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People in the Americas represent a diverse group of populations with varying degrees of
admixture among African, European, and Amerindigenous ancestries. In the United States, many
populations with non-European ancestry remain understudied, and thus little is known about the
genetic architecture of phenotypic variation in these populations. Using genome-wide genotype
data from the Hispanic Community Health Study/Study of Latinos, we find that Amerindigenous
ancestry has increased over time across Hispanic/Latino populations, particularly in Mexican
Americans where Amerindigenous ancestry increased by an average of ~20% over the 50-year
period spanning 1940s-1990s. We find similar patterns across American cities, and replicate our
observations in an independent sample of Mexican Americans. These dynamic ancestry patterns
are a result of a complex interaction of several population and cultural factors, including strong
ancestry-related assortative mating and subtle shifts in migration with differences in
subcontinental Amerindigenous ancestry over time. These factors have shaped patterns of
genetic variation, including an increase in runs of homozygosity in Amerindigenous ancestral
tracts, and also influenced the genetic architecture of complex traits within the Mexican American
population. We show for height, a trait correlated with ancestry, polygenic risk scores based on
summary statistics from a European-based genome-wide association study perform poorly in
Mexican Americans. Our findings reveal temporal changes in population structure within
Hispanics/Latinos that may influence biomedical traits, demonstrating a crucial need to improve

our understanding of the genetic diversity of admixed populations.

Introduction

The United States Census Bureau refers to the Hispanic/Latino ethnicity as a self-
identified category for individuals with ancestry deriving from Spain and the Spanish-speaking
countries of the Americas. As such, this broad ethnic group living in the United States is a
culturally, phenotypically, and genetically diverse continuum of populations. Individuals who

identify as Hispanic/Latino have varying proportions of Amerindigenous, African, and European
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genetic ancestry, each with its own unique continental demographic history. Demographic forces
such as population bottlenecks and expansions, migration and adaptation to novel environments
resulted in observable differences in continental patterns of genetic variation (1-3). These differing
patterns were shaped by many historical events of migration which partially included the founding
of the Americas by Amerindigenous populations, the colonization by Europeans, and the African
slave trade (4-8), however additional complexities surrounding these events remain highly
understudied. These large-scale migrations and additional demographic events shaped the
genetic diversity of individuals currently living within the United States (9-13).

Demographic history has shaped the genetic architecture of modern human phenotypic
variation (14-19), and is critical to consider in the search for the genetic basis of complex diseases.
The demography of the United States has changed drastically over the 20" century, and by 2044
is predicted to become a ‘minority-majority’ country whereby no one racial/ethnic group comprises
more than 50% of the population (20). By 2060 Hispanics/Latinos are projected to make up the
largest of that share at 29% or 119 million individuals (20). However, to date, population-based
medical genomics research [and its subsequent benefits, including polygenic risk score (PRS)
profiling] have been disproportionately focused on individuals of European descent, with the
findings primarily benefiting European populations (21, 22). Despite the increases in sample
sizes, rates of discovery, and traits studied, Hispanic or Latin American participation in genome-
wide association studies (GWAS) has continued to hover around 1% (23, 24). This trend, along
with factors ranging from research abuse and community mistrust to community superstition and
apathy have led to a situation where these populations (and other non-European populations) are
particularly vulnerable to falling behind in receiving the benefits of the precision medicine
revolution (22, 23).

In this study we utilize the largest genetic study of Hispanics/Latinos in the U.S. to date --

the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (10) -- to understand how
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81  patterns of genetic variation in Hispanic/Latino populations in the United States have changed
82  over the last century, and evaluate the impact such changes may be having on complex traits.
83

84  Results

85  Global ancestry proportions among HCHS/SOL Hispanic/Latino Populations

86 Using the subset of sites that overlapped with our African, European, and Amerindigenous
87  reference panels, we called 3-way global ancestry estimates for 10,268 unrelated HCHS/SOL
88 individuals (see methods). Figure 1A summarizes the global ancestry proportions shaded by
89  admixture estimates in a ternary plot, recapitulating the original HCHS/SOL analysis of continental
90 ancestry (10). However, while several population groups appear to have overlapping ancestry
91 proportions, this analysis masks more subtle structure in subcontinental ancestry. To investigate
92  subtle population structure across these self-identified population groups, we performed UMAP
93  on the top 3 principal components (see methods), and find substantial structure across self-
94  identified groups (Figure 1B and Supplementary Figure 1B). We find that Dominicans, who have
95 the highest average proportions of African ancestry, are in the middle, with Puerto Ricans and
96  Cubans, diverging in opposite directions (Supplementary Figure 1B) with clines of increasing
97  European ancestry proportions (Figure 1B). Further, while self-identified Mexican, Central, and
98  South American groups appear to have overlapping ancestry proportions in Figure 1A, UMAP
99  represents the Mexican Americans and Central/South American groups as large, separate wings
100  that diverge from self-identified Cubans and Dominicans, with both clusters diverging with clines
101  of increasing ancestry toward different Amerindigenous populations (Figure 1B and
102  Supplementary Figure 1B and 1C). While UMAP places each of the Amerindigenous populations
103  and the CEU population at the border of one or more HCHS/SOL clusters, UMAP isolates the YRI
104  samples into a distinct island suggesting that the use of this single African population may be
105  suboptimal for studying African ancestry in the populations sampled by HCHS/SOL

106  (Supplementary Figure 1C).
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107  Dynamic Global Ancestry Proportions in Mexican Americans

108 For each of the HCHS/SOL populations, we evaluated differences in global ancestry
109  estimates over time while accounting for the sampling method (referred to as “sampling weight”,
110  see methods) used for the design of the HCHS/SOL study (25). We found that in all populations,
111  the effect size for Amerindigenous ancestry on birth year is positive, though only statistically
112 significant after multiple testing in the Mexican American (8 =0.0023; P=3.58E-22; Figure 1C) and
113 Central American ($=0.0013; P=0.0013) cohorts (Supplementary Table 1). Due to the larger
114 sample size, magnitude of the effect, and statistical significance, we shift our focus to Mexican
115  Americans. In Mexican Americans, the increase in Amerindigenous global ancestry over time was
116  consistent across multiple data stratifications including recruitment region, US born or not US
117 born, educational attainment, and sex (Table 1), and was robust to alternative methods for
118  estimating global ancestry proportions (e.g. based on the summation of RFMix local ancestry
119  estimates; Supplementary Figures 2 and 3). We performed bootstrap resampling (n=1000) of
120  global Amerindigenous ancestry for the Mexican Americans and observed a consistent increase
121  in Amerindigenous ancestry with fitted LOESS smoothing (Figure 1D) and when individuals were
122 binned by birth year decades (Supplementary Figure 4). On average, global Amerindigenous
123 ancestry has increased ~20% over the last 50 years in Mexican Americans.

