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Abstract

Research into the neural correlates of consciousness has found that the vividness and com-

plexity of conscious experience is related to the structure of brain dynamics, and that alterations

to consciousness track changes in temporal evolution of brain states. Despite inducing exter-

nally similar states, propofol and ketamine produce different subjective states of consciousness:

here we explore the different effects of these two anaesthetics on the structure of dynamical

attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two

non-human primates. We used two different methods of attractor reconstruction: the first em-

beds the recordings in a continuous high-dimensional manifold on which we use topological data

analysis to infer the presence (or absence) of higher-order dynamics. The second reconstruction,

an ordinal partition network embedding, allows us to create a discrete state-transition network

approximation of a continuous attractor, which is amenable to information-theoretic analysis

and contains rich information about state-transition dynamics. We find that the awake condition

generally had the ”richest” structure, with the widest repertoire of available states, the presence

of pronounced higher-order structures, and the least deterministic dynamics. In contrast, the

propofol condition had the most dissimilar dynamics to normal consciousness, transitioning to

a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly,

seemed to combine aspects of both: while it was generally less complex than the awake condi-

tion, it remained well above propofol in almost all measures. These results may provides insights

into how consciousness can persist under the influence of ketamine and the battery of measures

used provides deeper and more comprehensive insights than what is typically gained by using

point-measures of complexity.

Keywords: Anesthesia, consciousness, ketamine, propofol, attractor, dynamics

1 Introduction

In recent decades, the study of neural correlates of consciousness has developed into a rich and rapidly

maturing field of research. A core component of the study of consciousness is the use of consciousness-

altering drugs, which provide a mapping between measurable differences in brain dynamics and
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specific qualities of conscious experience [61]. Pharmacology has revealed the molecular actions of

different drugs [31], and recent research has begun to look at comparing brain dynamics induced by

different drugs with a specific focus on how different dynamics might relate to conscious awareness

[54, 64]. In this paper, we take such a comparative approach to explore the differences between the

effects of propofol and ketamine on multi-scale brain dynamics with an eye specifically to how these

dynamics might explain the differences in consciousness induced by both drugs. Here we characterize

brain dynamics by adapting two complementary models capturing the evolution of whole-brain states

through time: the first plots a trajectory through a high-dimensional configuration space, while the

other discretizes transitions into a Markovian state-transition network.

While ketamine and propofol are both classified broadly as anesthetics, and both obliterate con-

sciousness at high doses, they are useful to compare due to their markedly different pharmacologies

and the differences between the states they induce at low-to-moderate doses. Propofol is one of the

most commonly-used anesthetics in medicine, and while its full mechanism of action is not totally

understood, a key feature is believed to be its widespread modulation of GABAA receptors [31, 24].

By binding to GABAArs, propofol potentiates the effects of endogenous GABA, causing widespread

inhibition of neuronal activity. Consequently, even at low doses, propofol induces states of amnesia,

sedation, atonia, and at higher doses, full anesthesia. Propofol reliably induces a suit of changes to

oscillatory activity in the brain, such as the emergence of widespread frontal alpha patterns [1], as

well as regionally specific changes to gamma and beta bands indicative of a multi-stage fragmenting

of neural communication networks [29].

In contrast to propofol, ketamine acts primarily as an antagonist of glutamaterigic NMDA recep-

tors, which has a local excitatory response [31, 67]. Blockade of NMDA receptors has been found to

disinhibiting activity in cortical pyramidal neurons, driving activity in local cortical cirtuits [27]. Ke-

tamine causes widespread, light central nervous system stimulation, in contrast to propofol’s deeply

sedating properties. Despite this increase in activity, ketamine has been found to significantly disrupt

directed information flow across the cortex [55] in a manner consistent with the network fragmenta-

tion observed under GABAergic surgical anaesthetics [35, 36]. Like propofol, ketamine is associated

with a distinct pattern of changes to oscillatory power with a particular focus on the emergence

of high frequency activity in the 20-70Hz band, which distinguishes it from other commonly used

surgical anaesthetics [38] and suggests that the different pharmacologies of the two drugs result it

different ”paths to unconsciousness,” described by different dynamical regimes [2]. The state that

ketamine induces is typically referred to as ”dissociative anesthesia” and represents a highly atypical

state of consciousness [16, 34]. In a state of dissociative anesthesia, an individual will often appear

to be unresponsive to stimuli (including pain) and, to an external observer, may be indistinguishable

from someone anesthetized with a typical anesthetic like propofol. Unlike propofol, which simply

ablates consciousness, an otherwise unresponsive patient anesthetized with ketamine often contin-

ues to have complex, conscious experiences, including hallucinations, out-of-body experiences, and

dream-like, immersive experiences [67].

