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Abstract:

The metastasis of malignant epithelial tumors begins with the egress of transformed
cells from the confines of their basement membrane to their surrounding collagenous
stroma. Invasion can be morphologically diverse, ranging from dispersed
mesenchymal cells to multicellular collectives. When breast cancer cells are cultured
within basement membrane-like matrix (BM), or Type 1 collagen, or a combination of
both, they exhibit collective-, dispersed mesenchymal-, and hybrid collective-
dispersed (multiscale) invasion, respectively. In this paper, we asked how distinct
these invasive modes are with respect to the cellular and microenvironmental cues
that drive them. A rigorous computational exploration of invasion was performed
within an experimentally motivated Cellular Potts-based modeling environment. The
model comprises of adhesive interactions between cancer cells, BM- and collagen-
like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM.
The model outputs were parameters cognate to dispersed- and collective- invasion.
Input sweeps gave rise to a spatial output distribution that consisted of dispersed-,
collective- and multiscale- invasion. K-means clustering of the output distribution
followed by silhouette analysis revealed three optimal clusters: one signifying
indolent invasion and two representing multiscale invasions, which we call collective-

multiscale (CMI), and dispersed multiscale invasion (DMI), respectively. Constructing
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input-output mapped phenotypic spaces suggested that adhesion to BM- and
collagen- matrix specify CMI and DMI respectively. Parameter perturbations
confirmed these associations and revealed how the cellular phenotype may
transition between the three states. Our systems-level analysis provides quantitative
insights into how the diversity in matrix microenvironments may steer invasion into

distinct phenotypic modes during metastasis.

Introduction

The details of the beginnings of cancer progression determine not just the kinetics of
its metastasis but also its response to therapeutic efforts (Haeger et al., 2020; Nieto
et al., 2016). Epithelia from malignant tumors proliferate and breach their covering
laminin-rich basement membrane (BM) barriers to migrate to the surrounding
connective tissue consisting of fibroblasts, other resident cells, and extracellular
matrix (Nelson and Bissell, 2005; Pally et al., 2019; Pickup et al., 2014). The latter is
rich in Type 1 collagen and other fibrillar proteins as well as proteoglycans (Di Lullo
et al., 2002; Hynes, 2009).

Bidirectional interactions including adhesion and degradation between cancer
cells and their surrounding tissue microenvironment shape the nature of their
migration (Anderson, 2005; Nissen et al., 2019) Cancer cell invasion is broadly
classified into unicellular or multicellular categories (Roussos et al., 2011). Solitary
cancer epithelia disperse and migrate through ECM in a fibroblast-like manner
(Madsen and Sahai, 2010). Such a dispersed migration pattern often concurs with a
series of changes in gene expression, intercellular adhesion and cell shape, known
as the epithelial to mesenchymal transition or EMT (van Zijl et al., 2011). The
spindle-shaped ‘mesenchymal’ cells interact extensively with ECM in their process of
migration (unlike the other unicellular migratory mode: amoeboid, where the
adhesion with matrix is minimal) (Friedl et al., 2004; Gadea et al., 2008; Huang et al.,
2014; Pankova et al., 2010; Sanz-Moreno et al., 2008). Collective cell invasion
involves migration of cellular ensembles that retain adhesive and communicative

contacts with each other through their movement (Cheung et al., 2013; Friedl et al.,
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2012). These diverse phenotypes are also reflected in blood-borne dissemination of
circulating tumor cells as individual cells or multicellular clusters (Aceto et al., 2014;
Bocci et al., 2019).

The migratory dynamics of cancer epithelia can also transition among the above-
mentioned types: dispersed (mesenchymal or amoeboid), and collective; such
plasticity may further drive phenotypic heterogeneity and symbiotic behavior in
cancer invasion patterns (Hecht et al., 2015; Huang et al., 2015; Lintz et al., 2017).
As cancer cells migrate to newer microenvironments, transitions from mesenchymal
to epithelial morphologies could appropriately render invasive single cells more
adhesive to each other (Krakhmal et al., 2015). Collectively migrating strands of cells
are typically thought of as hybrid epithelial/mesenchymal (E/M) phenotype (Nagai et
al., 2020); in vitro, in vivo and in silico evidence for existence, plasticity and
aggressiveness of such hybrid E/M cells has been mounting (Jolly et al., 2019).
Thus, it is not surprising to identify unique migratory behaviors of neoplastic cells that
are phenotypically intermediate between their dispersed and collective counterparts;
for instance, multicellular streaming of an amoeboid or mesenchymal nature (Fried|
et al., 2012; Kedrin et al., 2008; Liu et al., 2019; Patsialou et al., 2013) driven by
weak intercellular junction strength. The identification of leader versus follower cells
in such collective migration and the conceptual and mechanistic overlaps of cancer
progression with jamming-unjamming transition has also been an active area of

investigation (Sadati et al., 2013).

Multiscale mathematical models that investigate tumor progression have
largely focused on angiogenesis and tumor growth. Of late, these models have
incorporated cell invasion as a function of cell-cell adhesion and cell-matrix adhesion
too (Bearer et al.,, 2009; Szabo and Merks, 2013). Discrete approaches such as
agent- or cell-based ones to study cancer invasion have the advantage of
modularizing interactions between the cells and their environment, thus allowing
quick transitions from mechanistic hypothesis-framing to rule-based behaviors on
cell-population scales (Metzcar et al., 2019). Recent efforts grounded in continuum
approaches and lattice growth cellular automaton (LGCA) framework have revealed
how heterogeneity in cell-cell adhesion (as a result of many possible reasons:

genetic, epigenetic and/or microenvironmental control of EMT or through
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spatiotemporal variation in cell- and matrix-adhesion dynamics) can pattern the
dissemination of cancer cells (Domschke et al., 2014; Reher et al., 2017). Another
study combined experiments with simulations to showcase a feedback loop between
cell contractility, and the alignment of collagen fibers to posit that intermediate matrix
stiffness is optimal for invasion (Ahmadzadeh et al., 2017), thereby emphasizing the
nonlinear nature of ECM behavior in determining cancer cell invasion. ECM density
and organization, as a function of MMP density, can regulate the switch between
proteolytic and non-proteolytic modes of invasion (Kumar et al., 2016). However, the
existent literature on cancer invasion, to the best of our knowledge, has not yet
explicitly investigated the distinctions and commonalities between mechanisms
underlying collective and dispersed modes of invasion. In consequence, phenomena
such as mesenchymal streaming (Friedl et al., 2012) and tumor budding (Prall,
2007), which have been meticulously described in pathological and surgical

literature, remain largely uninvestigated via mathematical modeling approaches.

Using an experimental setup that mimicked the topographical arrangement of
invasive cell clusters encapsulated within BM-like ECM and subsequently by Type 1
Collagen, we were able to observe the cooccurrence of several spatially discernible
migratory modes, a phenomenon we called multiscale invasion (simultaneous
invasion across multiple scales (Pally et al., 2019)). These experimental
observations were simulated using Compucell3D, a modeling framework based on
the Cellular Potts model (Das et al., 2017; Glazier and Graner, 1993; Graner and
Glazier, 1992; Swat et al., 2012; Zhang et al., 2011), using which we established that
the cooperation between a set of biophysical phenomena such as cell-cell and cell-
ECM adhesion, cell proliferation and reaction-diffusion-based modulation of matrix
proteolysis  (computational equivalents of the ECM-degrading matrix
metalloproteinases (MMPs) and their inhibitors (The inhibitors of matrix
metalloproteinases or TIMPS))-, can give rise to a set of invasive phenotypes that
comprise dispersed, collective, and multiscale invasion categories. Here, we
investigate how robust each of these phenotypes are. Our multiparametric
simulations followed by statistical analyses suggest, to our surprise, that cell invasion
is fundamentally of two modes: both are multiscale and subsume exclusively
dispersed mesenchymal- and collective- invasions respectively (and hence will be

referred to henceforward as dispersed multiscale invasion (DMI) and collective
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multiscale invasion (CMI) respectively). We explore the inputs that maintain such
invasive modes and enable possible interconversions among them, the targeting of

which represents insights into novel therapeutic strategies in the future.