124 We replicated the increase in global Amerindigenous ancestry over time in a smaller,
125  independent cohort of self-identified Mexican Americans (n=705) from the Health and Retirement
126  Study (HRS) [34]. The HRS Mexican Americans in this study are older compared to the
127 HCHS/SOL Mexican Americans (birth year distribution: 1915-1981; mean=1943,median:1942)
128  and have lower levels of global Amerindigenous ancestry on average (mean=0.29), but we still

129  observed an increase in global Amerindigenous ancestry over time (£=0.00082; P=0.02;

130  SE=0.0003673; Supplementary Figure 5A). We performed 1000 bootstrap resampling iterations

131  of the linear regression model (global Amerindigenous ancestry ~ birth year) fitted to the data.
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132 From these resampling iterations, 98.2% of the tests had a slope > 0 (average £=0.00083) and
133 61.5% of the regression p-values were less than 0.05 as illustrated in Supplementary Figures 5B-
134  5D.

135 A previous study (12) identified ancestry biased migration in African Americans where
136  individuals with higher proportions of European ancestry migrated first out of the South during the
137  Great Migration followed by individuals with higher proportions African ancestry. We hypothesized
138  that earlier immigrants to the US had higher proportions of European ancestry followed by recent
139  immigrants having higher proportions of global Amerindigenous ancestry. In our non-US born
140  individuals (N=2987), we evaluated differences in ancestry estimates over time while accounting

141  for years in the US and sampling weight and identified a significant effect of years in the US (f=-

142 0.0009; P=0.0006; SE=0.0003). However, this did not change the effect of birth year on the
143 proportion of global Amerindigenous ancestry (8 =0.0028; P<2e-16, SE=0.0003).

144 For US born individuals we assessed whether parental birth place could explain the
145  increases in global Amerindigenous ancestry. Of the 634 US born individuals, 385 had parents
146  both born outside of the US, 149 had one parent born outside of the US. 97 had both parents
147  born within the US. For the 385 individuals with both parents born abroad, we identified a
148  significant association between birth year and global Amerindigenous ancestry (£=0.004,
149  P=2.34e-10, SE=0.0006). For the remaining individuals we were unable to identify a significant
150  effect of birth year on global Amerindigenous ancestry, possibly due to a small sample size.

151

152  Individual loci are not driving global ancestry proportions

153 We used local ancestry estimates generated across the genome to perform admixture
154  mapping in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess

155  Amerindigenous ancestry in certain regions of the genome. Although we tried two different models
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156  (see methods), we did not find any loci to be significantly associated with birth year across the
157  genome (Supplementary Figure 6).

158

159 Little evidence for subcontinental population structure

160 It is possible that the increase in global Amerindigenous ancestry over time could be
161  biased by changes in the specific subcontinental Amerindigenous ancestries over time (though
162  such an effect is not visible in our UMAP analysis, Figure 1B). If it were the case, then we would
163  expect subtle signals of genetic divergence in Amerindigenous ancestry tracts over time. To
164  investigate this, we calculated Fst between all pairs of birth-decades (see methods). Figure 2A
165  shows all pairwise comparisons among birth-decades, and demonstrates that while the estimates
166  of Fst are negligible (with many estimates below 0), there is a subtle trend of increasing Fst as
167  birth-decade differences increase (though individuals born in the 80s and 90s show a conflicting
168  pattern). We further investigated this pattern using genetic diversity, 1, in Amerindigenous
169  ancestry tracts for each birth-decade (see methods). We hypothesized that if there were
170  increased migration from multiple Amerindigenous source populations (coupled with rapid
171  population growth in Mexican American communities), then genetic diversity should be increasing
172 over time. We found the opposite: Supplementary Figure 7 shows a subtle decrease in genetic
173 diversity (1) over time from the 1930s to the 1980s in non-US born Mexican Americans, and a
174  subtle decrease in US born Mexican Americans from the 70s to the 90s (while remaining roughly
175  constant from the 30s to the 70s).

176

177  Little evidence that Amerindigenous ancestry tract lengths have changed

178 We next sought to test whether differences at the local ancestry level could explain the
179  shift in global Amerindigenous ancestry over time in the Mexican Americans. We calculated the
180 length of each RFMix inferred local ancestry tract in each Mexican American individual, and tested

181 for differences in the distribution of tract lengths across birth-decades using a multiple linear

7
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182  regression model (see methods). We found no significant associations between the decade bin
183  and the proportion of Amerindigenous ancestral tracts at various lengths (Figure 2B), even when
184  testing for violations of model assumptions (e.g. normalizing the tracts per bin by the number of
185 individuals, or excluding the 1930s and/or 1990s individuals due to the small sample size in each
186  bin).