It has been hypothesized that the differences between ketamine and propofol anesthesia are the

result of changes to the global brain dynamics induced by each drug [64]. Experimental evidence

suggests propofol inhibits the ability of the brain to maintain high levels of dynamical complexity,
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resulting in a low-entropy state insufficient for supporting conscious awareness [53, 51]. In contrast,

ketamine’s blockade of NMDArs disinhibits cortical neurons, causing widespread, uncoordinated ex-

citatory activity [27, 67, 54, 64]. This may result in an increase in the entropy of brain activity

without abolishing consciousness, artificially expanding (or at least altering) the state-space reper-

toire. The hypothesis that a dynamic state of higher-than-normal entropy might correspond to a

psychedelic or hallucinatory state of consciousness has become known as the Entropic Brain Hy-

pothesis [8, 7] and received empirical support from studies of psychedelic drugs [6]. The majority

of these studies rely ultimately on point-summaries of ”complexity” (eg: Lempel-Ziv complexity

[53, 51], entropy [37, 69], etc). However, these point-summary measures, while informative, collapse

multi-scale dynamics into a single number and thus have difficulty capturing its specific shape or

form.

We report results relating brain dynamics to states of consciousness (normal wakefulness, ke-

tamine anaesthesia and propofol anaesthesia) using freely-available electrophysiological data from

the NeuroTycho project [44, 66]. In the first part, we describe the structure of brain activity in terms

of its evolution through a high-dimensional state-space: at every moment t, the system’s ”state”

can be described as a vector embedded in a k-dimensional space, one dimension for each channel.

Conveniently, this embedded point cloud (EPC) does not require any dimensionality reduction and

conceivably, all other metrics can be reconstructed from this high-dimensional structure. One of the

simplest measure is the ”distance” between successive points, from which we can derive a ”velocity”,

the distance traversed between subsequent time-steps, as well as reconstruct how ”far” in state-space

the system moves over the course of the recording. In addition to these local measures, modeling

continuous brain dynamics as a manifold renders it amenable to techniques from algebraic topol-

ogy (a branch of mathematics dealing with the structures of surfaces and manifolds, particularly

focused on homology). Topological data analysis (TDA) [10, 56] allows us to understand details of

the trajectory, including the emergence of cycles and what regions it may preferentially visit. TDA

has been used extensively to characterize the chaoticity of time series [11, 49, 65, 48] and provides

a suite of techniques for classifying high-dimensional structures.

One limitation of the EPC approach, is that the data is represented by continuous variables, and

so every ”state” is unique, making it difficult to understand higher-level state-transition dynamics.

To address this issue, in the second part of the study we discretize the EPC by creating ordinal

partition networks [57, 40, 43] (OPNs) which map sets of multiple unique states to the same set of

nodes in a network and for which the probability of the system transitioning from Set A to Set B

is recorded as a weighted directed edge from node A to node B. In this way, the OPN represents a

reconstructed attractor that is discrete rather than continuous and consequently amenable to a num-

ber of analyses specific to discrete manifolds like networks. In particular, network science provides

tools that allow us to explore the attractor at different levels: the micro-scale (node-level differ-

ences), meso-scale (community-level differences), and macro-scales (global topological differences).

In combination, the two parts of our study allow a much richer understanding of brain dynamics

than single-point measures can provide.
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2 Materials & Methods

2.1 Data

We used the Neurotycho dataset, an open-access collection of multidimensional, invasive electrocor-

ticographical recordings from multiple macaque monkeys [44]. Specifically, we used data from two

monkeys (Chibi and George), prior to, and during behavioural unresponsiveness with propofol or

ketamine [66]. ECoG data was recorded on 128-channel, invasive recording array at a sampling rate

of 1000 Hz. For both monkeys, the array covered the entire left cortical hemisphere, including the

medial wall.

2.1.1 Anesthetic Induction

The details of anesthetic induction are described in [66], and can be viewed on the relevant Neu-

rotycho wiki page1. Briefly, in the Awake condition, the monkeys were restrained in a primate chair

with arms and legs fixed, and neural data was collected while the monkey was calm. During the

Ketamine anesthesia condition, the restrained monkeys were injected with intra-muscular ketamine

(4.3mg/kg for Chibi, 5.9mg/kg for George), and anesthesia was determined as the point that the

monkey no longer responded to physical stimulus (manipulation of the hand and/or tickling the

nose with a cotton swab) and slow-wave oscillations were observed in recorded data. The data were

then recorded for ten minutes (no supplemental or maintenance doses were given). For the Propofol

condition, both restrained monkeys were injected with intra-venous propofol (5.2mg/kg for Chibi,

5mg/kg for George), and loss-of-consciousness assessed using the same criteria. Recordings were

then carried out for ten minutes.

For each drug condition, recordings of normal consciousness were made prior to infusion of

anesthesia, and each experiment was done twice (eg: two experiments where Chibi is anesthetized

with propofol, two with ketamine, resulting in four recordings of Chibi awake, and two of Chibi

under each condition). We removed channels with intractable artifacts from the scans (four channels

from Chibi, two from George). This meant that the number of channels in the final analyzed data

differed between monkey (124 channels for Chibi and 126 channels for George). From each recording

we manually selected six, artifact-free ten-second intervals from the anesthetized condition and three

artifact-free ten-second intervals from the Awake condition (because each anaesthesia condition had

its own Awake condition, we had twice as much Awake data, and consequently halved the number of

sections taken from each scan to ensure that the total number of Awake intervals matched the total

number of anesthetized intervals for each drug condition). Ten-second intervals were the largest that

we found computationally tractable: the run-time and memory requirements of the topological data

analysis grows super-exponentially with the number of samples, and consequently this required us

to keep them comparatively short. All selections were free of major artifacts. This resulted in 24

samples each for the Awake condition, the Ketamine condition, and the Propofol condition. The

time series were visualized and manually selected in EEGLab [15].