Results

Construction of an invasion phenospace based on the dynamics of reaction-

diffusion, and cell-cell and -matrix adhesion

In our previous manuscript, we were able to demonstrate, using a computational
model, that an interplay between parametric combinations of cell-cell and -ECM (BM
and Type 1 collagen) adhesion, and reaction-diffusion kinetics of MMP- and TIMP-
based ECM remodeling were able to give rise to diverse phenotypes of cell invasion.
Not just dispersed- and collective- invasion, but also phenotypes with concurrent
presence of the latter two modes were observed, which we termed multiscale
invasion. Such simulations were calibrated with in vitro 3D culture experiments of
breast cancer cells in combinations of appropriate ECMs (Figure 1A). Whereas in
our previous effort, proliferation played a dominant role over migration in the invasion
of cancer cells, here, we have incorporated active migration due to chemoattraction
the fibrillar collagenous ECM (Fang et al., 2014; O'Brien et al., 2010; Postlethwaite et
al., 1978; Xu et al., 2019). Our model confirms that invasion can take place in the
absence of proliferation (Supplementary Figure 1). We also confirmed that the
addition of this ‘active migration’ module did not perturb our previously obtained
result that the presence of only BM or only Collagen-like ECM constrained cells to
exhibit exclusively collective or dispersed invasion, respectively (Supplementary

Figure 2).

To better quantify the invasion phenotype and characterize the tendency of cells to
switch among these phenotypes, here, we constructed an invasion phenospace,
wherein the horizontal and vertical axes represent the metrics inherent to collective
and dispersed cellular invasion respectively (Figure 1B and C). Therefore, the X axis
measures the size of the largest single multicellular mass (the starting ‘primary
focus’) at the end of the simulation. The Y axis measures the number of objects

(cells or tiny cellular clusters) that are spatially disconnected or dispersed from the


https://doi.org/10.1101/2020.04.14.041632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041632; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

primary focal mass at the end of the simulation. Outputs that are closer and parallel
to X axis, therefore, represent phenotypes with exclusively collective cell migration;
those closer and parallel to Y axis represent dispersed cells migrating solitarily as a
result of their disintegration from the primary focal multicellular mass. Outputs with a
relatively higher magnitude of values on X and Y axes represent multiscale invasion
(MSI) phenotype.

Based on our previous simulation results, we took the following inputs to map the
phenospace: a) the contact energies representing cell-cell, cell-BM and cell-collagen
adhesion, b) cell division, c) diffusivity of MMP and d) the cooperativity between
MMP and its diffusible inhibitor TIMP (the threshold ratio of MMP to TIMP
concentration at a given spatial point that is required to degrade Type 1 collagen,
which was shown to be an important regulator of multiscale invasion (Diambra et al.,
2015; Pally et al.,, 2019)) (Figure 1A). Whereas this set is, by no means, an
exhaustive set of possible inputs, they were shown by previous simulations to
significantly impact the phenotypic outcome of invasion and recapitulate the diversity
of phenotypes experimentally observed. We chose the input values for which we
observed exclusive dispersed, or collective invasion phenotypes and then
progressively decreased them in discrete intervals to a minimum limit at which no
invasion was observed. In total, 5 values of each input were chosen; outputs were
computed for each combination of 5 values of 6 inputs; the computation was
repeated 3 times (replicates) using CompuCell3D. The replicates aim to capture the
variability in cellular responses enabled by the underlying stochastic framework of
the Cellular Potts modeling framework. These outputs were mapped onto the 2D
invasion phenospace (Figure 1D). The distribution of outputs indicated that
multiscale invasion represented a continuous phenomenon that bridged the
exclusive collection of dispersed- and collective invasions close to the respective
cartesian axes. Our findings are therefore consistent with conceptual narratives that
seek phenomenological continuity between invasive modes but suggest that the
transition between such modes can occur through a phase plane rather than in a
linear manner. Whereas our output method does not enable the identification of
optimal parametric combinations based on design space hypercube (as done by
(Ozik et al., 2019)), it allowed us to examine simultaneously two model outputs

simultaneously which could describe the predominant cell invasion phenotypes.
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Identification of optimal clustering of the invasive phenospace

We next investigated the optimal number of phenotypic clusters that can best
classify the scatter of outputs in the two-dimensional phenospace. Such approaches
are commonly used for gene expression studies to unravel hidden patterns in multi-
variable high-dimensional spaces (Oyelade et al., 2016). K-means algorithm is a
commonly used unsupervised clustering method which, given a priori an integer
value of K, partitions the given dataset into K disjoint subsets (Macqueen, 1967). It
selects a random initial seed point of preferred clusters which are used to cluster the
remaining data points; thus, different runs of K-means can possibly give rise to

distinct clusters and their arrangements.

We performed K-means clustering on the phenospace for K=2 to K=8 for multiple
instances, and as expected, observed different clusters across multiple (n=15) runs
for a fixed value of K, except for K=3 (Figure 2A and Supplementary Figure 3). For
K=2, two predominant categorization patterns were seen. In the first pattern, which
was obtained slightly more than 50%, one of the clusters indicated phenotypes with
relatively lower invasion (blue outputs in Fig 2A, top row, left panel, #1); the other
cluster consisted of points with moderate to high values of both dispersed and
collective invasion (yellow clusters in Fig 2A, top row, left panel, #1). In the other
categorization pattern for K=2, we observed a cluster denoting largely collective cell
migration (blue cluster in Fig 2A, top row, right panel, #2), and another one
encompassing the rest of the outputs (yellow cluster in Fig 2A, right panel, #2). For
K=3, the phenospace clustered into what could be characterized as non-invasive to
indolently invasive phenotypes (blue cluster in Fig 2A, middle row panel), and two
invasive phenotypes (yellow and green cluster in Fig 2A), each of which included,
but were not limited to, purer single cell- and collective invasion-representing outputs
close and parallel to the Y and X axes respectively and will, therefore, be referred to
as dispersed multiscale invasion (DMI) and collective multiscale invasion (CMI)
respectively. This pattern was obtained 15 out of 15 times for K=3 clustering,
suggesting the robustness of this categorization for further analysis. For values of
K>3, we observed two or more cluster patterns for independent runs of K-means

clustering (Figure 2 and Supplementary figure 3A). Clusters within such patterns
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could be subsumed within the two distinct multiscale invasion clusters seen for K=3
(see for e.g., cluster pattern #2 of K=4), or in other cases spatially independent of the

latter (for e.g., cluster pattern #1 of K=4).