187

188 Increased runs of homozygosity over time

189 Since genetic diversity has decreased over time in the Amerindigenous ancestry tracts of
190  Mexican Americans (despite rapid growth of the census population size), it is possible that this
191  population has also experienced increased haplotype homozygosity over time. We investigated
192  this possibility by exploring runs of homozygosity (ROH) in Amerindigenous ancestry tracts in
193 each of the 3622 Mexican Americans. We classified ROH into three categories: short, medium,
194  and long, based on the length distribution in the population. Generally, short ROH are tens of
195 kilobases in length and likely reflect the homozygosity of old haplotypes; medium ROH are
196  hundreds of kilobases in length and likely reflect background relatedness in the population; and
197 long ROH are hundreds of kilobases to several megabases in length and are likely the result of
198  recent parental relatedness. Figure 2C shows a fitted loess curve to the log of the total length of
199 ROH summed across each Mexican American’s genome as a function of their birth year, broken
200 down by ROH size class (as well as the total of each size class that overlaps all ancestry tracts
201  (Supplementary Figure 8A) and Amerindigenous ancestry tracts (Supplementary Figure 8B)).
202  Overall, we find a significant positive correlation between birth year and the total summed ROH
203 across size classes (1=0.0449, P=6.12e-5, Kendall's rank correlation), but this becomes more
204  significant when we restrict our analysis to ROH calls that overlap Amerindigenous ancestry tracts
205 (r=0.0873, P=9.46e-15). When stratified by size class, the associations (all Kendall’'s rank
206  correlation) in ROH were primarily driven by the short (t=0.0833, P=9.45e-14), and medium

207 (t=0.0718, P=1.46e-10) size classes, and are again strongest when ROH overlap
8
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208  Amerindigenous ancestry tracts (short t=0.107, P<2.2e-16, medium t=0.1003, P<2.2e-16). The
209 long ROH had a negative correlation with birth year, but was insignificant after multiple testing
210  (t=-0.0291, P=0.01499; note that 1694 individuals did not have any long ROH calls in their
211  genome).

212

213  Strong ancestry-related assortative mating in HCHS/SOL Mexicans

214  Given that short and medium length ROH have increased over time, it appears that background
215  relatedness within Amerindigenous ancestry in Mexican Americans has increased over time (but
216  not an increase in recent parental relatedness). One way for this to occur is if individuals with
217  similar ancestry patterns tend to mate with one another more often than expected under a model
218  of random mating (i.e. assortative mating). To measure assortative mating, we estimated the
219  ancestral proportions of the biological parents of each HCHS/SOL Mexican American (see
220  methods). With individuals from all decades pooled together, we found the inferred biological
221  parental Amerindigenous ancestries to be significantly correlated (Figure 2D, r=0.708, 95%
222 Cl:0.69-0.72, P<2.2e-16, Pearson correlation). When stratified by decade, the correlation in
223 inferred parental Amerindigenous global ancestry ranged from 0.65 to 0.74 (Supplementary
224 Figure 9), but were not statistically different from each other. This shows that there was a strong
225 parental ancestry correlation among Mexican Americans over different generations. This
226  signature of assortative mating is not due to recent parental relatedness, because there is no
227  trend in long ROH with birth year (and an overall low rate of long ROH among Mexican
228  Americans).

229

230  Genetic correlation of global Amerindigenous ancestry with biomedical traits

231  We have shown that genetic variation in the Mexican American population is dynamic, with
232 Amerindigenous ancestry increasing over a short period of time (combined with decreased

233 genetic diversity and increased short and medium length ROH within Amerindigenous ancestry

9
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234 ftracts). These features may have implications for the genetic architecture of complex traits within
235 Mexican Americans, a topic that is understudied and poorly understood. To further our
236  understanding of the genetic architecture of complex traits in Mexican Americans, we investigated
237  the relationship between Amerindigenous ancestry and various complex traits that may be
238  relevant to biomedical phenotypes. Specifically, we tested for a correlation between 66 complex
239  ftraits from the HCHS/SOL phenotypic dataset and global Amerindigenous ancestry (Kendall’s T).
240  As illustrated in Figure 3, 22 of these traits (33%) are significantly correlated after Bonferroni
241  correction (P<0.00076). We found that the effect of global Amerindigenous ancestry on many of
242  these phenotypes persisted when using multiple regression to account for age, sex, center, and
243  the sampling weight (Supplementary Table 2), highlighting the need for increased investigation
244  into the role of Amerindigenous genetic ancestry in admixed populations such as Mexican
245  Americans.

246

247  Assessing the genetic contribution of Amerindigenous ancestry to height

248 Among the traits we tested for a correlation with global Amerindigenous ancestry, height
249  had the strongest negative correlation, and our regression model indicated that height also had a
250  strong positive relationship with birth year (Figure 4A and Supplementary Table 3). Globally,
251  populations have grown taller over time due to a variety of non-genetic, environmental factors
252 (26). We find a similar trend in the HCHS/SOL Mexican Americans (Figure 4A). Indeed, when we
253  stratified individuals by quartiles of global Amerindigenous ancestry, we see that all quartiles have
254  increased in height by a similar amount over the period investigated (though individuals with lower
255  Amerindigenous ancestry were taller on average).

256 Height is one of the most highly studied complex traits, with GWAS sample sizes
257  numbering in the hundreds of thousands (27). Results for many of these studies have been made
258  readily available on public databases as summary association statistics that can be leveraged to

259  build genetic predictions through polygenic risk scores (PRS) (28). In Europeans, PRS have been
10
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260  shown to have great predictive power for several traits, including breast cancer, prostate cancer,
261 and type 1 diabetes (22, 29-31). PRS are most effective in populations of European descent as
262  GWAS studies have been primarily performed in these populations (21-23) and are expected to
263  be biased when applied to other populations due to differences in the genetic architecture of traits
264  across diverse populations (32). Since Mexican Americans have some fraction of European
265 ancestry, we sought to determine whether PRS calculated utilizing GWAS summary statistics
266  from European populations could still provide useful insight.

267 To evaluate the effectiveness of PRS for height (i.e. the polygenic height score, or PHS,
268  see methods), we first tested whether there was an association between the observed height and
269  the predicted height estimates while controlling for sampling weight, sex, and recruitment center
270  (see methods). We identified a significant association between observed height and predicted
271  height for the population as a whole (=0.0044881, P=2.19e-12; Figure 4B, Supplementary Table
272  4). However, when we stratified by quartiles of Amerindigenous global ancestry, the association
273  only remained for the individuals in the lower two quartiles of global Amerindigenous ancestry
274  proportions (AlA<0.37: [(=0.004, P=0.0008 and 0.36<AIA<0.46: [=0.004, P=0.003,
275  Supplementary Table 4). The association between predicted height and observed height was no
276  longer significant for individuals in the upper two quartiles of global Amerindigenous ancestry
277  proportions (0.46<AlA<0.58: [(=0.0011, P=0.39 and 0.58<AlA: [(=0.0022, P=0.08,
278  Supplementary Table 4).

