

1 Recent fluctuations in Mexican American genomes have altered the genetic architecture of
2 biomedical traits
3

4 Authors: Melissa L. Spear^{1,2*}, Alex Diaz-Papkovich^{3,4}, Elad Ziv^{5,6,7,8}, Joseph M. Yracheta^{9,10}
5 Simon Gravel^{4,11}, Dara G. Torgerson^{4,11}, Ryan D. Hernandez^{2,4,7,11,12,13*}

6 1. Biomedical Sciences Graduate Program, University of California, San Francisco, San
7 Francisco, CA, USA

8 2. Department of Bioengineering and Therapeutic Sciences, University of California, San
9 Francisco, San Francisco, CA, USA

10 3. Quantitative Life Sciences Program, McGill University, Montreal, QC, Canada

11 4. McGill University and Genome Quebec Innovation Center, McGill University, Montreal, QC,
12 Canada

13 5. Division of General Internal Medicine, University of California, San Francisco, San Francisco,
14 CA, USA

15 6. Department of Medicine, University of California, San Francisco, San Francisco, CA, USA

16 7. Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA

17 8. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco,
18 San Francisco, CA, USA

19 9. Native BioData Consortium, Eagle Butte, SD, USA

20 10. Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA

21 11. Department of Human Genetics, McGill University, Montreal, QC, Canada

22 12. Quantitative Biosciences Institute, University of California, San Francisco, San Francisco,
23 CA, USA

24 13. Institute for Human Genetics, University of California, San Francisco, CA, USA

25

26 *Corresponding authors: mlspear09@gmail.com and ryan.hernandez@me.com

27
28
29 **Abstract**

30 People in the Americas represent a diverse group of populations with varying degrees of
31 admixture among African, European, and Amerindigenous ancestries. In the United States, many
32 populations with non-European ancestry remain understudied, and thus little is known about the
33 genetic architecture of phenotypic variation in these populations. Using genome-wide genotype
34 data from the Hispanic Community Health Study/Study of Latinos, we find that Amerindigenous
35 ancestry has increased over time across Hispanic/Latino populations, particularly in Mexican
36 Americans where Amerindigenous ancestry increased by an average of ~20% over the 50-year
37 period spanning 1940s-1990s. We find similar patterns across American cities, and replicate our
38 observations in an independent sample of Mexican Americans. These dynamic ancestry patterns
39 are a result of a complex interaction of several population and cultural factors, including strong
40 ancestry-related assortative mating and subtle shifts in migration with differences in
41 subcontinental Amerindigenous ancestry over time. These factors have shaped patterns of
42 genetic variation, including an increase in runs of homozygosity in Amerindigenous ancestral
43 tracts, and also influenced the genetic architecture of complex traits within the Mexican American
44 population. We show for height, a trait correlated with ancestry, polygenic risk scores based on
45 summary statistics from a European-based genome-wide association study perform poorly in
46 Mexican Americans. Our findings reveal temporal changes in population structure within
47 Hispanics/Latinos that may influence biomedical traits, demonstrating a crucial need to improve
48 our understanding of the genetic diversity of admixed populations.

49

50 **Introduction**

51 The United States Census Bureau refers to the Hispanic/Latino ethnicity as a self-
52 identified category for individuals with ancestry deriving from Spain and the Spanish-speaking
53 countries of the Americas. As such, this broad ethnic group living in the United States is a
54 culturally, phenotypically, and genetically diverse continuum of populations. Individuals who
55 identify as Hispanic/Latino have varying proportions of Amerindigenous, African, and European

56 genetic ancestry, each with its own unique continental demographic history. Demographic forces
57 such as population bottlenecks and expansions, migration and adaptation to novel environments
58 resulted in observable differences in continental patterns of genetic variation (1-3). These differing
59 patterns were shaped by many historical events of migration which partially included the founding
60 of the Americas by Amerindigenous populations, the colonization by Europeans, and the African
61 slave trade (4-8), however additional complexities surrounding these events remain highly
62 understudied. These large-scale migrations and additional demographic events shaped the
63 genetic diversity of individuals currently living within the United States (9-13).

64 Demographic history has shaped the genetic architecture of modern human phenotypic
65 variation (14-19), and is critical to consider in the search for the genetic basis of complex diseases.
66 The demography of the United States has changed drastically over the 20th century, and by 2044
67 is predicted to become a 'minority-majority' country whereby no one racial/ethnic group comprises
68 more than 50% of the population (20). By 2060 Hispanics/Latinos are projected to make up the
69 largest of that share at 29% or 119 million individuals (20). However, to date, population-based
70 medical genomics research [and its subsequent benefits, including polygenic risk score (PRS)
71 profiling] have been disproportionately focused on individuals of European descent, with the
72 findings primarily benefiting European populations (21, 22). Despite the increases in sample
73 sizes, rates of discovery, and traits studied, Hispanic or Latin American participation in genome-
74 wide association studies (GWAS) has continued to hover around 1% (23, 24). This trend, along
75 with factors ranging from research abuse and community mistrust to community superstition and
76 apathy have led to a situation where these populations (and other non-European populations) are
77 particularly vulnerable to falling behind in receiving the benefits of the precision medicine
78 revolution (22, 23).

79 In this study we utilize the largest genetic study of Hispanics/Latinos in the U.S. to date --
80 the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (10) -- to understand how

81 patterns of genetic variation in Hispanic/Latino populations in the United States have changed
82 over the last century, and evaluate the impact such changes may be having on complex traits.

83

84 **Results**

85 **Global ancestry proportions among HCHS/SOL Hispanic/Latino Populations**

86 Using the subset of sites that overlapped with our African, European, and Amerindigenous
87 reference panels, we called 3-way global ancestry estimates for 10,268 unrelated HCHS/SOL
88 individuals (see methods). Figure 1A summarizes the global ancestry proportions shaded by
89 admixture estimates in a ternary plot, recapitulating the original HCHS/SOL analysis of continental
90 ancestry (10). However, while several population groups appear to have overlapping ancestry
91 proportions, this analysis masks more subtle structure in subcontinental ancestry. To investigate
92 subtle population structure across these self-identified population groups, we performed UMAP
93 on the top 3 principal components (see methods), and find substantial structure across self-
94 identified groups (Figure 1B and Supplementary Figure 1B). We find that Dominicans, who have
95 the highest average proportions of African ancestry, are in the middle, with Puerto Ricans and
96 Cubans, diverging in opposite directions (Supplementary Figure 1B) with clines of increasing
97 European ancestry proportions (Figure 1B). Further, while self-identified Mexican, Central, and
98 South American groups appear to have overlapping ancestry proportions in Figure 1A, UMAP
99 represents the Mexican Americans and Central/South American groups as large, separate wings
100 that diverge from self-identified Cubans and Dominicans, with both clusters diverging with clines
101 of increasing ancestry toward different Amerindigenous populations (Figure 1B and
102 Supplementary Figure 1B and 1C). While UMAP places each of the Amerindigenous populations
103 and the CEU population at the border of one or more HCHS/SOL clusters, UMAP isolates the YRI
104 samples into a distinct island suggesting that the use of this single African population may be
105 suboptimal for studying African ancestry in the populations sampled by HCHS/SOL
106 (Supplementary Figure 1C).

107 **Dynamic Global Ancestry Proportions in Mexican Americans**

108 For each of the HCHS/SOL populations, we evaluated differences in global ancestry
109 estimates over time while accounting for the sampling method (referred to as “sampling weight”,
110 see methods) used for the design of the HCHS/SOL study (25). We found that in all populations,
111 the effect size for Amerindigenous ancestry on birth year is positive, though only statistically
112 significant after multiple testing in the Mexican American ($\beta = 0.0023$; $P = 3.58E-22$; Figure 1C) and
113 Central American ($\beta = 0.0013$; $P = 0.0013$) cohorts (Supplementary Table 1). Due to the larger
114 sample size, magnitude of the effect, and statistical significance, we shift our focus to Mexican
115 Americans. In Mexican Americans, the increase in Amerindigenous global ancestry over time was
116 consistent across multiple data stratifications including recruitment region, US born or not US
117 born, educational attainment, and sex (Table 1), and was robust to alternative methods for
118 estimating global ancestry proportions (e.g. based on the summation of RFMix local ancestry
119 estimates; Supplementary Figures 2 and 3). We performed bootstrap resampling ($n = 1000$) of
120 global Amerindigenous ancestry for the Mexican Americans and observed a consistent increase
121 in Amerindigenous ancestry with fitted LOESS smoothing (Figure 1D) and when individuals were
122 binned by birth year decades (Supplementary Figure 4). On average, global Amerindigenous
123 ancestry has increased ~20% over the last 50 years in Mexican Americans.

124 We replicated the increase in global Amerindigenous ancestry over time in a smaller,
125 independent cohort of self-identified Mexican Americans ($n = 705$) from the Health and Retirement
126 Study (HRS) [34]. The HRS Mexican Americans in this study are older compared to the
127 HCHS/SOL Mexican Americans (birth year distribution: 1915-1981; mean = 1943, median = 1942)
128 and have lower levels of global Amerindigenous ancestry on average (mean = 0.29), but we still
129 observed an increase in global Amerindigenous ancestry over time ($\beta = 0.00082$; $P = 0.02$;
130 $SE = 0.0003673$; Supplementary Figure 5A). We performed 1000 bootstrap resampling iterations
131 of the linear regression model (global Amerindigenous ancestry ~ birth year) fitted to the data.

132 From these resampling iterations, 98.2% of the tests had a slope > 0 (average $\beta=0.00083$) and
133 61.5% of the regression p-values were less than 0.05 as illustrated in Supplementary Figures 5B-
134 5D.

135 A previous study (12) identified ancestry biased migration in African Americans where
136 individuals with higher proportions of European ancestry migrated first out of the South during the
137 Great Migration followed by individuals with higher proportions African ancestry. We hypothesized
138 that earlier immigrants to the US had higher proportions of European ancestry followed by recent
139 immigrants having higher proportions of global Amerindigenous ancestry. In our non-US born
140 individuals (N=2987), we evaluated differences in ancestry estimates over time while accounting
141 for years in the US and sampling weight and identified a significant effect of years in the US ($\beta=-$
142 0.0009; $P=0.0006$; $SE=0.0003$). However, this did not change the effect of birth year on the
143 proportion of global Amerindigenous ancestry ($\beta =0.0028$; $P<2e-16$, $SE=0.0003$).

144 For US born individuals we assessed whether parental birth place could explain the
145 increases in global Amerindigenous ancestry. Of the 634 US born individuals, 385 had parents
146 both born outside of the US, 149 had one parent born outside of the US. 97 had both parents
147 born within the US. For the 385 individuals with both parents born abroad, we identified a
148 significant association between birth year and global Amerindigenous ancestry ($\beta=0.004$,
149 $P=2.34e-10$, $SE=0.0006$). For the remaining individuals we were unable to identify a significant
150 effect of birth year on global Amerindigenous ancestry, possibly due to a small sample size.

151

152 **Individual loci are not driving global ancestry proportions**

153 We used local ancestry estimates generated across the genome to perform admixture
154 mapping in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess
155 Amerindigenous ancestry in certain regions of the genome. Although we tried two different models

156 (see methods), we did not find any loci to be significantly associated with birth year across the
157 genome (Supplementary Figure 6).

