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ABSTRACT 

Systems biology approaches often use inferred networks of gene expression and 

metabolite data to identify regulatory factors and pathways connected with 

phenotypic variance. Generally, study-specific multi-layer “Omics” datasets are used 

to contextualize generic molecular networks.  In this regard separating upstream 

causal mechanisms, downstream biomarkers, and incidental correlations remains a 

significant challenge, yet it is essential for designing mechanistic experiments. To 

address this, we designed a study following a population of 2157 individuals from 89 

isogenic BXD mouse strains across their lifespan to identify molecular interactions 

among genotype, environment, age (GxExA) and metabolic fitness. Each strain was 

separated into two cohorts, one fed low fat (6% cal/fat) and the other high fat (60% 

cal/fat) diets. Tissues were collected for 662 individuals (309 cohorts) diverging 

across age (7, 12, 18, and 24 months), diet, sex, and strain. Transcriptome, 

proteome, and metabolome data were generated for liver. Of these we identified 

linear relations among these molecular data with lifespan for the same genomes of 

mice (Roy et al. 2020), and we defined ~1100 novel protein-coding genes associated 

with longevity. We knocked down the ortholog of Ctsd in C. elegans. The treatment 

reduced longevity both in wildtype and in mutant long-lived strains, thus validating the 

prediction. Next, to assess the molecular impact of GxExA on gene expression, the 

multi-omics data was parsed into metabolic networks where connectivity varied due 

to the independent variables. Differences in edge strengths connecting nodes in 

these molecular networks according to each variable enabled causal inference by 

using stability selection, with roughly 21% of novel gene–pathway connections being 

causally affected by diet and/or age. For instance, Chchd2 is activated by aging and 

drives changes in the proteasome, oxidative phosphorylation, and mitochondrial 

translation transcriptional networks. Together, we have developed a large multi-omics 

resource for studying aging in the liver, and a resource for turning standard 

associations into causal networks.  
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INTRODUCTION 

Aging is a dynamic and multi-faceted process driven over a lifetime of interactions 

among genetic variants, environmental factors, and stochastic processes. Despite its 

complexity, lifespan is a heritable trait, with genotype explaining 30–50% of its 

variation across laboratory mice [1, 2] and ~25% in humans [1]. Age is the most 

prominent "risk factor" for a wide range of diseases, such as metabolic syndrome, 

diabetes, heart disease, neurodegeneration, and most cancers [3, 4]. Cells and 

tissues display common perturbations with increasing age such as a diminished 

capacity for proteostasis [5, 6] and the accumulation of mitochondrial defects [7]. 

These and other common endpoints are recognized, but there is substantial diversity 

in the mechanisms and timelines connecting chronological age (“lifespan”) to 

biological age (“healthspan”) across individuals and tissues [8], let alone across 

organisms. It is now possible to measure biomarkers of biological age, such as by 

DNA methylation signatures [9]. However, it is unclear whether interventions that 

directly affect the dynamics of aging biomarkers, such as methylation, would causally 

improve either lifespan or healthspan [10, 11]. Given the inherent challenges of 

obtaining tissue biopsies longitudinally in human clinical cohorts, replicable but 

genetically diverse model organisms take a unique position in the biomolecular 

analysis of aging. In particular, isogenic cohorts permit “paired” tissue biopsies to be 

collected across multiple times and environments. This allows the creation of 

resources such as the Tabula Muris Senis project [12], which have established a 

baseline resource for how transcript expression changes across tissues and time for 

one particular genome of mouse—C57BL/6. Further research is necessary to test 

how genetic variation and environmental interactions (GxE) influence molecular 

aging, the extent to which relation are congruent between cognate mRNA and 

protein, how changes in molecular levels link to aging phenotypes. Getting at the 

causality of these relations is critical in developing more sophisticated interventions to 

reduce disease burden and enhance health and lifespan. However, causal inference 

requires multiple simultaneous axes of variation and/or longitudinal sample 

acquisition [13, 14], a relative rarity for population-scale studies of gene expression, 

which tend to focus on cross-sectional analysis for single independent variables. 

In this study, we have generated transcriptome, proteome and metabolome 

profiles from liver samples from animals of the large and genetically diverse BXD 
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mouse family across time and over two diets. These data were generated in livers 

from 300 distinct genotype, age, diet, and sex-matched cohorts and combined with 

phenotypes collected across the entire family, including blood biomarkers, organ 

weights, longitudinal body weight, and of greatest importance—lifespan. We used 

this unique dataset to examine the relations between genetics, dietary environments, 

and age (GxExA). We show that the data resource provides a platform for detecting, 

evaluating, and testing how biomolecular processes vary as a function of GxExA, and 

the extent that each tier of molecular data reveals changes in metabolic gene 

networks linked to key outcomes and phenotypes. Moreover, we use the dataset to 

highlight an approach to develop extensive and testable causal models in biomedical 

research. This step is essential to facilitate a shift towards an integrative data 

analysis strategy that takes advantage of increased complexity in study designs, 

advances in measurement technologies, and greater sample sizes emerging in life 

science studies.   