Next, we conducted Silhouette analysis on K-means to quantify the consistency in
clustering, for varied values of K. Silhouette scores are indications of how similar a
data-point is to others in its own clusters, compared to those in other clusters. Thus,
Silhouette scores provide a measure of both the tightness of the clusters defined as
well as the extent of separation among them. These values range from -1 to +1; the
higher the value, the closer a given datapoint is to other points in those clusters and
the farther it is from other clusters (Zhao et al., 2018). Thus, a higher average score
would indicate a greater degree of cluster separation. Clustering for K=3 reported a
higher average Silhouette score as compared to K=2, 4, 5, 6, 7 and 8 (Fig 2B and
Supplementary Figure 3B). Moreover, over 15 replicates of K-means tried over the
same phenospace, the mean and variance of the average Silhouette scores was
calculated. K=3 showed the highest mean and the least variance (Figure 2B), further
endorsing that K=3 suggests the optimal clustering scenario for the phenospace. We
asked if the outputs within what we labelled as the noninvasive or indolent cluster
indeed showed lower dissemination relative to the two multiscale modes. To answer
this, we mapped the area of the smallest circle that could enclose all the cells for a
given output within the phenospace. Comparing the mean invasion revealed that
CMI cluster showed the greatest spatial spread followed by DMI; the indolent cluster

indeed invaded very poorly with respect to the other two (Supplementary Figure 4)
The two multiscale invasion clusters exhibit distinct phenotypic patterns

Having identified the two multiscale invasion clusters, we asked how morphological
phenotypes changed between these clusters. To do so, we chose representative
outputs within each cluster (in the middle of a cluster, near its boundary with the
other cluster or close to the X/Y axis) and examined the endpoint of simulation
(1500™ Monte Carlo Step (MCS) of the simulations). The output within the indolent
cluster (close to X=0, Y=0) showed scarce migration of cells within the fibrillar ECM
(Figure 3A). For representative outputs close to the boundaries between indolent

cluster and the CMI and DMI clusters, the invasion phenotypes represented finger-


https://doi.org/10.1101/2020.04.14.041632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041632; this version posted June 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

like cellular streams with dispersed single cells around them reminiscent of fingering
instabilities seen for immiscible fluids of distinct densities (Aref and Tryggvason,
1989; Mikaelian, 1990) (Figure 3B and C).

A representative output in the center of DMI cluster showed a centrally located mass
invading collectively surrounded by dispersed cells in the fibrillar collagenous ECM
(Figure 3D). On the other hand, in the center of the CMI cluster, the representative
output showed connected streams of cells interspersed with few single invading cells
in fibrillar ECM (Figure 3E). For the output in the DMI cluster close to the Y axis, all
the cells that had started out as a collective, were dispersed into the fibrillar ECM
(Figure 3F). Its counterpart in the CMI cluster, close to the X axis, showed a
dysmorphic bulk of cells growing centrifugally in a collective manner into the fibrillar
ECM (Figure 3G). In summary, the DMI and CMI clusters represent multiscale
invasions with a greater degree of cell dispersal and intercellular networking,
respectively. Our study concurs with previous experimental examinations of cancer
cell phenotypes in 3D, wherein cell lines within BM matrices exhibited mass-, grape-
or stellate morphologies (Kenny et al., 2007). However, the addition of a collagen-
like fibrillar ECM in our computational model unmasks stunning phenotypic diversity
within the stellate morphology through an operational dialectic between cellular

connectedness and dispersal.

Determinants of the different phenotypes observed in invasive phenospace

We next asked which of the inputs (Figure 1A) may be proportionately greater
represented within each of the three clusters. In order to do so, we generated input-
output maps of our phenospace, wherein each output was color-coded based on the
value of input that contributed to it (highest two input values were denoted in red
color, intermediate value blue, and the lowest two values were denoted with green
color). We observed that the lowest and highest values for cell-cell adhesion contact
energies were maximally and minimally apportioned within the indolent cluster
respectively. This implied that input combinations comprising high cell-cell adhesion
contributed strongly to the indolent phenotype (Figure 4A; Table 1). This is
consonant with the demonstration that strong adhesion mediated through

intercellular junctions contributes to cellular and tissue architecture (Bhat and Bissell,
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2014). On the other hand, high values of cell-collagen and cell-BM adhesion
significantly contributed to DMI and CMI cluster outputs respectively (Figure 4B-C,
Table 1). This is consonant with experimental demonstrations of the necessity of
cancer cells to adhere to ECM substrata for migration (Gkretsi and Stylianopoulos,
2018). Lowest values of both inputs were proportionately seen to be higher within the
indolent cluster output phenotypes. We have also observed computationally that the
varying contributions of BM or Collagen around cancer cells can potentiate collective
and dispersed invasion respectively (Supplementary Figure 2; the input signatures
across these two clusters seem to be distinct as well, Supplementary Figure 5).
Higher values of cell proliferation contributed strongly to CMI phenotype but in
comparison, were depleted for DMI cluster outputs (Figure 4D, Table 1). In
comparison, parameters cognate to reaction-diffusion kinetics: diffusion rate of MMP
and cooperativity between MMP and its inhibitors in MMP degradation showed mild
variation in their tendency to be apportioned between the three clusters: highest
values of MMP diffusion rates were represented relatively to the greatest extent
within DMI cluster, whereas both multiscale invasion clusters were characterized
with a relative enrichment of outputs with low MMP/TIMP cooperativity values
(Figure 4E-F; Table 1). To summarize, the DMI cluster was composed of outputs
associated with high cell proliferation and cell-BM adhesion. The CMI cluster was
associated with high cell-Collagen adhesion, whereas indolent invasion cluster

consisted of outputs with high cell-cell adhesion

Perturbing input-output combinations to identify transitions in the phenospace

We sought to test the strength of these associations by perturbing these specific
input values within these clusters. We minimized the cell-BM adhesion (through
increase in cell-BM contact energy) in 100% of outputs in the CMI cluster that
showed highest values of this parameter. Whereas 38% outputs remained within the
CMI cluster after decreasing adhesion, 54% outputs transitioned to the indolent
cluster and 8% to the CMI cluster (Figure 5A). Minimizing growth rate in outputs from
DMI associated with its highest values brought about a transition of 96% outputs to
the indolent cluster and only 4% to the CMI cluster (Figure 5B). Decreasing cell-
collagen adhesion in 100% of outputs in the DMI cluster that showed highest values

of this parameter caused 88% outputs to transition to indolent cluster with only 2%
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transitioning to the CMI cluster (Figure 5C). Interestingly, maximizing values of R-D
cooperativity for outputs showing the lowest values within the CMI cluster brought
about a transition in 18% outputs to the DMI clusters (Figure 5D). Similarly, R-D
cooperativity and MMP diffusivity were increased and decreased in DMI cluster
outputs that showed the lowest and highest values of these two input traits,
respectively; transitions of 17% and 34% were seen as a consequence of such
perturbations. This indicated that parameters that render the two multiscale invasive
phenotypes unique, the matrix adhesion parameters when perturbed, lead to a loss
of invasion. On the other hand, inputs relating to the reaction-diffusion-based
proteolysis of ECM had a greater probability of allowing transitioning between of cells
between CMI and DMI phenotypes. These representative examples identify how
cells can traverse the phenospace through these specific alterations in the input

parameter(s).

Discussion

In an illustrative review, Friedl and coworkers provided an elegant classification of
generic cell invasion: they enumerated numerous movements with solitary and bulk
movements at the two ends of the phenotypic spectrum (Friedl et al.,, 2012). In
addition, a three-dimensional graph shows how the three axes of leading-edge
polarity, apicobasal polarity and cell-cell contacts can accommodate the different
modes of phenotypes. This idea is based on an earlier review on the same topic
where Friedl and Wolf argue for a “multiparameter tuning model of invasion wherein
a combination of cues such as density, stiffness, and orientation of the extracellular
matrix together with cell determinants—including cell-cell and cell-matrix adhesion,
cytoskeletal polarity and stiffness, and pericellular proteolysis—interdependently
control migration mode and efficiency” (Friedl and Wolf, 2008; Wolf et al., 2007). Our
manuscript seeks to build on this idea by subjecting it to mathematical rigor and
identify its underlying assumptions and mechanisms. While Friedl and others have
acknowledged that distinct modes may concur spatially, their tuning model would
attribute such co-occurrence to the heterogeneity in microenvironmental cues.
However, does the co-occurrence of dispersed and collective modes of invasion

(multiscale invasion or MSI) represent a distinct invasive mode, wrought through
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distinct signatures from a tunable combination of inputs? In this manuscript, we
argue that such is the case. In fact, the input combinations give rise to not one but
two types of MSI. The two types have higher relative representation of dispersed and
collective cell invasion respectively and explain the exclusively solitary and bulk

invasion respectively.