158

159 **Little evidence for subcontinental population structure**

160 It is possible that the increase in global Amerindigenous ancestry over time could be
161 biased by changes in the specific subcontinental Amerindigenous ancestries over time (though
162 such an effect is not visible in our UMAP analysis, Figure 1B). If it were the case, then we would
163 expect subtle signals of genetic divergence in Amerindigenous ancestry tracts over time. To
164 investigate this, we calculated F_{ST} between all pairs of birth-decades (see methods). Figure 2A
165 shows all pairwise comparisons among birth-decades, and demonstrates that while the estimates
166 of F_{ST} are negligible (with many estimates below 0), there is a subtle trend of increasing F_{ST} as
167 birth-decade differences increase (though individuals born in the 80s and 90s show a conflicting
168 pattern). We further investigated this pattern using genetic diversity, π , in Amerindigenous
169 ancestry tracts for each birth-decade (see methods). We hypothesized that if there were
170 increased migration from multiple Amerindigenous source populations (coupled with rapid
171 population growth in Mexican American communities), then genetic diversity should be increasing
172 over time. We found the opposite: Supplementary Figure 7 shows a subtle decrease in genetic
173 diversity (π) over time from the 1930s to the 1980s in non-US born Mexican Americans, and a
174 subtle decrease in US born Mexican Americans from the 70s to the 90s (while remaining roughly
175 constant from the 30s to the 70s).

176

177 **Little evidence that Amerindigenous ancestry tract lengths have changed**

178 We next sought to test whether differences at the local ancestry level could explain the
179 shift in global Amerindigenous ancestry over time in the Mexican Americans. We calculated the
180 length of each RFMix inferred local ancestry tract in each Mexican American individual, and tested
181 for differences in the distribution of tract lengths across birth-decades using a multiple linear

182 regression model (see methods). We found no significant associations between the decade bin
183 and the proportion of Amerindigenous ancestral tracts at various lengths (Figure 2B), even when
184 testing for violations of model assumptions (e.g. normalizing the tracts per bin by the number of
185 individuals, or excluding the 1930s and/or 1990s individuals due to the small sample size in each
186 bin).

187

188 **Increased runs of homozygosity over time**

189 Since genetic diversity has decreased over time in the Amerindigenous ancestry tracts of
190 Mexican Americans (despite rapid growth of the census population size), it is possible that this
191 population has also experienced increased haplotype homozygosity over time. We investigated
192 this possibility by exploring runs of homozygosity (ROH) in Amerindigenous ancestry tracts in
193 each of the 3622 Mexican Americans. We classified ROH into three categories: short, medium,
194 and long, based on the length distribution in the population. Generally, short ROH are tens of
195 kilobases in length and likely reflect the homozygosity of old haplotypes; medium ROH are
196 hundreds of kilobases in length and likely reflect background relatedness in the population; and
197 long ROH are hundreds of kilobases to several megabases in length and are likely the result of
198 recent parental relatedness. Figure 2C shows a fitted loess curve to the log of the total length of
199 ROH summed across each Mexican American's genome as a function of their birth year, broken
200 down by ROH size class (as well as the total of each size class that overlaps all ancestry tracts
201 (Supplementary Figure 8A) and Amerindigenous ancestry tracts (Supplementary Figure 8B)).
202 Overall, we find a significant positive correlation between birth year and the total summed ROH
203 across size classes ($\tau=0.0449$, $P=6.12e-5$, Kendall's rank correlation), but this becomes more
204 significant when we restrict our analysis to ROH calls that overlap Amerindigenous ancestry tracts
205 ($\tau=0.0873$, $P=9.46e-15$). When stratified by size class, the associations (all Kendall's rank
206 correlation) in ROH were primarily driven by the short ($\tau=0.0833$, $P=9.45e-14$), and medium
207 ($\tau=0.0718$, $P=1.46e-10$) size classes, and are again strongest when ROH overlap

208 Amerindigenous ancestry tracts (short $\tau=0.107$, $P<2.2e-16$, medium $\tau=0.1003$, $P<2.2e-16$). The
209 long ROH had a negative correlation with birth year, but was insignificant after multiple testing
210 ($\tau=-0.0291$, $P=0.01499$; note that 1694 individuals did not have any long ROH calls in their
211 genome).

212

213 **Strong ancestry-related assortative mating in HCHS/SOL Mexicans**

214 Given that short and medium length ROH have increased over time, it appears that background
215 relatedness within Amerindigenous ancestry in Mexican Americans has increased over time (but
216 not an increase in recent parental relatedness). One way for this to occur is if individuals with
217 similar ancestry patterns tend to mate with one another more often than expected under a model
218 of random mating (i.e. assortative mating). To measure assortative mating, we estimated the
219 ancestral proportions of the biological parents of each HCHS/SOL Mexican American (see
220 methods). With individuals from all decades pooled together, we found the inferred biological
221 parental Amerindigenous ancestries to be significantly correlated (Figure 2D, $r=0.708$, 95%
222 CI:0.69-0.72, $P<2.2e-16$, Pearson correlation). When stratified by decade, the correlation in
223 inferred parental Amerindigenous global ancestry ranged from 0.65 to 0.74 (Supplementary
224 Figure 9), but were not statistically different from each other. This shows that there was a strong
225 parental ancestry correlation among Mexican Americans over different generations. This
226 signature of assortative mating is not due to recent parental relatedness, because there is no
227 trend in long ROH with birth year (and an overall low rate of long ROH among Mexican
228 Americans).

229

230 **Genetic correlation of global Amerindigenous ancestry with biomedical traits**

231 We have shown that genetic variation in the Mexican American population is dynamic, with
232 Amerindigenous ancestry increasing over a short period of time (combined with decreased
233 genetic diversity and increased short and medium length ROH within Amerindigenous ancestry

234 tracts). These features may have implications for the genetic architecture of complex traits within
235 Mexican Americans, a topic that is understudied and poorly understood. To further our
236 understanding of the genetic architecture of complex traits in Mexican Americans, we investigated
237 the relationship between Amerindigenous ancestry and various complex traits that may be
238 relevant to biomedical phenotypes. Specifically, we tested for a correlation between 66 complex
239 traits from the HCHS/SOL phenotypic dataset and global Amerindigenous ancestry (Kendall's τ).
240 As illustrated in Figure 3, 22 of these traits (33%) are significantly correlated after Bonferroni
241 correction ($P<0.00076$). We found that the effect of global Amerindigenous ancestry on many of
242 these phenotypes persisted when using multiple regression to account for age, sex, center, and
243 the sampling weight (Supplementary Table 2), highlighting the need for increased investigation
244 into the role of Amerindigenous genetic ancestry in admixed populations such as Mexican
245 Americans.

246

247 **Assessing the genetic contribution of Amerindigenous ancestry to height**

248 Among the traits we tested for a correlation with global Amerindigenous ancestry, height
249 had the strongest negative correlation, and our regression model indicated that height also had a
250 strong positive relationship with birth year (Figure 4A and Supplementary Table 3). Globally,
251 populations have grown taller over time due to a variety of non-genetic, environmental factors
252 (26). We find a similar trend in the HCHS/SOL Mexican Americans (Figure 4A). Indeed, when we
253 stratified individuals by quartiles of global Amerindigenous ancestry, we see that all quartiles have
254 increased in height by a similar amount over the period investigated (though individuals with lower
255 Amerindigenous ancestry were taller on average).

256 Height is one of the most highly studied complex traits, with GWAS sample sizes
257 numbering in the hundreds of thousands (27). Results for many of these studies have been made
258 readily available on public databases as summary association statistics that can be leveraged to
259 build genetic predictions through polygenic risk scores (PRS) (28). In Europeans, PRS have been

260 shown to have great predictive power for several traits, including breast cancer, prostate cancer,
261 and type 1 diabetes (22, 29-31). PRS are most effective in populations of European descent as
262 GWAS studies have been primarily performed in these populations (21-23) and are expected to
263 be biased when applied to other populations due to differences in the genetic architecture of traits
264 across diverse populations (32). Since Mexican Americans have some fraction of European
265 ancestry, we sought to determine whether PRS calculated utilizing GWAS summary statistics
266 from European populations could still provide useful insight.

267 To evaluate the effectiveness of PRS for height (i.e. the polygenic height score, or PHS,
268 see methods), we first tested whether there was an association between the observed height and
269 the predicted height estimates while controlling for sampling weight, sex, and recruitment center
270 (see methods). We identified a significant association between observed height and predicted
271 height for the population as a whole ($\beta=0.0044881$, $P=2.19e-12$; Figure 4B, Supplementary Table
272 4). However, when we stratified by quartiles of Amerindigenous global ancestry, the association
273 only remained for the individuals in the lower two quartiles of global Amerindigenous ancestry
274 proportions ($AIA<0.37$: $\beta=0.004$, $P=0.0008$ and $0.36<AIA<0.46$: $\beta=0.004$, $P=0.003$,
275 Supplementary Table 4). The association between predicted height and observed height was no
276 longer significant for individuals in the upper two quartiles of global Amerindigenous ancestry
277 proportions ($0.46<AIA<0.58$: $\beta=0.0011$, $P=0.39$ and $0.58<AIA$: $\beta=0.0022$, $P=0.08$,
278 Supplementary Table 4).

279 As we had found global Amerindigenous ancestry to be increasing over time, we
280 hypothesized that there would be a change in PHS over time as well. However, we find little
281 evidence supporting this hypothesis. While individuals born earlier than 1950 or in the 1950s have
282 a stronger correlation between their PHS and observed height ($\beta=0.034$ and 0.039 ; $p=5.6e-4$ and
283 $2.7e-7$ respectively) than individuals born in the 1960s, 1970s, or 1980s ($\beta=0.016$, 0.029 , and
284 0.029 ; $p=0.044$, 0.0066 , and $7.8e-5$ respectively), there is no clear trend and we did not find a

285 significant effect of birth year on PHS (P=0.09) even when we stratified by the quartiles of global
286 Amerindigenous ancestry.

287

288 **Discussion**

289 The United States is a dynamic, rapidly changing population, and this will continue to occur
290 as the population size grows (20). Hispanics/Latinos are the largest and fastest growing minority
291 group, and are projected to comprise over 25% of the US population by 2060. They are a
292 genetically and phenotypically diverse population as a result of extensive admixture between
293 Amerindigenous populations and immigrants from multiple geographic locations around the world.
294 In this study, we identified additional population substructure complexities that may contribute to
295 phenotypic variation within Hispanics/Latinos.