1http://wiki.neurotycho.org/Anesthesia and Sleep Task Details
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2.1.2 Pre-Processing

After subsections of the time series had been selected, pre-processing was performed in MNE-Python

[20, 21]. Each series was high-pass filtered with a low frequency of 0.1 Hz, low-pass filtered with

a high frequency of 200 Hz and notch-filtered at 50Hz and all subsequent harmonics up to 250Hz

to account for electrical line noise in Japan, we removed 50ms from the start and the end of each

sample due to filtering artifacts. All filters were FIR type and were applied forwards and backwards

to avoid phase-shifting the data [23]. Following the filtering, time series from each sample were

z-scored as a set (to relative distances between each moment).

2.2 Embedded Point Cloud

The analysis explored the distribution of fine-scale global activity patterns that appear over the

course of the recording. In our framework, global activation patterns recorded by the array are

represented as moving states in a high-dimensional configuration space. Studying the relative po-

sition and dynamics of these states gives unique insights in quantifying the underlying dynamical

structure.

Each time segment can be represented as a C ×T matrix M , where C is the number of channels

(126 or 124), and T is the number of samples taken over the course of the recording (in this case,

9900). Each of the T column-vectors in M (each C entries long) represents a distribution of voltages

across the recording array, at each moment in time.

We construct the embedded point cloud (EPC) by treating each column as a vector in C-

dimensional space, so at each time stamp the brain state is encoded as a C-dimensional vector

in the space of all possible states it can assume. As time goes by, we can see the entire recording as

a trajectory across this continuous, C-dimensional state space. For visualization of this process, see

Figure 1. The first analysis we did was to calculate the cosine distance between temporally consec-

utive states. Since the data was recorded with a constant sampling interval, the distance between

states at time t and t + 1 are proportional to a ”velocity” through the state-space. The average

velocity is a measure of how rapidly patterns of activity observed over the array change and the rate

at which the system as a whole is evolving.

2.3 Topological Data Analysis

Topology is the area of mathematics that studies shapes and spaces hard to represent visually.

More recently, topology has been applied in data analysis to help describe and classify noisy or

high-dimensional data, for example by extracting topological invariants present in complex data

sets [9, 46, 48]. Among the many topological methods that have been developed for data analysis,

the most frequently used is persistent homology. Persistent homology allows us to build descriptors

of the shape of a point cloud, by cataloguing the existence of different structural features, such as

connected components, cycles, voids, etc. at different levels of coarse discretization of the data. We

can think of the process (known variably as a Rips filtration or a Vietoris-Rips filtration) as spheres

centered on each embedded point with growing radius. As the radius of the spheres grows, they
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Figure 1: Construction of the embedded point cloud from a multidimensional time series. Every
time-step in the recording corresponds to a single column vector in a C × T array (a), and this
vector can be imagined as a point in a C-dimensional space, creating a point-cloud that traces out
the trajectory of the system through this space as it evolves (b). We then computed the persistent
homology of the complex defined by these points using cosine distance recording the evolution of
connected components and cycles throughout the filtration. The process can be thought of as spheres
centered on each embedded point with growing radius. As the radius of the spheres grow and begin
to overlap, a discretized approximation of the underlying manifold emerges. To classify the evolving
manifold we use two summaries: the Betti curve, that counts the number of cycles present in the
discretized manifold for each filtration radius (c); and the persistence diagram, that encodes each
cycle as a point and records the radius of its first appearance (birth radius) in the x axis and until
which radius it persists in the y axis (d).

begin to intersect, connecting the data points, and a representation of the shape of the data will

start to emerge. As one increases the radius, at what scale do we observe changes in representation

of the data? To quantify this changing representation, persistent homology takes note of the number

of connected components (0-dim homology) and the radius at which they merge together and when

the points in these components, start to connect, creating more complex structures like loops (1-dim

homology), and at what size of the spheres they disappear.

To compare the features, we use Betti curves. For each feature type (connected component and

cycles) a Betti curve counts the number of features that exist at each scale in the Rips filtration.

Since the curves all have the same support, the increasing radius of the spheres in the embedding

space, the curves can be compared between each other or averaged together, finding the radius that

create the most complex feature sets.
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2.4 Ordinal Partition Network

Looking at permutation sequences in a time series has been a rising trend in the dynamical systems

community in the last 20 years [4, 5]. Permutations are a sensitive indicator of the dynamic state

of a system and can be efficiently computed, even for long time series data. One significant benefit

of constructing permutations is that it maps a continuous time series to a finite set of discrete

permutations, which allows for principled information-theoretic analysis of systems that might not

otherwise be amenable, such as permutation entropy [4].

To explore the temporal dynamics of the system, we constructed ordinal partition network (OPN)

representations of the data [57, 40], following the procedure discussed in [43]. Due to the difficulties

associated with multi-dimensional OPNs [68], we applied this method to every channel in every

recording slice individually, and then aggregated the results. This allows us to capture all of the

information in each single channel, as multi-channel analysis with OPNs is not technically feasible.