The multiple independent variables segregating in this study (diet, age, genotype) 

combined with molecular profiles allowed us to broadly apply a causal inference 

method we recently developed [15, 16] called stabilized regression. This method 

starts  with supervised learning, using as input a target of interest (e.g. gene 

expression or a phenotype), searches for any measurements which covary with the 

target, then evaluates how these associations change as a function of each 

independent variable. Regression coefficients for each independent variable are 

combined with a stability score that estimates whether the novel target is more likely 

to be upstream of a canonical pathway (i.e. causal), downstream (i.e. a biomarker), 

or ambiguous (i.e. a connection not affected by the secondary independent variable). 

We have performed causal inference analysis for 23 gene sets which are known to 

vary as a function of diet or age, searching for modifier genes outside the canonical 

gene sets which explain differences in gene expression networks as a function of 

genotype, age, and diet. Roughly 20% of the detected novel gene–pathway 

associations were specific to an age or dietary environment, indicating a causal 

relationship between these genes, the target pathway, and an independent variable 

(i.e. age or diet).  

Here we have generated the largest and most extensive set of replicable multi-

omics aging tissue data in a multivariate study design. It provides two key resources 

for the study of aging, metabolism, and complex trait analysis. First, these data were 
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generated in the inbred BXD population, and thus provide an extensible reference for 

the range of effects of GxExA on gene expression, metabolites, and core 

physiological phenotypes such as lifespan and body weight. Second, this multivariate 

study design (and data) demonstrates the capacity for new advances in statistics for 

the study of complex networks: stabilized regression can calculate the causality for 

associations which are impacted by two or more independent causal variables. 

 

RESULTS 

Clinical Analysis of Lifespan as a Function of Genotype and Diet 

In this study, we followed 2157 mice from 89 strains of the BXD family across their 

natural range of lifespan. These individuals were placed in the colony around 5 

months of age, after which cohorts were evenly segregated into two dietary cohorts, 

one fed a standard chow diet (CD; Harlan Teklad 2018, 6% calories from fat) and the 

other a high fat diet (HFD; Harlan 06414, 60% calories from fat). For 60 strains, 

selected pairs of individuals from each cohort (i.e. strain and diet matched) were 

sacrificed at 7, 12, 18, and if possible 24 months of age to collect a biobank 

consisting of 662 individuals with tissues across time, diet, and genotype (Figure 1A, 

Table S1). These individuals belong to 309 distinct cohorts (i.e. matched for age, 

sex, strain, and diet), which are age and diet-balanced (Figure S1A). The liver was 

selected as the primary organ of interest due to its central role in metabolism and the 

wide range of liver-related clinical and molecular phenotypes known to vary across 

the BXDs as a function of diet, sex, and genotype [17, 18]. The liver was pulverized 

in liquid nitrogen and aliquoted for transcriptomic, proteomic, and metabolomic 

preparations which were performed in parallel (Figure 1B).  

Earlier studies have demonstrated that lifespan across the BXD family of mice 

varies by ~3-fold—from 11 to 32 months [19-21]. These differences among strains 

are consistent across studies, even twenty years apart (r = 0.77, Figure S1B [1, 20, 

21]). Likewise, we find significant correlations between our CD lifespans [22] and 

those of the previous studies (r = 0.53 and = 0.69, for the 1988 and 2010 studies, 

respectively, Figure S1B). In this study, we considered 1336 individual female mice 

which lived out their natural lifespans for the calculation of longevity, permitting 

comparisons across diets (Figure 1C) and strain (Figure 1D). 48 strains had 

sufficient data in both diets for this analysis (≥ 6 natural deaths in both dietary 

cohorts; Table S1). Genetic variation across the population explained 73% of 
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variation in mean lifespan, versus 12% by diet and 15% by gene–diet interactions, 

with an unexplained residual of only 0.5% (Figure S1C). Mean strain lifespans, with 

both dietary cohorts mixed together, vary from 314±37 days (mean ± SEM for 

BXD13, n = 20) to 870±39 days (BXD91, n = 14) (Figure 1D, Figure S1D). While 

HFD feeding causes a mean 10% decrease in longevity, the magnitude of decrease 

varied by strain: BXD9's lifespan is unaffected, while BXD65 lives nearly an 

additional year longer on CD (p = 3e-6, Figure S1E). HFD leads to a significant 

decrease in lifespan in 40% of the strains (p ≤ 0.05, Kaplan–Meier curves), and 64% 

have at least a tendency to live shorter on HFD (p ≤ 0.10). These differences 

notwithstanding, the HFD effect is relatively consistent across strains, with the mean 

lifespan of strains between diets correlating at r = 0.65 (Figure S1F). Although diet 

has a relatively modest effect on longevity, it has a substantial impact on weight 

