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Abstract: 

 

The metastasis of malignant epithelial tumors begins with the egress of transformed 

cells from the confines of their basement membrane to their surrounding collagenous 

stroma. Invasion can be morphologically diverse, ranging from dispersed 

mesenchymal cells to multicellular collectives. When breast cancer cells are cultured 

within basement membrane-like matrix (BM), or Type 1 collagen, or a combination of 

both, they exhibit collective-, dispersed mesenchymal-, and hybrid collective-

dispersed (multiscale) invasion, respectively. In this paper, we asked how distinct 

these invasive modes are with respect to the cellular and microenvironmental cues 

that drive them. A rigorous computational exploration of invasion was performed 

within an experimentally motivated Cellular Potts-based modeling environment. The 

model comprises of adhesive interactions between cancer cells, BM- and collagen-

like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM. 

The model outputs were parameters cognate to dispersed- and collective- invasion. 

Input sweeps gave rise to a spatial output distribution that consisted of dispersed-, 

collective- and multiscale- invasion. K-means clustering of the output distribution 

followed by silhouette analysis revealed three optimal clusters: one signifying 

indolent invasion and two representing multiscale invasions, which we call collective-

multiscale (CMI), and dispersed multiscale invasion (DMI), respectively. Constructing 
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input-output mapped phenotypic spaces suggested that adhesion to BM- and 

collagen- matrix specify CMI and DMI respectively. Parameter perturbations 

confirmed these associations and revealed how the cellular phenotype may 

transition between the three states. Our systems-level analysis provides quantitative 

insights into how the diversity in matrix microenvironments may steer invasion into 

distinct phenotypic modes during metastasis.  

 

 

Introduction 

 

The details of the beginnings of cancer progression determine not just the kinetics of 

its metastasis but also its response to therapeutic efforts (Haeger et al., 2020; Nieto 

et al., 2016). Epithelia from malignant tumors proliferate and breach their covering 

laminin-rich basement membrane (BM) barriers to migrate to the surrounding 

connective tissue consisting of fibroblasts, other resident cells, and extracellular 

matrix (Nelson and Bissell, 2005; Pally et al., 2019; Pickup et al., 2014). The latter is 

rich in Type 1 collagen and other fibrillar proteins as well as proteoglycans (Di Lullo 

et al., 2002; Hynes, 2009).  

 

Bidirectional interactions including adhesion and degradation between cancer 

cells and their surrounding tissue microenvironment shape the nature of their 

migration (Anderson, 2005; Nissen et al., 2019)  Cancer cell invasion is broadly 

classified into unicellular or multicellular categories (Roussos et al., 2011). Solitary 

cancer epithelia disperse and migrate through ECM in a fibroblast-like manner 

(Madsen and Sahai, 2010). Such a dispersed migration pattern often concurs with a 

series of changes in gene expression, intercellular adhesion and cell shape, known 

as the epithelial to mesenchymal transition or EMT (van Zijl et al., 2011). The 

spindle-shaped ‘mesenchymal’ cells interact extensively with ECM in their process of 

migration (unlike the other unicellular migratory mode: amoeboid, where the 

adhesion with matrix is minimal) (Friedl et al., 2004; Gadea et al., 2008; Huang et al., 

2014; Pankova et al., 2010; Sanz-Moreno et al., 2008). Collective cell invasion 

involves migration of cellular ensembles that retain adhesive and communicative 

contacts with each other through their movement (Cheung et al., 2013; Friedl et al., 
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2012). These diverse phenotypes are also reflected in blood-borne dissemination of 

circulating tumor cells as individual cells or multicellular clusters (Aceto et al., 2014; 

Bocci et al., 2019). 

 

The migratory dynamics of cancer epithelia can also transition among the above-

mentioned types: dispersed (mesenchymal or amoeboid), and collective; such 

plasticity may further drive phenotypic heterogeneity and symbiotic behavior in 

cancer invasion patterns (Hecht et al., 2015; Huang et al., 2015; Lintz et al., 2017). 

As cancer cells migrate to newer microenvironments, transitions from mesenchymal 

to epithelial morphologies could appropriately render invasive single cells more 

adhesive to each other (Krakhmal et al., 2015). Collectively migrating strands of cells 

are typically thought of as hybrid epithelial/mesenchymal (E/M) phenotype (Nagai et 

al., 2020); in vitro, in vivo and in silico evidence for existence, plasticity and 

aggressiveness of such hybrid E/M cells has been mounting (Jolly et al., 2019). 

Thus, it is not surprising to identify unique migratory behaviors of neoplastic cells that 

are phenotypically intermediate between their dispersed and collective counterparts; 

for instance, multicellular streaming of an amoeboid or mesenchymal nature (Friedl 

et al., 2012; Kedrin et al., 2008; Liu et al., 2019; Patsialou et al., 2013) driven by 

weak intercellular junction strength. The identification of leader versus follower cells 

in such collective migration and the conceptual and mechanistic overlaps of cancer 

progression with jamming-unjamming transition has also been an active area of 

investigation (Sadati et al., 2013).  

 

Multiscale mathematical models that investigate tumor progression have 

largely focused on angiogenesis and tumor growth. Of late, these models have 

incorporated cell invasion as a function of cell-cell adhesion and cell-matrix adhesion 

too (Bearer et al., 2009; Szabo and Merks, 2013). Discrete approaches such as 

agent- or cell-based ones to study cancer invasion have the advantage of 

modularizing interactions between the cells and their environment, thus allowing 

quick transitions from mechanistic hypothesis-framing to rule-based behaviors on 

cell-population scales (Metzcar et al., 2019). Recent efforts grounded in continuum 

approaches and lattice growth cellular automaton (LGCA) framework have revealed 

how heterogeneity in cell-cell adhesion (as a result of many possible reasons: 

genetic, epigenetic and/or microenvironmental control of EMT or through 
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spatiotemporal variation in cell- and matrix-adhesion dynamics) can pattern the 

dissemination of cancer cells (Domschke et al., 2014; Reher et al., 2017). Another 

study combined experiments with simulations to showcase a feedback loop between 

cell contractility, and the alignment of collagen fibers to posit that intermediate matrix 

stiffness is optimal for invasion (Ahmadzadeh et al., 2017), thereby emphasizing the 

nonlinear nature of ECM behavior in determining cancer cell invasion. ECM density 

and organization, as a function of MMP density, can regulate the switch between 

proteolytic and non-proteolytic modes of invasion (Kumar et al., 2016). However, the 

existent literature on cancer invasion, to the best of our knowledge, has not yet 

explicitly investigated the distinctions and commonalities between mechanisms 

underlying collective and dispersed modes of invasion. In consequence, phenomena 

such as mesenchymal streaming (Friedl et al., 2012) and tumor budding (Prall, 

2007), which have been meticulously described in pathological and surgical 

literature, remain largely uninvestigated via mathematical modeling approaches.  

 

Using an experimental setup that mimicked the topographical arrangement of 

invasive cell clusters encapsulated within BM-like ECM and subsequently by Type 1 

Collagen, we were able to observe the cooccurrence of several spatially discernible 

migratory modes, a phenomenon we called multiscale invasion (simultaneous 

invasion across multiple scales (Pally et al., 2019)). These experimental 

observations were simulated using Compucell3D, a modeling framework based on 

the Cellular Potts model (Das et al., 2017; Glazier and Graner, 1993; Graner and 

Glazier, 1992; Swat et al., 2012; Zhang et al., 2011), using which we established that 

the cooperation between a set of biophysical phenomena such as cell-cell and cell-

ECM adhesion, cell proliferation and reaction-diffusion-based modulation of matrix 

proteolysis (computational equivalents of the ECM-degrading matrix 

metalloproteinases (MMPs) and their inhibitors (The inhibitors of matrix 

metalloproteinases or TIMPs))-, can give rise to a set of invasive phenotypes that 

comprise dispersed, collective, and multiscale invasion categories. Here, we 

investigate how robust each of these phenotypes are. Our multiparametric 

simulations followed by statistical analyses suggest, to our surprise, that cell invasion 

is fundamentally of two modes: both are multiscale and subsume exclusively 

dispersed mesenchymal- and collective- invasions respectively (and hence will be 

referred to henceforward as dispersed multiscale invasion (DMI) and collective 
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multiscale invasion (CMI) respectively). We explore the inputs that maintain such 

invasive modes and enable possible interconversions among them, the targeting of 

which represents insights into novel therapeutic strategies in the future.  