To construct an OPN, begin with a time series X = x1, x2, ...xn. This time series is then embed-

ded in a d dimensional space, using a time-lag τ , as is done when constructing a Taken’s Embedding.

The result is a temporally ordered set of vectors of length d, where each vi = [xi, xi+τ , . . . , xi+(d−1)τ ].

Each vector vi is then mapped to the permutation, π which sorts the coefficients of the vector in

increasing order. Sorting the coefficients of vi we will have that vi,1 ≤ vi,2 ≤ · · · ≤ vi,d]. Each

coefficient is then replaced by the position they have in this ordering π. This new vector will be

represented by a permutation of the numbers 1, 2, . . . , d ni = [π(xi), π(xi+τ ), . . . , π(xi+(d−1)τ )]. We

can consider these permutations as nodes in a directed network and connect with a directed edge

two permutations that come from consecutive time points. The resulting transition network will

have less nodes than existing time points in the original time series, as there might be multiple i for

which the respective delay vectors vi give the same permutation π. To incorporate this information

into the resulting OPN, we give a weight to each node in the network counting how many time

points i led to the same permutation.

In addition to the topological and information-theoretic measures reported here, we ran a battery

of more standard network measures aiming to characterize the connectivity of the OPNs, including

measures of centrality (betweenness, Katz), clustering coefficient. For results and discussion see the

Supplementary Material (Fig. S.I. 1).

2.4.1 Free Parameters

Like other methods of attractor reconstruction, the OPN algorithm requires two free parameters:

the embedding dimension d and the time-lag, τ . There is no agreed-upon method for choosing the

optimal d and τ . Different researchers have suggested different criteria, including values that max-

imize the variance of the degree distribution [40], false-nearest-neighbours criteria [30], or the first

local maxima in the permutation entropy [43]. One significant consideration is that the embedding

dimension must be large enough that the state-space is sufficiently large to fully capture the range

of patterns present in the data (otherwise the resulting OPN fails to capture all the dynamics), but

not so large that every moment is unique (in which case, we reconstruct the time series as a path

graph). The constructed network should have a sufficiently complex topology so as to represent
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Figure 2: We constructed the OPN of the projection of each 2s interval multi-variate time series
onto the first temporal principal component of the entire data set (a). An OPN was computed for
each channel separately. Each channel time series is embedded in a d dimensional space, using a
time-lag τ , as is done when constructing Taken’s Embedding into the phase space. The result is a
temporally ordered set of vectors of length d, vt. Each vector vt is then mapped to the permutation,
π which sorts the coefficients of the vector in increasing order (b). This new vector nt = π(vt) will
be represented by a permutation of the numbers 1, 2, . . . , d. We can consider these permutations
as nodes in a directed network and connect with a directed edge two permutations that come from
consecutive time points (c).

the richness of the initial data set, while still finding meaningful patterns. See Figure S.I. 5 for an

example on the effect of these parameters on the structure of an OPN.

As OPNs are largely restricted to one-dimensional time-series, we created a unique OPN for each

channel in each of the scans. To account for natural differences in the dynamics of each channel or

brain region, each OPN was constructed with a unique embedding lag τ . There were no significant

differences between any conditions at the subject level in terms of the average optimal lag. In

contrast, every OPN had to be constructed with the same embedding dimension d to enable proper

comparison and data aggregation. We selected τ using the first zero crossing of the autocorrelation,

and d = 5 was the mode of the distribution of embedding dimensions for which the variance in

the degree distribution was maximal. By constructing networks at the channel level, we can assess

changes in brain dynamics at a number of scales, including at the channel-level, the region level,

and at the individual level by aggregating different numbers of channels. In the Results section, the

summary statistics are aggregated at the subject level unless otherwise specified.

2.4.2 Information-Theoretic Analysis of OPNs

A significant benefit of the OPN is that, being a discrete manifold, the state-transition network

is amenable to information-theoretic analysis in a way that a continuous manifold is not. Here

we report two measures of how much information a system encodes in its state transition graph

[26, 25, 32]. The first measure is the determinism, which measures of how much information a

system’s state transition graph encodes about its future evolution; i.e. how deterministic, on average,

is the evolution from state i to state j. The determinism is low in a system where each state has

an equiprobable chance of evolving into one of many future states, while a system where each state

evolves with probability equal to 1 to a subsequent state would be highly deterministic. The average

determinism of a directed network X with N can be quantified as:
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Det(X) =
log2(N)− 〈H(W out

i )〉
log2(N)

Where 〈H(W out
i )〉 corresponds to the average entropy of the probability distribution of possible

futures (weighted out-going edges) for each node i. The second measure is the degeneracy, which

gives a measure of how much information a system’s state transition graph encodes about its past

evolution. A system where all states feed into the same future would be described as highly de-

generate, while a system where each state had a well-defined past would exhibit low degeneracy.

Degeneracy is calculated as:

Deg(X) =
log2(N)−H(〈W out

i 〉)
log2(N)

These two measures constitute an information-theoretic analysis of state-transition graphs rep-

resenting a system outputting a continuous signal. The OPN can be thought of as an approximation

of the idea of an ε-machine [12, 13], which provides an optimal approximation of a dynamical sys-

tem based on output data. Combining this information-theoretic formalism provided by Hoel et al

[26, 32]. with the OPN formalism provides a computationally tractable set of tools to explore the

informational structure encoded in continuously-varying signals.

