there are
still major gaps in our understanding of the integrated behavior and metabolic heterogeneity of cells in the context of
tissue microenvironment. Essentially, the metabolic behavior can vary dramatically from cell to cell due to the high
metabolic plasticity, driven by the need to cope with various dynamic metabolic stress. Large amount of
transcriptomics data obtained by scRNA-seq has proven to be endowed with the potential to deliver information on a
cell functioning state and its underlying phenotypic switches. Designing advanced computational tools to harness the
power of large scale sScRNA-Seq data for reliable prediction of cell-wise metabolic flux and states is crucial to bridge
the technological gap of single cell metabolomics. Knowledge derived therefrom will substantially benefit our
understanding of the metabolic regulation intrinsic to diseased cells, and on factors imposed upon the diseased cells by
its microenvironment and shed light on potential therapeutic vulnerabilities.

In sight of this demand, we developed a novel computational concept and method, namely scFEA, to predict
metabolic flux at single cell resolution from scRNA-seq data, and the ultimate goal is to accurately construct and
portray a compendium of metabolic states for different cell types and tissue contexts, and their relevance to various
disease phenotypes. To experimentally validate scFEA, we generated an scRNA-seq data of a patient derived
pancreatic cancer cells under four conditions of perturbed oxygen level and metabolic regulators, and matched tissue
level metabolomics data and qRT-PCR profiles of key metabolic genes. We validated that the variations of metabolic
flux predicted by scFEA are highly consistent with the observed metabolomic changes under different conditions. The
SsCFEA predicted fluxome suggested the accumulation of glycolytic metabolites and depletion of TCA cycle
metabolites, caused by suppression of the glycolysis pathway and TCA cycle pathways in both hormoxia and hypoxia
conditions. We also applied scFEA on in-drop or droplet based scRNA-seq data and spatial transcriptomics data. Our
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analysis suggested that scFEA could robustly predict cell and cell group specific metabolic shift for the data generated
from different protocols. Notably, the fluxome estimated by scFEA enables a series of downstream analysis including
identification of cell or tissue level metabolic stress, sensitivity evaluation of enzymes to the metabolic flux, and
inference of cell-tissue and cell-cell metabolic exchanges.

The scFEA model has the following advantages: (1) the model characterizes true biological flux by leveraging the
metabolic networks, and it is generally applicable as it requires only the input of sScRNA-seq data; (2) the number of
constraints, i.e. the number of flux balance conditions multiplied by the single cell number, is larger than the number
of parameters, avoiding possible overfitting; and (3) The neural network based flux estimation can well handle the
non-linear dependency between enzymatic gene expression and reaction rates. Theoretically, the scFEA model could
be extended to estimate activity level of functional modules in a general biological network such as signaling
pathways. The expression level of a signaling path reflects its capacity and the signaling molecules can be viewed as
intermediates.

The neural network based optimization framework of SCFEA enables a seamless integration of metabolomics data,
kinetic parameters, spatial information, or other prior knowledge of metabolic imbalance, to better characterize cell
and tissue level metabolic shifts of the target system. Specifically, metabolomics data, kinetic parameters or other prior
knowledge can be utilized to better design the first layer of the neural network in modeling the flux of each module.
Spatial information can be utilized to preselect group of cells for training spatially dependent model. A potential future
direction is to implement the current flux estimation analysis in spatial transcriptomics to infer (1) metabolic shifts
specific to spatial patterns and (2) metabolic exchange between adjacent cells. This application to spatial
transcriptomics data will be particularly interesting for cancer studies, to reveal how the metabolism and
macromolecule biosynthesis in stromal cells such as cancer associated fibroblast affect the adjacent cancer cells.

SCFEA seeks for a constrained optimization of flux balance, where each flux was modeled as a non-linear
function of the relevant enzymatic gene expression levels. The flux of each module is currently constrained to be
scaled to the cell-wise total metabolic activity, T A;, to avoid trivia solution. However, our analysis suggested one T'4;
for each cell may lead to similar metabolic flux distribution for different cells. Although our current setting has been
validated by our matched scRNA-seq and metabolomics data, applications on publicly available cancer data suggested
a similar metabolic imbalance trend among different cell types. We speculate that setting T'A,,; for each super
module m in cell j may increase the flexibility of cell specific metabolic imbalance, but at the price of possible
over-fitting. A more sensitive approach is to train a specific model for each pre-defined cell group. The biological
rationale is that the neural network parameters contain the information of “kinetic parameters” that link gene
expression with metabolic rate, which differ among distant cell types, or cells under different conditions. Hence it is
rationale to assume cell type specific parameters.

