

Asymmetric requirement of Dpp/BMP morphogen dispersal in the *Drosophila* wing disc

Shinya Matsuda^{*1}, Jonas V. Schaefer², Yusuke Mi³, Yutaro Hori⁴, Dimitri Bieli¹, Masanori Taira⁵, Andreas Plückthun², and Markus Affolter^{*1}

Affiliations:

1. Biozentrum, University of Basel, Switzerland
2. Department of Biochemistry, University of Zurich, Switzerland
3. National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan
JST, PRESTO, Japan
4. Institute for Quantitative Biosciences, The University of Tokyo, Japan
5. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Japan

Corresponding authors

Correspondence to: markus.affolter@unibas.ch or shinya.matsuda@unibas.ch

Summary

How morphogen gradients control patterning and growth in developing tissues remains largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two membrane-tethered protein binders that manipulate different aspects of Decapentaplegic (Dpp), a morphogen required for overall patterning and growth of the *Drosophila* wing. “HA trap” is based on a single-chain variable fragment (scFv) against the HA tag that traps HA-Dpp to mainly block its dispersal, while “Dpp trap” is based on a Designed Ankyrin Repeat Protein (DARPin) against Dpp that traps Dpp to block both its dispersal and signaling. Using these tools, we found that, while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that *dpp* transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient *dpp* source cells render the anterior compartment robust against the absence of Dpp dispersal. Furthermore, despite a critical requirement of *dpp* for the overall wing growth, neither Dpp dispersal nor direct signaling is critical for lateral wing growth after wing pouch specification. These results challenge the long-standing dogma that Dpp dispersal is strictly required to control and coordinate overall wing patterning and growth.

39

Introduction

40 A fundamental question in developmental biology is how proteins work together to orchestrate
41 developmental processes. Forward and reverse genetic approaches based on mutants and RNAi,
42 together with biochemical analyses, provide insights into how proteins function. However,
43 interpretational gaps often remain between the mutant phenotypes and the underlying mechanisms.

44 Recently, small, high affinity protein binders such as nanobodies, single-chain variable
45 fragments (scFvs), Designed Ankyrin Repeat Proteins (DARPins) and others have emerged as versatile
46 tools to fill this gap. By fusing these protein binders to well-characterized protein domains and
47 expressing the fusion proteins *in vivo*, protein function can be directly manipulated in a predicted
48 manner¹⁻⁵. For example, when a protein functions with multiple parameters, protein binder tools
49 targeting each or a subset of these parameters could help to dissect the requirement of each parameter.
50 However, it remains challenging to design and customize such protein binder tools.

51 A class of molecules that exert its function with multiple parameters are morphogens, secreted
52 molecules that disperse from a localized source and regulate target gene expression in a concentration-
53 dependent manner⁶⁻⁹. A morphogen gradient is characterized by its parameters such as rates of
54 secretion, diffusion, and degradation¹⁰. Temporal dynamics of a morphogen gradient also impact cell
55 fates decisions¹¹. Despite a variety of parameters involved, morphogen dispersal is generally thought
56 to be critical for morphogen function based on severe morphogen mutant phenotypes and long-range
57 action of morphogens to reorganize patterning and growth.

58 However, a recent study challenged this basic assumption for the case of the Wingless (Wg)
59 morphogen, the main Wnt in *Drosophila*, by showing that a membrane-tethered non-diffusible form
60 of Wg can replace the endogenous Wg without strongly affecting appendage development¹². Although
61 the precise contribution of Wg dispersal requires further investigations¹³⁻¹⁶, the study raises the
62 question of how important morphogen dispersal is for tissue patterning and growth in general.

63 In contrast to Wg, *Decapentaplegic* (*dpp*), the vertebrate BMP2/4 homologue, is thought to act
64 as a *bona fide* morphogen in the *Drosophila* prospective wing. Dpp disperses from a narrow anterior
65 stripe of cells along the anterior-posterior (A-P) compartment boundary to establish a characteristic
66 morphogen gradient in both compartments (Fig. 1a)^{17,18}. How the Dpp dispersal-mediated morphogen
67 gradient achieves and coordinates overall wing patterning and growth has served as a paradigm to
68 study morphogens¹⁹. However, despite intensive studies, it remains controversial how Dpp/BMP
69 disperses^{17,20-23}, controls growth²⁴⁻³³, and coordinates patterning and growth (i.e. scaling)^{32,34-36}.
70 Regardless of the actual mechanisms, all the studies are based on the assumption that Dpp dispersal
71 from the anterior stripe of cells controls overall wing patterning and growth, in line with the severe
72 *dpp* mutant phenotypes.

73 To directly manipulate dispersal of Dpp, we recently generated morphotrap, a membrane-
74 tethered anti-GFP nanobody, to trap GFP-tagged Dpp and thereby manipulate its dispersal³⁷. Using
75 morphotrap, the authors showed that a substantial amount of GFP-Dpp secreted from the anterior stripe
76 of cells can reach the peripheral wing disc and that blocking GFP-Dpp dispersal from the source cells
77 causes severe adult wing patterning and growth defects³⁷. These results support the critical role of Dpp
78 dispersal for overall wing patterning and growth³⁷. However, application of morphotrap was limited
79 to rescue conditions by overexpression of GFP-Dpp, due to the lack of an endogenous *GFP-dpp* allele.

80 In this study, we first generated a platform to manipulate the *dpp* locus and inserted a tag into
81 *dpp* in order to investigate the precise requirement of the endogenous Dpp morphogen gradient for
82 wing patterning and growth. We found that while a *HA-dpp* allele was functional, a *GFP-dpp* allele
83 was not, thus limiting morphotrap application. To manipulate the endogenous Dpp morphogen
84 gradient, we then generated two protein binder tools analogous to morphotrap. One is “HA trap” based
85 on anti-HA scFv that traps HA-Dpp through the HA tag to mainly block Dpp dispersal, the other is
86 “Dpp trap” based on anti-Dpp DARPin that directly binds to Dpp to block Dpp dispersal and signaling
87 in the source cells. Thus, these tools allowed us to distinguish the requirements of Dpp dispersal and
88 cell-autonomous signaling in the source cells for wing pouch growth and patterning.

89 Using these tools, we found that while posterior patterning and growth require Dpp dispersal,
90 anterior patterning and growth largely proceed without Dpp dispersal but require cell-autonomous Dpp
91 signaling in the source cells. We show that *dpp* transcriptional refinement from an initially uniform to
92 a localized expression and persistent signaling in transient *dpp* source cells allow relatively normal
93 anterior patterning and growth despite the absence of Dpp dispersal. Furthermore, despite a critical
94 requirement of *dpp* for overall wing growth, we also found that neither Dpp dispersal nor direct
95 signaling is critical for the lateral wing pouch to grow once the wing pouch is defined. These results
96 challenge the long-standing dogma that Dpp dispersal controls overall wing patterning and growth and
97 call for a revision of how Dpp controls and coordinates wing patterning and growth.
98

99 Results

100 A platform to manipulate the endogenous *dpp* locus

101 To manipulate the endogenous Dpp morphogen gradient, we utilized a MiMIC transposon inserted in
102 the *dpp* locus (*dpp*^{MI03752}), which allows to replace the sequence between the two *attP* sites in the
103 transposon with any sequence inserted between two inverted *attB* sites upon integrase expression³⁸. A
104 genomic fragment containing sequences encoding a tagged version of *dpp* followed by an FRT and a
105 marker was first inserted into the locus (Fig. 1b), then the endogenous *dpp* exon was removed upon
106 FLP/FRT recombination to keep only the tagged *dpp* exon (Fig. 1b). Using this strategy, we inserted
107 different tags into the *dpp* locus and found that while a *GFP-dpp* allele was homozygous lethal during
108 early embryogenesis (data not shown), a *HA-dpp* allele was functional without obvious phenotypes³⁹
109 (Fig. 1c). Immunostainings for the HA-tag including permeabilization steps showed HA-Dpp
110 expression in an anterior stripe of cells along the A-P compartment boundary in the late third instar
111 wing disc (Fig. 1d). In contrast, immunostainings for the HA-tag without permeabilization, which
112 allows antibodies to access only the extracellular antigens, revealed that a shallow extracellular HA-
113 Dpp gradient overlapped with the gradient of phosphorylated Mad (pMad), a downstream transcription
114 factor of Dpp signaling (Fig. 1e). Similar HA tag knock-in *dpp* alleles have recently been generated
115 by a CRISPR approach²⁵.
116

117 Generation and characterization of HA trap

118 Since we could not apply morphotrap due to the lethality of the *GFP-dpp* allele, we generated a "HA
119 trap", analogous to morphotrap. HA trap consists of an anti-HA scFv⁴⁰ fused to the transmembrane
120 domain of CD8 and mCherry (Fig. 2a). HA trap expression in the anterior stripe of cells of wild type
121 wing discs using *ptc-Gal4* did not interfere with Dpp signaling in the wing disc or patterning and
122 growth of the adult wing (Extended Data Fig. 1). Thus, HA trap is inert in the absence of a HA-tagged
123 protein. While we attempted to visualize extracellular HA-Dpp distribution upon HA trap expression,
124 we noticed that the HA tag can no longer be used for immunostaining when bound to HA trap. We
125 therefore additionally inserted an Ollas tag to generate a functional *Ollas-HA-dpp* allele in order to
126 visualize the extracellular Dpp distribution using the antibody against the Ollas tag. The extracellular
127 Ollas-HA-Dpp gradient was similar to the extracellular HA-Dpp gradient (Fig. 2b, c).
128

129 To test if HA trap can efficiently trap Ollas-HA-Dpp in the Dpp producing cells, HA trap was
130 expressed in the anterior stripe of cells using *ptc-Gal4* in Ollas-HA-Dpp heterozygous wing discs,
131 since *ptc-Gal4* expression largely overlaps with *dpp* producing cells⁴¹. Under this condition,
132 extracellular immunostainings for the Ollas-tag revealed that Ollas-HA-Dpp accumulated on the
133 anterior stripe of cells, and that the extracellular gradient was abolished (Fig. 2d, e). To test if HA trap
134 can trap Ollas-HA-Dpp outside the anterior stripe of cells, clones of cells expressing *Gal4* were
135 randomly induced by heat-shock inducible FLP to express HA trap under UAS control. We found that
136 Ollas-HA-Dpp accumulated in clones of cells expressing HA trap induced outside the main *dpp* source
137 cells in both compartments (Fig. 2f-i, arrow). If HA trap can efficiently trap Ollas-HA-Dpp in the
138 source cells, the clonal Ollas-HA-Dpp accumulation should be blocked upon HA trap expression in

139 the source cells. Indeed, we found that clonal Ollas-HA-Dpp accumulation in both compartments was
140 drastically reduced upon HA trap expression using *ptc-Gal4* (Fig. 2j-k, arrow), indicating that the HA
141 trap can block HA-Dpp dispersal efficiently.
142

143 It has been shown that overexpression of GFP-Dpp from the anterior stripe cells leads to accumulation
144 of GFP-Dpp in clones of cells expressing morphotrap in the peripheral regions³⁷. In contrast, we found
145 that Ollas-HA-Dpp accumulated in clones of cells expressing HA trap near the source cells but not in
146 the peripheral regions (Fig. 2l arrowhead). This raises a question whether Dpp can act in the peripheral
147 regions at physiological levels.
148

149 **Asymmetric patterning and growth defects by HA trap**

150 After we validated that HA trap can efficiently block Dpp dispersal, we then expressed HA trap using
151 different Gal4 driver lines in *HA-dpp* homozygous wing discs to address the requirement of Dpp
152 dispersal. Normally, Dpp binds to the Dpp receptors Thickveins (Tkv) and Punt, inducing a pMad
153 gradient and an inverse gradient of Brk, a transcription repressor repressed by Dpp signaling. The two
154 opposite gradients regulate growth and patterning (nested target gene expression, such as *sal*, and *omb*)
155 to define adult wing vein positions (such as L2 and L5)(Fig. 3a)^{10,19,42-44}. Upon HA trap expression in
156 the anterior stripe of cells using *ptc-Gal4*, pMad, Sal, and Omb expression were undetectable in the P
157 compartment and Brk was also upregulated in the P compartment (Fig. 3b, e, f, g, h), indicating that
158 HA trap efficiently blocked HA-Dpp dispersal from source cells and interfered with patterning. The
159 posterior wing pouch growth was also affected as revealed by the expression of an intervein marker
160 DSRF and a wing pouch marker *5xQE.DsRed*⁴⁵ (Fig. 3b arrow, 3i). Interestingly, although
161 *5xQE.DsRed* contains five copies of the 806 bp Quadrant Enhancer (QE) of the wing master gene *vg*
162 containing a Mad binding site and is therefore thought to be directly regulated by Dpp signaling^{46,47},
163 *5xQE.DsRed* remained expressed in the P compartment without detectable Dpp signaling (Fig. 3b
164 arrow). In the A compartment, pMad was slightly reduced in the anterior medial region (Fig. 3b, e),
165 probably because HA trap partially blocked Dpp signaling upon binding to HA-Dpp (Fig. 2l arrow).
166 Nevertheless, the anterior Brk gradient was not strongly affected (Fig. 3b, f). Although maximum
167 intensity of Sal or Omb was reduced, nested expression of Sal and Omb, and growth were maintained
168 in the A compartment (Fig. 3b, g, h, i). Consistent with these phenotypes in the wing discs, while
169 posterior patterning and growth were severely affected, anterior patterning and growth were relatively
170 normal in the resulting adult wings (Fig. 3c, d, j). Similar defects were observed upon HA trap
171 expression in the region covering the entire wing pouch using *nub-Gal4* (Fig. 3k-t) or in the entire
172 anterior compartment using *ci-Gal4* (Extended Data Fig. 2a-j). Even when HA trap was expressed
173 using both *nub-Gal4* and *ptc-Gal4*, the resulting phenotypes were not enhanced (Extended Data Fig.
174 3). To test whether the posterior growth defects upon HA trap expression is caused by cell death,
175 Caspase-3 was analyzed. We found that Caspase-3 was not upregulated (Extended Data Fig. 4a, b, d),
176 and blocking apoptosis by apoptosis inhibitor p35 did not rescue these growth defects upon HA trap
177 expression (Extended Data Fig. 4e-g). Thus, the posterior growth defects upon HA trap expression is
178 not caused by cell death. Taken together, these results suggest that, while critical for posterior
179 patterning and growth, Dpp dispersal is largely dispensable for anterior patterning and growth.
180

181 **Lateral wing pouch growth without Dpp signaling**

182 A critical role of Dpp dispersal for posterior patterning and growth is consistent with a role of Dpp as
183 a morphogen. However, the overall phenotypes caused by HA trap was surprisingly mild when
184 compared to the phenotypes seen in *dpp* mutants (Fig. 6a, c). Given the requirement of Dpp signaling
185 for cell proliferation and survival in the entire wing pouch⁴⁸, it was surprising that about 40% of the
186 posterior wing pouch was able to grow and differentiate into adult wing tissue without detectable Dpp
187 signaling (Fig. 3d, i, j).
188

189 We therefore tested whether the posterior growth and *5xQE.DsRed* expression seen upon HA trap
190 expression is caused by low levels of HA-Dpp leaking from the HA trap expressed in the source. In
191 this case, the posterior growth and *5xQE.DsRed* expression seen upon HA trap expression should be
192 dependent on *tkv*, an essential receptor for Dpp signaling. To test this, mutant clones of *tkv*^{a12}
193 (characterized as a null allele^{49,50}) were induced in wing discs expressing HA trap with *ptc-Gal4*
194 between mid-second and beginning of third instar stages and analyzed in the late third instar stage. We
195 found that *tkv*^{a12} clones survived and expressed the *5xQE.DsRed* reporter in the anterior lateral regions
196 as well as in the entire posterior region. We also noticed that *tkv*^{a12} clones survived and expressed the
197 *5xQE.DsRed* reporter even next to the source cells in the P compartment (Fig. 4a). These results
198 indicate that the lateral growth and *5xQE.DsRed* expression seen upon HA trap expression is
199 independent of Dpp signaling, and not caused by a leakage of HA-Dpp from the HA trap, even if such
200 leakage would occur.

201 To test whether Dpp signaling-independent growth occurs also during normal development, *tkv*^{a12}
202 clones were induced in the wild type wing disc during mid-second and early third instar stage. We
203 found that *tkv*^{a12} clones were eliminated from the medial regions but often survived and expressed the
204 *5xQE.DsRed* reporter in the lateral wing pouch (Fig. 4b). Since *tkv*^{a12} may not be a complete null allele,
205 we then inserted an FRT cassette in the *tkv* locus and generated a new *tkv* flip-out allele (*tkvHA*^{FO}) to
206 induce FLP/FRT mediated excision of *tkv*. By generating *tkv* null clones upon heat-shock inducible
207 FLP expression, we confirmed that *tkv* null clones often survived and expressed the *5xQE.DsRed*
208 reporter in the lateral wing pouch (Fig. 4c, d arrow). We also found that, while most often eliminated,
209 medial *tkv* null clones survived and expressed *5xQE.DsRed* in rare cases (Fig. 4d), indicating that Dpp
210 signaling is dispensable for *5xQE.DsRed* expression also in the medial region, but medial cells lacking
211 Dpp signaling are normally eliminated⁴⁸.

212 How can Dpp signaling-independent wing pouch growth and *5xQE.DsRed* expression be reconciled
213 with a critical role of Dpp signaling for the entire wing pouch growth⁴⁸? First, *tkv* clones generated in
214 the developing wing pouch have been shown to be eliminated by apoptosis or extrusion and do not
215 survive in the adult wing^{48,51}. However, *tkv* clones survive better in the P compartment where Dpp
216 signaling is blocked by HA trap (Fig. 4a) and in the lateral region of wild type wing disc where Dpp
217 signaling is generally low (Fig. 4b-d). This raises a possibility that *tkv* clones are eliminated when
218 surrounded by wild type cells, even if *tkv* clones could grow and survive to a certain extent. Second,
219 wing pouch and *5xQE.DsRed* expression were completely lost in *dpp* mutants (Fig. 6a, Extended Data
220 Fig. 7a). It has been shown that initial wing pouch specification is mediated by Dpp derived from the
221 peripodial membrane, which covers the developing wing pouch, and this early *dpp* expression in the
222 peripodial membrane is lost in *dpp* disc alleles⁵². Thus, wing pouch and *5xQE.DsRed* expression could
223 be lost in *dpp* disc alleles due to failure of initial specification of the wing disc and subsequent
224 elimination of cells.

225 To minimize these potential problems, we applied Gal80ts to conditionally remove *dpp* from the entire
226 A compartment using *ci-Gal4*. At the permissive temperature of 18°C, Gal80ts actively represses Gal4
227 activity. At restrictive temperature of 29°C, Gal80ts can no longer block Gal4 activity, thus Gal4 can
228 be temporally activated using temperature shifts. Upon FLP expression, *dpp* was removed by FLP/FRT
229 mediated excision via *dpp*^{FO} allele²⁴, in which a FRT cassette was inserted into the *dpp* locus. To
230 remove *dpp* from the beginning of second instar stage when the wing pouch is specified, the larvae
231 were raised at 18°C for 4 days and then shifted to 29°C. By removing *dpp* from the entire A
232 compartment using *ci-Gal4* under this condition, we found that *5xQE.DsRed* remained expressed
233 despite severe growth defects in the late third instar stage (Fig. 4e-h). Similarly, genetic removal of *tkv*
234 via *tkvHA*^{FO} from the A compartment using *ci-Gal4* or from the P compartment using *hh-Gal4* from
235 the second instar stage revealed that, despite severe growth defects, *5xQE.DsRed* remained expressed
236
237

239 in each compartment lacking *tkv* (Extended Data Fig. 5). Surprisingly, similar results were obtained
240 even when *tkv* was removed from the entire P compartment using *hh-Gal4* from the embryonic stages
241 without Gal80ts (Extended Data Fig. 6). These results further support the presence of Dpp signaling-
242 independent *5xQE.DsRed* expression and wing pouch growth.
243

244 How is *5xQE.DsRed* expression regulated if QE is not directly regulated by Dpp signaling? While
245 *5xQE.DsRed* expression is completely lost in *dpp* mutants, we found that *5xQE.DsRed* reporter
246 expression was rescued in *dpp, brk* double mutant wing discs (Extended Data Fig. 7), indicating that
247 *5xQE.DsRed* expression is largely induced by repressing *brk*, similar to the regulation of other *dpp*
248 target genes. Indeed, QE has also been shown to be activated in *brk* mutant clones in the wing disc⁵³.
249 However, this notion appears inconsistent with the fact that *5xQE.DsRed* expression was not repressed
250 in the region where Brk is high in various conditions, in which Dpp signaling is compromised (Fig.
251 3b, 4h, Extended Data Fig. 5d', 5h'). We noticed that the observed high Brk levels upon Dpp trapping
252 were comparable to the Brk level in the lateral region of the control wing disc (Fig. 3f, 3p), and Brk
253 and *5xQE.DsRed* were co-expressed in the lateral region of the control wing disc (Fig. 4f, Extended
254 Data Fig. 5b', 5f'). Thus, we speculate that Brk is not sufficient to repress *5xQE.DsRed* expression at
255 physiological levels in lateral regions and that there are additional inductive inputs. Consistent with
256 this idea, QE has also been shown to be regulated by Wg^{45,54}.
257

258 Severe patterning and growth defects by Dpp trap

259 Even if the lateral wing pouch region can grow independent of Dpp signaling after wing pouch
260 specification (Fig. 4e-h), this growth cannot account for the overall minor growth phenotypes caused
261 by HA trap (Fig. 3, Extended Data Fig. 2a-j). How can relatively normal patterning and growth be
262 achieved without Dpp dispersal? Since pMad was completely lost in *dpp* mutants (Fig. 4g) but
263 remained active in the source cells upon HA trap expression (Fig. 3, Extended Data Fig. 2), we asked
264 whether Dpp signaling in the source cells could account for the minor phenotypes caused by HA trap.
265

266 To test this, we selected DARPins, protein binders based on ankyrin repeats⁵⁵⁻⁵⁷, that bind to the mature
267 Dpp ligand and block Dpp signaling. For each of the 36 candidates obtained from the *in vitro* screening,
268 we generated a "Dpp trap" by fusing the anti-Dpp DARPin to the transmembrane domain of CD8 and
269 mCherry (Fig. 5a). By expressing each trap in the wing disc, we identified one Dpp trap (containing
270 DARPin 1242_F1), which efficiently blocked Dpp dispersal (Fig. 5b) and signaling (Fig. 5d, 5l,
271 Extended Data Fig. 2k). We found that the expression of the Dpp trap using *ptc-Gal4* (Fig. 5c-i), *nub-*
272 *Gal4* (Fig. 5k-t), and *ci-Gal4* (Extended Data Fig. 2k-t) caused severe patterning and growth defects,
273 similar to *dpp* mutants (Fig. 4g, h). Adult wings expressing Dpp trap using *nub-Gal4* were recovered
274 and also showed severe patterning and growth defects comparable to *dpp* mutants (Fig. 5n). Although
275 Caspase-3 was upregulated upon Dpp trap expression (Extended Data Fig. 4a, c, d), the growth defects
276 were not rescued by p35 (Extended Data Fig. 4h-j), indicating that apoptosis was not the main cause
277 of growth defects caused by Dpp trap. These severe phenotypes were not due to a common scaffold
278 effects of DARPins, since one of the traps (containing DARPin 1240_C9) that failed to trap Dpp did
279 not interfere with pMad accumulation in the wing disc or patterning and growth of the adult wing when
280 expressed using *ptc-Gal4* (Extended Data Fig. 8).
281

282 We note that upon Dpp trap expression, Sal expression was lost from the medial region but appeared
283 to be upregulated in the lateral region (Fig. 5d, l, Extended Data Fig. 2o, arrow). It has previously been
284 shown that Sal is expressed not only in the medial region but also in the lateral region⁵⁸. The same
285 study also showed that the medial Sal expression is Dpp signaling-dependent but lateral Sal expression
286 is Brk-dependent. Thus, upregulation of Brk upon Dpp trap expression could cause the lateral Sal
287 upregulation. However, when we focused on the peripheral region of the control wing disc (basal
288 confocal section), we noticed that the lateral Sal expression of the control wing disc was actually

289 comparable to that of the wing disc expressing Dpp trap (Extended Data Fig. 9a, b). Thus, when we
290 focused on the medial Sal expression (apical confocal section), the lateral Sal expression of the control
291 wing disc was simply missed due to the tissue architecture. Consistently, when *dpp* was removed from
292 the entire A compartment using *ci-Gal4* from mid-second instar stage, Sal expression was lost from
293 the medial region but not significantly upregulated in the lateral region (Extended Data Fig. 9c-e).

