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Abstract

Topologically associating domains (TADs) were recently identified as fundamental units
of three-dimensional eukaryotic genomic organization, though our knowledge of the
influence of TADs on genome evolution remains preliminary. To study the molecular
evolution of TADs in Drosophila species, we constructed a new reference-grade
genome assembly and accompanying high-resolution TAD map for D. pseudoobscura.
Comparison of D. pseudoobscura and D. melanogaster, which are separated by ~49
million years of divergence, showed that ~30-40% of their genomes retain conserved
TADs. Comparative genomic analysis of 17 Drosophila species revealed that
chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted
within TADs. Additionally, genes within conserved TADs exhibit lower expression
divergence than those located in nonconserved TADs. Furthermore, we found that a
substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D.
pseudoobscura (26%) constitute their own TADs, implying transcript structure may be
one of the deterministic factors for TAD formation. Using structural variants (SVs)
identified from 14 D. melanogaster strains, its 3 closest sibling species from the D.
simulans species complex, and two obscura clade species, we uncovered evidence of
selection acting on SVs at TAD boundaries, but with the nature of selection differing
between SV types. Deletions are depleted at TAD boundaries in both divergent and
polymorphic SVs, suggesting purifying selection, whereas divergent tandem
duplications are enriched at TAD boundaries relative to polymorphism, suggesting they
are adaptive. Our findings highlight how important TADs are in shaping the acquisition

and retention of structural mutations that fundamentally alter genome organization.
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Introduction

Higher-order folding of eukaryotic genomes in the nucleus partitions the genome into
multiple spatial layers, ranging from DNA loops to chromatin domains to compartments
(Rowley and Corces 2018). A growing consensus has recognized chromatin domains,
often referred to as topological associating domains (TADs), as fundamental units of
three-dimensional (3D) genome organization (Szabo et al. 2018). Such domains are
closely linked to important DNA-dependent and cellular processes, such as DNA
replication (Pope et al. 2014), transcription (Schoenfelder and Fraser 2019),
DNA-damage repair (Schmitt et al. 2016), development and cell differentiation (Zheng
and Xie 2019). The presence of TADs or TAD-like domains has been widely
characterized in species as varied as yeast (Mizuguchi et al. 2014), bacteria (Le et al.
2013), plants (Liu et al. 2017), and animals (Fishman et al. 2019), suggesting they
represent a conserved feature of genome organization (Szabo et al. 2019).

TADs are thought to serve as regulatory units for controlling gene expression by
promoting and constraining long-range enhancer-promoter interactions (Schoenfelder
and Fraser 2019). Genes localizing within the same TAD tend to be co-regulated and
co-expressed (Nora et al. 2012). Additionally, changes in TADs or their boundaries can
alter expression of genes, including developmental and disease-related genes
(Lupiafiez et al. 2015; Bonev et al. 2017; Akdemir et al. 2020). However, recent work
re-examined the tight relationship between gene regulation and TADs by observing that
disruption of TAD features can alter expression for only a small number of genes
(Ghavi-Helm et al. 2019; Despang et al. 2019). Evolutionary comparisons across
species (Krefting et al. 2018; Eres et al. 2019) permit us to quantify the nature of
functional constraint in these domains, potentially reconciling the disparate observations
above.

The conservation of TADs between distantly related species is associated with the
preservation of synteny across vast spans of evolutionary time (Dixon et al. 2012).
Genome rearrangement breakpoints are more common at TAD boundaries than inside

TADs, implying that a subset of TADs is constrained to remain intact through evolution
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(Krefting et al. 2018; Lazar et al. 2018). In addition, deletions are depleted at TAD
boundaries (Sadowski et al. 2019; Akdemir et al. 2020; Huynh and Hormozdiari 2019),
presumably because deleting boundaries might destroy the insulating effect separating
neighboring TADs. Thus, TAD boundaries share hallmarks of other functional genomic
regions, like strong evolutionary constraints (Fudenberg and Pollard 2019). However,
other than the dearth of deletions at TAD boundaries, it remains unclear whether natural
selection drives the acquisition and fate of other classes of mutations, like duplications
and transposable element (TE) insertions, when they occur at TAD boundaries.

TADs have been extensively analyzed using Hi-C in embryos (Sexton et al. 2012)
and cell lines in D. melanogaster (Li et al. 2015; Chathoth and Zabet 2019; Wang et al.
2018). Hi-C data from other Drosophila species are primarily targeted for genome
scaffolding and are too sparse in coverage for high resolution spatial organization
analysis (Bracewell et al. 2019). In this study, we introduced a new genome assembly
and created a high resolution Hi-C contact map for D. pseudoobscura, which diverged
from D. melanogaster ~49 million years ago (Thomas and Hahn 2017). We assessed
3D genome conservation between D. pseudoobscura and D. melanogaster using TADs
annotated with high coverage Hi-C data. We also investigated the association between
TADs and gene expression by analyzing public RNA-seq dataset (Yang et al. 2018).
Additionally, we characterized genome rearrangement breakpoints in 17 Drosophila
species (Miller et al. 2018; Mahajan et al. 2018) and their distribution along TAD
regions. Finally, we investigated patterns of structural variants (SVs) at TAD boundaries
with SV genotypes derived from reference-quality assemblies for intraspecies (14 D.
melanogaster strains) (Chakraborty et al. 2019) and interspecies (D. melanogaster
versus three simulans clade species; D. pseudoobscura versus D. miranda)
(Chakraborty et al. 2020; Mahajan et al. 2018) comparisons. This study provides
accurate, high-resolution resources for Drosophila genome structure research, and our
findings highlight the evolutionary significance of TADs in shaping genome

rearrangements, SVs, and gene expression.
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Results

A new reference genome assembly for D. pseudoobscura

We de novo assembled the genome of D. pseudoobscura females from the strain
MV-25-SWS-2005 using deep (280x) coverage Pacific Biosciences long reads
(Supplemental Table S1). The resulting assembly consists of 72 contigs and is
extremely contiguous, accurate, and complete (assembly size, ~163.3 Mb; N50 contig
length, 30.7 Mb; base-pair accuracy QV score, 52; and BUSCO (Simao et al. 2015),
99.6%) (Supplemental Tables S2, S3). The vast majority of three telocentric autosomes
(Chr2, Chr3, and Chr4) and the dot chromosome, together with the complete circular
mitochondrial DNA genome (mtDNA) are each assembled into a single contig. The X
chromosome is represented in three contigs, including both arms of the euchromatic
region and a repeat-rich contig (~9.7 Mb) showing enrichment of centromere-specific
repeats at both ends. These three contigs were combined into a single scaffold based
on Hi-C contact maps (Supplemental Fig. S1). Additionally, we recovered 64 small and
repetitive contigs (totaling ~6.6 Mb) that were not scaffolded (Supplementary Table S4).
The final assembly spans the majority of every major chromosome, interrupted only by
two sequence gaps near the pericentromeric region of the X chromosome
(Supplemental Fig. S2). While the middles of the chromosome arms are assembled
contiguously, there are likely gaps remaining in the repetitive sequences at the ends of

chromosomes, particularly in the centromeric and pericentromeric heterochromatin.

