bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.025437; this version posted October 31, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Topological Analysis of Differential Effects of Ketamine and

Propofol Anesthesia on Brain Dynamics

Thomas F. Varley'?, Vanessa Denny!, Olaf Sporns®3, Alice Patania?

! Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401
2 School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47401
3 Indiana University Network Sciences Institute (IUNT), Bloomington, IN 47401

Abstract

Research into the neural correlates of consciousness has found that the vividness and com-
plexity of conscious experience is related to the structure of brain dynamics, and that alterations
to consciousness track changes in temporal evolution of brain states. Despite inducing exter-
nally similar states, propofol and ketamine produce different subjective states of consciousness:
here we explore the different effects of these two anaesthetics on the structure of dynamical
attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two
non-human primates. We used two different methods of attractor reconstruction: the first em-
beds the recordings in a continuous high-dimensional manifold on which we use topological data
analysis to infer the presence (or absence) of higher-order dynamics. The second reconstruction,
an ordinal partition network embedding, allows us to create a discrete state-transition network
approximation of a continuous attractor, which is amenable to information-theoretic analysis
and contains rich information about state-transition dynamics. We find that the awake condition
generally had the ”richest” structure, with the widest repertoire of available states, the presence
of pronounced higher-order structures, and the least deterministic dynamics. In contrast, the
propofol condition had the most dissimilar dynamics to normal consciousness, transitioning to
a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly,
seemed to combine aspects of both: while it was generally less complex than the awake condi-
tion, it remained well above propofol in almost all measures. These results may provides insights
into how consciousness can persist under the influence of ketamine and the battery of measures
used provides deeper and more comprehensive insights than what is typically gained by using
point-measures of complexity.
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1 Introduction

In recent decades, the study of neural correlates of consciousness has developed into a rich and rapidly
maturing field of research. A core component of the study of consciousness is the use of consciousness-

altering drugs, which provide a mapping between measurable differences in brain dynamics and
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specific qualities of conscious experience [61]. Pharmacology has revealed the molecular actions of
different drugs [31], and recent research has begun to look at comparing brain dynamics induced by
different drugs with a specific focus on how different dynamics might relate to conscious awareness
[54, 64]. In this paper, we take such a comparative approach to explore the differences between the
effects of propofol and ketamine on multi-scale brain dynamics with an eye specifically to how these
dynamics might explain the differences in consciousness induced by both drugs. Here we characterize
brain dynamics by adapting two complementary models capturing the evolution of whole-brain states
through time: the first plots a trajectory through a high-dimensional configuration space, while the
other discretizes transitions into a Markovian state-transition network.

While ketamine and propofol are both classified broadly as anesthetics, and both obliterate con-
sciousness at high doses, they are useful to compare due to their markedly different pharmacologies
and the differences between the states they induce at low-to-moderate doses. Propofol is one of the
most commonly-used anesthetics in medicine, and while its full mechanism of action is not totally
understood, a key feature is believed to be its widespread modulation of GABA receptors [31, 24].
By binding to GABA sr1s, propofol potentiates the effects of endogenous GABA, causing widespread
inhibition of neuronal activity. Consequently, even at low doses, propofol induces states of amnesia,
sedation, atonia, and at higher doses, full anesthesia. Propofol reliably induces a suit of changes to
oscillatory activity in the brain, such as the emergence of widespread frontal alpha patterns [1], as
well as regionally specific changes to gamma and beta bands indicative of a multi-stage fragmenting
of neural communication networks [29].

In contrast to propofol, ketamine acts primarily as an antagonist of glutamaterigic NMDA recep-
tors, which has a local excitatory response [31, 67]. Blockade of NMDA receptors has been found to
disinhibiting activity in cortical pyramidal neurons, driving activity in local cortical cirtuits [27]. Ke-
tamine causes widespread, light central nervous system stimulation, in contrast to propofol’s deeply
sedating properties. Despite this increase in activity, ketamine has been found to significantly disrupt
directed information flow across the cortex [55] in a manner consistent with the network fragmenta-
tion observed under GABAergic surgical anaesthetics [35, 36]. Like propofol, ketamine is associated
with a distinct pattern of changes to oscillatory power with a particular focus on the emergence
of high frequency activity in the 20-7T0Hz band, which distinguishes it from other commonly used
surgical anaesthetics [38] and suggests that the different pharmacologies of the two drugs result it
different ”paths to unconsciousness,” described by different dynamical regimes [2]. The state that
ketamine induces is typically referred to as ”dissociative anesthesia” and represents a highly atypical
state of consciousness [16, 34]. In a state of dissociative anesthesia, an individual will often appear
to be unresponsive to stimuli (including pain) and, to an external observer, may be indistinguishable
from someone anesthetized with a typical anesthetic like propofol. Unlike propofol, which simply
ablates consciousness, an otherwise unresponsive patient anesthetized with ketamine often contin-
ues to have complex, conscious experiences, including hallucinations, out-of-body experiences, and
dream-like, immersive experiences [67].