 

Results 

 

Construction of an invasion phenospace based on the dynamics of reaction-

diffusion, and cell-cell and -matrix adhesion  

 

In our previous manuscript, we were able to demonstrate, using a computational 

model, that an interplay between parametric combinations of cell-cell and -ECM (BM 

and Type 1 collagen) adhesion, and reaction-diffusion kinetics of MMP- and TIMP-

based ECM remodeling were able to give rise to diverse phenotypes of cell invasion. 

Not just dispersed- and collective- invasion, but also phenotypes with concurrent 

presence of the latter two modes were observed, which we termed multiscale 

invasion. Such simulations were calibrated with in vitro 3D culture experiments of 

breast cancer cells in combinations of appropriate ECMs (Figure 1A). Whereas in 

our previous effort, proliferation played a dominant role over migration in the invasion 

of cancer cells, here, we have incorporated active migration due to chemoattraction 

the fibrillar collagenous ECM (Fang et al., 2014; O'Brien et al., 2010; Postlethwaite et 

al., 1978; Xu et al., 2019). Our model confirms that invasion can take place in the 

absence of proliferation (Supplementary Figure 1). We also confirmed that the 

addition of this ‘active migration’ module did not perturb our previously obtained 

result that the presence of only BM or only Collagen-like ECM constrained cells to 

exhibit exclusively collective or dispersed invasion, respectively (Supplementary 

Figure 2).  

 

To better quantify the invasion phenotype and characterize the tendency of cells to 

switch among these phenotypes, here, we constructed an invasion phenospace, 

wherein the horizontal and vertical axes represent the metrics inherent to collective 

and dispersed cellular invasion respectively (Figure 1B and C). Therefore, the X axis 

measures the size of the largest single multicellular mass (the starting ‘primary 

focus’) at the end of the simulation. The Y axis measures the number of objects 

(cells or tiny cellular clusters) that are spatially disconnected or dispersed from the 
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primary focal mass at the end of the simulation. Outputs that are closer and parallel 

to X axis, therefore, represent phenotypes with exclusively collective cell migration; 

those closer and parallel to Y axis represent dispersed cells migrating solitarily as a 

result of their disintegration from the primary focal multicellular mass. Outputs with a 

relatively higher magnitude of values on X and Y axes represent multiscale invasion 

(MSI) phenotype.  

 

Based on our previous simulation results, we took the following inputs to map the 

phenospace: a) the contact energies representing cell-cell, cell-BM and cell-collagen 

adhesion, b) cell division, c) diffusivity of MMP and d) the cooperativity between 

MMP and its diffusible inhibitor TIMP (the threshold ratio of MMP to TIMP 

concentration at a given spatial point that is required to degrade Type 1 collagen, 

which was shown to be an important regulator of multiscale invasion (Diambra et al., 

2015; Pally et al., 2019)) (Figure 1A). Whereas this set is, by no means, an 

exhaustive set of possible inputs, they were shown by previous simulations to 

significantly impact the phenotypic outcome of invasion and recapitulate the diversity 

of phenotypes experimentally observed. We chose the input values for which we 

observed exclusive dispersed, or collective invasion phenotypes and then 

progressively decreased them in discrete intervals to a minimum limit at which no 

invasion was observed. In total, 5 values of each input were chosen; outputs were 

computed for each combination of 5 values of 6 inputs; the computation was 

repeated 3 times (replicates) using CompuCell3D. The replicates aim to capture the 

variability in cellular responses enabled by the underlying stochastic framework of 

the Cellular Potts modeling framework. These outputs were mapped onto the 2D 

invasion phenospace (Figure 1D). The distribution of outputs indicated that 

multiscale invasion represented a continuous phenomenon that bridged the 

exclusive collection of dispersed- and collective invasions close to the respective 

cartesian axes. Our findings are therefore consistent with conceptual narratives that 

seek phenomenological continuity between invasive modes but suggest that the 

transition between such modes can occur through a phase plane rather than in a 

linear manner. Whereas our output method does not enable the identification of 

optimal parametric combinations based on design space hypercube (as done by 

(Ozik et al., 2019)), it allowed us to examine simultaneously two model outputs 

simultaneously which could describe the predominant cell invasion phenotypes.  
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Identification of optimal clustering of the invasive phenospace 

 

We next investigated the optimal number of phenotypic clusters that can best 

classify the scatter of outputs in the two-dimensional phenospace. Such approaches 

are commonly used for gene expression studies to unravel hidden patterns in multi-

variable high-dimensional spaces (Oyelade et al., 2016). K-means algorithm is a 

commonly used unsupervised clustering method which, given a priori an integer 

value of K, partitions the given dataset into K disjoint subsets (Macqueen, 1967). It 

selects a random initial seed point of preferred clusters which are used to cluster the 

remaining data points; thus, different runs of K-means can possibly give rise to 

distinct clusters and their arrangements. 

 

We performed K-means clustering on the phenospace for K=2 to K=8 for multiple 

instances, and as expected, observed different clusters across multiple (n=15) runs 

for a fixed value of K, except for K=3 (Figure 2A and Supplementary Figure 3). For 

K=2, two predominant categorization patterns were seen. In the first pattern, which 

was obtained slightly more than 50%, one of the clusters indicated phenotypes with 

relatively lower invasion (blue outputs in Fig 2A, top row, left panel, #1); the other 

cluster consisted of points with moderate to high values of both dispersed and 

collective invasion (yellow clusters in Fig 2A, top row, left panel, #1). In the other 

categorization pattern for K=2, we observed a cluster denoting largely collective cell 

migration (blue cluster in Fig 2A, top row, right panel, #2), and another one 

encompassing the rest of the outputs (yellow cluster in Fig 2A, right panel, #2). For 

K=3, the phenospace clustered into what could be characterized as non-invasive to 

indolently invasive phenotypes (blue cluster in Fig 2A, middle row panel), and two 

invasive phenotypes (yellow and green cluster in Fig 2A), each of which included, 

but were not limited to, purer single cell- and collective invasion-representing outputs 

close and parallel to the Y and X axes respectively and will, therefore, be referred to 

as dispersed multiscale invasion (DMI) and collective multiscale invasion (CMI) 

respectively. This pattern was obtained 15 out of 15 times for K=3 clustering, 

suggesting the robustness of this categorization for further analysis. For values of 

K>3, we observed two or more cluster patterns for independent runs of K-means 

clustering (Figure 2 and Supplementary figure 3A). Clusters within such patterns 
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could be subsumed within the two distinct multiscale invasion clusters seen for K=3 

(see for e.g., cluster pattern #2 of K=4), or in other cases spatially independent of the 

latter (for e.g., cluster pattern #1 of K=4).  