2.5 Software

All statistical analysis was carried out in Python using the Scipy Stats package (version 1.1.0) [45, 42].

Analysis of variance was computed using the Kruskal-Wallis Analysis of Variance test [33], and post

hoc testing was done using the Mann-Whitney U test [39]. Non-parametric statistics were chosen

due to the uncertainty that the data were sufficiently Gaussian. OPNs were constructed using the

OPyN package (available on Github: https://github.com/thosvarleyf/OPyN. Persistence homology

analysis was done using the Ripser (version 0.3.2) [60] and Persim libraries (version 0.0.9) as part of

the Scikit-TDA library (version 0.0.4) [52]. Other packages used include the Numpy library (version

1.15.4) [63], Scikit-Learn (version 0.20.0) [47], Matplotlib (version 2.2.2), [28], Spyder (version 3.2.3),

NetworkX (version 2.2) [22], iGraph (version 0.7.1) [14]. Analysis was done in the Anaconda Python

Environment (Python 3.6.8, Anaconda version 5.0.0).

3 Results

To characterize how propofol and ketamine altered brain dynamics in spacial and temporal domains,

we constructed two embedded representations of the data. The first was the embedded point cloud

(EPC), which embeds the instantaneous activity across all channels in a high-dimensional space as

a point-cloud, which can then be analyzed using techniques from topological data analysis. The sec-

ond method, which focuses on temporally extended dynamics, involves constructing a representative

state-transition network for each channel (ordinal partition networks, OPNs), which encodes tem-

porally extended dynamics in its structure. We begin by discussing the results of the EPC analysis,

and then move on to the OPNs.
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Measure Category Formalism Interpretation

Maximum Persistence EPC/TDA The length of the longest lived cycle in the Rips filtration
Total Number of Cycles EPC/TDA The total number of cycles that appears over the Rips filtration How constrained are the interactions between all channels?
Maximum Number of Cycles EPC/TDA The maximum number of cycles present at a given moment in the Rips filtration How constrained are the interactions between all channels?

Number of Nodes OPN The number of unique nodes in the OPN. The size of the repetoir of available states.
Number of Edges OPN The number of unique edges in the OPN. The flexibility with which the system transitions through microstates.
Determinism OPN/Info. Theory The average entropy of the out-going edges for each node. How predictable is the future given the present?
Degeneracy OPN/Info. Theory How much information is lost when states run together. How recoverable is the past given the present?
Modularity OPN How well the nodes in the OPN can be clustered. The tendancy for the system to get “stuck” in smaller subsets of the state space.

Permutation Entropy Timeseries/Info.Theory The entropy of the permutation-embedded series. How “flat” the overall state-space is.
Lyapunov Exponent Timeseries The ”chaoticity” of the time-series. How predictable is the timeseries. How sensitive to perturbation.

Table 1: A table describing all of the measures described here, and how they can be intuitively
interpreted. The measures are broadly categorized into several groups, including which embedding
they are applied to (EPC vs. OPN), and the general mathematical fields they are derived from
(EPC, Information Theory)

Condition Maximum Persistence Number of Cycles Maximum Number of Cycles
Awake 0.36± 0.09 417.5± 119.61 80.0± 29.36
Ketamine 0.4± 0.11 190.88± 39.24 22.46± 8.09
Propofol 0.4± 0.11 64.17± 19.47 10.125± 2.8

Table 2: Results for the three measures used on the EPC: the maximum persistence of the longest
lived cycle, the total number of cycles over the course of the whole filtration, and the maximum
number of cycles to exist at any one point in the filtration.

3.1 Embedded Point Cloud

Kruskal-Wallis analysis of variance found no significant differences between the three conditions for

the maximum persistence of the longest lived cycle.

There were significant differences between all the conditions regarding the total number of cy-

cles to exist over the course of the filtration (H=62.8, p=2.3 × 10−14). The largest total number

of cycles was found in the awake condition (417.5 ± 119.61), followed by the ketamine condition

(190.88 ± 39.24), and the propofol condition had the fewest number of cycles (64.17 ± 19.47). A

similar pattern held for the maximum number of cycles to exist at any individual point in the filtra-

tion: Kruskal-Wallis analysis of variance found significant differences between all three conditions

(H=59.46, p=1.22 × 10−13), with the awake condition having the most cycles (80.0 ± 29.36), fol-

lowed by the ketamine condition (22.46 ± 8.09), and with the propofol condition having the fewest

(10.125±2.8). These results suggest that the propofol condition has the least amount of “structure”

constraining the simultaneous evolution of activity across the channels. Recall that, if every channel

were acting independently, the resulting EPC would be a smooth, multivariate Gaussian distribu-

tion in as many dimensions as there are channels. The existence of cycles suggests a deviation from

this maximally entropic ideal - the evolution of the channels appear to be jointly constrained by

each-other, creating cycles and voids. All results are are recorded in Table 2 and visualized in Figure

4.
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Figure 3: Results for the EPC analysis of brain dynamical trajectories in the high-dimension con-
figuration space. Empirical distributions of the instantaneous velocity for the three conditions (a).
Avarage Betti curves, with a 90% confidence interval, counting the number of homological cycles
present in the complex as the spheres radius increases (b). The life duration of the longest cycle
in each time segment and total number of homological cycles (represented by a point in the swarm
plots), separated by condition (A = Awake, K = Ketamine, P = Propofol)(c). Persistence diagrams
for all time series embedding separated by conditions. For each condition a scatter point represents
the birth radius and persistence of a cycle in one of the embedding point cloud(d).