296 Specifically, we demonstrated how the admixture dynamics of Mexican Americans have
297 changed over time, resulting in an increase of ~20% Amerindigenous ancestry on average over
298 the 50-year period studied. This change in ancestry is equivalent to a mean increase in
299 Amerindigenous ancestry of ~0.4% per year. While the effect sizes vary to some extent, we
300 replicate the underlying pattern across multiple data stratifications (two metropolitan cities, US
301 born and non-US born) and also replicate this feature in an independent cohort of Mexican
302 Americans. Further, we find that a similar trend holds across multiple self-identified
303 Hispanic/Latino populations in the US (and is statistically significant in Central Americans). This
304 effect does not appear to have a simple explanation: we do not see any statistically significant
305 increases at individual loci, we do not see more than a negligible degree of population
306 differentiation over time, and this increase cannot be entirely explained by very recent migration.
307 We do, however, find that as Amerindigenous ancestry has increased, genetic diversity within
308 Amerindigenous ancestry tracts across Mexican Americans has decreased over time, and is
309 associated with increased short and medium length ROH over time. This suggested that there
310 could be increased relatedness within Amerindigenous ancestries within Mexican Americans, and

311 we confirmed that there is a very high degree of ancestry-based assortative mating within the
312 Mexican American population.

313 What could be driving the increased Amerindigenous ancestry in Mexican Americans?
314 Population genetic theory suggests that while assortative mating could result in increased ROH
315 and decreased genetic diversity, ancestry-based assortative mating alone should not result in
316 mean changes in global ancestry proportions. Regardless of the underlying mechanisms driving
317 increased Amerindigenous ancestry in Mexican Americans, this additional source of temporal
318 substructure within this population has substantial consequences for phenotypic variation in
319 biomedical traits. We identify several biomedical traits that are correlated with Amerindigenous
320 ancestry, and show that in the case of height, there are both ancestry and temporal effects.
321 Further study is necessary to understand whether other biomedical traits are also changing over
322 time as the genomic ancestry proportions change in this population.

323 Interestingly, we identified another source of structure within HCHS/SOL, particularly in
324 the African ancestral component of Hispanics/Latinos. In our UMAP analysis, the YRI sample
325 form their own cluster as a reference population as compared to the Amerindigenous and
326 European reference populations which border the admixed samples with the highest proportion
327 of each ancestry, respectively (Supplementary Figure 1C). While most Latin Americans can trace
328 their African ancestry to Sub-Saharan Africa, previous studies have also identified hidden
329 Northern African ancestry in individuals from Southern Europe (33-35), who primarily colonised
330 the Americas. This may explain why the YRI sample is not at the boundary of the individuals with
331 the highest proportion of African ancestry in the HCHS/SOL sample as the African ancestral
332 component may be more complex. Our results suggest how careful consideration must be taken
333 into account when selecting reference populations to study the African ancestral component of
334 admixed individuals from the Americas.

335 In our study, we bring specific attention to the biases that continue to exist with using
336 European GWAS summary statistics to calculate polygenic risk scores in admixed populations

337 such as Mexican Americans that are comprised of European, Amerindigenous, and African
338 genetic ancestries. In particular, in the case of height, we found that the polygenic height score
339 (PHS) correlated with observed height only in the subset of individuals with the lowest levels of
340 Amerindigenous ancestry (i.e. the subset of individuals with highest European ancestry). As the
341 population dynamics of the US continue to change, it is imperative that we study diverse
342 populations, or we risk exacerbating the health disparities that currently exist. To date, population-
343 based medical genomics research (and its subsequent benefits) have been disproportionately
344 focused on populations of European ancestry. In order to improve the design and implementation
345 of medical genetics studies for the ethnically diverse U.S. population, we need detailed insights
346 into the population history of diverse U.S. populations. This includes characterizing the admixture
347 dynamics of Hispanic/Latino populations, as well as the evolutionary forces that shaped patterns
348 of genetic variation of the ancestral populations that contributed to modern day Hispanic/Latino
349 populations.

350 The genetic variation of the Hispanic community in the United States belies categorization
351 under a single label (10). The events that have shaped and continue to shape this genetic diversity
352 are complex, numerous, and nuanced, and the social history of such a diverse population is
353 intrinsic to any genetic study. Mexico's society was largely defined by an established social caste
354 system based on ancestry, which disappeared after Mexico's independence in 1821 (36). Even
355 so, social inequalities persist today with skin colour having a significant effect on wealth and
356 education (37). A multitude of factors within and outside Mexico — whether related to trade,
357 immigration policies, or armed conflicts — acted to influence who immigrated to the United States,
358 and the impact of each of these fluctuates over time (38-40). These changes shift the
359 demographics of immigration, which is inherently related to the genetic ancestry of the population.

360 Consequently, this shapes the genetic architecture of complex traits. Diverse populations
361 are at risk not only from underrepresentation in research, but because of poor understanding of
362 the temporal and spatial dynamics at play in genetic variation. The promise of equitable precision

363 medicine — one of the ultimate goals of medical genomics — cannot be kept without
364 understanding this interplay. Health disparities in the United States are fed by structural
365 inequalities. For example, studies that use modern Artificial Intelligence techniques have already
366 been shown to inflate existing disparities between Black Americans and White Americans (41).
367 Such biases, whether from algorithms, study designs, or misunderstandings of subtleties in
368 data, feed into the larger systemic pressures faced by minority populations in the United States.

369 While we have shown a dramatic shift in ancestry proportions in US Hispanic/Latinos, one
370 of the caveats of this study is that the HCHS/SOL cohort is not representative of all US
371 Hispanics/Latinos. HCHS/SOL participants were recruited at four primary centers: Bronx,
372 Chicago, Miami, and San Diego. There may be additional genetic diversity that has not been
373 captured by this dataset and trends exhibited in this dataset may not translate to Hispanic/Latino
374 populations living in other regions of the US (though the temporal increase in Amerindigenous
375 ancestry was replicated in an independent sample of Mexican Americans). Further, we have only
376 assembled a reference panel with limited numbers of individuals with various Amerindigenous,
377 European, and African ancestry. With better population genetic modeling and a deeper
378 understanding of the social and historical aspects of Hispanic/Latino populations, we will be able
379 to improve our understanding of the genetic and phenotypic diversity across these populations,
380 and subsequently improve our ability to understand genetic contributions to complex traits and
381 disease. These insights will lead to optimization of population sampling for the design of future
382 medical genetic studies, the identification of disease risk variants, and ultimately, precision
383 medicine for all.

384

385 **Methods**

386 **Study dataset and initial quality control**

387 The HCHS/SOL study is a community-based cohort study of self-identified Hispanic/Latino
388 individuals from four US metropolitan areas with the general goal of identifying risk and protective

389 factors for various medical conditions including cardiovascular disease, diabetes, pulmonary
390 disease, and sleep disorders (25). 12,434 participants with birth year estimates between 1934-
391 1993 who self-identified as being of Cuban, Dominican, Puerto Rican, Mexican, Central American,
392 or South American background consented to genetics studies and posting of their genetic and
393 phenotype data on the publicly available Database of Genotypes and Phenotypes (dbGaP)
394 through Study Accession phs000810.v1.p1. Samples were genotyped on an Illumina custom
395 array, SoL HCHS Custom 15041502 array (annotation B3, genome build 37), consisting of the
396 Illumina Omni 2.5M array and 148,353 custom single nucleotide polymorphisms (SNPs) (10).
397 Data posted to dbGaP had passed initial sample quality control filters, including removing samples
398 with differences in reported vs. genetic sex, call rates > 95%, and evidence for sample
399 contamination (e.g. heterozygosity and sample call rates). For initial SNP quality control, we
400 filtered out SNPs that were monomorphic, positional duplicates, or Illumina technical failures, as
401 well as SNPs that had cluster separation <= 0.3, call rate <=2%, >2 discordant calls in 291
402 duplicate samples, >3 Mendelian errors in parent-offspring pairs/trios, Hardy-Weinberg
403 Equilibrium combined P-value <10⁻⁵, and sex differences in allele frequency ≥0.2. Our filtering
404 resulted in 1,763,935 genotyped SNPs with minor allele frequency (MAF) >0.01.

405 Additional sample quality control performed in the HCHS/SOL dataset included filtering
406 out samples with 1) large chromosomal anomalies, 2) substantial Asian ancestry as previously
407 identified in HCHS/SOL (12) and 3) individuals with up to third degree genetic relatedness in the
408 dataset as inferred by REAP (42). For genetic relatedness filtering, individuals from pairs were
409 kept to maximize representation of the birth year distribution, which resulted in 10,268 unrelated
410 remaining individuals.

411 From the original HCHS/SOL analysis, individuals were classified into genetic-analysis
412 groups, similar to self-identified background groups in that they share cultural and environmental
413 characteristics, but are also more genetically homogenous (10).

414 Birth year for all individuals was estimated by subtracting the difference between date of
415 first clinic visit for the baseline examination (25) and age. Year of arrival was estimated by
416 subtracting the difference between date of first clinic visit for the baseline examination and years
417 in the US.

418

419 **Global, local, and parental ancestry inference**

420 All ancestry analyses were restricted to the 211,152 autosomal SNP markers that overlapped
421 between the study and reference panel genotyping array. For the HCHS/SOL dataset, global
422 African, European, and Amerindigenous ancestries were inferred with ADMIXTURE, in an
423 unsupervised manner, with K=3. Amerindigenous ancestry refers to estimates of Indigenous
424 genetic ancestry from the Americas. For some analyses, HCHS/SOL individuals with greater than
425 95% of a single ancestry (e.g African, European, or Amerindigenous) were filtered out resulting
426 in 9,913 individuals: 1,099 Central American, 1,536 Cuban, 954 Dominican, 3,622 Mexican, 1,783
427 Puerto Rican, 652 South American and 267 “Other” individuals.

428 Ancestral tracts, known as ‘local’ ancestry, along the genome for all HCHS/SOL
429 individuals were inferred using RFMix (43) and a three population reference panel, comprised of
430 315 individuals: 104 HapMap phase 3 CEU (European) and 107 YRI (African) individuals (44)
431 and 112 Amerindigenous individuals from throughout Latin America (8). The reference panel was
432 limited to individuals with 99% continental ancestry as inferred by unsupervised ADMIXTURE
433 (45). Prior to local ancestry inference, HCHS/SOL individuals were merged with the reference
434 panels and then phased using SHAPEIT2 (46). For all HCHS/SOL Mexican American individuals,
435 parental genomic ancestry was inferred with ANCESTOR (47) using the local ancestry estimates
436 generated by RFMix.

437

438 **Uniform Manifold Approximation and Projection (UMAP)**

439 Principal components for HCHS/SOL and the reference panel were computed using smartPCA
440 (48). UMAP (version 0.3.8) was run using the Python script freely available at
441 <https://github.com/diazale/gt-dimred> with parameter specification set at 15 nearest neighbours
442 and a minimum distance between points of 0.5.

443

444 **Admixture mapping**

445 Local ancestry estimates for 211,151 SNPs across the genome were used to perform admixture
446 mapping in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess
447 Amerindigenous ancestry in certain regions of the genome. Admixture mapping was performed
448 applying two different models: 1) a linear regression model with age as the dependent variable
449 adjusting for global Amerindigenous ancestry, sampling weight and center and 2) a logistic
450 regression model dividing the HCHS/SOL Mexican cohort in to an older vs younger generation
451 with 1965 set as the dividing point while also adjusting for global Amerindigenous ancestry,
452 sampling weight, and center. The threshold for genome-wide significance, 1.38×10^{-4} was
453 calculated using the empirical autoregression framework with the package *coda* in R to estimate
454 the total number of ancestral blocks (49, 50).