294
295 By comparing the phenotypes caused by Dpp trap and HA trap, we noticed that the phenotypes caused
296 by Dpp trap were much stronger than those caused by HA trap (Fig. 3, Fig. 5, Extended Data Fig. 2).
297 Comparison of each compartment size when expressing HA trap and Dpp trap using different Gal4
298 driver lines also showed that each compartment size was smaller upon Dpp trap expression than upon
299 HA trap expression (Fig. 5j, u, Extended Data Fig. 2u). To test if the difference could be due to more
300 efficient blocking of Dpp dispersal by Dpp trap than by HA trap, each trap was expressed in the anterior
301 stripe of cells using *ptc-Gal4* and posterior pMad signal was analyzed. We found that HA trap blocked
302 posterior pMad signal more efficiently than Dpp trap (Extended Data Fig. 10), indicating that Dpp trap
303 actually blocks Dpp dispersal less efficiently than HA trap. Thus, the severe phenotypes caused by
304 Dpp trap are likely because Dpp trap blocks Dpp signaling more efficiently than HA trap. Interestingly,
305 despite the slight leakage of Dpp from the Dpp trap (Extended Data Fig. 10), anterior Dpp trap
306 expression caused more severe posterior growth defects than HA trap (Fig. 5j, Extended Data Fig. 2u),
307 indicating that anterior Dpp signaling is non-autonomously required for the posterior growth. We note
308 that, even though the anterior Dpp signaling was eliminated, genetic removal of *tkv* from the A
309 compartment using *ci-Gal4* did not interfere with posterior growth as severe as Dpp trap (Extended
310 Data Fig. 5c, d), probably because Dpp secreted from the A compartment can disperse to control
311 posterior growth. Taken together, these results suggest that Dpp signaling in the source cells is required
312 for a majority of patterning and growth seen upon HA trap expression.
313

314 **Rescue of *dpp* mutants by cell-autonomous Dpp signaling**

315 Our results so far suggest that, while the requirement for Dpp dispersal is relatively minor and
316 asymmetric, Dpp signaling in the source cells is critically required for the majority of patterning and
317 growth seen upon blocking Dpp dispersal. This raises the question of how cell-autonomous Dpp
318 signaling in the source cells can control patterning and growth outside the anterior stripe of cells, the
319 main *dpp* source cells. There are a couple of possible scenarios; if *dpp* expression is successively
320 restricted to the anterior stripe of cells during development, the anterior stripe of cells may retain and
321 deliver the earlier Dpp signaling to the peripheral region after they leave from the anterior stripe of
322 cells via proliferation⁵⁹, or downstream factor(s) of Dpp signaling in the anterior stripe of cells may
323 act non-autonomously to control patterning and growth outside the stripe of cells. Alternatively, *dpp*
324 expression may not be restricted to the anterior stripe of cells in the early stages, similar to what has
325 been shown in the case of *wg*¹².
326

327 Before we address these possibilities, we first asked how important cell-autonomous Dpp signaling in
328 the source cells is for wing pouch patterning and growth. If the relatively mild phenotypes caused by
329 HA trap are due to cell-autonomous Dpp signaling in the source cells, a constitutively active version
330 of Tkv (TkvQD)⁵⁰ expressed in the anterior stripe of cells using *dpp-Gal4* should rescue *dpp* mutants
331 to an extent mimicking the phenotypes caused by HA trap (Fig. 3). Indeed, under this condition, pMad
332 activation in the anterior stripe of cells rescued nested Sal and Omb expression in the A compartment
333 (Fig. 6a, b). Interestingly, growth, but not patterning, was also partially rescued in the P compartment
334 as indicated by DSRF and 5xQE.DsRed expression (Fig. 6b arrow), thus indeed mimicking phenotypes
335 caused by HA trap (Fig. 3). Unfortunately, the resulting adult flies were not recovered at 25 °C.
336 However, when the temperature was shifted from 25 °C to 18 °C during mid- to late-third instar stages
337 in order to reduce Gal4 activity during pupal stages, rare survivors were recovered from the pupal
338 cases or managed to hatch although they died shortly after hatching. In such survivors, although the

339 anterior wing veins tends to be affected, probably due to continuous TkvQD expression during pupal
340 stages, the anterior growth was largely rescued and the posterior growth was also partially rescued,
341 similar to phenotypes caused by HA trap (Fig. 6c, d). These results suggest that the phenotypes caused
342 by HA trap expression largely depend on cell-autonomous Dpp signaling in the source cells.
343

344 How can cell-autonomous Dpp signaling in the source cells control posterior growth if *dpp* expression
345 is restricted to the A compartment? One trivial possibility is that the posterior growth was induced by
346 non-specific *dpp-Gal4* expression in the P compartment. To test this, *dpp-Gal4* was converted into a
347 ubiquitous *LexA* driver to express TkvQD permanently in lineage of *dpp-Gal4* (Fig. 6e). In this setup,
348 pMad was constitutively activated in all the cells where *dpp-Gal4* has been expressed, including cells
349 expressing *dpp-Gal4* non-specifically. Under this condition, pMad, Sal, and Omb were uniformly
350 upregulated in the A compartment, and Brk was completely lost in the entire A compartment (Fig. 6f),
351 indicating that *dpp-Gal4* has been expressed in the entire A compartment⁶⁰. In contrast, pMad was not
352 activated in the P compartment, but *5xQE.DsRed* was still induced in the P compartment (Fig. 6f arrow),
353 indicating that non-autonomous posterior growth control by anterior Dpp signaling is
354 permissive rather than instructive (see discussion).
355

356 **Initial uniform *dpp* transcription in the anterior compartment**

357 Next, we asked how cell-autonomous Dpp signaling in the source cells can control anterior patterning
358 and growth. The uniform lineage of Dpp producing cells in the A compartment⁶⁰ (Fig. 6f) suggests
359 two possibilities; either *dpp* expression is always restricted to the anterior stripe of cells but the lineage
360 of these cells can cover the lateral region via proliferation⁵⁹, or earlier *dpp* expression covers the entire
361 A compartment as in the case of *wg*¹². Since the existing *dpp-Gal4* line is derived from a fragment of
362 the *dpp* disc enhancer inserted outside the *dpp* locus, we first generated an endogenous *dpp-Gal4* line
363 using our platform (Fig. 7a). We traced its lineage with G-TRACE analysis, in which RFP expression
364 labels the real-time Gal4-expressing cells and GFP expression labels the entire lineage of the Gal4-
365 expressing cells (Fig. 7b). We found that the lineage of Dpp producing cells indeed covers the entire
366 A compartment (Fig. 7c).
367

368 To distinguish between the two possibilities mentioned above, we then generated a *dpp* transcription
369 reporter line by inserting a destabilized GFP (half-life <2 hrs) into the *dpp* locus (Fig. 7d). Consistent
370 with the latter possibility, we found that this *dpp* transcription reporter was uniformly expressed in the
371 entire A compartment until the early third instar stage (Fig. 7e, e', f, f') and refined to an anterior stripe
372 expression during much of the third instar stage (Fig. 7g, g', h, h'). To directly follow *dpp* transcription,
373 we also performed smFISH using RNAscope technology to visualize *dpp* transcripts *in situ*. Consistent
374 with the dynamic expression of the *dpp* transcription reporter, we found uniform anterior *dpp*
375 transcription until the early third instar stage (Fig. 7i, i', j, j') and an anterior stripe of *dpp* transcription
376 in the later stages (Fig. 7k, k', l, l'). Despite the initial broad anterior *dpp* expression, we found that
377 pMad signal is low in the middle of the wing disc and graded toward the lateral regions, similar to the
378 pMad gradient in the later stages (Extended Data Fig. 11).
379

380 **Transient *dpp* source outside Sal domain is required for anterior patterning and growth**

381 The earlier anterior *dpp* source outside the anterior stripe of cells could provide a local *dpp* source to
382 control anterior patterning and growth when Dpp dispersal is blocked. However, since *ptc-Gal4* is also
383 initially expressed in the entire A compartment⁴¹, the relatively minor defects by HA trap could be due
384 to the perdurance of Dpp signaling via artificially stabilized Dpp by HA trap. To avoid HA trap
385 expression in the entire A compartment, we applied *tubGal80ts* to express HA trap using *ptc-Gal4* at
386 defined time points in the A compartment. To do so, the larvae were raised at 18 °C until a temperature
387 shift to 29 °C to induce Gal4 expression (Extended Data Fig. 12a). Upon HA trap expression from the
388 mid-second instar stage, the lineage of *ptc-Gal4* covered at most the anterior Sal domain (Fig. 8b),

389 which corresponds to the region between L2 and L4 in the adult wing. We found that the later the
390 temperature shift, the milder the posterior growth defects (Extended Data Fig. 12a, b). In contrast, the
391 A compartment size (between L1 and L4) remained rather normal, independent of the timing of the
392 temperature shift (Extended Data Fig. 12a, c). Interestingly, the size of peripheral regions (between L1
393 and L2) and the specification of L2 were not affected, independent of the timing of the temperature
394 shift (Extended Data Fig. 12a, d). These results are consistent with a role of an anterior lateral *dpp*
395 source for patterning and/or growth in the anterior lateral regions.
396

397 To directly test this, we applied Gal80ts to genetically remove *dpp* via *dpp*^{FO} allele upon FLP
398 expression using *ptc-Gal4* from the mid-second instar stage. To do so, the larvae were raised at 18 °C
399 for 5 days before a temperature shift to 29 °C and were then dissected 48 hr later. In this setup, *dpp*
400 was removed approximately from the anterior Sal region, where cells in which the FRT cassette was
401 removed were marked by lacZ staining (Fig. 8a-f). Given that it takes about 20 hr to eliminate the
402 majority of Dpp protein under this condition^{24,41}, wing pouches are devoid of the majority of the Dpp
403 protein derived from the anterior stripe of cells for 28 hr at 29°C until they reach the late third instar
404 stage, which corresponds to a lack of Dpp protein secreted from the main source from early third instar
405 stages onward.
406

407 Under this setup, we found that pMad, Sal, and Omb were significantly reduced in the P compartment,
408 consistent with the removal of the main *dpp* source (Fig. 8d-f). In contrast, in the A compartment, low
409 levels of pMad persisted and Brk remained graded with lowest expression outside the lacZ positive
410 region (Fig. 8d arrow). As a consequence, while Sal was completely lost (Fig. 8e), weak Omb remained
411 expressed in the A compartment (Fig. 8f). Consistent with a critical role of the *dpp* stripe for wing
412 pouch growth^{25,41,61}, both anterior and posterior growth were affected (Fig. 8k).
413

414 To test if the remaining anterior Dpp signaling activity is due to Dpp produced outside the anterior Sal
415 domain, we then compared removal of *dpp* from the anterior Sal domain using *ptc-Gal4* (the same
416 setup above) with removal of *dpp* from the entire A compartment using *ci-Gal4* from the mid-second
417 instar stage. We found that the anterior weak Dpp signaling and Omb expression seen upon removal
418 of *dpp* from the anterior Sal domain using *ptc-Gal4* (Fig. 8g, h) was completely lost by removing *dpp*
419 from the entire A compartment using *ci-Gal4* (Fig. 8i, j). Furthermore, anterior growth defects upon
420 removal of *dpp* from the anterior Sal domain was further enhanced upon removal of *dpp* from the
421 entire A compartment (Fig. 8k), indicating that the anterior *dpp* source outside the anterior Sal domain
422 is locally required for anterior Dpp signaling and growth.
423

424 How can the transient *dpp* transcription sustain Dpp target gene expression? One possibility is that
425 persistent low pMad levels are continuously required to repress Brk. Alternatively, Brk repression by
426 early Dpp signaling persists in the later stages without continuous Dpp signaling, for example, by
427 epigenetic regulation or via autoregulation. To distinguish between these possibilities, we applied
428 *tubGal80ts* to genetically remove *tkv* via *tkvHA*^{FO} allele upon FLP expression from the entire A
429 compartment using *ci-Gal4* at different time points. To do so, the larvae were raised at 18 °C until a
430 temperature shift to 29 °C to induce Gal4 expression. Consistent with a role of *tkv* in wing pouch
431 growth, the earlier *tkv* was removed, the smaller the A compartment was (Extended Data Fig. 13). We
432 found that Brk is largely derepressed as early as 16 hr after *tkv* was removed (Extended Data Fig. 13).
433 By considering perdurance activity of Gal80ts for 6 hr after temperature shift⁶², we can estimate that
434 Brk is derepressed within 10 hr at 29 °C after Dpp signaling was lost. Given that the transient *dpp*
435 transcription, which terminated in the early third instar stage, can sustain the anterior pMad signaling
436 and Brk repression at least 28 hr at 29 °C after Dpp protein from the main source is eliminated, these
437 results suggest that persistent weak pMad signaling is continuously required to repress Brk.
438

439 Taken together, Dpp dispersal-independent anterior patterning and growth can therefore be achieved
440 by a combination of a persistent weak signaling by transient *dpp* transcription outside the stripe and a
441 stronger signaling by continuous *dpp* transcription in the anterior stripe of cells.
442

443 Discussion

444 It has long been thought that Dpp dispersal from the anterior stripe of cells generates the morphogen
445 gradient in both compartments to control overall wing patterning and growth mainly based on the
446 complete loss of wing tissue in *dpp* disc mutant alleles (Fig. 9a). Here, we generated two novel protein
447 binder tools, namely HA trap and Dpp trap, to manipulate distinct parameters of the Dpp morphogen
448 to determine the requirement of Dpp dispersal and cell-autonomous signaling in the source cells. We
449 show that, although endogenous Dpp generates a gradient in both compartments, requirement of Dpp
450 dispersal is relatively minor and asymmetric along the A-P axis.
451

452 New protein binder tools manipulating distinct aspects of Dpp

453 Although nanobodies against GFP have been used most intensively in the field^{63,64}, fusion to GFP
454 could affect protein functions, as is the case for GFP-Dpp. To bypass this, we generated HA trap,
455 which is analogous to morphotrap and provides an alternative way to trap secreted proteins. Although
456 HA trap can trap HA-Dpp as efficient as morphotrap, we found several differences between the two.
457 First, while trapping GFP-Dpp by morphotrap in the source cells activates Dpp signaling in at least
458 one cell row in the P compartment³⁷, trapping HA-Dpp by HA trap did not (Fig. 3b). We think that the
459 difference is not because GFP-Dpp trapped by morphotrap activates Dpp signaling *in trans*, since
460 clonal accumulation of GFP-Dpp by morphotrap in the P compartment failed to do so³⁷. Second, while
461 morphotrap could trap GFP-Dpp even in the peripheral regions³⁷, HA trap did not (Fig. 2l). Third,
462 while trapping GFP-Dpp by morphotrap in the source cells induced excessive Dpp signaling in the
463 source cells and caused severe defects in the adult wing³⁷, trapping HA-Dpp by HA trap in the source
464 cells slightly reduced Dpp signaling in the source cells and caused relatively minor defects in the adult
465 wing (Fig. 3, Extended Data Fig. 2a-j). We speculate that these differences are in part due to
466 overexpression of GFP-Dpp. Due to excess amount of GFP-Dpp, some GFP-Dpp may leak from the
467 morphotrap to activate Dpp signaling in the P compartment, or may reach to the peripheral regions.
468 Excessive Dpp signaling may cause cell death during pupal stages to cause severe adult wing defects
469 as previously shown⁶⁵. These differences highlight the importance of investigating endogenous protein
470 functions.
471

472 In addition to HA trap, we isolated DARPins against Dpp, and generated a Dpp trap analogous to HA
473 trap. To our knowledge, this is the first DARPin isolated for an endogenous protein in *Drosophila* and
474 applied in the field of developmental biology. Interestingly, while HA trap blocks mainly Dpp
475 dispersal (Fig. 3), we found that Dpp trap blocks Dpp dispersal and cell-autonomous signaling in the
476 source cells (Fig. 5). We speculate that HA trap binds to the HA tag and thereby allows Dpp to bind
477 to its receptors, while Dpp trap directly binds to Dpp to block its interaction with the receptors.
478 Regardless of the actual mechanisms underlying this difference, these tools allowed us to dissect the
479 requirements of dispersal and cell-autonomous signaling in the source cells for wing pouch growth
480 and patterning. Relatively mild phenotypes by HA trap and severe phenotypes by Dpp trap indicate a
481 minor and asymmetric role of Dpp dispersal and a critical role of cell-autonomous Dpp signaling in
482 the source cells, respectively. Furthermore, these results also suggest that the severe *dpp* mutant
483 phenotypes do not reflect the role of Dpp dispersal alone, but reflect the role of both Dpp dispersal and
484 Dpp signaling in the source cells, with more contribution from the latter parameter (Fig. 9).
485

486 Asymmetric requirement of Dpp dispersal

487 The relatively minor requirement of Dpp dispersal for the anterior compartment is reminiscent of the
488 minor requirement of dispersal of Wg¹². Wg dispersal is largely dispensable for the wing growth, likely

489 due to the early uniform *wg* transcription in the entire wing pouch and a memory of the earlier
490 signaling¹². In contrast, the requirement of Dpp dispersal is asymmetric along the A-P axis due to the
491 early uniform *dpp* transcription in the A compartment. In both cases, transcriptional refinement of each
492 morphogen and persistent signaling by transient morphogen expression appear to be a key for
493 robustness against the absence of dispersal of each morphogen.
494

495 Although not identified, a *dpp* source outside the anterior stripe of cells has previously been implicated
496 to control the entire wing pouch growth based on the minor growth defects by removal of *dpp* from
497 the anterior stripe of cells using *dpp-Gal4* and severe growth defects by removal of *dpp* from the A
498 compartment using *ci-Gal4*²⁴. However, we and others showed that removal of *dpp* using *dpp-Gal4*
499 was imprecise and inefficient, and that *dpp* derived from the anterior stripe of cells is indeed critical
500 for wing growth^{25,41,61}. Thus, the presence of a *dpp* source outside the anterior stripe of cells has been
501 questioned. Our results suggest that such a *dpp* source indeed exists and contributes to the anterior
502 patterning and growth, but not to the growth of the entire wing pouch (Fig. 7, 8).
503

504 It remains unknown how transient *dpp* expression can maintain Dpp signaling in the anterior lateral
505 region (Fig. 8). One possibility is that feedback factors control the duration of Dpp signaling. Various
506 feedback factors have been shown to regulate Dpp signaling. For example, the Drosophila tumor
507 necrosis factor α homolog Eiger and a secreted BMP-binding protein Crossveinless-2 (Cv-2) are
508 positively regulated by Dpp signaling to either positively and negatively influence Dpp signaling in
509 the early embryo, respectively⁶⁶. While JNK is not activated by Eiger in the wild type wing pouch⁶⁷,
510 Cv-2 acts as a positive feedback factor to specify the posterior crossvein during pupal stages⁶⁸. Whether
511 these two factors act during wing pouch patterning and growth remains to be addressed. Pentagon is a
512 secreted feedback factor repressed by Dpp signaling to positively regulate Dpp signaling in the wing
513 disc⁶⁹. Pent is produced in the lateral region of the wing pouch and regulates Dpp signaling and
514 proliferation there. Thus, in addition to its role for scaling, Pent may control the duration of Dpp
515 signaling in the lateral region. Another possibility is that, since it takes quite some time (20-24 hr at
516 29 °C) to eliminate Dpp protein upon excision of *dpp*^{24,41}, relatively stable *dpp* mRNA and/or protein
517 after the termination of transient *dpp* transcription may contribute to Brk repression (~28 hr at 29 °C).
518

519 **Growth without Dpp dispersal and signaling**

520 Despite a critical requirement of *dpp* for the entire wing pouch growth, our results uncover Dpp
521 dispersal- and signaling-independent lateral wing pouch growth (Fig. 3, 4, 6, Extended Data Fig. 5,
522 6)? The presence of Dpp signaling-independent growth appears inconsistent with the fact that the wing
523 pouch is completely lost in *dpp* mutant (Fig. 6a, c, Extended Data Fig. 7b). This could be in part due
524 to a failure of the initial specification of the wing pouch in *dpp* disc alleles⁵². Indeed, despite severe
525 growth defects, part of the wing pouch could still grow upon removal of *dpp* after wing pouch
526 specification (Fig. 4e-h) and upon removal of *tkv* after wing pouch specification (Extended Data Fig.
527 5).
528

529 Consistent with the presence of Dpp signaling-independent lateral growth, it has been shown that
530 lateral wing fates are less sensitive than medial wing fates in various *dpp* mutant alleles⁷⁰. However,
531 this appears counter-intuitive since the lateral region, where morphogen level are low, is expected to
532 be more sensitive than the medial region to a reduction of morphogen levels. It has been proposed that
533 another BMP-type ligand, Glass bottom boat (Gbb), which is expressed ubiquitously in the wing pouch,
534 contributes to lateral cell fates⁷⁰. However, since Gbb signaling is also mediated by Tkv⁷¹ but the lateral
535 growth is independent of Tkv (Fig. 3, 4, 6, Extended Data Fig. 5, 6), we think that the lateral region
536 develops independent of direct Dpp and Gbb signaling. Thus, the lateral region is less sensitive than
537 the medial region in various *dpp* mutant alleles, probably because the lateral region can develop
538 independent of Dpp signaling. What regulates the Dpp signaling-independent lateral wing pouch

539 growth? Given that *5xQE.DsRed* is also dependent on Wg^{45,54}, Wg may regulate *5xQE.DsRed*
540 expression and growth in the absence of Dpp dispersal.