Overall, scFEA can efficiently delineate the sophisticated metabolic flux and imbalance specific to certain cell
groups. We anticipate it has the potential to decipher metabolomic heterogeneity, and teasing out the metabolomic
susceptibility to certain drugs, and ultimately warrant novel mechanistic and therapeutic insights of a diseased
biological system at an unprecedented resolution.

METHODS
Collection of human metabolic map

We consider the human metabolic network as composed of different reaction types including metabolism,
transport (including uptake and export), and biosynthesis. As detailed in Results, the reconstructed network consists of
22 super module classes of 169 modules. All reactions related to metabolism were collected from the Kyoto
Encyclopedia of Genes and Genomes database (KEGG) (61). In total, 11 metabolism related super modules were
manually summarized, which is comprised of glycolysis, TCA cycle, pentose phosphate, fatty acids metabolism and
synthesis, metabolism of amino acids namely serine, aspartate, beta-alanine, glutamate, leucine/valine/isoleucine and
urea cycle, propionyl-CoA and spermidine metabolism (Cao et al. 2017). The 11 metabolism super modules contain
1388 reactions, 317 enzymes, which corresponds to 563 genes.

Transporters enable the trafficking of molecules in and out of cell membranes. We collected the human
transporter proteins, their corresponding genes and metabolite substrates from the Transporter Classification Database
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(Lin et al. 2015; Bhutia et al. 2016). In total, 80 transporter genes, and 35 related metabolites were collected.

An essential part of metabolic map is the biosynthesis pathways. KEGG database and literature (Moffatt and
Ashihara 2002; DeAngelis et al. 2013; Zhang et al. 2015a; Zhang et al. 2015b; Krasnova and Wong 2016; Zulueta et al.
2016; Lv et al. 2017; Sun et al. 2018; Gao and Edgar 2019; Sun et al. 2020a; Sun et al. 2020b) are the main
information sources used for building biosynthesis modules. We collected 69 biosynthesis modules forming 10 super
modules, namely biosynthesis of hyaluronic acid, glycogen, glycosaminoglycan, N-linked glycan, O-linked glycan,
sialic acid, glycan, purine, pyrimidine, and steroid hormones. Overall, the biosynthesis modules include 459 genes of
269 enzymes catalyzing 869 reactions.

More details of the collection of human metabolic map and the statistics of mouse metabolic map were provided
in Supplementary Methods.

Selecting genes of significant expression.

We applied our inhouse method, LTMG, to determine the expression status of each genes in each single cell.
LTMG considers the multi-modality of the expression profile of each gene throughout all the single cells, by assuming
that the gene’s expression follows a mixture of suppressed state and activated states, as represented by the following
likelihood function (Wan et al. 2019a).

N S

H z a;p; (xj|ui’o-i) + a5+1p5+1(xj|u5+1,05+1)

j=1 \i=1
, where x;,j = 1...N are the expression profile of gene x in N cells, the index 1...S are the S active expression
states and S + 1 is the suppressed expression state, a; is the proportion of each state with a; + -+ ag,q = 1,
a; ¢>0 and ag.q =0, p;, u;, and o; are the pdf, mean and standard deviation of each expression state.
Specifically, LTMG considers the distribution of each mixing component, p;, as a left truncated Gaussian distribution,
to account for the noise of drop out events. In this work, LTMG was used to fit to each gene’s expression and a gene
was determined to have significant expression if Y7_; a; = 0.1, i.e., the gene has active expression states in at least 10%
cells.

Pre-filtering of active modules based on gene expression.