279 As we had found global Amerindigenous ancestry to be increasing over time, we
280  hypothesized that there would be a change in PHS over time as well. However, we find little
281  evidence supporting this hypothesis. While individuals born earlier than 1950 or in the 1950s have
282  astronger correlation between their PHS and observed height (£=0.034 and 0.039; p=5.6e-4 and
283 2.7e-7 respectively) than individuals born in the 1960s, 1970s, or 1980s (£=0.016, 0.029, and

284  0.029; p=0.044, 0.0066, and 7.8e-5 respectively), there is no clear trend and we did not find a

11
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285  significant effect of birth year on PHS (P=0.09) even when we stratified by the quartiles of global
286  Amerindigenous ancestry.

287

288  Discussion

289 The United States is a dynamic, rapidly changing population, and this will continue to occur
290 as the population size grows (20). Hispanics/Latinos are the largest and fastest growing minority
291  group, and are projected to comprise over 25% of the US population by 2060. They are a
292  genetically and phenotypically diverse population as a result of extensive admixture between
293  Amerindigenous populations and immigrants from multiple geographic locations around the world.
294  In this study, we identified additional population substructure complexities that may contribute to
295  phenotypic variation within Hispanics/Latinos.

296 Specifically, we demonstrated how the admixture dynamics of Mexican Americans have
297  changed over time, resulting in an increase of ~20% Amerindigenous ancestry on average over
298 the 50-year period studied. This change in ancestry is equivalent to a mean increase in
299  Amerindigenous ancestry of ~0.4% per year. While the effect sizes vary to some extent, we
300 replicate the underlying pattern across multiple data stratifications (two metropolitan cities, US
301 born and non-US born) and also replicate this feature in an independent cohort of Mexican
302 Americans. Further, we find that a similar trend holds across multiple self-identified
303  Hispanic/Latino populations in the US (and is statistically significant in Central Americans). This
304 effect does not appear to have a simple explanation: we do not see any statistically significant
305 increases at individual loci, we do not see more than a negligible degree of population
306 differentiation over time, and this increase cannot be entirely explained by very recent migration.
307 We do, however, find that as Amerindigenous ancestry has increased, genetic diversity within
308 Amerindigenous ancestry tracts across Mexican Americans has decreased over time, and is
309  associated with increased short and medium length ROH over time. This suggested that there

310 could be increased relatedness within Amerindigenous ancestries within Mexican Americans, and

12
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311 we confirmed that there is a very high degree of ancestry-based assortative mating within the
312  Mexican American population.

313 What could be driving the increased Amerindigenous ancestry in Mexican Americans?
314  Population genetic theory suggests that while assortative mating could result in increased ROH
315 and decreased genetic diversity, ancestry-based assortative mating alone should not result in
316 mean changes in global ancestry proportions. Regardless of the underlying mechanisms driving
317 increased Amerindigenous ancestry in Mexican Americans, this additional source of temporal
318  substructure within this population has substantial consequences for phenotypic variation in
319 biomedical traits. We identify several biomedical traits that are correlated with Amerindigenous
320 ancestry, and show that in the case of height, there are both ancestry and temporal effects.
321 Further study is necessary to understand whether other biomedical traits are also changing over
322 time as the genomic ancestry proportions change in this population.

323 Interestingly, we identified another source of structure within HCHS/SOL, particularly in
324  the African ancestral component of Hispanics/Latinos. In our UMAP analysis, the YRI sample
325 form their own cluster as a reference population as compared to the Amerindigenous and
326  European reference populations which border the admixed samples with the highest proportion
327  of each ancestry, respectively (Supplementary Figure 1C). While most Latin Americans can trace
328 their African ancestry to Sub-Saharan Africa, previous studies have also identified hidden
329  Northern African ancestry in individuals from Southern Europe (33-35), who primarily colonised
330 the Americas. This may explain why the YRI sample is not at the boundary of the individuals with
331 the highest proportion of African ancestry in the HCHS/SOL sample as the African ancestral
332  component may be more complex. Our results suggest how careful consideration must be taken
333  into account when selecting reference populations to study the African ancestral component of
334  admixed individuals from the Americas.

335 In our study, we bring specific attention to the biases that continue to exist with using

336 European GWAS summary statistics to calculate polygenic risk scores in admixed populations
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337 such as Mexican Americans that are comprised of European, Amerindigenous, and African
338 genetic ancestries. In particular, in the case of height, we found that the polygenic height score
339  (PHS) correlated with observed height only in the subset of individuals with the lowest levels of
340 Amerindigenous ancestry (i.e. the subset of individuals with highest European ancestry). As the
341 population dynamics of the US continue to change, it is imperative that we study diverse
342  populations, or we risk exacerbating the health disparities that currently exist. To date, population-
343  based medical genomics research (and its subsequent benefits) have been disproportionately
344  focused on populations of European ancestry. In order to improve the design and implementation
345  of medical genetics studies for the ethnically diverse U.S. population, we need detailed insights
346  into the population history of diverse U.S. populations. This includes characterizing the admixture
347  dynamics of Hispanic/Latino populations, as well as the evolutionary forces that shaped patterns
348  of genetic variation of the ancestral populations that contributed to modern day Hispanic/Latino
349  populations.