The current assembly is the most contiguous genome assembly for D.
pseudoobscura (Supplemental Table S5). Approximately 26.9% (43.9 Mb) of the
genome is annotated as repeat sequences, including 13.95% (22.77 Mb) derived from
retrotransposons (Supplemental Table S6). We annotated 13,413 gene models using
RNA-seq and full length mRNA sequencing (Iso-Seq) data (Supplemental Tables S6,
S7). The largest structural difference between our assembly and two other assemblies
from different strains (Bracewell et al. 2019; English et al. 2012) is an X-linked

pericentromeric inversion (~9.7 Mb). We verified this inversion with Hi-C contact
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frequency data and our sequenced strain shares a configuration with a closely related
species, D. miranda (Mahajan et al. 2018) (Supplemental Fig. S2). The distribution of
genomic features is generally conserved between D. pseudoobscura and D. miranda,
despite several large chromosomal rearrangements reshuffling their genomes
(Supplemental Fig. S2) (Bartolomé and Charlesworth 2006). We identified 1.43 million
SNPs (~10.3 per kbp), 0.53 million Indels (<50 bp; ~3.7 per kbp), and 8,227 SVs (=50
bp) that affected ~1.8 Mb genomic regions between our assembly and the Dpse4.0

assembly from the reference strain (English et al. 2012) (Supplemental Fig. S3).

Identification of TADs in D. pseudoobscura adult full bodies

We generated 397 million Hi-C paired-end reads (2x150 bp) from cross-linked DNA
extracted from full bodies of adult females. We used the method of Arima Genomics
that employs multiple restriction enzyme cutting sites for chromatin digestion, leading to
a theoretical mean restriction fragment resolution of ~160 bp. After filtering, about half of
the raw data are retained for construction of the Hi-C contact map (Supplemental Table
S8). This subset of read pairs yields a contact map with a maximal estimated “map
resolution” of ~800 bp, as calculated following the approach of Rao et al. (Rao et al.
2014).

TAD annotation may vary moderately among different computational methods
(Forcato et al. 2017). To examine the consistency of TAD calls across methods, we
identified TADs at 5-kbp resolution using three tools: HiCExplorer (Ramirez et al. 2018),
Armatus (Filippova et al. 2014), and Arrowhead (Durand et al. 2016)(Fig. 1A), which
inferred 1,013, 3,352, and 795 TADs, respectively. After excluding TADs shorter than 30
kbp, Armatus retained 858 TADs (mean length 123 kbp), Arrowhead retained 795
(mean length 140 kbp), and HiCExplorer retained 996 (mean length 146 kbp) (Fig. 1B,
C). These tools yield results with different properties. For example, Arrowhead allows
nested TADs and permits them to be spaced discretely, resulting in adjacent TADs

separated by gaps. On the other hand, most adjacent TADs among HiCExplorer calls
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share boundaries. Partly for this reason, the calls from alternative methods do not
overlap completely. Despite this, 589 TADs are shared by at least two tools, covering
57% (92.5/163 Mb) of the genome (Fig. 1B).

To determine whether TADs we inferred were supported by biological features, we
investigated the chromatin landscape surrounding their boundaries using publicly
available data (Schuettengruber et al. 2014; Yang et al. 2012; Ni et al. 2012). We found
that TAD boundaries from all three tools are enriched for CTCF and BEAF-32 binding
sites (Fig. 1D; Supplemental Fig. S4), as well as open and active chromatin as inferred
from ATAC-seq data and H3K4me3 marks, respectively (Fig. 1E, F; Supplemental Fig.
S4), but depleted for repressive chromatin marks, H3K27me3 (Fig. 1F; Supplemental
Fig. S4). These observations are consistent with earlier studies in D. melanogaster
(Wang et al. 2018; Chathoth and Zabet 2019; Hug et al. 2017), suggesting that Hi-C
data from full bodies identifies a considerable amount of biologically meaningful TAD
features in Drosophila. As HiCExplorer TAD calls are most strongly correlated with
biological features (Fig. 1D-F; Supplemental Fig. S4), we used this set of TADs in most

of the subsequent analysis, unless otherwise noted.

Evolutionary conservation of TADs between D. pseudoobscura and D.
melanogaster

We investigated the TAD conservation between two distantly related Drosophila
species, D. pseudoobscura and D. melanogaster. We first identified blocks of synteny
between their genomes. The resulting synteny map consists of 985 orthologous blocks
larger than 10 kbp, with an average size of 101 kbp in D. melanogaster and 109 kbp in
D. pseudoobscura, spanning 74.6% (100/134 Mb) of the D. melanogaster genome and
70% (110/157 Mb) of the D. pseudoobscura genome, respectively (Supplemental Table
S9). The high-quality genome assemblies increased the average length of synteny
blocks by 20% (100-83/83 kbp) compared to an earlier study (Richards et al. 2005). The
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synteny map (Fig. 2A) reveals extensive genome shuffling between species, but most of
the orthologous blocks are located in the same Muller elements, suggesting that even
on a small scale, translocations rarely occur between chromosomes in the course of
Drosophila genome evolution, consistent with previous observations (Muller 1940;
Schaeffer 2018).

For D. melanogaster, we annotated TADs using published Hi-C data from three
cell lines (S2, Kc167, and BG3) (Chathoth and Zabet 2019; Wang et al. 2018)
(Supplemental Table S10). TADs were annotated using HiCExplorer as described for
our D. pseudoobscura data. Consistent with previous studies (Ulianov et al. 2016),
TADs and their boundaries are largely shared across cell lines (Fig. 2B; Supplemental
Figs. S5, S6). About 68% of TADs and 76% of their boundaries (10-kbp boundaries) are
shared at least in two cell lines, whereas 32% and 24% of the TADs and boundaries are

cell line-specific (Fig. 2C).