Each metabolic module contains an input, an output, and a number of enzymes catalyzing the reactions. A
reaction is considered as disconnected if none of the genes encoding its catalyzing enzymes is significantly expressed.
A metabolic module is considered as blocked if there is no connected path from the input to the output. Considering
the common drop-out events in SCRNA-Seq data, especially for the drop-seq data, we adopted a conservative approach
to pre-trim the metabolic modules: essentially, a module will be removed from further analysis if none of the genes
involved in all reactions of this module has significantly active expressions.

scFEA mode setup and a belief propagation based solution of the flux model.
Model Setup. We developed a novel optimization strategy to minimize L similar to the idea of belief propagation

(Yedidia et al. 2001). Specifically, the flux balance of each metabolite C,, Ly = 9’:1 (ZmeFCk Flux, ; —

m'eF m.J

)
out

(metabolites), denoted as Ne(Cy), and Hop-4 neighbors (metabolites), i.e., Ne?(Cy) = {C,/|C» € Ne(Ne(Ci))\
Cr }. Specifically, for a more efficient optimization, we adopt the idea of belief propagation by minimizing a

cp Flux,, -)2, will be iteratively optimized, by taking into account all the Hop-2 neighbors in the factor graph

reweighted flux imbalance: L} £ L, + ch,ENez(Ck) WL, at each iteration, where W, is a weight value in (0,1]

ZCpr1EeNe(Ne(C N1 Ci Li!!
INe2(Cpr NCpr.Crll
exponential function of the negative averaged imbalance level of 2-hop neighbors (metabolite) of €, excluding Cy,
with higher W, denoting lower imbalance of the metabolites. The underlying idea is that the more reliable the

representing the reliability of the current flux balance of C,r. We set W,» = exp (— ) asan
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current flux is estimated for the modules involving C,, which is reflected by the averaged imbalance level of its
2-hop neighbors, a higher weight W, should be given to C,r, such that when minimizing Lg, a disruption of the
flux balance of €, will be more heavily penalized.

Neural network model setup. For each module, a neural network is used to represent the non-linear dependency
between gene expressions and reaction rates. Each neural network has a, hidden layers each with a, hidden nodes,
and one output node. In this study, we took a; =3 and a, = 8. A Hyperbolic Tangent activation function,
Tanhshrink(x) = x — tanh (x), is used. The number of nodes and the number of hidden layers determines the
complexity of network structure, which impacts the convergence time of optimization. Too simple structure would
weaken the non-linear capability while too complex structure cause difficult to train all parameters and convergence.
Our organized metabolic modules have an average gene number of 8, which determine the input nodes of scFEA.
Since scFEA has 169 parallel subnetworks for each metabolic module, three hidden layers can leverage the level of
non-linearity and overfitting and ensure a feasible computational cost (see details in Supplementary Methods).

Clustering analysis of cells with distinct metabolic states

SCFEA adopts an attributed graph clustering approach to identify the group of cells and metabolic modules
forming a distinct metabolic state. Three clustering approaches were provided to the results of scFEA for different
tasks, namely clustering of (1) metabolic modules, (2) cells share a common state on the overall metabolic map, and (3)
cells share a common state on selected metabolic modules.

Clustering of metabolic modules. Denote the adjacency matrix of the context specific metabolic map as AM*™ and
predicted metabolic flux as Flux™*N where Flux,, ; represents the predicted flux rate of the module m incell j, a
two-stage spectral clustering was applied to cluster the metabolic modules based on AM*™ and predicted Flux™*N,
It is noteworthy here the Flux™*N is usually much denser than the input scRNA-seq data since the metabolic
modules without significant expression were excluded before the analysis. Specifically, denote A™"*™ as the
Euclidean distance of the M modules in Flux™*¥ and DM*™ and D"™*™ as the two diagonal matrices, in which
Dy = XL, A;; and D = XL, Af;. The normalized graph Laplacian matrices for the network topology and attributes

similarity were defined as L =1 — D73ADZ and IF = [ — DF_%AFDF_%. The normalized graph Laplacian matrices
scale the topology and attributes similarity into the same scale. Denote d(R;,R;) and df (R;,R;) as the Euclidean
distance between the metabolic modules R; and R; of the smallest P, eigenvectors of L and the smallest P,
eigenvectors of LF, the modules were clusters by the K-mean method with using the following distance:

ad(R;, R;) + (1 — a)d" (R, R))
, here @, P, and P,, and the number of clusters are hyperparameters. Our empirical analysis suggested a default

setting as a = 0.3, which assigns a higher weight to the similarity of the predict flux; P; = max {3,floor(%TM) 1

where #SM is the number super-modules in the current metabolic map; and P, = max {3,floor(i—'\74) }, where #M

is the number of non-zero modules in the current metabolic map. The number of clusters should be pre-given by users,
which depends on the number of cells, cell types, and metabolic modules.

Clugtering of cells. For a given metabolic map or a predefined group of metabolic modules, such an identified module
cluster, scFEA conducts cell clustering analysis by using the spectral clustering approach based on the L and d* as
defined above.

