

1 **The genome of a persistent giant algal virus encodes an unprecedented number**
2 **of genes involved in energy metabolism**

3

4 Romain Blanc-Mathieu^{1,2}, Håkon Dahle³, Antje Hofgaard⁴, David Brandt⁵, Jörn
5 Kalinowski⁵, Hiroyuki Ogata¹ and Ruth-Anne Sandaa^{6*}

6

7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan

8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes,
9 CNRS, INRA, IRIG, Grenoble, France

10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research,
11 University of Bergen, Bergen, Norway

12 4: Department of Biosciences, University of Oslo, Norway

13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany

14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway

15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, ruth.sandaa@uib.no

16 Abstract

17 Viruses have long been viewed as entities possessing extremely limited metabolic
18 capacities. Over the last decade, however, this view has been challenged, as metabolic
19 genes have been identified in viruses possessing large genomes and virions—the
20 synthesis of which is energetically demanding. Here, we describe the 1.4-Mbp linear
21 genome of *Prymnesium kappa* virus RF01 (PkV RF01), a giant virus of the
22 *Mimiviridae* family. We found that this virus encodes an unprecedented number of
23 proteins involved in energy metabolism, such as all four succinate dehydrogenase
24 (SDH) subunits (A–D) as well as key enzymes in the β -oxidation pathway. The *SDHA*
25 gene was transcribed upon infection, indicating that the viral SDH is actively used by
26 the virus—potentially to modulate its host's energy metabolism. We detected
27 orthologous *SDHA* and *SDHB* genes in numerous genome fragments from
28 uncultivated marine *Mimiviridae* viruses, which suggests that the viral SDH is
29 widespread in oceans. PkV RF01 was less virulent compared with other cultured
30 prymnesioviruses, a phenomenon possibly linked to the metabolic capacity of this
31 virus and suggestive of relatively long co-evolution with its hosts. Finally, we found
32 that PkV RF01 is the only alga-infecting *Mimiviridae* virus encoding two aminoacyl-
33 tRNA synthetases and enzymes corresponding to an entire base-excision repair
34 pathway, as seen in heterotroph-infecting *Mimiviridae*. These *Mimiviridae* encoded-
35 enzymes were found to be monophyletic and branching at the root of the eukaryotic
36 tree of life. This placement suggests that the last common ancestor of *Mimiviridae*
37 was endowed with a large, complex genome prior to the divergence of known extant
38 eukaryotes.

39 **Importance**

40 Viruses on Earth are tremendously diverse in terms of morphology, functionality, and
41 genomic composition. Over the last decade, the conceptual gap separating viruses and
42 cellular life has tightened because of the detection of metabolic genes in viral
43 genomes that express complex virus phenotypes upon infection. Here, we describe
44 *Prymnesium kappa* virus RF01, a large alga-infecting virus with a unique
45 morphology, an atypical infection profile, and an unprecedented number of genes
46 involved in energy metabolism (such as the tricarboxylic acid cycle (TCA) cycle and
47 the β -oxidation pathway). Moreover, we show that the gene corresponding to one of
48 these enzymes (the succinate dehydrogenase subunit A) is transcribed during
49 infection and is widespread among marine viruses. This discovery provides evidence
50 that a virus has the potential to actively regulate energy metabolism with its own
51 gene.

52

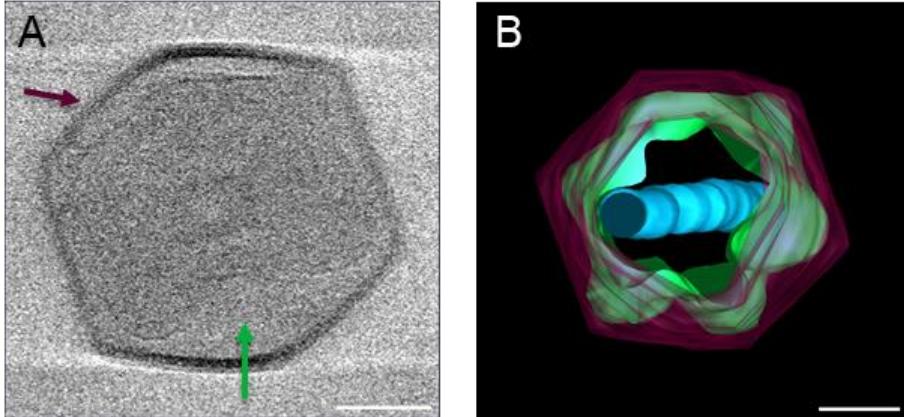
53 **Key words:** Algal viruses, *Mimiviridae*, persistent, co-evolution, metabolism, energy
54 production, succinate dehydrogenase, β -oxidation and aminoacyl-tRNA synthetases

55 Introduction

56 In their essay “Varieties of Living Things: Life at the Intersection of Lineage and
57 Metabolism,” Dupré and O’Malley proposed to address Schrödinger’s question
58 “What is Life?” by “*describing a spectrum of biological entities that illustrates why*
59 *no sharp dividing line between living and non-living things is likely to be useful*” (1).
60 Microbiologists have contributed considerably to this descriptive effort, both by
61 reporting the existence of viruses endowed with genes coding for functions once
62 thought to be exclusive to cellular life and by concomitantly proposing that actively
63 infecting viruses are a “living form” (2–4). Genes encoding elements for
64 photosynthesis (5, 6), carbon metabolism (7), and nitrogen- (8) and sulfur-cycling (9)
65 have been found in bacterial viruses, where they are used to maintain or augment
66 cellular processes during infection and to redirect energy and resources towards viral
67 production (8, 10, 11). Genes for protein synthesis, including translation initiation,
68 elongation, and termination, and a range of aminoacyl-tRNA synthetases have been
69 found in *Mimiviridae*, a group of giant viruses infecting single-celled eukaryotes (12–
70 14). *Mimiviridae* and other large DNA viruses, including some bacterial viruses, also
71 have tRNA genes (15, 16). Ribosomal proteins have recently been reported in viral
72 genomes derived from metagenomes (17). Genes involved in other metabolic
73 processes, such as fermentation (18), glycosylation (19), photosynthesis (20), and
74 rhodopsin (21), are encoded in *Mimiviridae* and other related large eukaryotic DNA
75 viruses. Metabolic genes are frequently observed within virus genomes (20, 22, 23);
76 although they represent a tiny fraction of the viral gene pool, these genes have the
77 potential to dramatically modify the phenotype of an actively infected cell and alter
78 the ecological role of the host (7, 24, 25). The infected host in this state has been
79 referred to as a virocell (2). One might expect that the interplay between viral genes

80 and host genes in virocells would become increasingly fine-tuned and complex during
81 prolonged virus–host co-evolution, which also typically leads to lower virulence.
82 Much of the complexity of virocells may still be undetected, as most currently
83 isolated algal viruses are highly virulent, with several involved in rapid algal bloom
84 termination events (26).

85 Viruses of the *Mimiviridae* family are known to infect heterotrophic and
86 autotrophic microbial eukaryotes. This divide is also reflected in the phylogeny of
87 these viruses, some of which are classified into two proposed sub-families:
88 “Megavirinae” and “Mesomimivirinae” (27). The former contains viruses with
89 genomes larger than 1 Mbp, all isolated from Amoebozoa, while the latter includes
90 viruses with smaller genomes isolated from haptophyte algae of class
91 Prymnesiophyceae. Several *Mimiviridae* members outside these two groups have
92 been characterized to some extent as well, namely, viruses isolated from heterotrophs
93 (*Cafeteria roenbergensis* virus, CroV; *Bodo saltans* virus, BsV; Choano virus),
94 autotrophs (*Aureococcus anophagefferens* virus, AaV; *Tetraselmis* virus 1, TetV;
95 *Pyramimonas orientalis* virus, PoV; *Prymnesium kappa* virus RF01, PkV RF01), a
96 metazoan (Namao virus), and metagenomes (Klosneuviruses). The Mesomimivirinae
97 sub-family includes viruses infecting bloom-forming hosts, such as *Phaeocystis*
98 *pouchetii*, *Phaeocystis globosa*, and *Prymnesium parvum* (PpV, PgV Group I, and
99 PpDVAV, respectively) (28–30); it also includes several viruses infecting *Haptolina*
100 *ericina* and *Prymnesium kappa*, which normally do not form massive blooms but are
101 present at low densities in seawater year round (31). In marine environments, viruses
102 infecting low-density and non-bloom-forming algae may be the most common virus–
103 host systems—that is, low-density hosts (non-blooming) and viruses that appear to
104 have co-evolved in response to host growth strategy. Thus far, the only known


105 representatives of such viruses are *Prymnesium kappa* viruses RF01 (PkV RF01) and
106 RF02 (PkV RF02), *Haptolina ericina* virus RF02 (HeV RF02), and
107 *Chrysochromulina ericina* virus (CeV 01B, infecting *Haptolina ericina*) (32, 33).
108 Together with PgV, all of these viruses, except for PkV RF01, belong to the sub-
109 family Mesomimivirinae on the basis of their monophyletic relationship and, in the
110 case of PgV and CeV, a shared genomic similarity (27). In contrast, phylogenetic
111 analysis of two partially sequenced marker genes has placed PkV RF01 deep inside
112 the *Mimiviridae* clade, and characterization of its life cycle has revealed an atypical
113 infection profile (33). Here, we report new viral functions inferred from analysis of
114 the genome sequence of PkV RF01. We found that this virus is less virulent than most
115 other alga-infecting viruses and possesses an unprecedented number of energy-
116 generating genes. We uncovered clues suggesting that members of *Mimiviridae* that
117 potentially modulate the metabolism of their hosts are widespread in the ocean. Our
118 findings of peculiar genomic features in a persistent virus provide new insights on
119 virus–host coevolution and may stimulate further advances in modeling the history of
120 their interaction.

121 **Results and Discussion**

122 **PkV RF01 has an atypical morphology**

123 The icosahedral PkV RF01 particle is approximately 400 nm in diameter (Fig. 1).
124 Beneath the capsid, several convoluted inner membranes fill approximately 66% of
125 the interior. Chloroform treatment of PkV RF01 drastically reduced the infectivity of
126 the virus, suggesting that lipid-containing molecules are involved in the infection
127 process (Appendix – Fig. S1). As no outer membrane was detected by cryo-electron
128 tomography, the chloroform treatment may have affected lipid components in either

129 the capsid or the inner convoluted membranes. Internal lipid-containing membranes
130 have been detected in several icosahedral-shaped double-stranded DNA viruses,
131 including algal viruses belonging to families *Phycodnaviridae* and *Mimiviridae*,
132 mimiviruses, and various bacteriophages (34–39). In all of these viruses, the inner
133 membranes are suggested to play a role in the release of the viral nucleoprotein core
134 or genome by fusing with the host plasma membrane (36, 38, 39). Inner membranes
135 in currently described NCLDVs more or less adopt the icosahedral morphology
136 defined by the outer layer of capsomers (40, 41). We detected several convoluted
137 inner membranes in PkV RF01 that do not follow the structure of the capsid. To our
138 knowledge, this structural inconsistency has not been previously detected in any
139 double-stranded DNA viruses, which calls for further investigation to understand the
140 assembly process of PkV RF01 and how it enters its host. Another striking feature of
141 the PkV RF01 virion is an internal rod-shaped core (ca. 55 nm in diameter), which is
142 filled with dense material and positioned in the center of the virus particle. Similar
143 features have been observed in TEM images of large virus-like particles (VLPs)
144 (300–700 nm) occurring in waste vacuoles of phaeodarian radiolarians collected from
145 different oceans (42) and in zoospores of the green alga *Chlorococcus minutum* (43).
146 To our knowledge, however, these features have not been described in isolated
147 viruses thus far.

148

149 **FIG 1** PkV RF01 morphology. (A) Screen shot of a cryo-electron tomogram of a PkV
150 RF01 virion. (B) Composite image of 61 cryo-electron tomograms (−60 to 60°,
151 imaged every 2°). Purple, capsid; green, inner membrane consisting of multiple
152 irregular, convoluted membranes; blue, internal rod-shaped core filled with dense
153 material. The full set of records is available on GitHub (see [Data availability](#) section).
154 Scale bar, 100 nm.

155 **PkV RF01 has an atypical infection strategy**

156 Compared to other cultured algal viruses, PkV RF01 has an atypical infection strategy
157 characterized by a more persistent relationship with its hosts. Only 2% of the total
158 PkV RF01 viral particles produced during infection of *Haptolina ericina* UiO028 (He
159 UiO028) are infectious (able to produce progeny) ([Table 1](#)). This infectivity is much
160 lower than that of the other two prymnesioviruses, HeV RF02 and PkV RF02, which
161 produced infectious progeny of 13% and 44%, respectively ([Table 1](#)). The portion of
162 infectious particles of PkV RF01 is low also when compared to other algal viruses
163 (44, 45). Further, the latent period of PkV RF01 is longer (ca. 24–32 h, (33)) in
164 comparison with other prymnesioviruses (28, 29, 32, 33) and PkV RF01 is able to
165 infect multi-species that is also an unusual trait among algal viruses (26).

166 **TABLE 1** Infection parameters of *Prymnesium kappa* viruses RF01 and RF02 and
167 *Haptolina ericina* virus RF02.

Viral species and hosts	Infectious progeny/mL (MPN)	Host cells/mL (FCM) ^a	Total VLP/mL (FCM)	Burst size (VLP) ^b	Infectivity (%) ^c	Infectious particles in a burst ^d
PKV RF01 (He UiO028)	2.9x10 ⁶ (± 0.2)	4.9x10 ⁵	1.8x10 ⁸ (±0.9)	363	2	6
PKV RF02 (Pk RCC3423)	2.2x10 ⁸ (± 0.2)	4.6x10 ⁵	5.0x10 ⁸ (±0.1)	1093	44	483
HeV RF02 (He UiO028)	5.8x10 ⁷ (±0.2)	4.9 x 10 ⁵	4.4 x 10 ⁸ (±0.0)	907	13	119

168 VLP, virus-like particle; MPN, most probable number; FCM, flow cytometry.

169 ^aMeasurement performed in duplicates

170 ^bThe number of viral particles released from each host cell, estimated from the total number of host cells
171 pre-infection and the total number of VLPs produced during the infection cycle.

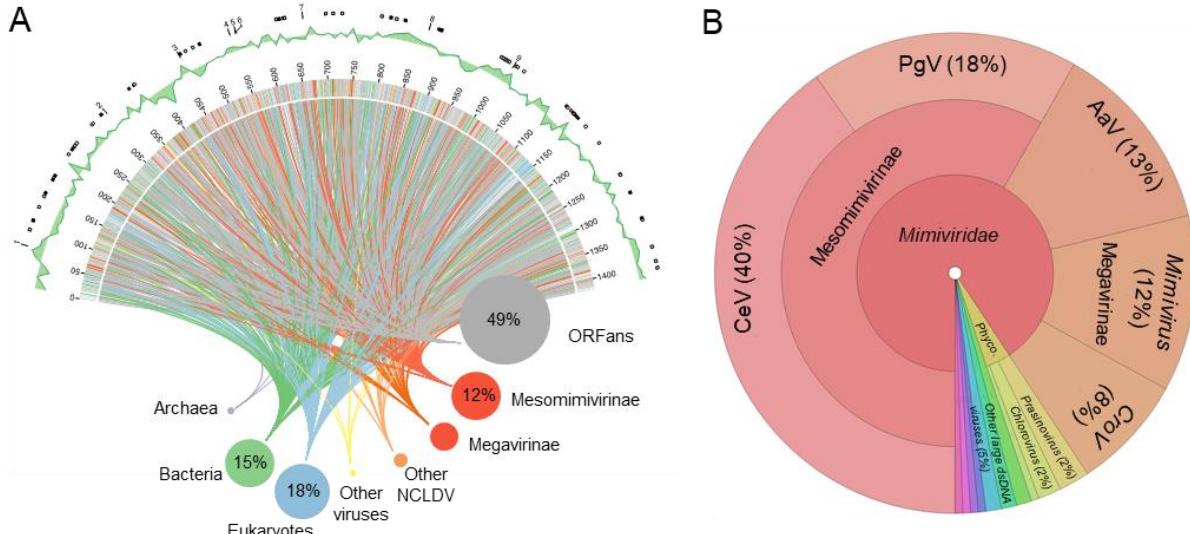
172 ^cEstimated as the percentage of infectious progeny of all VLPs produced during the infection cycle.

173 ^dNumber of infectious particles released per host cell.

174 Differences in viral infectious strategies results from the co-evolution between
175 viruses and their hosts. The hosts of PkV RF01, PkV RF02, and HeV RF02 all belong
176 to order Prymnesiales, whose members are normally present in low abundance but co-
177 occur year round (*K*-strategists) (46). All these viruses have lower infectivity and
178 longer latent periods compared with viruses infecting bloom-forming haptophytes (*r*-
179 strategists). Long replication time and lower infectivity, as hosts becomes scarce,
180 increases the chances of vertical transmission rather than horizontal transmission of
181 the virus. Vertical parent-to-offspring transmission depends on host reproduction and
182 should therefore evolve towards lower virulence to increase the virus fitness (47, 48).
183 High virulence, on the other hand, may be supported by large, dense host populations
184 because high host densities ensure successful horizontal transmission of viral progeny
185 to new hosts (47, 49). The highly acute viruses infecting recurrent bloom-forming
186 haptophytes, e.g. *Emiliania huxleyi* virus (EhV), *Phaeocystis pouchetii* virus (PpV),
187 and *Phaeocystis globosa* virus (PgV), normally have short latent periods, which
188 results in rapid lysis of the host (29, 30, 50). The infectivity of PgV and PpV is also
189 high, between 60%–100% (44, 51).