Table 1. Summary of TAD annotation (HiCExplorer), lift and conservation between D.
melanogaster (Release 6) and D. pseudoobscura (this study).

TAD Species Total Lifted Conserved Genome Cov.  P-values
Features (sample) [C/L/T] (Mb)
Body Dmel (Kc167) 933 640 (68.6%) 291 (31.2%)  43.6/88.2/131.4  1x10*
Dmel (BG3) 956 668 (69.3%) 308 (32.0%)  46.2/90.0/131.3  1x10*
Dmel (S2) 1,107 792 (71.5%) 325 (29.4%) 43.0/91.5/132.4 1x10*
Dpse (WB) 1,013 678 (66.9%) 419 (41.4%) 62.4/90.5/145.6 1x10*
Boundary? Dmel (Kc167) 939 683 (72.7%) 331(35.3%) - 2.2x1078
Dmel (BG3) 962 722 (75.1%) 339 (35.2%) - 2.2x107°
Dmel (S2) 1,113 807 (72.5%) 351 (31.5%) - 2.2x107°
Dpse (WB) 1,019 768 (75.4%) 494 (48.5%) - 2.2x1071

(Dmel) D. melanogaster;, (Dpse) D. pseudoobscura; (WB) whole body; (Genome Cov.) Genome
coverage, which was calculated for total annotated TADs (T), lifted TADs (L) and conserved TADs (C)
based on the genome before conversion. 25-kbp boundary for Dmel and 10-kbp boundary for Dpse. Tests
of statistical significance were used to determine if there is a significant difference between the observed
conservation rate and the expectation (Supplemental Table S11).
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For each interspecific comparison, genomic coordinates of TAD features (i.e. body
and boundary) were lifted over between species (Table 1). The success rate for each lift
is 66.9-71.5% for bodies and 72.5-75.4% for boundaries, comparable to their shared
genome synteny fraction (70-74.6%). Of TADs annotated across the three D.
melanogaster cell lines, we found that 29.4-32% of body annotations and 31.5-35.3% of
boundary annotations were conserved with D. pseudoobscura (Table 1). The conserved
TADs cover at least 34.5% (46.2/134 Mb) of the D. melanogaster genome. In the
reciprocal comparison, ~41.4% of TADs, spanning ~39.7% (62.4/157 Mb) of the D.
pseudoobscura genome, and 48.5% of the boundaries were conserved with D.
melanogaster (Table 1). Such rates of conservation are substantially higher than the
background levels observed from permuted genomic coordinates based on two different
null hypotheses (Table 1; Methods). We note that adjusting the stringency of the
reciprocal overlap requirement from 80% to 90% did not qualitatively alter the results
but decreased the conservation rate (e.g. genome coverage) from 39.7% to 27.8%
(Supplemental Table S12). Thus, the conservative estimate is that nearly half of the
syntenic regions of the genome (30-40% of the total genome) retained conserved TADs
between D. melanogaster and D. pseudoobscura (Fig. 2D, E; Supplemental Fig. S7),
and TADs in the remaining half may have diverged. This estimate is consistent with our
visual inspection of Hi-C contact maps across the long syntenic regions between these
two species (Fig. 2B and Supplemental Fig. S5). The inferred conservation magnitude is
comparable to some regulatory phenotypes between these two species, such as
functional enhancer conservation (46%) (Arnold et al. 2014) and CTCF binding sites
(30%) (Ni et al. 2012), but lower than others, such as BEAF-32 (>70%) (Yang et al.
2012) and alternative splicing (~80%) (Malko 2006).

353/419 conserved TADs are larger in D. pseudoobscura than their orthologs in D.
melanogaster, whereas the rest are larger in D. melanogaster (Fig. 2F). The sizes of the
orthologous TADs are correlated with the sizes of the local syntenic blocks (Fig. 2G, H),
suggesting that TADs may expand or contract proportionally with their local genomic

regions. On average, D. psedoobscura TADs are ~10% larger than their counterparts in
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D. melanogaster, smaller than the ~17% difference (157-134/134 Mb) observed
between their genome sizes, suggesting that size variation among homologous TADs is

more strongly constrained than genome size variation elsewhere.

Conservation of different TAD boundary classes

TAD boundaries may differ in insulation strengths, binding affinity of insulators,
occurrence across cell types, and the flanking chromatin states. These properties may
distinguish their evolutionary conservation. To test this, we first assessed the
conservation of boundaries overlapping with binding sites for six insulator proteins in
each of the three D. melanogaster cell lines (Kc167, BG3, and S2) (Supplementary
Table S13). We found that TAD boundaries overlapping BEAF-32, CP190, and
Chromator binding sites are more frequently shared between species than those lacking
these sites. However, we observed no such pattern for CTCF, Su(Hw), and Trl (Fig. 3A;
Supplemental Fig. S8). These findings are consistent with previous observations that
BEAF-32, CP190, and Chromator are better predictors of TAD boundaries in Drosophila
(Wang et al. 2018; Ramirez et al. 2018).

We also investigated the degree of conservation of the boundaries of TADs
associated with different chromatin marks. Using the data from (Ramirez et al. 2018),
we found that boundaries associated with active TADs are more conserved than those
of TADs enriched for inactive and PcG marks or those lacking chromatin marks
altogether (Fig. 3B), which is consistent with the fact that active chromatin may play

crucial roles in TAD formation (Ulianov et al. 2016).

Next, we partitioned TAD boundaries into cell-specific boundaries and boundaries
observed in more than one cell line. HiICExplorer identified 921 D. melanogaster TAD
boundaries shared by at least two cell lines, whereas 735 were -cell-specific
(Supplemental Table S14). Of the 672/921 boundaries that we successfully lifted over to
D. pseudoobscura, 58% (391/672) are conserved with D. pseudoobscura, which is

significantly higher than cell-specific boundaries (P < 0.001, Chi-square test) in which

10
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only 34% (165/483) are conserved with D. pseudoobscura (Fig. 3C). Similar results
were also obtained for Arrowhead and Armatus calls (Fig. 3C). However, this pattern
can also be caused by the potential underrepresentation of cell-specific boundaries in

the D. pseudoobscura whole body TAD set.

Finally, we compared stronger and weaker boundaries, wherein boundary
strengths were categorized based on HiCExplorer TAD-separation score. Both types of
boundaries tend to be observed in multiple cell lines, but weaker boundaries overlap
more cell-specific boundaries (Supplemental Table S15). Hence, as indicated above,
we expect stronger boundaries to be more conserved than weaker ones. We indeed
observed this in the comparisons between D. pseudoobscura and each of the three D.

melanogaster cell lines, and also in the reciprocal comparisons (Fig. 3D).