Condition Number of Nodes Number of Edges Determinism Degeneracy Modularity
Awake 102.28± 28.9 480.67± 208.95 0.91± 0.03 0.0112± 0.012 0.81± 0.08
Ketamine 86.41± 30.14 325.13± 155.86 0.86± 0.035 0.02± 0.01 0.84± 0.08
Propofol 65.17± 26.6 191.15± 95.46 0.82± 0.04 0.0114± 0.009 0.85± 0.13

Table 3: Results for the five measures used to characterize the OPNs: the number of nodes in the
network, the number of edges, the determinism, degeneracy, and modularity of the network. Each
of these measures can be thought of as a different axes along which the discrete state-transition
dynamics can occur.

3.2 Ordinal Partition Network

We assessed five simple network measures to characterize how the topology of the OPNs changed

between conditions. The simplest measure is the number of nodes, which measures the size of the

repetoire of ordinal partition micro-states available to the system over the course of it’s run. Kruskal-

Wallis analysis of variance found significant differences between all three conditions (H=2296.06,

p< 10−20), with the awake condition having the most nodes (102.28±28.9), followed by the ketamine

condition (86.41 ± 30.14), with the propofol condition having the fewest (65.17 ± 26.6). This is

consistent with the original Entropic Brain Hypothesis, that the vividness of consciousness, and

complexity of behavior, tracks the size of the repetoire of available states [8, 6].

We also compared the number of edges present in the network. In the same way that the

number of nodes counts the unique micro-states the system adopts, the number of edges counts
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Figure 4: a-b) Boxplots showing how the three conditions differed on each of the TDA analyses
applied to the EPC: the maximum persistent (a), the total number of cycles (b), and the maximum
number of cycles (c). d-f) scatter plots showing how the three measures above relate to each-other.
Note the strong positive relationship in f), indicating that the total number of cycles is related to the
largest number of cycles that appear at a given moment. ”Cycles” in this context can be understood
as constraints on the behavior of the system indicating a deviation from the case where all channels
are acting independently.
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Figure 5: Violin plots for the various OPN measures. Violin plots were chosen to represent the
distribution of measures over thousands of individual channels. a) The difference between the three
conditions in the number of unique nodes present in the OPN. This represents something like a
measure of the size of the repertoire of states available to the system in a given condition. b) The
number of unique edges in the OPN, represents the flexibility of the systems dynamics. c) The
determinism: an information-theoretic measure of how reliably the future of the system can be
predicted from its’ past. d) the degeneracy: a measure of how much information about the past is
lost when different states ”run into” each-other. This is a rare case where the ketamine condition
is higher than either of the awake or propofol conditions. e) the modularity of the OPN network,
determined using the Infomap algorithm [50]. Provides a measure of how ”constrained” the systems
dynamics are by higher-order patterns of state-transitions.
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Condition Permutation Entropy Lyapunov Exponent

Awake 4.27± 0.59 0.2± 0.013
Ketamine 3.92± 0.58 0.18± 0.01
Propofol 3.61± 0.61 0.16± 0.01

Table 4: Results for the two ”classical” measures used to characterize the chaosticity and information
content in timeseries: the permutation entropy and the Lyapunov exponent.

the unique transitions that the system can perform. There were significant differences between all

three conditions (H=2645.41, p< 10−10, with the awake condition having the most unique edges

(480.67 ± 208.95), followed by the ketamine condition (325.13 ± 155.86) and then the propofol

condition (191.15 ± 95.46). This suggests that, in addition to the larger repertoire of individual

states, there is also increased flexibility in terms of how those states transition between themselves.

To leverage the natural application of information theoretic analysis to OPNs, we used two

measures originally developed to asses the causal structure of the system: determinism (on average,

how predictable is the future from the present) and degeneracy (on average, how well can the past be

reconstructed from the present) [32]. There were significant differences between all three conditions

(H=4678.4, p < 10−20, however in contrast to previously described measues, it was the propofol

condition that had the highest determinism (0.82 ± 0.04 bit), followed by the ketamine condition

(0.86 ± 0.035 bit), and the awake condition had the lowest determinism (0.91 ± 0.03 bit). The

degeneracy was also significantly different between conditions (H=607.94, p< 10−20), with ketamine

having the highest degeneracy (0.02± 0.01 bit), followed by propofol (0.0114± 0.009 bit), and then

the awake condition (0.0112± 0.012 bit).