190 Broad host range is another characteristic that might increase the chance of
191 transmission in an environment with low host abundances. Generalist strategy is

192 associated with trade-offs in the form of “paying” a higher infectivity cost and
193 decreasing the opportunity of transmission with longer replication times, higher decay
194 rates and decreased infectivity (discussed in (52, 53)). This fits well with the two
195 multi-species infecting haptophyte viruses, PkV RF01 and HeV RF02, that have
196 reduced proportions of infectious particles and longer replication times (33), relative
197 to other haptophyte viruses with restricted host ranges. In the ocean, persistent
198 relationships—such as between PkV RF01 and its hosts—seem to be most common
199 among viruses infecting unicellular algae; this has been demonstrated by several
200 metabarcoding studies revealing the persistence of dominance of viral OTUs over
201 several months (54, 55).

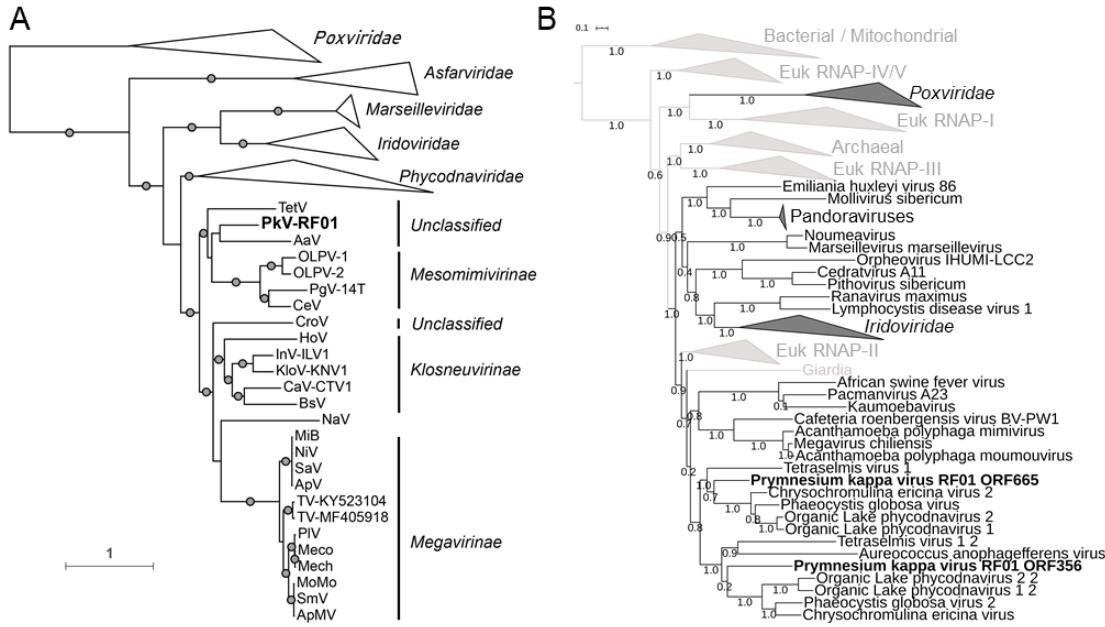

202 **PkV RF01 has the largest genome among algal viruses**

203 The genome of PkV RF01 was assembled as a linear DNA sequence of 1,421,182 bp.
204 This size is more than twice that of the genome of TetV, which means that PkV RF01
205 has the largest reported genome of any virus infecting a photosynthetic organism (Fig.
206 2A). Evidence for the linear structure of this genome is the presence of ~5-kbp
207 terminal inverted repeats. Despite being phylogenetically more closely related to alga-
208 infecting *Mimiviridae*, the genome size of PkV RF01 is in the range of heterotroph-
209 infecting *Mimiviridae*. The overall G+C content of PkV RF01 is 22.8%, which is low
210 compared with other *Mimiviridae* (23%–41%). Similar to other *Mimiviridae*, the
211 average G+C content of PkV RF01 in intergenic regions is relatively low, 17.8%.
212 This lower G+C content may reflect an ongoing loss of G and C nucleotides, more
213 prevalent in non-coding than coding regions because of weaker background selection
214 in non-coding regions. The genome of PkV RF01 is predicted to contain 1,161 genes
215 comprising 1,121 protein-coding DNA sequences (CDSs) and 40 tRNA genes
216 corresponding to 13 amino acids (Appendix – Table S1). Most tRNA genes (30 out of

217 40) are clustered in three genomic regions lacking predicted CDSs, a feature also
218 observed in other *Mimiviridae*. For example, all tRNAs of TetV ($n = 10$) and CroV (n
219 = 22) are encoded consecutively on the same strand (18, 56). The average CDS length
220 is 1,046 bp (minimum: 297; maximum: 1,493). Intergenic regions average 217 bp in
221 length, with a cumulative sum of 244,005 bp, which corresponds to a gene density of
222 82.8%.

223 OrthoFinder identified 19 groups of paralogs, all containing two genes, except
224 for one with six genes. This low number of identified paralogs indicates that gene
225 duplication has not played an important role in the evolution of the genome size of
226 this virus, at least not recently (rapid divergence may create distant paralogs that are
227 difficult to identify). Amino acid sequences in the cluster of six paralogous genes
228 identified by OrthoFinder could not be functionally annotated individually, but a
229 HMM profile-to-profile comparison detected homology with the CTCF
230 transcriptional regulator (Appendix – Fig. S2). Further comparison of this HMM
231 profile against all *Mimiviridae* proteomes revealed that this protein is encoded by
232 genes in the genomes of *Klosneuvirinae* (20, 12, and 9 gene copies each in
233 *Klosneuvirus*, *Indivirus*, and *Catovirus*, respectively), with 10 copies found in each of
234 the three PgVs, two copies each in CeV, OLPV2, and BsV, and one or two copies in
235 some mimiviruses (no homologs found in *Phycodnaviridae*). CTCF is a DNA-binding
236 protein highly conserved in bilaterian metazoans that functions in genomic
237 organization and the control of gene expression (57). Viral-encoded CTCF has not
238 been characterized, but studies have shown that herpesviruses recruit host CTCF
239 proteins to modulate (enhance and repress) the transcription of their own genes (58,
240 59). Inspection of self-genome alignment dot plots revealed an unusual number of
241 short repeats throughout the genome of PkV RF01 compared with other *Mimiviridae*

242 members (Appendix – Fig. S3). Of the 1,121 predicted CDSs, 567 (51%) exhibited
243 sequence similarities (BLASTP *E*-value conservative cutoff of 1×10^{-5}) to protein
244 sequences in the RefSeq database (Fig. 2A). Among them, 204 (36%) were most
245 similar to eukaryotes, while 164 (29%) were closest to bacteria and 190 (34%) to
246 NCLDVs. Among the CDSs most similar to NCLDVs, 138 (73%) corresponded to
247 Mesomimivirinae and 38 (28%) to Megavirinae, with CeV and PgV being the most
248 represented taxa (Fig. 2B). Among the closest homologs found in eukaryotic
249 organisms, 24 were haptophytes (12 in *Emiliania huxleyi* and 12 in *Chrysochromulina*
250 sp.). A sequence-based homology search of corrected nanopore reads and scaffolds
251 composing the initial assembly against *Lavidaviridae* proteomes (BLASTX; matrix:
252 BLOSUM45, *E*-value $< 1 \times 10^{-5}$) yielded no significant alignments against any major
253 or minor *Lavidaviridae* capsid proteins, which suggests that virophages were absent
254 from the sample used for sequencing.



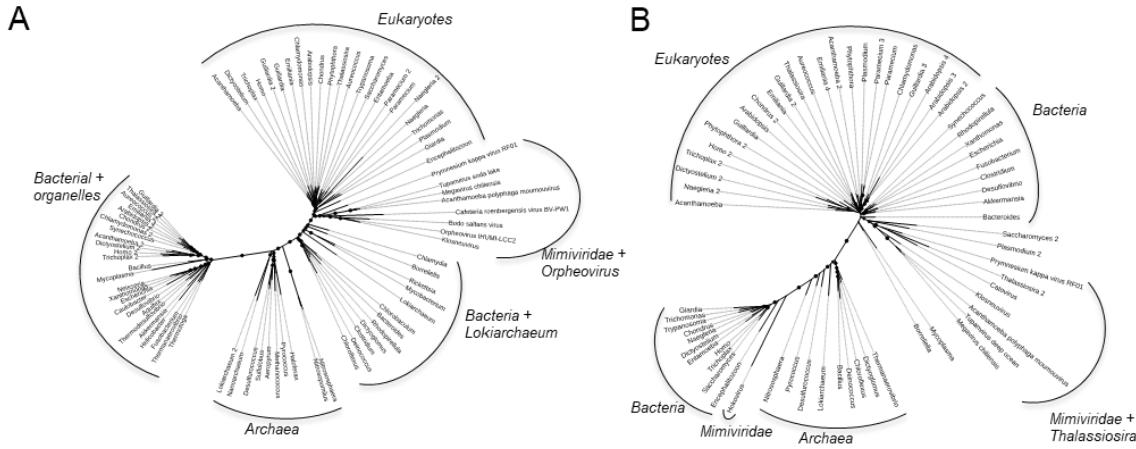
255

256 **FIG 2** Structure and gene taxonomic composition of the PkV RF01 genome
257 sequence. (A) Rhizome and genomic features of the PkV RF01 genome. As
258 illustrated by the rhizome (inner part of the figure), ORFans comprise the largest set
259 of PkV RF01 genes, while a substantial portion (12%) have their best BLAST hits
260 (RefSeq) against “Mesomimivirinae.” Colors indicate taxonomic origin. Intergenic
261 regions are white. Percentage hits per taxonomic group higher than 5% of total
262 genes are indicated. In the outermost ring, rectangles indicate the positions of
263 glycosyltransferases (white), lipid-related enzymes (black), and succinate
264 dehydrogenase genes (red), and the numbers correspond to *Mimiviridae* key
265 enzymes (1 and 3: DNA-directed RNA polymerase II subunits 1 and 2, respectively;
266 2: DNA mismatch repair protein MutS7; 4: Packaging ATPase; 5: VLTF3, 6: Major
267 capsid protein; 7: Eukaryotic translation initiation factor 4E; 8: Asparagine synthase;
268 9: DNA polymerase family B). The ring adjacent to the outermost ring shows GC
269 skew over a 10-KB window. (B) Taxonomic breakdown of 194 genes with best hits to
270 virus genes. Taxa represented by fewer than 2% of the genes are Pacmanvirus,
271 Caudovirales, Poxviridae, Baculoviridae, Marseilleviridae, Pithovirus, and
272 Kaumoebavirus.

273 A previous analysis of PkV RF01 family-B DNA polymerase (PolB) and the
274 major capsid protein (MCP) placed this virus in family *Mimiviridae* (33). We also
275 recently reported that the PkV RF01 genome has additional NCLDV core genes, such
276 as A32-like virion packing ATPase (NCVOG0249) and RNAPol (RNA pol subunit I
277 [NCVOG0274] and subunit II [NCVOG0271]), and orthologous genes that are
278 specific to *Mimiviridae*, namely, MutS7 (NCVOG2626) and asparagine synthase

279 (AsnS, NCVOG0061) (60). Phylogenetic reconstruction using five NCLDV core
280 genes confirmed the deep branching of PkV RF01 within the *Mimiviridae* family and
281 suggested that PkV RF01, along with TetV and AaV, is more closely related to
282 Mesomimivirinae than to Megavirinae (Fig. 3A). In support of this evolutionary
283 relationship, PkV RF01 has an additional copy of the second largest RNA polymerase
284 subunit gene (*rpb2*). This *rpb2* duplication is shared with all other *Mimiviridae* that
285 infect algae, including Mesomimivirinae members, AaV (whose second copy is very
286 short), and TetV. This additional *rpb2* copy is not found in other *Mimiviridae*.
287 Phylogenetic analysis indicates that these two *rpb2* copies were present in the
288 ancestor of alga-infecting *Mimiviridae* (Fig. 3B). The *rpb2* duplication is a useful
289 feature to discriminate between the two main clades (autotroph versus heterotroph-
290 infecting viruses) within the *Mimiviridae* family.

291


292 **FIG 3** Phylogenetic evidence for PkV RF01 as a distant relative of
293 “Mesomimivirinae.” (A) Bayesian phylogenetic tree of NCLDVs reconstructed from a
294 concatenated alignment of five core nucleocytoplasmic virus orthologous genes.
295 Gray circles indicate branches statistically supported by posterior probabilities above
296 0.95. The tree was rooted using *Poxviridae* as outgroup. The scale bar indicates
297 substitutions per site. TetV, Tetratelmis Virus 1; AaV, *Aureococcus anophagefferens*
298 virus; OLPV-1, Organic Lake phycodnavirus 1; OLPV-2, Organic Lake phycodnavirus
299 2; PgV-14T, *Phaeocystis globosa* virus; CeV, *Chrysochromulina ericina* virus; CroV,
300 *Cafeteria roenbergensis* virus BV-PW1; HoV, *Hokovirus HKV1*; InV-ILV1, *Indivirus*
301 ILV1; KloV-KNV1, *Klosneuvirus KNV1*; CaV-CTV1, *Catovirus CTV1*; BsV, *Bodo*
302 *saltans* virus; NaV, *Namao Virus*; MiB, *Mimivirus_Bombay*; NiV, *Niemeyer virus*;
303 SaV, *Samba virus*; ApV, *Acanthamoeba polyphaga* virus; TV-KY523104, *Tupanvirus*
304 KY523104; TV-MF405918, *Tupanvirus MF405918*; PIV, *Powai Lake megavirus*;
305 Meco, *Megavirus courdo 7*; Mech, *Megavirus chilensis*; MoMo, *Moumouvirus Monve*;
306 SmV, *Saudi moumouvirus*; ApMV, *Acanthamoeba polyphaga moumouvirus*. (B)
307 Maximum likelihood phylogenetic tree of cellular and NCLDV DNA-directed RNA
308 polymerase subunit beta (RPB2). Tools, evolutionary models, and parameters used
309 for tree reconstruction are reported in [Appendix 1 – Table S3](#).

310 Out of 1,121 predicted protein-coding genes in the genome of PkV RF01, only
311 about a third could be annotated with some functional description based on their
312 sequence homology with characterized proteins. Such a small percentage is typical of
313 eukaryotic viruses with large genomes. A total of 339 proteins (30%) showed

314 significant sequence similarity with proteins in the Cluster of Orthologous Gene
315 (COG) database (61) ([Appendix – Fig. S4](#)). The distribution of COG functions
316 associated with these hits was dominated by “Posttranslational modification, protein
317 turnover, chaperones” (43 proteins) and “Cell wall/membrane/envelope biogenesis”
318 (42 proteins), which is approximately two times more proteins than in other
319 *Mimiviridae* members except for Tupanvirus ([Appendix – Fig. S5](#)). Among other
320 well-represented categories, numbers of proteins in “Replication, recombination and
321 repair” (36 proteins) and “Transcription” (23 proteins) were similar to those of other
322 *Mimiviridae*, while the categories of “Translation, ribosomal structure and
323 biogenesis” (25 proteins) and “Amino acid transport and metabolism” (20 proteins)
324 were respectively in the same range or higher than those of heterotroph-infecting
325 *Mimiviridae* (mimiviruses, BsV, and CroV). Interestingly, 24, 17, and 9 PkV RF01
326 proteins were respectively assigned to the categories of “Lipid transport and
327 metabolism”, “Carbohydrates transport and metabolism,” and “Energy production and
328 conservation,” all much higher compared with other *Mimiviridae* viruses.

329 Similar to other *Mimiviridae*, PkV RF01 encodes several genes involved in
330 DNA repair, transcription, and translation ([Appendix – Results](#)). Notably, this virus
331 has the full set of enzymes required for the base excision repair (BER) pathway,
332 which is also the case for all *Mimiviridae* members except for those with smaller
333 genomes (PgV, CeV, and AaV). PkV RF01 BER enzymes are closer (i.e., have a
334 greater alignment score) to heterotrophic *Mimiviridae* than to cellular homologs, thus
335 suggesting that this pathway was present in the last common ancestor of *Mimiviridae*.
336 According to a previous phylogenetic analysis, *Mimiviridae* BER enzymes are
337 monophyletic with regard to *Mimiviridae* and have not recently been acquired from
338 eukaryotes (62).