(Figure 1E–F), explaining 40% of variance (versus 23% explained by genotype, 5% 

by genotype-diet interaction, and a 23% unexplained residual, Figure S1C). By 18 

months of age, individuals had an average 78% increase in body mass and 89% of 

strains gained weight significantly upon HFD feeding (p < 0.05, AUC). As with 

lifespans, the effect of HFD on body weight varied depending on genetic background: 

BXD16s gained the least with an average increase of 11%, while BXD100s gained 

an average of 133% (Figure S1G–H).  

In addition to body weight and longevity, we also measured 18 plasma metabolites 

commonly used in clinical settings (e.g. cholesterol, iron, glucose, and alkaline 

phosphatase (ALPL) levels; Table S2). As a function of diet and genotype, we 

observed that HFD reduces the circulating serum level of ALPL, as reported 

previously in the BXDs [18] along with an increase in circulating ALPL in old mice 

(Figure S1I), as has been observed in humans [23]. Strains with the B6 allele of Alpl 

are known to have lower ALPL levels than those with the D2 allele [17], which we 

again observed in typical control conditions (i.e. CD, young) (p = 0.004, Figure 1G). 

However, this effect is not independent of environment: for old females, the effect 

caused by Alpl sequence variants is masked by environmental interactions between 

age and diet (p = 0.54, Figure 1G). These interactions between age, genotype, and 

diet on ALPL are known [17, 18], but this illustrates the essential challenge of causal 

discovery: a single circulating metabolite is affected by genotype (Alpl allelic 

variants), diet, and age. Even with such a large sample size, the p-values of 
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traditional statistical analyses would be non-significant after correction for multiple 

testing without this prior biological knowledge or a more targeted statistical approach.  

 

Multi-Layer Molecular Analysis of the Aging Liver 

Gene expression of mRNA and protein makes up the most comprehensively 

quantifiable estimate of gene activity. We can quantify to what extent these gene 

products are influenced by GxExA and use this understanding to model how gene 

networks respond to differences in age, diet, and genotype, resulting in diverging 

complex clinical phenotypes. While an mRNA and its protein both result from the 

same gene, the expression of these two paired gene products tends to diverge 

unpredictably in response to stimuli, with only ~20-30% of the variance for an 

average protein being explained by variance in its mRNA [24]. Furthermore, studies 

on aging have found that only a small minority of transcripts vary substantially across 

age, e.g. only 0.4% of transcripts varied by ≥ 2-fold in muscle tissue between young 

and old animals as a function of caloric restriction (CR) [25]. Similar effect sizes have 

been seen for proteomics, with as little as 1% of protein assays changing by more 

than 2-fold in mice between 5 and 26 months-of-age [26]. Conversely, comparatively 

sized (i.e. ~2-fold) effect sizes have been observed for overall changes in pathway 

activity across lifespans, e.g. ribosome translation rates drop by as much as 2-fold 

between young and old mice [27]. Differential responses of mRNA and protein 

expression as a function of GxExA for entire pathways led us to search for patterns in 

these relationships, and the consequences this would have on hypothesis generation 

and validation. By comprehensively quantifying these molecular traits in the liver—

mRNA, protein, metabolites—we hypothesized that we could identify key genes and 

molecular networks involved in the etiology of hepatic aging, dietary response, and 

their interactions with genetic variants across the population.  

We selected livers from 347 individuals for multi-omic gene expression analysis, 

representing 300 of the 309 original cohorts according to strain, sex, age, and diet 

(Table S1, sheet “Cohorts_Harvested”). After sample quality control (QC; see 

Methods), this resulted in RNA-seq data from 291 individuals (255 cohorts) and 

proteomics data from 315 individuals (278 cohorts), with 275 individuals overlapping 

in both datasets (240 cohorts). Furthermore, untargeted metabolomics data were 

generated for livers from 624 individuals (298 cohorts), resulting in a total of 274 

individuals (239 cohorts) with full data in all three layers. RNA-seq data were 
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generated with 20 million reads per sample on a HiSeq PE150, with 25394 distinct 

transcripts quantified, of which 20827 are annotated as protein-coding. Proteomics 

data were generated using SWATH-MS on a Sciex 6600 instrument, with 3940 

proteins quantified after QC. The metabolomics data were generated on an Agilent 

6550 instrument, with 464 uniquely-detected metabolites remaining after QC. The 

processed and normalized set of all omics data are available in Table S2 (for raw 

data, see Data Availability). We first considered the 3772 genes which were 

measured at both the mRNA and protein level to get a comparable overview of the 

expression data. These genes include some highly represented ontologies (e.g. 