Invasion of cancer cells has been characterized as non-equilibrium phase separation
of mesoscale multicellular aggregates (Yang et al., 2019). This idea is an extension
of previous frameworks which describe spreading cellular ensembles as liquids and
dispersed cells as 2D gases (Sadati et al., 2013; Trepat and Fredberg, 2011).
Jammed non-invasive states have been likened to ‘solid phases’ and the transitions
between non-invasive and invasive (collective and dispersed) phenotypes can be
compared with phase transition dynamics. The novelty of our contribution within this
framework stems from the crucial addition of two ECM microenvironments instead of
one as well as the recreation of the collagenous ECM by invading cancer cells. This
is not to add needlessly to the complexity but to incorporate essential characteristics
of tumorigenic epithelial tissues (Naba et al., 2014; Nelson and Bissell, 2005). The
production of fresh collagenous ECM is being increasingly demonstrated to play a
crucial role in defining the invasive behavior of cancers. The ECM secreted by
cancers is rich in fibrillar collagen. In a recent preprint, we identify unique
physicochemical features associated with the collagenous ECM secreted by invasive
breast cancer cells (https:/doi.org/10.26434/chemrxiv.12063420.v1). Such

observations have been corroborated in several cancers including that of breast

(Naba et al., 2014). Upon incorporation of these two features, we observe that the
phenotypic distribution that is intermediate between pure collective and dispersed
states can be fundamentally split into two clusters, with specific input contributions.
Our findings allow us to extend the characterization of mesoscale multicellular
phenotypes based on soft matter models (Gonzalez-Rodriguez et al., 2012), as
possibly polydisperse media with DMI comparable to aerosol and CMI comparable
with foam states, respectively.

Surgical histopathological literature is replete with observations of multiscale
behavior in cancer invasion. In the context of colorectal carcinoma, Prall and

coworkers have made meticulous observations on ‘tumor budding’, wherein single
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cells or small collectives of, cells seem to escape from growing edges of malignant
neoplasms (Prall et al., 2005; Prall et al.,, 2009). Such multiscale behavior is
associated with a more sinister kinetics of metastasis and poor prognosis (Hase et
al., 1993; Prall et al., 2005; Prall and Ostwald, 2007). Tumor budding has been
observed in breast and pancreatic cancers as well (Petrova et al., 2019; Salhia et al.,
2015) and have been connected to a partial EMT phenotype (Bronsert et al., 2014;
Grigore et al., 2016). Our previously published experiments, which were crucial to
the development of the computational model we have explored here, described
multiscale invasion, which is phenomenologically similar to tumor budding. Indeed,
early investigations by others confirm our empirical and theoretical findings that
surface proteins and ECM play key roles contributing to multiscale invasion (Graves
et al., 2016; Masaki et al., 2003). In our present analysis as well, we observe the
phenotypic subspace pertaining to truly multiscale invasive phenotypes show the
highest proportion of dissemination, compared with subspaces associated with pure

collective and dispersed invasion (Supplementary Figure 4).

At this point of time, our study does not incorporate three salient aspects of
invading cancer cells. The first is the change in shape of cells as they move through
matrix microenvironments. This distinguishes amoeboid from mesenchymal single
cell migration and is associated with shape-based asymmetries in remodeling of
ECM intercellular adhesion (Pankova et al., 2010). Despite this lacuna, we believe
our dispersed multiscale invasion is mesenchymal in nature as it is predicated on
adhesion of cells to the ECM (which distinguishes it from amoeboid migration), and
appropriate for the level of graining that is achieved in our analysis. However, cell
shape dynamics will be implemented in our future efforts. Secondly, our
computational environment does not incorporate the stromal cells that contribute in
significant ways to the phenomenology of cancer cell invasion (Labernadie et al.,
2017) due to limitations of the sheer computational power required to compute the
dynamics of a multi-cell multi-ECM environment. We assume that the R-D dynamics
of MMP-TIMP incorporated in the computational environment is a downstream effect
of the cancer and stromal cell activities. This assumption will be tested in future
efforts. Last, but not the least, our model does not incorporate cell polarity which has
been proposed to contribute to active models of soft biological matter (Perez-

Gonzalez et al., 2019) and predict migration in the absence of proliferation (Tlili et
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al., 2018). Future efforts will be devoted to computational investigating the properties
of polarized polydisperse states. At present though, our effort serves to put
multiscale migratory behavior in the fundamental center of the concept of cancer
invasion. Understanding the process has potentially far reaching consequences for

future therapeutic efforts.

We would conclude by drawing a parallel between our study and the modeling
efforts employed for investigating developmental processes (Alber et al., 2006; Alber
et al., 2004; Christley et al., 2007; Harrison et al., 2011; lzaguirre et al., 2004;
Kiskowski et al., 2004; Merks and Glazier, 2006). While our model derives its
motivation, initial conditions and tissue geometry (which have been shown to be a
crucial determinant in morphogenetic pattern formation (Nelson et al., 2006)) from
breast cancerous contexts (Bhat and Bissell, 2014), one can as well interpret our
model as a developmental system wherein inter-agent adhesion and reaction-
diffusion based phenomena sculpt cellular patterns. In fact several of our model
inputs represent the biological physics associated with the framework of dynamical
patterning modules, which has been employed to study the evolution and logic of
developmental mechanisms (Newman and Bhat, 2008, 2009). In effect, this
suggests that the redeployment of developmental and morphogenetic principles in
the context of genomic aberrations may underlie the mechanisms behind discrete

invasive behaviors of cancer cells and the transitions between them.

Materials and methods:

Modelling framework

Compucell3D (CC3D) is a problem-solving environment that combines the lattice-
based GGH (Glazier-Graner—Hogeweg) model or CPM (Cellular Potts model) with
PDE solvers and other models to allow for study and simulation of multiscale virtual
biological processes (Swat et al., 2012). The software divides the whole simulation
lattice into ‘cells’ (collection of pixels). A specific ‘cell type’ is assigned to each of
them. Interaction parameters between cell types can be made to approximate
biological constraints between components, similar to that of the original in vitro or in
vivo biological system. Such constraints or parameters regulate the simulation

through the effective energy or Hamiltonian (H) calculated at each Monte Carlo
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Step (MCS). Calculation of H determines the allowed configuration and behavior of
cells at each MCS.

Hamiltonian or effective energy calculation at each MCS:

2
H= Z J(@ (0y), ()1 = 8(a;, 0))) + z[lml (@) ((0) = Vi(0)) 1+ Han

neighbours
+ Henemo
AHpy = — Fop). Ty
AH themo = — Achemo- (€j — €1)

Index(o)-copy attempt (from pixel i to j) success or rejection incorporating Boltzman
probability function:
For AH < 0 condition, the associated index-copy attempt will be successful, so the
target pixels are updated. So, success probability is P = 1

For AH > 0 condition, the associated index-copy attempt will be successful with a

AH
probability of P = e ™=’ and it will be unsuccessful with a probability P’ = 1 — P

There are 4 contributors for calculating the H for cells.