339 Unlike alga-infecting *Mimiviridae*, PkV RF01 encodes two amino-acyl tRNA
340 synthetases (aaRS): an isoleucyl-tRNA synthetase (IleRS; ORF 480) and an
341 asparaginyl-tRNA synthetase (AsnRS; ORF 764). Both of these synthetases are found
342 in most lineages of heterotroph-infecting *Mimiviridae* (AsnRS is missing from CroV
343 and BsV, and IleRS is missing from *Mimivirus* lineage A). Phylogenetic analyses of
344 these two proteins revealed a deep branching of viral homologs, which formed a
345 monophyletic clade well separated from cellular homologs (Fig. 4). Although the
346 phylogenetic relationship among viruses on these trees does not exactly reflect their
347 classification (e.g., Orpheovirus within Megavirinae), the recovered topologies
348 suggest an ancient history for these genes rather than a recent acquisition from
349 cellular organisms. The IleRS tree (Fig. 4A) is in agreement with previous
350 phylogenetic analyses of cellular organisms with the known split of bacterial lineages
351 (63, 64). In our tree, *Mimiviridae* and Orpheovirus form a monophyletic group
352 branching at the root of eukaryotic organisms, which suggests that the IleRS gene was
353 acquired before the divergence of extant eukaryotic phyla or from a now-extinct or as
354 yet unknown eukaryotic phylum at the root of the eukaryotic tree. Similarly, the
355 AsnRS tree supports the presence of this enzyme in the ancestor of *Mimiviridae* (Fig.
356 4B). Alternatively, rapid evolution of more recently acquired genes could generate
357 these observed topologies in a phenomenon known as the long-branch attraction bias
358 (65). Nonetheless the branches for viruses were not particularly long compared to the
359 branches for eukaryotes and the evolutionary model used in our phylogenetic analyses
360 is known to minimize this bias (compared to more traditional models) (66, 67).
361 Therefore, it seems more likely that viral genes were recruited from proto-eukaryotes
362 before the diversification of modern eukaryotes.



363

364 **FIG 4** Bayesian phylogenetic trees of two viral amino-acyl tRNA synthetases and
365 their cellular homologs. (A) Isoleucine tRNA synthetases. (B) Aspartyl tRNA
366 synthetases. Branches supported by posterior probability (PP) values >70% are
367 indicated by circles whose diameters are proportional to the PP value.

368 **A viral-encoded succinate dehydrogenase and energy production genes**

369 We found six predicted protein-coding genes (ORFs 893 to 900) related to energy
370 production in an 8,026-bp region (Fig. 5A). Four ORFs (ORFs 893 and 898–900)
371 were predicted to code for all four subunits (SDHA, D, C, and B) of a functional
372 succinate dehydrogenase (SDH, or Electron Transport Chain Complex II) of the
373 oxidative phosphorylation pathway (Fig. 5B). In eukaryotes, all four subunits of this
374 enzyme are encoded in the nuclear genome. This enzyme acts in the mitochondrial
375 respiratory chain and participates in both the TCA cycle and the respiratory electron
376 transfer chain. In the TCA cycle, this succinate dehydrogenase oxidizes succinate to
377 fumarate, while its activity in the inner mitochondrial membrane involves the
378 reduction of a FAD cofactor followed by electron transfer through three Fe–S centers
379 to ubiquinone (Fig. 5C).

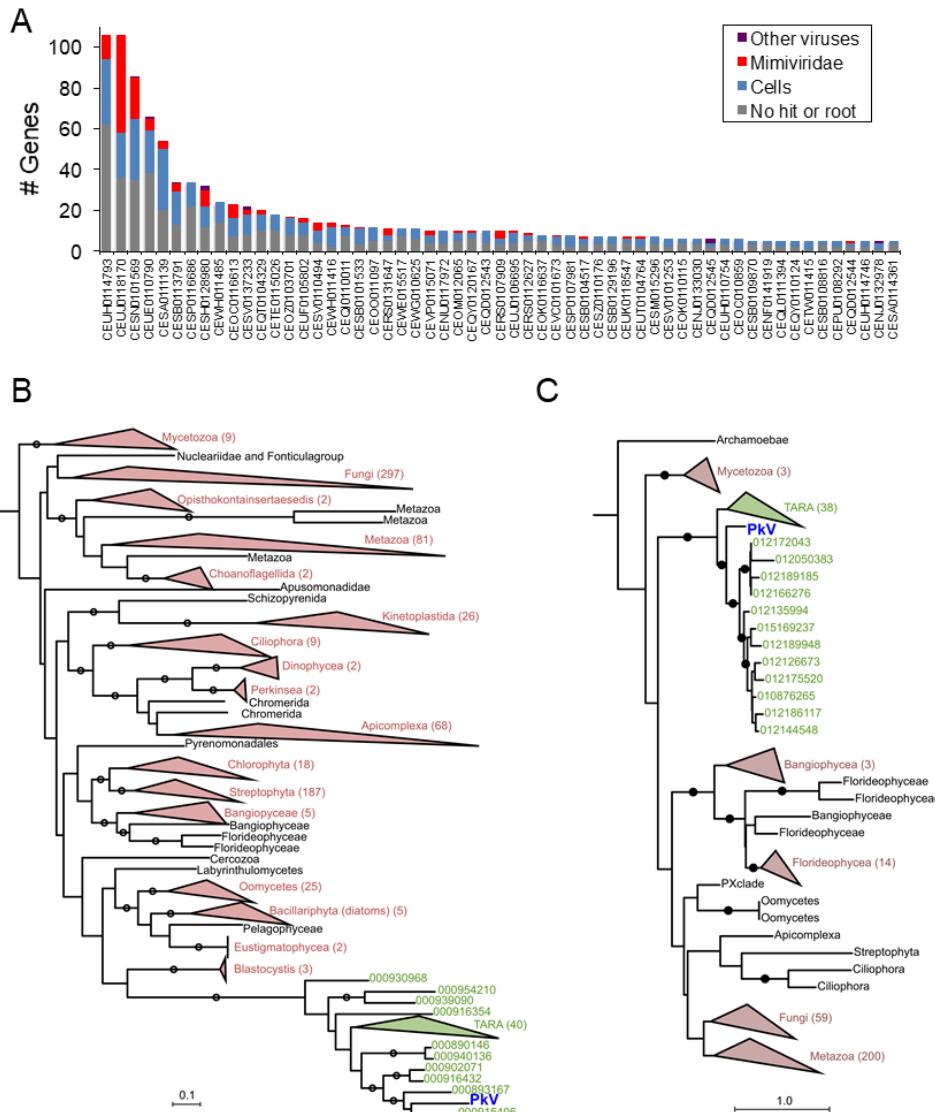
380

381 **FIG 5** Genes in PkV RF01 predicted to encode enzymes of oxidative phosphorylation
382 and β -oxidation pathways. (A) Gene organization in the succinate dehydrogenase-
383 containing region. (B) Schematic representation of the canonical enzymatic complex
384 II in the mitochondrial membrane. (C) Location of succinate dehydrogenase in the
385 TCA cycle and electron transport chain as known in plants and a schematic
386 reconstruction of the PkV RF01-encoded β -oxidation metabolic pathway.

387 *SDH* genes have recently been reported in viral genomes assembled from
388 environmental samples for which functional experiments cannot be done (68). In a
389 RT-PCR experiment using primers specific for the PkV RF01 gene for SDHA
390 (hereafter, *vSDHA*), we detected transcripts of this gene in samples collected 24, 72,
391 and 96 h post infection (Fig. 6). The *vSDHA* primers were tested on an uninfected
392 culture to ensure that only the viral version of the *SDHA* gene was amplified
393 (Appendix – Fig. S6). The MCP gene of PkV RF01 was used both for protocol
394 optimization and later as an internal positive control (Appendix – Materials and
395 Methods; Fig. S7). Although the transcription of the viral *SDHA* suggests that the

396 viral SDH is functional, we can only speculate on the possible role of this enzyme
397 during infection. One possibility is that the viral SDH sustains the carbohydrate
398 metabolism of infected cells (i.e., virocells) to supply building blocks of viral particles
399 such as amino acids and to support proper replication of this large virus. Another
400 possibility is that PkV RF01 uses its SDH as a part of an arms race with its host to
401 turn on the TCA cycle after the host had turned it off to counter viral replication, or
402 more simply to boost the energy metabolism of the virocells to augment the fitness of
403 the host and/or to maximize virus production efficiency.

404
405 **FIG 6** The viral SDHA gene is transcribed during infection. Gels of PCR and RT-PCR
406 in combination with a TURBO DNA-free kit. Samples were taken 24, 72, and 96 h
407 after infection. (A) PCR with *vSDHA*-specific primers was used to check for the
408 presence of genomic DNA after RNA isolation and 1 \times and 2 \times DNase treatments. P,
409 positive control (PKV RF01 genomic DNA); N, negative control (sdH₂O). (B) RT-PCR
410 of RNA samples using *vSDHA*-specific primers. M, DNA marker (MassRuler DNA
411 Ladder Mix, Thermo Fisher, 80 to 10,000 bp).


412 The discovery of the viral SDH prompted us to search for other potential viral-
413 encoded SDHA and SDHB homologs in marine metagenomes. These two subunits
414 (SDHA and SDHB) form the catalytic core containing the redox cofactors that
415 participate in electron transfer to ubiquinone; they are thus more conserved than
416 SDHC and SDHD subunits. To test for the presence of this viral SDH in other viruses,
417 we searched for *vSDHA* and *B* in marine metagenomes of the *Tara Oceans*
418 expedition. The 50 most-similar and non-redundant SDHA and B sequences predicted
419 from 101 *Tara Oceans* genome fragments were most likely derived from *Mimiviridae*
420 viruses (Fig. 7). Indeed, out of 1,113 genes predicted from these 101 genome
421 fragments, 681 were annotated at some taxonomic level, of which 449 were predicted
422 to be cellular and 157 viral. Of the 157 viral genes, 146 and 130 had their last
423 common ancestor in *Mimiviridae* and *Mesomimivirinae*, respectively. A total of 32 of
424 the 101-genome fragments contained at least one gene predicted to be of *Mimiviridae*
425 origin, and the larger the genome fragment, the more *Mimiviridae* genes it was found
426 to encode (Fig. 7A). Functional analysis indicated that 12 of the 1,113 predicted genes
427 were NCLDV hallmark genes (encoding five VLTF3s, two capsid proteins, two
428 PCNAs, two helicases, and one PolB). The high proportion of unknown genes and
429 genes annotated as *Mimiviridae* in the 101 *Tara Oceans* genome fragments encoding
430 SDHA or SDHB strongly suggests that these fragments belong to *Mimiviridae*
431 viruses. This finding demonstrates that the presence of SDH is not restricted to PkV
432 RF01 and is arguably widespread among marine *Mimiviridae*. According to
433 phylogenetic analyses of cellular and viral SDHA and SDHB, the viral homologs
434 form a monophyletic group that branches deeply within eukaryotic lineages (Fig. 7B-
435 C). Long-branch attraction bias could generate such topologies but, as explained
436 above for the IleRS and AsnRS, it is more likely that the viral SDHA and SDHB were

437 acquired at an early stage in the radiation of eukaryotic lineages. The transcription of
438 *vSDHA* and its occurrence in marine environments calls for further investigation to
439 understand the biological role and co-evolutionary significance of this viral SDH.

440 Other genes related to energy production were detected in the 8,026 bp-long
441 region. ORF 894 and ORF 896, respectively corresponding to cytochrome *c* (CytC)
442 and cytochrome b6-f complex iron-sulfur (Cyt b6-f) subunits, showed high sequence
443 conservation with *Chrysochromulina* sp. CCMP291 proteins (78% and 59% amino
444 acid [aa] identities, respectively). CytC is a short protein (~100 aa) involved in the
445 oxidative phosphorylation pathway, where it accommodates the transfer of electrons
446 between the coenzymes Q-cytochrome *c* reductase (complex III) and cytochrome *c*
447 oxidase (complex IV). The presence of Cyt b6-f between oxidative phosphorylation
448 genes is puzzling because the cytochrome b6-f complex is involved in photosynthesis.
449 The core of the chloroplast b6f complex, however, is similar to the analogous
450 respiratory cytochrome bc(1) complex. The other two predicted ORFs in this region
451 are similar to ubiquinone biosynthesis protein UbiB (ORF 895) or contain a NAD-
452 binding domain and a Fe-S cluster (ORF 897) and may thus be associated with
453 electron transport as well. ORF 897 has two distant (25%–31% aa identity) homologs
454 in the PkV RF01 genome (ORF 456 and ORF 625).

455 Some other genes were predicted to encode enzymes involved in pyruvate
456 metabolism. ORF 79 has sequence homology with L-lactate dehydrogenases; it might
457 thus catalyze the conversion of lactate to pyruvate, an intermediary compound serving
458 as a starting point for several major metabolic pathways, such as glycolysis,
459 gluconeogenesis, and the TCA cycle. ORF 727 was predicted to code for an
460 isochorismate hydrolase that also produces pyruvate from isochorismate. ORF 24 and
461 ORF 726 share sequence homology with phosphoenolpyruvate synthase and a partial

462 pyruvate kinase, respectively. The former catalyzes the conversion of pyruvate to
 463 phosphoenolpyruvate (PEP), while the latter catalyzes the reverse reaction. Formation
 464 of PEP is an initial step in gluconeogenesis.

465
 466 **FIG 7** Origin of PkV RF01 SDHA and SDHB and their most similar homologs in *Tara*
 467 Oceans metagenomes. (A) Taxonomy of genes predicted in *Tara* Oceans
 468 metagenome assembled-genome fragments encoding the 50 SDHAs and SDHBs
 469 most similar to PkV RF01 genes (for genome fragments having at least five predicted
 470 genes). (B and C) Phylogenetic trees of viral and cellular SDHAs (B) and SDHBs (C).
 471 Clades in green contain PkV RF01 SDHA or SDHB and their 50 most similar hits
 472 identified in *Tara* Oceans metagenomes (predicted to be *Mimiviridae* homologs from
 473 A). Red, eukaryotic phyla; black, unclassified eukaryotes. Trees are rooted with
 474 Proteobacteria and Firmicutes homologs (not shown). Circles indicate branches with
 475 posterior probability support $\geq 50\%$.

476 **A nearly complete viral-encoded β -oxidation pathway**

477 In this study, 22 predicted genes were inferred to code for proteins involved in lipid
478 synthesis or degradation, including key enzymes of the β -oxidation pathway
479 (Appendix – Table S2). Several genes were predicted to code for lipase-like proteins
480 (ORFs 386, 481, 635, 653, and 690), including a triacylglycerol lipase (ORF 386) that
481 can break down triacylglycerol into glycerol and fatty acids. Glycerol and fatty acids
482 can be used as a starting point for ATP production—by glycolysis and β -oxidation,
483 respectively. In the β -oxidation pathway, fatty acids are fully oxidized to produce
484 acetyl-CoA, which can then enter the TCA cycle to yield NADH and FADH2; these
485 latter two products can funnel through to the electron transport chain to produce ATP
486 (Fig. 5C). Each β -oxidation cycle itself also produces NADH and FADH2 cofactors.
487 We found that PkV RF01 encodes key β -oxidation enzymes. First, two distantly
488 related ORFs (ORF 142 and ORF 904 sharing 22% aa identity) have sequence
489 homology with a long-chain fatty acyl-CoA synthetase. This enzyme catalyzes the
490 formation of fatty acyl-CoA in the cytosol. Fatty acyl-CoA can be imported to
491 mitochondria using a (carnitine) CoA-transferase also encoded in PkV RF01 (ORF
492 33). Once in the mitochondrial matrix, fatty acyl-CoA serves as a substrate on which
493 an acyl-CoA dehydrogenase (ORF 1046) oxidizes the fatty acyl-CoA and reduces a
494 FAD cofactor to produce a FADH2 cofactor. We identified a 2,4-dienoyl-CoA
495 reductase (ORF 30) that may facilitate the next oxidation step to produce a NADH
496 cofactor. FADH2 and NADH molecules produced by a β -oxidation cycle can both be
497 oxidized in the electron transport chain to generate ATP. The enzymes involved in the
498 two intermediate steps following each oxidation, either an enoyl-CoA hydratase or a
499 β -ketothiolase, were not detected in our analysis.

500 Most of these genes have no homologs in reference viral genomes, and, to our
501 knowledge, this is the first report of a virus possessing proteins directly involved in
502 lipid-based energy production. By diverting host lipid machinery, interactions of
503 viruses with lipids or lipid based-structures have long been known to have structural
504 or signaling roles at different stages of the virus life cycle, such as entry, genome
505 replication, morphogenesis, and exit (69–71). More recently, several studies on
506 human viruses (two herpesviruses and one RNA virus) have shown that the metabolic
507 state of an infected cell can be shifted toward energy generation to support viral
508 replication (70). These studies have highlighted the increasing abundance—up to 48 h
509 after HCV infection—of enzymes involved in β -oxidation, amino acid catabolism,
510 and the TCA cycle (72) and an increase in cellular β -oxidation following the release
511 of free fatty acids caused by Dengue virus-induced autophagy (73). Among algal
512 viruses, EhV remodels the transcription of host lipid genes for fatty acid synthesis to
513 support viral assembly (74) and also to generate triacylglycerols stored in the virion
514 and available as an energy pool in later infection phases (75). Besides diverting the
515 host metabolism, EhV encodes seven proteins involved in the sphingolipid
516 biosynthesis pathway (76). This pathway produces a viral sphingolipid that is a
517 central component of EhV lipid membranes and that can also act as a signaling lipid
518 and induce programmed cell death during the lytic infection phase (77). EhV also
519 encodes a triglyceride lipase (with detectable homology to predicted PkV RF01
520 lipases ORF 635 and ORF653) that is highly expressed during late infection
521 concomitantly with significant up-regulation of host β -oxidation genes (74). These
522 examples and our observations of several genes involved in β -oxidation clearly show
523 that viruses can introduce new metabolism-related genes, sometimes representing

524 entire pathways, into the host, most likely to satisfy the high metabolic requirement of
525 these giant viruses.