 

Next, we conducted Silhouette analysis on K-means to quantify the consistency in 

clustering, for varied values of K. Silhouette scores are indications of how similar a 

data-point is to others in its own clusters, compared to those in other clusters. Thus, 

Silhouette scores provide a measure of both the tightness of the clusters defined as 

well as the extent of separation among them. These values range from -1 to +1; the 

higher the value, the closer a given datapoint is to other points in those clusters and 

the farther it is from other clusters (Zhao et al., 2018). Thus, a higher average score 

would indicate a greater degree of cluster separation. Clustering for K=3 reported a 

higher average Silhouette score as compared to K=2, 4, 5, 6, 7 and 8 (Fig 2B and 

Supplementary Figure 3B). Moreover, over 15 replicates of K-means tried over the 

same phenospace, the mean and variance of the average Silhouette scores was 

calculated. K=3 showed the highest mean and the least variance (Figure 2B), further 

endorsing that K=3 suggests the optimal clustering scenario for the phenospace. We 

asked if the outputs within what we labelled as the noninvasive or indolent cluster 

indeed showed lower dissemination relative to the two multiscale modes. To answer 

this, we mapped the area of the smallest circle that could enclose all the cells for a 

given output within the phenospace. Comparing the mean invasion revealed that 

CMI cluster showed the greatest spatial spread followed by DMI; the indolent cluster 

indeed invaded very poorly with respect to the other two (Supplementary Figure 4) 

 

The two multiscale invasion clusters exhibit distinct phenotypic patterns 

 

Having identified the two multiscale invasion clusters, we asked how morphological 

phenotypes changed between these clusters. To do so, we chose representative 

outputs within each cluster (in the middle of a cluster, near its boundary with the 

other cluster or close to the X/Y axis) and examined the endpoint of simulation 

(1500th Monte Carlo Step (MCS) of the simulations). The output within the indolent 

cluster (close to X=0, Y=0) showed scarce migration of cells within the fibrillar ECM 

(Figure 3A). For representative outputs close to the boundaries between indolent 

cluster and the CMI and DMI clusters, the invasion phenotypes represented finger-
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like cellular streams with dispersed single cells around them reminiscent of fingering 

instabilities seen for immiscible fluids of distinct densities (Aref and Tryggvason, 

1989; Mikaelian, 1990) (Figure 3B and C). 

 

A representative output in the center of DMI cluster showed a centrally located mass 

invading collectively surrounded by dispersed cells in the fibrillar collagenous ECM 

(Figure 3D). On the other hand, in the center of the CMI cluster, the representative 

output showed connected streams of cells interspersed with few single invading cells 

in fibrillar ECM (Figure 3E). For the output in the DMI cluster close to the Y axis, all 

the cells that had started out as a collective, were dispersed into the fibrillar ECM 

(Figure 3F). Its counterpart in the CMI cluster, close to the X axis, showed a 

dysmorphic bulk of cells growing centrifugally in a collective manner into the fibrillar 

ECM (Figure 3G). In summary, the DMI and CMI clusters represent multiscale 

invasions with a greater degree of cell dispersal and intercellular networking, 

respectively. Our study concurs with previous experimental examinations of cancer 

cell phenotypes in 3D, wherein cell lines within BM matrices exhibited mass-, grape- 

or stellate morphologies (Kenny et al., 2007). However, the addition of a collagen-

like fibrillar ECM in our computational model unmasks stunning phenotypic diversity 

within the stellate morphology through an operational dialectic between cellular 

connectedness and dispersal.  

 

Determinants of the different phenotypes observed in invasive phenospace 

 

We next asked which of the inputs (Figure 1A) may be proportionately greater 

represented within each of the three clusters. In order to do so, we generated input-

output maps of our phenospace, wherein each output was color-coded based on the 

value of input that contributed to it (highest two input values were denoted in red 

color, intermediate value blue, and the lowest two values were denoted with green 

color).  We observed that the lowest and highest values for cell-cell adhesion contact 

energies were maximally and minimally apportioned within the indolent cluster 

respectively. This implied that input combinations comprising high cell-cell adhesion 

contributed strongly to the indolent phenotype (Figure 4A; Table 1). This is 

consonant with the demonstration that strong adhesion mediated through 

intercellular junctions contributes to cellular and tissue architecture (Bhat and Bissell, 
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2014). On the other hand, high values of cell-collagen and cell-BM adhesion 

significantly contributed to DMI and CMI cluster outputs respectively (Figure 4B-C, 

Table 1). This is consonant with experimental demonstrations of the necessity of 

cancer cells to adhere to ECM substrata for migration (Gkretsi and Stylianopoulos, 

2018). Lowest values of both inputs were proportionately seen to be higher within the 

indolent cluster output phenotypes. We have also observed computationally that the 

varying contributions of BM or Collagen around cancer cells can potentiate collective 

and dispersed invasion respectively (Supplementary Figure 2; the input signatures 

across these two clusters seem to be distinct as well, Supplementary Figure 5). 

Higher values of cell proliferation contributed strongly to CMI phenotype but in 

comparison, were depleted for DMI cluster outputs (Figure 4D, Table 1). In 

comparison, parameters cognate to reaction-diffusion kinetics: diffusion rate of MMP 

and cooperativity between MMP and its inhibitors in MMP degradation showed mild 

variation in their tendency to be apportioned between the three clusters: highest 

values of MMP diffusion rates were represented relatively to the greatest extent 

within DMI cluster, whereas both multiscale invasion clusters were characterized 

with a relative enrichment of outputs with low MMP/TIMP cooperativity values 

(Figure 4E-F; Table 1). To summarize, the DMI cluster was composed of outputs 

associated with high cell proliferation and cell-BM adhesion. The CMI cluster was 

associated with high cell-Collagen adhesion, whereas indolent invasion cluster 

consisted of outputs with high cell-cell adhesion 

   

Perturbing input-output combinations to identify transitions in the phenospace 

 

We sought to test the strength of these associations by perturbing these specific 

input values within these clusters. We minimized the cell-BM adhesion (through 

increase in cell-BM contact energy) in 100% of outputs in the CMI cluster that 

showed highest values of this parameter. Whereas 38% outputs remained within the 

CMI cluster after decreasing adhesion, 54% outputs transitioned to the indolent 

cluster and 8% to the CMI cluster (Figure 5A). Minimizing growth rate in outputs from 

DMI associated with its highest values brought about a transition of 96% outputs to 

the indolent cluster and only 4% to the CMI cluster (Figure 5B). Decreasing cell-

collagen adhesion in 100% of outputs in the DMI cluster that showed highest values 

of this parameter caused 88% outputs to transition to indolent cluster with only 2% 
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transitioning to the CMI cluster (Figure 5C). Interestingly, maximizing values of R-D 

cooperativity for outputs showing the lowest values within the CMI cluster brought 

about a transition in 18% outputs to the DMI clusters (Figure 5D). Similarly, R-D 

cooperativity and MMP diffusivity were increased and decreased in DMI cluster 

outputs that showed the lowest and highest values of these two input traits, 

respectively; transitions of 17% and 34% were seen as a consequence of such 

perturbations. This indicated that parameters that render the two multiscale invasive 

phenotypes unique, the matrix adhesion parameters when perturbed, lead to a loss 

of invasion. On the other hand, inputs relating to the reaction-diffusion-based 

proteolysis of ECM had a greater probability of allowing transitioning between of cells 

between CMI and DMI phenotypes. These representative examples identify how 

cells can traverse the phenospace through these specific alterations in the input 

parameter(s). 