It has been hypothesized that the differences between ketamine and propofol anesthesia are the
result of changes to the global brain dynamics induced by each drug [64]. Experimental evidence

suggests propofol inhibits the ability of the brain to maintain high levels of dynamical complexity,
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resulting in a low-entropy state insufficient for supporting conscious awareness [53, 51]. In contrast,
ketamine’s blockade of NMDArs disinhibits cortical neurons, causing widespread, uncoordinated ex-
citatory activity [27, 67, 54, 64]. This may result in an increase in the entropy of brain activity
without abolishing consciousness, artificially expanding (or at least altering) the state-space reper-
toire. The hypothesis that a dynamic state of higher-than-normal entropy might correspond to a
psychedelic or hallucinatory state of consciousness has become known as the Entropic Brain Hy-
pothesis [8, 7] and received empirical support from studies of psychedelic drugs [6]. The majority
of these studies rely ultimately on point-summaries of ”complexity” (eg: Lempel-Ziv complexity
[63, 51], entropy [37, 69], etc). However, these point-summary measures, while informative, collapse
multi-scale dynamics into a single number and thus have difficulty capturing its specific shape or
form.

We report results relating brain dynamics to states of consciousness (normal wakefulness, ke-
tamine anaesthesia and propofol anaesthesia) using freely-available electrophysiological data from
the NeuroTycho project [44, 66]. In the first part, we describe the structure of brain activity in terms
of its evolution through a high-dimensional state-space: at every moment ¢, the system’s ”state”
can be described as a vector embedded in a k-dimensional space, one dimension for each channel.
Conveniently, this embedded point cloud (EPC) does not require any dimensionality reduction and
conceivably, all other metrics can be reconstructed from this high-dimensional structure. One of the
simplest measure is the ”distance” between successive points, from which we can derive a ”velocity”,
the distance traversed between subsequent time-steps, as well as reconstruct how ”far” in state-space
the system moves over the course of the recording. In addition to these local measures, modeling
continuous brain dynamics as a manifold renders it amenable to techniques from algebraic topol-
ogy (a branch of mathematics dealing with the structures of surfaces and manifolds, particularly
focused on homology). Topological data analysis (TDA) [10, 56] allows us to understand details of
the trajectory, including the emergence of cycles and what regions it may preferentially visit. TDA
has been used extensively to characterize the chaoticity of time series [11, 49, 65, 48] and provides
a suite of techniques for classifying high-dimensional structures.

One limitation of the EPC approach, is that the data is represented by continuous variables, and
so every "state” is unique, making it difficult to understand higher-level state-transition dynamics.
To address this issue, in the second part of the study we discretize the EPC by creating ordinal
partition networks [57, 40, 43] (OPNs) which map sets of multiple unique states to the same set of
nodes in a network and for which the probability of the system transitioning from Set A to Set B
is recorded as a weighted directed edge from node A to node B. In this way, the OPN represents a
reconstructed attractor that is discrete rather than continuous and consequently amenable to a num-
ber of analyses specific to discrete manifolds like networks. In particular, network science provides
tools that allow us to explore the attractor at different levels: the micro-scale (node-level differ-
ences), meso-scale (community-level differences), and macro-scales (global topological differences).
In combination, the two parts of our study allow a much richer understanding of brain dynamics

than single-point measures can provide.
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2 Materials & Methods

2.1 Data

We used the Neurotycho dataset, an open-access collection of multidimensional, invasive electrocor-
ticographical recordings from multiple macaque monkeys [44]. Specifically, we used data from two
monkeys (Chibi and George), prior to, and during behavioural unresponsiveness with propofol or
ketamine [66]. ECoG data was recorded on 128-channel, invasive recording array at a sampling rate
of 1000 Hz. For both monkeys, the array covered the entire left cortical hemisphere, including the

medial wall.

2.1.1 Anesthetic Induction

The details of anesthetic induction are described in [66], and can be viewed on the relevant Neu-
rotycho wiki page'. Briefly, in the Awake condition, the monkeys were restrained in a primate chair
with arms and legs fixed, and neural data was collected while the monkey was calm. During the
Ketamine anesthesia condition, the restrained monkeys were injected with intra-muscular ketamine
(4.3mg/kg for Chibi, 5.9mg/kg for George), and anesthesia was determined as the point that the
monkey no longer responded to physical stimulus (manipulation of the hand and/or tickling the
nose with a cotton swab) and slow-wave oscillations were observed in recorded data. The data were
then recorded for ten minutes (no supplemental or maintenance doses were given). For the Propofol
condition, both restrained monkeys were injected with intra-venous propofol (5.2mg/kg for Chibi,
5mg/kg for George), and loss-of-consciousness assessed using the same criteria. Recordings were
then carried out for ten minutes.

For each drug condition, recordings of normal consciousness were made prior to infusion of
anesthesia, and each experiment was done twice (eg: two experiments where Chibi is anesthetized
with propofol, two with ketamine, resulting in four recordings of Chibi awake, and two of Chibi
under each condition). We removed channels with intractable artifacts from the scans (four channels
from Chibi, two from George). This meant that the number of channels in the final analyzed data
differed between monkey (124 channels for Chibi and 126 channels for George). From each recording
we manually selected six, artifact-free ten-second intervals from the anesthetized condition and three
artifact-free ten-second intervals from the Awake condition (because each anaesthesia condition had
its own Awake condition, we had twice as much Awake data, and consequently halved the number of
sections taken from each scan to ensure that the total number of Awake intervals matched the total
number of anesthetized intervals for each drug condition). Ten-second intervals were the largest that
we found computationally tractable: the run-time and memory requirements of the topological data
analysis grows super-exponentially with the number of samples, and consequently this required us
to keep them comparatively short. All selections were free of major artifacts. This resulted in 24
samples each for the Awake condition, the Ketamine condition, and the Propofol condition. The

time series were visualized and manually selected in EEGLab [15].