526 **High representation of glycosyltransferases**

527 Compared with other viruses, PkV RF01 was found to encode an unusually high
528 number of glycosyltransferases (GTs) as well as other carbohydrate-active enzymes
529 ([Appendix – Results](#)). Automated annotation of GTs (and other carbohydrate-active
530 enzymes) in reference viral proteomes using dbCAN2 (78) revealed that the largest
531 number of GT domains was encoded by PkV RF01 ($n = 48$), followed by CeV ($n =$
532 13), *Mimivirus* members, and CroV and AaV ($n = 8$ –10) ([Appendix – Fig. S8](#)). We
533 uncovered 48 GT domains encoded in 40 ORFs, 8 of which were predicted to encode
534 more than one GT domain. These domains correspond to 16 different GT families.
535 Most domains were inferred to be functional, as 31 out of 48 covered at least 70% of
536 the dbCAN2 reference domain, with coverage ranging from 44% to 99%. GTs were
537 found scattered across the genome of PkV RF01 but with some local clustering ([Fig.](#)
538 [2A](#)), the latter indicating possible involvement in the same pathway. GT32 was the
539 most represented domain, with 11 proteins (as annotated by dbCAN2) and potentially
540 three additional proteins (ORFs 40, 84, and 861). Eight proteins possessed a GT25
541 domain that can catalyze the transfer of various sugars onto a growing
542 lipopolysaccharide chain during its biosynthesis. Among these eight predicted ORFs,
543 four contained an additional non-overlapping GT domain (two GT2s, one GT6, and
544 one GT60). Functional analyses of GTs in mimiviruses (or in related *Paramecium*
545 *bursaria* Chlorella viruses) have demonstrated that some of these enzymes are
546 functional, being able to modify viral collagen-like proteins (79) and polymerize
547 sugars (80). Conservation between PkV RF01 GTs and functionally characterized
548 GTs in viruses and cells is absent or extremely low, which precludes any predictions

549 as to the specific roles of these enzymes in the PkV RF01 life cycle. Nevertheless, this
550 putative glycosylation-conducive autonomy possibly allows the virus to infect a
551 variety of hosts, as the virus can modify its own glycans, which are used for host
552 recognition, independently of the host system (81). In alpha-, flavi-, and herpes-
553 viruses, fusion is mediated by viral glycoproteins (36).

554 **Conclusions**

555 The haptophyte virus PkV RF01 has been previously shown to have a longer
556 replication cycle and a broader host range compared with other prymnesioviruses and
557 most other algal viruses. Here, we revealed that PkV RF01 has atypical virion
558 morphology and that infections yield several orders of magnitude fewer infectious
559 particles than other tested prymnesioviruses. In-depth phylogenetic analysis using
560 genes conserved in NCLDV confirmed that PkV RF01 belongs to *Mimiviridae* but is
561 deeply diverged from existing members, although closer to alga-infecting
562 *Mimiviridae* than heterotroph-infecting ones. Unlike other alga-infecting *Mimiviridae*,
563 however, PkV RF01 has a large genome (1.4 Mb) and contains genes coding for two
564 aminoacyl-tRNA synthetases and the complete BER pathway. All these features are
565 conserved in most heterotrophic *Mimiviridae* and therefore must have been lost in
566 other alga-infecting *Mimiviridae*. This outlier virus features an unprecedentedly high
567 number of genes involved in energy metabolism and glycosylation machinery that
568 may enable its longer replication cycle and broader host range compared with other
569 algal viruses. These genomic and phenotypic features are suggestive of a persistent
570 infection behavior that probably evolved in response to the host growth strategy.
571 Because of nutrient limitations, these persistent systems of slow-growing but

572 ubiquitous hosts with less virulent viruses may represent the most common type of
573 virocells in oceans.

574 **Materials and Methods**

575 **PkV RF01 culturing and characterization**

576 Detailed materials and methods are provided in [Appendix – Materials and Methods](#).
577 The details include information on culturing and infection, virus infectivity,
578 sensitivity to chloroform, cryo-electron tomography, purification of viral particles and
579 DNA isolation, and amplification and RT-PCR of *vSDHA*.

580 In brief, exponentially growing cultures of He UiO028 were infected with
581 PkV RF01 at a virus-to-alga ratio of 10 to facilitate a one-step virus growth cycle
582 (33). Infection was followed by flow cytometry counting (82, 83) to measure total
583 VLPs and host cells. Furthermore, virus infectivity was determined by MPN (84)
584 using He UiO028 as host and compared with that of two other prymnesioviruses,
585 HeV RF02 and PkV RF02 (33), propagated on He UiO028 and *Prymnesium kappa*
586 RCC3423, respectively. Sensitivity to chloroform, which suggests the presence of a
587 lipid membrane or lipid molecules in the capsid, was tested in triplicate samples of
588 exponentially growing HeUiO028 cells infected with a 1:10 volume of chloroform-
589 treated PkV RF01virus.

590 The structure of PkV RF01 was determined by cryo-electron tomography
591 using a 200-kV transmission electron microscope (Talos F200C, Thermo Scientific)
592 equipped with a Ceta 16M camera. Tilt series were recorded at 45,000 \times magnification
593 and $-7\text{-}\mu\text{m}$ defocus between -60° to 60° by 2° increments. Finally, reconstruction,
594 segmentation, and visualization of tomograms was performed with the software
595 package IMOD v4.9 (85).

596 Transcription of *vSDHA* was determined in an infected He UiO028 and PkV
597 RF01 culture using an uninfected He UiO028 culture as a control. Samples were
598 collected at 24, 72, and 96 h post infection from both cultures. RNA was extracted
599 using the RNeasy Plus Universal Mini kit (Qiagen), with gDNA removed in an extra
600 step using a TURBO DNA-free kit (Ambion). RT-PCRs were performed on the
601 isolated mRNA using a SuperScript III One-Step RT-PCR with Platinum *Taq* DNA
602 Polymerase system (Thermo Fisher).

603 DNA for PkV RF01 genome sequencing was isolated from 2 L of lysed He
604 UiO028 culture. Algal debris and bacteria were removed by low-speed centrifugation.
605 Viral particles were concentrated by ultracentrifugation at 25,000 rpm in a Beckman
606 Coulter Optima L90K ultracentrifuge for 2 h and further purified by Optiprep gradient
607 centrifugation (86). Isolation of high-quality DNA for sequencing was performed
608 using the protocol described in (87) with some modifications. Total DNA was
609 purified using a Zymo Genomic DNA Clean & Concentrator Kit-10 (Zymo Research,
610 Irvine, CA, USA).

611 **Genome sequencing, assembly, and annotation**

612 DNA isolated from PkV RF01 was subjected to Illumina TruSeq PCR-free library
613 preparation (insert size: 350 bp) and sequenced on an Illumina MiSeq instrument in
614 paired-end mode (2 × 300 bp), thereby yielding approximately 1.9 million reads. In
615 addition, a ligation-based 1D² nanopore library (LSK-308) was constructed and
616 sequenced using an Oxford Nanopore MinION Mk1b device and a FLO-MIN107 flow
617 cell, which resulted in 825 long reads with an N50 of 13.6 kbp comprising 9.89 Mbp in
618 total. These data were assembled in a two-step process using Newbler (88) and Consed
619 (89), and the consensus sequence was polished using Nanopolish (90) and Pilon (91).
620 Genes were predicted using GeneMarkS (92) and tRNAscan-SE (93). Predicted protein

621 sequences were searched against various public databases using BLASTP, and
622 significant alignments served as the basis for manual investigation on the GenomeNet
623 (<https://www.genome.jp>) server to assign putative functions. [Appendix – Materials and](#)
624 [Methods](#) contains further details on the genome assembly and annotation as well as
625 specific methods used for reconstruction of each phylogenetic tree.

626 [Data availability](#)

627 Raw sequence reads and PkV RF01 genome sequence were deposited at the European
628 Bioinformatics Institute (EMBL-EBI) (<https://www.ebi.ac.uk>) under project name
629 PRJEB37450. The complete video records of a cryo-electron tomogram of a PkV
630 RF01 virion and sequence data as well as curated gene annotation table as reported in
631 this study are available at <https://github.com/RomainBlancMathieu/PkV-RF01>.

632 [Acknowledgements](#)

633 The recording of tilt series was performed with the help of Sebastian Schultz at the
634 Unit of Cellular Electron Microscopy, the Norwegian Radium Hospital. Initial
635 sequencing (MiSeq and Pacbio) of PkV RF01 total DNA was performed at the
636 Norwegian Sequencing Center (<https://www.sequencing.uio.no/>). We thank Hilde M.
637 K. Stabell and Solveig Siveland, Department of Biological Sciences, University of
638 Bergen, Norway, for technical assistance with molecular biology experiments as well
639 as Christian Rückert, Bielefeld University, for support in manual finishing of genome
640 assembly. This work was supported by the Research Council of Norway project
641 entitled “Uncovering the key players for regulation of phytoplankton function and
642 structure: lesson to be learned from algal virus-haptophyte coexistence” (VirVar,
643 project number 294364 to RAS). Additional funding was provided by the European
644 Union Horizons 2020 research and innovation program, grant agreement no. 685778
645 (“Virus-X”) to RAS and DB. This work was also supported by the Future
646 Development Funding Program of
647 the Kyoto University Research Coordination Alliance. HO was supported by
648 JSPS/KAKENHI (No. 18H02279), and Scientific Research on Innovative Areas from
649 the Ministry of Education, Culture, Science, Sports and Technology (MEXT) of Japan
650 (Nos. 16H06429, 16K21723, 16H06437). The Super Computer System, Institute for
651 Chemical Research, Kyoto University, provided computational time. We thank
652 Barbara Goodson, from Edanz Group (www.edanzediting.com/ac), for editing the
653 English text of a draft of this manuscript.
654

655 [Competing interests](#)

656 Authors declare having no competing interests.

657 **References**

658 1. Dupré JO. 2009. Varieties of Living Things: Life at the Intersection of
659 Lineage and Metabolism. *Philosophy & Theory in Biology* 1.

660 2. Forterre P. 2012. Virocell Concept, The, p. a0023264. *In* John Wiley & Sons,
661 Ltd (ed.), eLS. John Wiley & Sons, Ltd, Chichester, UK.

662 3. Raoult D, Forterre P. 2008. Redefining viruses: lessons from Mimivirus. *Nat
663 Rev Microbiol* 6:315–319.

664 4. Claverie J-M. 2006. Viruses take center stage in cellular evolution. *Genome
665 Biology* 7:110.

666 5. Mann NH, Cook A, Millard A, Bailey S, Clokie M. 2003. Bacterial
667 photosynthesis genes in a virus. *Nature* 424:741–741.

668 6. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW.
669 2004. Transfer of photosynthesis genes to and from Prochlorococcus
670 viruses. *PNAS* 101:11013–11018.

671 7. Hurwitz BL, Hallam SJ, Sullivan MB. 2013. Metabolic reprogramming by
672 viruses in the sunlit and dark ocean. *Genome Biol* 14:R123.

673 8. Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW.
674 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial
675 host carbon metabolism. *Proc Natl Acad Sci USA* 108:E757-764.

676 9. Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ.

677 2014. Sulfur Oxidation Genes in Diverse Deep-Sea Viruses. *Science*

678 344:757–760.

679 10. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. 2005.

680 Photosynthesis genes in marine viruses yield proteins during host infection.

681 *Nature* 438:86–89.

682 11. Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, Salama F,

683 Bailleul B, Rappaport F, Ziv T, Sharon I, Cornejo-Castillo FM, Philosof A,

684 Dupont CL, Sánchez P, Acinas SG, Rohwer FL, Lindell D, Béjà O. 2017. A

685 myovirus encoding both photosystem I and II proteins enhances cyclic

686 electron flow in infected Prochlorococcus cells. *Nat Microbiol* 2:1350–1357.

687 12. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan

688 M, Claverie J-M. 2004. The 1.2-megabase genome sequence of Mimivirus.

689 *Science* 306:1344–1350.

690 13. Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, Daims H, Horn

691 M, Wagner M, Jensen GJ, Kyrpides NC, Koonin EV, Woyke T. 2017. Giant

692 viruses with an expanded complement of translation system components.

693 *Science* 356:82–85.

694 14. Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, Assis F,

695 Boratto P, Andrade M, Kroon EG, Ribeiro B, Bergier I, Seligmann H, Ghigo E,

696 Colson P, Levasseur A, Kroemer G, Raoult D, Scola BL. 2018. Tailed giant

697 Tupanvirus possesses the most complete translational apparatus of the

698 known virosphere. *Nat Commun* 9:1–12.

699 15. Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A,
700 Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczyplinski B,
701 Fraser CM. 2003. Complete Genome Sequence of the Broad-Host-Range
702 Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage.
703 J Bacteriol 185:5220–5233.

704 16. Yoshikawa G, Askora A, Blanc-Mathieu R, Kawasaki T, Li Y, Nakano M, Ogata
705 H, Yamada T. 2018. *Xanthomonas citri* jumbo phage XacN1 exhibits a wide
706 host range and high complement of tRNA genes. Sci Rep 8:4486.

707 17. Mizuno CM, Guyomar C, Roux S, Lavigne R, Rodriguez-Valera F, Sullivan MB,
708 Gillet R, Forterre P, Krupovic M. 2019. Numerous cultivated and
709 uncultivated viruses encode ribosomal proteins. Nature Communications
710 10:752.

711 18. Schvarcz CR, Steward GF. 2018. A giant virus infecting green algae encodes
712 key fermentation genes. Virology 518:423–433.

713 19. Piacente F, Gaglianone M, Laugieri ME, Tonetti MG. 2015. The Autonomous
714 Glycosylation of Large DNA Viruses. International Journal of Molecular
715 Sciences 16:29315–29328.

716 20. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh D, Denef VJ, McMahon
717 KD, Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides N, Woyke T. 2020. Giant
718 virus diversity and host interactions through global metagenomics. Nature
719 1–7.

720 21. Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E,
721 Irwin NAT, Wilken S, Yung C-M, Bachy C, Kurihara R, Nakajima Y, Kojima K,
722 Kimura-Someya T, Leonard G, Malmstrom RR, Mende DR, Olson DK, Sudo Y,
723 Sudek S, Richards TA, DeLong EF, Keeling PJ, Santoro AE, Shirouzu M,
724 Iwasaki W, Worden AZ. 2019. A distinct lineage of giant viruses brings a
725 rhodopsin photosystem to unicellular marine predators. PNAS 116:20574–
726 20583.

727 22. Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT,
728 Solonenko N, Lara E, Poulain J, Pesant S, Kandels-Lewis S, Dimier C, Picheral
729 M, Searson S, Cruaud C, Alberti A, Duarte CM, Gasol JM, Vaqué D, Bork P,
730 Acinas SG, Wincker P, Sullivan MB. 2016. Ecogenomics and potential
731 biogeochemical impacts of globally abundant ocean viruses. Nature
732 537:689–693.

733 23. Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, Blanc-Mathieu R,
734 Yamamoto K, Hingamp P, Sako Y, Sullivan MB, Goto S, Ogata H, Yoshida T.
735 2017. Environmental Viral Genomes Shed New Light on Virus-Host
736 Interactions in the Ocean. *mSphere* 2.

737 24. Forterre P. 2013. The virocell concept and environmental microbiology.
738 *ISME J* 7:233–236.

739 25. Rosenwasser S, Ziv C, Creveld SG van, Vardi A. 2016. Virocell Metabolism:
740 Metabolic Innovations During Host–Virus Interactions in the Ocean. *Trends
741 in Microbiology* 24:821–832.

742 26. Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. 2018. Viruses of
743 Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions.
744 Viruses 10:487.

745 27. Gallot-Lavallée L, Blanc G, Claverie J-M. 2017. Comparative Genomics of
746 Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA
747 Viruses Highlights Their Intricate Evolutionary Relationship with the
748 Established Mimiviridae Family. Journal of Virology 91:e00230-17.

749 28. Jacobsen A, Bratbak G, Heldal M. 1996. Isolation and characterization of a
750 virus infecting *phaeocystis pouchetii* (prymnesiophyceae)1. Journal of
751 Phycology 32:923–927.

752 29. Baudoux A-C, Brussaard CPD. 2005. Characterization of different viruses
753 infecting the marine harmful algal bloom species *Phaeocystis globosa*.
754 Virology 341:80–90.

755 30. Wagstaff BA, Vladu IC, Barclay JE, Schroeder DC, Malin G, Field RA. 2017.
756 Isolation and Characterization of a Double Stranded DNA Megavirus
757 Infecting the Toxin-Producing Haptophyte *Prymnesium parvum*. Viruses 9.

758 31. Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A,
759 Sandaa R-A, Edvardsen B. 2015. Seasonal diversity and dynamics of
760 haptophytes in the Skagerrak, Norway, explored by high-throughput
761 sequencing. Mol Ecol 24:3026–3042.

762 32. Sandaa RA, Heldal M, Castberg T, Thyrhaug R, Bratbak G. 2001. Isolation and
763 characterization of two viruses with large genome size infecting

764 Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis

765 (Prasinophyceae). *Virology* 290:272–280.

766 33. Johannessen TV, Bratbak G, Larsen A, Ogata H, Egge ES, Edvardsen B,

767 Eikrem W, Sandaa R-A. 2015. Characterisation of three novel giant viruses

768 reveals huge diversity among viruses infecting Prymnesiales (Haptophyta).

769 *Virology* 476:180–188.

770 34. Huiskenen JT, Kivelä HM, Bamford DH, Butcher SJ. 2004. The PM2 virion has

771 a novel organization with an internal membrane and pentameric receptor

772 binding spikes. *Nat Struct Mol Biol* 11:850–856.

773 35. Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS. 2005. The Marine Algal

774 Virus PpV01 Has an Icosahedral Capsid with T=219 Quasisymmetry. *J Virol*

775 79:9236–9243.