The first contributor is the sum over all neighboring pairs of lattice sites i and |
with associated contact energies (J) between the pair of cells indexed at those i and
j- In this term, i, j denotes index of pixel, o denotes cell index or ID, and 7 denotes
cell-type. The & function in this term will ensure that only the o; # o; terms are

calculated (i,j belonging to same cell will not be considered). Contact energies are
symmetric [ J (T(ai), r(a,-)) =](T(Jj),r(ai)) ] . The contact energy between two cells

is considered to be inversely proportional to adhesion between those two cells.

The second contributor is a function of the volume constraint on the cell,
where for the cell g, A,o(0) denotes the inverse compressibility of the cell, v(0) is the
number of pixels in the cell (volume), and V(o) is the cell's target volume. For each
cell, this term is governed by its growth equation.

The third term related to random active motility. For calculating AH 4, for a

given MCS step, when an index-copy attempt is made for pixels from “i” to “j” for a
cell a(i), the force vector is ﬁa(i) and the distance vector between those pixels is 7}; .

Therefore, the product of these two vectors with correct direction alignment will
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satisfy the condition to minimize H and will determine the movement of the cell along
that direction. Effectively, the respective steppable (CellMotilitySteppable) provides
an external force on the centre of mass of the cells which changes direction
randomly every MCS.

The fourth term is relevant for biased motility of the cell due to chemotaxis.

For calculation of AH ;e , €; represents the concentration of the chemical field

(‘GF for our simulations) at index-copy target pixel (j) and c; represents the
concentration at index-copy source pixel (i) . Achemo 1S @ CcONstant which determines
how strongly the cell will respond to the external chemical gradient by its value and
its sign determines the whether the cell should move towards positive or negative
gradient of concentration.

In the Boltzman probability function, AH represents the calculated change in
overall Hamiltonian of the system between the system-configuration at previous
MCS and a specific system-configuration at current MCS. Ty, relates to effective
membrane fluctuation for the cell.
(https://compucell3dreferencemanual.readthedocs.io/en/latest/index.html) (Swat et
al., 2012).

Simulation lattice:

We use a 100*100*1-pixel square lattice with non-periodic boundary for all the
simulations (the initial configuration of simulations resembles Fig 1(C) where no

invasion of any type is observed).

Cell types:
There are total 6 different cell types used in the simulations-

Medium: all cells with unassigned cell type are medium cells. These cells act as

free, uninterrupted space in the simulation space.

Cancer: these cells are initially situated at the center grid surrounded by basement
membrane (BM). Cancer cells start as rectangular objects of 16-unit volume (4 x 4
pixels), spanning a total 14 x 14 x 1 unit volume (16 cancer cells) at the center (X, y
= 43:57) of the simulation grid without any intercellular space. Cancer is the only cell
type that is allowed to grow and proliferate. To differentiate from non-cellular

components, cancer cells have membrane fluctuation unlike others. The cells also
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have random motility associated with them. An ‘ExternalPotential’ plugin was used to
enable ‘cellMoatility’ to act on the cancer cells through the Hamiltonian.

AH gy = — Fo). Ty
for a given MCS step, when an attempt is made to copy a pixel from “i” to *j” for a cell
o (i), the force vector is ﬁa(i) and the distance vector between those pixels is 7;; .
Therefore, the product of these two vectors with correct direction alignment will
satisfy the condition to minimize H and will determine the movement of the cell along
that direction. The steppable provides an external force on the center of mass of the
cells which changes direction randomly every MCS, therefore mobilizing the cells in
different directions and providing them with active motility like biological cells. The
direction of ﬁa(i) is randomly changed at any angle for each cell in each MCS;
thereby favoring motility in random directions for all cells for a short period and
changing direction again. In the ‘cellMotilitySteppable’ of cancol2Steppable.py file, in

‘def start(self)’ we have randomly initialised the force vectors.

BM (laminin): This cell type surrounds the cancer cells in the initial configuration. 2
layers of tightly packed BM cells (x, y = 37:63; 3 x 3 pixels= 9 unit volume) separate
the cancer cells from C1 cells. To approximate extracellular matrix (ECM)
architecture surrounding luminal epithelial cells in mammary duct, BM cells are
modelled as dense adhesive bloblike objects to mimic the lamina densa of basal

lamina.

(Collagen) C1: Outside BM cells, fibrillar C1 cells mimics the interconnected fibrils of
collagen I. C1 cells span the remaining space of the simulation lattice (x, y = 63:100).
Interfibrillar gaps are characteristic of the C1 cell region unlike BM. The gaps aid in
non-proteolytic cancer cell motility through C1 layer. In the initial configuration of the
simulation, elongated C1 cells are orientated in random directions with each cells

having 4 x 2 =8 unit volume.

C_lysed: This cell type is used in an intermediate step during matrix degradation
and regeneration. Reaction-diffusion dynamics of the chemicals secreted by cancer

cells allows for degradation of BM and C1 matrix cells. Upon meeting certain criteria
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for degradation, the BM or C1 cell type of a particular cell becomes C_lysed,
although retaining the shape and size of that cell. These cells track the MCS from
their individual degradation event and transform into newly synthesized matrix cells
after 20 MCS. They have properties specified as intermediates of C1 and medium
cell types. C-lysed type signifies the degraded ECM, predominantly Type 1 Collagen
fibers. Collagen fibers upon degradation are known to produce substrates that act as
attractant cues for chemotaxis (Postlethwaite et al., 1978). In addition, collagenous
matrices have been shown to be depots of growth factors (Schuppan et al., 1998;

Somasundaram et al., 2002; Somasundaram et al., 2000).

NCL1: Designed to mimic the ‘cancer matrisome’, the newly synthesized matrix cells
are denoted as NC1. These cells are almost like C1 in their behavior and can
undergo further degradation to become C_lysed and subsequently after 10 MCS
would become NC1 again. If undisturbed the C lysed and NC1 cell type
transformations keep the position, size and shape of the cell unchanged.

The exact difference between C1 (stromal collagen) and NC1 (newly synthesized
collagen) are as follows:

1. There is a volume reduction we have implemented in NC1, to account for diffusion
of soluble degraded ECM, 0.005 unit vol./MCS * 20 MCS= 0.1unit

2. The chemoattractant GF is secreted by C1, when it comes in contact with
C_Lysed i.e. during degradation. But even though NC1 can be degraded, it does not
secrete GF. Both of them gets converted into C_Lysed and that cell-type secretes
GF.

3. Among both, only the contact energy term between cell and C1 is an input

variable for parameter scan.

Contact energies:

As the whole simulation lattice is divided into cells, the contact energy is used to
regulate the sorting of all the cells. Specific contact energy values are assigned to
all pairs of interactions between different and same cell types. The contact energy is
also inversely proportional to adhesion between the respective cell type pair or
components of the system. As there are a total of 6 cell types in the simulation, there

are total 21 contact energies that need to be assigned and the values determine the
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differential adhesion. The values of the contact energies were set using control and
validation experiments from our previous publication (Pally et al, Frontiers, 2019). 3
among those 21 contact energy- or adhesion- parameters were selected as input
variables, which would be changed during further analysis. These 3 contact energies
or adhesions are associated with pairs of cell types of only cancer cells (c-c CE),
cancer cells and BM (c-lam CE), cancer cells and C1 (c-c1 CE) since in our
previous efforts we had identified the combination of other contact energies (such as
those between BM and Type 1 collagen that were permissive for invasion-based
simulations.

The neighbourhood (‘NeighborOrder’) for adhesion term is 2. This ensures for a
square shaped cell, all neighbouring cells on its 4 sides along with cells on the 4

corners are considered during the Hamiltonian calculation.