350 The genetic variation of the Hispanic community in the United States belies categorization
351 underasingle label (10). The events that have shaped and continue to shape this genetic diversity
352  are complex, numerous, and nuanced, and the social history of such a diverse population is
353  intrinsic to any genetic study. Mexico’s society was largely defined by an established social caste
354  system based on ancestry, which disappeared after Mexico’s independence in 1821 (36). Even
355 so, social inequalities persist today with skin colour having a significant effect on wealth and
356  education (37). A multitude of factors within and outside Mexico — whether related to trade,
357  immigration policies, or armed conflicts — acted to influence who immigrated to the United States,
358 and the impact of each of these fluctuates over time (38-40). These changes shift the
359  demographics of immigration, which is inherently related to the genetic ancestry of the population.
360 Consequently, this shapes the genetic architecture of complex traits. Diverse populations
361 are at risk not only from underrepresentation in research, but because of poor understanding of

362 the temporal and spatial dynamics at play in genetic variation. The promise of equitable precision
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363 medicine — one of the ultimate goals of medical genomics — cannot be kept without
364 understanding this interplay. Health disparities in the United States are fed by structural
365 inequalities. For example, studies that use modern Artificial Intelligence techniques have already
366 been shown to inflate existing disparities between Black Americans and White Americans (41).
367 Such biases, whether from algorithms, study designs, or misunderstandings of subtleties in
368 data, feed into the larger systemic pressures faced by minority populations in the United States.

369 While we have shown a dramatic shift in ancestry proportions in US Hispanic/Latinos, one
370 of the caveats of this study is that the HCHS/SOL cohort is not representative of all US
371 Hispanics/Latinos. HCHS/SOL participants were recruited at four primary centers: Bronx,
372  Chicago, Miami, and San Diego. There may be additional genetic diversity that has not been
373  captured by this dataset and trends exhibited in this dataset may not translate to Hispanic/Latino
374  populations living in other regions of the US (though the temporal increase in Amerindigenous
375 ancestry was replicated in an independent sample of Mexican Americans). Further, we have only
376 assembled a reference panel with limited numbers of individuals with various Amerindigenous,
377 European, and African ancestry. With better population genetic modeling and a deeper
378 understanding of the social and historical aspects of Hispanic/Latino populations, we will be able
379  to improve our understanding of the genetic and phenotypic diversity across these populations,
380 and subsequently improve our ability to understand genetic contributions to complex traits and
381 disease. These insights will lead to optimization of population sampling for the design of future
382 medical genetic studies, the identification of disease risk variants, and ultimately, precision
383  medicine for all.

384

385 Methods

386  Study dataset and initial quality control

387 The HCHS/SOL study is a community-based cohort study of self-identified Hispanic/Latino

388 individuals from four US metropolitan areas with the general goal of identifying risk and protective
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389 factors for various medical conditions including cardiovascular disease, diabetes, pulmonary
390 disease, and sleep disorders (25). 12,434 participants with birth year estimates between 1934-
391 1993 who self-identified as being of Cuban, Dominican, Puerto Rican, Mexican, Central American,
392  or South American background consented to genetics studies and posting of their genetic and
393  phenotype data on the publicly available Database of Genotypes and Phenotypes (dbGaP)
394  through Study Accession phs000810.v1.p1. Samples were genotyped on an lllumina custom
395 array, SoL HCHS Custom 15041502 array (annotation B3, genome build 37), consisting of the
396 lllumina Omni 2.5M array and 148,353 custom single nucleotide polymorphisms (SNPs) (10).
397 Data posted to dbGaP had passed initial sample quality control filters, including removing samples
398 with differences in reported vs. genetic sex, call rates > 95%, and evidence for sample
399  contamination (e.g. heterozygosity and sample call rates). For initial SNP quality control, we
400 filtered out SNPs that were monomorphic, positional duplicates, or lllumina technical failures, as
401 well as SNPs that had cluster separation <= 0.3, call rate <=2%, >2 disconcordant calls in 291
402  duplicate samples, >3 Mendelian errors in parent-offspring pairs/trios, Hardy-Weinberg
403  Equilibrium combined P-value <107, and sex differences in allele frequency =0.2. Our filtering
404  resulted in 1,763,935 genotyped SNPs with minor allele frequency (MAF) >0.01.

405 Additional sample quality control performed in the HCHS/SOL dataset included filtering
406  out samples with 1) large chromosomal anomalies, 2) substantial Asian ancestry as previously
407  identified in HCHS/SOL (72) and 3) individuals with up to third degree genetic relatedness in the
408 dataset as inferred by REAP (42). For genetic relatedness filtering, individuals from pairs were
409  kept to maximize representation of the birth year distribution, which resulted in 10,268 unrelated
410  remaining individuals.

411 From the original HCHS/SOL analysis, individuals were classified into genetic-analysis
412  groups, similar to self-identified background groups in that they share cultural and environmental

413  characteristics, but are also more genetically homogenous (10).
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414 Birth year for all individuals was estimated by subtracting the difference between date of
415 first clinic visit for the baseline examination (25) and age. Year of arrival was estimated by
416  subtracting the difference between date of first clinic visit for the baseline examination and years
417  inthe US.

418

419  Global, local, and parental ancestry inference

420  All ancestry analyses were restricted to the 211,152 autosomal SNP markers that overlapped
421  between the study and reference panel genotyping array. For the HCHS/SOL dataset, global
422  African, European, and Amerindigenous ancestries were inferred with ADMIXTURE, in an
423  unsupervised manner, with K=3. Amerindigenous ancestry refers to estimates of Indigenous
424  genetic ancestry from the Americas. For some analyses, HCHS/SOL individuals with greater than
425  95% of a single ancestry (e.g African, European, or Amerindigenous) were filtered out resulting
426 in 9,913 individuals: 1,099 Central American, 1,536 Cuban, 954 Dominican, 3,622 Mexican, 1,783
427 Puerto Rican, 652 South American and 267 “Other” individuals.

428 Ancestral tracts, known as ‘local’ ancestry, along the genome for all HCHS/SOL
429  individuals were inferred using RFMix (43) and a three population reference panel, comprised of
430 315 individuals: 104 HapMap phase 3 CEU (European) and 107 YRI (African) individuals (44)
431  and 112 Amerindigenous individuals from throughout Latin America (8). The reference panel was
432 limited to individuals with 99% continental ancestry as inferred by unsupervised ADMIXTURE
433  (45). Prior to local ancestry inference, HCHS/SOL individuals were merged with the reference
434  panels and then phased using SHAPEIT2 (46). For all HCHS/SOL Mexican American individuals,
435  parental genomic ancestry was inferred with ANCESTOR (47) using the local ancestry estimates
436  generated by RFMix.