776 36. Huiskenen JT, Butcher SJ. 2007. Membrane-containing viruses with

777 icosahedrally symmetric capsids. *Curr Opin Struct Biol* 17:229–236.

778 37. King AM, Lefkowitz E, Adams MJ, Carstens EB. 2011. *Virus Taxonomy: Ninth*

779 *Report of the International Committee on Taxonomy of Viruses*. Elsevier.

780 38. Peralta B, Gil-Carton D, Castaño-Díez D, Bertin A, Boulogne C, Oksanen HM,

781 Bamford DH, Abrescia NGA. 2013. Mechanism of Membranous Tunnelling

782 Nanotube Formation in Viral Genome Delivery. *PLOS Biology* 11:e1001667.

783 39. Philippe C, Krupovic M, Jaomanjaka F, Claisse O, Petrel M, le Marrec C. 2018.

784 Bacteriophage GC1, a Novel Tectivirus Infecting *Gluconobacter Cerinus*, an

785 Acetic Acid Bacterium Associated with Wine-Making. *Viruses* 10.

786 40. Yan X, Yu Z, Zhang P, Battisti AJ, Chipman PR, Bajaj C, Bergoin M, Rossmann
787 MG, Baker TS. 2009. The Capsid Proteins of a Large, Icosahedral dsDNA
788 Virus. *J Mol Biol* 385:1287–1299.

789 41. Klose T, Rossmann MG. 2014. Structure of large dsDNA viruses. *Biol Chem*
790 395:711–719.

791 42. Gowing MM. 1993. Large virus-like particles from vacuoles of phaeodarian
792 radiolarians and from other marine samples. *Marine Ecology Progress Series*
793 Series 101:33–43.

794 43. Gromov BV, Mamkaeva KA. 1981. A virus infection in the synchronized
795 population of the *Chlorococcum minutum* zoospores. *Algological
796 Studies/Archiv für Hydrobiologie, Supplement Volumes* 252–259.

797 44. Bratbak G, Jacobsen A, Heldal M, Nagasaki K, Thingstad F. 1998. Virus
798 production in *Phaeocystis pouchetii* and its relation to host cell growth and
799 nutrition. *Aquatic Microbial Ecology* 16:1–9.

800 45. Zimmerman AE, Bachy C, Ma X, Roux S, Jang HB, Sullivan MB, Waldbauer JR,
801 Worden AZ. 2019. Closely related viruses of the marine picoeukaryotic alga
802 *Ostreococcus lucimarinus* exhibit different ecological strategies. *Environ
803 Microbiol* 21:2148–2170.

804 46. Thomsen HA, Buck KR, Chavez FP. 1994. Haptophytes as components of
805 marine phytoplankton. *DTU Research Database* 187–208.

806 47. Berngruber TW, Froissart R, Choisy M, Gandon S. 2013. Evolution of
807 Virulence in Emerging Epidemics. *PLOS Pathogens* 9:e1003209.

808 48. Day T, Proulx SR. 2004. A General Theory for the Evolutionary Dynamics of
809 Virulence. *The American Naturalist* 163:E40–E63.

810 49. King AA, Shrestha S, Harvill ET, Bjørnstad ON. 2009. Evolution of Acute
811 Infections and the Invasion-Persistence Trade-Off. *The American Naturalist*
812 173:446–455.

813 50. Castberg T, Thyrhaug R, Larsen A, Sandaa R-A, Heldal M, Etten JLV, Bratbak
814 G. 2002. Isolation and Characterization of a Virus That Infects *Emiliania*
815 *Huxleyi* (haptophyta). *Journal of Phycology* 38:767–774.

816 51. Brussaard CPD, Bratbak G, Baudoux A-C, Ruardij P. 2007. *Phaeocystis* and
817 its interaction with viruses. *Biogeochemistry* 83:201–215.

818 52. Leggett HC, Buckling A, Long GH, Boots M. 2013. Generalism and the
819 evolution of parasite virulence. *Trends Ecol Evol (Amst)* 28:592–596.

820 53. Woolhouse MEJ, Taylor LH, Haydon DT. 2001. Population Biology of
821 Multihost Pathogens. *Science* 292:1109–1112.

822 54. Johannessen TV, Larsen A, Bratbak G, Pagarete A, Edvardsen B, Egge ED,
823 Sandaa R-A. 2017. Seasonal Dynamics of Haptophytes and dsDNA Algal
824 Viruses Suggest Complex Virus-Host Relationship. *Viruses* 9.

825 55. Gran-Stadniczeñko S, Krabberød AK, Sandaa R-A, Yau S, Egge E, Edvardsen
826 B. 2019. Seasonal Dynamics of Algae-Infecting Viruses and Their Inferred
827 Interactions with Protists. *Viruses* 11:1043.

828 56. Fischer MG, Allen MJ, Wilson WH, Suttle CA. 2010. Giant virus with a
829 remarkable complement of genes infects marine zooplankton. *Proc Natl
830 Acad Sci USA* 107:19508–19513.

831 57. Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T. 2012. The
832 chromatin insulator CTCF and the emergence of metazoan diversity. *PNAS*
833 109:17507–17512.

834 58. Pentland I, Parish JL. 2015. Targeting CTCF to Control Virus Gene
835 Expression: A Common Theme amongst Diverse DNA Viruses. *Viruses*
836 7:3574–3585.

837 59. Washington SD, Musarrat F, Ertel MK, Backes GL, Neumann DM. 2018. CTCF
838 Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific
839 CTCF Occupation, Protein Recruitment, and Insulator Function. *J Virol* 92.

840 60. Sandaa R-A, Dahle H, Brussaard CPD, Ogata H, Blanc-Mathieu R. Algal
841 viruses belonging to a subgroup within the Mimiviridae family *Encyclopedia
842 of Virology*, 4th ed. Bamford, D., M. Zuckerman, Elsevier, Academic.

843 61. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a
844 tool for genome-scale analysis of protein functions and evolution. *Nucleic
845 Acids Res* 28:33–36.

846 62. Blanc-Mathieu R, Ogata H. 2016. DNA repair genes in the Megavirales
847 pangenome. *Current Opinion in Microbiology* 31:94–100.

848 63. Wolf YI, Aravind L, Grishin NV, Koonin EV. 1999. Evolution of Aminoacyl-
849 tRNA Synthetases—Analysis of Unique Domain Architectures and

850 Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer

851 Events. *Genome Res* 9:689–710.

852 64. Cvetesic N, Dulic M, Bilus M, Sostaric N, Lenhard B, Gruic-Sovulj I. 2016.

853 Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent

854 Pre-transfer Editing. *J Biol Chem* 291:8618–8631.

855 65. Felsenstein J. 1978. Cases in which Parsimony or Compatibility Methods

856 Will be Positively Misleading. *Systematic Zoology* 27:401–410.

857 66. Moreira D, López-García P. 2015. Evolution of viruses and cells: do we need

858 a fourth domain of life to explain the origin of eukaryotes? *Philos Trans R*

859 *Soc Lond B Biol Sci* 370.

860 67. Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch

861 attraction artefacts in the animal phylogeny using a site-heterogeneous

862 model. *BMC Evolutionary Biology* 7:S4.

863 68. Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO.

864 2020. Dynamic genome evolution and complex virocell metabolism of

865 globally-distributed giant viruses. 1. *Nature Communications* 11:1710.

866 69. Ono A. 2010. Viruses and Lipids. *Viruses* 2:1236–1238.

867 70. Heaton NS, Randall G. 2011. Multifaceted roles for lipids in viral infection.

868 *Trends Microbiol* 19:368–375.

869 71. Lange PT, Lagunoff M, Tarakanova VL. 2019. Chewing the Fat: The
870 Conserved Ability of DNA Viruses to Hijack Cellular Lipid Metabolism.
871 *Viruses* 11:119.

872 72. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters K-A, Proll SC,
873 McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG, Waters
874 KM, Smith RD, Rice CM, Katze MG. 2010. Temporal Proteome and Lipidome
875 Profiles Reveal Hepatitis C Virus-Associated Reprogramming of
876 Hepatocellular Metabolism and Bioenergetics. *PLoS Pathog* 6.

877 73. Heaton NS, Randall G. 2010. Dengue virus induced autophagy regulates lipid
878 metabolism. *Cell Host Microbe* 8:422–432.

879 74. Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S, Aharoni A,
880 Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A. 2014.
881 Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of
882 *Emiliania huxleyi*, a Bloom-Forming Alga in the Ocean[C][W][OPEN]. *Plant*
883 *Cell* 26:2689–2707.

884 75. Malitsky S, Ziv C, Rosenwasser S, Zheng S, Schatz D, Porat Z, Ben-Dor S,
885 Aharoni A, Vardi A. 2016. Viral infection of the marine alga *Emiliania*
886 *huxleyi* triggers lipidome remodeling and induces the production of highly
887 saturated triacylglycerol. *New Phytologist* 210:88–96.

888 76. Wilson WH, Schroeder DC, Allen MJ, Holden MTG, Parkhill J, Barrell BG,
889 Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C,
890 Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P. 2005. Complete

891 Genome Sequence and Lytic Phase Transcription Profile of a
892 Coccolithovirus. *Science* 309:1090–1092.

893 77. Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty
894 L, Bidle KD. 2009. Viral glycosphingolipids induce lytic infection and cell
895 death in marine phytoplankton. *Science* 326:861–865.

896 78. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y.
897 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme
898 annotation. *Nucleic Acids Res* 46:W95–W101.

899 79. Luther KB, Hülsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T. 2011.
900 Mimivirus collagen is modified by bifunctional lysyl hydroxylase and
901 glycosyltransferase enzyme. *J Biol Chem* 286:43701–43709.

902 80. Rommel AJ, Hülsmeier AJ, Jurt S, Hennet T. 2016. Giant mimivirus R707
903 encodes a glycogenin parologue polymerizing glucose through α - and β -
904 glycosidic linkages. *Biochem J* 473:3451–3462.

905 81. Parakkottil Chothi M, Duncan GA, Armirotti A, Abergel C, Gurnon JR, Van
906 Etten JL, Bernardi C, Damonte G, Tonetti M. 2010. Identification of an l-
907 Rhamnose Synthetic Pathway in Two Nucleocytoplasmic Large DNA
908 Viruses. *J Virol* 84:8829–8838.

909 82. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. 1999.
910 Enumeration of Marine Viruses in Culture and Natural Samples by Flow
911 Cytometry. *Appl Environ Microbiol* 65:45–52.

912 83. Brussaard CPD. 2004. Optimization of procedures for counting viruses by
913 flow cytometry. *Appl Environ Microbiol* 70:1506–1513.

914 84. Suttle CA, Chan AM. 1993. Marine cyanophages infecting oceanic and coastal
915 strains of *Synechococcus*: abundance, morphology, cross-infectivity and
916 growth characteristics. *Marine ecology progress series*
917 <https://doi.org/10.3354/meps092099>.

918 85. Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of
919 three-dimensional image data using IMOD. *J Struct Biol* 116:71–76.

920 86. Lawrence JE, Steward GF. 2010. Purification of viruses by centrifugation, p.
921 166–181. *In* Wilhelm, S, Weinbauer, M, Suttle, C (eds.), *Manual of Aquatic
922 Viral Ecology*. American Society of Limnology and Oceanography.

923 87. Sandaa R-A, E. Storesund J, Olesin E, Lund Paulsen M, Larsen A, Bratbak G,
924 Ray JL. 2018. Seasonality Drives Microbial Community Structure, Shaping
925 both Eukaryotic and Prokaryotic Host–Viral Relationships in an Arctic
926 Marine Ecosystem. *Viruses* 10.

927 88. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
928 Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
929 Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI,
930 Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM,
931 Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers
932 EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ,
933 Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA,
934 Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM.

935 2005. Genome sequencing in microfabricated high-density picolitre
936 reactors. *Nature* 437:376–380.

937 89. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation
938 sequencing. *Bioinformatics* 29:2936–2937.

939 90. Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome
940 assembled de novo using only nanopore sequencing data. *Nat Methods*
941 12:733–735.

942 91. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA,
943 Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool for
944 Comprehensive Microbial Variant Detection and Genome Assembly
945 Improvement. *PLOS ONE* 9:e112963.

946 92. Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training
947 method for prediction of gene starts in microbial genomes. Implications for
948 finding sequence motifs in regulatory regions. *Nucleic Acids Res* 29:2607–
949 2618.

950 93. Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and
951 context for analysis of transfer RNA genes. *Nucleic Acids Res* 44:W54–57.

952

1 Appendix

3 Materials and Methods	2
4 Culturing and infection.....	2
5 Infectious progeny.....	2
6 Sensitivity to chloroform.....	2
7 Cryo-electron tomography	2
8 Purification of viral particles and DNA isolation.....	3
9 Genome assembly	3
10 Phylogenetic analyses	3
11 Five core genes, SDHA, and SDHB	3
12 Rpb2, IleRS, and AsnRS	4
13 Gene prediction and functional and taxonomic annotation.....	4
14 Taxonomic and functional analysis of vSDHA homologs in OM-RGCv1	5
15 PCR and RT-PCR optimization	5
16 PCR amplification and RT-PCR analysis of <i>vSDHA</i>	5
17 Results	6
18 DNA repair enzymes	6
19 Transcription	6
20 Translation.....	6
21 Other carbohydrate-active enzymes	7
22 Figures	8
23 Fig. S1. Reduction of PkV RF01 infectivity with chloroform.....	8
24 Fig. S2. A putative CTCF DNA-binding protein in PkV RF01.....	9
25 Fig. S3. High density of exact small repeats in the PkV RF01 genome	10
26 Fig. S4. COG functional distribution of 339 proteins encoded by PkV RF01.....	11
27 Fig. S5. Comparative COG functional distribution among <i>Mimiviridae</i> members	12
28 Fig. S6. PCR optimization and confirmation of the <i>SDHA</i> gene in the PkV RF01 genome.	
29 	13
30 Fig. S7. PCR and RT-PCR optimization using an internal control gene (<i>mcp</i>).....	14
31 Fig. S8. Comparative distribution of glycosyltransferase domains among viruses.	15
32 Tables	16
33 Table S1. Type and position of 40 predicted tRNA genes in the PkV RF01 genome	16
34 Table S2. Genes related to lipid metabolism.....	17
35 Table S3. Details of tree reconstruction using PhyloBayes	17
36 Table S4. Forward and reverse PCR primers for amplification of <i>vSDHA</i> and <i>MCP</i>	17
37 References	18
38	

39 **Materials and Methods**

40 **Culturing and infection**

41 All algal host cultures were grown in liquid IMR/2 medium consisting of 70% aged seawater,
42 30% distilled water (25 PSU), and additional selenite (10 nM final concentration). The
43 cultures were kept at 14°C and partially synchronized using a 14:10 h light: dark cycle with
44 irradiance of 100 μmol photons m^{-2} s^{-2} supplied by white fluorescent tubes. Viruses were
45 produced by adding freshly produced viral lysate (ca. 2×10^8 VLP/mL), propagated three
46 time on the host before added to exponentially growing host cultures (ca. 5×10^5 cells/mL) in a
47 ratio of 1:10 volume. Infection was followed by flow cytometry (FCM) (1, 2) for 72 h by
48 counting viral particles and host cells, as described in (3). Burst size was calculated as the
49 number of viral particles released from each host cell, estimated from the total number of host
50 cells pre-infection and the total number of VLPs produced during the infection cycle (3).

51 **Infectious progeny**

52 The percentage of viral infectious progeny was determined by comparing the most probable
53 number (MPN; endpoint dilution (2)) and flow cytometric total counts of viral particles
54 produced during infection. The number of infectious particles released in a burst was
55 determined based on the percentage of viral infectivity produced during the infection cycle
56 and the burst size. Infectivity was tested using *Haptolina ericina* UiO028 as a host, and also
57 compared with two other prymnesioviruses, HeV RF02 and PkV RF02 (3), propagated on He
58 UiO028 and *Prymnesium kappa* RCC3423, respectively.

59

60 Briefly, 10 \times dilution were prepared from fresh viral lysate and added to exponentially
61 growing host cells in 96-well microtiter plates (eight replicates for each dilution). The plates
62 were incubated for 7 days under normal incubation conditions. Cell lysis was measured by
63 monitoring *in situ* fluorescence on a plate reader (PerkinElmer EnSpireTM 2300 Multilabel
64 Reader) at 460/680 nm. Numbers of infectious particles were estimated from the proportion of
65 lysed wells using the MPN_ver4.xls excel spreadsheet from (4).

66 **Sensitivity to chloroform**

67 The effect of chloroform on infectivity, used to infer the presence of a lipid membrane or lipid
68 molecules in the capsid, was tested by adding 50% (v/v) chloroform to PkV RF01 lysate.
69 After mixing, the chloroform phase was separated from the solution by centrifugation at 4,000
70 g for 5 min. The tubes were incubated at 37°C for 2 h with the lids open to allow evaporation
71 of any remaining chloroform.

72

73 Triplicates of exponentially growing He UiO028 cells (1.6×10^5 cells /mL) were incubated
74 with 1:10 volumes of chloroform-treated viruses (ca. 2×10^8 VLP/mL). The incubation was
75 followed for 7 days by counting host cells by FCM (2). Host cells in chloroform-treated or
76 untreated medium at the same ratio used with the viral lysate were used as controls. Virus
77 propagation was confirmed in lysed cultures by FCM.