The potential roles of TADs in Drosophila gene regulation

To investigate the potential link between TADs and gene regulation, we compared
expression profiles across 7 tissues from both sexes for 10,921 one-to-one orthologs
between D. melanogaster and D. pseudoobscura (Yang et al. 2018). The orthologs
were classified by their locations with respect to TADs or TAD boundaries (Juicer call),
covering the following categories: 1) genes inside versus outside TADs; 2) genes inside
conserved versus nonconserved TADs; 3) genes inside cell-specific versus those
shared by multiple cell types TADs; 4) genes within 20 kbp of conserved versus
nonconserved TAD boundaries; and 5) genes within 20 kbp of cell-specific and those
shared by multiple cell types TAD boundaries. To measure expression divergence, we
calculated both Euclidean distance and Pearson’s correlation coefficient distance
(Pereira et al. 2009). Both distances show that comparisons made using partitions from
1-3 above were statistically significant, whereas those made using 4-5 above (those
involving proximity to TAD boundaries) were not (Fig. 4A; Supplemental Fig. S9A).

These results show that TADs correlate with evolutionary stability of gene expression
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because genes inside TADs, conserved TADs, and TADs that are shared by multiple
cell types, all show significantly lower expression divergence than their corresponding

counterparts, respectively.

We also considered the possibility that the stability of gene expression in
annotated or conserved TAD regions is driven by gene content rather than TADs per se.
To test this, we repeated the above analyses using the same gene set (10,921)
between two D. melanogaster strains, OreR and w1118, with expression data across 8
tissues from both sexes (Yang et al. 2018). This intraspecies analysis (assuming
intraspecific TAD differences can be largely neglected) revealed similar patterns as
those of cross-species comparisons (Fig. 4B; Supplemental Fig. S9B), suggesting that
genes constrained in the annotated or conserved TAD regions indeed tend to be more

stable.

We further investigated the link between the gene structures and TADs by focusing
on protein-coding genes larger than 50 kbp. Of 311 those long genes (> 50 kbp) in D.
melanogaster, which span 30.35 Mb of the genome, we found that TAD boundaries are
significantly depleted inside genes compared to the genome-wide background
(143/1,113 S2 boundaries; P = 4.86 x 10'®, proportion test against 30.35/134 Mb, or
0.226). Only 17 long genes contained TAD boundaries inside them in all three cell types
(Fig. 4C). 129 long genes (Supplementary Table S16), comprising 15 Mb of the D.
melanogaster genome, individually occupied an intact TAD predicted in at least one of
the three cell lines or tools (Supplementary Fig. S10). In D. pseudoobscura, we
identified 338 long genes (>50 kbp), but we found relatively fewer long genes (73) that
spanned full TADs (Supplemental Table S17). This may be due to the fact that D.
pseudoobscura TADs were annotated only in the whole body, whereas TADs in D.
melanogaster come from three cell lines. This observation raises the possibility that
some TADs emerge only in certain situations (e.g. cell types or developmental stages)
to regulate their corresponding genes. This prediction is supported by Gene Ontology
analysis (Supplemental Methods), which shows that functions of the long genes are

enriched for development processes, particularly those affecting the nervous system

12


https://paperpile.com/c/ASftsY/2HMN
https://doi.org/10.1101/2020.05.13.094516
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094516; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Fig. 4D), consistent with the observation that they are preferentially expressed in head
(Fig. 4E, Supplemental Fig. S11).

Evolutionary genome rearrangement breakpoints coincide with Drosophila TAD
boundaries

Conservation of a considerable fraction of TADs between two distantly related
Drosophila species prompted us to investigate whether TADs are evolutionarily
constrained. To this end, we identified 1,061 genome rearrangement breakpoints
between D. melanogaster and D. pseudoobscura (Fig. 5A; Supplemental Fig. S12) and
found that they are enriched at TAD boundaries (257/1,061; P < 2.2 x 107, proportion
test against 11.13 Mb S2 HiCExplorer boundary regions as a proportion of total 134 Mb
genome size, or 0.083), consistent with previous results (Fishman et al. 2019; Lazar et
al. 2018).

We extended the analysis to 17 Drosophila species, spanning 72 million years of
evolution (Fig. 5B) (Thomas and Hahn 2017). All these species possess highly
contiguous genome assemblies with contig N50 larger than 4Mb (Miller et al. 2018;
Mahajan et al. 2018), permitting reliable identification of genome rearrangement
breakpoints. Across comparisons between D. melanogaster and the other 16 species,
we identified from 108 to 1,180 synteny and from 10 to 314 inversion breakpoints
(Supplemental Table S18). For most comparisons, we observed these breakpoints were
enriched at TAD boundaries, whereas the frequency of breakpoints was depleted within
TADs (Fig. 5C; Supplemental Fig. S13A). However, in comparisons between D.
melanogaster and its closest relatives (D. sechellia, D. mauritiana, and D. simulans), the
small number of events likely did not offer enough power to observe this pattern.

We repeated this analysis using D. pseudoobscura as the reference, identifying
from 259 to 1,242 synteny and from 60 to 359 inversion breakpoints in the 16 analogous
comparisons (Supplemental Table S18). We observed the same pattern as above (Fig.

5D; Supplemental Fig. S13B). Such enrichment of rearrangement breakpoints at TAD
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boundaries suggests that a fraction of TADs are evolutionarily constrained even among
genomes as extensively rearranged as those in the genus Drosophila. For example,
three TADs are well preserved on a ~450kb inverted genomic segment between D.

melanogaster and D. pseudoobscura across 49 million years of evolution (Fig. 5E).

TADs shape structural genomic variants at their boundaries in Drosophila

To investigate the potential role of TADs in shaping patterns of structural genomic
variants, we obtained two comprehensive SV datasets (comprising deletions, TE
insertions, non-TE insertions, and tandem duplications) both based on reference-quality
genome assemblies (Fig. 6A), which include: (1) a polymorphic SV dataset (Fig. 6B)
from 14 D. melanogaster strains (Chakraborty et al. 2019); and (2) a divergence SV
dataset spanning ~3 million years of evolution between D. melanogaster and the three
members of the D. simulans species complex (Fig. 6C) (Chakraborty et al. 2020).
Deletions and insertions were polarized using D. erecta and D. yakuba as outgroups.
The resulting unfolded allele frequency spectrum (Fig. 6D) shows that, in the
polymorphic dataset, most SVs are observed in only a single strain, with TE insertions
exhibiting the greatest proportion (~92%) of rare variants than other types. However, a
considerable proportion (35-63%) of interspecific SVs are present in at least two
species (Fig. 6E), suggesting that these SVs occurred prior to at least one
species-splitting event in the D. simulans clade and therefore have existed for a

relatively longer period of time than intraspecies SVs.