Reaction diffusion:

CC3D allows chemical fields to determine specific spatiotemporal cellular behaviour
during simulation. The fields contain the values of concentration of the chemical at
each location of the simulation grid. Two chemicals, A and |, are used as activator
and its inhibitor as per reaction diffusion dynamics and their concentrations are
governed by the partial differential equations (PDE). The governing equations for

these two fields are:

M = DAV2[A] +a - 8,[A] (1)

A = pv?[11+b - &1 (2)

b=a=K—(cx[I]-d=[AD) (3)

Where, [A], [I]: concentration values for fields A and I.
D, , D, : diffusion constants of A and |

6, , 6; : degradation rates of A and |

a, b : secretion rate of A and |

t=MCS

Default parameterizations, D,= input variable, D,= 0.04, §,= 6,= 0.003, K= 2.0, c=
4.0,d=2.0
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Here A is considered as the activated form of matrix metalloproteinases (MMPs) and
| is considered as tissue inhibitor of matrix metalloproteinases (TIMP). The difference
in diffusion constants of A and | formulates the pattern in Turing space, so altering
one of them (in this case, D,) can result in different RD dynamics for different
simulations. Activation (or secretion of the activated form i.e. ‘a’) of A is assumed to
be dependent on its inhibitors (inversely) and on its own concentration
(autocatalysis). The cancer cells secrete both A and | when they come in contact
with matrix cells such as C1, BM and NC1. Their concentrations are also calculated
at the center of mass of the matrix cells.

If the ratio ([A]/[]) of concentrations of A and | at the center of mass of any matrix cell
is more than a threshold, then that matrix cell is degraded. The threshold value for
the ratio is termed as RD cooperativity and is one of the input variables. The value of
RD cooperativity signifies the inhibition effect of the inhibitor on the activator’s activity
(matrix degradation) during the course of a simulation. After degradation and
conversion to C_lysed cell type, the cell becomes NC1 type in 10 MCS which
undergoes same treatment as matrix cells again. This regeneration of matrix is
essential to eliminate unnecessary free spaces formed as an artefact of matrix
degradation which takes the computational model closer to its experimental
counterpart. Volume of all the ‘C_lysed’ cell types are subjected to 0.1 unit volume

decrease at each MCS to mimic dissipation of degraded matrix materials in vivo.

Growth and proliferation:

Cancer cells are designed to grow in linear combination of two processes.
dv

E=G*[g*p+[GF]*q]

Where V = volume of cancer cell

g = measure of nutrient availability

[GF] = concentration of growth factor (GF) at center of mass of ‘CELL’

p, q = constants

G= Growth rate coefficient

The common surface area of a cancer cell with its neighboring cancer cell (k) and

the total cell surface area (s) is accessed to calculate g in this equation as g=(s-
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k)/40. The denominator in the calculation of g is due to 2D nature of the simulation
as a cell can be surrounded by other cells only in xy plane and not in z axis. The
scaling of that extra cell surface area without any neighboring cells in z axis is
provided by the denominator. Another contributor of the growth function
is [GF] which mimics the ECM-degradation dependence of growth and proliferation
(Olivares et al., 2017). The ‘C_lysed’ cell type is programmed to secrete GF at each
of its pixel location where the diffusion constant is kept low (0.02) to localize this
growth signal to areas of matrix degradation. p (=1/12) and q (=1/21) constant values
are set according to the assumed weightage of the two variables in growth equation.
Value of G, then determines how much the resultant growth of the cell should be.
The linear combination of the two contributors is multiplied by G, this G is changes
during parameter scan. Hence, G or growth rate coefficient is considered as an input

variable.

Cell division is incorporated into the cancer cells by a CC3D steppable called
‘MitosisSteppable’ with base function ‘MitosisSteppableBase’. If any cancer
cell reaches a threshold volume of 30 units then that cell will be divided in random
orientation. The resultant two cells will have volumes half of its predecessor with all
other properties kept same as the parent cell. In this model, growth rate is directly
correlated to proliferation as it determines the volume of the cell to reach threshold
for cell division.

Chemotaxis and migration:

Until this attribute is added to the cells, the model depended overtly on proliferation
for the invasion that was observed and characterized. The absence of a
chemoattractant(s) in the framework resulted in this behaviour. We have mitigated
this deficiency by incorporating chemoattraction in our revised model. The stromal
ECM, collagen has been shown to have chemoattractant properties in undegraded
and degraded states (Postlethwaite et al., 1978) (O'Brien et al., 2010). In the github
link provided folder with cc3d codes, it can be seen that the .xml file contains
“Chemotaxis” plugin for directed chemotaxis induced by Collagen.

The ‘Chemotaxis’ plugin implements a force on the cells through the Hamiltonian
towards positive gradient of the chemical field ‘GF'. The ‘GF field is secreted by
degraded matrix (C_Lysed) and undegraded collagen (C1). In order to ascertain

local positive chemical gradient towards undegraded C1 matrix, the C1 releases the
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chemoattractant in slightly greater amount than its degraded counterpart C_Lysed
[secretion rate: 2.5 for C1 compared to 1.0 for C_Lysed]. Only the C1 which are in
the vicinity of degradation release this GF as instructed in the ‘SecretionSteppable’.
This is coded in the cancol2Steppables.py file in the CC3D folder and ‘Simulation’
subfolder.

Parameter scan:

CC3D’s parameter scan feature was used to explore parameter space of the input
variables. All the combinations of provided values of the parameters are considered
for each individual simulation.

Here are the 5 values of the 6 input variables for a parameter scan:

RD cooperativity: 2,4,6,8,10

MMP (A) diffusion constant: 0.005, 0.01, 0.025, 0.04, 0.055

Cell-cell contact energy: 4,18, 32, 46, 60

Cell-laminin contact energy: 4,18, 32, 46, 60

Cell-C1 contact energy: 4,18, 32, 46, 60

Cell Growth (G): 0, 0.25, 0.5, 0.75, 1

3 replicates of the parameter scan were performed.

The first two values of the input values are considered low values, the 3™ value as

intermediate and the last 2 values are considered high values in further analysis.

Matlab-based analysis:

Quantification of invasion: [Figl(B)]

Graphical representation of all the cells in the simulation grid is captured as images
at different MCSs for each simulation. A certain ‘timepoint’ or MCS (=1500) is
chosen so that MATLAB accesses all the images of all simulations at MCS 1500 and
provides quantification. The choice of the 1500™ MCS is guided by the fact that this
represents the stage where collective invasion can clearly be discerned from the
dispersed cells. Beyond this stage, the dispersed cells move out of our framework
window and the collectively invasive mass fills the same, disallowing distinctions to
be made between invasions of different scales. First, we have binarized the image
using the tool ‘Color Thresholder (for batch processing, the function from this
thresholder tool was passed through ‘Image Batch Processor’). After binarization
basic image manipulation functions such as ‘imfill’, ‘imdilate’, ‘bwperim’ were used to

optimally isolate the objects from the image. ‘Image Region Analyser was used to
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get different quantification parameters of those binarized objects. More details can
be found from the matlab code (Figl_simulation_image_analysis.m) provided in
github.

No. of dispersed objects: The collected simulation images are originally in RGB
color scheme to differentiate cell types as displayed in Figl(C). Individual images
from all simulations are batch-processed to generate binary images with respect to
cancer cell type (red color). The first set of binarized images undergo series of
rudimentary Matlab image processing operations to generate different set of binary
images for different analysis. From them, all the boundaries in each image are then
identified to recognize areas which are enclosed by a continuous non-overlapping
boundary. These areas without shared boundaries originally represent cancer cell
clusters in the respective simulation grid. These clusters can contain single to
multiple cancer cells. the number of these clusters denote the dispersiveness of the
initial tumor mass in the simulation pertaining to certain combination of input
variables, therefore considered as one of the output variables i.e. no. of dispersed
objects. The values of this quantity pertaining to each simulation is plotted on the y-

axis of the phenospace.