 

 

Discussion 

 

In an illustrative review, Friedl and coworkers provided an elegant classification of 

generic cell invasion: they enumerated numerous movements with solitary and bulk 

movements at the two ends of the phenotypic spectrum (Friedl et al., 2012). In 

addition, a three-dimensional graph shows how the three axes of leading-edge 

polarity, apicobasal polarity and cell-cell contacts can accommodate the different 

modes of phenotypes. This idea is based on an earlier review on the same topic 

where Friedl and Wolf argue for a “multiparameter tuning model of invasion wherein 

a combination of cues such as  density, stiffness, and orientation of the extracellular 

matrix together with cell determinants—including cell–cell and cell–matrix adhesion, 

cytoskeletal polarity and stiffness, and pericellular proteolysis—interdependently 

control migration mode and efficiency” (Friedl and Wolf, 2008; Wolf et al., 2007). Our 

manuscript seeks to build on this idea by subjecting it to mathematical rigor and 

identify its underlying assumptions and mechanisms. While Friedl and others have 

acknowledged that distinct modes may concur spatially, their tuning model would 

attribute such co-occurrence to the heterogeneity in microenvironmental cues. 

However, does the co-occurrence of dispersed and collective modes of invasion 

(multiscale invasion or MSI) represent a distinct invasive mode, wrought through 
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distinct signatures from a tunable combination of inputs? In this manuscript, we 

argue that such is the case. In fact, the input combinations give rise to not one but 

two types of MSI. The two types have higher relative representation of dispersed and 

collective cell invasion respectively and explain the exclusively solitary and bulk 

invasion respectively.  

 

Invasion of cancer cells has been characterized as non-equilibrium phase separation 

of mesoscale multicellular aggregates (Yang et al., 2019). This idea is an extension 

of previous frameworks which describe spreading cellular ensembles as liquids and 

dispersed cells as 2D gases (Sadati et al., 2013; Trepat and Fredberg, 2011). 

Jammed non-invasive states have been likened to ‘solid phases’ and the transitions 

between non-invasive and invasive (collective and dispersed) phenotypes can be 

compared with phase transition dynamics. The novelty of our contribution within this 

framework stems from the crucial addition of two ECM microenvironments instead of 

one as well as the recreation of the collagenous ECM by invading cancer cells. This 

is not to add needlessly to the complexity but to incorporate essential characteristics 

of tumorigenic epithelial tissues (Naba et al., 2014; Nelson and Bissell, 2005). The 

production of fresh collagenous ECM is being increasingly demonstrated to play a 

crucial role in defining the invasive behavior of cancers. The ECM secreted by 

cancers is rich in fibrillar collagen. In a recent preprint, we identify unique 

physicochemical features associated with the collagenous ECM secreted by invasive 

breast cancer cells (https://doi.org/10.26434/chemrxiv.12063420.v1). Such 

observations have been corroborated in several cancers including that of breast 

(Naba et al., 2014). Upon incorporation of these two features, we observe that the 

phenotypic distribution that is intermediate between pure collective and dispersed 

states can be fundamentally split into two clusters, with specific input contributions. 

Our findings allow us to extend the characterization of mesoscale multicellular 

phenotypes based on soft matter models (Gonzalez-Rodriguez et al., 2012), as 

possibly polydisperse media with DMI comparable to aerosol and CMI comparable 

with foam states, respectively.  

 

Surgical histopathological literature is replete with observations of multiscale 

behavior in cancer invasion. In the context of colorectal carcinoma, Prall and 

coworkers have made meticulous observations on ‘tumor budding’, wherein single 
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cells or small collectives of, cells seem to escape from growing edges of malignant 

neoplasms (Prall et al., 2005; Prall et al., 2009). Such multiscale behavior is 

associated with a more sinister kinetics of metastasis and poor prognosis (Hase et 

al., 1993; Prall et al., 2005; Prall and Ostwald, 2007). Tumor budding has been 

observed in breast and pancreatic cancers as well (Petrova et al., 2019; Salhia et al., 

2015) and have been connected to a partial EMT phenotype (Bronsert et al., 2014; 

Grigore et al., 2016). Our previously published experiments, which were crucial to 

the development of the computational model we have explored here, described 

multiscale invasion, which is phenomenologically similar to tumor budding. Indeed, 

early investigations by others confirm our empirical and theoretical findings that 

surface proteins and ECM play key roles contributing to multiscale invasion (Graves 

et al., 2016; Masaki et al., 2003). In our present analysis as well, we observe the 

phenotypic subspace pertaining to truly multiscale invasive phenotypes show the 

highest proportion of dissemination, compared with subspaces associated with pure 

collective and dispersed invasion (Supplementary Figure 4).  

 

At this point of time, our study does not incorporate three salient aspects of 

invading cancer cells. The first is the change in shape of cells as they move through 

matrix microenvironments. This distinguishes amoeboid from mesenchymal single 

cell migration and is associated with shape-based asymmetries in remodeling of 

ECM intercellular adhesion (Pankova et al., 2010). Despite this lacuna, we believe 

our dispersed multiscale invasion is mesenchymal in nature as it is predicated on 

adhesion of cells to the ECM (which distinguishes it from amoeboid migration), and 

appropriate for the level of graining that is achieved in our analysis. However, cell 

shape dynamics will be implemented in our future efforts. Secondly, our 

computational environment does not incorporate the stromal cells that contribute in 

significant ways to the phenomenology of cancer cell invasion (Labernadie et al., 

2017) due to limitations of the sheer computational power required to compute the 

dynamics of a multi-cell multi-ECM environment. We assume that the R-D dynamics 

of MMP-TIMP incorporated in the computational environment is a downstream effect 

of the cancer and stromal cell activities. This assumption will be tested in future 

efforts. Last, but not the least, our model does not incorporate cell polarity which has 

been proposed to contribute to active models of soft biological matter (Perez-

Gonzalez et al., 2019) and predict migration in the absence of proliferation (Tlili et 
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al., 2018). Future efforts will be devoted to computational investigating the properties 

of polarized polydisperse states. At present though, our effort serves to put 

multiscale migratory behavior in the fundamental center of the concept of cancer 

invasion. Understanding the process has potentially far reaching consequences for 

future therapeutic efforts.  

 

We would conclude by drawing a parallel between our study and the modeling 

efforts employed for investigating developmental processes (Alber et al., 2006; Alber 

et al., 2004; Christley et al., 2007; Harrison et al., 2011; Izaguirre et al., 2004; 

Kiskowski et al., 2004; Merks and Glazier, 2006). While our model derives its 

motivation, initial conditions and tissue geometry (which have been shown to be a 

crucial determinant in morphogenetic pattern formation (Nelson et al., 2006)) from 

breast cancerous contexts (Bhat and Bissell, 2014), one can as well interpret our 

model as a developmental system wherein inter-agent adhesion and reaction-

diffusion based phenomena sculpt cellular patterns. In fact several of our model 

inputs represent the biological physics associated with the framework of dynamical 

patterning modules, which has been employed to study the evolution and logic of 

developmental mechanisms (Newman and Bhat, 2008, 2009). In effect, this 

suggests that the redeployment of developmental and morphogenetic principles in 

the context of genomic aberrations may underlie the mechanisms behind discrete 

invasive behaviors of cancer cells and the transitions between them.  

 

Materials and methods: 

 

Modelling framework 

Compucell3D (CC3D) is a problem-solving environment that combines the lattice-

based GGH (Glazier–Graner–Hogeweg) model or CPM (Cellular Potts model) with 

PDE solvers and other models to allow for study and simulation of multiscale virtual 

biological processes (Swat et al., 2012). The software divides the whole simulation 

lattice into ‘cells’ (collection of pixels). A specific ‘cell type’ is assigned to each of 

them. Interaction parameters between cell types can be made to approximate 

biological constraints between components, similar to that of the original in vitro or in 

vivo biological system. Such constraints or parameters regulate the simulation 

through the effective energy or Hamiltonian (H) calculated at each Monte Carlo 
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Step (MCS). Calculation of H determines the allowed configuration and behavior of 

cells at each MCS.  