Using these two datasets, we sought to assess the mode of selection on SVs at
Drosophila TAD boundaries by exploiting the method described previously (Fudenberg
and Pollard 2019). We used a conservative set of 2,156 TAD boundaries in the
euchromatin regions (Supplemental Table S19) that are shared between two
independent studies (Ramirez et al. 2018; Wang et al. 2018). We find that both
deletions and small non-TE insertions are depleted at TAD boundaries in both

polymorphic and divergence SV datasets (Fig. 6F; Supplemental Fig. S14), consistent
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with that purifying selection may act to remove them to prevent disruption of TAD
boundaries. A contrast was observed for tandem duplications (TDs). TDs from 14 D.
melanogaster strains are depleted at TAD boundaries as compared to genome-wide
background (181/3,606 breakpoints; P = 2.83 x 108, proportion test against 8.6 Mb
boundary regions as a proportion of total 117 Mb euchromatin regions, or 0,074),
whereas TDs from the three D. simulans clade species are significantly enriched at TAD
boundaries (287/2,582 breakpoints; P = 3.63 x 10", proportion test against 0.074). The
enrichment of TDs at TAD boundaries are also observed in the comparison between D.
pseudoobscura and D. miranda (293/2,728 breakpoints, P < 2.2 x 10, permutation
test against 8.86 Mb/133.62 Mb) (Fig. 6F; Supplemental Table S20). This excess
divergence relative to polymorphism may indicate the action of adaptive selection
(Andolfatto 2005). To quantify this excess for all other genomic variants studied, we
calculated the odds ratios by dividing the ratio of genomic variants occurring at TAD
boundary regions versus the rest of euchromatin regions in the divergence dataset by
the same ratio computed from polymorphism (Fig. 6G). The highest excess value of
TDs (287/2,295 in divergence TDs versus 181/3,425 in polymorphic TDs; P < 2.2 x
107'%, Fisher exact test) suggests that TDs at TAD boundaries might have evolved under

adaptive natural selection.

Enrichment of TDs at TAD boundaries is consistent with previous observations
that TAD boundaries tend to act as relatively frequent targets of duplications (Sadowski
et al. 2019) and co-duplicate with super enhancers (Gong et al. 2018). To determine
what kinds of sequences are associated with duplicated TAD boundaries, we inspected
181 boundary TDs in the three D. simulans clade species, finding that they rarely
overlap large-scale genome rearrangement breakpoints, instead about 88% (160/181)
of them overlap genes. These genes are weakly enriched for constitutive genes (i.e.
genes that are expressed in most or all cells of an organism) (70/169; P = 0.018,
proportion test against the expected proportion of 5,854/17,473) (Supplemental
Methods), consistent with the previous observation that TAD boundaries are enriched in

housekeeping genes (Hug et al. 2017).
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Finally, with the large number of SVs we identified in our datasets, we also
investigated SVs in the surrounding TAD boundary regions. Confirming the
observations above, deletions and non-TE insertions are broadly depleted around TAD
boundaries with peaks at the boundaries (Fig. 6H, 1). Larger deletions in the
polymorphic dataset are more depleted at TAD boundaries, implying larger deletions
may be more deleterious to TAD boundaries (Fig. 6H). It is worth noting that TE
insertions exhibit complex patterns at TAD boundaries. For example, long terminal
repeat retrotransposons (LTRs) and long interspersed nuclear elements (LINEs) are
strongly depleted at TAD boundaries (P < 1.0 x 10%, permutation test) in the
polymorphic dataset, but such pattern is not shown in the divergence dataset or for
DNA-type TEs (Supplemental Fig S15).

Discussion

Our knowledge of 3D genome evolution remains limited (Yang et al. 2019). To
interrogate the evolutionary patterns of genome topology and its potential association
with genome structure and function, we generated a reference-quality genome

assembly and high resolution Hi-C data for D. pseudoobscura.

Although our D. pseudoobscura Hi-C data was obtained from whole body samples,
we observed high consistency with several biological features known to be associated
with TADs, regardless of the specific approaches employed in their annotation. For
example, our TAD annotations are correlated with epigenetic states (e.g. H3K4me3 and
H3K27me3), and their boundaries are enriched for insulator binding sites (e.g. CTCF
and BEAF-32) and open and active chromatin marks (Fig. 1). These observations are
consistent with the fact that TADs are a largely invariant feature across tissues in a
given organism (Ulianov et al. 2016). While CTCF appears not to be a major TAD

boundary definition protein in Drosophila (Szabo et al. 2019), we nevertheless observed
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enrichment of CTCF at our TAD boundaries, likely because it connects TAD borders in

a cell-specific manner in Drosophila (Chathoth and Zabet 2019).

Our analysis revealed that TADs are conserved across at least 30-40 percent of the
genomes between D. melanogaster and D. pseudoobscura. This rate is comparable to
that observed between the much more closely-related comparison between humans
and their closest sister species, chimpanzees (~43%) (Eres et al. 2019). The
conservation we observe is substantially higher than that among three distantly related
Drosophila species-D. melanogaster, D. busckii and D. virilis (~10%) (Renschler et al.
2019). Such incongruity is perhaps explained by differences in the quality of genome
assemblies, depth of Hi-C data, or the evolutionary distance between species
comparisons. Despite the difference, both results showed that a substantial proportion
of TADs persist for long periods of time during evolution, suggesting they are
functionally relevant. It is worth noting that our study likely still underestimates
conservation. Our estimates were derived from pairwise comparisons between three
distinct cell lines (Kc167, S2, and BG3) in D. melanogaster but whole body in D.
pseudoobscura. Given extensive cell and allele-specific variability of TADs observed
using single-cell Hi-C (Nagano et al. 2013) and super-resolution fluorescence in situ
hybridization (FISH) imaging approaches (Bintu et al. 2018), TADs identified in whole
body samples might represent topologies averaged across multiple tissues and millions
of cells. Thus, many cell-, tissue-, or developmental stage- specific TADs may be
underrepresented. Future experiments that carefully match samples (e.g. the same cell

types or tissues) may provide a path to address this problem.