mitochondria, cytoplasm, and ribosomal proteins) while others are depleted (e.g. 

membrane proteins and secreted proteins) (Table S3, sheet 1). Some functional 

categories are fundamentally absent due to tissue type (e.g. olfactory receptors) or 

selection time (e.g. developmental proteins), while other depletions are due to 

technical reasons, e.g. membrane-bound proteins are difficult to extract, separate, 

and digest in proteomics [28, 29].  

Diet had a significant impact on the expression of 893 transcripts and 1352 

proteins (Figure 2A, adjusted t-test between discrete groups) while 1562 transcripts 

and 998 proteins significantly covaried with age (Figure S2A, correlation coefficient, 

adjusted p-value). An average of 65% of observed variation in transcripts and 

proteins was explained by the three independent variables—genotype (“strain”), diet, 

age—and their GxExA interaction (Figure 2B). While strain had the largest individual 

effect (~28%), the GxExA term accounted for the plurality of explained variance 

(~33%), with a similarly-sized unexplained residual (~35%). Conversely, for 

metabolites only 45% of observed variance was explainable by the independent 

variables, where “strain” had again the strongest average (~16%) but with a reduced 

interaction term (~24%) and much larger residual (~55%) (Figure S2B). For an 

individual gene, its transcript and protein were correspondingly affected by diet or 

age (r = 0.36 and r = 0.33 respectively; Figure 2C), while the effects of diet and age 

on gene expression were independent overall (Figure S2C). We next examined the 

relationships between mRNA and protein levels. Across all samples, mRNA is 

reasonably predictive for the abundance of a protein (r = 0.44, Figure 2D)—that is, 

more abundant mRNAs tend to be the more abundant proteins and vice-versa. 

However, we are generally interested in how genes and pathways respond to 

perturbations (i.e. genotype, diet, or age). The average correlation of all 3772 mRNA 
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with their protein as a function of GxExA was rho = 0.14, with 33% of mRNA–protein 

pairs covarying significantly across all measurements (adj.p < 0.05; Figure 2E). That 

is, knowing the variation in mRNA expression across genotype, diet, and age 

provides only a weak predictor for variance in its corresponding protein. 

Despite this low average correlation, additional data can be used to improve the 

predictive capacity of mRNA for its protein product in some cases. Independent 

variables with a large effect size on a transcript’s expression are far more likely to 

have a corresponding effect on the protein’s expression. More highly variable 

transcripts tended to correlate better with their proteins—71% of the most abundant 

decile of transcripts covary with their protein, versus only 6% of the least-abundant 

decile (Figure 2F, Figure S2D). More abundant transcripts also tended to correlate 

better: only 12% of the least-abundant decile of transcripts covaried with their protein, 

compared to 63% of the most-abundant. While this could indicate higher levels of 

noise in low-abundance transcripts (and proteins, given abundance correlates at r = 

0.44), it is worth noting that abundance and variability are only weakly correlated (rho 

= 0.07, Figure S2F). Thus, measurement knowledge of these variation within an 

omics layer indicates some edge cases where protein and transcript measurements 

can be used as reasonable proxies. For the 60 transcripts that are in the top decile of 

abundance and variability, 87% correlate with their protein significantly and with an 

average rho = 0.51—versus an average 33% at an average rho = 0.14 for an 

average pair across the full set.  

Other factors stemming from prior knowledge can also be used to predict mRNA–

protein covariation. For instance, genes with significant quantitative trait loci (QTLs) 

mapping to their own location—i.e. cis-QTLs—are more likely to have more 

significant transcript–protein relationships (Figure 2F). QTLs indicate a causal impact 

of DNA sequence variants inside (or adjacent to) a gene which cause varying 

transcript expression levels (cis-eQTL) or protein levels (cis-pQTL), and these tend to 

be highly robust and reproducible [30]. The knowledge of which genes have cis-QTLs 

can also provide predictive information across expression type: transcripts that have 

strong cis-eQTLs (logarithm of the odds (LOD) ≥ 4) correlate substantially better with 

their protein (rho ~ 0.27). Other predictive patterns can be observed for particular 

gene categories. For instance, genes that are involved in all complexes annotated by 