 

Hamiltonian or effective energy calculation at each MCS: 

� �  � ���
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Index(σ)-copy attempt (from pixel i to j) success or rejection incorporating Boltzman 

probability function: 

For ∆� � � condition, the associated index-copy attempt will be successful, so the 

target pixels are updated. So, success probability is � � 1 

For ∆� � 0 condition, the associated index-copy attempt will be successful with a 

probability of � � ���
∆�

��
�
 and it will be unsuccessful with a probability �� � 1 � � 

 

There are 4 contributors for calculating the H for cells.  

The first contributor is the sum over all neighboring pairs of lattice sites i and j 

with associated contact energies (J) between the pair of cells indexed at those i and 

j. In this term, i, j denotes index of pixel, σ denotes cell index or ID, and � denotes 

cell-type. The δ function in this term will ensure that only the σi ≠ σj terms are 

calculated (i,j belonging to same cell will not be considered). Contact energies are 

symmetric [  � �����	,  ������ � �������, ����		 ] . The contact energy between two cells 

is considered to be inversely proportional to adhesion between those two cells.  

The second contributor is a function of the volume constraint on the cell, 

where for the cell σ, λvol(σ) denotes the inverse compressibility of the cell, ν(σ) is the 

number of pixels in the cell (volume), and Vt(σ) is the cell's target volume. For each 

cell, this term is governed by its growth equation. 

The third term related to random active motility. For calculating ∆��� for a 

given MCS step, when an index-copy attempt is made for pixels from “i” to “j” for a 

cell �� 	, the force vector is  !"���� and the distance vector between those pixels is #"�� . 
Therefore, the product of these two vectors with correct direction alignment will 
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satisfy the condition to minimize H and will determine the movement of the cell along 

that direction. Effectively, the respective steppable (CellMotilitySteppable) provides 

an external force on the centre of mass of the cells which changes direction 

randomly every MCS. 

The fourth term is relevant for biased motility of the cell due to chemotaxis. 

For calculation of ∆���� ! , $" represents the concentration of the chemical field 

(‘GF’ for our simulations) at index-copy target pixel (j) and $# represents the 

concentration at index-copy source pixel (i) . ���� ! is a constant which determines 

how strongly the cell will respond to the external chemical gradient by its value and 

its sign determines the whether the cell should move towards positive or negative 

gradient of concentration. 

In the Boltzman probability function, ∆� represents the calculated change in 

overall Hamiltonian of the system between the system-configuration at previous 

MCS and a specific system-configuration at current MCS. Tm relates to effective 

membrane fluctuation for the cell. 

(https://compucell3dreferencemanual.readthedocs.io/en/latest/index.html) (Swat et 

al., 2012).  

Simulation lattice:  

We use a 100*100*1-pixel square lattice with non-periodic boundary for all the 

simulations (the initial configuration of simulations resembles Fig 1(C) where no 

invasion of any type is observed).  

 

Cell types: 

There are total 6 different cell types used in the simulations-  

Medium: all cells with unassigned cell type are medium cells. These cells act as 

free, uninterrupted space in the simulation space. 

 

Cancer: these cells are initially situated at the center grid surrounded by basement 

membrane (BM). Cancer cells start as rectangular objects of 16-unit volume (4 × 4 

pixels), spanning a total 14 × 14 × 1 unit volume (16 cancer cells) at the center (x, y 

= 43:57) of the simulation grid without any intercellular space. Cancer is the only cell 

type that is allowed to grow and proliferate. To differentiate from non-cellular 

components, cancer cells have membrane fluctuation unlike others. The cells also 
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have random motility associated with them. An ‘ExternalPotential’ plugin was used to 

enable ‘cellMotility’ to act on the cancer cells through the Hamiltonian. 

∆��� � � %&&"$�#�. (&"#" 

for a given MCS step, when an attempt is made to copy a pixel from “i” to “j” for a cell 

�� 	, the force vector is  !"���� and the distance vector between those pixels is #"�� . 

Therefore, the product of these two vectors with correct direction alignment will 

satisfy the condition to minimize H and will determine the movement of the cell along 

that direction. The steppable provides an external force on the center of mass of the 

cells which changes direction randomly every MCS, therefore mobilizing the cells in 

different directions and providing them with active motility like biological cells. The 

direction of !"���� is randomly changed at any angle for each cell in each MCS; 

thereby favoring motility in random directions for all cells for a short period and 

changing direction again. In the ‘cellMotilitySteppable’ of cancol2Steppable.py file, in 

‘def start(self)’ we have randomly initialised the force vectors. 

 

 

BM (laminin): This cell type surrounds the cancer cells in the initial configuration. 2 

layers of tightly packed BM cells (x, y = 37:63; 3 × 3 pixels= 9 unit volume) separate 

the cancer cells from C1 cells. To approximate extracellular matrix (ECM) 

architecture surrounding luminal epithelial cells in mammary duct, BM cells are 

modelled as dense adhesive bloblike objects to mimic the lamina densa of basal 

lamina. 

 

(Collagen) C1: Outside BM cells, fibrillar C1 cells mimics the interconnected fibrils of 

collagen I. C1 cells span the remaining space of the simulation lattice (x, y = 63:100). 

Interfibrillar gaps are characteristic of the C1 cell region unlike BM. The gaps aid in 

non-proteolytic cancer cell motility through C1 layer. In the initial configuration of the 

simulation, elongated C1 cells are orientated in random directions with each cells 

having 4 x 2 =8 unit volume. 

 

C_lysed: This cell type is used in an intermediate step during matrix degradation 

and regeneration. Reaction-diffusion dynamics of the chemicals secreted by cancer 

cells allows for degradation of BM and C1 matrix cells. Upon meeting certain criteria 
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for degradation, the BM or C1 cell type of a particular cell becomes C_lysed, 

although retaining the shape and size of that cell. These cells track the MCS from 

their individual degradation event and transform into newly synthesized matrix cells 

after 20 MCS. They have properties specified as intermediates of C1 and medium 

cell types. C-lysed type signifies the degraded ECM, predominantly Type 1 Collagen 

fibers. Collagen fibers upon degradation are known to produce substrates that act as 

attractant cues for chemotaxis (Postlethwaite et al., 1978). In addition, collagenous 

matrices have been shown to be depots of growth factors (Schuppan et al., 1998; 

Somasundaram et al., 2002; Somasundaram et al., 2000). 

 

 

NC1: Designed to mimic the ‘cancer matrisome’, the newly synthesized matrix cells 

are denoted as NC1. These cells are almost like C1 in their behavior and can 

undergo further degradation to become C_lysed and subsequently after 10 MCS 

would become NC1 again. If undisturbed the C_lysed and NC1 cell type 

transformations keep the position, size and shape of the cell unchanged. 

The exact difference between C1 (stromal collagen) and NC1 (newly synthesized 

collagen) are as follows:  

1. There is a volume reduction we have implemented in NC1, to account for diffusion 

of soluble degraded ECM, 0.005 unit vol./MCS * 20 MCS= 0.1unit 

2. The chemoattractant GF is secreted by C1, when it comes in contact with 

C_Lysed i.e. during degradation. But even though NC1 can be degraded, it does not 

secrete GF. Both of them gets converted into C_Lysed and that cell-type secretes 

GF. 

3. Among both, only the contact energy term between cell and C1 is an input 

variable for parameter scan. 