Analysis of cell group specific metabolic stress and metabolic exchanges among cell groups.

The cell-wise metabolic flux estimated by scFEA enables the analysis of metabolic stress. For a pre-defined cell
group such as cells of the same type, the total imbalance of each compound will be computed and ranked. One-way
t-test was applied to test if the imbalance is significantly different to 0. The metabolic exchange among different cell
groups from one tissue sample were identified as the metabolites with different sign of metabolic imbalance in
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different cell groups, such as accumulation and depletion, or exporting or importing. Tissue level metabolic stress is
computed as the total imbalance throughout multiple cells.

Perturbation analysis

SCFEA encodes a perturbation analysis to evaluate the impact of the change of each gene on the whole metabolic
map. The perturbation analysis includes three components: (1) the direct impact of each gene G/™ to the flux module
m can be directly computed by its derivative % for all the modules containing G/™; (2) the impact of the flux

change of one module A on other modules and flux balance of metabolites can be computed as the difference of flux
of other modules estimated by scFEA while fixing the flux of module A at different values; (3) the impact of each
gene’s expression to the flux of distant modules and the flux balance was evaluated by integrating the approach of (1)
and (2), i.e. first computing the flux change of the modules containing the gene and then evaluating the change of
other modules and flux balance of other metabolites.

Scalability analysis.

The most time-consuming step in scFEA comes from the training of neural networks from each module to
minimize the loss function. Maturing of a neural network consists of forward pass process and back-propagation
update process. Forward pass process can be formed as matrix multiplication, where input multiply the weights on the
link and plus the bias. Then activation function has 0(1) time complexity. The time complexity is O(e * N = (i *
h 4+ h =m)) for three layers forwarding and back-propagation update, where i is input layer node number, A is
hidden layer node number, m is output layer node number, N is the cell number, e is number of iterations. In our
work, i =Y _ i, =1294, h=M x8, m =171, e = 200, N is cell number for each dataset. Paralleling GPUs
matrix operation is encouraged since sub-networks are independent. We tested the time consumption of scFEA on a
regular laptop of Intel i7-7600 CPU and 16GB RAM. The whole scFEA analysis process took 14 and 23 minutes on
4486 selected cells in the GSE72056 and 5902 selected cells in the GSE103322 datasets, respectively. Detailed
scalability analysis is provided in Supplementary Methods.

Patient-derived cdl line models of pancreatic cancer

Pa03C cells were obtained from Dr. Anirban Maitra’s lab at The Johns Hopkins University (Jones et al. 2008). All
cells were maintained at 37°C in 5% CO2 and grown in DMEM (Invitrogen; Carlsbad, CA) with 10% Serum
(Hyclone; Logan, UT). Cell line identity was confirmed by DNA fingerprint analysis (IDEXX BioResearch, Columbia,
MO) for species and baseline short-tandem repeat analysis testing in February 2017. All cell lines were 100% human,
and a nine-marker short tandem repeat analysis is on file. They were also confirmed to be mycoplasma free.

ScRNA-seq experiment

Cells were transfected with either Scrambled (SCR) (5° CCAUGAGGUCAGCAUGGUCUG 3, 5%
GACCAUGCUGACCUCAUGGAA 3) or SIAPEX1 (5 GUCUGGUACGACUGGAGUACC 3, 5
UACUCCAGUCGUACCAGACCU 3’ siRNA). Briefly, 1x10° cells are plated per well of a 6-well plate and allowed
to attach overnight. The next day, Lipofectamine RNAIMAX reagent (Invitrogen, Carlsbad, CA) was used to transfect
in the APEX1 and SCR siRNA at 20 nM following the manufacturer’s indicated protocol. Opti-MEM, siRNA, and
Lipofectamine was left on the cells for 16 h and then regular DMEM media with 10% Serum was added.