437

438  Uniform Manifold Approximation and Projection (UMAP)
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439  Principal components for HCHS/SOL and the reference panel were computed using smartPCA
440  (48). UMAP (version 0.3.8) was run using the Python script freely available at

441  https://github.com/diazale/gt-dimred with parameter specification set at 15 nearest neighbours
442  and a minimum distance between points of 0.5.

443

444  Admixture mapping

445  Local ancestry estimates for 211,151 SNPs across the genome were used to perform admixture
446  mapping in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess
447  Amerindigenous ancestry in certain regions of the genome. Admixture mapping was performed
448  applying two different models: 1) a linear regression model with age as the dependent variable
449  adjusting for global Amerindigenous ancestry, sampling weight and center and 2) a logistic
450  regression model dividing the HCHS/SOL Mexican cohort in to an older vs younger generation
451  with 1965 set as the dividing point while also adjusting for global Amerindigenous ancestry,
452  sampling weight, and center. The threshold for genome-wide significance, 1.38x10™ was
453  calculated using the empirical autoregression framework with the package coda in R to estimate
454  the total number of ancestral blocks (49, 50).

455

456  Tract Lengths

457 The multiple regression model: log(f) =fo0 +81 T +f2 A +53 TA +¢, where f is a matrix
458  containing the proportion of lengths of all ancestral tracts across the genome for all 3622 Mexican
459  American individuals, T the tract length bin and A decade of birth year bin, was used to test for an
460 effect of birth decade on the proportion of Amerindigenous ancestral tract lengths. For
461  assessment between the fraction of ancestry tracts in an individual’s genome and birth year, long
462  ftract cutoffs were chosen based on tract separation between the birth year decades in Figure 2B.
463

464  Diversity Calculations
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465  Subcontinental ancestry was assessed using the diversity measurements 1 and Fsr. T was
466  calculated as the average number of pairwise genetic differences among all pairs of overlapping
467  Amerindigenous ancestry tracts across individuals. Fst was calculated as:

468 Fsr= (Hr- Hs)/ Hr

469  where Hris the average heterozygosity when all individuals are pooled across decades and Hsis
470  the average heterozygosity within each decade of individuals.

471

472  Inference of Runs of Homozygosity

473  Runs of homozygosity (ROH) were called using the program GARLIC v1.1.4 (51) on 211,152 sites
474  for the Mexican American individuals. An analysis window size of 50 SNPs and an overlap fraction
475  of 0.25 were both chosen using GARLIC’s rule of thumb parameter estimation. GARLIC chose a
476  LOD score cutoff of 0. Using a three-component Gaussian mixture, GARLIC determined class
477  A/B (short/medium) and class B/C (medium/long) size boundaries as 845,097 bp and 2,501,750
478  bp, respectively.

479

480  Imputation

481  Imputation for HCHS/SOL was performed locally using IMPUTE2 with the 1000 Genomes Project
482  Phase 3 haplotypes used as a reference panel. After filtering on an info score cutoff of 0.3, this
483 resulted in 33,041,084 SNPs.

484

485  Polygenic Risk Score Calculations

486 Polygenic risk scores for height were calculated using the publicly available UK Biobank

487  (UKBB) GWAS Round 2 Summary Statistics retrieved from http://www.nealelab.is/uk-biobank.

488  Briefly, for sample quality control, sample inclusion was limited to unrelated samples who passed
489  the sex chromosome aneuploidy filter. British ancestry was determined using the 1% 6 PCs;

490 individuals more than 7 standard deviations away from the 1% 6 PCs were excluded. Further
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491  filtering included limiting to self -reported 'white-British' / 'Irish’ / 'White' resulting in a QCed sample

492  count of 361,194 individuals https://github.com/Nealelab/UK Biobank GWAS#imputed-v3-

493  sample-gc. An imputation panel of ~90 million SNPs from HRC, UK10K and 1KG were used to
494  impute genotypes. 13.7 million autosomal and X-chromosome SNPs passed quality control
495  thresholds including Info score>0.8, MAF>0.0001, and HWE p-value>1e-10. For the phenotype,
496  a linear regression model in Hail was run for all individuals (both sexes) adjusting by the first 20
497 PCs + sex + age + age’ + (sex*age) + (sex*age)?. For height, there was complete phenotype
498 information for 360,388 individuals.

499 Risk scores were calculated by extracting the overlapping genome-wide significant hits
500 initially discovered in the UKBB GWASSs of height and selecting SNPs with the lowest p-value in
501 each 1Mb window across the genome. For height this resulted in a dataset of 1,103 overlapping
502  SNPs that were present in our dataset of genotyped and imputed SNPs.

503  Health and Retirement Study (HRS)

504  For replication, we used genotype data from 705 self-identified Mexican-Americans from the
505  Health and Retirement Study (HRS) (52), genotyped on the lllumina Human Omni 2.5M platform.
506 HRS data was made available under IRB Study No. A11-E91-13B - The apportionment of genetic
507  diversity within the United States. Estimated global ancestry proportions for the Mexican American
508  population in the HRS were calculated as in Baharian et al. (12), which used an alternative
509 reference panel and alternative ancestry inference approach. Briefly, RFMix was used to infer
510 local ancestry estimates across the genome utilizing CHS, YRI, and CEU individuals from the
511 1000 Genomes Project as reference populations for Amerindigenous/Asian, African, and
512  European ancestries, respectively. Global ancestry estimates were calculated using the summed
513  RFMix calls.