Area of largest cell cluster: From the sets of binarized images, areas of all
dispersed objects are calculated by counting the pixels preset inside each object’s
boundaries. The dispersed object having biggest area is considered the main
collective cancer cell cluster of the respective simulation. The value of the area of
such as object in the simulation image is quantified as ‘area of largest cell cluster’,
the other output variable. The values of this quantity pertaining to each simulation is

plotted on the x-axis of the phenospace.

K-means clustering:

Broad guidelines for performing the Silhouette analysis were adapted from the

following link (https://in.mathworks.com/help/stats/kmeans.html#bues3lh). K-means

clustering or Lloyd's algorithm is used for subsequent analysis of the phenospace
using MATLAB (Lloyd, 1982). It is an iterative, data-partitioning algorithm that

assigns all observations from simulations to exactly one of the K clusters defined by
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centroids. Being an unsupervised partition-based algorithm, value of K is chosen
before the algorithm starts. 'kmeans’ function in MATLAB uses a two-phase iterative
algorithm to minimize the sum of point-to-centroid distances, summed over all k
clusters. The first phase uses batch updates, where each iteration consists of
reassigning points to their nearest cluster centroid, all at once, followed by
recalculation of cluster centroids. In the second phase, points are individually
reassigned, if doing so reduces the sum of distances, and cluster centroids are
recomputed after each reassignment, by using feedback updates.

The x and y axis values from the phenospace are normalized (z-score) before the
use of ‘kmeans’ function to provide same weightage to the axes of during clustering
and at the end of the run, all points are assigned a cluster. The points are then

colour-coded in the phenospace to differentiate hosting cluster identities.

Silhouette analysis:

Broad guidelines for performing the Silhouette analysis were adapted from the

following link (https://in.mathworks.com/help/stats/silhouette.html#mw_9fe10316-

522d-4a3a-9cdd-d39baealclce). The silhouette value for each point is a measure of

how similar that point is to points within its own cluster, when compared to points in
other clusters. The silhouette value ‘S;’ for the ith point is defined as

S; = (br-a;)/ max(a;,b;)

where a; is the average distance from the ith point to the other points in the same
cluster as i, and b; is the minimum average distance from the ith point to points in a
different cluster, minimized over clusters.

The silhouette value ranges from —1 to 1. A high silhouette value indicates that i is
well matched to its own cluster, and poorly matched to other clusters. If most points
have a high silhouette value, then the clustering solution is appropriate. If many
points have a low or negative silhouette value, then the clustering solution might
have too many or too few clusters. So, silhouette values are used as a clustering
evaluation criterion for finding a clustering pattern which is invariable across
replicates.

After a specific K-means clustering is performed on the points in the phenospace,
the normalized matrix of x, y axes along with cluster identity matrix (cluster id of each
point) is used to compute silhouette values for each point. The values pertaining to

all the points in the simulation is represented in silhouette plot for convenience and
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the mean of the silhouette values in the plot is denoted with a dashed line. The
silhouette method was performed on all the replicates of clustering with a constant k
value. The mean of the silhouette values pertaining to each replicate is acquired.
The mean and standard deviation of the mean silhouette values associated with

replicates of different k values are plotted in a box plot.

Principal Component Analysis:

Broad guidelines for performing the PCA were adapted from the following link

(https://in.mathworks.com/help/stats/pca.html). Briefly, in order to analyse the points

in the neighborhoods or patches (denoted by rectangles) in the phenospace,
principal component analysis was used in MATLAB. The whole input argument
dataset for a cluster’'s PCA is a matrix which consists all 6 input variable values for
individual simulations relating to the points in that cluster. The matrix is normalized
for each variable. Normalization proved to be important as we are interested in
relative contribution of the input variable and their changes with respect to other
points (simulations), rather than their absolute values. PCA of each rectangle
produces different linear combinations of input variables (forms principal component
axes) for optimally fitting all points without overlapping in one of those linear
relations. PCA quantifies how much of the input data is ‘explained’ by each linear
combination (or PC axis) and represented as a scree plot. The linear combination
associated with highest y-axis value in the scree plot is identified as first principal
component axis. Therefore, the relative contributions of the input variables for
constructing PC1 can give insights into the convoluted dynamics of input variables
governing the phenotype. The relative contribution of the input variables is plotted in

bar graph on the right side of scree plots (Supplementary figure 5).

Codes: All the codes relating to the manuscript can be accessed through the

following link: https://github.com/drjyprk/cc3d_paper 2_iisc_git
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Figure Legends

Figure 1. Introduction to the computational framework, simulation inputs and
output phenospace (A) Schematic depiction of the input variables that have been
deployed in the CompuCell 3D simulations. The result of the simulations was
computed as two outputs that are representative of dispersed invasion and collective
invasion. (B) Depiction of computation of the invasion outputs: MATLAB® is used to
quantify the morphology of the cancer cell mass in the simulations. 1. Images of all
simulations are collected at the 1500" Monte Carlo step (MCS). 2. The images are
binarized to isolate the cancer cells. 3. All dispersed ‘objects’ (the objects share no
common boundary with each other) are identified and counted and is called ‘No. of
dispersed objects’. 4. the mass having largest total covered area is isolated and the
value of that highest area is called ‘Area of Largest cell cluster’. (C) Control
simulations: Four simulations (red= transformed cancer cell, green= collagen I, blue=
Basement membrane (BM)) represent control runs showing morphological variations

with certain input variable values. In terms of invasiveness, they are characterized as
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dispersed invasion (blue), collective invasion (red), multiscale invasion
(magenta) and indolent or non-invasive phenotype (yellow). The invasiveness of
the controls interpreted through the 2 outputs show in 1B allows the construction of a
phenospace with X axis measuring the ‘Area of Largest cell cluster and Y axis
measuring the ‘No. of dispersed objects’. Control simulations can therefore be
mapped onto the phenospace of possible output points within the phenospace
through various combinations of inputs deployed through simulations run till a similar
endpoint (MCS:1500). (D) Distribution within the phenospace of phenotype outputs
as a result of combination of five values for each of the six inputs mentioned in (A)
and run three times (replicates). The total number of simulations originating from this
combination is 5"6X3=46875. Simulations points having x value more than around
36000 (~90% of the whole simulation lattice) is removed to omit the effect of spatial
limitation of the simulation lattice. After that, 99% of the whole dataset (46475

simulations) is retained which is plotted here.

Figure 2: The invasion phenotypic outputs can be optimally segregated into
three clusters (A) All the simulation outputs in the phenospace (in Figure 1D) are
analyzed with K-means clustering using cluster number K=2-4 (leftmost column).
Clustering was performed 15 times with random initial cluster centers. The cluster
phenotype patterns are shown (middle column) along with their proportional
representation within the 15 replicates (right column). (Cluster patterns for K=5-8
shown in supplementary figure 3) (B) The optimal value for K computed using the
Silhouette method. Silhouette plots for K=2-4 are constructed with X axis signifying
silhouette values and Y axis representing cluster numbers. (Silhouette plots for K=5-
8 shown in supplementary figure 3) (C) The average silhouette values and
associated standard deviation for all 15 clustering replicates in different K-value
groups are plotted in the box and whisker plot (bottom right). Statistical test was
performed using unpaired ANOVA with Tukey's post hoc multiple comparison
(p=0.0049).