Three days post-transfection, SCR/SiIAPEX1 cells were collected and loaded into 96-well microfluidic C1
Fluidigm array (Fluidigm, South San Francisco, CA, USA). All chambers were visually assessed and any chamber
containing dead or multiple cells was excluded. The SMARTer system (Clontech, Mountain View, CA) was used to
generate cDNA from captured single cells. The dscDNA quantity and quality was assessed using an Agilent
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) with the High Sensitivity DNA Chip. The Purdue
Genomics Facility prepared libraries using a Nextera kit (I1lumina, San Diego, CA). Unstrained 2x100 bp reads were
sequenced using the HiSeg2500 on rapid run mode in one lane.
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ScRNA-seq data processing and analysis

FastQC was applied to evaluate the quality of the single cell RNA sequencing data. Counts were called for
each cell sample by using STAR alignment pipeline against human GRCh38 reference genome. Cells with less than
250 or more than 10000 non-zero expressed genes were excluded from the analysis. Cells with more than 15% counts
mapped to the mitochondrial genome were excluded as low quality cells, resulting 40 APEX1 KD and 48 Control cells
under hypoxia condition and 27 APEX1 KD and 46 Control cells under normoxia condition for further analysis.

We utilized our in-house developed left truncated mixture Gaussian model to identify differentially expressed
genes (Wan et al. 2019a). Pathway enrichment analysis of the genes in the identified bi-clusters are computed using
hypergeometric test against the 1329 canonical pathway in MsigDB database (Liberzon et al. 2011), with p<0.001 as a
significance cutoff.

Metabolomic profiling and data analysis

To address the function of the mitochondria, S-1 Mitoplates (Biolog, Hayward, CA) Mitochondrial Function
Assay were performed following the manufacturer’s protocol. The assay covers 14 metabolites in central metabolic
pathways, namely glucose, glucose-1 phosphate, glucose-6 phosphate, pyruvate, and lactate in the glycolysis pathway,
citrate, 2-oxoglutarate, succinate, fumarate, malate in the TCA cycle, and amino acids glutamate, glutamine, serine,
and ornithine. Specifically, assay mix (60 minutes at 37°C) was added to the plates to dissolve the substrates. We
collected, counted, resuspended PDAC cells in provided buffer and plated them at 5x104 cells/well after treatment
(2020). Readings at 590nm were taken every 5 min for 4 hours at 37°C. Experiments were performed in triplicate with
3 biological replicates for the sSiAPEX1 and control PDAC cells under the normoxia condition. Raw data was analyzed
using Graphpad Prism 8, and statistical significance was determined using the 2-way ANOVA and p-values <0.05
were considered statistically significant.

gRT-PCR

gRT-PCR was used to measure the mRNA expression levels of the various genes identified from the sScRNA-seq
analysis. Following transfection, total RNA was extracted from cells using the Qiagen RNeasy Mini kit (Qiagen,
Valencia, CA) according to the manufacturer’s instructions. First-strand cDNA was obtained from RNA using random
hexamers and MultiScribe reverse transcriptase (Applied Biosystems, Foster City, CA). Quantitative PCR was
performed using SYBR Green Real Time PCR master mix (Applied Biosystems, Foster City, CA) in a CFX96 Real
Time detection system (Bio-Rad, Hercules, CA). The relative quantitative mRNA level was determined using the
comparative Ct method using ribosomal protein L6 (RPL6) as the reference gene. Experiments were performed in
triplicate for each sample. Statistical analysis performed using the 2-AACT method and analysis of covariance
(ANCOVA) models, as previously published (Fishel et al. 2015).

Notation and abbreviation

Abbreviation Full name

General

SCFEA single-cell Flux Estimation Analysis
SCRNA-seq single cell RNA-sequencing

FBA Flux Balance Analysis

SSGSEA single sample gene set enrichment analysis
ANCOVA analysis of covariance

PCC Pearson Correlation Coefficient

KEGG Kyoto Encyclopedia of Genes and Genomes
RELdb Rate-Limiting Enzymes database

TFs transcriptional factors

Cdl information

Pa03c cell pancreatic cancer cells

APEX1 KD APEX1 knockdown
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SCR Scrambled
PV-ADSC perivascular adipose tissue derived mesenchymal stem cells
MD more differentiated
HS high stemness
M etabolites
G1P D-Glucose 1-phosphate
G6P alpha-D-Glucose 6-phosphate
G3P glyceraldhyde-3P
3PD 3-Phospho-D-glyceroyl phosphate
20G 2-Oxoglutarate
OAA oxaloacetate
DATA ACCESS

The raw and processed sequencing data of the normoxia scRNA-seq data generated in this study have been
submitted to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE99305. The scFEA package, full set of process sScRNA-seq data, metabolomic profile, and analysis codes used in
this work are available at https://github.com/changwn/scFEA.
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Figure 1. The computational framework of scFEA. (A) Metabolic reduction and reconstruction. A metabolic map
was reduced and reconstructed into a factor graph based on network topology, significantly non-zero gene expressions
and users’ input. (B) A novel graph neural network architecture based prediction of cell-wise fluxome. A loss function
(L) composed by loss terms of flux balance, non-negative flux, coherence between predicted flux and gene expression,
and constraint of flux scale were utilized to estimate cell-wise metabolic flux from scRNA-seq data. See detailed
models and formulations in Results and Methods. (C) Downstream analysis of sSCFEA is provided, including inference
of metabolic stress, cell and module clusters of distinct metabolic states, and the genes of top impact to the whole
metabolic flux.