78 **Cryo-electron tomography**

79 A small drop of concentrated PkV RF01 (8x109) was deposited on a glow-discharged, 200-
80 mesh copper grid with holey carbon film (R2/1 Cu 200, Quantifoil Micro Tools GmbH,
81 Germany). The sample was blotted with filter paper and immediately plunge frozen in liquid
82 ethane. Grids were transferred under liquid nitrogen to a cryo-transfer tomography holder
83 (Fishione Instruments, USA) and inserted in a 200-kV transmission electron microscope
84 (Thermo Scientific Talos F200C) equipped with a Ceta 16M camera. Tilt series were recorded

85 at 45,000 \times magnification and –7 μ m defocus between –60° to 60° in 2° increments. Finally,
86 reconstruction, segmentation, and visualization of the tomograms was performed with IMOD
87 v4.9 software (5).

88 **Purification of viral particles and DNA isolation**

89 Exponentially growing He Uio028 cultures (2 L) were infected with 20 mL of PkV RF01 and
90 inspected visually for lysis. An uninfected culture (100 mL) was used as a control. Lysed
91 algal cultures were checked for viruses by FCM counting. Lysed cultures were first
92 centrifuged to remove algal debris and some bacteria (5,500 rpm for 15 min). Viruses were
93 then pelleted by ultracentrifugation at 25,000 rpm in a Beckman Coulter Optima L90K
94 ultracentrifuge for 2 h. The pellets were resuspended in SM buffer (0.1 M NaCl, 8 mM
95 MgSO₄·7H₂O, 50 mM Tris-HCl, and 0.005% glycerin). Viral particles were further purified
96 by Optiprep gradient centrifugation (6). Fractions were checked for viruses by FCM and for
97 infectivity by infection of He Uio028.

98 Isolation of high-quality DNA for sequencing was done by following the protocol of (7) with
99 some modifications. Viral particles were disrupted by one round of heating to 90°C for 2 min
100 and then chilling on ice for 2 min. Disodium ethylenediaminetetraacetic acid and proteinase K
101 at a final concentration of 20 mM and 100 μ g mL^{–1}, respectively, were then added before
102 incubation of the samples for 10 min at 55°C. Sodium dodecyl sulfate at a final concentration
103 of 0.5% (w/v) was subsequently added, and samples were incubated for an additional 1 h at
104 55°C. Double-stranded DNA was then purified from the lysates using a Zymo Genomic DNA
105 Clean & Concentrator Kit-10 (Zymo Research, Irvine, CA, USA) according to the
106 manufacturer's protocols. To avoid shearing DNA, gentle pipetting and mixing (accomplished
107 by turning the tubes instead of vortexing) were performed in all steps.

109 **Genome assembly**

110 Isolated DNA from PkV RF01 was subjected to Illumina TruSeq PCR-free library preparation
111 (insert size 350 bp). The generated library was sequenced on an Illumina MiSeq instrument in
112 paired-end mode (2 \times 300 bp) to yield approximately 1.9 million reads, which corresponds to
113 about 400 \times coverage. Reads were assembled into 2,498 contigs of 500 bp or more with a total
114 assembly size of 4.75 Mb using Newbler (8). In addition, a ligation-based 1D² nanopore
115 library (LSK-308) was constructed and sequenced using an Oxford Nanopore MinION Mk1b
116 device and a FLO-MIN107 flow cell, which resulted in 825 long reads with an N50 of 13.6 kb
117 and a total of 9.89 Mb. To improve the assembly, short-read contigs were manually bridged
118 with the long reads. Manual assembly using Consed (9) yielded a linear genome sequence of
119 1.4 Mb with inverted terminal repeats. After assembly, the consensus was polished using
120 Nanopolish (10) and Pilon (11).

121 **Phylogenetic analyses**

122 Five core genes, SDHA, and SDHB

123 The phylogenetic position of PkV RF01 was inferred from concatenated protein alignments of
124 five core nucleocytoplasmic virus orthologous genes (NCVOGs) (12): D5-like helicase-
125 primase (NCVOG0023), DNA polymerase elongation subunit family B (NCVOG0038), DNA
126 or RNA helicases of superfamily II (NCVOG0076), packaging ATPase (NCVOG0249), and
127 Poxvirus Late Transcription Factor VLTF3-like (NCVOG0262). Sequences were obtained
128 from the NCVOG database (<ftp.ncbi.nlm.nih.gov/pub/wolf/COGs/NCVOG/>) (13). Additional
129 sequences were obtained from genomes retrieved from GenBank and annotated with
130 HMMER v3.12b using the hmmsearch (14) command with hidden Markov models available
131 in Schults et al. (2017) (15). Sequences from each NCVOG were aligned independently using

132 MAFFT L-INS-i (16). The alignments were trimmed with trimAl v1.2 in *gappyout* mode (17)
133 prior to concatenation using a custom Python script. Bayesian phylogenetic trees were
134 inferred with PhyloBayes 1.7 (18) using the CAT model and a GTR substitution matrix. Four
135 chains were run for 34,500–35,500 generations. The *bpcomp* command was used to check for
136 convergence. One chain was discarded, and a consensus tree was constructed using the
137 remaining three chains.

138
139 For phylogenetic analyses of succinate dehydrogenase subunits, top hits of PkV RF01 SDHA
140 and SDHB were retrieved from UniProt (<https://www.uniprot.org/>) using online PHMMR
141 searches (<https://www.ebi.ac.uk/Tools/hmmer/search/phmmr>) and also from the *Tara*
142 Oceans project using online BLASTP searches (<http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/>) (Villar et al., 2018). Alignments generated with MAFFT L-INS-i were filtered
143 with trimAl in *gappyout* mode. Maximum-likelihood phylogenies were inferred with RAxML
144 8.2.9 (19) using the PROTCATALG model and automatic bootstrapping with the following
145 options: ‘-N autoMRE -f a -n autoresult’. Phylogenetic trees of PkV RF01, SDHA, and SDHB
146 were visualized using iTOL (20).
147

148
149 **Rpb2, IleRS, and AsnRS**
150 To reconstruct a phylogenetic tree based on the second largest RNA polymerase subunit,
151 homologs were recruited by comparing Mimivirus Rpb2 against all proteins of viruses and
152 selected organisms in the KEGG database using the GenomeNet BLASTP tool
153 (<https://www.genome.jp/>). Organisms were manually selected from the KEGG list to ensure
154 broad taxonomic coverage of the tree of life. The retrieved amino acid sequences were
155 aligned using MAFFT-LINSI (16) and then trimmed using trimAl (17) with the following
156 parameters: ‘-resoverlap 0.5 -seqoverlap 70 -gt 0.8 -st 0.001 -cons 50’. The tree was
157 reconstructed using FastTree (21) as implemented in the GenomeNet TREE tool
158 (<https://www.genome.jp/tools-bin/ete>). Isoleucine tRNA synthetase and aspartyl tRNA
159 synthetase viral and cellular homologs were retrieved and aligned in the same way. Trees
160 were searched using PhyloBayes MPI (22) with the non-homogeneous CAT+GTR model
161 (23). Details of the PhyloBayes runs for each tree are provided in Table S3.

162 **Gene prediction and functional and taxonomic annotation**

163 GeneMarkS with the option ‘virus’ (24) predicted 1,121 open reading frames (ORFs) in the
164 fully assembled genome sequence of PkV RF01, while tRNAscan-SE (25) predicted 41
165 tRNAs. PkV RF01 CDS amino acid sequences were searched against Virus-Host DB (26),
166 RefSeq (27), UniRef90 (28), and COG (29) databases using BLASTP with an *E*-value of 1×10^{-5}
167 as the significant similarity threshold and against the Conserved Domain Database (30)
168 using RPS-BLAST with an *E*-value threshold of 1×10^{-2} . The 10 best hits for each database
169 were compiled in a single file and manually inspected to transfer annotations of subject
170 sequences to our query. In ambiguous cases, such as distant homologs (often seen in viral
171 genomes) or unclear or contradictory annotations of subject sequences, the query was
172 searched against KEGG genes (31) to allow extensive manual checking using GenomeNet
173 tools (<https://www.genome.jp/>; alignment quality, length comparison to canonical genes, and
174 links with KEGG orthology). We automatically annotated glycosyltransferases (GTs) and
175 other carbohydrate-active enzymes (glycoside hydrolases, GHs; polysaccharide lyases, PLs;
176 carbohydrate esterases, CEs; and auxiliary activities, AAs) in PkV RF01 and all viral
177 genomes in Virus-Host DB (as of June 2018) using the *hmm* option of the dbCAN2 pipeline
178 and its profile database (32). We retained hits with *E*-values $< 1 \times 10^{-5}$ and domain coverage
179 $> 35\%$, which corresponded to default settings. Sequence-based identification of paralogous
180 genes in the PkV RF01 proteome was conducted using OrthoFinder (33) with default

181 parameters. Transfer of functional information onto the largest group of paralogs, which
182 contained six proteins (with all other groups containing only two), was conducted as follows:
183 sequences were aligned using MAFFT-LINSI and searched against the “uniclust30” database
184 using the HHpred toolkit (34) at <https://toolkit.tuebingen.mpg.de>. We considered hits with
185 probabilities > 99%.

186

187 **Taxonomic and functional analysis of vSDHA homologs in OM-RGCv1**

188 We searched PkV RF01 SDHA and SDHB against OM-RGCv1 (35) using the Ocean Gene
189 Atlas (36) BLAST-based tool and kept the top 50 hits with significant *E*-values for further
190 analysis. We then collected genome fragments (contigs) encoding these 50 SDHAs and 50
191 SDHBs by searching via BLASTN for identical hits over full *SDHA* or *SDHB* lengths against
192 *Tara* ocean assemblies (downloaded from EBI) used to construct OM-RGCv1 (35). We
193 predicted ORFs in these genome fragments using GeneMarkS. The resulting 1,113 amino acid
194 sequences were functionally annotated by searching against Pfam protein families (37) using
195 profile HMM scan (38) and also taxonomically using a last common ancestor strategy as in
196 (39); in brief, protein sequences were searched against a database composed of UniRef cells,
197 MMETSP (40) and Virus-Host DB (26) data using DIAMOND (41). Selected hits were then
198 used to derive the last common ancestor of the query using a NCBI taxonomic tree re-wired to
199 reflect the taxonomy of NCLDVs.

200 **PCR and RT-PCR optimization**

201 We designed specific primers (Table S4) targeting a 256-bp region of the *mcp* gene to use
202 both as an internal control in the RT-PCR and to confirm that our protocols were optimized.
203 For each PCR, a negative control (sterile distilled H₂O) was included. PCR amplifications
204 were carried out in 50-μL total volumes containing 1 μL of template using a DNA
205 HotStarTaq Master Mix kit (Qiagen). The cycling protocol was as follows: 15 min at 95°C,
206 followed by 35 cycles of 30 s at 94°C, 30 s at 59°C, and 30 s at 72°C, with a final extension
207 of 12 min at 72°C.

208

209 RT-PCRs were performed using the SuperScript III One-Step RT-PCR with Platinum *Taq*
210 DNA Polymerase system (Thermo Fisher). Cycling conditions were as follows: 16 min at
211 55°C and 2 min at 94°C, followed by 40 cycles of 15 s at 94°C, 30 s at 49°C, and 30 s at
212 68°C, and a final extension of 5 min at 68°C.

213

214 All PCR products were checked for the correct size on a 1.5% agarose gel stained with
215 GelRed (Biotium). PCR products were further checked by sequencing using BigDye v3.1
216 (Thermo Fisher) for cycle sequencing (Sekvenseringslaboratoriet, UiB, Norway).

217 **PCR amplification and RT-PCR analysis of vSDHA**

218 To investigate whether the *vSDHA* gene is transcribed during infection, an infected culture of
219 He_UiO028 plus PkV RF01 as well as an uninfected He_UiO028 culture (control) were set up
220 as described above. Samples were collected at 24, 72, and 96 h post infection from both
221 cultures. RNA was extracted using an RNeasy Plus Universal Mini kit (Qiagen), with gDNA
222 removed in an extra step using a TURBO DNA-free kit (Ambion).

223

224 Specific primers were designed to target a 150-bp region of the *vSDHA* gene (Table S4). For
225 each PCR, two negative controls (sterile distilled H₂O and extracted DNA from He028) were
226 included. As positive controls for the transcription, we used primers targeting the *mcp* gene
227 (see above). As a positive PCR control, we used genomic PkV RF01 DNA. PCR
228 amplifications were conducted in 50-μL total volumes containing 1 μL of template DNA

229 using an ExTaq kit (Takara). The cycling protocol was as follows: 5 min at 94°C, followed by
230 35 cycles of 30 s at 94°C, 30 s at 59°C, and 30 s at 72°C, with a final extension of 12 min
231 extension at 72°C.

232
233 RT-PCRs were performed using a SuperScript III One-Step RT-PCR with Platinum Taq DNA
234 Polymerase system (Thermo Fisher). Cycling conditions were as follows: 16 min at 55°C and
235 2 min at 94°C, followed by 40 cycles of 15 s at 94°C, 30 s at 49°C, and 30 s at 68°C, with a
236 final extension of 5 min at 68°C. PCR products were checked as described above.

237 **Results**

238 **DNA repair enzymes**

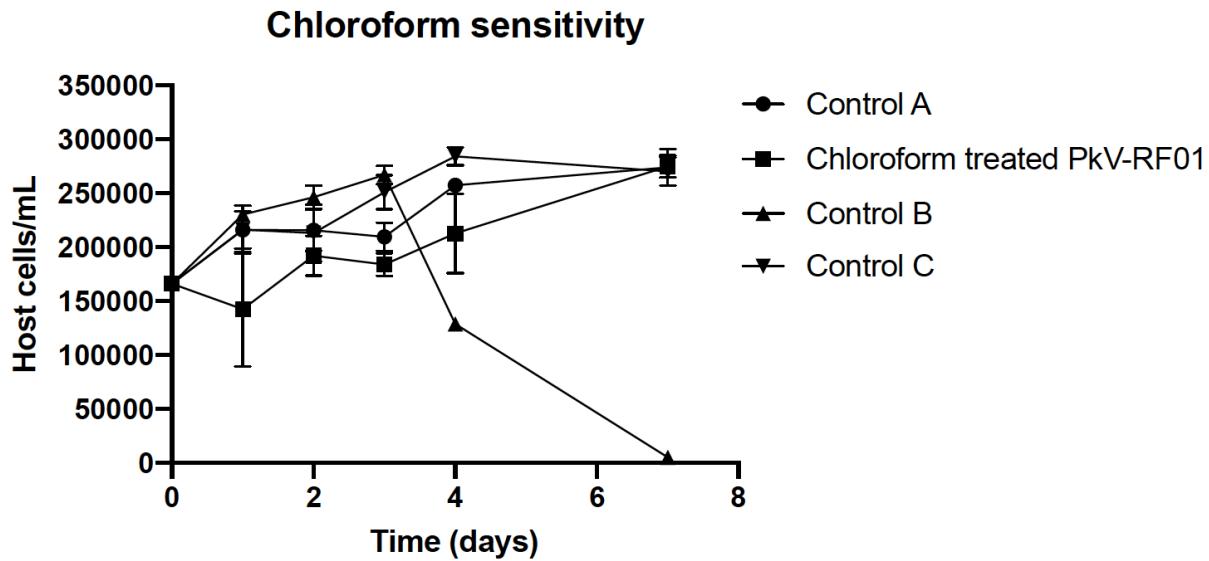
239 NCLDV members are known to encode several genes corresponding to major DNA repair
240 pathways, with some members encompassing full, or nearly full, pathway representation, such
241 as the base excision repair (BER) pathway of Mimivirus (42). While some of these genes
242 were acquired relatively recently from cellular organisms, others are connected with the early
243 evolutionary history of these viruses (43). PkV RF01 also encodes a set of enzymes needed to
244 facilitate the BER pathway, namely, two DNA glycosylases (ORF 196 and ORF 871), an
245 apurinic-apyrimidinic (AP) endonuclease (ORF 935), a family-X DNA polymerase (ORF
246 630), and a NAD-dependent DNA ligase (ORF 741). These enzymes are conserved in all
247 *Mimiviridae* members except for those with relatively small genomes (PgV, CeV, and AaV).
248 In PgV and CeV, but not AaV and PkV RF01, the family-X DNA polymerase and DNA
249 ligase are fused. The presence of these BER enzymes in PkV RF01 suggests that this viral
250 BER pathway was already present in the last common ancestor of *Mimiviridae*. As in all other
251 *Mimiviridae*, PkV RF01 encodes MutS7, a key enzyme of the mismatch repair pathway, and
252 the MutS8 homolog—thus far only observed in PgV and CeV. Enzymes involved in other
253 DNA repair pathways, such as XPG/Rad2 endonuclease (present in *Mimivirus* and CroV) and
254 the fused Mre11-Rad50 DNA break repair protein (present in Mimivirus members only), were
255 not found in PkV RF01.

256 **Transcription**

257 Similar to other *Mimiviridae*, PkV RF01 encodes several transcription-related genes,
258 including those coding for several subunits of eukaryotic DNA-dependent RNA polymerase
259 type II (RPB1, RPB2 [$\times 2$], RPB3, RPB5, RPB6, RPB7, RPB9, and RPB10, the latter not
260 present in other *Mimiviridae* besides BsV and HKV1); transcription initiation (ORF306),
261 elongation (ORF856), late (ORF436), and termination (ORF275) factors; a TATA-box-like
262 binding protein (ORF709); and a mRNA capping enzyme (ORF42)—but not the polyA
263 polymerase seen in other *Mimiviridae*. PkV RF01 also encodes a cold-shock protein (ORF
264 1082) shared with CeV and PgV that may prevent the formation of secondary structures in
265 mRNA at low temperature and thus facilitate the initiation of translation (44).