CORUM [31] are substantially less likely to have significant mRNA–protein 

covariance (average rho ~ 0.06, Figure 2G). This is despite that complex-member 
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mRNAs tend to be slightly more abundant than average (p = 2e-6) and have no 

difference in their variation (p = 0.08). More importantly, the size of the complex 

impacts the expected correlation: at an adjusted p < 0.05, 34% of the 360 quantified 

genes in dimers have significant mRNA–protein correlations, against only 4% of the 

431 genes in complexes of ≥ 20 subunits (i.e. not more significant than expected by 

chance) (Figure S2G). Together, these findings indicate that the highest-variance 

genes selected through differential gene expression analysis will mostly validate 

across-layer. However, caution must be taken for smaller effects. This is crucial for 

the study of complex traits and GxExA, as we recall that expression variation is 

relatively subdued: < 1% of genes vary by >2-fold as a function of age. That is, 

overlapping mRNA–protein results are helpful for increasing confidence in the 

mechanism, but these will drive a small percentage of the overall connectivity in 

networks. Critical molecular changes may only be evident at the transcriptome or the 

proteome level, and thus the discrepancies must be retained (e.g. [18, 32]). 

Finally, we examined the relationships between gene expression and the varying 

genetics across the BXD population via QTL mapping on all 3772 transcript–protein 

pairs. 216 genes mapped to a significant cis-eQTL or cis-pQTL at LOD ≥ 4 (Figure 

2H; >99.9% true positive rate using discovery cutoffs, Figure S2H). While only 25% 

of cis-QTLs were observed at this threshold for both mRNA and protein levels 

concurrently (i.e. 53 out of 216), an additional 24% were observed at a secondary 

threshold when followed-up with a specific QTL hypothesis (LOD ≥ 2, corresponding 

to a 99.7% true positive rate when used as a validation cutoff, Figure S2H). The 

observation that nearly half of cis-QTLs (49%, i.e. rightmost panel of Figure 2H) are 

unique to transcript or protein levels is in line with previous results (e.g. [33]) and 

further underscores the utility of separately analyzing both types of gene product. We 

next examined the reproducibility of cis-QTLs as a consequence of diet. At discovery 

cutoffs (i.e. LOD ≥ 4), just over half of cis-eQTLs (Figure 2I) and cis-pQTLs (Figure 

S2I) were observed in common across diets, while at validation cutoffs, more than 

90% of cis-QTLs—for both transcripts and proteins, separately—were observed in 

both dietary conditions. However, it is worth noting that some genes only yield cis-

QTLs under certain environmental states, such as Cyp3a11 and Cyp3a16, which 

map to robust cis-pQTLs, but exclusively in HFD, or Akt2 which maps to a robust cis-

pQTL but only in aged animals (Table S3, sheet 2). This indicates that in general the 

interactions of diet with genetic background have a modulating interaction combined 
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with genotype, but not a uniform effect across all strains, a parallel analysis leading to 

the same conclusion as ANCOVA (i.e. Figure 2B). Similar general trends were 

observed when comparing cis-QTLs across age instead of diet; 45% of cis-QTLs 

were found to concordantly affect both transcript and protein within age group, while 

92% of cis-pQTLs were found in common across age groups (Figure S2J). Together, 

these results indicate that while genes’ mRNA and protein products have many 

common responses to GxE variables, they cannot be ad hoc assumed to be proxies 

for one-another. Hypothesis discovery and molecular analyses are thus expected to 

yield unique results when the different measurement layers are used separately, or 

better yet in tandem.  

 

Metabolic Characteristics of Age 

Next, we correlated all gene expression data with the measured age of the animals to 

look for molecular signatures of aging (Table S4). Dietary cohorts were correlated 

separately and we selected the 100 proteins and transcripts from each diet with the 

highest longevity correlation for DAVID analysis [34] (corresponding to p < 5e-4 in 

both CD and HFD, equivalent to rho > ~|0.34|). This combined list of 158 mRNAs and 

176 proteins was mined for enrichment in KEGG pathways and in GO cellular 

compartments. The extracellular exosome was by far the most enriched compartment 

in both mRNA (45% of genes, p = 2e-20) and protein (60% of genes, p = 8e-44), with 

the mitochondria coming in a distant second for both (mRNA: 29% of genes, p = 7e-

12, protein: 23% of genes, p = 7e-7) (Figure 3A). Few functional pathways were 

enriched, with only steroid hormone biosynthesis highlighted with mRNA (p = 1e-8) 

and the lysosome pathway for protein (p = 1e-5). The tremendous enrichment of 

extracellular genes with age highlights recent research into the aging-related decline 

of homeostasis within the extracellular matrix (ECM, or “matrisome”) [35]. We 

quantitatively examined this particular association in more detail using Gene Set 

Enrichment Analysis (GSEA) [36]. We observed that not only are ECM genes 

disproportionately associated with aging, but they are directionally associated, with 

an age-associated increase in ECM transcripts and proteins (Figure 3B). 