 

Contact energies:  

As the whole simulation lattice is divided into cells, the contact energy is used to 

regulate the sorting of all the cells.  Specific contact energy values are assigned to 

all pairs of interactions between different and same cell types. The contact energy is 

also inversely proportional to adhesion between the respective cell type pair or 

components of the system. As there are a total of 6 cell types in the simulation, there 

are total 21 contact energies that need to be assigned and the values determine the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.04.14.041632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041632
http://creativecommons.org/licenses/by-nc-nd/4.0/


differential adhesion. The values of the contact energies were set using control and 

validation experiments from our previous publication (Pally et al, Frontiers, 2019). 3 

among those 21 contact energy- or adhesion- parameters were selected as input 

variables, which would be changed during further analysis. These 3 contact energies 

or adhesions are associated with pairs of cell types of only cancer cells (c-c CE), 

cancer cells and BM (c-lam CE), cancer cells and C1 (c-c1 CE) since in our 

previous efforts we had identified the combination of other contact energies (such as 

those between BM and Type 1 collagen that were permissive for invasion-based 

simulations. 

The neighbourhood (‘NeighborOrder’) for adhesion term is 2. This ensures for a 

square shaped cell, all neighbouring cells on its 4 sides along with cells on the 4 

corners are considered during the Hamiltonian calculation. 

 

 

Reaction diffusion:  

CC3D allows chemical fields to determine specific spatiotemporal cellular behaviour 

during simulation. The fields contain the values of concentration of the chemical at 

each location of the simulation grid. Two chemicals, A and I, are used as activator 

and its inhibitor as per reaction diffusion dynamics and their concentrations are 

governed by the partial differential equations (PDE). The governing equations for 

these two fields are: 

%&�'

%�
� )�*��+� � , � 
��+�  (1) 

%&('

%�
� )(*��-� � . � 
(�-�  (2) 

. � , � / � �0 1 �-� � 2 1 �+�	 (3) 

 

Where, [A], [I]: concentration values for fields A and I. 

)� , )( : diffusion constants of A and I 


� , 
( : degradation rates of A and I 

a, b : secretion rate of A and I 

t ≡ MCS 

 

Default parameterizations,  )�= input variable, )(= 0.04, 
�= 
(= 0.003, K= 2.0, c= 

4.0, d= 2.0 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.04.14.041632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041632
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here A is considered as the activated form of matrix metalloproteinases (MMPs) and 

I is considered as tissue inhibitor of matrix metalloproteinases (TIMP). The difference 

in diffusion constants of A and I formulates the pattern in Turing space, so altering 

one of them (in this case, )�) can result in different RD dynamics for different 

simulations. Activation (or secretion of the activated form i.e. ‘a’) of A is assumed to 

be dependent on its inhibitors (inversely) and on its own concentration 

(autocatalysis). The cancer cells secrete both A and I when they come in contact 

with matrix cells such as C1, BM and NC1. Their concentrations are also calculated 

at the center of mass of the matrix cells. 

If the ratio ([A]/[I]) of concentrations of A and I at the center of mass of any matrix cell 

is more than a threshold, then that matrix cell is degraded. The threshold value for 

the ratio is termed as RD cooperativity and is one of the input variables. The value of 

RD cooperativity signifies the inhibition effect of the inhibitor on the activator’s activity 

(matrix degradation) during the course of a simulation. After degradation and 

conversion to C_lysed cell type, the cell becomes NC1 type in 10 MCS which 

undergoes same treatment as matrix cells again. This regeneration of matrix is 

essential to eliminate unnecessary free spaces formed as an artefact of matrix 

degradation which takes the computational model closer to its experimental 

counterpart. Volume of all the ‘C_lysed’ cell types are subjected to 0.1 unit volume 

decrease at each MCS to mimic dissipation of degraded matrix materials in vivo. 

 

Growth and proliferation: 

Cancer cells are designed to grow in linear combination of two processes. 

2�
23 � 4 1 �5 1 6 � �4!� 1 7� 

 

 

Where V = volume of cancer cell 

g = measure of nutrient availability 

[GF] = concentration of growth factor (GF) at center of mass of ‘CELL’ 

p, q = constants 

G= Growth rate coefficient 

The common surface area of a cancer cell with its neighboring cancer cell (k) and 

the total cell surface area (s) is accessed to calculate g in this equation as g=(s-
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k)/40. The denominator in the calculation of g is due to 2D nature of the simulation 

as a cell can be surrounded by other cells only in xy plane and not in z axis. The 

scaling of that extra cell surface area without any neighboring cells in z axis is 

provided by the denominator. Another contributor of the growth function 

is [GF] which mimics the ECM-degradation dependence of growth and proliferation 

(Olivares et al., 2017). The ‘C_lysed’ cell type is programmed to secrete GF at each 

of its pixel location where the diffusion constant is kept low (0.02) to localize this 

growth signal to areas of matrix degradation. p (=1/12) and q (=1/21) constant values 

are set according to the assumed weightage of the two variables in growth equation. 

Value of G, then determines how much the resultant growth of the cell should be. 

The linear combination of the two contributors is multiplied by G, this G is changes 

during parameter scan. Hence, G or growth rate coefficient is considered as an input 

variable. 

 

Cell division is incorporated into the cancer cells by a CC3D steppable called 

‘MitosisSteppable’ with base function ‘MitosisSteppableBase’. If any cancer 

cell reaches a threshold volume of 30 units then that cell will be divided in random 

orientation. The resultant two cells will have volumes half of its predecessor with all 

other properties kept same as the parent cell. In this model, growth rate is directly 

correlated to proliferation as it determines the volume of the cell to reach threshold 

for cell division. 

Chemotaxis and migration:  

Until this attribute is added to the cells, the model depended overtly on proliferation 

for the invasion that was observed and characterized. The absence of a 

chemoattractant(s) in the framework resulted in this behaviour. We have mitigated 

this deficiency by incorporating chemoattraction in our revised model. The stromal 

ECM, collagen has been shown to have chemoattractant properties in undegraded 

and degraded states (Postlethwaite et al., 1978) (O'Brien et al., 2010). In the github 

link provided folder with cc3d codes, it can be seen that the .xml file contains 

“Chemotaxis” plugin for directed chemotaxis induced by Collagen. 

The ‘Chemotaxis’ plugin implements a force on the cells through the Hamiltonian 

towards positive gradient of the chemical field ‘GF’. The ‘GF’ field is secreted by 

degraded matrix (C_Lysed) and undegraded collagen (C1). In order to ascertain 

local positive chemical gradient towards undegraded C1 matrix, the C1 releases the 
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chemoattractant in slightly greater amount than its degraded counterpart C_Lysed 

[secretion rate: 2.5 for C1 compared to 1.0 for C_Lysed]. Only the C1 which are in 

the vicinity of degradation release this GF as instructed in the ‘SecretionSteppable’. 

This is coded in the cancol2Steppables.py file in the CC3D folder and ‘Simulation’ 

subfolder. 

Parameter scan: 

CC3D’s parameter scan feature was used to explore parameter space of the input 

variables. All the combinations of provided values of the parameters are considered 

for each individual simulation. 

Here are the 5 values of the 6 input variables for a parameter scan: 

RD cooperativity: 2,4,6,8,10 

MMP (A) diffusion constant: 0.005, 0.01, 0.025, 0.04, 0.055 

Cell-cell contact energy:  4,18, 32, 46, 60 

Cell-laminin contact energy: 4,18, 32, 46, 60 

Cell-C1 contact energy: 4,18, 32, 46, 60 

Cell Growth (G): 0, 0.25, 0.5, 0.75, 1 

3 replicates of the parameter scan were performed. 

The first two values of the input values are considered low values, the 3rd value as 

intermediate and the last 2 values are considered high values in further analysis. 