455

456 **Tract Lengths**

457 The multiple regression model: $\log(f) = \beta_0 + \beta_1 T + \beta_2 A + \beta_3 TA + \varepsilon$, where f is a matrix
458 containing the proportion of lengths of all ancestral tracts across the genome for all 3622 Mexican
459 American individuals, T the tract length bin and A decade of birth year bin, was used to test for an
460 effect of birth decade on the proportion of Amerindigenous ancestral tract lengths. For
461 assessment between the fraction of ancestry tracts in an individual's genome and birth year, long
462 tract cutoffs were chosen based on tract separation between the birth year decades in Figure 2B.

463

464 **Diversity Calculations**

465 Subcontinental ancestry was assessed using the diversity measurements π and F_{ST} . π was
466 calculated as the average number of pairwise genetic differences among all pairs of overlapping
467 Amerindigenous ancestry tracts across individuals. F_{ST} was calculated as:

468
$$F_{ST} = (H_T - H_S) / H_T$$

469 where H_T is the average heterozygosity when all individuals are pooled across decades and H_S is
470 the average heterozygosity within each decade of individuals.

471

472 **Inference of Runs of Homozygosity**

473 Runs of homozygosity (ROH) were called using the program GARLIC v1.1.4 (51) on 211,152 sites
474 for the Mexican American individuals. An analysis window size of 50 SNPs and an overlap fraction
475 of 0.25 were both chosen using GARLIC's rule of thumb parameter estimation. GARLIC chose a
476 LOD score cutoff of 0. Using a three-component Gaussian mixture, GARLIC determined class
477 A/B (short/medium) and class B/C (medium/long) size boundaries as 845,097 bp and 2,501,750
478 bp, respectively.

479

480 **Imputation**

481 Imputation for HCHS/SOL was performed locally using IMPUTE2 with the 1000 Genomes Project
482 Phase 3 haplotypes used as a reference panel. After filtering on an info score cutoff of 0.3, this
483 resulted in 33,041,084 SNPs.

484

485 **Polygenic Risk Score Calculations**

486 Polygenic risk scores for height were calculated using the publicly available UK Biobank
487 (UKBB) GWAS Round 2 Summary Statistics retrieved from <http://www.nealelab.is/uk-biobank>.
488 Briefly, for sample quality control, sample inclusion was limited to unrelated samples who passed
489 the sex chromosome aneuploidy filter. British ancestry was determined using the 1st 6 PCs;
490 individuals more than 7 standard deviations away from the 1st 6 PCs were excluded. Further

491 filtering included limiting to self -reported 'white-British' / 'Irish' / 'White' resulting in a QCed sample
492 count of 361,194 individuals https://github.com/Nealelab/UK_Biobank_GWAS#imputed-v3-sample-qc. An imputation panel of ~90 million SNPs from HRC, UK10K and 1KG were used to
493 impute genotypes. 13.7 million autosomal and X-chromosome SNPs passed quality control
494 thresholds including Info score>0.8, MAF>0.0001, and HWE p-value>1e-10. For the phenotype,
495 a linear regression model in Hail was run for all individuals (both sexes) adjusting by the first 20
496 PCs + sex + age + age² + (sex*age) + (sex*age)². For height, there was complete phenotype
498 information for 360,388 individuals.

499 Risk scores were calculated by extracting the overlapping genome-wide significant hits
500 initially discovered in the UKBB GWASs of height and selecting SNPs with the lowest p-value in
501 each 1Mb window across the genome. For height this resulted in a dataset of 1,103 overlapping
502 SNPs that were present in our dataset of genotyped and imputed SNPs.

503 **Health and Retirement Study (HRS)**

504 For replication, we used genotype data from 705 self-identified Mexican-Americans from the
505 Health and Retirement Study (HRS) (52), genotyped on the Illumina Human Omni 2.5M platform.
506 HRS data was made available under IRB Study No. A11-E91-13B - The apportionment of genetic
507 diversity within the United States. Estimated global ancestry proportions for the Mexican American
508 population in the HRS were calculated as in Baharian et al. (12), which used an alternative
509 reference panel and alternative ancestry inference approach. Briefly, RFMix was used to infer
510 local ancestry estimates across the genome utilizing CHS, YRI, and CEU individuals from the
511 1000 Genomes Project as reference populations for Amerindigenous/Asian, African, and
512 European ancestries, respectively. Global ancestry estimates were calculated using the summed
513 RFMix calls.

514

515 **Statistical Analyses and Plots**

516 Statistical analyses and plot generation were performed within Rstudio using Version 1.1.463 and
517 R version 3.5.3. ternary and ggridges/ggplot2 packages were used to create the simplex and
518 ridgeline plots.

519

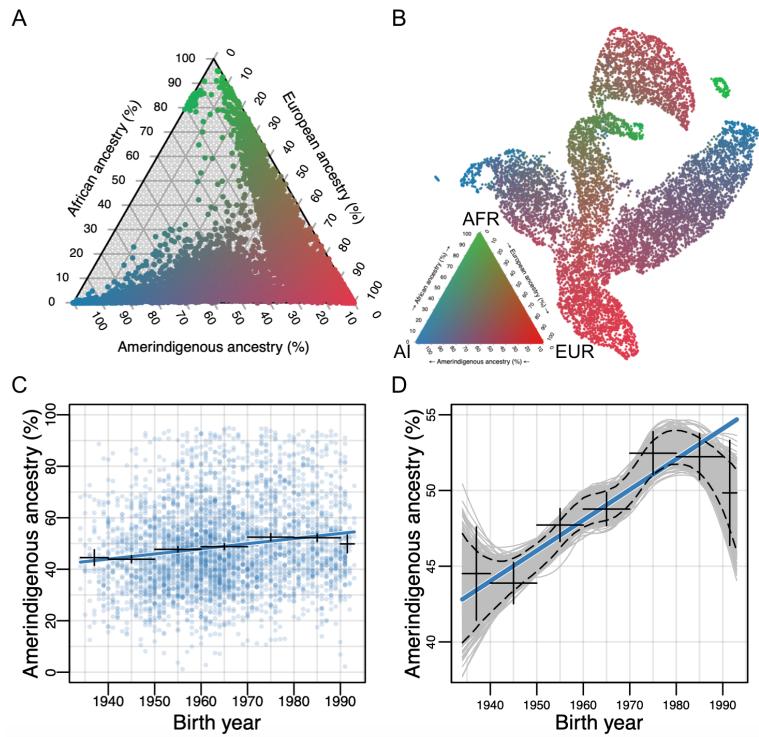
520 **Acknowledgements**

521 We thank many colleagues who commented on our preprint prior to submission, particularly Reed
522 Cartwright for suggestions on terminology. MLS was supported through the National Human
523 Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) under Award
524 Number F31HG010104. ADP and SG were supported, in part, thanks to funding from the
525 Canada Research Chairs program and CIHR grant MOP-136855. RDH was supported, in part,
526 by NHGRI grant R01HG007644 and the Canadian Research Chairs program.

527 **Declaration of Interests**

528 The authors declare no competing interests.

529



530

531

532 **Figure 1. Recent dynamics continually shape the continuum of continental ancestry**

533 **Hispanic/Latino populations.** A. Ternary plot of HCHS/SOL (n=10,268) colored by admixture

534 proportions. B. Uniform Manifold Approximation and Projection (UMAP) plot depicting the genetic

535 diversity of HCHS/SOL and the reference panel (n=10,591) using 3 principal components, colored

536 by admixture proportions (see Supplemental Fig 1 for population labels). Within the legend, AFR,

537 EUR, and AI refer to African, European, and Amerindigenous global ancestries, respectively. C.

538 Global Amerindigenous ancestry proportions plotted by birth year for Mexican Americans

539 (n=3,622). Fitted line is multiple regression of Amerindigenous ~ birth year + sampling weight.

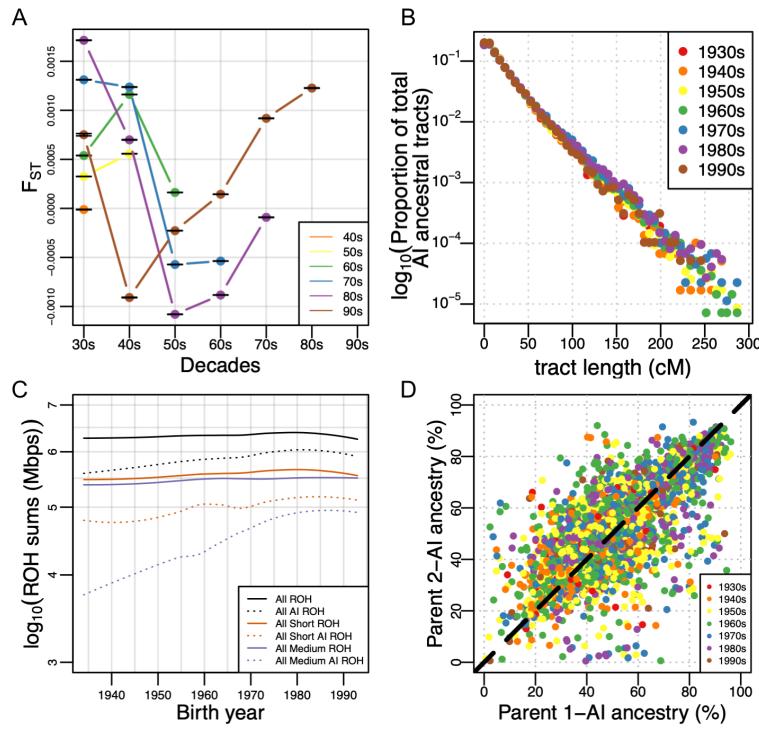
540 Bars represent 95% confidence intervals for individuals grouped by decade. D. Bootstrap

541 resampling (n=1000 iterations) of Amerindigenous global ancestry for the Mexican American

542 individuals with a fitted LOESS regression line for each iteration. Dashed lines represent the 95%

543 confidence interval and the blue line represents the fitted regression line from Figure 1C.

544



545

546 **Figure 2. Diversity of and within Amerindigenous ancestral tracts.** A) F_{ST} estimates
 547 calculated between each decade group. Bars represent the 95% CI. B) Proportion of total
 548 Amerindigenous (AI) ancestral tracts in the HCHS/SOL Mexican American population by decade.
 549 C) Loess regression of the log of the sum of total ROH and ROH overlapping Amerindigenous
 550 (AI) ancestral tracts separated by ROH class. Total long ROH is not represented as an individual
 551 group due to the high number of individuals missing long ROH (1694 for long ROH across
 552 ancestries and 1987 for long AI ROH) but was included in the sum of “All ROH” and “All AI ROH”.
 553 D) Correlation of parent’s inferred global Amerindigenous (AI) ancestries using ANCESTOR.