The role of TADs in gene regulation remains a matter of active research. Recent
thinking suggests a reciprocal interplay between spatial genome organization and
transcription, in which each is able to modulate or reinforce the activity of the other (van
Steensel and Furlong 2019). Our results and others (Krefting et al. 2018) have revealed
that the evolutionary stability of TADs correlates to constraint on gene expression,
suggesting TADs may play roles in gene regulation. This effect is potentially

confounded by the properties of the gene content in conserved TADs, though these two

17


https://paperpile.com/c/ASftsY/nmbm
https://paperpile.com/c/ASftsY/I8H4I
https://paperpile.com/c/ASftsY/cXaE
https://paperpile.com/c/ASftsY/cXaE
https://paperpile.com/c/ASftsY/WvF81
https://paperpile.com/c/ASftsY/rX2Te
https://paperpile.com/c/ASftsY/CS5Gb
https://paperpile.com/c/ASftsY/CS5Gb
https://paperpile.com/c/ASftsY/CdWH
https://doi.org/10.1101/2020.05.13.094516
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094516; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

possibilities are by no means mutually exclusive. For example, the pattern of constraint
we see in gene regulation is already established on intraspecific timescales in D.
melanogaster, potentially before enough time has elapsed to establish variation
between constraint in TADs.

Our finding that a large proportion of long genes coincides with entire TADs implies
that transcription may be one of the deterministic factors for the establishment and
maintenance of spatial genomic organization, or, conversely, that TADs are important in
the regulation of long genes. Such gene-level chromatin domains are reminiscent of
self-loop structures of genes found in Arabidopsis thaliana (Liu et al. 2016) and gene
crumples in S. cerevisiae (Hsieh et al. 2015). Moreover, such gene-level domains are
more likely to be cell-, tissue-, or developmental stage-specific since we detected
substantially more (129 or 46%) genes in individual cell lines in D. melanogaster than in
whole body samples (73 or 26%) in D. pseudoobscura.

Our analyses, in combination with previous works (Krefting et al. 2018; Lazar et al.
2018; Fishman et al. 2019; Renschler et al. 2019) show that genome rearrangement
breakpoints acquired during evolution preferentially occur at TAD borders, suggesting
that rearrangements resulting in disruption of TAD integrity are subjected to negative
selection. Moreover, it suggests that TADs tend to evolve as intact structural units in
genome shuffling, probably due to their putative functional constraint. Nevertheless, the
non-random distribution of chromosomal breaks can also be explained by the “fragile
regions” model that breaks of chromosome occur at a higher frequency at TAD borders
than genome background (Berthelot et al. 2015). Further experiments designed to
characterize recurrent breakpoints across the genome would be necessary to clarify the

above hypotheses.

We also found evidence for selection acting on structural genomic variants at TAD
boundaries. Recent studies have found that deletions are depleted at TAD boundaries
in human populations (Sadowski et al. 2019) and in humans’ close relatives, apes
(Fudenberg and Pollard 2019), as well as in cancer genomes (Akdemir et al. 2020). In

Drosophila, we observed the same pattern for deletions and non-TE insertions,
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suggesting that these common SVs are subject to purifying selection. Unlike the above
two types of SVs, patterns of TE insertions are not only different in their classes, but
differ in evolutionary timescales as well. In polymorphic SV datasets, LTRs and LINEs
are strongly depleted at TAD boundaries, whereas DNA-type TE is slightly enriched at
TAD boundaries (Supplemental Table S15), suggesting they are under different
selective pressure. Furthermore, such patterns were not observed in the divergence SV
dataset, possibly because most of the older deleterious TE insertions have already
been eliminated uniformly across the genomes of the D. simulans complex species.
TAD boundaries appear to appear largely in gene-dense, chromatin-accessible, and
transcribed regions where enriched in active chromatin marks (Szabo et al. 2019). For
example, ~77% of TAD boundaries annotated in D. melanogaster overlap promoters
(Ramirez et al. 2018). Thus, it remains unclear which functional aspects are principal

factors governing constraints of SVs at TAD boundaries.

The finding that divergence of tandem duplications is elevated at TAD boundaries
relative to elsewhere when both are normalized by levels of polymorphism (Fig. 6G),
suggesting that tandem duplicates at TAD boundaries are fixed at higher rates, though
this imbalance in the odds ratio could also stem from a deviation in any of the four
terms. The absence of enrichment of tandem duplications at TAD boundaries in the
polymorphism data suggests that this finding is unlikely to be mutationally driven.
Therefore, we propose that adaptation could be driving up the divergence of tandem
duplicates at TAD boundaries. One intuitive reason for this suggestion may be that
duplicated boundary sequences, such as insulator binding sites, may strengthen
topological domain borders, thereby reinforcing the stability of chromatin domains. This
is consistent with the hypothesis that duplications may be an important evolutionary
mechanism of spatial genome organization (Sadowski et al. 2019). Similarly, the fact
that TAD boundary duplications largely overlap with functional regulatory elements and
genes argues for further examining the forces shaping enrichment of tandem
duplications at TAD boundaries. Collectively, our findings offer novel insight into the

evolutionary significance of spatial genome organization in shaping patterns of
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large-scale chromosomal rearrangements, common structural variants, and gene

expression.

Methods

Fly strain and genome sequencing

The sequenced D. pseudoobscura strain (MV-25-SWS-2005) was initially collected at
Mesa Verde, Colorado (Lat 37d 18' 0" N, Long. 108d 24' 58" W) in July 2005 by
Stephen W. Schaeffer. The strain was subsequently inbred. DNA was extracted from
adult females following a previously published protocol (Chakraborty et al. 2016). DNA
was sheared using 21 gauge needles and size selected using the 30-80 kbp cutoff on
Blue Pippin (Sage Science). Size selected DNA was sequenced on 10 SMRT cells
using the Pacific Biosciences Sequel Platform. lllumina paired end (2 x 150 bp) reads
were generated on HiSeq 4000 using the same DNA that was used for PacBio
sequencing. PacBio long reads were assembled with Canu v1.7(Koren et al. 2017).
After removal of redundant contigs and gap filling using raw reads with finisherSC (Lam
et al. 2015), the assembly was polished twice with Arrow (Smrtanalysis 5.1.0) and three
times with Pilon (Walker et al. 2014). Transposable elements were annotated using the
EDTA pipeline (Ou et al. 2019). Gene models were annotated using MAKER (version
2.31.8) (Campbell et al. 2014). More details described in the Supplemental Methods.