Figure 2. Reduced and reconstructed human metabolic map. (A) Collected human metabolic modules and super
module classes. (B) Factor graph representation of the reconstructed human metabolic map, in which the modules and
metabolites were colored by green and pink, respectively. (C) Examples of how the network motifs in the metabolic
map are simplified into metabolic modules, where the reactions and metabolites are represented by black and blue
rectangular, and modules and metabolites are colored by green and pink. Chain-like reactions can be directly
simplified; a complicate module connected by multiple branches can be shrunk into one point linked with the multiple
branches; and complicated intersections cannot be simplified.

Figure 3. A toy mode of thefactor graph of metabolic modules, flux balance conditions, and the flux model for
the module R, (top-right). In the factor graph, each C (metabolites) corresponds to one flux balance condition and
serves as a factor, and each R (can be a reaction or a module) is a variable. For example, C°(Rgy, Ry, Ry|L.0) simply
represents that the metabolite € is determined by the flux balance loss of Ry, R;,R,, here Lo is the flux balance
term of C°. Import and export/degradation reactions are considered as having no input or output substrates.

Figure 4. Application of scFEA on matched stcRNA-seq and metabolomics data of PaO3C cdls. (A) Gene
expression and metabolomic variations of the glycolysis, pentose phosphate, TCA cycle, glutamine, and aspartate
metabolic pathways in APEX1-KD vs control under normoxia condition. Genes/metabolites were shown in
rectangular boxes with black/blue borders, up/down regulated genes were colored in red/green, increased and
decreased metabolites were colored in yellow/blue, respectively. The darker color suggests a higher variation. (B)
Predicted flux fold change (left, x-axis: metabolic module, y-axis: predicted flux change) in control vs APEX1-KD,
and correlation between fold change of predicted flux and observed metabolite change (right, x-axis: fold change of
predicted flux, y-axis: fold change of observed metabolite abundance, each data point is one metabolite, PYR:
pyruvate, CIT: citrate, FUM: fumarate, SUC: succinate, MAL: malate). (C) Observed metabolomic change (left, x-axis:
metabolites, y-axis: abundance difference observed in the metabolomics data) in control vs APEX1-KD, and
correlation between log fold change of gene expressions involved in each reaction and observed metabolomics change
(right, x-axis: log fold change of the averaged expression of the genes involved in each reaction, y-axis: fold change of
observed metabolites abundance observed in the metabolomics data, each data point is one metabolite). (D) Predicted
metabolic stress (left, x-axis: metabolites, y-axis: predicted abundance difference) in control vs APEX1-KD and
correlation between predicted metabolic stress and observed difference in metabolite abundance (right, x-axis: top
scFEA predicted imbalance of the in-/out-flux of intermediate metabolites, y-axis: difference of observed metabolomic
abundance, in control vs APEX1-KD, each data point is one metabolite: LAC: lactate, SER: serine, GLU: glutamine,
ORN: ornithine). In (B-D) all comparisons were made by comparing control vs APEX1-KD under normoxia. Noted,
the fold change of metabolomic abundance is used in calculating the correlation in B-C and difference of metabolomic
abundance is used in D. The green and red dash-blocks represents the accumulated (green) and depleted (red)
metabolites in Control vs APEX1-KD. (E) Profile of the predicted fluxome of 13 glycolytic and TCA cycle modules.
Here each column represents the flux between two metabolites, shown on the x-axis, for all the cells of the four
experimental conditions, shown on the y-axis. For two neighboring fluxes, the product of the reaction on the left is the
substrate of the reaction on the right, and in a perfectly balanced flux condition, the two neighboring fluxes should be
equal. (F) Clusters of metabolic modules inferred by using the network connectivity structure only. (G) Clusters of
metabolic modules inferred by using the network topological structure (weight of 0.3) combined with predicted
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fluxome (weight of 0.7).