514

515  Statistical Analyses and Plots
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Statistical analyses and plot generation were performed within Rstudio using Version 1.1.463 and
R version 3.5.3. ternary and ggridges/ggplot2 packages were used to create the simplex and

ridgeline plots.
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532  Figure 1. Recent dynamics continually shape the continuum of continental ancestry
533  Hispanic/Latino populations. A. Ternary plot of HCHS/SOL (n=10,268) colored by admixture
534  proportions. B. Uniform Manifold Approximation and Projection (UMAP) plot depicting the genetic
535  diversity of HCHS/SOL and the reference panel (n=10,591) using 3 principal components, colored
536 by admixture proportions (see Supplemental Fig 1 for population labels). Within the legend, AFR,
537 EUR, and Al refer to African, European, and Amerindigenous global ancestries, respectively. C.
538  Global Amerindigenous ancestry proportions plotted by birth year for Mexican Americans
539 (n=3,622). Fitted line is multiple regression of Amerindigenous ~ birth year + sampling weight.
540  Bars represent 95% confidence intervals for individuals grouped by decade. D. Bootstrap
541  resampling (n=1000 iterations) of Amerindigenous global ancestry for the Mexican American
542 individuals with a fitted LOESS regression line for each iteration. Dashed lines represent the 95%

543  confidence interval and the blue line represents the fitted regression line from Figure 1C.
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Figure 2. Diversity of and within Amerindigenous ancestral tracts. A) Fsr estimates
calculated between each decade group. Bars represent the 95% CIl. B) Proportion of total
Amerindigenous (Al) ancestral tracts in the HCHS/SOL Mexican American population by decade.
C) Loess regression of the log of the sum of total ROH and ROH overlapping Amerindigenous
(Al) ancestral tracts separated by ROH class. Total long ROH is not represented as an individual
group due to the high number of individuals missing long ROH (1694 for long ROH across
ancestries and 1987 for long Al ROH) but was included in the sum of “All ROH” and “All Al ROH”.

D) Correlation of parent’s inferred global Amerindigenous (Al) ancestries using ANCESTOR.
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Figure 3. Correlation of 66 quantitative traits with global Amerindigenous ancestry.
Significance level was determined using Bonferroni correction adjusting by the number of

quantitative traits tested (0.05/66=0.00075).
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584
585  Figure 4: Height and global Amerindigenous ancestry in HCHS/SOL Mexican Americans.

586  Each plot illustrates the relationship between A) Birth year and height B) Height and polygenic
587  height score (PHS). The black line indicates the fitted linear model for all individuals. Each color
588  represents a different quartile of Amerindigenous global ancestry. Polygenic height scores were
589  assessed utilizing UKBB summary statistics for 1,128 SNPs.

590

591

592

593

594

595

596

597

598

599

25


https://doi.org/10.1101/2020.01.13.905141
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.905141; this version posted February 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

600

601

602 Table 1: Relationship of Amerindigenous global ancestry and birth year for Mexican
603  Americans stratified by recruitment region, US born vs non-US born status, sex and
604 educational attainment. For recruitment region, data stratification was limited to Chicago
605 and San Diego as sample size for the Bronx and Miami was limited: 124 and 25 individuals,
606 respectively. Education attainment was categorized as either less than a high school

607  diploma or equivalent degree (<HS), equal to a high school diploma or equivalent degree

608  (=HS), or post-secondary education (>HS).

609 Category ([N Mean|Median|R2 |(Effect |Std.Err|P
Al 3622(0.489| 0.468(0.027(0.0023| 0.0002|3.58E-22

610 Chicago  |1310]0.562| 0.550[0.017]0.0016| 0.0005] 0.0006

- San Diego |2163]0.428| 0.422(0.012]0.0012| 0.0002(4.29E-07
US born 634/0.427| 0.418(0.063|0.0027| 0.0004|1.77E-10

612 Not US born|2987(0.502| 0.481[0.050{0.0032| 0.0003|1.38E-30
Male 1500(0.494| 0.475/0.038|0.0028| 0.0004|3.83E-14

613 Female 2122(0.485| 0.462(0.022(0.0019| 0.0003(3.07E-10

614 <HS 1518/0.520| 0.500(0.045(0.0026| 0.0004|1.39E-12
=HS 960/0.501| 0.479(0.022(0.0018| 0.0005| 0.0003

615 >HS 1140(0.436| 0.422[0.045/0.0027| 0.0004|6.53E-13
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Supplementary Figure 1. Continental ancestral diversity of HCHS/SOL A) Ternary plot of

Amerindigenous ancestry (%)

global ancestry proportions colored by population for 10,268 HCHS/SOL individuals B) Uniform
Manifold Approximation and Projection (UMAP) plot of HCHS/SOL and the reference panel

(n=10,591) using 3 principal components, colored by HCHS/SOL population. C) UMAP plot of

HCHS/SOL and the reference panel (n=10,591) using 3 principal components, colored by
reference population.
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Supplementary Figure 2. Concordance of ADMIXTURE and RFMix global ancestry

estimates. A) Amerindigenous ancestry B) African ancestry and C) European ancestry.
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648  Supplementary Figure 3. RFMix inferred Amerindigenous global ancestry proportions plotted
649  over time for HCHS/SOL Mexican Americans (n=3622).
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668  Supplementary Figure 4: Distributions of Amerindigenous global ancestry means for

Decades

669 HCHS/SOL Mexican Americans (n=3622) generated by 1000 bootstrap resampling iterations
670  within each decade of binned birth years.
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674  Supplementary Figure 5. Replication in the Health and Retirement Study for 705 self-
675 identified Mexican Americans. A) Ancestry over time B) Distribution of regression slopes after
676 1000 bootstrap resampling iterations C) Distribution of bootstrap regression p-values D) ECDF
677  of bootstrap regression p-values.
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Supplementary Figure 6. Admixture mapping in HCHS/SOL Mexicans (n=3622) for
Amerindigenous ancestry and A) birth year and B) generation. Ancestry association testing
was performed at 211,151 markers using A) linear regression and B) logistic regression, both

including global Amerindigenous ancestry, sampling weight and center as covariates.
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703  Supplementary Figure 8. Runs of homozygosity (ROH) in HCHS/SOL Mexican Americans.
704  A) ROH across all ancestries separated by ROH class B) ROH overlapping Amerindigenous

705  haplotypes separated by ROH class.
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708  Supplementary Figure 9. Ancestry-related assortative mating in HCHS/SOL Mexican
709  Americans separated by decade. Each plot represents the correlation of parent’s inferred
710  Amerindigenous (Al) ancestries using ANCESTOR by decade beginning with the 1930s (A) and
711  ending with the 1990s (G). Each point corresponds to one Mexican American couple and the
712  axes correspond to the inferred Amerindigenous (Al) ancestry of each partner.