541
542 In addition to the Dpp signaling-independent lateral growth, requirement of anterior Dpp signaling for
543 posterior growth (Fig. 5j, Extended Data Fig. S2u) and rescue of posterior growth in *dpp* mutants by
544 anterior Dpp signaling (Fig. 6) indicates that anterior Dpp signaling is non-autonomously involved in
545 posterior lateral growth. We note that similar rescue of posterior growth in *dpp* mutant by anterior Dpp
546 signaling has previously been recognized, but the rescued posterior growth was interpreted as growth
547 of the hinge region, without immunostainings for relevant markers⁵⁹. It remains unknown how anterior
548 Dpp signaling contributes to posterior growth. One possibility is that factors from the A compartment
549 may act non-autonomously to promote posterior growth. Such factors include, but are not limited to,
550 direct downstream factors of Dpp signaling. Given that *5xQE.DsRed* is dependent on Wg^{45,54}, Wg
551 derived from the rescued A compartment may regulate *5xQE.DsRed* expression and growth in the P
552 compartment. Alternatively, mechanical forces may be involved in the non-autonomous growth. It has
553 been proposed that growth factors such as Dpp induce medial growth and subsequently stretch the
554 peripheral regions to induce lateral growth. As the wing disc grows, the peripheral regions in turn
555 compresses the medial region of the wing disc to inhibit the growth of the medial region⁷²⁻⁷⁶. Thus, the
556 growth of the A compartment may stretch the P compartment cells to stimulate their proliferation. It
557 has also been shown that juxtaposition of cells with different Dpp signaling level can induce
558 proliferation non-autonomously but the growth is transient^{26,27}. Therefore, we think it unlikely that the
559 difference of Dpp signaling levels between two compartments can induce sustained growth.

560 561 **A refined growth model**

562 The presence of Dpp signaling-independent lateral wing pouch growth is at odds with all the growth
563 models assuming that Dpp dispersal directly controls overall wing patterning and growth based on the
564 complete loss of wing tissue in *dpp* mutants²⁴⁻³³ (Fig. 9a). For example, no wing pouch growth is
565 expected without Dpp signaling due to a lack of either a temporal increase of Dpp signaling (temporal
566 model)³², a detectable Dpp signal (threshold model)^{25,61,77}, or a slope of Dpp signaling activity
567 (gradient model)^{26,27} (Fig. 9a).

568 It has recently been proposed that Wg and Dpp control wing pouch size by two distinct
569 mechanisms^{33,45,54,78}. One is an intracellular mechanism, in which Vg controls its own expression
570 through QE in response to Wg and Dpp; the other one is an intercellular mechanism, in which Vg-
571 positive wing pouch cells send a feed-forward signal to induce QE-dependent vg expression in the
572 neighboring pre-wing cells to recruit them into the wing pouch in response to Dpp and Wg. The
573 dispersal of each morphogen is critical for the two mechanisms in the model^{33,45,54,78}. In the genetic
574 setup used, in which morphogens and vg expression are eliminated, the two mechanisms appear to
575 recapitulate the dynamics of vg expression seen during normal wing disc development, in which vg
576 expression is gradually expanded in the wing pouch area. However, although sufficient, these
577 mechanisms do not necessarily account for vg expression under physiological conditions. Indeed, we
578 found Dpp dispersal and/or signaling-independent vg expression in various conditions.

579
580 Among the models, the presence of Dpp signaling-independent lateral wing pouch growth appears
581 most consistent with the growth equalization model, in which Dpp signaling removes Brk to allow
582 medial regions to grow, while Brk suppresses Dpp signaling-independent lateral growth with higher
583 proliferation nature to equalize the non-uniform growth^{22,28}. However, the identity of medial and lateral
584 regions remained undefined in this model. Given the complete lack of wing pouch in *dpp* mutants, it
585 is tempting to speculate that the Dpp signaling-dependent medial region corresponds to the entire wing
586 pouch region, and the Dpp signaling-independent lateral region corresponds to the hinge region located
587 next to the wing pouch region (Fig. 9a). Indeed, using morphotrap, such a Dpp signaling-insensitive

589 posterior growth has previously been interpreted as the growth of the hinge region due to severe adult
590 wing defects³⁷. However, in contradiction to this interpretation, which would predict overgrowth of
591 the hinge region in *brk* mutant, a massive overgrowth of wing pouch region was observed in *brk* mutant
592 (Extended Data Fig. 7). Based on our results that the lateral wing pouch regions can grow independent
593 of direct Dpp signaling (Fig. 3, 4, 6, Extended Data Fig. 5, 6), we therefore suggest to refine the growth
594 equalization model and propose that both Dpp signaling-dependent medial and Dpp signaling-
595 independent lateral regions are located within the wing pouch (Fig. 9b). The permissive role of Dpp
596 signaling in modulating a non-uniform growth potential within the wing pouch raises questions about
597 what kind of instructive signals control proliferation and growth, and how the non-uniform growth
598 potential emerges within the wing pouch independent of the Dpp/Brk system⁴⁴.
599

600 **Conclusion**

601 Our approach applying customized protein binder tools to manipulate distinct parameters of Dpp
602 challenges the long-standing dogma that Dpp dispersal controls overall wing patterning and growth.
603 Given that the tools developed in this study are easily applicable in other tissues, it would be interesting
604 to investigate the precise requirement of Dpp dispersal and signaling in other tissues or between
605 different organs.
606

607 **Experimental procedures**

608 **Data reporting**

609 No statistical methods were used to predetermine sample size. The experiments were not randomized,
610 and investigators were not blinded to allocation during experiments and outcome assessment.

611 **Fly stocks**

612 Flies were kept in standard fly vials (containing polenta and yeast) in a 25°C incubator. The following
613 fly lines were used: *dpp*^{FO}, *dpp-Gal4*, *UAS-FLP* (Matthew Gibson), *ptc-Gal4* (BL2017),
614 *P{act5C(FRT,polyA)lacZ.nls1}3*, *ry506* (BL6355), *w[*]*; *P{w[+mC]=UAS-RedStinger}6*,
615 *P{w[+mC]=UAS-FLP.Exel}3*, *P{w[+mC]=Ubi-p63E(FRT.STOP)Stinger}15F2* (G-
616 TRACE)(BL28281), *brk*^{X4} (BL58792), *dpp*^{MI03752} (BL36399), *PBac{RB}e00178*, *Dp(2;2)DTD48*
617 (Bloomington stock center). *omb-LacZ* (Kyoto101157). *act>Stop*, *y+>LexA^{LHG}*, *tkv^{a12}*, *UAS-TkvQD*,
618 *pLexAop-TkvQD* (Konrad Basler), *5xQE.DsRed* (Gary Struhl), *UAS/LexAop-HAtrap* (this study),
619 *UAS/LexAop-Dpp trap* (F1) (this study), *dpp*^{d8}, *dpp*^{d12}, *nub-Gal4* (II), *ci-Gal4* (II), *hh-Gal4* (III), *UAS-*
620 *p35*(III), *tub-Gal80ts* (III) are described from Flybase. *tub>CD2*, *Stop>Gal4*, *UAS-nlacZ* (Francesca
621 Pignoni). *TkvHA* (Giorgos Pyrowolakis).

622

623 **Genotypes by figures**

624 Fig. 1c-e: *yw; HA-dpp/HA-dpp*

625 Fig. 2b: *yw; ptc-Gal4, Ollas-HA-dpp/+*

626 Fig. 2d: *yw; ptc-Gal4, Ollas-HA-dpp/+; UAS/LexAop-HAtrap/+*

627 Fig. 2f, h: *hsFLP; Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HAtrap/+*

628 Fig. 2j: *hsFLP; ptc-Gal4, Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HAtrap/+*

629 Fig. 2l: *hsFLP; Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HAtrap/+*

630 Fig. 3a, c: *(5xQE.DsRed); ptc-Gal4, HA-dpp/HA-dpp*

631 Fig. 3b, d: *(5xQE.DsRed); ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+*

632 Fig. 3k, m: *yw; nub-Gal4, HA-dpp/HA-dpp*

633 Fig. 3l, n: *yw; nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+*

634 Fig. 4a: *hsFLP/5xQE.DsRed; HA-dpp, tkv^{a12} FRT40/HA-Dpp, UbiGFP, FRT40, ptc-Gal4; UAS/LexAop-HAtrap/+*

635 Fig. 4b: *hsFLP/5xQE.DsRed; tkv^{a12} FRT40/UbiGFP, FRT40*

636 Fig. 4c, d: *hsFLP/5xQE.DsRed; tkvHA^{FO}/tkvHA^{FO}*

637 Fig. 4e, f: (internal control within a cross) *5xQE.DsRed/+; (dpp^{FO}, ci-Gal4)/(dpp^{FO}); (UAS-FLP)/tubGal80ts*,

638 Fig. 4g, h: *5xQE.DsRed/+; dpp^{FO}, ci-Gal4/dpp^{FO}; UAS-FLP/tubGal80ts*

639 Fig. 5b: (left) *yw; ptc-Gal4, Ollas-HA-dpp/+*, (right) *yw; ptc-Gal4, Ollas-HA-dpp/+; UAS/LexAop-Dpptrap/+*

640 Fig. 5c: *yw; ptc-Gal4, HA-dpp/+*

641 Fig. 5d: *yw; ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+*

642 Fig. 5k, m: *yw; nub-Gal4, HA-dpp/+*

643 Fig. 5l, n: *yw; nub-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+*

644 Fig. 6a, c: *(y)w; (5xQE.DsRed); dpp^{d8}/dpp^{d12}*

645 Fig. 6b, d: *(y)w; (5xQE.DsRed); dpp^{d8}/dpp^{d12}; dpp-Gal4/UAS-tkvQD*

646 Fig. 6f: *(5xQE.DsRed); dpp^{d8}, UAS-FLP/dpp^{d12}, act>Stop, y+>LexA^{LHG}; dpp-Gal4/LexAop-tkvQD*

647 Fig. 7c: *yw; dpp-T2A-Gal4, Dp(2;2)DTD48(dpp+)/+; P{w[+mC]=UAS-RedStinger}6, P{w[+mC]=UAS-FLP.Exel}3, P{w[+mC]=Ubi-p63E(FRT.STOP)Stinger}15F2/+*

648 Fig. 7e-h: *yw M{vas-int.Dm}zh-2A; dpp-T2A-d2GFP-NLS/Cyo, P23*

649 Fig. 7i-l: *yw*

650 Fig. 8a-c: *ptc-Gal4, dpp^{FO}/+; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls*

655 Fig. 8d-h: *ptc-Gal4, dpp^{FO}/dpp^{FO}; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls*
656 Fig. 8i-j: *ci-Gal4, dpp^{FO}/dpp^{FO}; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls*
657
658 Extended Data Fig. 1a, e: *ptc-Gal4/+*
659 Extended Data Fig. 1b, f: *ptc-Gal4/+; UAS/LexAop-HAtrap/+*
660 Extended Data Fig. 2a, c, e, g, i: *HA-dpp/HA-dpp, ci>+ (left) and HA-dpp/HA-dpp, ci>HAtrap (right)*
661 Extended Data Fig. 2k, m, o, q, s: *HA-dpp/+, ci>+ (left) and HA-dpp/+, ci>Dpptrap (right)*
662 Extended Data Fig. 3a: *nub-Gal4, ptc-Gal4, HA-dpp/HA-dpp (control),*
663 Extended Data Fig. 3b: *nub-Gal4, ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+*
664 Extended Data Fig. 4a: *ptc-Gal4, HA-dpp/HA-dpp*
665 Extended Data Fig. 4b: *ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+*
666 Extended Data Fig. 4c: *nub-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+,*
667 Extended Data Fig. 4e: *nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+,*
668 Extended Data Fig. 4f: *nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/UAS-p35*
669 Extended Data Fig. 4h: *nub-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+*
670 Extended Data Fig. 4i: *nub-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/UAS-p35*
671 Extended Data Fig. 5a, b: (control within the cross) *5xQE.DsRed/+; (tkvHA^{FO}, ci-Gal4)/(tkvHA^{FO}); (UAS-FLP)/tubGal80ts*
672 Extended Data Fig. 5c, d: *5xQE.DsRed/+; tkvHA^{FO}, ci-Gal4/tkvHA^{FO}; UAS-FLP/tubGal80ts*
673 Extended Data Fig. 5e, f: (control within the cross) *5xQE.DsRed/+; (tkvHA^{FO})/(tkvHA^{FO}); +/Hh-Gal4, tubGal80ts*
674 Extended Data Fig. 5g, h: *5xQE.DsRed/+; tkvHA^{FO}/tkvHA^{FO}; UAS-FLP/Hh-Gal4, tubGal80ts*
675 Extended Data Fig. 6a: (control within the cross) *5xQE.DsRed/+; (tkvHA^{FO})/tkvHA^{FO}; (Hh-Gal4)/+*
676 Extended Data Fig. 6b: (experiment) *5xQE.DsRed/+; tkvHA^{FO}/tkvHA^{FO}; Hh-Gal4/UAS-FLP*
677 Extended Data Fig. 7a: *5xQE.DsRed/+; dpp^{d8} or dpp^{d12}/+*
678 Extended Data Fig. 7b: *5xQE.DsRed/+; dpp^{d8}/dpp^{d12}*
679 Extended Data Fig. 7c: *5xQE.DsRed, brk^{XA}/Y, dpp^{d8} or dpp^{d12}/+*
680 Extended Data Fig. 7d: *5xQE.DsRed, brk^{XA}/Y, dpp^{d8}/dpp^{d12}*
681 Extended Data Fig. 8a: *Ollas-HA-dpp, ptc-Gal4/+*
682 Extended Data Fig. 8b: *Ollas-HA-dpp, ptc-Gal4/+; UAS/LexAop-C9/+*
683 Extended Data Fig. 8d: *ptc-Gal4/+*
684 Extended Data Fig. 8e: *ptc-Gal4/+; UAS/LexAop-C9/+*
685 Extended Data Fig. 9a: *yw; ptc-Gal4, HA-dpp/+ (identical disc as Fig. 5c)*
686 Extended Data Fig. 9b: *yw; ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+ (identical disc as Fig. 5d)*
687 Extended Data Fig. 9c, d: *dpp^{FO}/+; UAS-FLP/tubGal80ts*
688 Extended Data Fig. 9e: *dpp^{FO}, ci-Gal4/dpp^{FO}; UAS-FLP/tubGal80ts*
689 Extended Data Fig. 10a: (control) *ptc-Gal4, HA-dpp/+*,
690 Extended Data Fig. 10b: (Dpptrap) *ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpptrap/+*
691 Extended Data Fig. 10c: (HAtrap) *ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/+*
692 Extended Data Fig. 11: *yw M{vas-int.Dm}zh-2A; dpp-T2A-d2GFP-NLS/Cyo, P23*
693 Extended Data Fig. 12: (control) *ptc-Gal4, HA-dpp/HA-dpp; tubGal80ts/+, (experiment) ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HAtrap/tubGal80ts*
694 Extended Data Fig. 13: (control) *tkvHA^{FO}/+; UAS-FLP/tubGal80ts*
695 Extended Data Fig. 13: (experiment) *tkvHA^{FO}, ci-Gal4/tkvHA^{FO}; UAS-FLP/tubGal80ts*
696
697
698
699

700 Immunostainings and antibodies

701 Protocol as described previously³⁷. For extracellular staining, dissected larvae were incubated with
702 primary antibodies in M3 medium for 1 hr on ice before fixation to allow antibodies to access only the
703 extracellular antigens. Each fly cross was set up together with a proper control and genotypes were

704 processed in parallel. If the genotype could be distinguished, experimental and control samples were
705 processed in the same tube. To minimize variations, embryos were staged by collecting eggs for 2-
706 4hrs. An average intensity image from 3 sequential images from a representative wing disc is shown
707 for all the experiments. The following primary antibodies were used; anti-HA (3F10, Roche; 1:300 for
708 conventional staining, 1:20 for extracellular staining), anti-Ollas (Novus Biologicals, 1:300 for
709 conventional staining, 1:20 for extracellular staining), anti-phospho-Smad1/5 (1:200; Cell Signaling),
710 anti-Brk (1:1.000; Gines Morata), anti-Sal (1:500; Rosa Barrio), anti-Omb (1:500; Gert Pflugfelder),
711 anti-Wg (1:120; DSHB, University of Iowa), anti-Ptc (1:40; DSHB, University of Iowa), anti- β -
712 Galactosidase (1:1.000; Promega, 1:1000; abcam), anti-Cleaved Caspase-3 (1:500; Cell Signaling).
713 All the primary and secondary antibodies were diluted in 5% normal goat serum (NGS) (Sigma) in
714 PBT (0.03% Triton X-100/PBS). All secondary antibodies from the AlexaFluor series were used at
715 1:500 dilutions. Wing discs were mounted in Vectashield (H-1000, Vector Laboratories). Images of
716 wing discs were obtained using a Leica TCS SP5 confocal microscope (section thickness 1 μ m).
717

718 RNAscope

719 smFISH using RNAscope technology with the probe against *dpp* (Cat No. 896761) has previously
720 been successful to visualize *dpp* mRNA in the germline stem cell niche⁷⁹. The probes against *dpp*
721 target 682-1673 of MM_057963.5 (accession number from NCBI). RNAscope was performed in an
722 Eppendorf tube. Larvae were dissected in PBS and fixed in 4% paraformaldehyde in PBS for 30 min.
723 Fixed larvae were washed with PBS and then with PBT (PBS containing 0.03% Triton X-100). Fixed
724 larvae were dehydrated at RT (room temperature) in a series of 25%, 50%, 75% and 100% methanol
725 in PBT, and stored overnight in 100% methanol at -20 °C. Larvae were rehydrated at RT in a series
726 of 75%, 50%, 25%, 0% methanol in PBT. Larvae were treated with protease using Pretreat 3
727 (RNAscope H2O2 & Protease Plus Reagents; ACD, 322330) at RT for 5 min. After washing with PBT,
728 hybridization using probes against *dpp* was performed overnight at 40 °C. The following day, larvae
729 were washed with in RNAscope wash buffer and re-fixed with 4% paraformaldehyde in PBS for 10
730 min. After washing with PBS, fluorescent signal was developed using RNAscope Fluorescent
731 Multiplex Reagent Kit according to the manufacturer's instructions. Wing discs were mounted in
732 Vectashield (H-1000, Vector Laboratories) and dissected for imaging. Images of wing discs were
733 obtained using a Leica TCS SP5 confocal microscope (section thickness 1 μ m).
734

735 Quantification

736 Quantification of pMad, Brk, Sal, and Omb

737 From each z-stack image, signal intensity profile along A/P axis was extracted from average projection
738 of 3 sequential images using ImageJ. Each signal intensity profile was aligned along A/P compartment
739 boundary (based on anti-Ptc staining) and average signal intensity profile from different samples was
740 generated and plotted by the script (wing_disc-alignment.py). The average intensity profile from
741 control and experimental samples were then compared by the script (wingdisc_comparison.py). Both
742 scripts can be obtained from (https://etiennees.github.io/Wing_disc-alignment/). The resulting signal
743 intensity profiles (mean with SD) were generated by Prism.

744 Quantification of wing pouch size and adult wing size

745 The A and P compartment of the wing pouches were approximated by Ptc/Wg staining and positions
746 of folds, and the A/P compartment boundary of the adult wings were approximated by L4 position.
747 The size of each compartment was measured using ImageJ. Scatter dot plots (mean with SD) were
748 generated by Prism.

749 Statistics

750 Statistical significance was assessed by Prism based on the normality tests using a two-sided Mann-
751 Whitney test (Fig. 3t, for P compartment, Fig. 5s, for A compartment, Fig. 5u, for A compartment) and
752 a two-sided Student's *t*-test with unequal variance for the rest of the comparisons (**p<0.0002 ***
753 p<0.0001).

754

755 Generation of *HA-dpp* and *GFP-dpp* knock-in allele

756 Cloning of plasmids for injection.

757 A fragment containing multi-cloning sites (MCS) between two inverted attB sites was synthesized and
758 inserted in the pBS (BamHI) vector (from Mario Metzler). A genomic fragment of *dpp* between
759 *dpp*^{MI03752} and *PBac{RB}e00178* (about 4.4kb), as well as an *FRT* and *3xP3mCherry* were inserted in
760 this MCS by standard cloning procedures. A fragment encoding HA tag or GFP was inserted between
761 the XhoI and NheI sites inserted after the last Furin processing site¹⁸.

762 Inserting *dpp* genomic fragments in the *dpp* locus

763 The resulting plasmids were injected in *yw M{vas-int.Dm}zh-2A; dpp*^{MI03752}/*Cyo, P23*. *P23* is a
764 transgene containing a *dpp* genomic fragment to rescue *dpp* haploinsufficiency. After the hatched flies
765 were backcrossed, flies that lost *y* inserted between inverted attP sites in the mimic transposon lines
766 were individually backcrossed to establish stocks. The orientation of inserted fragments was
767 determined by PCR.

768 Removal of the endogenous *dpp* exon by FLP/FRT recombination

769 Males from the above stock were crossed with females of genotype *hsFLP; al, PBac{RB}e00178/SM6,*
770 *al, sp* and subjected to heat-shock at 37°C for 1hr/day. *PBac{RB}e00178* contains *FRT* sequence and
771 *w+* and upon recombination, the *dppHA* genomic fragment are followed by *FRT* and *w+*. Hatched
772 males of *hsFLP; dppHA/al, PBac{RB}e00178* were crossed with *yw; al, b, c, sp/ SM6, al, sp*. From this
773 cross, flies *yw; dppHA(w+)/SM6, al, sp* were individually crossed with *yw; al, b, c, sp/ SM6, al, sp* to
774 establish the stock.