Furthermore, research in collagens (a key ECM component) have shown that 

COL1A1 mutant mice have decreased lifespans—showing that a disbalance in the 

ECM can in fact drive aging [37], rather than being a simple bystander. The DAVID 

analysis highlighted additional associations in the BXD liver data between aging and 
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other pathways, such as the lysosome and mitochondria. Loss of proteostasis has 

been recognized as one of the hallmarks of aging, a mechanism with which the 

lysosomes have a direct relationship [38], and mitochondrial function is likewise 

known to decrease with age [39]. 

With these gene candidates and the enriched gene sets in mind, we looked for 

candidate longevity genes which could be tested for causality in C. elegans (Table 

S4). Approximately 52 of the top aging-associated genes (or 17%) had a clear C. 

elegans ortholog according to WormBase [40]. Among these 52, Ctsd was 

highlighted as a gene of interest due to its dual involvement in both the lysosome 

process (i.e. protein degradation) and ECM (it specifically targets ECM proteins, 

[41]). The single Ctsd ortholog, asp-4 (BLAST p = 1e-107, score=386), has not been 

examined for longevity in the C. elegans literature. The Ctsb ortholog W07B8.4 has 

been shown to increase in expression with age and to affect reproductive aging, but 

not lifespan, in both wildtype worms and long-lived daf-2 mutants [42, 43]. Literature 

in mammals has also shown an increase in Ctsd expression with age, although such 

studies have been largely focused on brain tissues [44]. In our study, we observed 

significant increases in Ctsd as a function of age in mRNA and protein data both 

categorically (Figure 3C) and in a quantitative correlation with age (Figure 3D). We 

hypothesized asp-4 may affect longevity, and that like W07B8.4 it could have an 

interactive effect with daf-2, a gene whose knockdown leads to decreased protein 

turnover (around 30%) and large increases in lifespan (more than 50%) [45]. We 

found that RB2035, the asp-4 mutant C. elegans line, has a significant decrease in 

lifespan compared to wildtype when both were on empty vector treatment (L4440), 

with a median lifespan of 17.2 days, versus 23.7 days for control (p = 7e-27, Figure 

3E). Reducing insulin/IGF-1 receptor signalling via adulthood-specific daf-2 treatment 

resulted in the expected doubling of the lifespan (45.1 days, p = 2e-95) in wildtype 

animals. In the RB2035 background, this effect was much reduced, with the same 

median lifespan as controls (23.7 days) although with a far longer lifespan tail, 

resulting in an overall lifespan extension (p = 1e-15). These patterns were again 

confirmed in a second experimental replicate (Figure 3F; details in Table S5). 

Together, these experiments indicate that molecular signatures of aging can be used 

to identify both biomarkers and causal mechanisms that influence longevity. With this 

concept in mind, we set out to establish how we can generate targeted hypotheses 
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about how diet, age, and genetic interactions drive divergences in key metabolic 

pathways by using the large multi-omics dataset. 

 

Using gene-environment-age interactions to understand liver physiology 

In addition to the pathways detected by DAVID of top age-associated correlates, we 

hypothesized that other core metabolic pathways may have modifier genes which are 

GxExA-dependent and which can be used to understand the molecular basis behind 

physiological changes in the population. To identify these modifier genes, and their 

causal relationships with target pathways, some prior hypotheses are necessary to 

limit the possible search space for our recently-developed causal inference system 

[15]. Thus, we selected 23 gene sets from GSEA [36] which literature reports link to 

at least one of our independent study variables of diet, age, or BXD genotype (Table 

S6). A further 2 “false” gene sets were also selected: one of entirely random genes, 

and one of random metabolic genes. Prior hypotheses are detailed in Table S6, 

including e.g. that CYP450 gene family is downregulated in HFD-fed individuals due 

to a reduction in plant-based xenobiotics [46], oxidative phosphorylation (OXPHOS) 

subunits are downregulated in aged individuals [47], and DBA/2J genetic variants 

upregulate supercomplex assembly in the electron transport chain [48]. Additional 

pathways could be selected, but we limited this initial input set to 25 to reduce 

multiple testing. To reach the causal step, we initially focused on two avenues of 

association analyses: (1) identify molecular coexpression networks which are 

significant for our data types (i.e. mRNA, protein) and independent variables (e.g. for 

both dietary cohorts), and (2) examine molecular signatures that diverge across data 

type or independent variable. All pathways had significant levels of genotypically-

induced expression variation as expected due to the selection criteria applied (i.e. 