266 **Translation**

267 A striking feature of *Mimiviridae* is the high prevalence of genes coding for translation-
268 associated proteins. In particular, amino-acyl tRNA synthetases (aaRSs) are found in all
269 heterotroph-infecting *Mimiviridae*—ranging from 1 in CroV to 20 in Tupanvirus—but are
270 missing from alga-infecting *Mimiviridae*, although CeV encodes a catalytic domain for
271 Asn/Asp-RNAt synthetase. In addition to encoding the two aaRSs reported in the main text,
272 we found that PkV RF01 encodes a catalytic domain for Asn/Asp-RNAt (ORF762) also found
273 in Prochlorococcus phages P-SSM2, 5, and 7. PkV RF01 encodes other translation-related
274 proteins also present in other *Mimiviridae*, namely, the translation initiation factor 4F cap

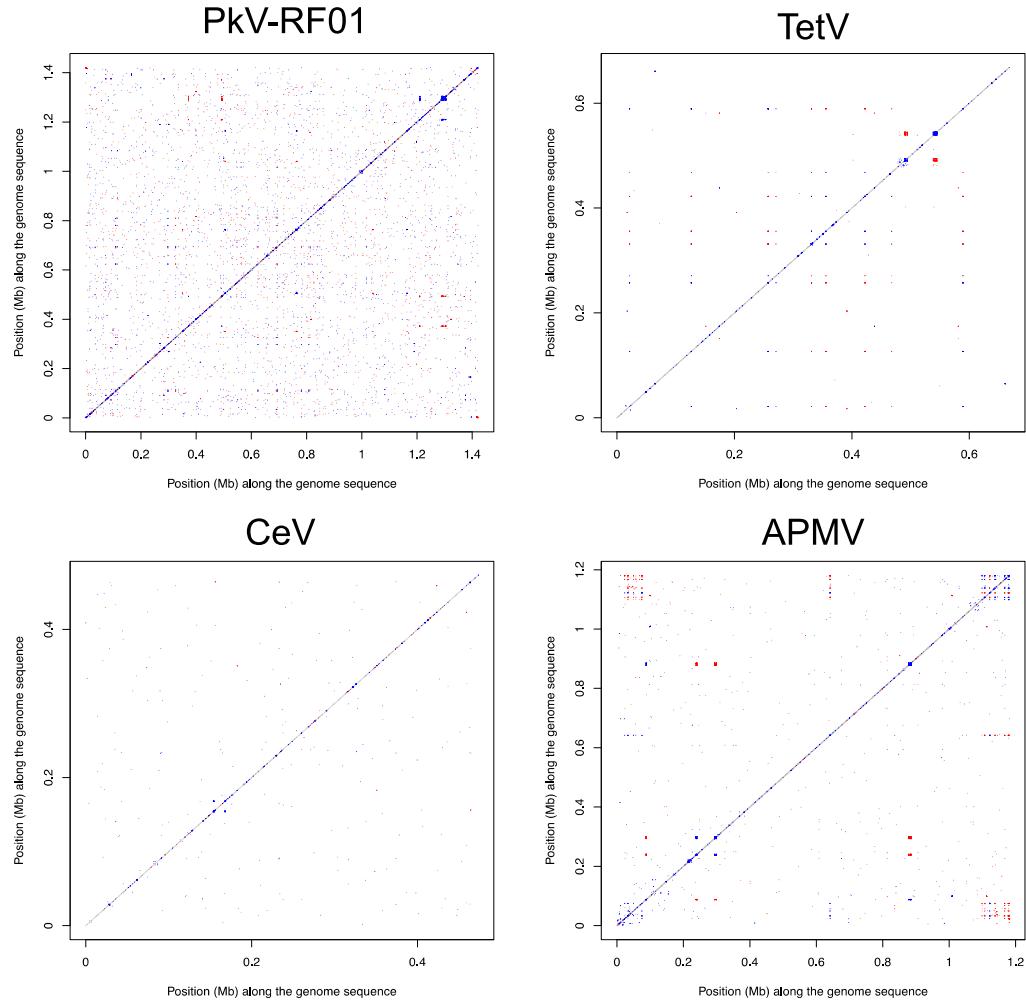

275 binding subunit (eIF-4E; ORF 512), the helicase subunit (eIF-4A; ORF 229), and the peptide
276 chain release factor 1 (eRF1; ORF 651). The latter protein is not orthologous to chain release
277 factors in other *Mimiviridae*, as it exhibits much higher sequence conservation with cellular or
278 even *Marseilleviridae* homologs. PkV RF01 shares with PgV the translation elongation factor
279 eEF3 (ORF 489), whose sequence in both viral species is highly similar to haptophyte
280 homologs. In addition, PkV RF01 encodes the translation elongation factor EF-1alpha
281 (ORF946) that is absent in other *Mimiviridae* members but present in AaV. EF-1alpha of PkV
282 RF01 was most likely acquired from haptophytes, as it has a high amino acid identity (57%)
283 to that of *E. huxlei*, whereas the AaV homolog is most closely related (62% aa identity) to that
284 of diatoms. PkV RF01 also encodes the translation initiation factor 1A (EIF1A) (ORF 62)
285 with no detectable homolog in viruses (*E*-value = 1×10^{-5} in BLASTP searches against the
286 Virus-Host DB database). While translation-associated genes may predate the divergence of
287 known extant eukaryotic lineages, the above examples demonstrate that some other genes
288 were acquired much more recently, consistent with the “accordion model” of episodic gain
289 and loss of genes in the evolution of these viruses (15, 45).

290 **Other carbohydrate-active enzymes**

291 Other carbohydrate-active enzymes in the PkV RF01 genome include seven glycoside
292 hydrolases (GHs), four carbohydrate esterases (CEs), one polysaccharide lyase (PL), one
293 carbohydrate-binding module (CBM), and a putative sugar fermentation stimulation protein A
294 (ORF 1003) possibly involved in maltose metabolism. These numbers are not excessively
295 high compared with other viruses. Other detected ORFs were homologous to enzymes
296 involved in carbohydrate transport and metabolism, notably a transketolase (ORF 528)
297 involved in the pentose phosphate pathway in all organisms and in the Calvin cycle of
298 photosynthetic organisms. Finally, we detected a 6-phosphofructo-2-kinase/fructose-2,6-
299 biphosphatase 2 (ORF 539) and a mannose-1-phosphate guanylyltransferase/mannose-6-
300 phosphate isomerase (ORF 836) respectively involved in fructose and mannose metabolism.

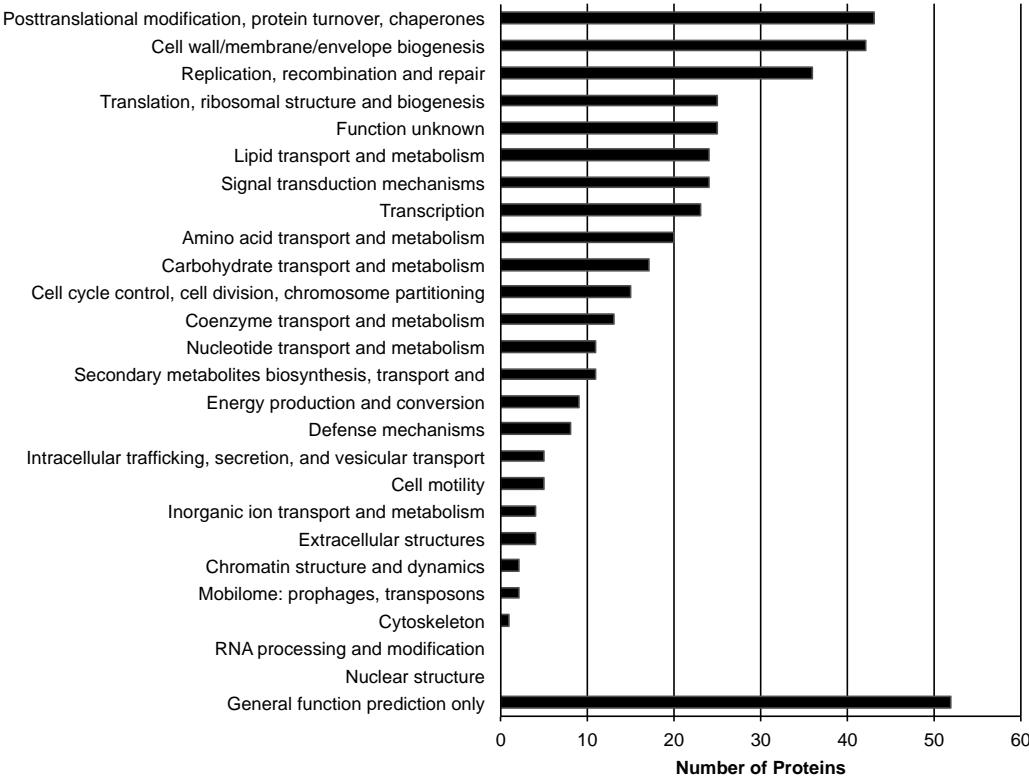
301 **Figures**

302



311

SYEL_A Transcriptional repressor CTCF/DNA Complex; zinc fingers, insulators, enhancers, promoters; HET: ZN; 2.96A {Homo sapiens}; Related PDB entries: **SYEL_B**


Probability: 99.76 E-value: 2.4E-21 Score: 171.17 Aligned Cols: 166 Identities: 15% Similarity: 0.282

312 **Fig. S2. A putative CTCF DNA-binding protein in PkV RF01.**
313 A HHpred alignment between a profile resulting from the alignment of six PkV RF01
314 paralogous sequences detected by OrthoFinder and a database profile for the transcriptional
315 repressor CTCF/DNA complex are shown. Gene_22 (for PkV RF01) and 5YEL_A are
316 representative sequences for these two profiles.

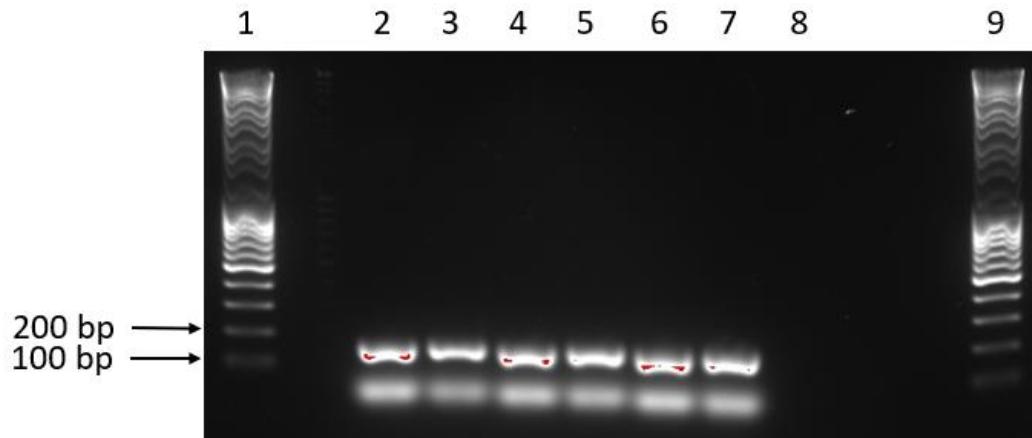
317
318


319 **Fig. S3. High density of exact small repeats in the PkV RF01 genome.**
320 Dot plots show exact direct (blue) or inverted (red) genomic repeats of at least 20 nucleotides
321 in PkV RF01, another unclassified *Mimiviridae* (TetV), a member of “Mesomimivirinae”
322 (CeV), and a “Megavirinae” member (APMV). Self-alignments were removed.

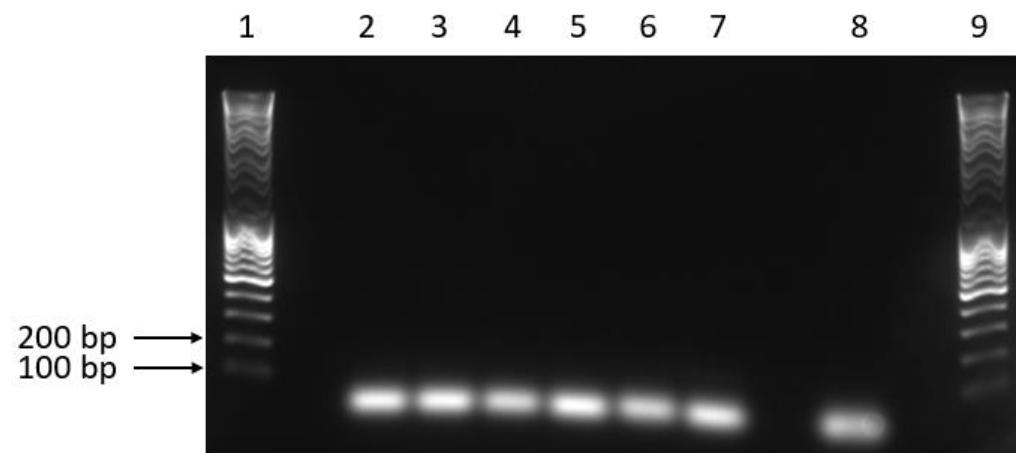
323

324 **Fig. S4. COG functional distribution of 339 proteins encoded by PkV RF01.**

325


326

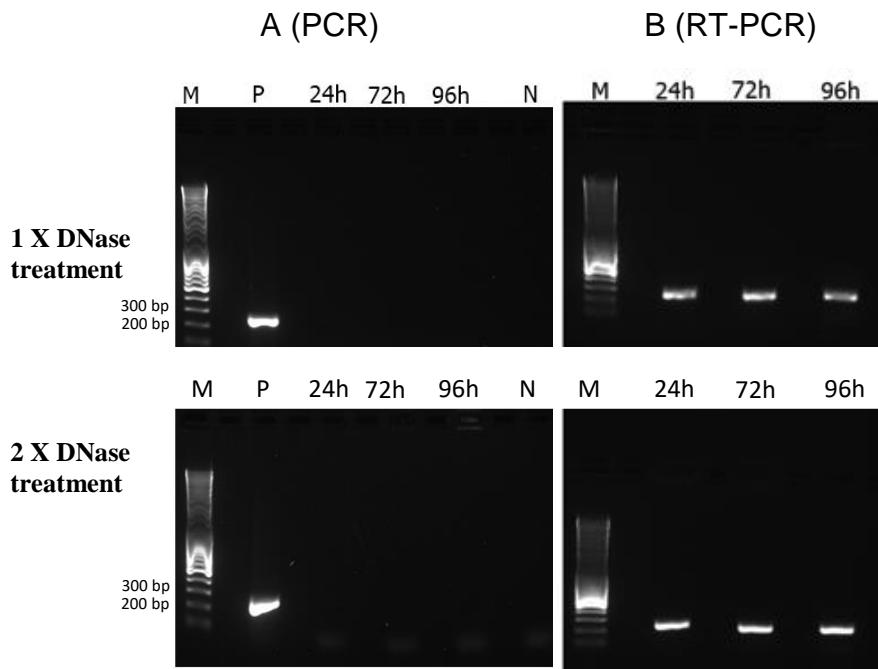
327 **Fig. S5. Comparative COG functional distribution among Mimiviridae members.**
328 COG sequences were automatically searched against the proteomes of each virus using
329 BLASTP with an E -value of 1×10^{-5} as the significant similarity threshold.