Thttp://wiki.neurotycho.org/Anesthesia_and_Sleep_Task_Details
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2.1.2 Pre-Processing

After subsections of the time series had been selected, pre-processing was performed in MNE-Python
[20, 21]. Each series was high-pass filtered with a low frequency of 0.1 Hz, low-pass filtered with
a high frequency of 200 Hz and notch-filtered at 50Hz and all subsequent harmonics up to 250Hz
to account for electrical line noise in Japan, we removed 50ms from the start and the end of each
sample due to filtering artifacts. All filters were FIR type and were applied forwards and backwards
to avoid phase-shifting the data [23]. Following the filtering, time series from each sample were

z-scored as a set (to relative distances between each moment).

2.2 Embedded Point Cloud

The analysis explored the distribution of fine-scale global activity patterns that appear over the
course of the recording. In our framework, global activation patterns recorded by the array are
represented as moving states in a high-dimensional configuration space. Studying the relative po-
sition and dynamics of these states gives unique insights in quantifying the underlying dynamical
structure.

Each time segment can be represented as a C' x T" matrix M, where C' is the number of channels
(126 or 124), and T is the number of samples taken over the course of the recording (in this case,
9900). Each of the T' column-vectors in M (each C entries long) represents a distribution of voltages
across the recording array, at each moment in time.

We construct the embedded point cloud (EPC) by treating each column as a vector in C-
dimensional space, so at each time stamp the brain state is encoded as a C-dimensional vector
in the space of all possible states it can assume. As time goes by, we can see the entire recording as
a trajectory across this continuous, C-dimensional state space. For visualization of this process, see
Figure 1. The first analysis we did was to calculate the cosine distance between temporally consec-
utive states. Since the data was recorded with a constant sampling interval, the distance between
states at time ¢ and ¢ + 1 are proportional to a ”velocity” through the state-space. The average
velocity is a measure of how rapidly patterns of activity observed over the array change and the rate

at which the system as a whole is evolving.

2.3 Topological Data Analysis

Topology is the area of mathematics that studies shapes and spaces hard to represent visually.
More recently, topology has been applied in data analysis to help describe and classify noisy or
high-dimensional data, for example by extracting topological invariants present in complex data
sets [9, 46, 48]. Among the many topological methods that have been developed for data analysis,
the most frequently used is persistent homology. Persistent homology allows us to build descriptors
of the shape of a point cloud, by cataloguing the existence of different structural features, such as
connected components, cycles, voids, etc. at different levels of coarse discretization of the data. We
can think of the process (known variably as a Rips filtration or a Vietoris-Rips filtration) as spheres

centered on each embedded point with growing radius. As the radius of the spheres grows, they
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Figure 1: Construction of the embedded point cloud from a multidimensional time series. Every
time-step in the recording corresponds to a single column vector in a C x T array (a), and this
vector can be imagined as a point in a C-dimensional space, creating a point-cloud that traces out
the trajectory of the system through this space as it evolves (b). We then computed the persistent
homology of the complex defined by these points using cosine distance recording the evolution of
connected components and cycles throughout the filtration. The process can be thought of as spheres
centered on each embedded point with growing radius. As the radius of the spheres grow and begin
to overlap, a discretized approximation of the underlying manifold emerges. To classify the evolving
manifold we use two summaries: the Betti curve, that counts the number of cycles present in the
discretized manifold for each filtration radius (c); and the persistence diagram, that encodes each
cycle as a point and records the radius of its first appearance (birth radius) in the x axis and until
which radius it persists in the y axis (d).
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begin to intersect, connecting the data points, and a representation of the shape of the data will
start to emerge. As one increases the radius, at what scale do we observe changes in representation
of the data? To quantify this changing representation, persistent homology takes note of the number
of connected components (0-dim homology) and the radius at which they merge together and when
the points in these components, start to connect, creating more complex structures like loops (1-dim
homology), and at what size of the spheres they disappear.

To compare the features, we use Betti curves. For each feature type (connected component and
cycles) a Betti curve counts the number of features that exist at each scale in the Rips filtration.
Since the curves all have the same support, the increasing radius of the spheres in the embedding
space, the curves can be compared between each other or averaged together, finding the radius that

create the most complex feature sets.
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2.4 Ordinal Partition Network

Looking at permutation sequences in a time series has been a rising trend in the dynamical systems
community in the last 20 years [4, 5]. Permutations are a sensitive indicator of the dynamic state
of a system and can be efficiently computed, even for long time series data. One significant benefit
of constructing permutations is that it maps a continuous time series to a finite set of discrete
permutations, which allows for principled information-theoretic analysis of systems that might not
otherwise be amenable, such as permutation entropy [4].