The final network-measure we applied was the modularity, using the Infomap modularity algo-

rithm [50]. The Infomap algorithm assigns a subset of nodes to the same community if a random

walker on the network has a tendency to get “stuck” in that subset - in the context of a state-

transition network, where a random walk is naturally understood as a possible trajectory of the

system through state-space, a module could then be understood as a kind of “metastable attractor”

that the system gets transiently caught in. A high modularity, then, is indicative of strong higher-

order attractor dynamics constraining the evolution of the system, while a low modularity describes

a relatively ”flat” state transition landscape. Kruskal-Wallis analysis of variance found significant

differences between all three conditions (H=1734.71, p< 10−20), with the propofol condition having

the highest modularity (0.85 ± 0.13, followed by the ketamine condition (0.84 ± 0.08), and then

the awake condition had the least modular structure (0.81 ± 0.08). All results for this section are

tabulated in Table 3 and visualized in 5.

3.2.1 Raw Timeseries Measures

In addition to the analysis of the ordinal parition networks themselves, we performed two classical

non-network based analyses of the timeseries, to compare how our novel methods compared to more

established ones. The first was the permutation entropy [4] (which is intimately related to the

construction of the OPN). Kruskal-Wallis analysis of variance found significant differences between
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Figure 6: a-b): Violin plots of the permutation entropy and the Lyapunov exponent. As with the
OPN measures, we chose violin plots to capture the distribution of a large number of channels. C) a
scatter plot of the permutation entropy against the Lyapunov exponent: note the positive, but non-
linear relationship between both measures, consistent with previous work showing an association
between permutation entropy and chaos [4]. d-f): scatter plots showing how the two time-series
measures relate to the OPN measures. The scatter-plots show that that these novel measures
derived from the OPN are consistent with established measures. As expected, the number of nodes
in positively associated with the permutation entropy (d). The Lyapunov exponent is negative
correlated with the determinism (which is consistent with the results reported in [62] and consistent
with the intuition behind chaotic systems (e). Finally, there is a slight negative relationship between
the Lyapunov exponent and the modularity, suggesting that metastable higher-order dynamics may
be harder to maintain in chaotic systems (f).
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all three conditions (statistic=2219.65, p< 10−20). As usual, the awake condition had the highest

permutation entropy (4.27 ± 0.59 bit), followed by the ketamine condition (3.92 ± 0.58 bit), and

with propofol having the lowest (3.61± 0.61). These results indicate that, on average, the system is

visiting all of the realized microstates more equitably in the awake condition, whereas in the propofol

condition, it is repeatedly returning to a subset of the states and only rarely visiting others.

The other measure we used was the Lyapunov exponent, commonly understood as a measure

of “how chaotic” a system is. Once again, the usual pattern held: significant differences between

all three conditions (H=5628.26, p< 10−20), with the awake having the greatest chaoticity (0.2 ±
0.013), following by the ketamine condition (0.18± 0.01), and the propofol condition (0.16± 0.01).

Chaoticity can be thought of as something like a measure of how sensitive a system is to perturbation

(how rapidly a perturbed trajectory diverges from it’s unperturbed self). This may be naturally

understood in the context of the need for conscious, awake, animals to be able to rapidly respond

to new stimuli from the environment. Sensitivity to environmental perturbations has clear benefits,

although in the case of ’overly-chaotic dynamics’, it would certainly become detrimental. All results

are tabulated in Table 4 and visualized in Figure 6.

3.3 Dimensionality Reduction & Visualization

We can imagine that each one of the results discussed above defines a kind of ”dynamical mor-

phospace”, analogous to previous work that’s been done on morphospaces in network topology [3],

where every network is embedded in a high-dimensional space: the value along a given axis is defined

by the various measures described above (i.e. one axis is determinism, one is degeneracy, etc). In the

case of just the OPN results, this gives us one point for every channel embedded in a 5-dimensional

morphospace. This can be visualized using a dimensionality reduction algorithm like PCA, tSNE, or

UMAP to create a “birds-eye-view” of how the different states of consciousness relate to each-other.

While this does not return a quantitative measure of similarity or difference, it provides a useful

visualization of how the different conditions are related to each-other, which can be more intuitive

than a table of numbers. We used the UMAP embedding algorithm [41] to construct a visualization

of the channel-wise relationships between the conditions using just the OPN data (see Fig. 7).

4 Discussion

In this paper, we have discussed several ways in which temporal and spatial, embedding of elecrophys-

iological data from macaques in three distinct states of consciousness (awake, ketamine anesthesia,

propofol anaesthesia) can reveal insights into how brain dynamics reflect alterations to consciousness

along many axes. Historically, there has been considerable interest in one-dimensional, scalar mea-

sures of how the “complexity” of brain activity relates to consciousness (e.g. Lampel-Ziv complexity

[53, 54] or Integrated Information Theory’s “Phi” value [59]). However, as argued by Feldman and

Crutchfield [18], there are fundamental limitations to how much insight can be gained by even a

“well-behaved” scalar measure of complexity. When attempting to characterize a system as complex

as a conscious (or even unconscious) brain which can vary along many different axes, a more compre-
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hensive picture is necessary. By constructing two embeddings (the EPC and the channel-wise OPNs)

we can paint a much more holistic picture of how brain activity changes in spatial and temporal

domains when consciousness is lost or altered. Rather than creating a ranking of “complexity” from

low to high, we can begin to tease out the ways in which these conditions are similar, and different.