775

776 Construction of α-HAscFv

777 cDNA of HAscFv was constructed by combining coding sequences of variable regions of the heavy
778 chain (V_H: 1-423 of LC522514) and of the light chain (V_L: 67-420 of LC522515) cloned from anti-
779 HA hybridoma (clone 12CA5)⁴⁰ with a linker sequence (5'-
780 accggGGCGGAGGCTCTGGCGGAGGAGGTTCCGGCGGAGGTGGAAGCgatatc-3') in the order of V_H-linker-V_L. The coding sequence of HAscFv was cloned into pCS2+mcs-2FT-T for FLAG-
781 tagging. Requests for HAscFv should be addressed to YM (mii@nibb.ac.jp). To generate HA trap, the
782 region encoding morphotrap (VHH-GFP4) was replaced with KpnI and SphI sites in pLOTattB-VHH-
783 GFP4:CD8-mCherry³⁷. A fragment encoding HAscFv was amplified by PCR and then inserted via
784 KpnI and SphI sites by standard cloning procedures.

785

786 Selection of Dpp-binding DARPins and generation of Dpp trap

787 Streptavidin-binding peptide (SBP)-tagged mature C-terminal domain of Dpp was cloned into
788 pRSFDuet vector by a standard cloning. Dpp was overexpressed in *E. coli*, extracted from inclusion
789 bodies, refolded, and purified by heparin affinity chromatography followed by reverse phase HPLC⁸⁰.
790 To isolate suitable DARPins, SBP-tagged Dpp was immobilized on streptavidin magnetic beads and
791 used as a target for DARPin selections by employing multiple rounds of Ribosome Display^{81,82}. Due
792 to the aggregation and precipitation propensity of the purified SBP-Dpp, the refolded dimers
793 previously stored in 6 M urea buffer (6 M urea, 50 mM Tris-HCl, 2 mM EDTA pH8.0, 0.25 M NaCl)
794 were diluted to a concentration of 100-120 µg/ml in the same buffer and subsequently dialyzed against
795 4 mM HCl at 4°C overnight. To ensure binding of correctly folded Dpp to the beads, this solution was
796 diluted five times in the used selection buffer just prior to bead loading and the start of the ribosome
797 display selection. In each panning round, the target concentration presented on magnetic beads was
798 reduced, while the washing stringency was simultaneously increased to enrich for binders with high
799 affinities⁸¹. In addition, from the second round onward, a pre-panning against Streptavidin beads was
800 performed prior to the real selection to reduce the amounts of matrix binders. After four rounds of
801 selection, the enriched pool was cloned into an *E. coli* expression vector, enabling the production of
802

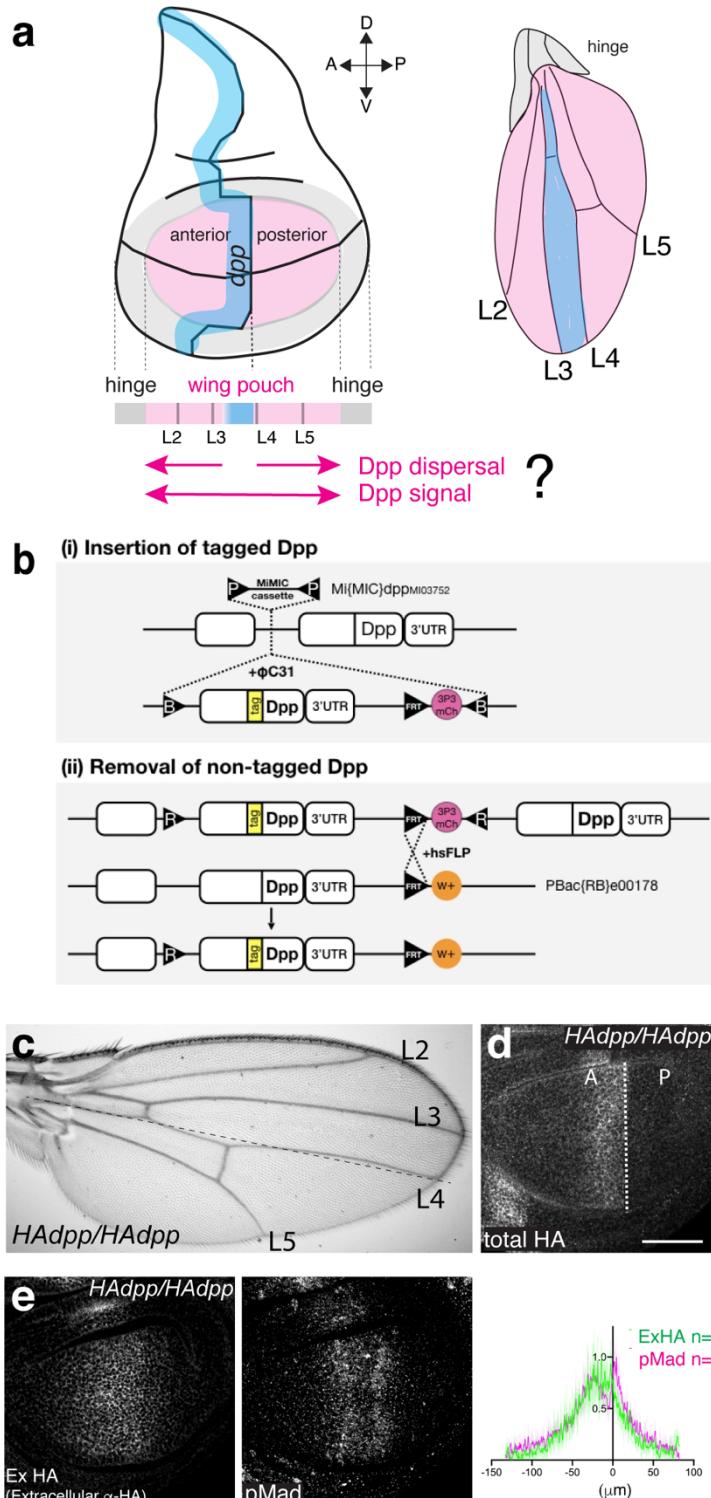
803 both N-terminally His₈- and C-terminally FLAG-tagged DARPins. Nearly 400 colonies of transformed
804 *E. coli* were picked and the encoded binders expressed in small scale. Bacterial crude extracts were
805 subsequently used in enzyme-linked immunosorbent assay (ELISA) screenings, detecting the binding
806 of candidate DARPins to streptavidin-immobilized Dpp, or just streptavidin (indicating background
807 binding) by using a FLAG-tag based detection system (data not shown). Of those 127 candidate
808 DARPins interacting with streptavidin-immobilized Dpp, 73 (or 57%) specifically bound to Dpp (i.e.,
809 having at least threefold higher signal for streptavidin-immobilized Dpp than to streptavidin alone). 36
810 of these (50%) revealed unique and full-length sequences. To generate Dpp trap, the region encoding
811 morphotrap (VHH-GFP4) was replaced with KpnI and SphI sites in pLOTattB-VHH-GFP4:CD8-
812 mCherry³⁷. Each fragment encoding a DARPin was amplified by PCR and then inserted via KpnI and
813 SphI sites by standard cloning procedures.
814

815 **Generation of *tkvHA*^{FO} (Flip-out) allele**

816 The *tkvHA* allele was previously described⁸³. An FRT cassette was inserted in the re-insertion vector
817 for *tkvHA* (Genewiz) and re-inserted into the attP site in the *tkv* locus.
818

819 **Generation of endogenous *dpp-Gal4***

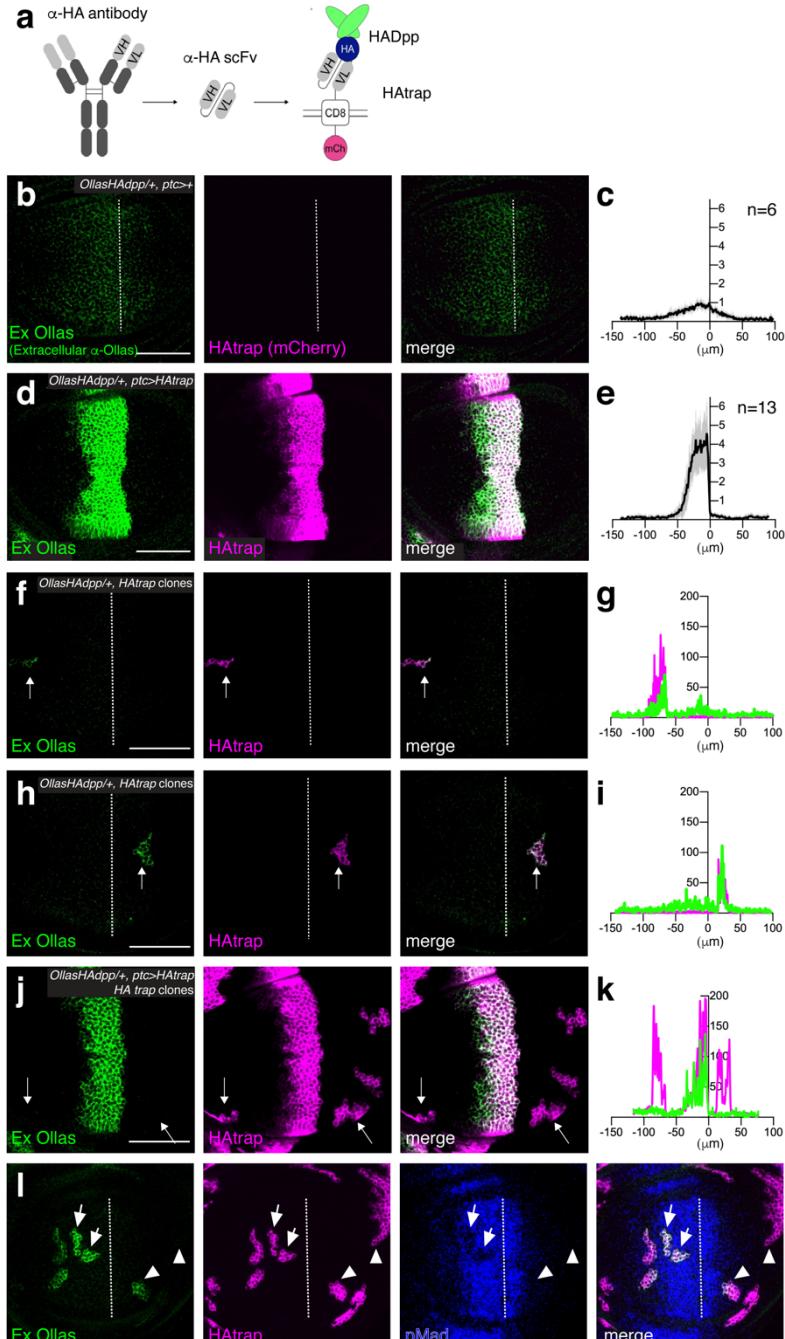
820 *pBS-KS-attB2-SA(1)-T2A-Gal4-Hsp70* (addgene 62897) was injected in the *yw M{vas-int.Dm}zh-2A;*
821 *dpp*^{MI03752}/*Cyo, P23* stock. Since the *Gal4* insertion causes haploinsufficiency, the *dpp-Gal4* was
822 recombined with *Dp(2;2)DTD48* (duplication of *dpp*) for G-TRACE analysis.
823


824 **Generation of an endogenous *dpp* reporter**

825 A DNA fragment containing T2A-d2GFP-NLS was synthesized and used to replace the region
826 containing *T2A-Gal4* in *pBS-KS-attB2-SA(1)-T2A-Gal4-Hsp70* via BamHI to generate *pBS-KS-attB2-*
827 *SA(1)-T2A-d2GFP-NLS-Hsp70* (Genewiz). The resulting plasmid was injected in the *yw M{vas-*
828 *int.Dm}zh-2A; dpp*^{MI03752}/*Cyo, P23* stock.
829
830

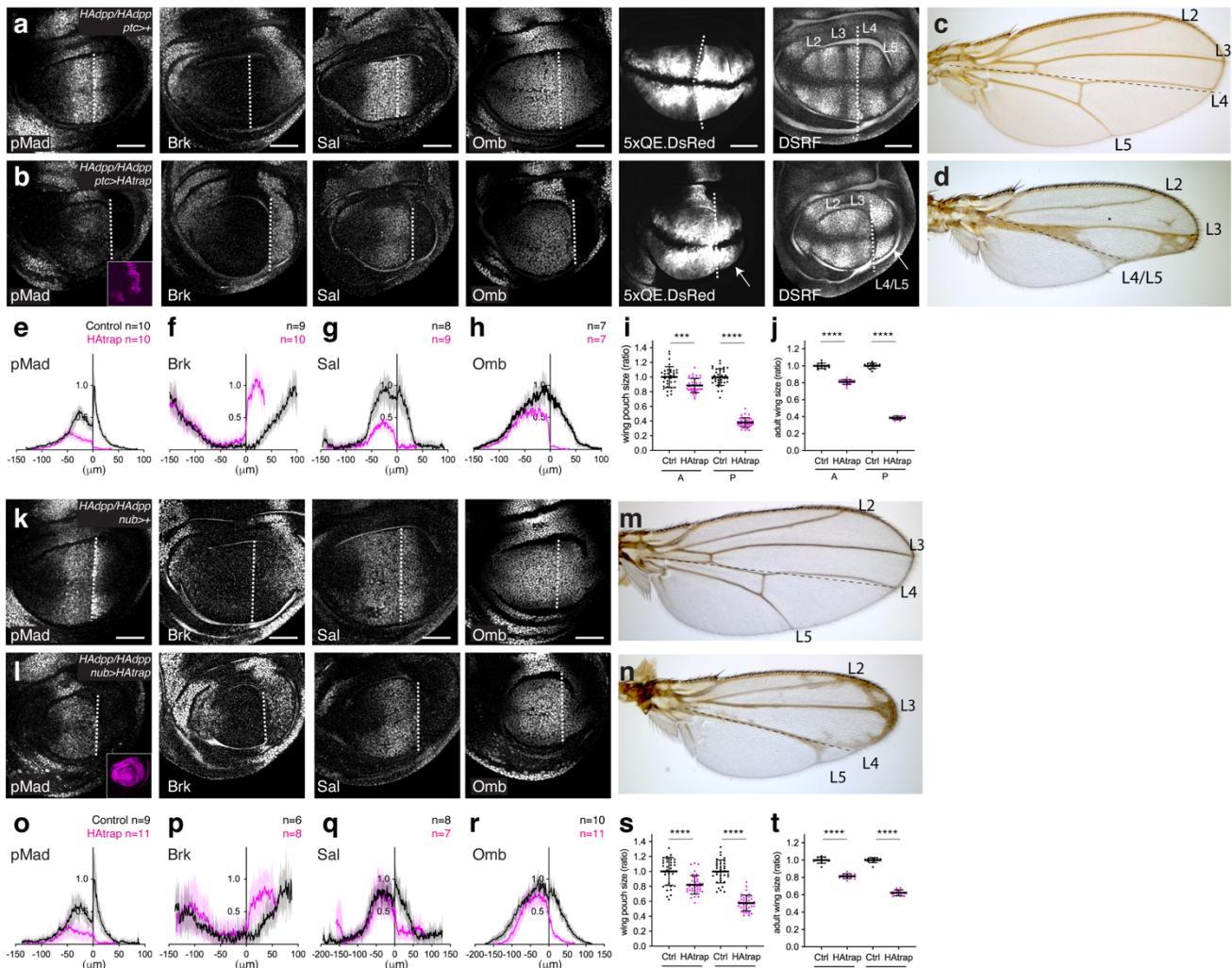
831 **Acknowledgments:**
832 We thank Konrad Basler, Giorgos Pyrowolakis, Gustavo Aguilar and Sheida Hadji Rasouliha for
833 comments on the manuscript. Stocks obtained from the Bloomington Drosophila Stock Center (NIH
834 P40OD018537) were used in this study. We thank Konrad Basler, Gary Struhl, Matthew Gibson,
835 Giorgos Pyrowolakis, and Kyoto stock center for flies. We thank Gines Morata, Rosa Barrio, Gert
836 Pflugfelder and the Developmental Studies Hybridoma Bank at The University of Iowa for antibodies.
837 We thank the Biozentrum Imaging Core Facility for maintenance of microscopes and support. We
838 thank Etienne Schmelzer for scripts for quantification and Oguz Kanca for the idea to manipulate the
839 *dpp* locus. We thank Dietmar Schreiner and Caroline Bornmann for introducing RNAscope and
840 sharing reagents, and Minkyung Lee for the advice for smFISH and sharing reagents. We would like
841 to thank Bernadette Bruno, Gina Evora and Karin Mauro for constant and reliable supply with world's
842 best fly food. We further acknowledge all current and former members of the High-Throughput Binder
843 Selection facility at the Department of Biochemistry of the University of Zurich for their contribution
844 to the establishment of the semi-automated ribosome display that resulted in the generation of the used
845 anti-Dpp DARPins binders, particularly Thomas Reinberg. **Funding:** SM has been supported by a JSPS
846 Postdoctoral Fellowship for Research Abroad and the Research Fund Junior Researchers University
847 of Basel, and is currently supported by a SNSF Ambizione grant (PZ00P3_180019). YM has been
848 supported by JST PRESTO (JPMJPR194B) and JSPS KAKENHI (18K14720). The work in the
849 Affolter laboratory was supported by grants from Kantons Basel-Stadt and Basel-Land and from the
850 SNSF (MA).

851
852 **Author contributions:** This project was conceived by SM and MA. SM designed, performed, and
853 analyzed all the experiments except isolation of α -HA scFv and DARPins. JVS and AP isolated
854 DARPins against Dpp. YM, YH, and MT cloned α -HA scFv. DB helped with Dpp purification. The
855 main text was written by SM and MA with comments from all the authors.


856
857 **Competing interests:** Authors declare no competing interests.
858

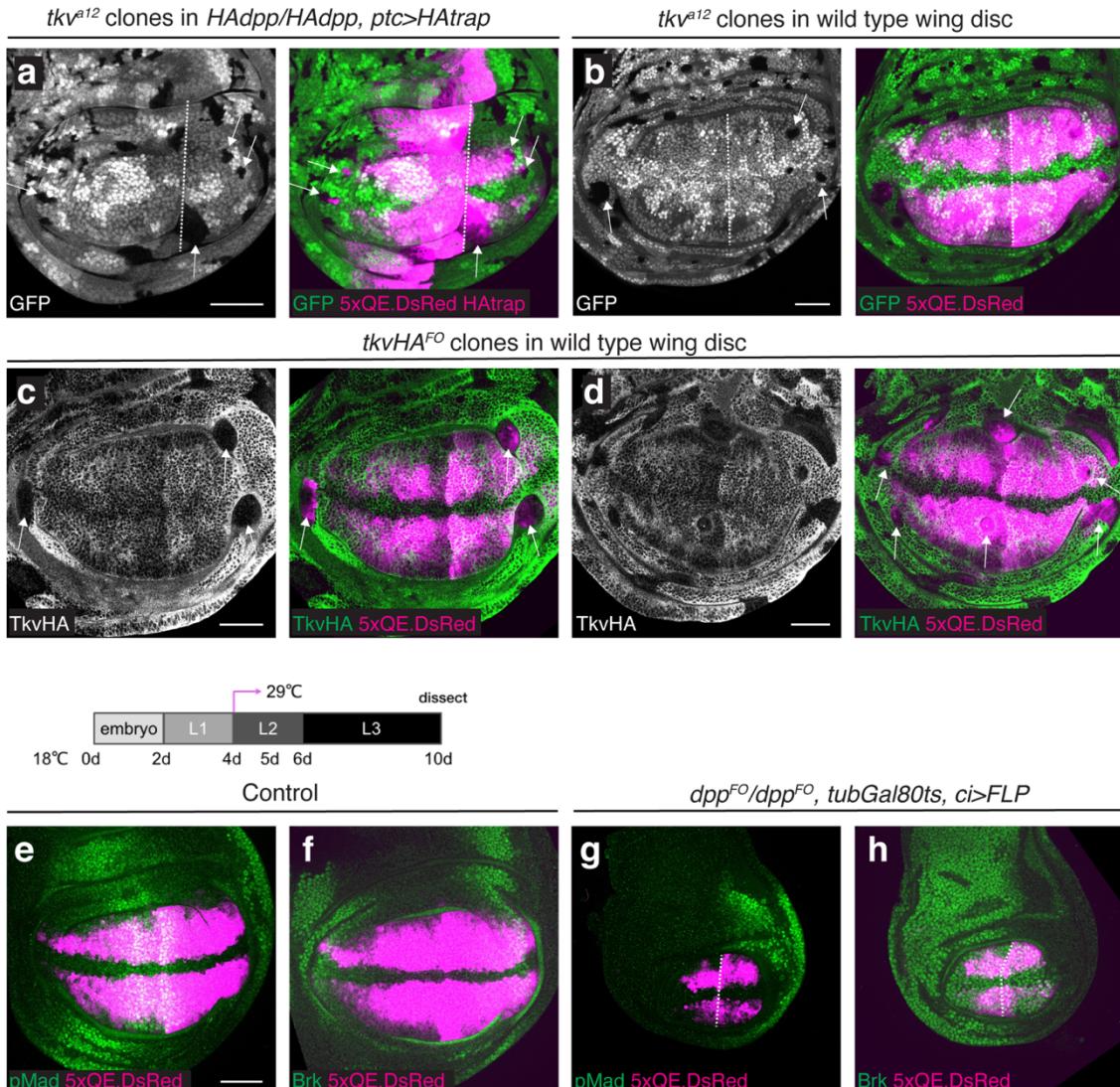
859
860
861

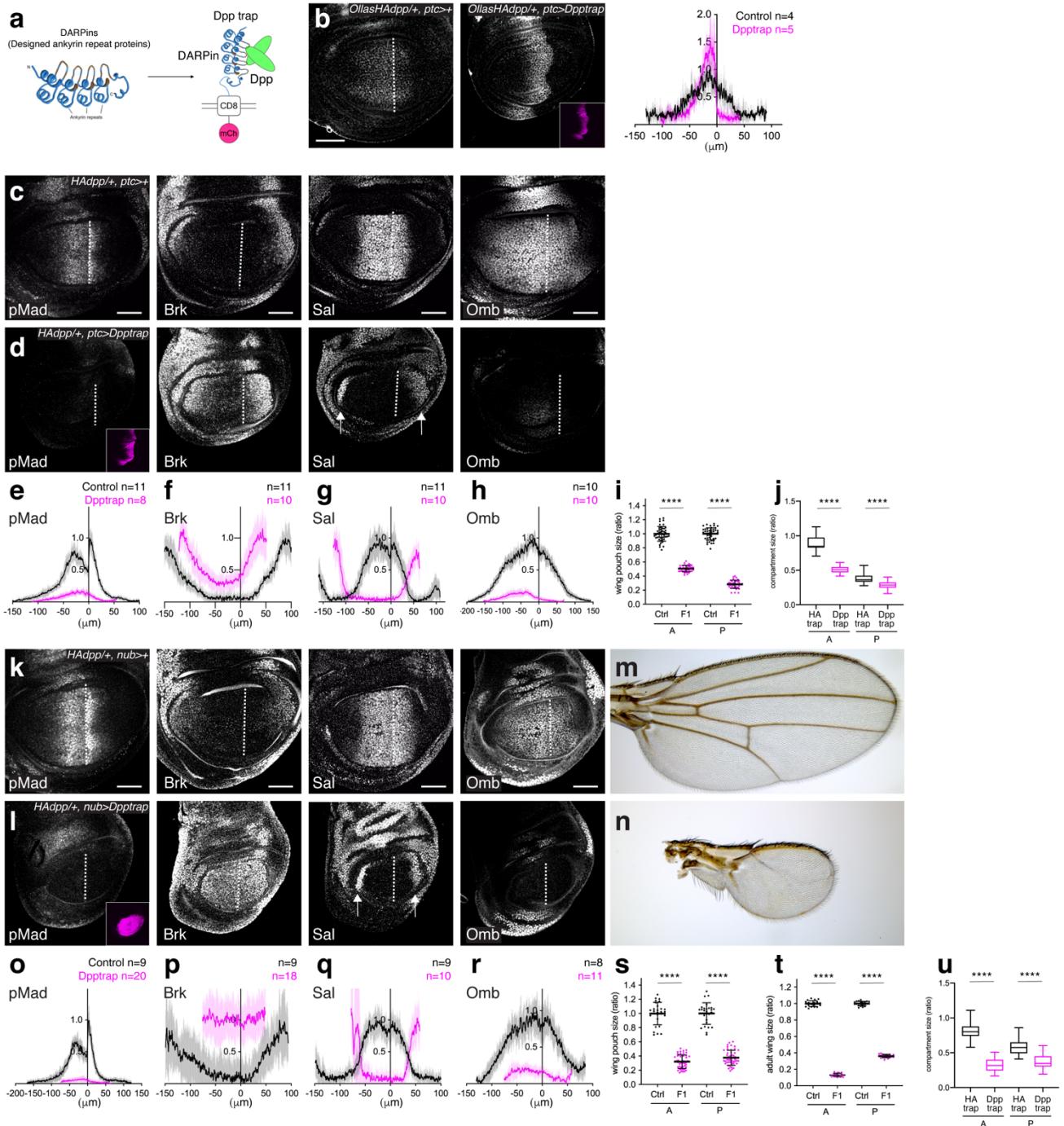
862 **Figure 1. Generation of HA trap**


863 **a**, A schematic view of the wing disc and the adult wing. **b**, A schematic view of a platform
864 manipulating endogenous *dpp* locus. **c**, Adult wing of a homozygous *HA-dpp* fly. **d**, Conventional α -
865 HA staining of *HA-dpp* homozygous wing disc. **e**, Extracellular α -HA staining (Ex HA) and α -pMad
866 staining of *HA-dpp* homozygous wing disc. Quantification of each staining.
867