Hi-C experiments

Hi-C experiments were performed by Arima Genomics (https://arimagenomics.com/)
with adult female flies according to the Arima-HiC protocol described in the Arima-HiC
kit (P/N : A510008) with minor modifications to the crosslinking protocol (for details, see

Supplemental Methods).

Hi-C data processing and TAD annotation

Juicer (Durand et al. 2016) and HiCExplorer (Ramirez et al, 2018) were used to process

Hi-C data from raw reads to interaction maps. Arrowhead from Juicer package, Armatus
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(Filippova et al. 2014), and HiCExplorer were used to annotate TADs each with different
combinations of parameters. The output was compared and inspected visually based on
chromatin interaction maps (Supplemental Fig. S16) using HiCPlotter (Akdemir and

Chin 2015) to determine the optimal parameters (Supplemental Table S21).

ChiIP-seq and ATAC-seq data analysis

All short read alignments were performed against our D. pseudoobscura genome using
Bowtie2 v2.2.7 (Langmead and Salzberg 2012). ChlP-seq peak calling was performed
using MACS2 (version 2.0.10) (Zhang et al. 2008) with the default parameters.
ChIP-seq normalization was performed using bamCompare from the deepTools suite
(version 3.2.1) (Ramirez et al. 2016) with the following setting: --binSize 10 --operation
log, --minMappingQuality 30 --skipNonCoveredRegions --ignoreDuplicates’. Read
coverage of ATAC-seq was computed using deepTools bamCoverage for a bin size of
10 bp. To generate metaregions plots (Fig1. D-F) of ChlP-seq/ATAC-seq signals or
frequency of insulator binding sites surrounding TAD boundaries, a matrix A; was
generated for each dataset using deepTools computeMatrix and Perl scripts, in which
each row represents a boundary and each column (j € [-40,40]) represents the signal
value in a 1 kbp non-overlapping bin within 40 kbp of the downstream and upstream
flanking regions of that boundary. For CTCF and BEAF-32 binding sites, we summed
values from columns of A; into a vector in which each element represents the signal
value for the corresponding 1-kbp bin. For ChlP-seq and ATAC-seq data, we averaged
values from columns of A; into a vector. To assess the significance of each signal at
TAD boundaries, we generated 10,000 random samples of simulated TAD boundaries
with the number and chromosome distribution confined by the observed dataset using
BEDTools shuffle (version 2.25.0) (Quinlan and Hall 2010). We then computed the
sampling distribution of each signal value around TAD boundaries in the same way as

described above for actual boundaries and determined the p-values.
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The preprocessed ChIP data for D. melanogaster were obtained from the
modENCODE Consortium (http://www.modencode.org/)(modENCODE Consortium et
al. 2010).

Identification of conserved TAD features and significance tests

To identify conserved TAD features (i.e. body and boundary), genomic coordinates
were converted between species using the UCSC liftOver tool and the Dmel-Dpse chain
file generated in this study. To be successfully lifted over, features in one species
require a 25% minimum ratio of bases (-minMatch=0.25) for body and one third for
boundary (-minMatch=0.33) to be remapped in the other species and the size difference
should not exceed 50% for body and 100% for boundary. Conserved TAD bodies were
determined using BEDTools intersect with the parameters: -F 0.8 -f 0.8, which requires
at least 80% reciprocal overlap in the corresponding intervals in both species. For

boundaries, we considered any overlap as indicative of conservation.

To determine if the observed conservation of TAD features is statistically
significant, we tested two null hypotheses. First, we assumed that the locations of TAD
features across the genome are completely independent between separate species. To
test this, we simulated 10,000 random samples of TAD features in one species and
computed the sampling distribution of conservation with the other species. The p-values
were then determined by the permutation distributions or Fisher Exact tests based on
the observed and expected (mean of the 10,000 simulations) number of lifted and
conserved TAD features. As an alternative null hypothesis for the TAD body, we
assumed that TADs are completely conserved across the genome between species
only when chromosomal rearrangements can disrupt them. To test this, we simulated
10,000 sets of genome shuffling by random fragmentation in each species. The size
distribution of each sample of genome fragments requires to match the actual synteny
blocks between D. melanogaster and D. pseudoobscura. A TAD from the first species
was considered to be conserved if it is successfully lifted and at least 80% of the

converted genomic coordinate overlap with any of the simulated genome fragments in
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the second species. Then, the sampling distribution of the conservation was used to

determine the p-values.

Gene expression data analysis

The preprocessed expression data were obtained from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo) database under accession ID GSE99574. Orthologs
were obtained from FlyBase (https://flybase.org/) Orthologs gene sets. After filtering,
10,921 of the 13,638 Dmel-Dpse orthologs we retrieved are in a one-to-one relationship
and have expression data. To measure expression divergence, we computed both
Euclidean distance and Pearson’s correlation coefficient distance following the formulas

as previously described (Pereira et al. 2009).

Assembly-based structural variants detection

SV calling was performed following our custom pipeline (Kou et al. 2020; Liao et al.
2018) based on the LASTZ/CHAIN/NET workflow (Schwartz et al. 2003; Harris 2007)
(see Supplemental Methods for a more detailed description of the pipeline). The
pipeline is available on GitHub (https://github.com/yiliao1022/LASTZ_SV _pipeline).

Identification and analysis of evolutionary chromosomal rearrangement
breakpoints

Pairwise genome alignments were performed against D. melanogaster and D.
pseudoobscura genome, respectively, using LASTZ (Version 1.04). The resulting
alignments were then processed with axtChain/chainNet/netSyntenic tools to get the
netSyntenic files which were used as input in our custom Perl script Synbreaks.pl to
identify chromosomal rearrangement breakpoints. Breakpoints were classified into two
categories: (1) synteny breaks if they were obtained from ‘top’, ‘syn’ or ‘NonSyn’ fills,
and (2) inversion breaks if they were obtained from ‘inv’ fills. We excluded breaks which
were identified from synteny blocks of size less than 10 kbp and near the terminal
regions (<10 kbp) of long contigs in our analysis, because they are more likely

introduced by assembling artifacts.
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To quantify the distribution of rearrangement breakpoints along the TADs, we
followed a previously described method (Krefting et al, 2018). Briefly, each TAD domain
was extended by 50% of its size on each side and the resulting interval was subdivided
into 20 equal-sized bins. The occurrence of breakpoints was then summed over bins for
all TADs to generate a vector in which each element represents one of the 20 bins.