Figure 5. M ethods validations on real-world and synthetic datasets. (A) UMAP of the cell clustering analysis of
the GSE132581 PV-ADSC data, here HS and MD stand for PV-ADSC of high stemness and more differentiation,
respectively. (B) Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules. Each row is one cell,
where row side color bar represents HS and MD PV-ADSC by blue and orange, respectively. Each column is one
module. The left five columns (red labeled) are glycolytic modules from glucose to acetyl-CoA, the CIT column
(orange labeled) is the reaction from acetyl-CoA to Citrate, the LAC column (yellow labeled) is the reaction from
pyruvate to lactate, and the right six columns (green labeled) are TCA cycle modules from citrate to oxaloacetic acid.
(C) Total loss (y-axis) with respect to different proportion of cell samples (x-axis) with randomly shuffled gene
expressions of the pancreatic cancer cell line data. The baseline loss 0.1579 was computed by using the original
expression profile of all 166 cells. (D) The sample-wise and module-wise correlation (y-axis) between the true and
predicted module flux in synthetic data-based method validation, here Cor=0.5775 (p=0.05) and 0.5778 (p=0.05)
correspond to the sample-wise and module-wise correlation, respectively. (E) Convergency of the total loss and four
loss terms during the training of neural networks on the pancreatic cancer cell line data. (F) Total loss (y-axis)
computed under 5-/10-fold cross validation (x-axis) vs baseline loss. (G) Total loss (y-axis) computed from the
robustness test by adding 0%-35 artificial dropouts to the original data (50.22% zero rate) vs baseline loss. (H)
Sample-wise and module-wise correlation (y-axis) of the module flux predicted from the data with 0%-35 additional
artificial dropouts with the module flux predicted from the original data.

Figure 6. Application on two tumor scRNA-Seq datasets, ROSMAP, and one breast cancer spatial
transcriptomics dataset. (A) UMAP of the cell clustering based on metabolic fluxes of the GSE72056 melanoma
data, the cell label was provided in original work. (B) UMAP of the cell clustering based on metabolic fluxes of the
GSE72056, k-means clustering was used for cell clustering. (C) UMAP of the cell clustering based on metabolic
fluxes of the GSE103322 head and neck cancer data, the cell label was provided in original work. (D) UMAP of the
cell clustering based on metabolic fluxes of the GSE103322, k-means clustering was used for cell clustering. (E)
Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules of GSE72056 melanoma data. Each row
is one cell, where row side color bar represents 8 cell types. Each column is one module. The left five columns are
glycolytic modules from glucose to acetyl-CoA, the 6™ column is the reaction from acetyl-CoA to Citrate, the 7™
column is the reaction from pyruvate to lactate, and the right six columns (8-13 columns) are TCA cycle modules from
citrate to oxaloacetic acid. (F) Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules of
GSE103322 head and neck cancer data. Each row is one cell, where row side color bar represents 9 cell types,
respectively. The column is same as (E). (G) UMAP of the cell clustering based on metabolic fluxes of the ROSMAP
data. k-means clustering was used for cell clustering. (H) Convergency curve of the total loss and four loss terms
during the training of neural networks on the ROSMAP data. (1) Top accumulated and depleted metabolites predicted
in the AD neuron cells in the ROSMAP data. The y-axis is metabolism stress level (or level of accumulation and
depletion), where a positive value represents accumulation while a negative value represents depletion. The x-axis are
metabolites in a decreasing order of the accumulation level. (J) scFEA predicted flux rate of lactate product on the
spatial breast cancer data. The color of each point represents the spatial-wise predicted lactate product rate. The spatial
plot is overlaid on the tissue slice image. (K) scFEA predicted flux rate of TCA cycle (citrate to 20G) on the spatial
breast cancer data.
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** Only part of the transporters is illustrated

B | C

Reducible Reactions

000000

(-

o
Qo0

D—b
Qo0

()

o

Merging Metabolite Group Non-Reducible Reactions

: S : o o
'med glycan s“yﬁ N g e o &
« % UreaCydle Fatty Acids Wetabol i o 00000
v “ oo __.,
()
o (]
= (]

() Metabolite <> Metabolic Module
D Metabolite D Reaction



https://doi.org/10.1101/2020.09.23.310656
http://creativecommons.org/licenses/by-nc-nd/4.0/

Uptake by transporters
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