868
869
870

Figure 2. Characterization of HA trap


a, A schematic view of HA trap. **b-e**, Extracellular α -Ollas staining (Ex Ollas), HA trap (mCherry), and merge of control *Ollas-HA-dpp*^{+/} disc (**b**), and of *Ollas-HA-dpp*^{+/} *ptc>HA trap* disc (**d**). **c, e**, Quantification of extracellular α -Ollas staining of (**b**) and (**d**), respectively. **f-k**, Extracellular α -Ollas staining, HA trap (mCherry), and merge of *Ollas-HA-dpp*^{+/} disc with an anterior clone of cells expressing HA trap (**f**), of *Ollas-HA-dpp*^{+/} disc with a posterior clone of cells expressing HA trap (**h**), and of *Ollas-HA-dpp*^{+/} disc with HA trap expression using *ptc-Gal4* and clones of cells expressing HA trap in both compartments (**j**). **g, i, k**, Quantification of extracellular α -Ollas staining and HA trap (mCherry) of (**f**), (**h**), (**j**), respectively. Arrows indicate clones of cells expressing HA trap where quantification was performed. **l**, Extracellular α -Ollas staining, HA trap (mCherry), pMad and merge of *Ollas-HA-dpp*^{+/} wing disc with clones of cells expressing HA trap. Arrows indicate clones of cells expressing HA trap where pMad signal is reduced upon trapping Ollas-HA-Dpp. Arrow heads indicate a clone of cells expressing HA trap that accumulates Ollas-HA-Dpp near the source cells and a clone of cells expressing HA trap that does not accumulate Ollas-HA-Dpp far from the source cells. Dashed white lines mark the A-P compartment border. Scale bar 50 μ m.

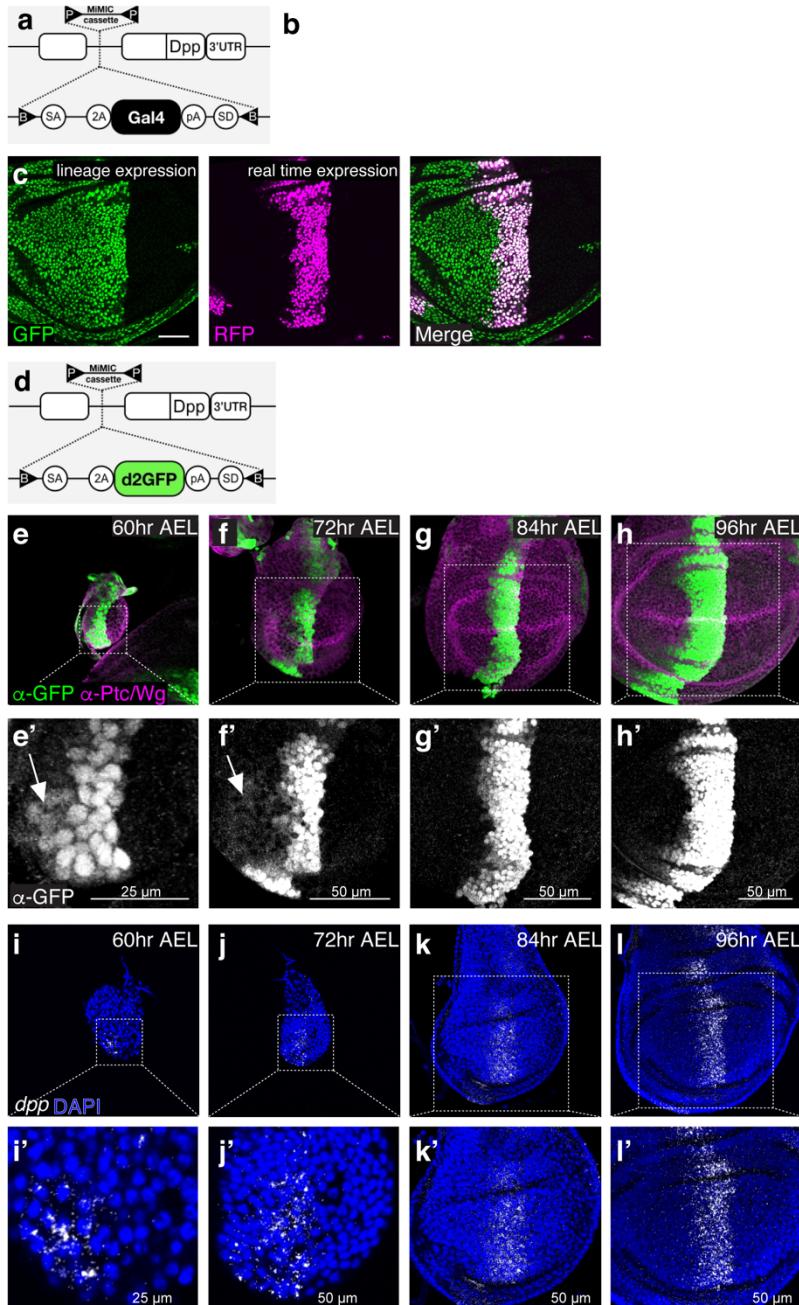


884
885

886 **Figure 3. Blocking Dpp dispersal by HA trap causes minor and asymmetric patterning and**
887 **growth defects**

888 **a-b**, α -pMad, α -Brk, α -Sal, α -Omb, 5xQE.DsRed, DSRF, and Dpp trap (mCherry) (inset) of control
889 wing disc (**a**) and wing disc expressing HA trap using *ptc-Gal4* (**b**). **c-d**, Control adult wing (**c**), and
890 adult wing expressing HA trap using *ptc-Gal4* (**d**). **e-h**, Quantification of α -pMad (**e**), α -Brk (**f**), α -Sal
891 (**g**), α -Omb (**h**) staining in (**a-b**). **i-j**, Quantification of compartment size of wing pouch (**i**) and adult
892 wing (**j**) upon HA trap expression using *ptc-Gal4*. **k-l**, α -pMad, α -Brk, α -Sal, α -Omb, 5xQE.DsRed,
893 DSRF, and Dpp trap (mCherry) (inset) of control wing disc (**k**) and wing disc expressing HA trap
894 using *nub-Gal4* (**l**). **m-n**, Control adult wing (**m**) and adult wing expressing HA trap using *nub-Gal4*
895 (**n**). **o-r**, Quantification of α -pMad (**o**), α -Brk (**p**), α -Sal (**q**), α -Omb (**r**) staining in (**k-l**). **s-t**,
896 Quantification of compartment size of wing pouch (**s**) and adult wing (**t**) upon HA trap expression
897 using *nub-Gal4*. Dashed white lines mark the A-P compartment border. Scale bar 50 μ m.
898

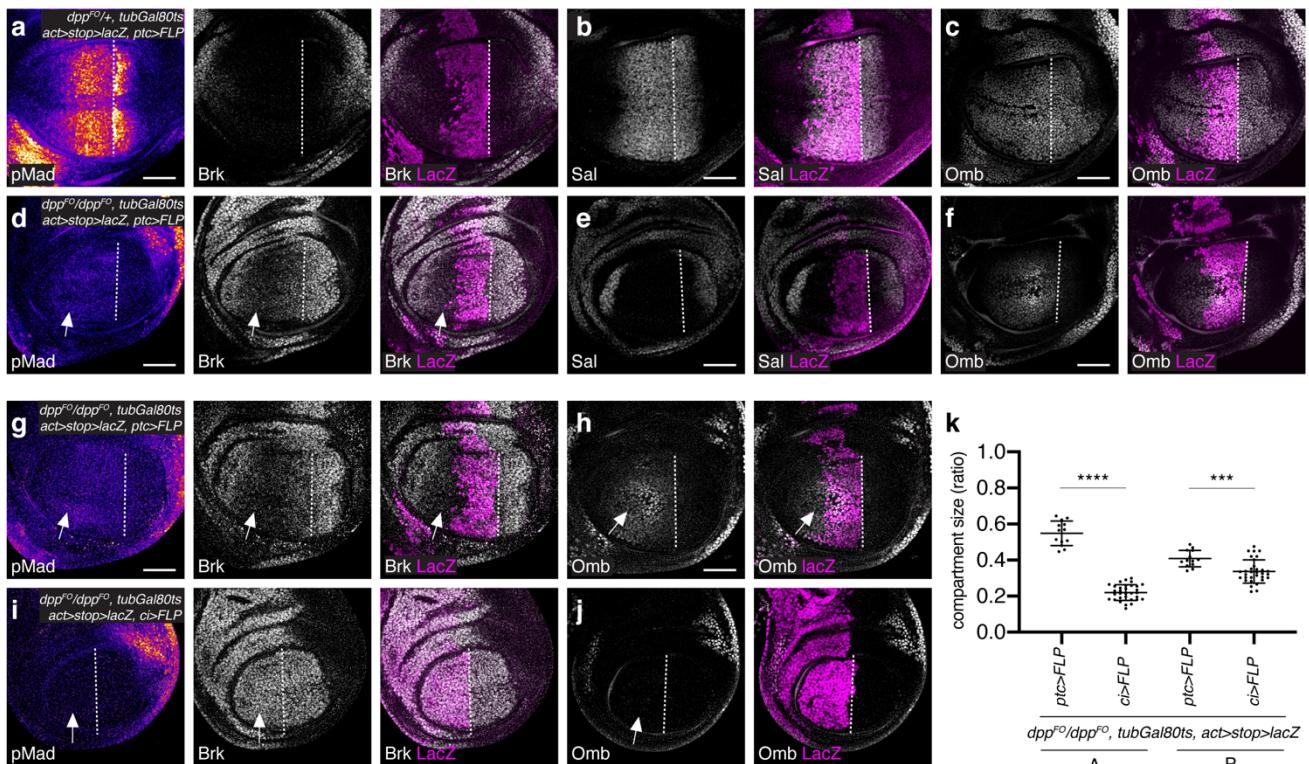




909
910

Figure 5. Blocking Dpp dispersal and signaling by Dpp trap causes severe defects similar to *dpp* mutant

911 **a**, a schematic view of Dpp trap based on DARPins² against Dpp. **b**, α -ExOllas staining and Dpp trap expression (mCherry) (inset) of control wing disc (left) and wing disc expressing Dpp trap using *ptc-Gal4* (right). Quantification of ExOllas signal. **c-d**, α -pMad, α -Brk, α -Sal, α -Omb staining and Dpp trap (mCherry) expression (inset) of control wing disc (**c**) and wing disc expressing Dpp trap using *ptc-Gal4* (**d**). **e-h**, Quantification of α -pMad (**e**), α -Brk (**f**), α -Sal (**g**), α -Omb (**h**) staining in (**c-d**). **i**, Quantification of compartment size of wing pouch upon Dpp trap expression using *ptc-Gal4*. **j**, Comparison of wing pouch compartment size upon HA trap and Dpp trap expression using *ptc-Gal4* (comparison of Fig. 3i and Fig. 5i). **k-l**, α -pMad, α -Brk, α -Sal, α -Omb staining and Dpp trap (mCherry) expression (inset) of control wing disc (**k**) and wing disc expressing Dpp trap using *nub-Gal4* (**l**). **m-n**, Control adult wing (**m**), and adult wing expressing Dpp trap using *nub-Gal4* (**n**). **o-r**, Quantification of α -pMad (**o**), α -Brk (**p**), α -Sal (**q**), α -Omb (**r**) staining in (**k-l**). **s-t**, Quantification of compartment size of wing pouch (**s**) and adult wing (**t**) upon Dpp trap expression using *nub-Gal4*. **u**, Comparison of compartment size of wing pouch upon HA trap and Dpp trap expression using *nub-Gal4* (comparison of Fig. 3s and Fig. 5s). Scale bar 50 μ m.

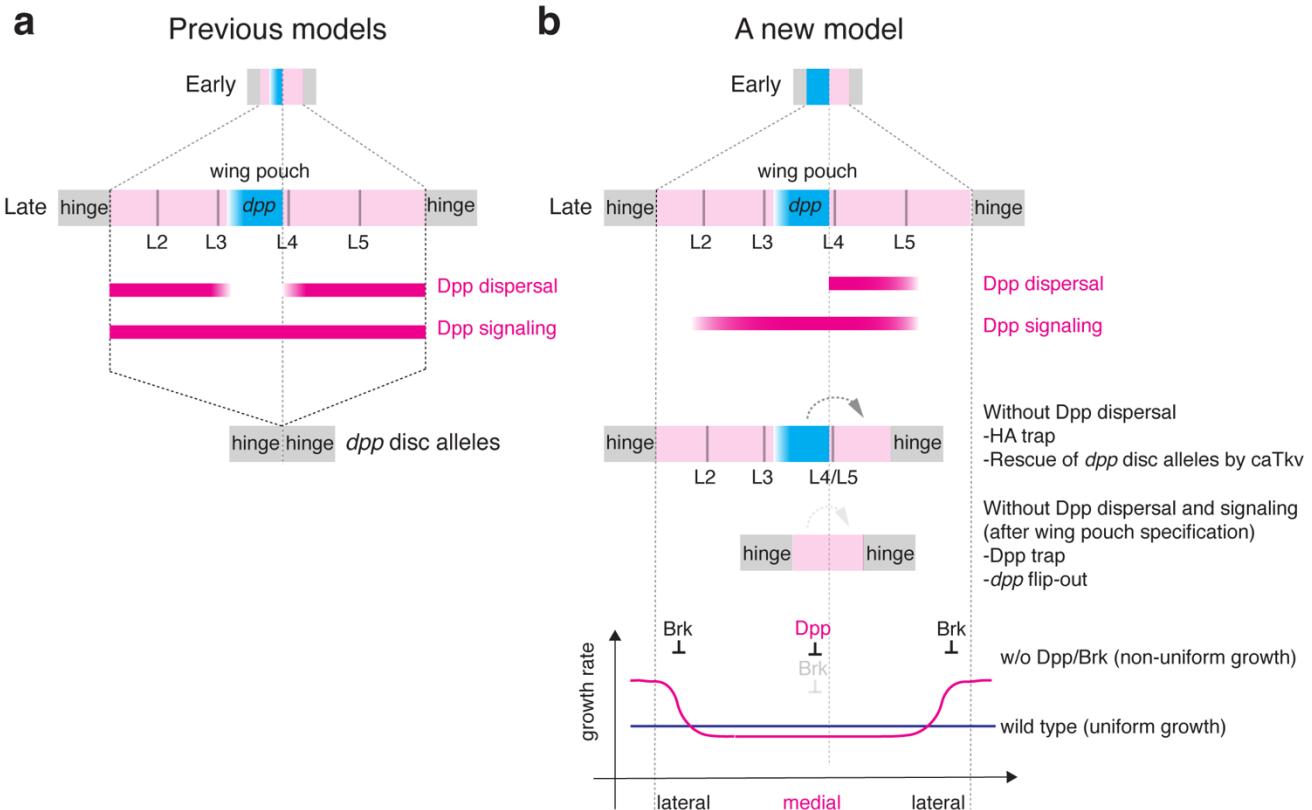


937
938

939 **Figure 7. Initial uniform *dpp* transcription in the anterior compartment**
940 **a-c**, Lineage of endogenous *dpp-Gal4* during wing development. **(a)** a schematic view of a *Gal4*
941 insertion into the *dpp* locus. **(b)** A schematic view of G-TRACE analysis. While RFP expression labels
942 the real-time *Gal4*-expressing cells, GFP expression labels the lineage of the *Gal4*-expressing cells **(c)**,
943 G-TRACE analysis of the endogenous *dpp-Gal4*. Scale bar 50 μ m. **d**, A schematic view of *d2GFP*
944 insertion into the *dpp* locus. **e-h**, α -GFP and α -Ptc/Wg staining of wing disc expressing the *d2GFP*
945 reporter at mid-second instar stage (60hr AEL) **(e)**, at early third instar stage (72hr AEL) **(f)**, at mid-
946 third instar stage (84hr AEL) **(g)**, and at mid- to late- third instar stage (96hr AEL) **(h)**. Arrows indicate
947 *dpp* transcription outside the stripe of cells. **e'-h'**, Magnified wing discs from **(e-h)**. **i-l**, smFISH against
948 *dpp* using RNA scope technology. *yw* wing disc at 60 hr AEL **(i)**, 72 hr AEL **(j)**, 84 hr AEL **(k)**, 96 hr
949 AEL **(l)**. **i'-l'**, Magnified wing discs from **(i-l)**.

950

951


952

953

954 **Figure 8. Transient anterior *dpp* source outside Sal domain is required for anterior patterning**
955 **and growth**

956 a-f, α -pMad, α -Brk, and α -LacZ (a, d), α -Sal and α -LacZ (b, e), α -Omb and α -LacZ (c, f) staining
957 of control wing disc (a-c) and wing discs removing *dpp* using *ptc-Gal4* from mid-second instar (d-f).
958 g-j, α -pMad, α -Brk, and α -LacZ (g, i), α -Omb and α -LacZ (h, j) staining of wing disc removing *dpp*
959 using *ptc-Gal4* from mid-second instar (same condition as (d-f)) (g, h) and using *ci-Gal4* from mid-
960 second instar (i, j). The genotypes of the wing discs in (d-f) and in (g, h) are identical. k, Quantification
961 of each compartment size of wing discs removing *dpp* using *ptc-Gal4* or *ci-Gal4*. Crosses were shifted
962 from 18°C to 29°C at 5day AEL (mid-second instar). α -LacZ staining marks the region where *dpp* is
963 removed upon FLP expression. Dashed white lines mark the A-P compartment border. Scale bar 50
964 μ m.
965

966

982

983

984 1 Bieli, D. *et al.* Development and Application of Functionalized Protein Binders in Multicellular
985 Organisms. *Int Rev Cell Mol Biol* **325**, 181-213, doi:10.1016/bs.ircmb.2016.02.006 (2016).

986 2 Harmansa, S. & Affolter, M. Protein binders and their applications in developmental biology.
Development (Cambridge, England) **145**, 10.1242/dev.148874, doi:dev148874 [pii] (2018).

987 3 Helma, J., Cardoso, M. C., Muyldermans, S. & Leonhardt, H. Nanobodies and recombinant
988 binders in cell biology. *The Journal of cell biology* **209**, 633-644, doi:10.1083/jcb.201409074
989 [doi] (2015).

990 4 Kaiser, P. D., Maier, J., Traenkle, B., Emele, F. & Rothbauer, U. Recent progress in generating
991 intracellular functional antibody fragments to target and trace cellular components in living
992 cells. *Biochimica et biophysica acta* **1844**, 1933-1942, doi:S1570-9639(14)00111-3 [pii]
993 (2014).

994 5 Vigano, M. A. *et al.* Protein manipulation using single copies of short peptide tags in cultured
995 cells and in *Drosophila melanogaster*. *Development* **148**, doi:10.1242/dev.191700 (2021).

996 6 Ashe, H. L. & Briscoe, J. The interpretation of morphogen gradients. *Development (Cambridge,
997 England)* **133**, 385-394, doi:133/3/385 [pii] (2006).

998 7 Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. *Annual
1000 Review of Cell and Developmental Biology* **27**, 377-407, doi:10.1146/annurev-cellbio-092910-
1001 154148 [doi] (2011).

1002 8 Tabata, T. Genetics of morphogen gradients. *Nature reviews.Genetics* **2**, 620-630,
1003 doi:10.1038/35084577 [doi] (2001).