713

714

715

716

717

718

719

32


https://doi.org/10.1101/2020.01.13.905141
http://creativecommons.org/licenses/by/4.0/

720

721

722

723

724

725
726
727
728
729
730
731
732
733

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.905141; this version posted February 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Table 1: Association of global ancestries and birth year for all
HCHS/SOL individuals. For each population, we tested for an association between global

ancestry and birth year while accounting for the sampling design. Al, AFR, and EUR refer to

Amerindigenous, African, and European ancestry respectively.
Population Ancestry (N R2 Effect |[Std.Err |P

Central American |Al 1099| 0.0139| 0.0013] 0.0004 0.0013
Central American |AFR 1099| 0.0136/ 0.0002| 0.0004 0.6561
Central American |[EUR 1099| 0.0138| -0.0015| 0.0004 0.0002
Cuban Al 1536] 0.0023| 0.0002] 0.0001 0.0938
Cuban AFR 1536] 0.0014| -0.0005| 0.0004 0.1490
Cuban EUR 1536] 0.0005| 0.0003| 0.0004 0.3879
Dominican Al 954| 0.0035| 0.0002| 0.0001 0.0663
Dominican AFR 954| 0.0030| -0.0007| 0.0004 0.1287
Dominican EUR 954| 0.0022| 0.0005| 0.0004 0.2374
Mexican Al 3622| 0.0268| 0.0023| 0.0002| 3.58E-22
Mexican AFR 3622| 0.0008| 0.0000{ 0.0000 0.4189
Mexican EUR 3622| 0.0285| -0.0023| 0.0002 0.0000
Puerto Rican Al 1783| 0.0014| 0.0001] 0.0001 0.1533
Puerto Rican AFR 1783| 0.0014| 0.0003| 0.0002 0.1743
Puerto Rican EUR 1783| 0.0027| -0.0005| 0.0002 0.0355
South American  |Al 652| 0.0110| 0.0016| 0.0007 0.0211
South American  |AFR 652| 0.0027| -0.0002| 0.0004 0.5053
South American |EUR 652| 0.0080| -0.0014| 0.0006 0.0335
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734  Supplementary Table 2 - Multiple regression table with traits that were significantly

735  correlated with global Amerindigenous ancestry.

736
Trait N R2 |Effect |Std.Err|P
Height 3615(0.588| -13.637| 0.676|1.01E-85
Predicted FVC 3522(0.851|-695.376| 36.867|1.13E-75
EGFR MDRD 3308(0.196| 23.398| 2.435|1.39E-21
EGFR CKD Epi 3308(0.441| 14.752| 1.581|1.90E-20
Waist to hip ratio 3617(0.195 0.043| 0.007|6.96E-10
Glycosylated hemoglobin (HbA1c)|3609|0.081 9.184| 1.590|8.30E-09
% Glycosylated hemoglobin 3609|0.080 0.837| 0.146|9.88E-09
HDL cholesterol 3621(0.095| -6.740| 1.372|9.39E-07
Total iron binding capacity 3620(0.066| 23.540| 5.467|1.71E-05
FEV1 FVC Ratio 3505(0.176 2.560| 0.639|6.37E-05
% Lymphocytes 3442|0.021 3.768| 1.023|2.35E-04
Hip girth 3617(0.077| -4.452| 1.273|4.78E-04
% Neutrophils 344210.039| -3.649| 1.178|1.96E-03
Monocyte count 344310.024| -0.048| 0.019|1.27E-02
Neutrophil count 3442(0.043| -0.399| 0.165|1.59E-02
LDL cholesterol 3529(0.047| -8.269| 3.963|3.70E-02
Average diastolic blood pressure |3616|0.072| -2.067| 1.136|6.88E-02
Total cholesterol 3622(0.065| -6.248| 4.614|1.76E-01
White blood cell count 3442(0.032| -0.260| 0.208|2.12E-01
Average systolic blood pressure [3619|0.211 1.590| 1.712|3.53E-01
% Immature granulocytes 555|0.261| -0.090| 0.110(4.14E-01
QRS duration 3596|0.168 0.062| 1.268|9.61E-01

737
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adjusting by sex, center, and sampling weight for 3614 Mexican Americans stratified by

the quartiles of global Amerindigenous ancestry (AlA).

Group N R2 Effect Std.Err P

All 3614| 0.54186(0.1200379|0.00905366|3.28E-39
AlA>0.58 929(0.5745454| 0.158895|0.01783895|2.73E-18
0.46<=AlA<=0.58| 955|0.5784636|0.1542762|0.01683919|3.07E-19
0.37<=AlA<0.46 | 842(0.5472275|0.1008054|0.01739819|9.73E-09
AlA<0.37 888(0.5369993|0.1161775|0.01815834|2.55E-10

Supplementary Table 4: Predicted height vs. observed height. Predicted height (cm) as

a function of observed height (cm) adjusting by sex, center, and sampling weight for 3614

Mexican Americans stratified by Amerindigenous ancestry (AlA).

Group N R2 Effect |Std.Err|P

All 3614|0.0249(0.0045| 0.0006 |2.19E-12
AlA>0.58 929(0.0072|0.0022| 0.0012|7.79E-02
0.46<=AlA<=0.58| 955/0.0058|0.0011| 0.0013|3.90E-01
0.37<=AlA<0.46 | 842/0.0144|0.0043| 0.0015|3.22E-03
AlA<0.37 888(0.0164|0.0043| 0.0013|7.91E-04
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