Figure 2B). 22 pathways had significant protein coexpression networks, and 17 

pathways had significant coexpression at the mRNA level (Table S6).  

Given the discrepancies between mRNA and protein behavior for complexes 

(Figure 2G), we first examined the OXPHOS pathway (called “Respiratory_ 

Electron_ Transport”) as it is composed of large protein complexes, is known to 

decrease as a function of age [49], and has variant complex assembly across the 

BXDs due to genetic variants in Cox7a2l [18]. Gene expression of both OXPHOS 

mRNA and protein corresponded to strong correlation networks (p < 1e-4, Figure 

4A), but no correlation was observed between the mRNA and protein expression 
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networks (p = 0.54, Figure 4B and Figure S3A). Furthermore, two key substructural 

elements of OXPHOS were evident. Uniquely at the mRNA level, the mitochondrially-

encoded OXPHOS subunits (red-highlighted triangles, Figure 4A) were distinct from 

the nuclear-encoded primary cluster. Uniquely at the protein level, each complex of 

OXPHOS formed a distinct subnetwork within the overall structure (Figure S3B), and 

with no difference observed between nuclear and mitochondrially-encoded genes 

(Figure 4A).  

We next examined the cholesterol biosynthesis process, a comparatively linear 

molecular pathway of enzymatic reactions driven by individual genes, rather than 

protein complexes like OXPHOS. Here, the two layers of gene expression were 

strongly correlated both within expression type, and across from mRNA to protein 

(Figure 4C–D). When we added the beta oxidation pathway to this same analysis, 

we observed a strong negative correlation between it and cholesterol biosynthesis for 

both mRNA and protein (Figure 4E), indicative of their complementary underlying 

functions [50]. As for cholesterol, beta oxidation yielded analogous networks for both 

its mRNA and protein (Figure 4F). While gene sets of metabolic pathways that are 

not predominantly protein complexes tend to have significant correlation between 

mRNA and protein (i.e. Figure 2G), this relationship is always weaker than the 

within-layer correlation (e.g. beta oxidation, TCA cycle, Figure S3C). That is, 

transcripts in any pathway are closer to other transcripts in the same pathway than 

they are to their matching proteins. To examine the consequences of divergence 

between mRNA and protein on subsequent hypothesis discovery and deconvolution 

of the causes of variation in phenotypes and gene expression, we examined the 

impact of our independent variables of diet and age on each of the selected 

functional gene networks. 17 gene sets were affected by diet or age at the mRNA 

and/or protein level, a predictably high overall enrichment given that the sets were 

selected with diet and age hypotheses in mind (Figure 4G, Table S6). While age and 

diet had major impact on these pathways, genetic variation across strain still played 

the largest role, which precluded a simple categorization of any given animal into an 

age or diet purely based on PCA of a single gene set (Figure 4H). Furthermore, even 

with a nearly uniform downregulation in some gene sets, e.g. cholesterol biosynthesis 

induced by HFD, the overall network connectivity remained similar (Figure 4I). This 

suggests that the genetic mechanism driving the network’s response to the causal 

study variables (e.g. diet) may lie outside of the canonical gene sets. We thus set out 
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to expand the search space of these gene sets to identify interactors and effectors 

using stability selection.   

  

Data-Driven Approaches to Non-Consensus Networks & Causal Inference 

Functional gene ontologies provide a crucial platform for moving between data-driven 

hypothesis generation and mechanistic molecular studies. However, gene set 

annotations necessitate arbitrary cutoffs for categorization, as metabolic pathways 

are subsets of larger sets of interconnected genetic mechanisms. The majority of the 

genome still remains relatively unexplored in the literature [51], and data-driven 

approaches can identify gene functions and their associated pathways or diseases, 

including by building off of reference gene sets [52]. Confirmation of data-driven 

results depends on painstaking molecular biology validation and systems biology 

approaches that cross-validate associations across different conditions and/or 

independent studies. Meta-analyses tend to be consensus-driven [53], which is 

critical to reduce the perennial issue of false discovery in systems biology, where the 

number of response variables p (e.g. all transcripts measured by RNA-seq) inevitably 

exceeds the measured number of samples n (i.e. p ≫ n). Additionally, many gene 

functions may only be evident in a certain tissue, or under certain experimental 

conditions. Thus, we hypothesized that the variations observed in our canonical 

functional networks may be affected by “unstable” gene partners which are only 

evident in particular study conditions (e.g. aged or HFD-fed individuals). Instability in 

these relationships can be causally driven by our independent variables of diet, age, 

and genotype, which would in turn permit their causal relationship with the canonical 

metabolic pathway. To determine the relationship of unstable genes to our pathways, 

we applied a machine learning technique which we recently developed for gene 

expression studies which compares the effects of multiple independent variables on a 

target network [15]. This method allows for a linear regression-based variable 

selection (similar to lasso regression [54]) and is combined with stability selection [55] 

which uses resampling to control for false discoveries. This significantly reduces false 

discovery compared to correlation networks or hierarchical clustering. Furthermore, 

the method performs a causal analysis, similar to one we developed previously [16], 

to assess if strongly-associated candidate genes mediate the effect of a secondary 

independent (e.g. if strain is the primary independent, diet or age is the secondary). 