1004 9 Turing, A. The chemical basis of morphogenesis. *Philosophical Transactions of the Royal
1005 Society of London B* **237** (1952).

1006 10 Kicheva, A. & Gonzalez-Gaitan, M. The Decapentaplegic morphogen gradient: a precise
1007 definition. *Current opinion in cell biology* **20**, 137-143, doi:10.1016/j.ceb.2008.01.008 [doi]
1008 (2008).

1009 11 Sagner, A. & Briscoe, J. Morphogen interpretation: concentration, time, competence, and
1010 signaling dynamics. *Wiley interdisciplinary reviews.Developmental biology* **6**,
1011 10.1002/wdev.1271. Epub 2017 Mar 1020, doi:10.1002/wdev.271 [doi] (2017).

1012 12 Alexandre, C., Baena-Lopez, A. & Vincent, J. P. Patterning and growth control by membrane-
1013 tethered Wingless. *Nature* **505**, 180-185, doi:10.1038/nature12879 [doi] (2014).

1014 13 Apitz, H. & Salecker, I. Spatio-temporal relays control layer identity of direction-selective
1015 neuron subtypes in *Drosophila*. *Nature communications* **9**, 2295-2018-04592-z,
1016 doi:10.1038/s41467-018-04592-z [doi] (2018).

1017 14 Beaven, R. & Denholm, B. Release and spread of Wingless is required to pattern the proximo-
1018 distal axis of *Drosophila* renal tubules. *eLife* **7**, 10.7554/eLife.35373, doi:10.7554/eLife.35373
1019 [doi] (2018).

1020 15 Chaudhary, V. *et al.* Robust Wnt signaling is maintained by a Wg protein gradient and Fz2
1021 receptor activity in the developing *Drosophila* wing. *Development (Cambridge, England)* **146**,
1022 10.1242/dev.174789, doi:dev174789 [pii] (2019).

1023 16 Tian, A., Duwadi, D., Benchabane, H. & Ahmed, Y. Essential long-range action of
1024 Wingless/Wnt in adult intestinal compartmentalization. *PLoS genetics* **15**, e1008111,
1025 doi:10.1371/journal.pgen.1008111 [doi] (2019).

1026 17 Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-
1027 beta homolog Dpp. *Cell* **103**, 981-991, doi:10.1016/s0092-8674(00)00200-2 (2000).

1028 18 Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the *Drosophila* wing imaginal disc.
Cell **103**, 971-980 (2000).

1029 19 Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to
1030 growth regulation. *Nature reviews.Genetics* **8**, 663-674, doi:10.1038/nrg2166 (2007).

1032 20 Belenkaya, T. Y. *et al.* Drosophila Dpp morphogen movement is independent of dynamin-
1033 mediated endocytosis but regulated by the glypcan members of heparan sulfate proteoglycans.
1034 *Cell* **119**, 231-244, doi:10.1016/j.cell.2004.09.031 (2004).

1035 21 Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D. & Kornberg, T. B. Dependence of Drosophila
1036 wing imaginal disc cytonemes on Decapentaplegic. *Nature* **437**, 560-563, doi:nature03951 [pii]
1037 (2005).

1038 22 Schwank, G. *et al.* Formation of the long range Dpp morphogen gradient. *PLoS Biol* **9**,
1039 e1001111, doi:10.1371/journal.pbio.1001111
1040 10.1371/journal.pbio.1001111 (2011).

1041 23 Zhou, S. *et al.* Free extracellular diffusion creates the Dpp morphogen gradient of the
1042 Drosophila wing disc. *Curr Biol* **22**, 668-675, doi:10.1016/j.cub.2012.02.065 (2012).

1043 24 Akiyama, T. & Gibson, M. C. Decapentaplegic and growth control in the developing
1044 Drosophila wing. *Nature* **527**, 375-378, doi:10.1038/nature15730 [doi] (2015).

1045 25 Bosch, P. S., Ziukaite, R., Alexandre, C., Basler, K. & Vincent, J. P. Dpp controls growth and
1046 patterning in Drosophila wing precursors through distinct modes of action. *eLife* **6**,
1047 10.7554/eLife.22546, doi:10.7554/eLife.22546 [doi] (2017).

1048 26 Rogulja, D. & Irvine, K. D. Regulation of cell proliferation by a morphogen gradient. *Cell* **123**,
1049 449-461, doi:10.1016/j.cell.2005.08.030 (2005).

1050 27 Rogulja, D., Rauskolb, C. & Irvine, K. D. Morphogen control of wing growth through the Fat
1051 signaling pathway. *Developmental cell* **15**, 309-321, doi:10.1016/j.devcel.2008.06.003 [doi]
1052 (2008).

1053 28 Schwank, G., Restrepo, S. & Basler, K. Growth regulation by Dpp: an essential role for Brinker
1054 and a non-essential role for graded signaling levels. *Development (Cambridge, England)* **135**,
1055 4003-4013, doi:10.1242/dev.025635; 10.1242/dev.025635 (2008).

1056 29 Schwank, G. *et al.* Antagonistic growth regulation by Dpp and Fat drives uniform cell
1057 proliferation. *Developmental cell* **20**, 123-130, doi:10.1016/j.devcel.2010.11.007 [doi] (2011).

1058 30 Schwank, G., Yang, S. F., Restrepo, S. & Basler, K. Comment on "Dynamics of dpp signaling
1059 and proliferation control". *Science (New York, N.Y.)* **335**, 401; author reply 401,
1060 doi:10.1126/science.1210997 [doi] (2012).

1061 31 Wartlick, O., Mumcu, P., Jülicher, F. & Gonzalez-Gaitan, M. Response to Comment on
1062 "Dynamics of Dpp Signaling and Proliferation Control". *Science* **335**, 401,
1063 doi:10.1126/science.1211373 (2012).

1064 32 Wartlick, O. *et al.* Dynamics of Dpp signaling and proliferation control. *Science (New York,
1065 N.Y.)* **331**, 1154-1159, doi:10.1126/science.1200037 [doi] (2011).

1066 33 Zecca, M. & Struhl, G. A unified mechanism for the control of Drosophila wing growth by the
1067 morphogens Decapentaplegic and Wingless. *PLoS biology* **19**, e3001111,
1068 doi:10.1371/journal.pbio.3001111 [doi] (2021).

1069 34 Ben-Zvi, D., Pyrowolakis, G., Barkai, N. & Shilo, B. Z. Expansion-repression mechanism for
1070 scaling the Dpp activation gradient in Drosophila wing imaginal discs. *Current biology : CB*
1071 **21**, 1391-1396, doi:10.1016/j.cub.2011.07.015 [doi] (2011).

1072 35 Hamaratoglu, F., de Lachapelle, A. M., Pyrowolakis, G., Bergmann, S. & Affolter, M. Dpp
1073 signaling activity requires Pentagone to scale with tissue size in the growing Drosophila wing
1074 imaginal disc. *PLoS biology* **9**, e1001182, doi:10.1371/journal.pbio.1001182 [doi] (2011).

1075 36 Zhu, Y., Qiu, Y., Chen, W., Nie, Q. & Lander, A. D. Scaling a Dpp Morphogen Gradient
1076 through Feedback Control of Receptors and Co-receptors. *Developmental cell* **53**, 724-
1077 739.e714, doi:S1534-5807(20)30418-4 [pii] (2020).

1078 37 Harmansa, S., Hamaratoglu, F., Affolter, M. & Caussinus, E. Dpp spreading is required for
1079 medial but not for lateral wing disc growth. *Nature* **527**, 317-322,
1080 doi:<http://dx.doi.org/10.1038/nature15712> (2015).

1081 38 Venken, K. J. *et al.* MiMIC: a highly versatile transposon insertion resource for engineering
1082 Drosophila melanogaster genes. *Nature methods* **8**, 737-743, doi:10.1038/nmeth.1662 [doi]
1083 (2011).

1084 39 Galeone, A. *et al.* Regulation of BMP4/Dpp retrotranslocation and signaling by
1085 deglycosylation. *eLife* **9**, doi:10.7554/eLife.55596 (2020).

1086 40 Mii, Y. *et al.* Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus
1087 embryos. *eLife* **10**, 10.7554/eLife.55108, doi:10.7554/eLife.55108 [doi] (2021).

1088 41 Matsuda, S. & Affolter, M. Dpp from the anterior stripe of cells is crucial for the growth of the
1089 Drosophila wing disc. *eLife* **6**, 10.7554/eLife.22319, doi:10.7554/eLife.22319 [doi] (2017).

1090 42 Akiyama, T. & Gibson, M. C. Morphogen transport: theoretical and experimental controversies.
1091 *Wiley interdisciplinary reviews. Developmental biology* **4**, 99-112, doi:10.1002/wdev.167 [doi]
1092 (2015).

1093 43 Matsuda, S., Harmansa, S. & Affolter, M. BMP morphogen gradients in flies. *Cytokine &*
1094 *growth factor reviews* **27**, 119-127, doi:10.1016/j.cytofr.2015.11.003 [doi] (2016).

1095 44 Restrepo, S., Zartman, J. J. & Basler, K. Coordination of patterning and growth by the
1096 morphogen DPP. *Current biology : CB* **24**, R245-255, doi:10.1016/j.cub.2014.01.055 [doi]
1097 (2014).

1098 45 Zecca, M. & Struhl, G. Recruitment of cells into the Drosophila wing primordium by a feed-
1099 forward circuit of vestigial autoregulation. *Development (Cambridge, England)* **134**, 3001-
1100 3010, doi:dev.006411 [pii] (2007).

1101 46 Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA
1102 and directly mediates activation of vestigial by Decapentaplegic. *Nature* **388**, 304-308,
1103 doi:10.1038/40906 [doi] (1997).

1104 47 Kim, J. *et al.* Integration of positional signals and regulation of wing formation and identity by
1105 Drosophila vestigial gene. *Nature* **382**, 133-138, doi:10.1038/382133a0 [doi] (1996).

1106 48 Burke, R. & Basler, K. Dpp receptors are autonomously required for cell proliferation in the
1107 entire developing Drosophila wing. *Development (Cambridge, England)* **122**, 2261-2269
1108 (1996).

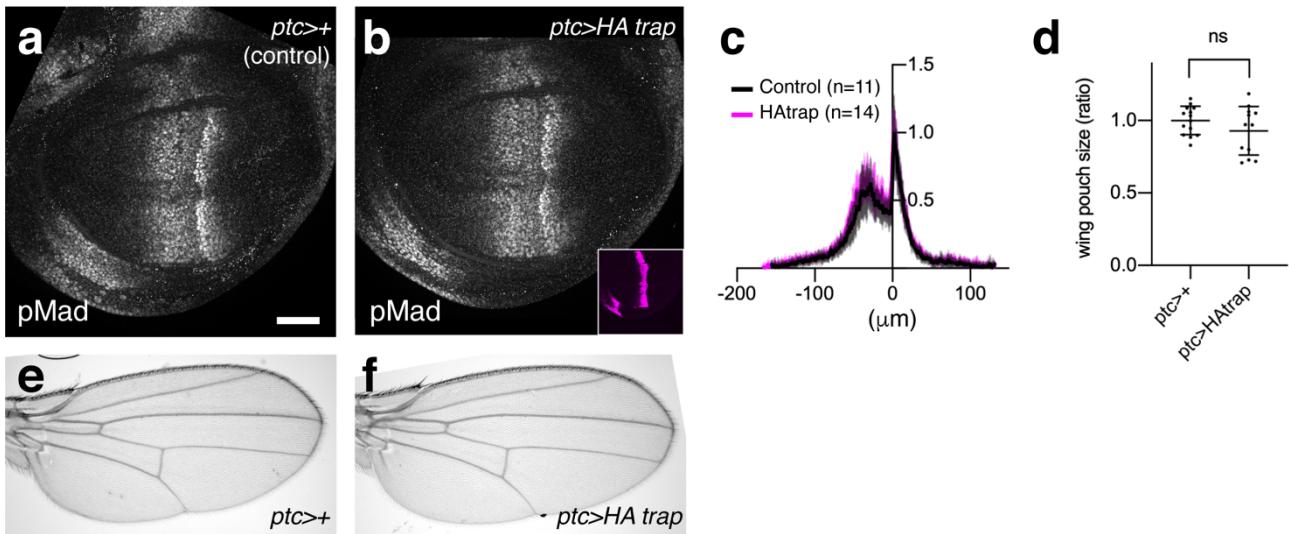
1109 49 Nellen, D., Affolter, M. & Basler, K. Receptor serine/threonine kinases implicated in the
1110 control of Drosophila body pattern by decapentaplegic. *Cell* **78**, 225-237, doi:0092-
1111 8674(94)90293-3 [pii] (1994).

1112 50 Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen
1113 gradient. *Cell* **85**, 357-368 (1996).

1114 51 Gibson, M. C. & Perrimon, N. Extrusion and death of DPP/BMP-compromised epithelial cells
1115 in the developing Drosophila wing. *Science (New York, N.Y.)* **307**, 1785-1789,
1116 doi:10.1126/science.1104751 (2005).

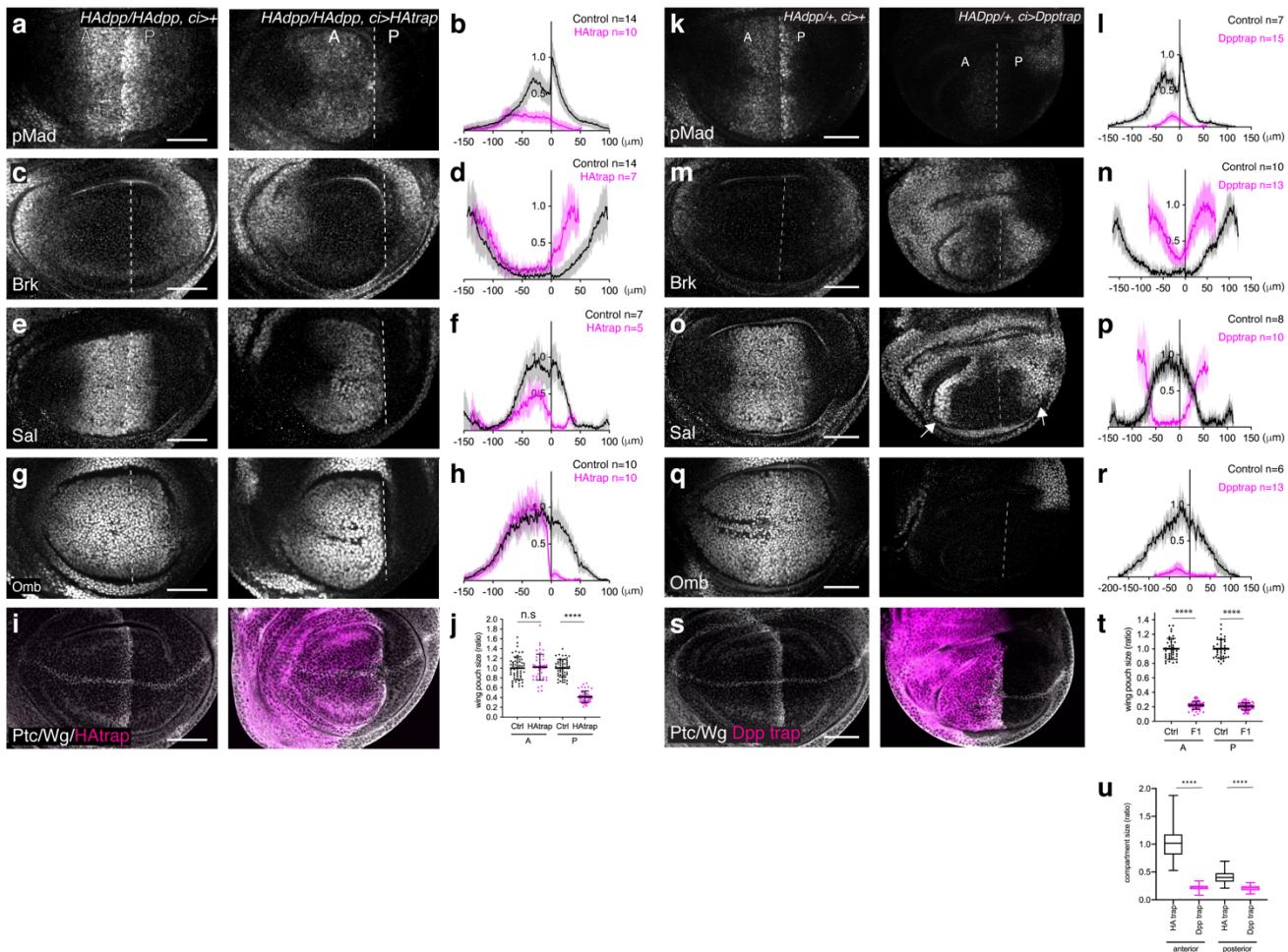
1117 52 Paul, L. *et al.* Dpp-induced Egfr signaling triggers postembryonic wing development in
1118 Drosophila. *Proceedings of the National Academy of Sciences of the United States of America*
1119 **110**, 5058-5063, doi:10.1073/pnas.1217538110 [doi] (2013).

1120 53 Campbell, G. & Tomlinson, A. Transducing the Dpp morphogen gradient in the wing of
1121 Drosophila: regulation of Dpp targets by brinker. *Cell* **96**, 553-562, doi:10.1016/s0092-
1122 8674(00)80659-5 (1999).


1123 54 Zecca, M. & Struhl, G. Control of Drosophila wing growth by the vestigial quadrant enhancer.
1124 *Development (Cambridge, England)* **134**, 3011-3020, doi:dev.006445 [pii] (2007).

1125 55 Pluckthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research,
1126 diagnostics, and therapy. *Annual Review of Pharmacology and Toxicology* **55**, 489-511,
1127 doi:10.1146/annurev-pharmtox-010611-134654 [doi] (2015).

1128 56 Brauchle, M. *et al.* Protein interference applications in cellular and developmental biology
1129 using DARPins that recognize GFP and mCherry. *Biology open* **3**, 1252-1261,
1130 doi:10.1242/bio.201410041 [doi] (2014).

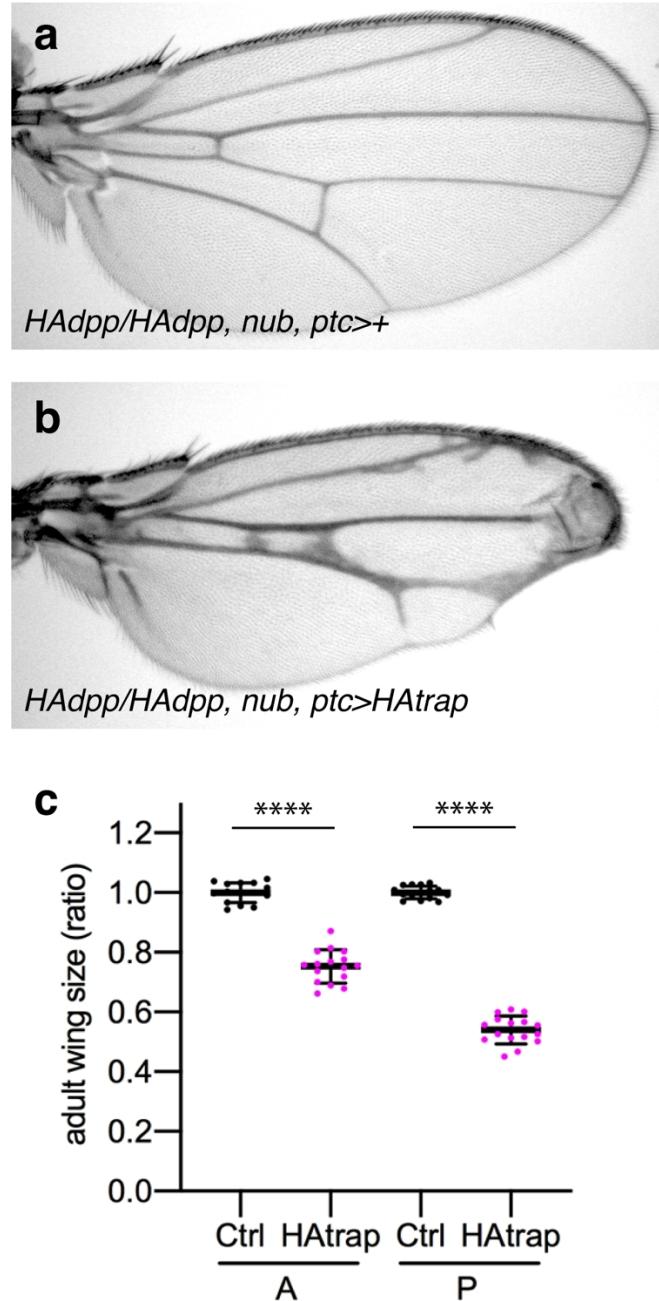

1131 57 Vigano, M. A. *et al.* DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo
1132 protein manipulations. *Biology open* **7**, 10.1242/bio.036749, doi:bio036749 [pii] (2018).
1133 58 Ziv, O. *et al.* Inverse regulation of target genes at the brink of the BMP morphogen activity
1134 gradient. *J Cell Sci* **125**, 5811-5818, doi:10.1242/jcs.110569 (2012).
1135 59 Lecuit, T. *et al.* Two distinct mechanisms for long-range patterning by Decapentaplegic in the
1136 Drosophila wing. *Nature* **381**, 387-393, doi:10.1038/381387a0 [doi] (1996).
1137 60 Evans, C. J. *et al.* G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. *Nature
1138 methods* **6**, 603-605, doi:10.1038/nmeth.1356 [doi] (2009).
1139 61 Barrio, L. & Milan, M. Boundary Dpp promotes growth of medial and lateral regions of the
1140 Drosophila wing. *eLife* **6**, 10.7554/eLife.22013, doi:10.7554/eLife.22013 [doi] (2017).
1141 62 Bergantinos, C., Corominas, M. & Serras, F. Cell death-induced regeneration in wing imaginal
1142 discs requires JNK signalling. *Development (Cambridge, England)* **137**, 1169-1179,
1143 doi:10.1242/dev.045559 [doi] (2010).
1144 63 Aguilar, G., Matsuda, S., Vigano, M. A. & Affolter, M. Using Nanobodies to Study Protein
1145 Function in Developing Organisms. *Antibodies (Basel)* **8**, doi:10.3390/antib8010016 (2019).
1146 64 Aguilar, G., Vigano, M. A., Affolter, M. & Matsuda, S. Reflections on the use of protein
1147 binders to study protein function in developmental biology. *Wiley Interdiscip Rev Dev Biol* **8**,
1148 e356, doi:10.1002/wdev.356 (2019).
1149 65 Akiyama, T., User, S. D. & Gibson, M. C. Somatic clones heterozygous for recessive disease
1150 alleles of BMPR1A exhibit unexpected phenotypes in Drosophila. *eLife* **7**,
1151 10.7554/eLife.35258, doi:10.7554/eLife.35258 [doi] (2018).
1152 66 Gavin-Smyth, J., Wang, Y. C., Butler, I. & Ferguson, E. L. A genetic network conferring
1153 canalization to a bistable patterning system in Drosophila. *Current biology : CB* **23**, 2296-2302,
1154 doi:S0960-9822(13)01242-6 [pii] (2013).
1155 67 Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y. & Matsumoto, K. Distortion of
1156 proximodistal information causes JNK-dependent apoptosis in Drosophila wing. *Nature* **400**,
1157 166-169, doi:10.1038/22112 [doi] (1999).
1158 68 Conley, C. A. *et al.* Crossveinless 2 contains cysteine-rich domains and is required for high
1159 levels of BMP-like activity during the formation of the cross veins in Drosophila. *Development
1160 (Cambridge, England)* **127**, 3947-3959 (2000).
1161 69 Vuilleumier, R. *et al.* Control of Dpp morphogen signalling by a secreted feedback regulator.
1162 *Nat Cell Biol* **12**, 611-617, doi:10.1038/ncb2064 (2010).
1163 70 Bangi, E. & Wharton, K. Dpp and Gbb exhibit different effective ranges in the establishment
1164 of the BMP activity gradient critical for Drosophila wing patterning. *Developmental biology*
1165 **295**, 178-193, doi:S0012-1606(06)00210-7 [pii] (2006).
1166 71 Shimmi, O., Ralston, A., Blair, S. S. & O'Connor, M. B. The crossveinless gene encodes a new
1167 member of the Twisted gastrulation family of BMP-binding proteins which, with Short
1168 gastrulation, promotes BMP signaling in the crossveins of the Drosophila wing. *Dev Biol* **282**,
1169 70-83, doi:10.1016/j.ydbio.2005.02.029 (2005).
1170 72 Aegerter-Wilmsen, T., Aegerter, C. M., Hafen, E. & Basler, K. Model for the regulation of size
1171 in the wing imaginal disc of Drosophila. *Mechanisms of development* **124**, 318-326, doi:S0925-
1172 4773(06)00220-6 [pii] (2007).
1173 73 Aegerter-Wilmsen, T. *et al.* Integrating force-sensing and signaling pathways in a model for
1174 the regulation of wing imaginal disc size. *Development (Cambridge, England)* **139**, 3221-3231,
1175 doi:10.1242/dev.082800 [doi] (2012).
1176 74 Aegerter-Wilmsen, T. *et al.* Exploring the effects of mechanical feedback on epithelial
1177 topology. *Development (Cambridge, England)* **137**, 499-506, doi:10.1242/dev.041731 [doi]
1178 (2010).