Additionally, we generated 100 sets of random breakpoints as background control.

Selection of structural variants at TAD boundaries

We measured the relative abundance of structural variants at TAD boundaries following
a previously described method (Fudenberg and Pollard, 2019; Supplemental Methods).
We also permuted 10,000 sets of TAD boundaries across the genome, excluding
heterochromatic regions, to generate the background distribution of the relative

abundance of SVs at TAD boundaries for statistical tests.

Code availability
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(https://github.com/yiliao1022/TADEvoDrosophila).
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Figure legends

Figure 1. TADs annotated using full body samples in D. pseudoobscura. (A) Hi-C
contact map (5-kbp resolution) on a ~3 Mb region from the X chromosome with TADs
annotated using Arrowhead (black), Armatus (green), and HiCExplorer (blue). The
bottom browser tracks show the local profiles of binding sites of BEAF-32 and CTCF, as
well as two histone marks (H3K4me3 and H3H27me3). (B) Overlap of TADs and their
genome coverage annotated using three tools. (C) TAD size distribution for three tools.
Vertical dashed lines represent the mean values. (D) Enrichment of CTCF and BEAF-32
binding sites at HiCExplorer TAD boundaries (P < 1.0 x 10%). (E) Enrichment of
ATAC-seq signal (open chromatin marks) at HiCExplorer TAD boundaries (P < 1.0 x
10*). (F) TAD boundaries (HiCExplorer) are enriched in H3K4me3 (P < 1.0 x 10*) but
depleted for H3K27me3 marks (P < 1.0 x 10*). P-values (D, E, F) were determined by
permutation tests (n = 10,000); dashed lines represent mean values obtained from

permutation tests; gray shaded areas, meanzSD in D and 95% intervals in E and F.

Figure 2.  Evolutionary conservation of TADs between D. pseudoobscura (Dpse) and
D. melanogaster (Dmel). (A) Genome synteny map between Dmel and Dpse
constructed using 985 syntenic blocks larger than 10 kbp. (B) Conservation of TADs on
a ~1.2 Mb orthologous region between Dmel and Dpse. (C) Overlap of TAD features
across three D. melanogaster cell lines. (D) Upset plot showing the overlap of TAD
boundaries across three D. melanogaster cell lines and D. pseudoobscura whole body.
5-kbp boundaries for Dmel and 10-kbp boundaries for Dpse. (E) Upset plot showing
genome coverage that maintained conserved TADs across three D. melanogaster cell
lines and D. pseudoobscura. (F) Distribution of size variation (Dmel size divided by
Dpse size) of orthologous TADs between Dmel and Dpse. (G) Correlation of the size of

conserved TADs between Dmel and Dpse. (H) Correlation between the size difference
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of the orthologous TADs and the size difference of local synteny blocks where the

orthologous TADs located between Dmel and Dpse. Dif., Difference.

Figure 3. Conservation of distinct classes of TAD boundaries between D.
melanogaster and D. pseudoobscura. (A) Boundaries that overlap with binding sites of
architectural proteins versus those lacking the corresponding binding sites. (B)
Boundaries linked with active TADs versus inactive TADs. (C) Boundaries that share
across cell lines versus -cell-line-specific boundaries. (D) Strong versus weak
boundaries. Statistical significance were calculated using Chi-square test (***P < 0.001;

**<0.01; NS: no significance) (for details, see Supplemental Table S14).

Figure 4. The potential roles of TADs in gene regulation in Drosophila. (A) Expression
divergence measured by Euclidean distance for one-to-one orthologs between D.
melanogaster and D. pseudoobscura. (B) Expression variation measured by Euclidean
distance for the same gene sets used in the above interspecific comparison between
two D. melanogaster strains, OreR and w1118. (C) Physical overlap of long genes and
TADs in D. melanogaster and D. pseudoobscura. (D) Representative GO biological
process terms significantly enriched among the 127 long genes that constitute their own
TADs in D. melanogaster. (E) Expression profile of the 127 long genes across eight
tissues in both male and female in D. melanogaster. AC, abdomen without digestive or
reproductive system; DG, digestive plus excretory system; GE, genitalia; GO, gonad;
HD, head; RE, reproductive system without gonad; TX, thorax without digestive system;

WB, whole body. F, female; M, male.

Figure 5. Evolutionary genome rearrangement breakpoints are enriched at
Drosophila TAD boundaries. (A) Synteny map between D. melanogaster 2L and D.
pseudoobscura Chr4. Tracks a: HiCExperor TAD boundaries annotated at restriction

fragment resolution; b: 10 kbp resolution; c: synteny breakpoints. (B) Phylogeny of 17
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Drosophila species. Estimated divergence times are obtained from (Thomas and Hahn
2017) except for D. triauraria. (C) Distribution of genome rearrangement breakpoints
between D. melanogaster and four other Drosophila species along TAD regions. (D)
Distribution of genome rearrangement breakpoints between D. pseudoobscura and four
species along TAD regions. (E) Conservation of TADs in an inverted genomic segment

(D. melanogaster 2L: 8.55 - 8.95 Mb) between D. melanogaster and D. pseudoobscura.

Figure 6. Patterns of structural variants at Drosophila TAD boundaries. (A) Highly
contiguous genome assemblies from 14 D. melanogaster strains and three D. simulans
clade species, together with two outgroup species, D. erecta and D. yakuba. (B)
Nonredundant SVs, including TE insertions, tandem duplications (DUP), Non-TE
insertions (INS, “S” represents insertions size range from 1-10 bp and “L” represents
insertions size range from 11 bp to 20 kbp), and deletions (DEL, “S” for 1-10 bp and “L”
for 11 bp to 2 kbp) identified from the 14 D. melanogaster strains. (C) Nonredundant
SVs identified in the three D. simulans clade species. (D) The unfolded site frequency
spectrum of SVs from 14 D. melanogaster strains. (E) Phylogenetic profiling of SVs
among the three D. simulans clade species. (F) Tests of purifying selection on SVs at
TAD boundaries using Fudenberg and Pollard’s method. (G) Odds ratios of 2x2
contingency tables with margins categorizing polymorphism/divergence and
boundary/non-boundary mutations. Confidence intervals are calculated from the Fisher
exact test results. (H) Deletions from both datasets are depleted at the TAD boundaries.
(/) Non-TE insertions from both datasets are depleted at the TAD boundaries. Red and
black lines represent larger and shorter variants, respectively. (***P < 1x10%

permutation test) (Supplemental Fig. S15).
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