554
 555
 556

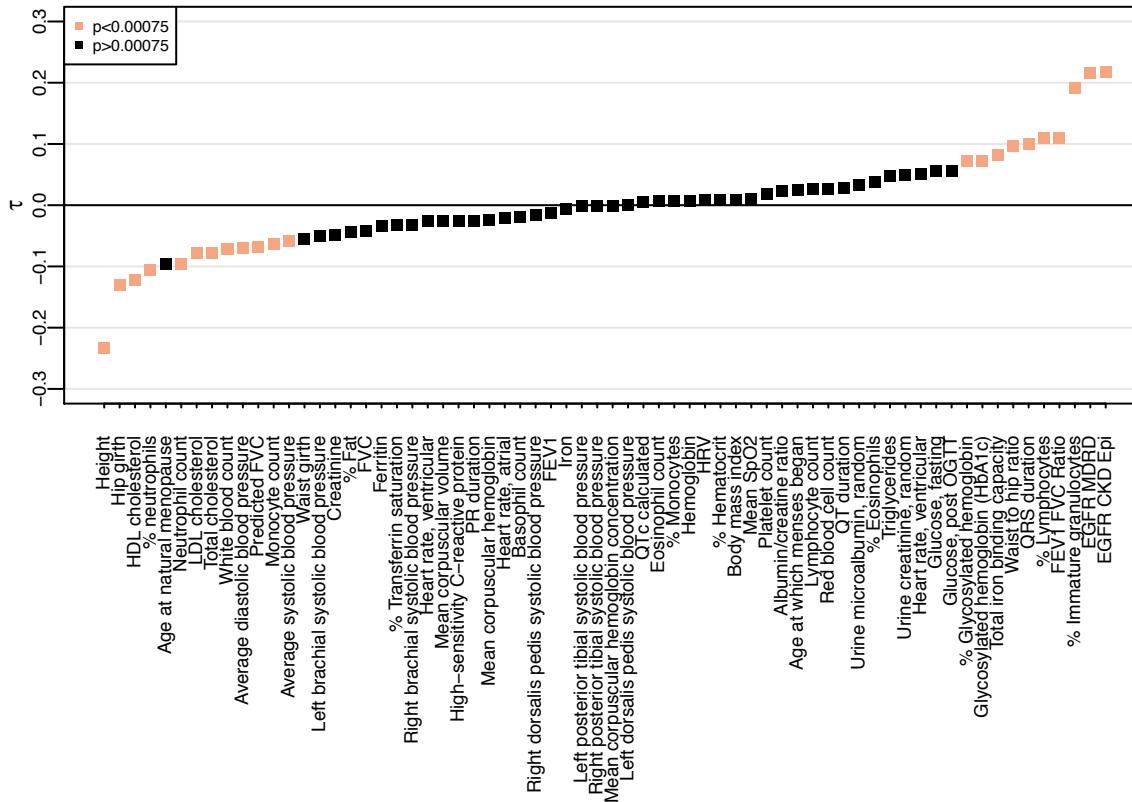
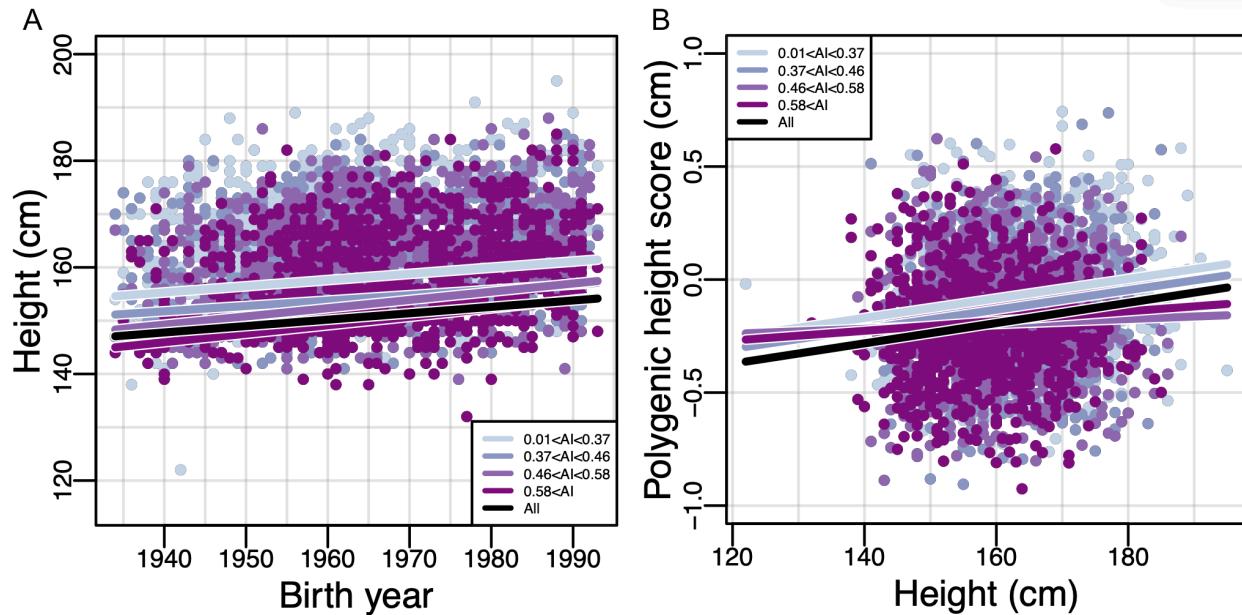


Figure 3. Correlation of 66 quantitative traits with global Amerindigenous ancestry.

Significance level was determined using Bonferroni correction adjusting by the number of quantitative traits tested ($0.05/66=0.00075$).



584

585 **Figure 4: Height and global Amerindigenous ancestry in HCHS/SOL Mexican Americans.**

586 Each plot illustrates the relationship between A) Birth year and height B) Height and polygenic
587 height score (PHS). The black line indicates the fitted linear model for all individuals. Each color
588 represents a different quartile of Amerindigenous global ancestry. Polygenic height scores were
589 assessed utilizing UKBB summary statistics for 1,128 SNPs.

590

591

592

593

594

595

596

597

598

599

600

601

602 **Table 1: Relationship of Amerindigenous global ancestry and birth year for Mexican**
603 **Americans stratified by recruitment region, US born vs non-US born status, sex and**
604 **educational attainment.** For recruitment region, data stratification was limited to Chicago
605 and San Diego as sample size for the Bronx and Miami was limited: 124 and 25 individuals,
606 respectively. Education attainment was categorized as either less than a high school
607 diploma or equivalent degree (<HS), equal to a high school diploma or equivalent degree
608 (=HS), or post-secondary education (>HS).

Category	N	Mean	Median	R2	Effect	Std.Err	P
All	3622	0.489	0.468	0.027	0.0023	0.0002	3.58E-22
Chicago	1310	0.562	0.550	0.017	0.0016	0.0005	0.0006
San Diego	2163	0.428	0.422	0.012	0.0012	0.0002	4.29E-07
US born	634	0.427	0.418	0.063	0.0027	0.0004	1.77E-10
Not US born	2987	0.502	0.481	0.050	0.0032	0.0003	1.38E-30
Male	1500	0.494	0.475	0.038	0.0028	0.0004	3.83E-14
Female	2122	0.485	0.462	0.022	0.0019	0.0003	3.07E-10
<HS	1518	0.520	0.500	0.045	0.0026	0.0004	1.39E-12
=HS	960	0.501	0.479	0.022	0.0018	0.0005	0.0003
>HS	1140	0.436	0.422	0.045	0.0027	0.0004	6.53E-13

616

617

618

619

620

621

622

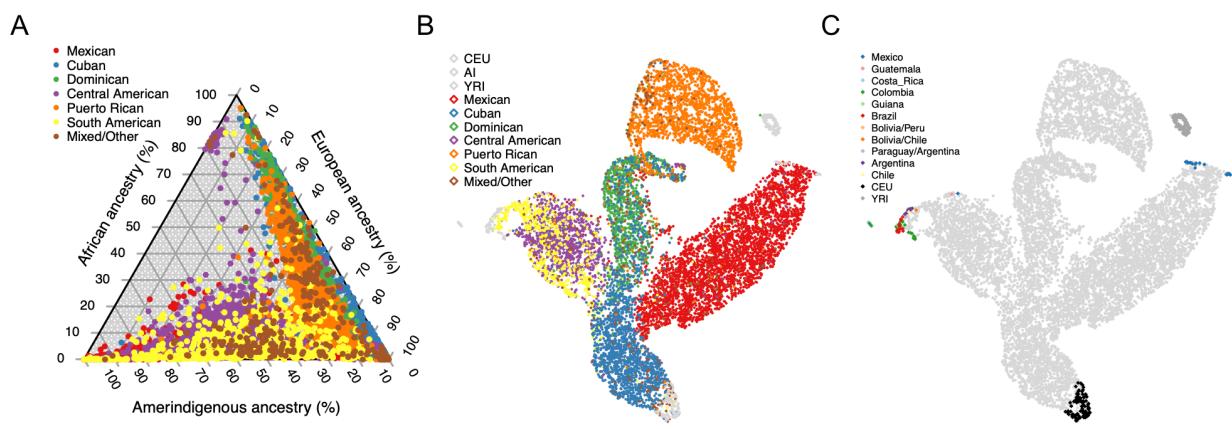
623

624

625

626

627 **Supplementary Material**

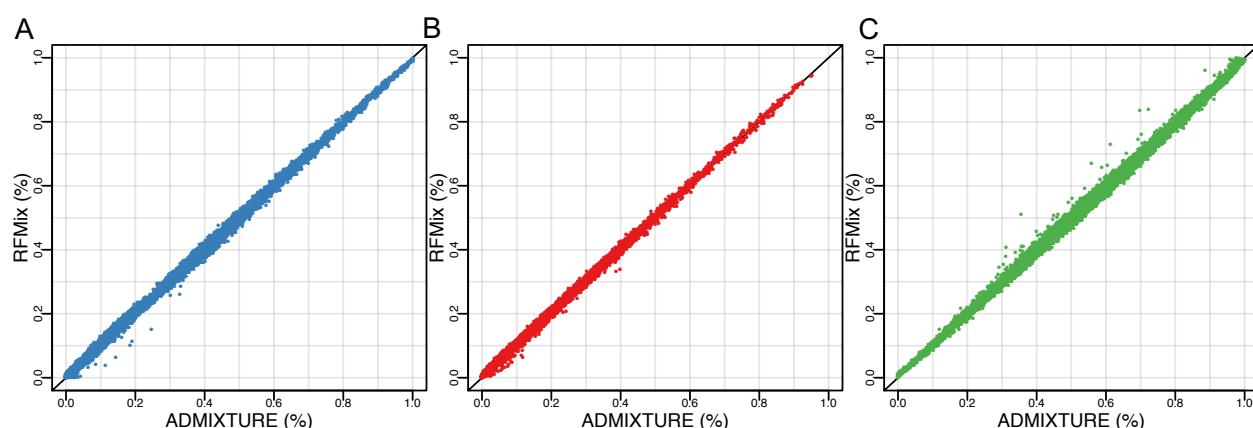


628

629 **Supplementary Figure 1. Continental ancestral diversity of HCHS/SOL** A) Ternary plot of
630 global ancestry proportions colored by population for 10,268 HCHS/SOL individuals B) Uniform
631 Manifold Approximation and Projection (UMAP) plot of HCHS/SOL and the reference panel
632 (n=10,591) using 3 principal components, colored by HCHS/SOL population. C) UMAP plot of
633 HCHS/SOL and the reference panel (n=10,591) using 3 principal components, colored by
634 reference population.