1179 75 Nienhaus, U., Aegeerter-Wilmsen, T. & Aegeerter, C. M. Determination of mechanical stress
1180 distribution in *Drosophila* wing discs using photoelasticity. *Mechanisms of development* **126**,
1181 942-949, doi:10.1016/j.mod.2009.09.002 [doi] (2009).
1182 76 Schluck, T., Nienhaus, U., Aegeerter-Wilmsen, T. & Aegeerter, C. M. Mechanical control of
1183 organ size in the development of the *Drosophila* wing disc. *PLoS one* **8**, e76171,
1184 doi:10.1371/journal.pone.0076171 [doi] (2013).
1185 77 Barrio, L. & Milan, M. Regulation of Anisotropic Tissue Growth by Two Orthogonal Signaling
1186 Centers. *Developmental cell* **52**, 659-672.e653, doi:S1534-5807(20)30049-6 [pii] (2020).
1187 78 Zecca, M. & Struhl, G. A feed-forward circuit linking wingless, fat-dachsous signaling, and
1188 the warts-hippo pathway to *Drosophila* wing growth. *PLoS biology* **8**, e1000386,
1189 doi:10.1371/journal.pbio.1000386 [doi] (2010).
1190 79 Wang, X. & Page-McCaw, A. Wnt6 maintains anterior escort cells as an integral component
1191 of the germline stem cell niche. *Development (Cambridge, England)* **145**, 10.1242/dev.158527,
1192 doi:dev158527 [pii] (2018).
1193 80 Groppe, J. *et al.* Biochemical and biophysical characterization of refolded *Drosophila* DPP, a
1194 homolog of bone morphogenetic proteins 2 and 4. *The Journal of biological chemistry* **273**,
1195 29052-29065, doi:10.1074/jbc.273.44.29052 [doi] (1998).
1196 81 Dreier, B. & Pluckthun, A. Rapid selection of high-affinity binders using ribosome display.
1197 *Methods in molecular biology (Clifton, N.J.)* **805**, 261-286, doi:10.1007/978-1-61779-379-
1198 0_15 [doi] (2012).
1199 82 Pluckthun, A. Ribosome display: a perspective. *Methods in molecular biology (Clifton, N.J.)*
1200 **805**, 3-28, doi:10.1007/978-1-61779-379-0_1 [doi] (2012).
1201 83 Norman, M., Vuilleumier, R., Springhorn, A., Gawlik, J. & Pyrowolakis, G. Pentagone
1202 internalises glycans to fine-tune multiple signalling pathways. *eLife* **5**, 10.7554/eLife.13301,
1203 doi:10.7554/eLife.13301 [doi] (2016).
1204

Extended Data Fig 1. Expression of HA trap using *ptc*-Gal4 did not affect Dpp signaling or patterning and growth of the adult wing in the absence of a HA-tagged protein.

a-b, pMad staining of *ptc*⁺ wing disc (control) (a), and *ptc*⁺*HA trap* disc (b). **c**, Quantification of pMad staining in (a-b). **d**, Quantification of wing pouch size in (a-b). **e-f**, Adult wing of *ptc*⁺ (e), and *ptc*⁺*HA trap* (f).

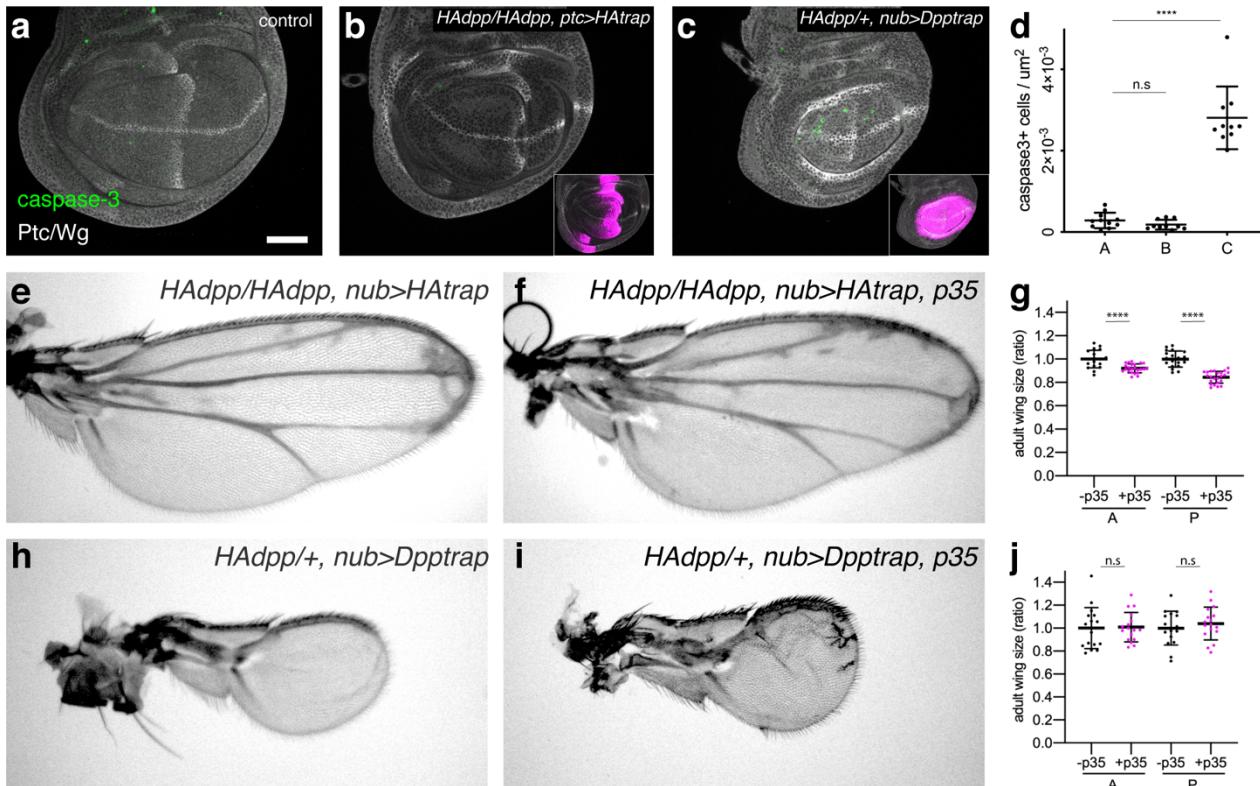
9


10

11 **Extended Data Fig 2. Patterning and growth defects by HA trap and Dpp trap expression**
 12 **using *ci-Gal4***

13 a–j, Patterning and growth defects by HA trap. (a, c, e, g, i) α -pMad (a), α -Brk (c), α -Sal (e), α -Omb (g), α -Ptc/Wg staining and HA trap (mCherry) (i) of control *HA-dpp/HA-dpp, ci>+* (left) and *HA-dpp/HA-dpp, ci>HA trap* (right). (b, d, f, h) Quantification of (a, c, e, g), respectively. (j) Quantification of compartment size of wing pouch expressing HA trap using *ci-Gal4*. k–t, Patterning and growth defects by Dpp trap. (k, m, o, q, s) α -pMad (k), α -Brk (m), α -Sal (o), α -Omb (q), α -Ptc/Wg staining and HA trap (mCherry) (s) of control *HA-dpp/+, ci>+* (left) and *HA-dpp/+, ci>Dpp trap* (right). (l, n, p, r, t) Quantification of (k, m, o, q, s) respectively. t, Quantification of compartment size of wing pouch expressing Dpp trap using *ci-Gal4*. u, Comparison of compartment size of wing pouch upon HA trap and Dpp trap expression using *ci-Gal4* (comparison of Extended Data Fig 2j and Extended Data Fig 2t). Dashed white lines mark the A-P compartment border. Scale bar 50 μ m.

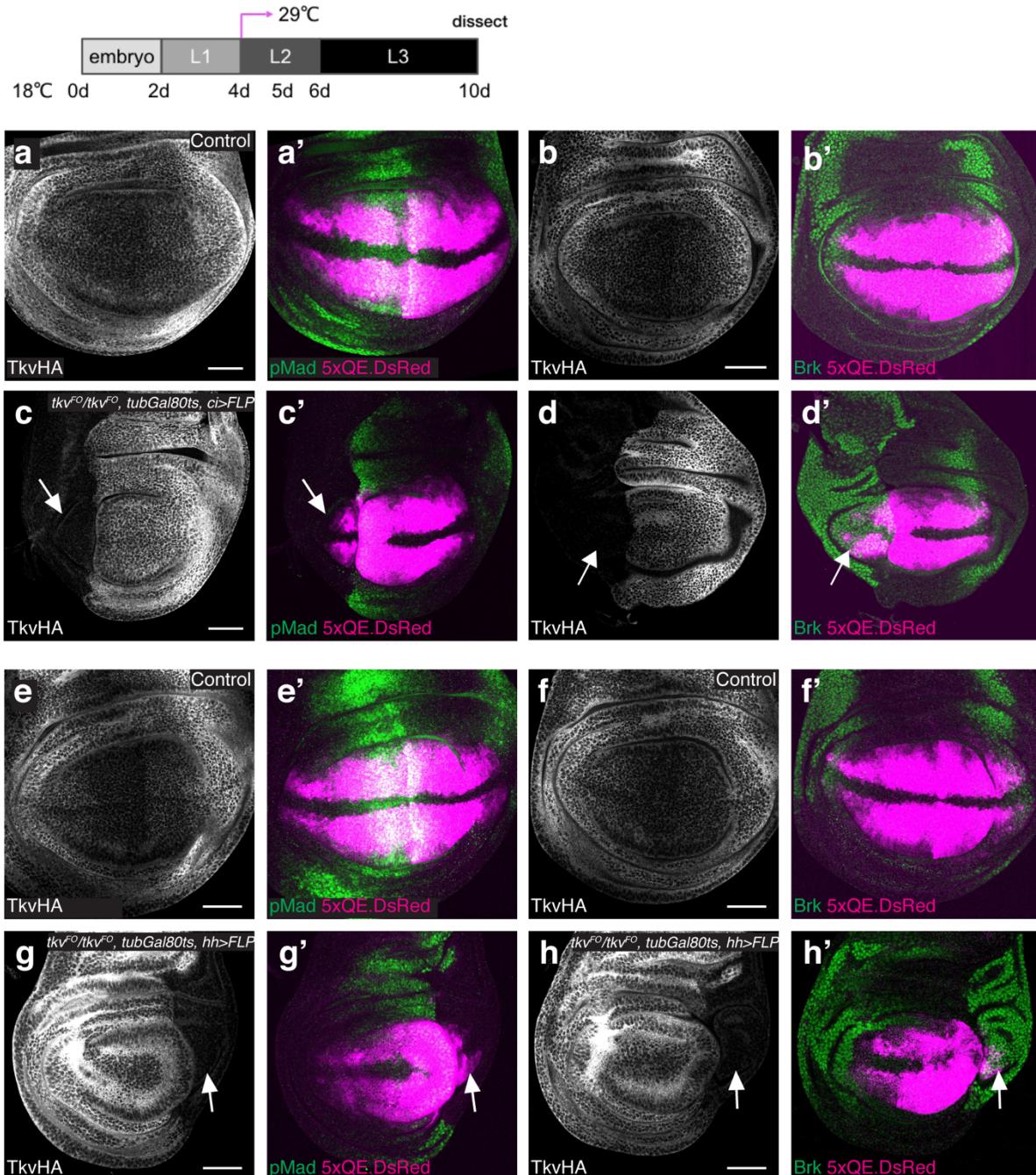
23


24

25
26

27 **Extended Data Fig 3. Patterning and growth defects by concomitant HA trap expression using *ptc*-
28 *Gal4* and *nub-Gal4***

29 **a-b**, Adult wing of control *HA-dpp/HA-dpp, nub, ptc>+* (a), and *HA-dpp/HA-dpp, nub, ptc>HA trap* (b). **c**,
30 Quantification of compartment size of (a) and (b). Note that patterning and growth defects were not enhanced
31 by concomitant HA trap expression using *ptc-Gal4* and *nub-Gal4*.
32

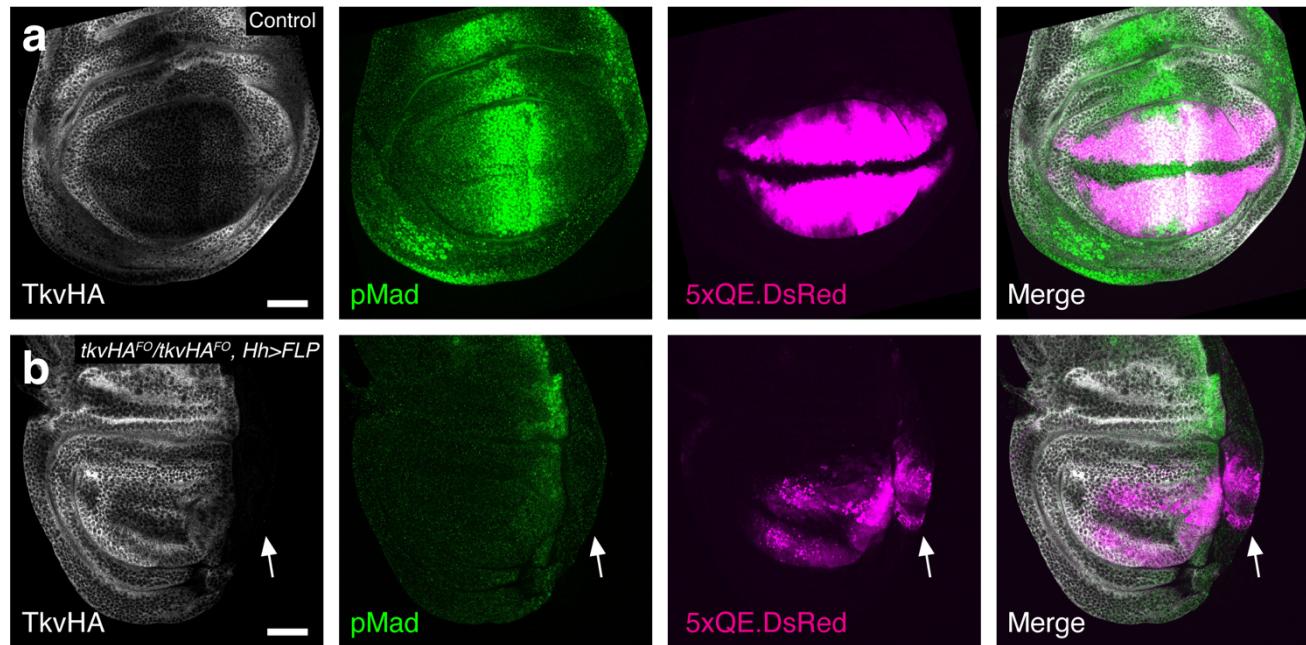


33
34

35 **Extended Data Fig 4. Blocking cell death does not rescue growth defects caused by HA trap or**
36 **Dpp trap**

37 **a-d**, α -Caspase-3 and α -Ptc/Wg staining of control wing disc (a), HA-dpp/HA-dpp, ptc>HA trap disc
38 (b), and HA-dpp/+, nub>Dpp trap disc (c). The insets show HA trap (mCherry) expression. Scale bar
39 50 μm . Note that wing discs expressing HA trap using ptc-Gal4 and wing discs expressing Dpp trap
40 using nub-Gal4 were analyzed since each condition showed the most severe phenotypes among Gal4
41 lines used. (d) Quantification of the number of α -Caspase-3 positive cells in (a-c). e-g, Adult wing of
42 HA-dpp/HA-dpp, nub>HATrap (control) (e) and HA-dpp/HA-dpp, nub>HATrap, p35 (f). g,
43 Quantification of compartment size of (e, f). h-j, Adult wing of HA-Dpp/+, nub>Dpptrap (control)
44 (h) and HA-dpp/+, nub>Dpptrap, p35 (i). j, Quantification of compartment size of (h, i).