To explore the temporal dynamics of the system, we constructed ordinal partition network (OPN)
representations of the data [57, 40], following the procedure discussed in [43]. Due to the difficulties
associated with multi-dimensional OPNs [68], we applied this method to every channel in every
recording slice individually, and then aggregated the results. This allows us to capture all of the
information in each single channel, as multi-channel analysis with OPNs is not technically feasible.

To construct an OPN, begin with a time series X = x1, xs,...x,,. This time series is then embed-
ded in a d dimensional space, using a time-lag 7, as is done when constructing a Taken’s Embedding.
The result is a temporally ordered set of vectors of length d, where each v; = [2;, Tiyr, ..., Tip(a—1)r)-
Each vector v; is then mapped to the permutation, 7 which sorts the coefficients of the vector in
increasing order. Sorting the coefficients of v; we will have that v;; < v;2 < --- < v; 4]. Each
coefficient is then replaced by the position they have in this ordering 7. This new vector will be
represented by a permutation of the numbers 1,2,...,d n; = [m(x;), T(Tiyr), .-, T(Tip(a-1)7)]. We
can consider these permutations as nodes in a directed network and connect with a directed edge
two permutations that come from consecutive time points. The resulting transition network will
have less nodes than existing time points in the original time series, as there might be multiple ¢ for
which the respective delay vectors v; give the same permutation 7. To incorporate this information
into the resulting OPN, we give a weight to each node in the network counting how many time
points 7 led to the same permutation.

In addition to the topological and information-theoretic measures reported here, we ran a battery
of more standard network measures aiming to characterize the connectivity of the OPNs, including
measures of centrality (betweenness, Katz), clustering coefficient. For results and discussion see the

Supplementary Material (Fig. S.I. 1).

2.4.1 Free Parameters

Like other methods of attractor reconstruction, the OPN algorithm requires two free parameters:
the embedding dimension d and the time-lag, 7. There is no agreed-upon method for choosing the
optimal d and 7. Different researchers have suggested different criteria, including values that max-
imize the variance of the degree distribution [40], false-nearest-neighbours criteria [30], or the first
local maxima in the permutation entropy [43]. One significant consideration is that the embedding
dimension must be large enough that the state-space is sufficiently large to fully capture the range
of patterns present in the data (otherwise the resulting OPN fails to capture all the dynamics), but
not so large that every moment is unique (in which case, we reconstruct the time series as a path

graph). The constructed network should have a sufficiently complex topology so as to represent
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Figure 2: We constructed the OPN of the projection of each 2s interval multi-variate time series
onto the first temporal principal component of the entire data set (a). An OPN was computed for
each channel separately. Each channel time series is embedded in a d dimensional space, using a
time-lag 7, as is done when constructing Taken’s Embedding into the phase space. The result is a
temporally ordered set of vectors of length d, v¢. Each vector v; is then mapped to the permutation,
7 which sorts the coefficients of the vector in increasing order (b). This new vector n; = m(v;) will
be represented by a permutation of the numbers 1,2,...,d. We can consider these permutations
as nodes in a directed network and connect with a directed edge two permutations that come from
consecutive time points (c).

the richness of the initial data set, while still finding meaningful patterns. See Figure S.I. 5 for an
example on the effect of these parameters on the structure of an OPN.

As OPNSs are largely restricted to one-dimensional time-series, we created a unique OPN for each
channel in each of the scans. To account for natural differences in the dynamics of each channel or
brain region, each OPN was constructed with a unique embedding lag 7. There were no significant
differences between any conditions at the subject level in terms of the average optimal lag. In
contrast, every OPN had to be constructed with the same embedding dimension d to enable proper
comparison and data aggregation. We selected 7 using the first zero crossing of the autocorrelation,
and d = 5 was the mode of the distribution of embedding dimensions for which the variance in
the degree distribution was maximal. By constructing networks at the channel level, we can assess
changes in brain dynamics at a number of scales, including at the channel-level, the region level,
and at the individual level by aggregating different numbers of channels. In the Results section, the

summary statistics are aggregated at the subject level unless otherwise specified.

2.4.2 Information-Theoretic Analysis of OPNs

A significant benefit of the OPN is that, being a discrete manifold, the state-transition network
is amenable to information-theoretic analysis in a way that a continuous manifold is not. Here
we report two measures of how much information a system encodes in its state transition graph
[26, 25, 32]. The first measure is the determinism, which measures of how much information a
system’s state transition graph encodes about its future evolution; i.e. how deterministic, on average,
is the evolution from state ¢ to state j. The determinism is low in a system where each state has
an equiprobable chance of evolving into one of many future states, while a system where each state
evolves with probability equal to 1 to a subsequent state would be highly deterministic. The average

determinism of a directed network X with N can be quantified as:
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_ logs(N) — (H(W™))
loga(N)

Where (H(W£*)) corresponds to the average entropy of the probability distribution of possible

Det(X)

futures (weighted out-going edges) for each node i. The second measure is the degeneracy, which
gives a measure of how much information a system’s state transition graph encodes about its past
evolution. A system where all states feed into the same future would be described as highly de-
generate, while a system where each state had a well-defined past would exhibit low degeneracy.
Degeneracy is calculated as:

loga(N) — H({(W¢™))
Deg(X) = loga(N)

These two measures constitute an information-theoretic analysis of state-transition graphs rep-
resenting a system outputting a continuous signal. The OPN can be thought of as an approximation
of the idea of an e-machine [12, 13], which provides an optimal approximation of a dynamical sys-
tem based on output data. Combining this information-theoretic formalism provided by Hoel et al
[26, 32]. with the OPN formalism provides a computationally tractable set of tools to explore the

informational structure encoded in continuously-varying signals.