635

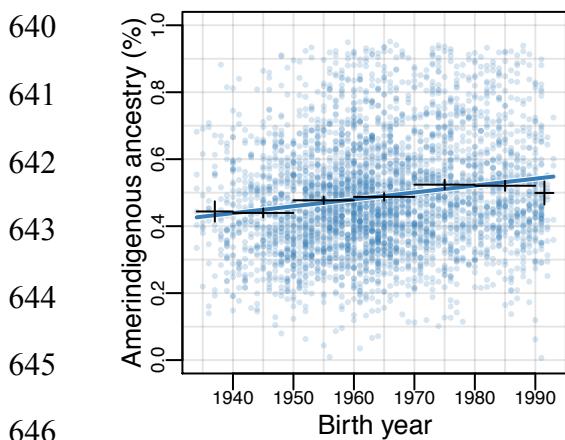
636



637

638 **Supplementary Figure 2. Concordance of ADMIXTURE and RFMix global ancestry**

639 **estimates.** A) Amerindigenous ancestry B) African ancestry and C) European ancestry.

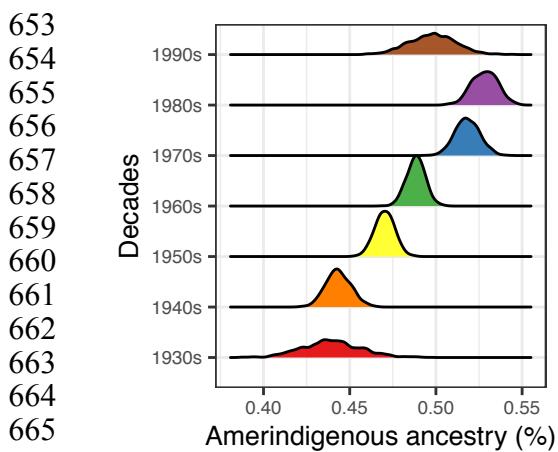


647
648 **Supplementary Figure 3.** RFMix inferred Amerindigenous global ancestry proportions plotted
649 over time for HCHS/SOL Mexican Americans (n=3622).

650

651

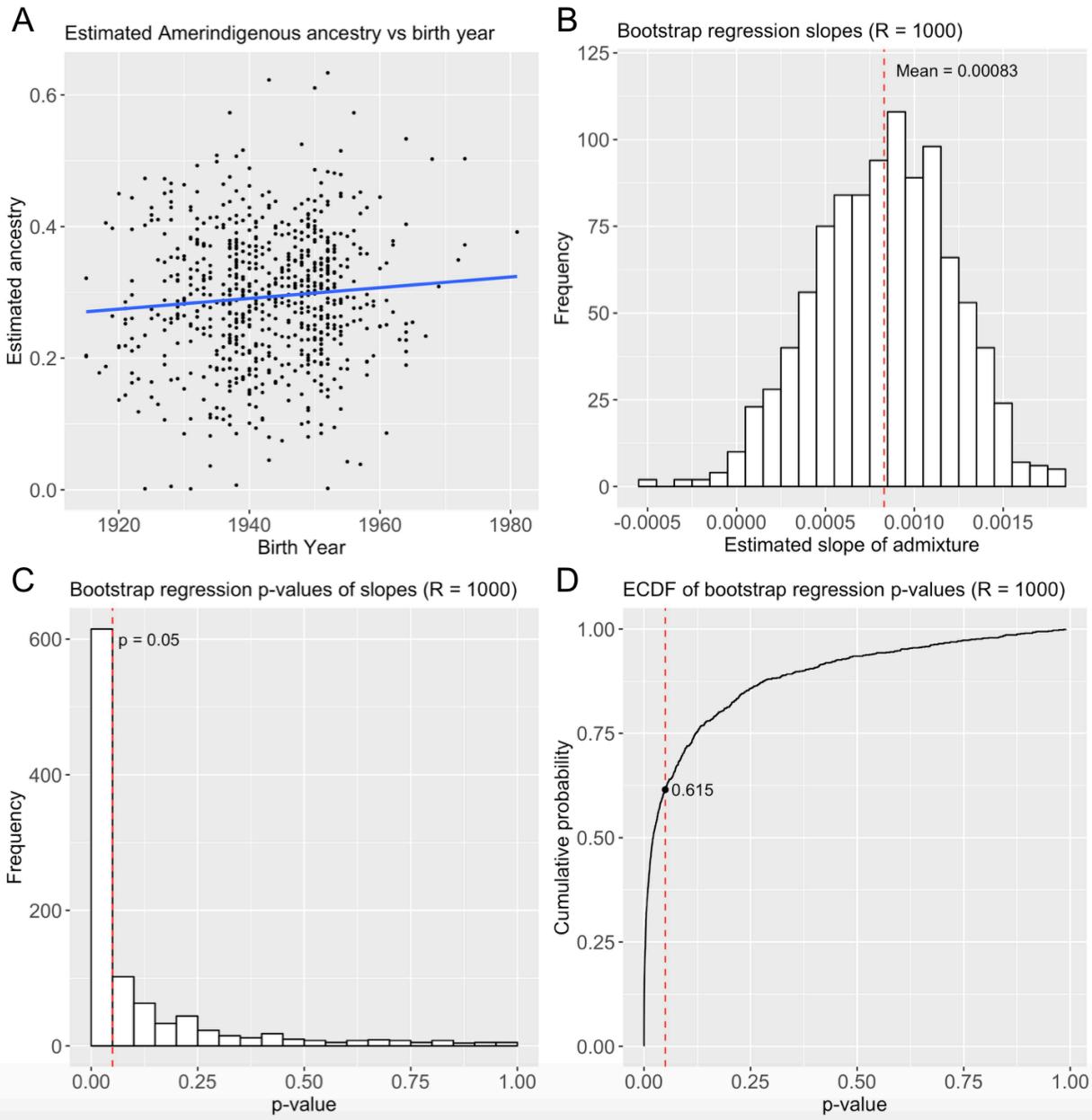
652



668 **Supplementary Figure 4:** Distributions of Amerindigenous global ancestry means for
669 HCHS/SOL Mexican Americans (n=3622) generated by 1000 bootstrap resampling iterations
670 within each decade of binned birth years.

671

672

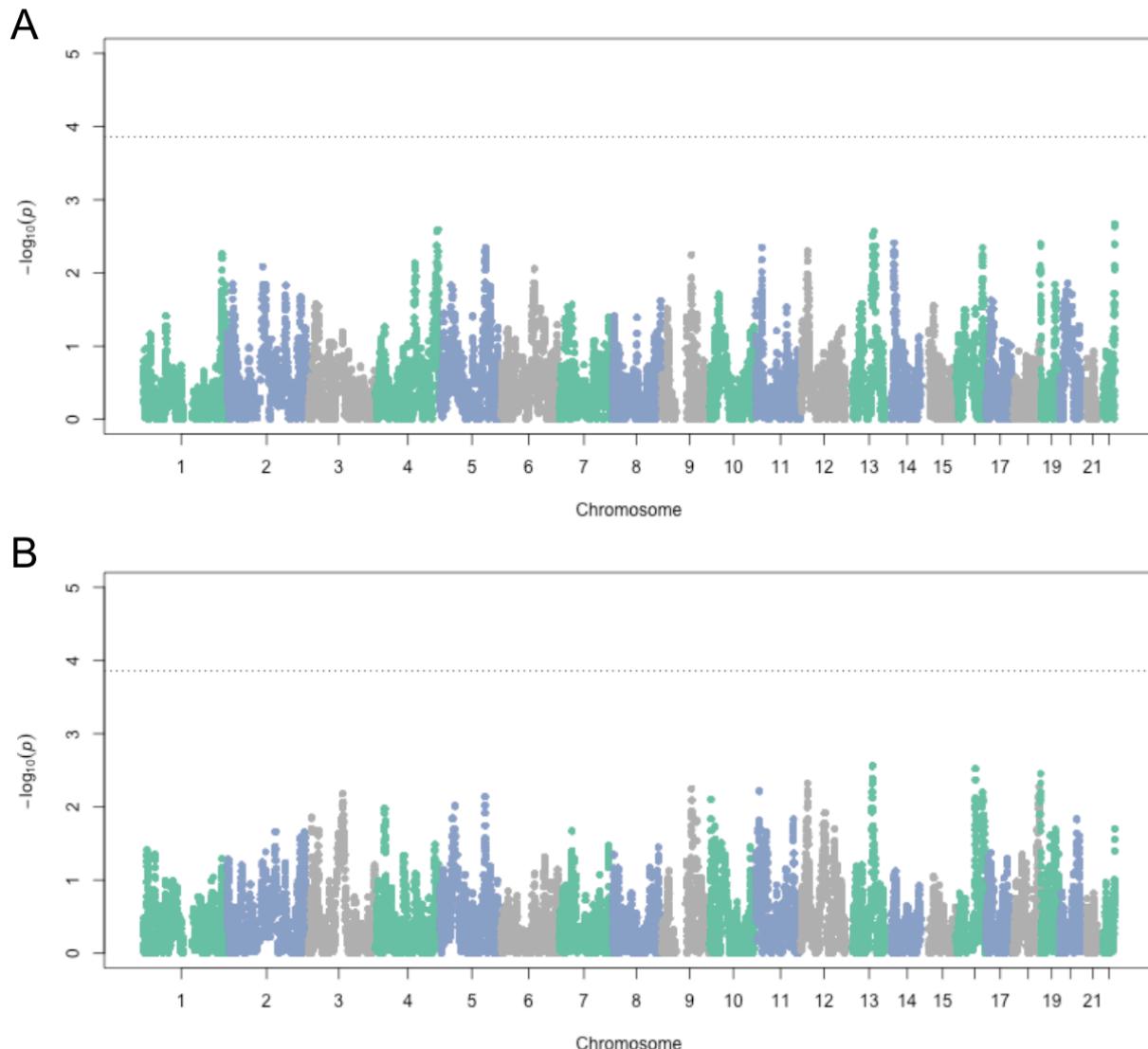


674 **Supplementary Figure 5. Replication in the Health and Retirement Study for 705 self-
675 identified Mexican Americans.** A) Ancestry over time B) Distribution of regression slopes after
676 1000 bootstrap resampling iterations C) Distribution of bootstrap regression p-values D) ECDF
677 of bootstrap regression p-values.

678

679

680



681

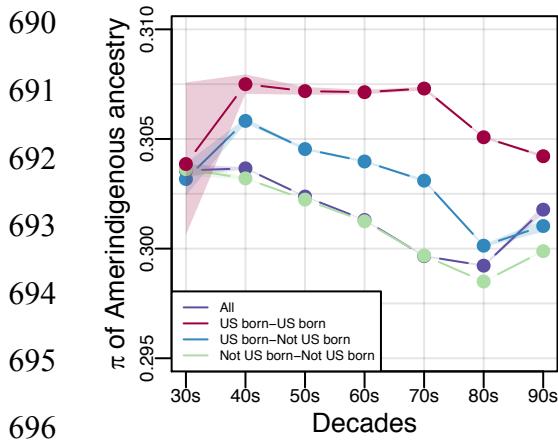
682 **Supplementary Figure 6. Admixture mapping in HCHS/SOL Mexicans (n=3622) for**
683 **Amerindigenous ancestry and A) birth year and B) generation.** Ancestry association testing
684 was performed at 211,151 markers using A) linear regression and B) logistic regression, both
685 including global Amerindigenous ancestry, sampling weight and center as covariates.