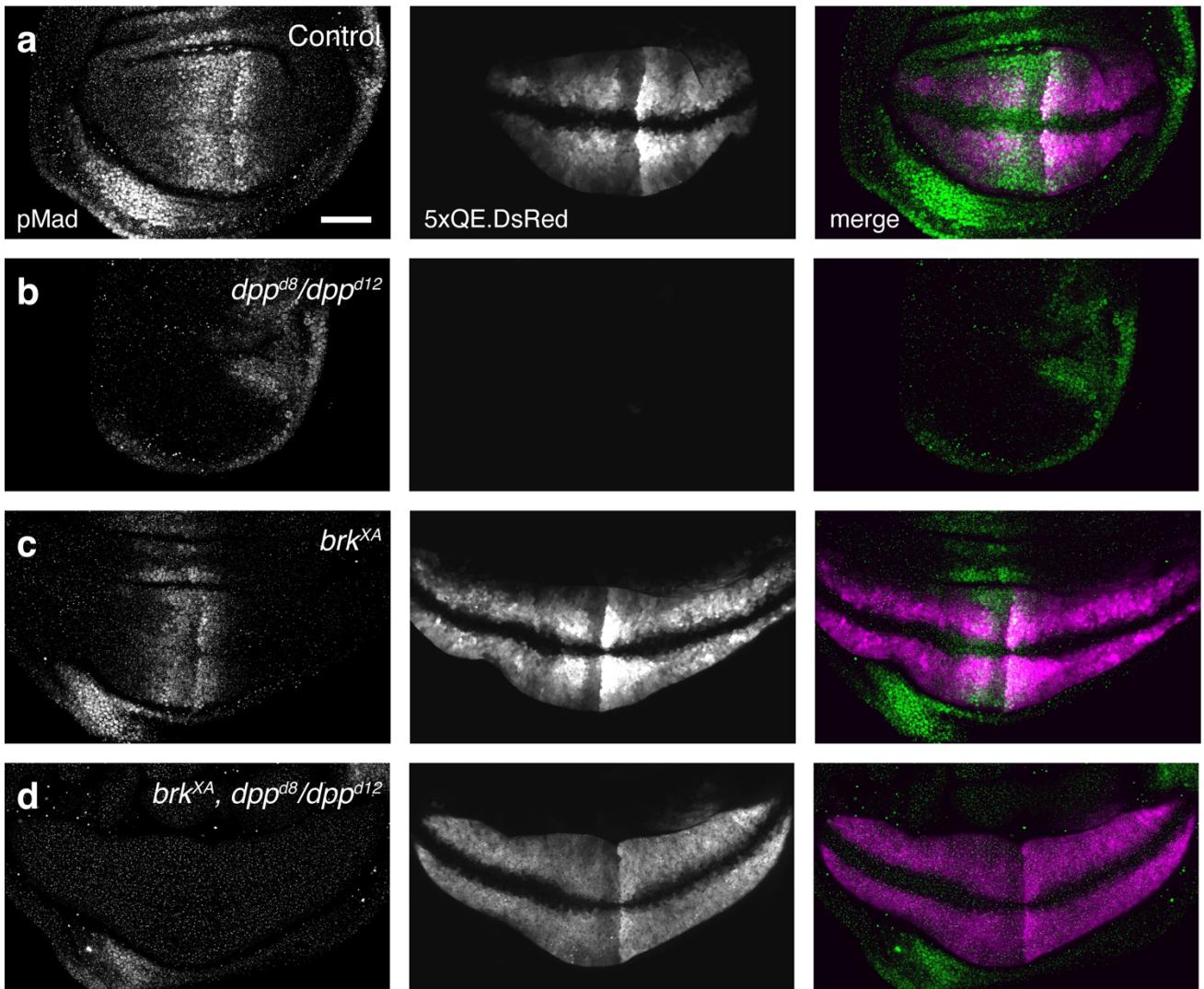
45


46

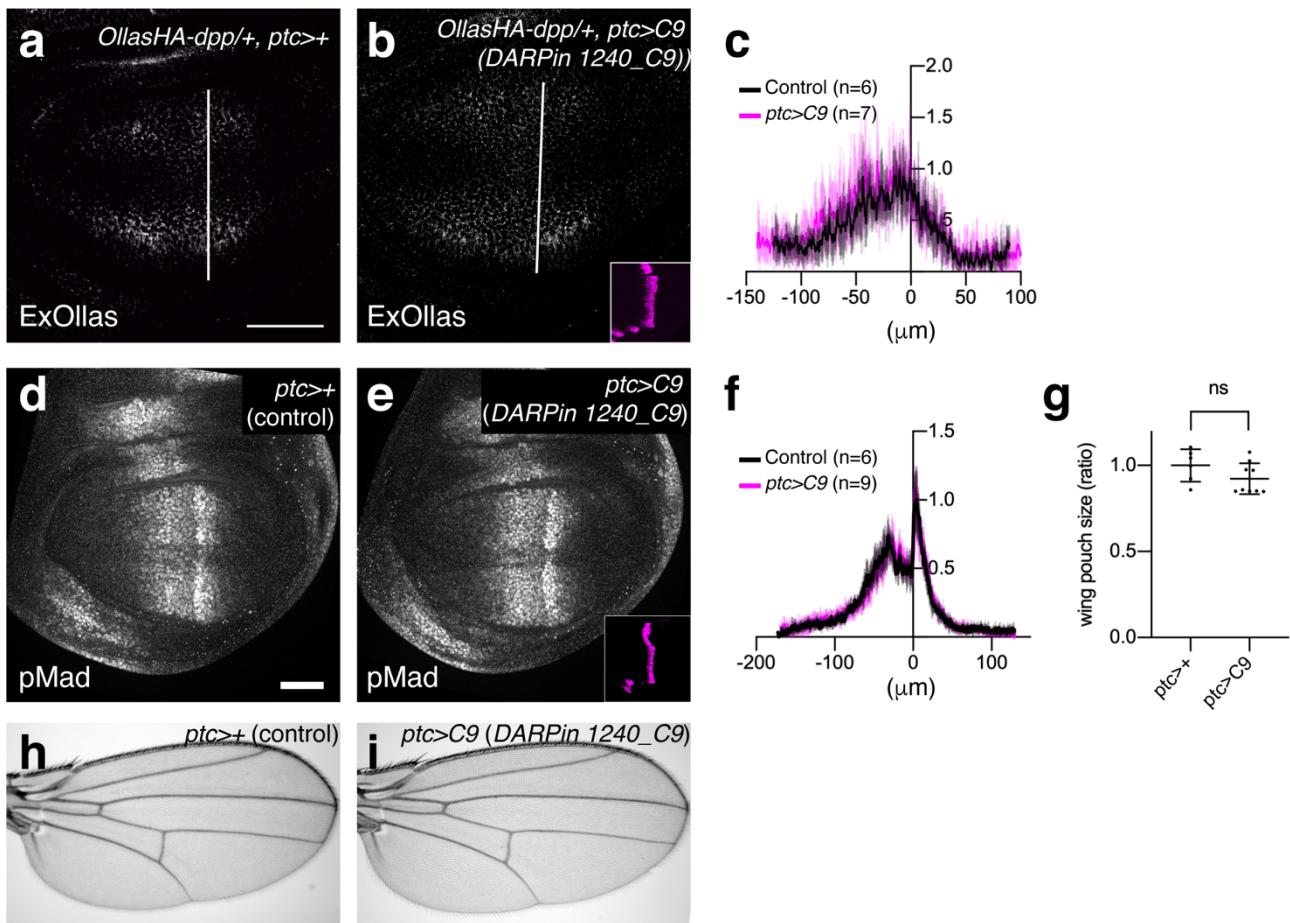
47

48 **Extended Data Fig 5. 5xQE.DsRed remains expressed in each compartment where *tkv* is**

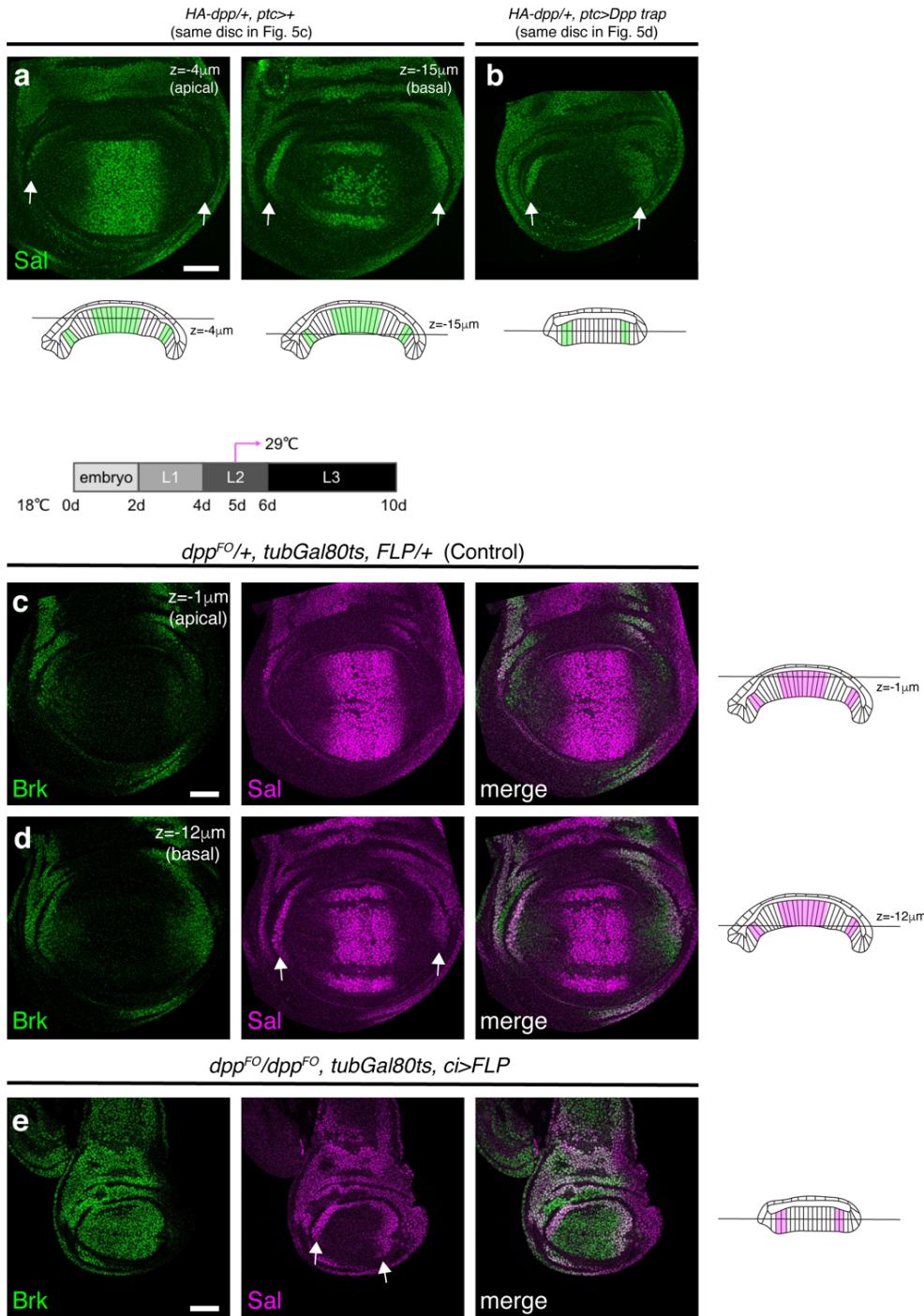
49 genetically removed from the beginning of second instar stage.


50 **a-d**, α -HA (TkvHA^{FO}) staining (**a-d**) and α -Brk staining and 5xQE.DsRed expression (**a'-d'**) of
51 control wing disc (**a, b**) and 5xQE.DsRed/+; tkvHA^{FO} , *ci*-*Gal4*/ tkvHA^{FO} ; *UAS-FLP/tubGal80ts* (**c, d**).
52 **e-h**, α -HA (TkvHA^{FO}) staining (**e-h**) and α -Brk staining and 5xQE.DsRed expression (**e'-h'**) of
53 control wing disc (**e, f**) and 5xQE.DsRed/+; $\text{tkvHA}^{\text{FO}}/\text{tkvHA}^{\text{FO}}$; *UAS-FLP/Hh-Gal4*, *tubGal80ts* (**g, h**).
54 Scale bar 50 μm . Arrows indicate 5xQE.DsRed expression in the compartment where *tkv* is genetically
55 removed.

56
57


58 **Extended Data Fig 6. A part of posterior wing pouch can grow without *tkv***
59 **a-b**, α -HA (TkvHA^{FO}), α -pMad, 5xQE.DsRed, and merge of control wing disc (a), and wing disc
60 where *tkv* is genetically removed from the entire P compartment using *Hh*-Gal4 (b). Upon removal of
61 *tkv* from the P compartment, the 5xQE.DsRed reporter remained expressed in the P compartment
62 (arrow) despite complete loss of pMad signal and severe growth defects in the P compartment. Note
63 that anterior pMad signal was also affected probably because *Hh* target *dpp* expression is affected by
64 the reduced number of *Hh* producing posterior cells.

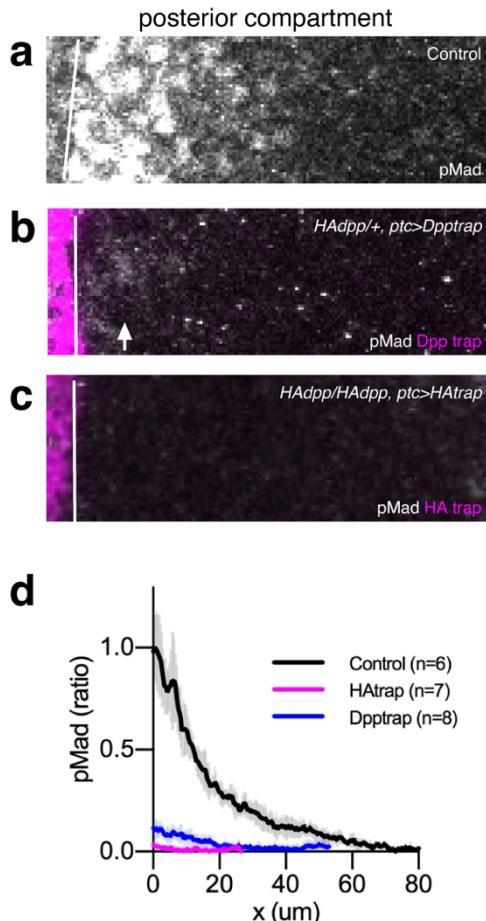
65
66


67
68

69 **Extended Data Fig 7. 5xQE.DsRed reporter expression is largely independent of Dpp signaling**
70 **a-d**, α -pMad, 5xQE.DsRed, and merge of control (a), dpp^{d8}/dpp^{d12} (b), brk^{XA} (c), and $brk^{XA}; dpp^{d8}/dpp^{d12}$ (d) wing discs. Scale bar 50 μ m.
71
72
73

Extended Data Fig 8. Expression of a trap (containing DARPin 1240_C9) using *ptc*-Gal4 did not affect extracellular distribution of Dpp, pMad signaling, or patterning and growth of the adult wing

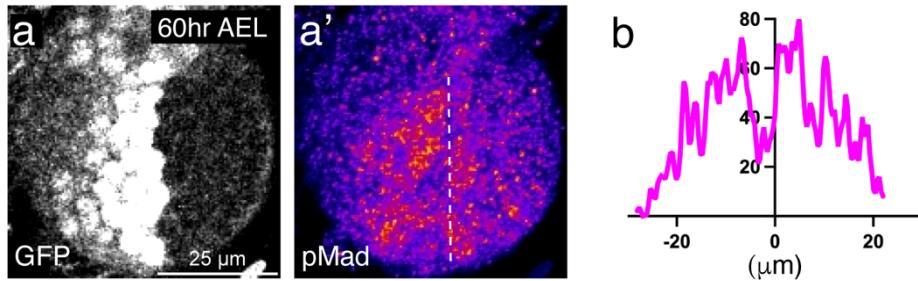
a-b, Extracellular α-Ollas staining (ExOllas) of *Ollas-HA-dpp/+*, *ptc>+* wing disc (control) disc (a), and *Ollas-HA-dpp/+*, *ptc>C9* disc (b). **c**, Quantification of extracellular α-Ollas staining in (a-b). **d-e**, α-pMad of *Ollas-HA-dpp/+*, *ptc>+* wing disc (control) disc (d), and *Ollas-HA-dpp/+*, *ptc>C9* disc (e). **f**, Quantification of α-pMad staining in (d-e). **g**, Quantification of wing pouch size in (d-e). **h-i**, Adult wing of *Ollas-HA-dpp/+*, *ptc>+* wing disc (control) (h), and *Ollas-HA-dpp/+*, *ptc>C9* (f). Scale bar 50 μm.



88
89

90 **Extended Data Fig 9. Lateral Sal expression is not affected by loss of Dpp signaling**

91 **a-b**, α -Sal staining of *HA-dpp^{+/}, ptc^{+/}* disc (control) (a), and *HA-dpp^{+/}, ptc>Dpp trap* disc (b). Each
92 wing disc is from Fig. 5c and Fig. 5d, respectively. In an apical confocal section of control wing disc
93 ($z=-4\mu\text{m}$), the lateral Sal expression is hidden due to the tissue architecture but in a basal confocal
94 section of control wing disc ($z=-15\mu\text{m}$), the lateral Sal expression is easily detected (a). **c-e**, α -Brk, α -
95 Sal, and merge of *dpp^{FO}/+, tubGal80ts, FLP>+* disc (control) (c-d, same wing disc), and *dpp^{FO}/dpp^{FO},*
96 *tubGal80ts, ci>FLP* disc (e). *dpp* was genetically removed from the mid-second instar. The lateral Sal
97 expression is found in a basal confocal section of control wing disc ($z=-12\mu\text{m}$) (c-d). The lateral Sal
98 expression is not significantly upregulated, although Brk is uniformly upregulated upon generic
99 removal of *dpp* from the entire A compartment using *ci*-Gal4 (e). Scale bar 50 μm .


100

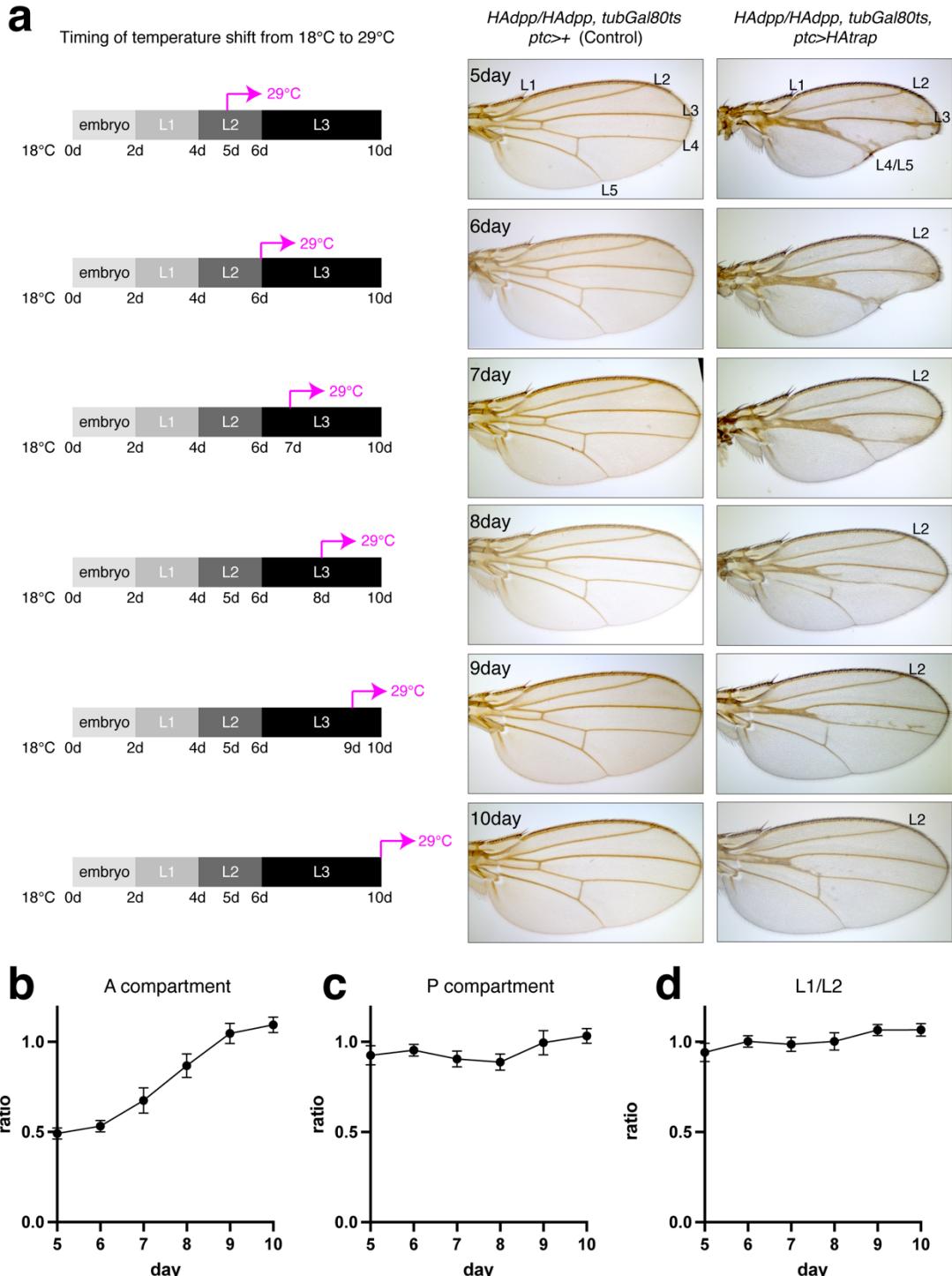
101
102

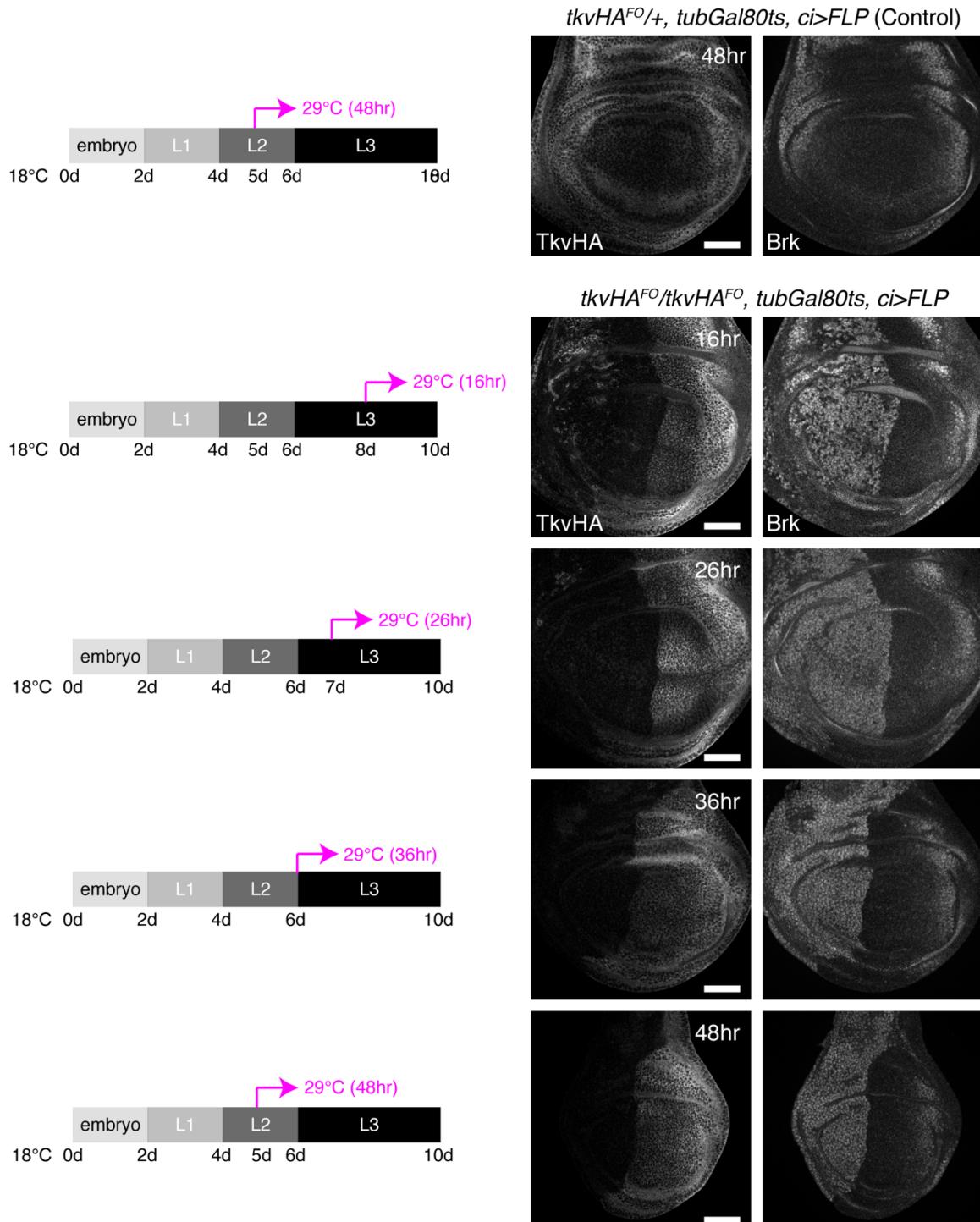
Extended Data Fig. 10. HA trap can trap Dpp more efficiently than Dpp trap

103
104
105
106
107 **a-c**, α -pMad and mCherry (Dpp trap or HA trap) in the P compartment of control wing disc (a), wing disc expressing Dpp trap using *ptc*-Gal4 (b), wing disc expressing HA trap using *ptc*-Gal4 (c). **d**, Quantification of α -pMad of a-c. Arrow indicates pMad signal by leaked Dpp from Dpp trap.

108
109

110


Extended Data Fig. 11. pMad signaling at mid-second instar stage


111 a-a', α -GFP (a) and α -pMad (a') staining of wing disc expressing the *d2GFP* reporter at mid-second
112 instar stage (60hr AEL). Dotted line indicates A-P compartment boundary. b, Quantification of
113 pMad signaling.

114

115

116