2.5 Software

All statistical analysis was carried out in Python using the Scipy Stats package (version 1.1.0) [45, 42].
Analysis of variance was computed using the Kruskal-Wallis Analysis of Variance test [33], and post
hoc testing was done using the Mann-Whitney U test [39]. Non-parametric statistics were chosen
due to the uncertainty that the data were sufficiently Gaussian. OPNs were constructed using the
OPyN package (available on Github: https://github.com/thosvarleyf/OPyN. Persistence homology
analysis was done using the Ripser (version 0.3.2) [60] and Persim libraries (version 0.0.9) as part of
the Scikit-TDA library (version 0.0.4) [52]. Other packages used include the Numpy library (version
1.15.4) [63], Scikit-Learn (version 0.20.0) [47], Matplotlib (version 2.2.2), [28], Spyder (version 3.2.3),
NetworkX (version 2.2) [22], iGraph (version 0.7.1) [14]. Analysis was done in the Anaconda Python

Environment (Python 3.6.8, Anaconda version 5.0.0).

3 Results

To characterize how propofol and ketamine altered brain dynamics in spacial and temporal domains,
we constructed two embedded representations of the data. The first was the embedded point cloud
(EPC), which embeds the instantaneous activity across all channels in a high-dimensional space as
a point-cloud, which can then be analyzed using techniques from topological data analysis. The sec-
ond method, which focuses on temporally extended dynamics, involves constructing a representative
state-transition network for each channel (ordinal partition networks, OPNs), which encodes tem-
porally extended dynamics in its structure. We begin by discussing the results of the EPC analysis,
and then move on to the OPNs.
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Measure Category Formalism

Maximum Persistence EPC/TDA The length of the longest lived cycle in the Rips filtration
Total Number of Cycles EPC/TDA The total number of cycles that appears over the Rips filtra
Maximum Number of Cycles EPC/TDA The maximum number of cycles present at a given moment
Number of Nodes OPN The number of unique nodes in the OPN.

Number of Edges OPN The number of unique edges in the OPN.

Determinism OPN/Info. Theory The average entropy of the out-going edges for each node.
Degeneracy OPN/Info. Theory How much information is lost when states run together.
Modularity OPN How well the nodes in the OPN can be clustered.
Permutation Entropy Timeseries/Info.Theory = The entropy of the permutation-embedded series.
Lyapunov Exponent Timeseries The ”chaoticity” of the time-series.

Table 1: A table describing all of the measures described here, and how they can be intuitively
interpreted. The measures are broadly categorized into several groups, including which embedding
they are applied to (EPC vs. OPN), and the general mathematical fields they are derived from
(EPC, Information Theory)

Condition Maximum Persistence Number of Cycles Maximum Number of Cycles

Awake 0.36 +0.09 417.5£119.61 80.0 £29.36
Ketamine 0.4+£0.11 190.88 £+ 39.24 22.46 £8.09
Propofol 0.4+£0.11 64.17 £19.47 10.125 £ 2.8

Table 2: Results for the three measures used on the EPC: the maximum persistence of the longest
lived cycle, the total number of cycles over the course of the whole filtration, and the maximum
number of cycles to exist at any one point in the filtration.

3.1 Embedded Point Cloud

Kruskal-Wallis analysis of variance found no significant differences between the three conditions for
the maximum persistence of the longest lived cycle.

There were significant differences between all the conditions regarding the total number of cy-
cles to exist over the course of the filtration (H=62.8, p=2.3 x 10~!4). The largest total number
of cycles was found in the awake condition (417.5 & 119.61), followed by the ketamine condition
(190.88 + 39.24), and the propofol condition had the fewest number of cycles (64.17 & 19.47). A
similar pattern held for the maximum number of cycles to exist at any individual point in the filtra-
tion: Kruskal-Wallis analysis of variance found significant differences between all three conditions
(H=59.46, p=1.22 x 10713), with the awake condition having the most cycles (80.0 + 29.36), fol-
lowed by the ketamine condition (22.46 4+ 8.09), and with the propofol condition having the fewest
(10.125£2.8). These results suggest that the propofol condition has the least amount of “structure”
constraining the simultaneous evolution of activity across the channels. Recall that, if every channel
were acting independently, the resulting EPC would be a smooth, multivariate Gaussian distribu-
tion in as many dimensions as there are channels. The existence of cycles suggests a deviation from
this maximally entropic ideal - the evolution of the channels appear to be jointly constrained by
each-other, creating cycles and voids. All results are are recorded in Table 2 and visualized in Figure
4.
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Figure 3: Results for the EPC analysis of brain dynamical trajectories in the high-dimension con-
figuration space. Empirical distributions of the instantaneous velocity for the three conditions (a).
Avarage Betti curves, with a 90% confidence interval, counting the number of homological cycles
present in the complex as the spheres radius increases (b). The life duration of the longest cycle
in each time segment and total number of homological cycles (represented by a point in the swarm
plots), separated by condition (A = Awake, K = Ketamine, P = Propofol)(c). Persistence diagrams
for all time series embedding separated by conditions. For each condition a scatter point represents
the birth radius and persistence of a cycle in one of the embedding point cloud(d).