 

Matlab-based analysis: 

Quantification of invasion: [Fig1(B)] 

Graphical representation of all the cells in the simulation grid is captured as images 

at different MCSs for each simulation. A certain ‘timepoint’ or MCS (=1500) is 

chosen so that MATLAB accesses all the images of all simulations at MCS 1500 and 

provides quantification. The choice of the 1500th MCS is guided by the fact that this 

represents the stage where collective invasion can clearly be discerned from the 

dispersed cells. Beyond this stage, the dispersed cells move out of our framework 

window and the collectively invasive mass fills the same, disallowing distinctions to 

be made between invasions of different scales. First, we have binarized the image 

using the tool ‘Color Thresholder’ (for batch processing, the function from this 

thresholder tool was passed through ‘Image Batch Processor’). After binarization 

basic image manipulation functions such as ‘imfill’, ‘imdilate’, ‘bwperim’ were used to 

optimally isolate the objects from the image. ‘Image Region Analyser’ was used to 
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get different quantification parameters of those binarized objects. More details can 

be found from the matlab code (Fig1_simulation_image_analysis.m) provided in 

github. 

 

 

No. of dispersed objects: The collected simulation images are originally in RGB 

color scheme to differentiate cell types as displayed in Fig1(C). Individual images 

from all simulations are batch-processed to generate binary images with respect to 

cancer cell type (red color). The first set of binarized images undergo series of 

rudimentary Matlab image processing operations to generate different set of binary 

images for different analysis. From them, all the boundaries in each image are then 

identified to recognize areas which are enclosed by a continuous non-overlapping 

boundary. These areas without shared boundaries originally represent cancer cell 

clusters in the respective simulation grid. These clusters can contain single to 

multiple cancer cells. the number of these clusters denote the dispersiveness of the 

initial tumor mass in the simulation pertaining to certain combination of input 

variables, therefore considered as one of the output variables i.e. no. of dispersed 

objects. The values of this quantity pertaining to each simulation is plotted on the y-

axis of the phenospace. 

 

Area of largest cell cluster: From the sets of binarized images, areas of all 

dispersed objects are calculated by counting the pixels preset inside each object’s 

boundaries. The dispersed object having biggest area is considered the main 

collective cancer cell cluster of the respective simulation. The value of the area of 

such as object in the simulation image is quantified as ‘area of largest cell cluster’, 

the other output variable. The values of this quantity pertaining to each simulation is 

plotted on the x-axis of the phenospace. 

 

K-means clustering:  

Broad guidelines for performing the Silhouette analysis were adapted from the 

following link (https://in.mathworks.com/help/stats/kmeans.html#bues3lh). K-means 

clustering or Lloyd’s algorithm is used for subsequent analysis of the phenospace 

using MATLAB (Lloyd, 1982). It is an iterative, data-partitioning algorithm that 

assigns all observations from simulations to exactly one of the K clusters defined by 
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centroids. Being an unsupervised partition-based algorithm, value of K is chosen 

before the algorithm starts. 'kmeans’ function in MATLAB uses a two-phase iterative 

algorithm to minimize the sum of point-to-centroid distances, summed over all k 

clusters. The first phase uses batch updates, where each iteration consists of 

reassigning points to their nearest cluster centroid, all at once, followed by 

recalculation of cluster centroids. In the second phase, points are individually 

reassigned, if doing so reduces the sum of distances, and cluster centroids are 

recomputed after each reassignment, by using feedback updates.  

The x and y axis values from the phenospace are normalized (z-score) before the 

use of ‘kmeans’ function to provide same weightage to the axes of during clustering 

and at the end of the run, all points are assigned a cluster. The points are then 

colour-coded in the phenospace to differentiate hosting cluster identities. 

 

Silhouette analysis: 

Broad guidelines for performing the Silhouette analysis were adapted from the 

following link (https://in.mathworks.com/help/stats/silhouette.html#mw_9fe10316-

522d-4a3a-9cdd-d39baea0c1ce). The silhouette value for each point is a measure of 

how similar that point is to points within its own cluster, when compared to points in 

other clusters. The silhouette value ‘Si’ for the ith point is defined as 

Si = (bi-ai)/ max(ai,bi) 

where ai is the average distance from the ith point to the other points in the same 

cluster as i, and bi is the minimum average distance from the ith point to points in a 

different cluster, minimized over clusters. 

The silhouette value ranges from –1 to 1. A high silhouette value indicates that i is 

well matched to its own cluster, and poorly matched to other clusters. If most points 

have a high silhouette value, then the clustering solution is appropriate. If many 

points have a low or negative silhouette value, then the clustering solution might 

have too many or too few clusters. So, silhouette values are used as a clustering 

evaluation criterion for finding a clustering pattern which is invariable across 

replicates. 

After a specific K-means clustering is performed on the points in the phenospace, 

the normalized matrix of x, y axes along with cluster identity matrix (cluster id of each 

point) is used to compute silhouette values for each point. The values pertaining to 

all the points in the simulation is represented in silhouette plot for convenience and 
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the mean of the silhouette values in the plot is denoted with a dashed line. The 

silhouette method was performed on all the replicates of clustering with a constant k 

value. The mean of the silhouette values pertaining to each replicate is acquired. 

The mean and standard deviation of the mean silhouette values associated with 

replicates of different k values are plotted in a box plot. 

 

Principal Component Analysis:  

Broad guidelines for performing the PCA were adapted from the following link 

(https://in.mathworks.com/help/stats/pca.html). Briefly, in order to analyse the points 

in the neighborhoods or patches (denoted by rectangles) in the phenospace, 

principal component analysis was used in MATLAB. The whole input argument 

dataset for a cluster’s PCA is a matrix which consists all 6 input variable values for 

individual simulations relating to the points in that cluster. The matrix is normalized 

for each variable. Normalization proved to be important as we are interested in 

relative contribution of the input variable and their changes with respect to other 

points (simulations), rather than their absolute values. PCA of each rectangle 

produces different linear combinations of input variables (forms principal component 

axes) for optimally fitting all points without overlapping in one of those linear 

relations. PCA quantifies how much of the input data is ‘explained’ by each linear 

combination (or PC axis) and represented as a scree plot. The linear combination 

associated with highest y-axis value in the scree plot is identified as first principal 

component axis. Therefore, the relative contributions of the input variables for 

constructing PC1 can give insights into the convoluted dynamics of input variables 

governing the phenotype. The relative contribution of the input variables is plotted in 

bar graph on the right side of scree plots (Supplementary figure 5). 

 

Codes: All the codes relating to the manuscript can be accessed through the 

following link: https://github.com/drjyprk/cc3d_paper_2_iisc_git  
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Figure Legends 

 

Figure 1: Introduction to the computational framework, simulation inputs and 

output phenospace (A) Schematic depiction of the input variables that have been 

deployed in the CompuCell 3D simulations. The result of the simulations was 

computed as two outputs that are representative of dispersed invasion and collective 

invasion. (B) Depiction of computation of the invasion outputs: MATLAB® is used to 

quantify the morphology of the cancer cell mass in the simulations. 1. Images of all 

simulations are collected at the 1500th Monte Carlo step (MCS). 2. The images are 

binarized to isolate the cancer cells. 3. All dispersed ‘objects’ (the objects share no 

common boundary with each other) are identified and counted and is called ‘No. of 

dispersed objects’. 4. the mass having largest total covered area is isolated and the 

value of that highest area is called ‘Area of Largest cell cluster’. (C) Control 

simulations: Four simulations (red= transformed cancer cell, green= collagen I, blue= 

Basement membrane (BM)) represent control runs showing morphological variations 

with certain input variable values. In terms of invasiveness, they are characterized as 
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dispersed invasion (blue), collective invasion (red), multiscale invasion 

(magenta) and indolent or non-invasive phenotype (yellow). The invasiveness of 

the controls interpreted through the 2 outputs show in 1B allows the construction of a 

phenospace with X axis measuring the ‘Area of Largest cell cluster’ and Y axis 

measuring the ‘No. of dispersed objects’. Control simulations can therefore be 

mapped onto the phenospace of possible output points within the phenospace 

through various combinations of inputs deployed through simulations run till a similar 

endpoint (MCS:1500). (D) Distribution within the phenospace of phenotype outputs 

as a result of combination of five values for each of the six inputs mentioned in (A) 

and run three times (replicates). The total number of simulations originating from this 

combination is 5^6X3=46875. Simulations points having x value more than around 

36000 (~90% of the whole simulation lattice) is removed to omit the effect of spatial 

limitation of the simulation lattice. After that, 99% of the whole dataset (46475 

simulations) is retained which is plotted here. 