686

687

688

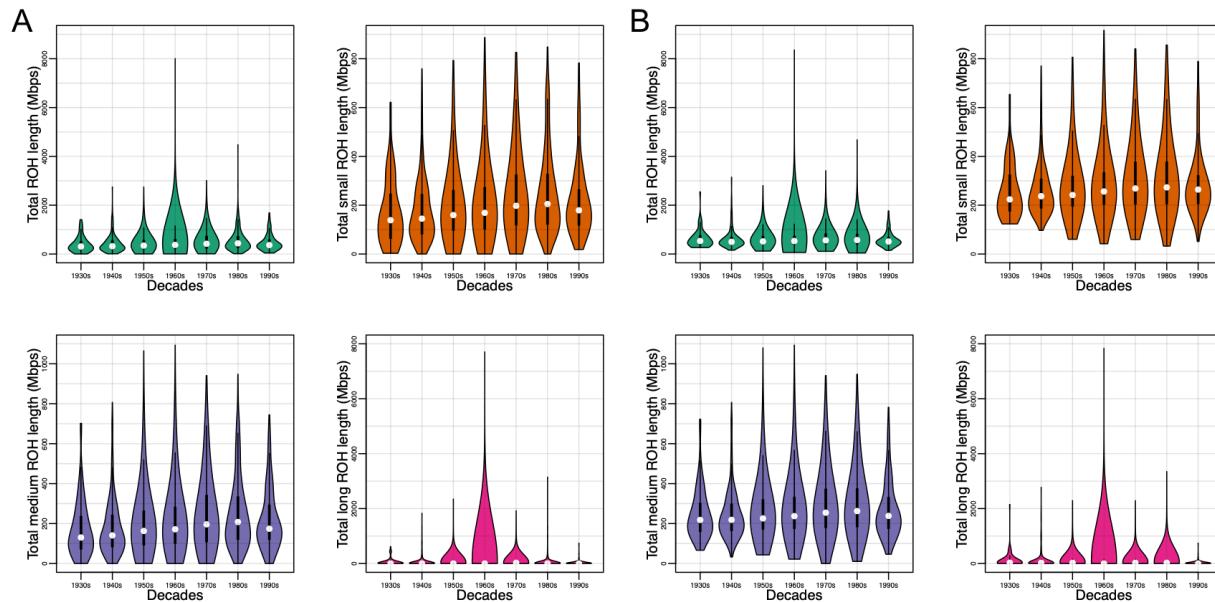
689



697 **Supplementary Figure 7. Diversity of and within Amerindigenous ancestral tracts.**

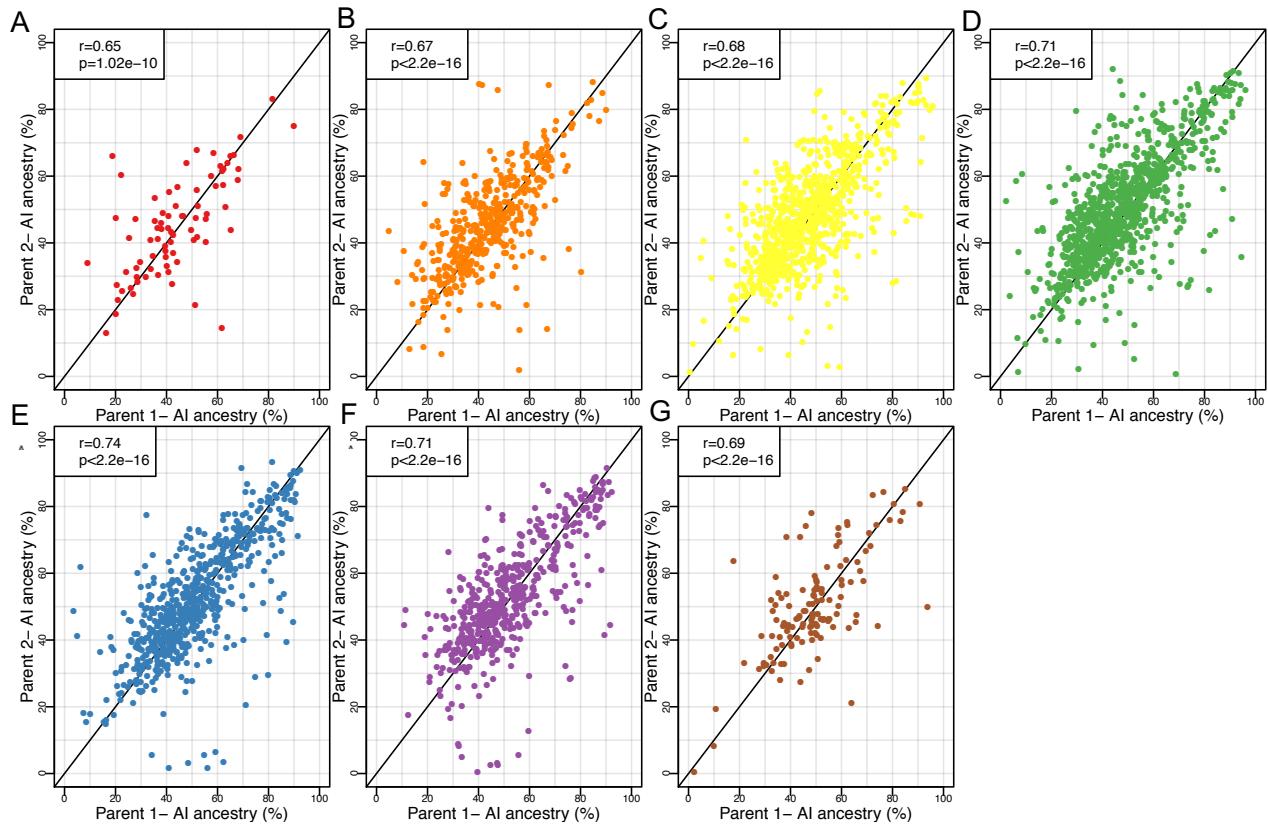
698 Diversity (π) of subcontinental Amerindigenous ancestry stratified by US born/not US born
699 status. π was calculated between pairs within each decade of birth years. 95% confidence
700 intervals are highlighted by the shaded regions for each group.

701



703 **Supplementary Figure 8. Runs of homozygosity (ROH) in HCHS/SOL Mexican Americans.**

704 A) ROH across all ancestries separated by ROH class B) ROH overlapping Amerindigenous
705 haplotypes separated by ROH class.



706

707

708 **Supplementary Figure 9. Ancestry-related assortative mating in HCHS/SOL Mexican**
709 **Americans separated by decade.** Each plot represents the correlation of parent's inferred
710 Amerindigenous (AI) ancestries using ANCESTOR by decade beginning with the 1930s (A) and
711 ending with the 1990s (G). Each point corresponds to one Mexican American couple and the
712 axes correspond to the inferred Amerindigenous (AI) ancestry of each partner.

713

714

715

716

717

718

719

720 **Supplementary Table 1: Association of global ancestries and birth year for all**

721 **HCHS/SOL individuals.** For each population, we tested for an association between global
722 ancestry and birth year while accounting for the sampling design. AI, AFR, and EUR refer to
723 Amerindigenous, African, and European ancestry respectively.

724

Population	Ancestry	N	R2	Effect	Std.Err	P
Central American	AI	1099	0.0139	0.0013	0.0004	0.0013
Central American	AFR	1099	0.0136	0.0002	0.0004	0.6561
Central American	EUR	1099	0.0138	-0.0015	0.0004	0.0002
Cuban	AI	1536	0.0023	0.0002	0.0001	0.0938
Cuban	AFR	1536	0.0014	-0.0005	0.0004	0.1490
Cuban	EUR	1536	0.0005	0.0003	0.0004	0.3879
Dominican	AI	954	0.0035	0.0002	0.0001	0.0663
Dominican	AFR	954	0.0030	-0.0007	0.0004	0.1287
Dominican	EUR	954	0.0022	0.0005	0.0004	0.2374
Mexican	AI	3622	0.0268	0.0023	0.0002	3.58E-22
Mexican	AFR	3622	0.0008	0.0000	0.0000	0.4189
Mexican	EUR	3622	0.0285	-0.0023	0.0002	0.0000
Puerto Rican	AI	1783	0.0014	0.0001	0.0001	0.1533
Puerto Rican	AFR	1783	0.0014	0.0003	0.0002	0.1743
Puerto Rican	EUR	1783	0.0027	-0.0005	0.0002	0.0355
South American	AI	652	0.0110	0.0016	0.0007	0.0211
South American	AFR	652	0.0027	-0.0002	0.0004	0.5053
South American	EUR	652	0.0080	-0.0014	0.0006	0.0335

725

726

727

728

729

730

731

732

733

734 **Supplementary Table 2 - Multiple regression table with traits that were significantly**
735 **correlated with global Amerindigenous ancestry.**

736

Trait	N	R2	Effect	Std.Err	P
Height	3615	0.588	-13.637	0.676	1.01E-85
Predicted FVC	3522	0.851	-695.376	36.867	1.13E-75
EGFR MDRD	3308	0.196	23.398	2.435	1.39E-21
EGFR CKD Epi	3308	0.441	14.752	1.581	1.90E-20
Waist to hip ratio	3617	0.195	0.043	0.007	6.96E-10
Glycosylated hemoglobin (HbA1c)	3609	0.081	9.184	1.590	8.30E-09
% Glycosylated hemoglobin	3609	0.080	0.837	0.146	9.88E-09
HDL cholesterol	3621	0.095	-6.740	1.372	9.39E-07
Total iron binding capacity	3620	0.066	23.540	5.467	1.71E-05
FEV1 FVC Ratio	3505	0.176	2.560	0.639	6.37E-05
% Lymphocytes	3442	0.021	3.768	1.023	2.35E-04
Hip girth	3617	0.077	-4.452	1.273	4.78E-04
% Neutrophils	3442	0.039	-3.649	1.178	1.96E-03
Monocyte count	3443	0.024	-0.048	0.019	1.27E-02
Neutrophil count	3442	0.043	-0.399	0.165	1.59E-02
LDL cholesterol	3529	0.047	-8.269	3.963	3.70E-02
Average diastolic blood pressure	3616	0.072	-2.067	1.136	6.88E-02
Total cholesterol	3622	0.065	-6.248	4.614	1.76E-01
White blood cell count	3442	0.032	-0.260	0.208	2.12E-01
Average systolic blood pressure	3619	0.211	1.590	1.712	3.53E-01
% Immature granulocytes	555	0.261	-0.090	0.110	4.14E-01
QRS duration	3596	0.168	0.062	1.268	9.61E-01

737

738

739

740

741

742 **Supplementary Table 3: Height over time: Height (cm) as a function of birth year**
743 **adjusting by sex, center, and sampling weight for 3614 Mexican Americans stratified by**
744 **the quartiles of global Amerindigenous ancestry (AIA).**

Group	N	R2	Effect	Std.Err	P
All	3614	0.54186	0.1200379	0.00905366	3.28E-39
AIA>0.58	929	0.5745454	0.158895	0.01783895	2.73E-18
0.46<=AIA<=0.58	955	0.5784636	0.1542762	0.01683919	3.07E-19
0.37<=AIA<0.46	842	0.5472275	0.1008054	0.01739819	9.73E-09
AIA<0.37	888	0.5369993	0.1161775	0.01815834	2.55E-10

745

746

747

748 **Supplementary Table 4: Predicted height vs. observed height.** Predicted height (cm) as
749 a function of observed height (cm) adjusting by sex, center, and sampling weight for 3614
750 Mexican Americans stratified by Amerindigenous ancestry (AIA).