Condition Number of Nodes Number of Edges Determinism Degeneracy Modularity
Awake 102.28 4+ 28.9 480.67 4+ 208.95 0.91 +£0.03 0.0112+0.012 0.81 £ 0.08
Ketamine 86.41 + 30.14 325.13 £+ 155.86 0.86 + 0.035 0.02 +0.01 0.84 + 0.08
Propofol 65.17 + 26.6 191.15 +95.46 0.82 +£0.04 0.0114 £0.009 0.85+£0.13

Table 3: Results for the five measures used to characterize the OPNs: the number of nodes in the
network, the number of edges, the determinism, degeneracy, and modularity of the network. Each
of these measures can be thought of as a different axes along which the discrete state-transition
dynamics can occur.

3.2 Ordinal Partition Network

We assessed five simple network measures to characterize how the topology of the OPNs changed
between conditions. The simplest measure is the number of nodes, which measures the size of the
repetoire of ordinal partition micro-states available to the system over the course of it’s run. Kruskal-
Wallis analysis of variance found significant differences between all three conditions (H=2296.06,
p< 1072%), with the awake condition having the most nodes (102.28+28.9), followed by the ketamine
condition (86.41 £ 30.14), with the propofol condition having the fewest (65.17 & 26.6). This is
consistent with the original Entropic Brain Hypothesis, that the vividness of consciousness, and
complexity of behavior, tracks the size of the repetoire of available states [8, 6].

We also compared the number of edges present in the network. In the same way that the

number of nodes counts the unique micro-states the system adopts, the number of edges counts
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Figure 4: a-b) Boxplots showing how the three conditions differed on each of the TDA analyses
applied to the EPC: the maximum persistent (a), the total number of cycles (b), and the maximum
number of cycles (c). d-f) scatter plots showing how the three measures above relate to each-other.
Note the strong positive relationship in f), indicating that the total number of cycles is related to the
largest number of cycles that appear at a given moment. ”Cycles” in this context can be understood
as constraints on the behavior of the system indicating a deviation from the case where all channels
are acting independently.
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Figure 5: Violin plots for the various OPN measures. Violin plots were chosen to represent the
distribution of measures over thousands of individual channels. a) The difference between the three
conditions in the number of unique nodes present in the OPN. This represents something like a
measure of the size of the repertoire of states available to the system in a given condition. b) The
number of unique edges in the OPN, represents the flexibility of the systems dynamics. ¢) The
determinism: an information-theoretic measure of how reliably the future of the system can be
predicted from its’ past. d) the degeneracy: a measure of how much information about the past is
lost when different states ”run into” each-other. This is a rare case where the ketamine condition
is higher than either of the awake or propofol conditions. e) the modularity of the OPN network,
determined using the Infomap algorithm [50]. Provides a measure of how ”constrained” the systems
dynamics are by higher-order patterns of state-transitions.
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Condition Permutation Entropy Lyapunov Exponent

Awake 4.27 +£0.59 0.2 +0.013
Ketamine 3.92 +0.58 0.18 = 0.01
Propofol 3.61 £0.61 0.16 £ 0.01

Table 4: Results for the two ”classical” measures used to characterize the chaosticity and information
content in timeseries: the permutation entropy and the Lyapunov exponent.

the unique transitions that the system can perform. There were significant differences between all
three conditions (H=2645.41, p< 1071°, with the awake condition having the most unique edges
(480.67 £ 208.95), followed by the ketamine condition (325.13 + 155.86) and then the propofol
condition (191.15 + 95.46). This suggests that, in addition to the larger repertoire of individual
states, there is also increased flexibility in terms of how those states transition between themselves.

To leverage the natural application of information theoretic analysis to OPNs, we used two
measures originally developed to asses the causal structure of the system: determinism (on average,
how predictable is the future from the present) and degeneracy (on average, how well can the past be
reconstructed from the present) [32]. There were significant differences between all three conditions
(H=4678.4, p < 1072°, however in contrast to previously described measues, it was the propofol
condition that had the highest determinism (0.82 4 0.04 bit), followed by the ketamine condition
(0.86 £ 0.035 bit), and the awake condition had the lowest determinism (0.91 £ 0.03 bit). The
degeneracy was also significantly different between conditions (H=607.94, p< 10~2%), with ketamine
having the highest degeneracy (0.02 + 0.01 bit), followed by propofol (0.0114 £ 0.009 bit), and then
the awake condition (0.0112 + 0.012 bit).