330

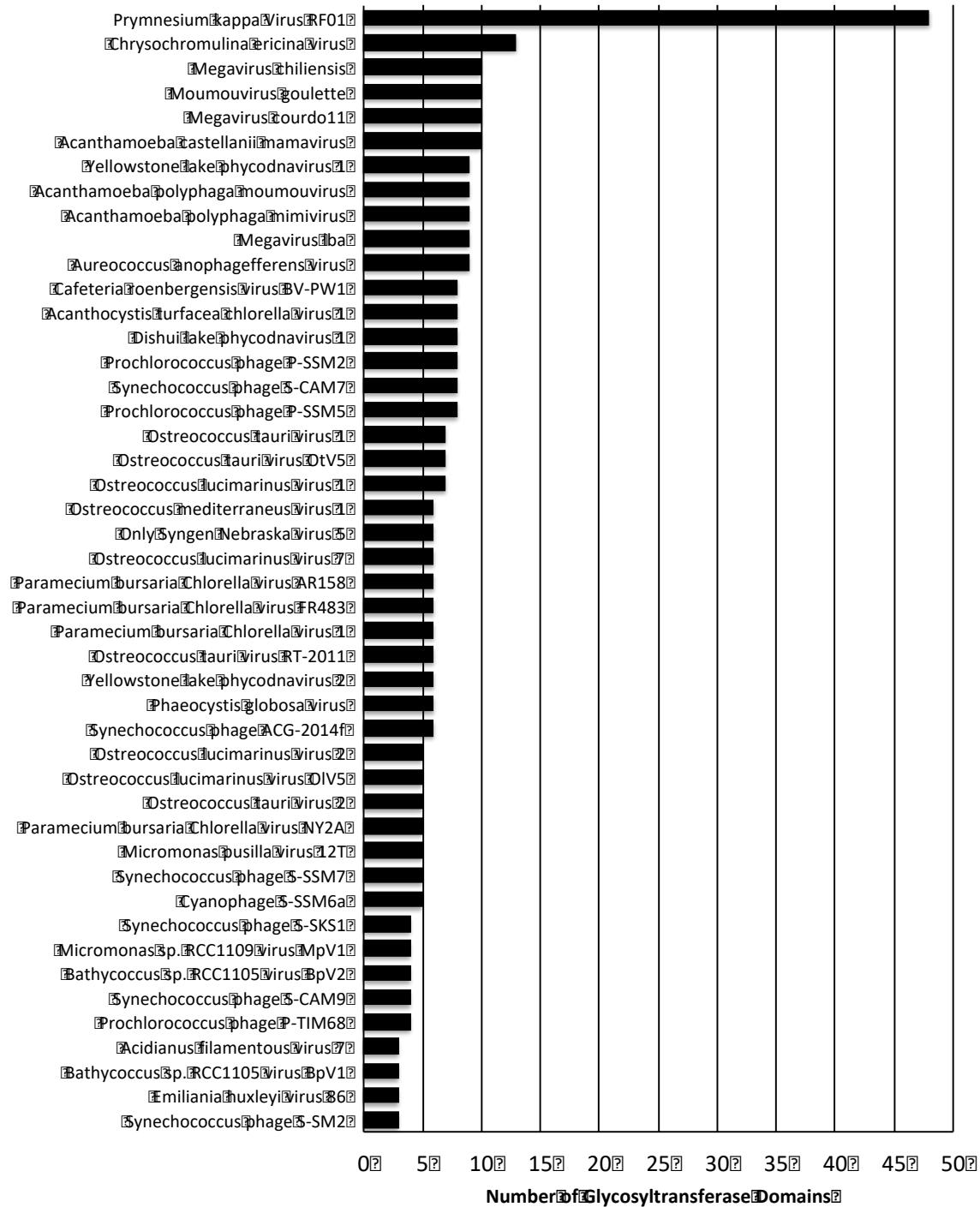
331

A

B



332


333 **Fig. S6. PCR optimization and confirmation of the *SDHA* gene in the PkV RF01**
334 **genome.**

335 (A–B) Results of PCR with *SDHA* primers using genomic PkV RF01 DNA (A) and genomic
336 He U1O028 DNA (B) as templates. Lanes 1 and 9, DNA ladder; 2–7, optimization of the PCR
337 annealing temperature from 55°C (2) to 60°C (7); 8, negative control (sdH₂O).

338

339 **Fig. S7. PCR and RT-PCR optimization using an internal control gene (*mcp*).**
340 PCR and RT-PCR were carried out after removal of genomic DNA using a TURBO DNA-free
341 kit. Samples were taken 24, 72, and 96 h after infection. Two different protocols, both
342 provided in the TURBO DNA-free kit manual, were used to optimize the reactions. (A) PCR
343 check for the presence of genomic DNA after RNA isolation and DNase treatments P, positive
344 control (PkV RF01 genomic DNA); N, negative control (sdH₂O). (B) Result of RT-PCR of
345 samples harvested 24, 72 and 96 h post infection. M, DNA marker (MassRuler DNA Ladder
346 Mix, Thermo Fisher, 80 to 10,000 bp).

347

348 **Fig. S8. Comparative distribution of glycosyltransferase domains among viruses.**

349 **Tables**

350 **Table S1. Type and position of 40 predicted tRNA genes in the PkV RF01 genome**
351

Anti codon	Begin	End	Strand
CAT	3556	3483	-
NNN	90515	90393	-
AGT	165083	165153	+
TAT	165371	165444	+
TAA	165508	165590	+
TTT	165592	165666	+
TTT	165672	165744	+
CAT	165763	165835	+
GTT	165838	165911	+
TTG	166072	166144	+
AAT	166165	166238	+
TGT	686381	686452	+
GCT	787944	787863	-
TGA	930076	930157	+
TGC	941356	941284	-
TGG	956727	956656	-
TCC	956801	956731	-
AAT	1342428	1342564	+
CAA	1388099	1388180	+
CAT	1388185	1388257	+
GTT	1388263	1388336	+
TTG	1388494	1388565	+
CTT	1388664	1388736	+
CTT	1388946	1389018	+
TCT	1389231	1389303	+
TCT	1389516	1389588	+
TCT	1389801	1389873	+
CTT	1390089	1390163	+
TCT	1393421	1393493	+
TTC	1393523	1393594	+
CAA	1393697	1393778	+
TAT	1393782	1393855	+
TAA	1393963	1394044	+
TAT	1394048	1394121	+
TAA	1394229	1394310	+
TAT	1394314	1394387	+
TAA	1394495	1394576	+
TAT	1394580	1394653	+
TAA	1394761	1394841	+
CAT	1417619	1417692	+

352
353

354 The distribution of tRNA types is as follows: tRNA_{Ile} and tRNA_{Leu}, seven each; tRNA_{Lys},
355 five; tRNA_{Arg} and tRNA_{Met}, four each; tRNA_{Asn}, tRNA_{Gln}, tRNA_{Ser}, and tRNA_{Thr}, two each;
356 and tRNA_{Ala}, tRNA_{Glu}, tRNA_{Gly}, tRNA_{Pro}, and undetermined, one each.

357

Table S2. Genes related to lipid metabolism

ORF	Length (aa)	Annotation	KEGG orthology	Pathway
ORF30	276	2,4-dienoyl-CoA reductase, mitochondrial [EC:1.3.1.34]	K13236	Beta oxidation
ORF33	888	Putative CoA-transferase	no significant hit	Beta oxidation
ORF121	225	glycerophosphoryl diester phosphodiesterase	K01126	Glycerophospholipids metabolism
ORF138	2116	Fatty acid synthase (FASN)	K00665	Fatty acid biosynthesis
ORF142	523	Long-chain-fatty-acid-CoA ligase ACSBG [EC:6.2.1.3]	K15013	Fatty acid degradation /biosynthesis / Beta Oxidation
ORF175	1303	Acetyl-CoA carboxylase / biotin carboxylase 1 [EC:6.4.1.2 6.3.4.14 2.1.3.15]	K11262	Fatty acid biosynthesis
ORF236	410	Glutaryl-CoA dehydrogenase [EC:1.3.8.6]	K00252	Fatty acid degradation
ORF293	330	Lysophospholipase like	no significant hit	not assigned
ORF357	313	Lysophospholipase like	no significant hit	not assigned
ORF386	293	Triacylglycerol lipase [EC:3.1.1.3]	K01046	Glycerolipid metabolism
ORF481	503	Lipase like	no significant hit	not assigned
ORF635	282	Lipase-like	no significant hit	not assigned
ORF653	292	Lipase-like	no significant hit	not assigned
ORF690	260	Lipase-like	no significant hit	not assigned
ORF774	327	Lysophospholipid Acyltransferases [EC:2.3.1.22]	K14457	Glycerolipid metabolism
ORF694	336	Lipase esterase (Carbohydrate esterase CE10)	no significant hit	not assigned
ORF695	335	Lipase esterase (Carbohydrate esterase CE10)	no significant hit	not assigned
ORF886	516	Stearoyl-CoA desaturase (Delta-9 desaturase) [EC:1.14.19.1]	K00507	Biosynthesis of unsaturated fatty acids
ORF902	2083	Fatty acid synthase (FASN)	K00665	Fatty acid biosynthesis
ORF904	678	Long-chain-fatty-acid-CoA ligase ACSBG [EC:6.2.1.3]	K15013	Fatty acid degradation /biosynthesis / Beta Oxidation
ORF1016	422	Cyclopropane-fatty-acyl-phospholipid synthase [EC:2.1.1.79]	k00574	not assigned
ORF1046	652	Acyl-CoA dehydrogenase	K06445	Fatty acid degradation / Beta oxidation

*ORF138 and ORF1902 share 32% aa identity

**ORF142 and ORF1904 share 22% aa identity

***ORF694 and ORF695 share 92% aa identity

358

359

Table S3. Details of tree reconstruction using PhyloBayes

Protein	Burn-in	Sub-sampling	Chain	#Trees	Maxdiff	Meandiff
Five NCLDV-core proteins*	2000	2	1 3 4 2	16,680 16,725 16,483 16,430	0.32 Discarded	0.006 Discarded
Rpb2	Reconstructed using FastTree v2.1 default settings					
SDHA	Reconstructed using RaxML					
SDHB	Reconstructed using RaxML					
AsnRS	10,000	3	1 2 3	15,485 15,066 15,627	0.27	0.02
IleRS	10,000	3	1 2 3	10,757 10,819 10,856	0.16	0.009 Discarded Discarded

360
361
362
363

* D5-like helicase-primase (NCVOG0023), DNA polymerase elongation subunit family B (NCVOG0038), DNA or RNA helicases of superfamily II (NCVOG0076), packaging ATPase (NCVOG0249), and Poxvirus Late Transcription Factor VLTF3 like (NCVOG0262).

364
365

Table S4. Forward and reverse PCR primers for amplification of vSDHA and MCP

Primer name	Sequence (5'- 3')	PCR product (bp)
vSDHA-F1	ATGTGCCGAGAACGCTCCTAA	154
vSDHA-R1	CTGCACAGGCTGTTCGATAA	
PkV-RF01-MCP-F	GATGAACCTGCCACAACT	256
PkV-RF01-MCP-F	GTGCATGGTACGTTTCGTG	

366 **References**

367

368 1. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. 1999. Enumeration of
369 Marine Viruses in Culture and Natural Samples by Flow Cytometry. *Appl Environ
370 Microbiol* 65:45–52.

371 2. Brussaard CPD. 2004. Optimization of procedures for counting viruses by flow
372 cytometry. *Appl Environ Microbiol* 70:1506–1513.

373 3. Johannessen TV, Bratbak G, Larsen A, Ogata H, Egge ES, Edvardsen B, Eikrem W,
374 Sandaa R-A. 2015. Characterisation of three novel giant viruses reveals huge diversity
375 among viruses infecting Prymnesiales (Haptophyta). *Virology* 476:180–188.

376 4. Jarvis B, Wilrich C, Wilrich P-T. 2010. Reconsideration of the derivation of Most
377 Probable Numbers, their standard deviations, confidence bounds and rarity values. *J
378 Appl Microbiol* 109:1660–1667.

379 5. Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-
380 dimensional image data using IMOD. *J Struct Biol* 116:71–76.

381 6. Lawrence JE, Steward GF. 2010. Purification of viruses by centrifugation, p. 166–181.
382 *In* Wilhelm, S, Weinbauer, M, Suttle, C (eds.), *Manual of Aquatic Viral Ecology*.
383 American Society of Limnology and Oceanography.

384 7. Sandaa R-A, E. Storesund J, Olesin E, Lund Paulsen M, Larsen A, Bratbak G, Ray JL.
385 2018. Seasonality Drives Microbial Community Structure, Shaping both Eukaryotic and
386 Prokaryotic Host–Viral Relationships in an Arctic Marine Ecosystem. *Viruses* 10.

387 8. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
388 Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin

389 BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage
390 KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman
391 KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile
392 JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW,
393 Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y,
394 Weiner MP, Yu P, Begley RF, Rothberg JM. 2005. Genome sequencing in
395 microfabricated high-density picolitre reactors. *Nature* 437:376–380.

396 9. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing.
397 *Bioinformatics* 29:2936–2937.

398 10. Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo
399 using only nanopore sequencing data. *Nat Methods* 12:733–735.

400 11. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng
401 Q, Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool for Comprehensive
402 Microbial Variant Detection and Genome Assembly Improvement. *PLOS ONE*
403 9:e112963.

404 12. Yutin N, Wolf YI, Raoult D, Koonin EV. 2009. Eukaryotic large nucleo-cytoplasmic
405 DNA viruses: Clusters of orthologous genes and reconstruction of viral genome
406 evolution. *Virology* 6:223.

407 13. Yutin N, Wolf YI, Koonin EV. 2014. Origin of giant viruses from smaller DNA viruses
408 not from a fourth domain of cellular life. *Virology* 466–467:38–52.

409 14. Eddy SR. 2011. Accelerated Profile HMM Searches. *PLOS Comput Biol* 7:e1002195.

410 15. Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, Daims H, Horn M,
411 Wagner M, Jensen GJ, Kyrpides NC, Koonin EV, Woyke T. 2017. Giant viruses with an
412 expanded complement of translation system components. *Science* 356:82–85.

413 16. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
414 improvements in performance and usability. *Mol Biol Evol* 30:772–780.

415 17. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
416 alignment trimming in large-scale phylogenetic analyses. *Bioinforma Oxf Engl*
417 25:1972–1973.

418 18. Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software package
419 for phylogenetic reconstruction and molecular dating. *Bioinformatics* 25:2286–2288.

420 19. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-
421 analysis of large phylogenies. *Bioinforma Oxf Engl* 30:1312–1313.

422 20. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display
423 and annotation of phylogenetic and other trees. *Nucleic Acids Res* 44:W242–W245.

424 21. Price MN, Dehal PS, Arkin AP. 2009. FastTree: Computing Large Minimum Evolution
425 Trees with Profiles instead of a Distance Matrix. *Mol Biol Evol* 26:1641–1650.

426 22. Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic
427 reconstruction with infinite mixtures of profiles in a parallel environment. *Syst Biol*
428 62:611–615.

429 23. Lartillot N, Philippe H. 2004. A Bayesian Mixture Model for Across-Site
430 Heterogeneities in the Amino-Acid Replacement Process. *Mol Biol Evol* 21:1095–1109.

431 24. Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for
432 prediction of gene starts in microbial genomes. Implications for finding sequence motifs
433 in regulatory regions. *Nucleic Acids Res* 29:2607–2618.

434 25. Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for
435 analysis of transfer RNA genes. *Nucleic Acids Res* 44:W54-57.

436 26. Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, Hingamp P,
437 Goto S, Ogata H. 2016. Linking Virus Genomes with Host Taxonomy. *Viruses* 8:66.

438 27. Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a
439 curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic
440 Acids Res* 35:D61–D65.

441 28. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. 2015. UniRef clusters: a
442 comprehensive and scalable alternative for improving sequence similarity searches.
443 *Bioinformatics* 31:926–932.

444 29. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for
445 genome-scale analysis of protein functions and evolution. *Nucleic Acids Res* 28:33–36.

446 30. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC,
447 He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N,
448 Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI's conserved
449 domain database. *Nucleic Acids Res* 43:D222–D226.

450 31. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a
451 reference resource for gene and protein annotation. *Nucleic Acids Res* 44:D457–D462.

452 32. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. 2018.
453 dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic
454 Acids Res 46:W95–W101.

455 33. Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome
456 comparisons dramatically improves orthogroup inference accuracy. Genome Biol
457 16:157.

458 34. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, Gabler F, Söding J,
459 Lupas AN, Alva V. 2018. A Completely Reimplemented MPI Bioinformatics Toolkit
460 with a New HHpred Server at its Core. J Mol Biol 430:2237–2243.

461 35. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B,
462 Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d’Ovidio F,
463 Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-
464 Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier
465 C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Bowler C, de
466 Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H,
467 Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E,
468 Raes J, Acinas SG, Bork P. 2015. Ocean plankton. Structure and function of the global
469 ocean microbiome. Science 348:1261359.

470 36. Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, Bachelerie P,
471 Rosnet T, Pelletier E, Sunagawa S, Hingamp P. 2018. The Ocean Gene Atlas: exploring
472 the biogeography of plankton genes online. Nucleic Acids Res 46:W289–W295.

473 37. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M,
474 Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan

475 D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. *Nucleic*
476 *Acids Res* 47:D427–D432.

477 38. Eddy SR. 1998. Profile hidden Markov models. *Bioinformatics* 14:755–763.

478 39. Carradec Q, Pelletier E, Silva CD, Alberti A, Seeleuthner Y, Blanc-Mathieu R, Lima-
479 Mendez G, Rocha F, Tirichine L, Labadie K, Kirilovsky A, Bertrand A, Engelen S,
480 Madoui M-A, Méheust R, Poulain J, Romac S, Richter DJ, Yoshikawa G, Dimier C,
481 Kandels-Lewis S, Picheral M, Searson S, Jaillon O, Aury J-M, Karsenti E, Sullivan MB,
482 Sunagawa S, Bork P, Not F, Hingamp P, Raes J, Guidi L, Ogata H, Vargas C de,
483 Iudicone D, Bowler C, Wincker P. 2018. A global ocean atlas of eukaryotic genes. *Nat*
484 *Commun* 9:373.

485 40. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV,
486 Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L,
487 Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST,
488 Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS,
489 James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R,
490 Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G,
491 Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S,
492 Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G,
493 Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB,
494 Schroeder DC, Simpson AGB, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik
495 HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL,
496 Wilson WH, Xu Y, Zingone A, Worden AZ. 2014. The Marine Microbial Eukaryote
497 Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of

498 Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLOS Biol
499 12:e1001889.

500 41. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
501 DIAMOND. *Nat Methods* 12:59–60.

502 42. Redrejo-Rodríguez M, Salas ML. 2014. Repair of base damage and genome
503 maintenance in the nucleo-cytoplasmic large DNA viruses. *Virus Res* 179:12–25.

504 43. Blanc-Mathieu R, Ogata H. 2016. DNA repair genes in the Megavirales pangenome.
505 *Curr Opin Microbiol* 31:94–100.

506 44. Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala H. 2016.
507 Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of
508 Enteropathogenic *Yersinia*. *Front Microbiol* 7.

509 45. Filée J. 2015. Genomic comparison of closely related Giant Viruses supports an
510 accordion-like model of evolution. *Front Microbiol* 6.

511