 

 

Figure 2: The invasion phenotypic outputs can be optimally segregated into 

three clusters (A) All the simulation outputs in the phenospace (in Figure 1D) are 

analyzed with K-means clustering using cluster number K=2-4 (leftmost column). 

Clustering was performed 15 times with random initial cluster centers. The cluster 

phenotype patterns are shown (middle column) along with their proportional 

representation within the 15 replicates (right column). (Cluster patterns for K=5-8 

shown in supplementary figure 3) (B) The optimal value for K computed using the 

Silhouette method. Silhouette plots for K=2-4 are constructed with X axis signifying 

silhouette values and Y axis representing cluster numbers. (Silhouette plots for K=5-

8 shown in supplementary figure 3) (C) The average silhouette values and 

associated standard deviation for all 15 clustering replicates in different K-value 

groups are plotted in the box and whisker plot (bottom right). Statistical test was 

performed using unpaired ANOVA with Tukey’s post hoc multiple comparison 

(p=0.0049). 

 

Figure 3: Visualization of distinct invasive phenotypes across the phenospace 

The simulation images on the bottom part of each subfigure is at MCS 1500 and 

their respective position is denoted with red color in the (K=3)-means clustered 
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phenospace above. (A) The end point of a simulation output chosen within the 

indolent cluster close to the X=0, Y=0 shows scarce invasion of cells from the 

originating locus. (B-C) The end point of simulation outputs chosen at the indolent-

DMI cluster boundary and the indolent-CMI cluster boundary respectively, shows 

connected networks of cells with oligocellular dispersed masses, reminiscent of 

tumor budding (Prall, 2007). (D) The end point of a simulation output chosen inside 

the DMI cluster shows a phenotype, wherein a growing central mass of cells is 

surrounded by a plethora of dispersed cells. (E) The end point of a simulation output 

chosen inside the CMI cluster shows a phenotype, wherein the growing central mass 

invades through finger like projections with a few dispersed cells close to these 

projections. (F) The end point of a simulation output chosen inside the DMI cluster 

close to Y axis shows a classical dispersed invasive phenotype. (G)  The end point 

of a simulation output chosen inside the CMI cluster shows a classical collective cell 

invasive phenotype.  

 

Figure 4: Coarse-grained classification of simulations in the phenospace 

based on input variable values: 

The phenospace is divided into 3 parts depending on the K=3-means clustering and 

the boundary between the clusters is denoted by the black lines. The input variable 

values (for cell-cell contact energy (A), cell-collagen contact energy (B), cell-BM 

contact energy (C), growth rate (D), MMP diffusivity (E), and R-D cooperativity (F) 

(see also Materials and Methods; parameter scan section) attributed to the 

simulation points in the phenospace are collected and after analysis, all the 

phenospace points are colored based on the values of the respective input variables. 

The lower two values are denoted in green color, the intermediate value in blue, and 

the higher two values are denoted in red color. 

  

Figure 5: Transition of points between phenotypic clusters is controlled by the 

input variables. (A) Pie chart showing the transition of outputs from the CMI cluster 

showing highest cell-BM adhesion, upon decreasing the latter to a minimum value. 

(B) Pie chart showing the transition of outputs from the CMI cluster showing highest 

growth rates, upon decreasing the latter to a minimum value. (C) Pie chart showing 

the transition of outputs from the DMI cluster showing highest cell-collagen adhesion, 

upon decreasing the latter to a minimum value. (D) Pie chart showing the transition 
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of outputs from the CMI cluster showing lowest R-D cooperativity values, upon 

increasing the latter to highest values used in the paper. (E) Pie chart showing the 

transition of outputs from the DMI cluster showing lowest R-D cooperativity values, 

upon increasing the latter to highest values used in the paper. (F) Pie chart showing 

the transition of outputs from the DMI cluster showing highest MMP diffusivity values, 

upon decreasing the latter to a minimum value (Proportion of outputs in the pie 

charts within the indolent, DMI and CMI cluster shown in blue, yellow and green). 

  

Table1: Cluster-wise fraction of input variable values 

Table showing the proportion of two lowest input values, intermediate value and the 

two highest input values for six inputs within the three clusters representing indolent 

invasion, collective multiscale invasion (CMI) and dispersed multiscale invasion 

(DMI). 

 

Supplementary Figure 1: (A) Initial cell field from the CC3D simulations. (B) The 

top simulation has Growth rate coefficient set to zero, so, no proliferation property is 

applied on the red cells. In the bottom image proliferation is active for the cells and 

they grow to divide as per the growth equation in the materials and methods section. 

(C) The top simulation has all properties that was used for parameter scan. The 

bottom simulation did not perform C_Lysed to NC1 conversion, so newly synthesized 

matrix is not produced after matrix degradation.  

 

Supplementary Figure 2: (A) The 3 rows represent similar simulations with 3 

varying initial matrix configurations. Left column shows simulation screenshots with 

only collagen or Collagen matrix (MCS 0, 215, 430). Middle column simulation is with 

only BM matrix and no Collagen (MCS 0, 2950, 4705). The right column shows the 

normal setup with BM initially enclosing the cancer cells and that is enclosed by 

Collagen (MCS 0, 485, 965).(B) When the area of minimum enclosing circle is in the 

range 27000-29200 (bottom image in each column), the simulation screenshots from 

these 3 simulations were collected and plotted in the phenospace. 

 

 

Supplementary Figure 3: (A) All the simulation outputs in the phenospace (in 

Figure 1D) are analyzed with K-means clustering using cluster number K=5-8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.04.14.041632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041632
http://creativecommons.org/licenses/by-nc-nd/4.0/


(leftmost column). Clustering was performed 15 times with random initial cluster 

centers. The cluster phenotype patterns are shown (middle column) along with their 

proportional representation within the 15 replicates (right column). (B) The optimal 

value for K computed using the Silhouette method. Silhouette plots for K=5-8 are 

constructed with X axis signifying silhouette values and Y axis representing cluster 

numbers.  

 

Supplementary Figure 4: The minimum enclosing circle algorithm used for analysis 

of invasion in the previous publication was used on the current dataset (Pally et al., 

2019). (A) Shows 3 classification of the simulation points in the (K=3)-means cluster-

divided phenospace based on the values of the area of the minimum enclosing circle 

which encloses all the cancer cells in the simulation lattice at 1500MCS. The points 

having value of this output less than 21852 is colored in green, from 21852 to 43600 

is colored blue and more than 43601 is colored red. (B) The statistical plot shows 

significant difference in the mean of the area of minimum enclosing circle between 

points of indolent invasion cluster with CMI or DMI clusters. Statistical test was 

performed using unpaired ANOVA with Tukey’s post hoc multiple comparison 

(p<0.0001) 

 

Supplementary Figure 5: Three principal component analysis data is shown 

belonging to the individual clusters from k-means clustering with k=3. The top plot in 

the subfigures show the placement of simulation points of the k(=3)-means cluster in 

the 3-D space constructed with first 3 principal component axes. In the bottom left, 

the scree plot shows percentage of explained variability by each principal component 

axis. On the bottom right, variable coefficient plot shows fraction of each input 

variable in the first 3 principal component axis linear combinations. 
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