The final network-measure we applied was the modularity, using the Infomap modularity algo-
rithm [50]. The Infomap algorithm assigns a subset of nodes to the same community if a random
walker on the network has a tendency to get “stuck” in that subset - in the context of a state-
transition network, where a random walk is naturally understood as a possible trajectory of the
system through state-space, a module could then be understood as a kind of “metastable attractor”
that the system gets transiently caught in. A high modularity, then, is indicative of strong higher-
order attractor dynamics constraining the evolution of the system, while a low modularity describes
a relatively "flat” state transition landscape. Kruskal-Wallis analysis of variance found significant
differences between all three conditions (H=1734.71, p< 10~2°), with the propofol condition having
the highest modularity (0.85 + 0.13, followed by the ketamine condition (0.84 £ 0.08), and then
the awake condition had the least modular structure (0.81 + 0.08). All results for this section are

tabulated in Table 3 and visualized in 5.

3.2.1 Raw Timeseries Measures

In addition to the analysis of the ordinal parition networks themselves, we performed two classical
non-network based analyses of the timeseries, to compare how our novel methods compared to more
established ones. The first was the permutation entropy [4] (which is intimately related to the

construction of the OPN). Kruskal-Wallis analysis of variance found significant differences between
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Figure 6: a-b): Violin plots of the permutation entropy and the Lyapunov exponent. As with the
OPN measures, we chose violin plots to capture the distribution of a large number of channels. C) a
scatter plot of the permutation entropy against the Lyapunov exponent: note the positive, but non-
linear relationship between both measures, consistent with previous work showing an association
between permutation entropy and chaos [4]. d-f): scatter plots showing how the two time-series
measures relate to the OPN measures. The scatter-plots show that that these novel measures
derived from the OPN are consistent with established measures. As expected, the number of nodes
in positively associated with the permutation entropy (d). The Lyapunov exponent is negative
correlated with the determinism (which is consistent with the results reported in [62] and consistent
with the intuition behind chaotic systems (e). Finally, there is a slight negative relationship between
the Lyapunov exponent and the modularity, suggesting that metastable higher-order dynamics may
be harder to maintain in chaotic systems (f).
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all three conditions (statistic=2219.65, p< 1072°). As usual, the awake condition had the highest
permutation entropy (4.27 4+ 0.59 bit), followed by the ketamine condition (3.92 £ 0.58 bit), and
with propofol having the lowest (3.61 £ 0.61). These results indicate that, on average, the system is
visiting all of the realized microstates more equitably in the awake condition, whereas in the propofol
condition, it is repeatedly returning to a subset of the states and only rarely visiting others.

The other measure we used was the Lyapunov exponent, commonly understood as a measure
of “how chaotic” a system is. Once again, the usual pattern held: significant differences between
all three conditions (H=5628.26, p< 1072°), with the awake having the greatest chaoticity (0.2 +
0.013), following by the ketamine condition (0.18 £ 0.01), and the propofol condition (0.16 £ 0.01).
Chaoticity can be thought of as something like a measure of how sensitive a system is to perturbation
(how rapidly a perturbed trajectory diverges from it’s unperturbed self). This may be naturally
understood in the context of the need for conscious, awake, animals to be able to rapidly respond
to new stimuli from the environment. Sensitivity to environmental perturbations has clear benefits,
although in the case of ’overly-chaotic dynamics’, it would certainly become detrimental. All results

are tabulated in Table 4 and visualized in Figure 6.

3.3 Dimensionality Reduction & Visualization

We can imagine that each one of the results discussed above defines a kind of ”dynamical mor-
phospace”, analogous to previous work that’s been done on morphospaces in network topology [3],
where every network is embedded in a high-dimensional space: the value along a given axis is defined
by the various measures described above (i.e. one axis is determinism, one is degeneracy, etc). In the
case of just the OPN results, this gives us one point for every channel embedded in a 5-dimensional
morphospace. This can be visualized using a dimensionality reduction algorithm like PCA, tSNE, or
UMAP to create a “birds-eye-view” of how the different states of consciousness relate to each-other.
While this does not return a quantitative measure of similarity or difference, it provides a useful
visualization of how the different conditions are related to each-other, which can be more intuitive
than a table of numbers. We used the UMAP embedding algorithm [41] to construct a visualization

of the channel-wise relationships between the conditions using just the OPN data (see Fig. 7).

4 Discussion

In this paper, we have discussed several ways in which temporal and spatial, embedding of elecrophys-
iological data from macaques in three distinct states of consciousness (awake, ketamine anesthesia,
propofol anaesthesia) can reveal insights into how brain dynamics reflect alterations to consciousness
along many axes. Historically, there has been considerable interest in one-dimensional, scalar mea-
sures of how the “complexity” of brain activity relates to consciousness (e.g. Lampel-Ziv complexity
[63, 54] or Integrated Information Theory’s “Phi” value [59]). However, as argued by Feldman and
Crutchfield [18], there are fundamental limitations to how much insight can be gained by even a
“well-behaved” scalar measure of complexity. When attempting to characterize a system as complex

as a conscious (or even unconscious) brain which can vary along many different axes, a more compre-
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hensive picture is necessary. By constructing two embeddings (the EPC and the channel-wise OPNs)
we can paint a much more holistic picture of how brain activity changes in spatial and temporal
domains when consciousness is lost or altered. Rather than creating a ranking of “complexity” from
low to high, we can begin to tease out the ways in which these conditions are similar, and different.