Figure 3: Visualization of distinct invasive phenotypes across the phenospace
The simulation images on the bottom part of each subfigure is at MCS 1500 and

their respective position is denoted with red color in the (K=3)-means clustered
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phenospace above. (A) The end point of a simulation output chosen within the
indolent cluster close to the X=0, Y=0 shows scarce invasion of cells from the
originating locus. (B-C) The end point of simulation outputs chosen at the indolent-
DMI cluster boundary and the indolent-CMI cluster boundary respectively, shows
connected networks of cells with oligocellular dispersed masses, reminiscent of
tumor budding (Prall, 2007). (D) The end point of a simulation output chosen inside
the DMI cluster shows a phenotype, wherein a growing central mass of cells is
surrounded by a plethora of dispersed cells. (E) The end point of a simulation output
chosen inside the CMI cluster shows a phenotype, wherein the growing central mass
invades through finger like projections with a few dispersed cells close to these
projections. (F) The end point of a simulation output chosen inside the DMI cluster
close to Y axis shows a classical dispersed invasive phenotype. (G) The end point
of a simulation output chosen inside the CMI cluster shows a classical collective cell

invasive phenotype.

Figure 4: Coarse-grained classification of simulations in the phenospace
based on input variable values:

The phenospace is divided into 3 parts depending on the K=3-means clustering and
the boundary between the clusters is denoted by the black lines. The input variable
values (for cell-cell contact energy (A), cell-collagen contact energy (B), cell-BM
contact energy (C), growth rate (D), MMP diffusivity (E), and R-D cooperativity (F)
(see also Materials and Methods; parameter scan section) attributed to the
simulation points in the phenospace are collected and after analysis, all the
phenospace points are colored based on the values of the respective input variables.
The lower two values are denoted in green color, the intermediate value in blue, and

the higher two values are denoted in red color.

Figure 5: Transition of points between phenotypic clusters is controlled by the
input variables. (A) Pie chart showing the transition of outputs from the CMI cluster
showing highest cell-BM adhesion, upon decreasing the latter to a minimum value.
(B) Pie chart showing the transition of outputs from the CMI cluster showing highest
growth rates, upon decreasing the latter to a minimum value. (C) Pie chart showing
the transition of outputs from the DMI cluster showing highest cell-collagen adhesion,

upon decreasing the latter to a minimum value. (D) Pie chart showing the transition
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of outputs from the CMI cluster showing lowest R-D cooperativity values, upon
increasing the latter to highest values used in the paper. (E) Pie chart showing the
transition of outputs from the DMI cluster showing lowest R-D cooperativity values,
upon increasing the latter to highest values used in the paper. (F) Pie chart showing
the transition of outputs from the DMI cluster showing highest MMP diffusivity values,
upon decreasing the latter to a minimum value (Proportion of outputs in the pie

charts within the indolent, DMI and CMI cluster shown in blue, yellow and green).

Tablel: Cluster-wise fraction of input variable values

Table showing the proportion of two lowest input values, intermediate value and the
two highest input values for six inputs within the three clusters representing indolent
invasion, collective multiscale invasion (CMI) and dispersed multiscale invasion
(DMI).

Supplementary Figure 1: (A) Initial cell field from the CC3D simulations. (B) The
top simulation has Growth rate coefficient set to zero, so, no proliferation property is
applied on the red cells. In the bottom image proliferation is active for the cells and
they grow to divide as per the growth equation in the materials and methods section.
(C) The top simulation has all properties that was used for parameter scan. The
bottom simulation did not perform C_Lysed to NC1 conversion, so newly synthesized

matrix is not produced after matrix degradation.

Supplementary Figure 2: (A) The 3 rows represent similar simulations with 3
varying initial matrix configurations. Left column shows simulation screenshots with
only collagen or Collagen matrix (MCS 0, 215, 430). Middle column simulation is with
only BM matrix and no Collagen (MCS 0, 2950, 4705). The right column shows the
normal setup with BM initially enclosing the cancer cells and that is enclosed by
Collagen (MCS 0, 485, 965).(B) When the area of minimum enclosing circle is in the
range 27000-29200 (bottom image in each column), the simulation screenshots from

these 3 simulations were collected and plotted in the phenospace.

Supplementary Figure 3: (A) All the simulation outputs in the phenospace (in

Figure 1D) are analyzed with K-means clustering using cluster number K=5-8
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(leftmost column). Clustering was performed 15 times with random initial cluster
centers. The cluster phenotype patterns are shown (middle column) along with their
proportional representation within the 15 replicates (right column). (B) The optimal
value for K computed using the Silhouette method. Silhouette plots for K=5-8 are
constructed with X axis signifying silhouette values and Y axis representing cluster

numbers.

Supplementary Figure 4: The minimum enclosing circle algorithm used for analysis
of invasion in the previous publication was used on the current dataset (Pally et al.,
2019). (A) Shows 3 classification of the simulation points in the (K=3)-means cluster-
divided phenospace based on the values of the area of the minimum enclosing circle
which encloses all the cancer cells in the simulation lattice at 1500MCS. The points
having value of this output less than 21852 is colored in green, from 21852 to 43600
is colored blue and more than 43601 is colored red. (B) The statistical plot shows
significant difference in the mean of the area of minimum enclosing circle between
points of indolent invasion cluster with CMI or DMI clusters. Statistical test was
performed using unpaired ANOVA with Tukey's post hoc multiple comparison
(p<0.0001)

Supplementary Figure 5: Three principal component analysis data is shown
belonging to the individual clusters from k-means clustering with k=3. The top plot in
the subfigures show the placement of simulation points of the k(=3)-means cluster in
the 3-D space constructed with first 3 principal component axes. In the bottom left,
the scree plot shows percentage of explained variability by each principal component
axis. On the bottom right, variable coefficient plot shows fraction of each input

variable in the first 3 principal component axis linear combinations.
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Table 1

for this preprir

Cell-cell contact energy Indolent cluster DMI cluster CMI cluster
Low values 0.443753 0.191669 0.288052
Intermediate values 0.200318 0.21503 0.191847
HIGh Values e o bisosibororerizonson@s308920 oo o o 05933010 o o 0520102
(wﬁllgrlm \w'e‘{s not cel;t]‘f;gdlB;/Hsé'e}vr'é\\’/'le'v;)v[g ?ﬁé 'th?l\:)'r\/lf-ru.rTaér who has‘érvabrllf’ékclll brc\)llsxbn‘/‘ 5 le:'énse to dlsplay tﬁe preprll}lltllr;uperpetU|ty Itis m
Cell-collagen contact energy Indolent 'clzcllﬂlgtlé'}ue' 17 '“bMT’&G’s”'é”r'”‘““’”‘“' o= CMI cluster
Low values 0.312058717 0.777089783 0.635915
Intermediate values 0.219490414 0.074303406 0.170264
High values 0.468450869 0.148606811 0.193821
Cell-BM contact energy Indolent cluster DMI cluster CMI cluster
Low values 0.352329 0.479595 0.585696
Intermediate values 0.20883 0.20743 0.155734
High values 0.438841 0.312975 0.25857
Cell proliferation Indolent cluster DMI cluster CMiI cluster
Low values 0.479977 0.436533 0
Intermediate values 0.208774 0.296651 0.118493
High values 0.311249 0.266817 0.881507
MMP diffusion rate Indolent cluster DMI cluster CMI cluster
Low values 0.375213 0.423304 0.534067
Intermediate values 0.228839 0.157613 0.078431
High values 0.395948 0.419082 0.387502
R-D cooperativity Indolent cluster DMI cluster CMI cluster
Low values 0.356236 0.571348 0.51855
Intermediate values 0.213379 0.139037 0.167443
High values 0.430385 0.289614 0.314008
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