The awake condition could be characterized as having a high degree of interaction between the

individual channels when compared to propofol, as evidence by the persistence homology results:

the presence of a large number of cycles suggests that the dynamics of the individual regions are

subject to collective constraints that are less prominent when consciousness is lost. At the level

of individual channels, the awake condition can adopt the largest number of unique micro-states

and has the highest degree of flexibility transitioning between them. At the macro-scale, modularity

analysis revealed that the state-transition network has the lowest modular structure, which indicates

that the system is less likely to get caught in deep attractors compared to the propofol condition.

Finally, the awake condition is both less deterministic and less degenerate, which previous work has

found to be indicative of the onset of chaotic dynamics [62], an interpretation supported by the

Lyapunov exponents as well. This suggests that the temporal dynamics of the awake condition are

the least predictable, suggesting a high-degree of flexibility compared to either anesthesia states.

We can compare these findings with the results from the propofol analysis. Persistence homology

analysis of the EPC found that the propofol condition had the lowest number of cycles, suggesting

a loss of “higher-order structure” driving activity across multiple channels. This is consistent with

previous findings that propofol anaesthesia decreases functional connectivity [19], however, one sig-

nificant benefit of the persistence homology analysis is that it considers the joint-states of all channels

together, as opposed to examining pairwise relationships between individual channels, which may

miss higher-order synergies that may be present in the system [58, 17]. The propofol condition had

the smallest repertoire of available states and comparatively constrained transitions between them.

Modularity analysis bore this out, finding that the propofol condition had a significantly higher

modularity, suggesting that the system is more likely to get “stuck” in subsets of the state space.

It was also the most deterministic suggesting reduced dynamical flexibility. Interestingly, it was the

ketamine condition that had the most degenerate dynamics, suggesting that the ketamine has the

shortest ”memory”, as the past states are minimally predictable from the present.

In general, the ketamine condition occupied something of a middle ground between the awake

and propofol conditions, suggesting that it combines elements of both states in its dynamics. This

is clearly visible when the UMAP embedding is performed on the OPN-morphospace: the ketamine

condition is clearly visible forming a kind of boundary between the awake and propofol conditions,

which do not overlap significantly. This is consistent with the known clinical properties of ketamine

anaesthesia: while it produces a state that is externally very similar to propofol anaesthesia (loss

of responsiveness to stimuli, analgesia, etc), ketamine can produce dream-like, dissociative states

[34, 31], suggesting that the process generating phenomonological consciousness is not completely

inhibited.

This work does have limitations which are worth considering. The most obvious is the small

sample size: two macaques is a small N , even with multiple slices taken out of the longer scans.

Given the origin of this data, this limitation cannot be currently addressed and we hope that these
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results, and the larger methods introduced, can replicate these findings in future studies. We also

cannot directly infer what state of consciousness the macaques were in at any given time, or even

if macaques are capable of experiencing something like the dissociative anaesthesia that ketamine

induces in humans. As with the small N , this is something of a fundamental limitation and an

on-going issue in consciousness research. In terms of the OPNs, a significant limitation is that they

can only be constructed from a single channel: while attempts at multivariate generalizations have

been proposed [68] 128-channel systems such as those explored here remain computationally and

practically prohibitive. This highlights the importance of multiple different measures to bear on

a question, as opposed to looking for a singular test that explains “everything.” While the OPNs

are limited to one channel, when combined with the EPC analyses, we get a much richer picture

combining temporal and spatial dynamics into a single whole.

We anticipate that the techniques described here can be used to understand other states of

consciousness, such as psychedelia or disorders of consciousness following brain injury, as well as

understanding individual differences in normal cognition. We might hypothesize, for instance, that

high performance on creativity tasks might be associated with an increase in the repertoire of

microstates discernible by the OPN and the flexibility with which the brain transitions between

them. Using the notion of a dynamical morphospace, it may be possible to create a “map” of

different cognitive processes based on their dynamical similarities and differences.

5 Conclusions

In this work, we describe how embeddings of neural activity data can help differentiate between the

similarities and differences between three distinct states of consciousness: normal waking awareness,

propofol anaesthesia, and ketamine anesthesia. To assess the spatial distribution of activity across

channels, we used topological data analysis to analyze the structure of the joint-states of all channels

through time. To asses the channel-level temporal dynamics, we construct discrete state-transition

graphs using ordinal partition networks, which reveal how the system evolves through state-space in

time. We found that the awake condition was characterized by both a high-degree of inter-channel

interactions, as well as a more flexible, less predictable structure, in contrast to propofol which had

less inter-channel interaction, and more predictable, constrained dynamics. Ketamine anesthesia sat

between the two extremes, combining elements of both. By combining multiple measures into a sort

of “dynamical morphospace”, we can better understand how distinct states relate to each-other.
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Figure 7: The UMAP [41] embedding of the results of the 5 OPN-based measures for every channel,
in each condition. Notice that the ketamine condition forms a kind of boundary between the awake
and the propofol conditions, with penetration into both regions. This suggests that, when multiple
metrics are taken into consideration, that the state induced by ketamine combines elements of
both normal waking consciousness and propofol anaestheisa. Note that, in a UMAP embedding,
the resulting axes are not intrinsically meaningful (in contrast to linear embedding algorithms like
PCA): the meaningful information is in the distances between individual points, as opposed to the
specific values of the coordinates.
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