Group	N	R2	Effect	Std.Err	P
All	3614	0.0249	0.0045	0.0006	2.19E-12
AIA>0.58	929	0.0072	0.0022	0.0012	7.79E-02
0.46<=AIA<=0.58	955	0.0058	0.0011	0.0013	3.90E-01
0.37<=AIA<0.46	842	0.0144	0.0043	0.0015	3.22E-03
AIA<0.37	888	0.0164	0.0043	0.0013	7.91E-04

751

752

753

754

755

756

757

758 **References:**

759 1. Nelson MR, Bryc K, King KS, Indap A, Boyko AR, Novembre J, et al. The Population
760 Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics
761 research. *Am J Hum Genet.* 2008;83(3):347-58.

762 2. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al.
763 An integrated map of genetic variation from 1,092 human genomes. *Nature.* 2012;491(7422):56-
764 65.

765 3. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A
766 global reference for human genetic variation. *Nature.* 2015;526(7571):68-74.

767 4. Gravel S, Zakharia F, Moreno-Estrada A, Byrnes JK, Muzzio M, Rodriguez-Flores JL, et
768 al. Reconstructing Native American migrations from whole-genome and whole-exome data.
769 *PLoS Genet.* 2013;9(12):e1004023.

770 5. Homburger JR, Moreno-Estrada A, Gignoux CR, Nelson D, Sanchez E, Ortiz-Tello P, et
771 al. Genomic Insights into the Ancestry and Demographic History of South America. *PLoS*
772 *Genet.* 2015;11(12):e1005602.

773 6. Moreno-Estrada A, Gignoux CR, Fernandez-Lopez JC, Zakharia F, Sikora M, Contreras
774 AV, et al. Human genetics. The genetics of Mexico recapitulates Native American substructure
775 and affects biomedical traits. *Science.* 2014;344(6189):1280-5.

776 7. Moreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK, Gignoux CR, et al.
777 Reconstructing the population genetic history of the Caribbean. *PLoS Genet.*
778 2013;9(11):e1003925.

779 8. Reich D, Patterson N, Campbell D, Tandon A, Mazieres S, Ray N, et al. Reconstructing
780 Native American population history. *Nature.* 2012;488(7411):370-4.

781 9. Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. The genetic ancestry of
782 African Americans, Latinos, and European Americans across the United States. *Am J Hum*
783 *Genet.* 2015;96(1):37-53.

784 10. Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al.

785 Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the

786 Hispanic Community Health Study/Study of Latinos. *Am J Hum Genet.* 2016;98(1):165-84.

787 11. Han E, Carbonetto P, Curtis RE, Wang Y, Granka JM, Byrnes J, et al. Clustering of

788 770,000 genomes reveals post-colonial population structure of North America. *Nat Commun.*

789 2017;8:14238.

790 12. Baharian S, Barakatt M, Gignoux CR, Shringarpure S, Errington J, Blot WJ, et al. The

791 Great Migration and African-American Genomic Diversity. *PLoS Genet.* 2016;12(5):e1006059.

792 13. Jordan IK, Rishishwar L, Conley AB. Native American admixture recapitulates

793 population-specific migration and settlement of the continental United States. *PLoS Genet.*

794 2019;15(9):e1008225.

795 14. Agarwala V, Flannick J, Sunyaev S, Go TDC, Altshuler D. Evaluating empirical bounds

796 on complex disease genetic architecture. *Nat Genet.* 2013;45(12):1418-27.

797 15. Eyre-Walker A. Evolution in health and medicine Sackler colloquium: Genetic

798 architecture of a complex trait and its implications for fitness and genome-wide association

799 studies. *Proc Natl Acad Sci U S A.* 2010;107 Suppl 1:1752-6.

800 16. Maher MC, Uricchio LH, Torgerson DG, Hernandez RD. Population genetics of rare

801 variants and complex diseases. *Hum Hered.* 2012;74(3-4):118-28.

802 17. Simons YB, Turchin MC, Pritchard JK, Sella G. The deleterious mutation load is

803 insensitive to recent population history. *Nat Genet.* 2014;46(3):220-4.

804 18. Uricchio LH, Zaitlen NA, Ye CJ, Witte JS, Hernandez RD. Selection and explosive

805 growth alter genetic architecture and hamper the detection of causal rare variants. *Genome*

806 *Res.* 2016;26(7):863-73.

807 19. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic variance

808 estimation with imputed variants finds negligible missing heritability for human height and body

809 mass index. *Nat Genet.* 2015;47(10):1114-20.

810 20. Colby SLO, J.M. Projections of the Size and Compositon of the U.S. Population: 2014 to
811 2060. U.S. Census Bureau, Commerce USDo; 2015.

812 21. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. *Nature*.
813 2011;475(7355):163-5.

814 22. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current
815 polygenic risk scores may exacerbate health disparities. *Nat Genet*. 2019;51(4):584-91.

816 23. Popejoy AB, Fullerton SM. Genomics is failing on diversity. *Nature*. 2016;538(7624):161-
817 4.

818 24. Mills MC, Rahal C. A scientometric review of genome-wide association studies.
819 *Commun Biol*. 2019;2:9.

820 25. Sorlie PD, Aviles-Santa LM, Wassertheil-Smoller S, Kaplan RC, Daviglus ML, Giachello
821 AL, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos.
822 *Ann Epidemiol*. 2010;20(8):629-41.

823 26. Collaboration NCDRF. A century of trends in adult human height. *Elife*. 2016;5.

824 27. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-
825 analysis of genome-wide association studies for height and body mass index in approximately
826 700000 individuals of European ancestry. *Hum Mol Genet*. 2018;27(20):3641-9.

827 28. Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary
828 association statistics. *Nat Rev Genet*. 2017;18(2):117-27.

829 29. Sharp SA, Rich SS, Wood AR, Jones SE, Beaumont RN, Harrison JW, et al.
830 Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use
831 in Newborn Screening and Incident Diagnosis. *Diabetes Care*. 2019;42(2):200-7.

832 30. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
833 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility
834 loci. *Nat Genet*. 2018;50(7):928-36.

835 31. Maas P, Barndahl M, Joshi AD, Auer PL, Gaudet MM, Milne RL, et al. Breast Cancer
836 Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United
837 States. *JAMA Oncol.* 2016;2(10):1295-302.

838 32. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human
839 Demographic History Impacts Genetic Risk Prediction across Diverse Populations. *Am J Hum*
840 *Genet.* 2017;100(4):635-49.

841 33. Botigue LR, Henn BM, Gravel S, Maples BK, Gignoux CR, Corona E, et al. Gene flow
842 from North Africa contributes to differential human genetic diversity in southern Europe. *Proc*
843 *Natl Acad Sci U S A.* 2013;110(29):11791-6.

844 34. Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L, Atzmon G, et al. The history
845 of African gene flow into Southern Europeans, Levantines, and Jews. *PLoS Genet.*
846 2011;7(4):e1001373.

847 35. Chacon-Duque JC, Adhikari K, Fuentes-Guajardo M, Mendoza-Revilla J, Acuna-Alonso
848 V, Barquera R, et al. Latin Americans show wide-spread Converso ancestry and imprint of local
849 Native ancestry on physical appearance. *Nat Commun.* 2018;9(1):5388.

850 36. Lisker R, Ramirez E, Briceno RP, Granados J, Babinsky V. Gene frequencies and
851 admixture estimates in four Mexican urban centers. *Hum Biol.* 1990;62(6):791-801.

852 37. Martinez DZ-CIF. Is Mexico a Post-Racial Country? Inequality and Skin Tone across the
853 Americas. AmericasBarometer Insights Series by the Latin American Public Opinion Project
854 (LAPOP), www.LapopSurveys.org [Internet]. 2017. Available from:
855 <https://www.vanderbilt.edu/lapop/insights/ITB031en.pdf>.

856 38. Fernández-Kelly P, Massey DS. Borders for Whom? The Role of NAFTA in Mexico-U.S.
857 Migration. *The Annals of the American Academy of Political and Social Science.* 2007;610:98-
858 118.

859 39. Verea M. Immigration Trends After 20 Years of NAFTA. 2014. 2014;9(2).

860 40. Contreras VR. THE ROLE OF DRUG-RELATED VIOLENCE AND EXTORTION IN
861 PROMOTING MEXICAN MIGRATION: Unexpected Consequences of a Drug War. *Latin*
862 *American Research Review*. 2014;49(3):199-217.

863 41. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm
864 used to manage the health of populations. *Science*. 2019;366(6464):447-53.

865 42. Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, Risch N. Estimating
866 kinship in admixed populations. *Am J Hum Genet*. 2012;91(1):122-38.

867 43. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling
868 approach for rapid and robust local-ancestry inference. *Am J Hum Genet*. 2013;93(2):278-88.

869 44. International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA,
870 et al. Integrating common and rare genetic variation in diverse human populations. *Nature*.
871 2010;467(7311):52-8.

872 45. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in
873 unrelated individuals. *Genome Res*. 2009;19(9):1655-64.

874 46. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease
875 and population genetic studies. *Nat Methods*. 2013;10(1):5-6.

876 47. Zou JY, Halperin E, Burchard E, Sankararaman S. Inferring parental genomic ancestries
877 using pooled semi-Markov processes. *Bioinformatics*. 2015;31(12):i190-6.

878 48. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. *PLoS Genet*.
879 2006;2(12):e190.

880 49. PLUMMER M BN, COWLES K, VINES K. CODA: Convergence Diagnosis and Output
881 Analysis for MCMC. *R News*. 2012(6):7-11.

882 50. Sobota RS, Shriner D, Kodaman N, Goodloe R, Zheng W, Gao YT, et al. Addressing
883 population-specific multiple testing burdens in genetic association studies. *Ann Hum Genet*.
884 2015;79(2):136-47.

885 51. Szpiech ZA, Blant A, Pemberton TJ. GARLIC: Genomic Autozygosity Regions

886 Likelihood-based Inference and Classification. *Bioinformatics*. 2017;33(13):2059-62.

887 52. Fisher GG, Ryan LH. Overview of the Health and Retirement Study and Introduction to

888 the Special Issue. *Work Aging Retire*. 2018;4(1):1-9.

889