The awake condition could be characterized as having a high degree of interaction between the
individual channels when compared to propofol, as evidence by the persistence homology results:
the presence of a large number of cycles suggests that the dynamics of the individual regions are
subject to collective constraints that are less prominent when consciousness is lost. At the level
of individual channels, the awake condition can adopt the largest number of unique micro-states
and has the highest degree of flexibility transitioning between them. At the macro-scale, modularity
analysis revealed that the state-transition network has the lowest modular structure, which indicates
that the system is less likely to get caught in deep attractors compared to the propofol condition.
Finally, the awake condition is both less deterministic and less degenerate, which previous work has
found to be indicative of the onset of chaotic dynamics [62], an interpretation supported by the
Lyapunov exponents as well. This suggests that the temporal dynamics of the awake condition are
the least predictable, suggesting a high-degree of flexibility compared to either anesthesia states.

We can compare these findings with the results from the propofol analysis. Persistence homology
analysis of the EPC found that the propofol condition had the lowest number of cycles, suggesting
a loss of “higher-order structure” driving activity across multiple channels. This is consistent with
previous findings that propofol anaesthesia decreases functional connectivity [19], however, one sig-
nificant benefit of the persistence homology analysis is that it considers the joint-states of all channels
together, as opposed to examining pairwise relationships between individual channels, which may
miss higher-order synergies that may be present in the system [58, 17]. The propofol condition had
the smallest repertoire of available states and comparatively constrained transitions between them.
Modularity analysis bore this out, finding that the propofol condition had a significantly higher
modularity, suggesting that the system is more likely to get “stuck” in subsets of the state space.
It was also the most deterministic suggesting reduced dynamical flexibility. Interestingly, it was the
ketamine condition that had the most degenerate dynamics, suggesting that the ketamine has the
shortest "memory”, as the past states are minimally predictable from the present.

In general, the ketamine condition occupied something of a middle ground between the awake
and propofol conditions, suggesting that it combines elements of both states in its dynamics. This
is clearly visible when the UMAP embedding is performed on the OPN-morphospace: the ketamine
condition is clearly visible forming a kind of boundary between the awake and propofol conditions,
which do not overlap significantly. This is consistent with the known clinical properties of ketamine
anaesthesia: while it produces a state that is externally very similar to propofol anaesthesia (loss
of responsiveness to stimuli, analgesia, etc), ketamine can produce dream-like, dissociative states
[34, 31], suggesting that the process generating phenomonological consciousness is not completely
inhibited.

This work does have limitations which are worth considering. The most obvious is the small
sample size: two macaques is a small N, even with multiple slices taken out of the longer scans.

Given the origin of this data, this limitation cannot be currently addressed and we hope that these
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results, and the larger methods introduced, can replicate these findings in future studies. We also
cannot directly infer what state of consciousness the macaques were in at any given time, or even
if macaques are capable of experiencing something like the dissociative anaesthesia that ketamine
induces in humans. As with the small N, this is something of a fundamental limitation and an
on-going issue in consciousness research. In terms of the OPNs, a significant limitation is that they
can only be constructed from a single channel: while attempts at multivariate generalizations have
been proposed [68] 128-channel systems such as those explored here remain computationally and
practically prohibitive. This highlights the importance of multiple different measures to bear on
a question, as opposed to looking for a singular test that explains “everything.” While the OPNs
are limited to one channel, when combined with the EPC analyses, we get a much richer picture
combining temporal and spatial dynamics into a single whole.

We anticipate that the techniques described here can be used to understand other states of
consciousness, such as psychedelia or disorders of consciousness following brain injury, as well as
understanding individual differences in normal cognition. We might hypothesize, for instance, that
high performance on creativity tasks might be associated with an increase in the repertoire of
microstates discernible by the OPN and the flexibility with which the brain transitions between
them. Using the notion of a dynamical morphospace, it may be possible to create a “map” of

different cognitive processes based on their dynamical similarities and differences.

5 Conclusions

In this work, we describe how embeddings of neural activity data can help differentiate between the
similarities and differences between three distinct states of consciousness: normal waking awareness,
propofol anaesthesia, and ketamine anesthesia. To assess the spatial distribution of activity across
channels, we used topological data analysis to analyze the structure of the joint-states of all channels
through time. To asses the channel-level temporal dynamics, we construct discrete state-transition
graphs using ordinal partition networks, which reveal how the system evolves through state-space in
time. We found that the awake condition was characterized by both a high-degree of inter-channel
interactions, as well as a more flexible, less predictable structure, in contrast to propofol which had
less inter-channel interaction, and more predictable, constrained dynamics. Ketamine anesthesia sat
between the two extremes, combining elements of both. By combining multiple measures into a sort

of “dynamical morphospace”, we can better understand how distinct states relate to each-other.
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Figure 7: The UMAP [41] embedding of the results of the 5 OPN-based measures for every channel,
in each condition. Notice that the ketamine condition forms a kind of boundary between the awake
and the propofol conditions, with penetration into both regions. This suggests that, when multiple
metrics are taken into consideration, that the state induced by ketamine combines elements of
both normal waking consciousness and propofol anaestheisa. Note that, in a UMAP embedding,
the resulting axes are not intrinsically meaningful (in contrast to linear embedding algorithms like
PCA): the meaningful information is in the distances between individual points, as opposed to the
specific values of the coordinates.
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