Together, the regression analysis should ensure that discovered target genes are 
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proximal to the target pathway, while the stability analysis can indicate whether non-

consensus connections are due to the nodes being upstream, downstream, or inside 

the target network.  

Here, we processed our same 25 gene sets to identify potential novel associating 

genes for all 3772 genes measured at both the mRNA and protein level. The analysis 

first uncovers novel genes which associate (regress) with a target pathway across 

genotypes, such as cholesterol biosynthesis (Figure 5A for protein, Figure S4A for 

mRNA). The stability selection analysis then analyzes how the connectivity between 

the newly-identified genes changes according to a secondary segregating—and 

causal—independent variable such as diet (Figure 5A, left vs. right networks). Novel 

nodes that are similarly positioned in both networks are retained (e.g. Rdh11), but 

causal directionality with the target network cannot be inferred as it does not diverge 

according to the secondary variable (in this case, diet). Genes with diverging 

connectivity, such as Obscn, can have causal association inferred. Both RDH11 and 

OBSCN proteins are significantly and causally downregulated by HFD (Figure 5B), 

but only OBSCN has diverging connectivity. Causal analysis then informs us that 

OBSCN is statistically upstream of the effects of HFD on cholesterol biosynthesis (as 

are other genes in the upper-left quadrant like FABP2, ACAT1, CYP2C29, MAVS, 

CYP2C39, HMGCS2, and ALDH1L1, Figure 5C). That is, an intervention directly 

affecting cholesterol biosynthesis should not impact these proteins, but targeting 

these proteins should have an effect on genes in the cholesterol biosynthesis 

pathway, possibly only under certain conditions (e.g. HFD conditions for OBSCN). In 

this case, no genes were identified that were proximal to and statistically downstream 

of cholesterol biosynthesis (genes in the empty lower-righthand quadrant). 

Causal analysis was done on all 25 pathways (Table S7) according to both diet 

and age and for both mRNA and protein. Candidates were retained as potential "hits" 

if they had either prediction or stability scores ≥ 0.50, which corresponds to a 

permutation-based false discovery of approximately 1 node per gene set and test 

(e.g. Figure S4B, each plot is the overlaid sum of 100 tests using randomized 

labels). At these cutoffs, we detected an average of 23 gene candidate hits per 

mRNA network and 19 per protein network, for a total of 2101 associations belonging 

to 748 distinct genes. Candidate genes appear multiple times, as they can be 

associated with multiple independent gene sets and as a function diet, age, and 

mRNA/protein measurement type. 450 of the 2101 total associations—around 21%—
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had clear directional relationships to their target pathway (prediction or stability score 

of ≥ 0.50 and at least 0.30 units away from the X=Y linear axis). Roughly 44% of hits 

were found consistently whether segregating by diet or age, but this varied 

substantially between pathways. 47% of the 34 novel CYP450-related mRNAs and of 

the 62% of the 21 novel CYP450-related proteins were consistently identified across 

age and diet (Figure 5D & S4D) versus 69% of the 29 novel peroxisome-associated 

mRNAs (Figure S4C). Gene associations identified using mRNA and protein 

diverged more substantially, with no more than 18% of discovered genes consistently 

associated between the gene and target pathway in both mRNA and protein data 

(Table S7). For instance, only 2 novel genes (4%) associated with the CYP450 

pathway as a function of diet consistently in both mRNA and protein (Ugt2b5 and 

Gstm6, Figure 5D & S4D).  

To determine the relevance of these findings, we used DAVID [34] to determine 

general relationships between hit genes and the canonical target pathway. For 

CYP450, 70 distinct genes were picked up across mRNA, protein, and diet/age 

networks, of which 32 were associated with the "oxidoreductase activity" (adj.p = 9e-

25, Figure 5E). Of these target genes, many have clear functional interactions with 

CYP450, such as two genes in glutathione metabolism (Gstm6 and Gstm7) and four 

carboxylesterase genes (e.g. Ces1e). However, at least two dozen candidate genes 

have no clear known connection with CYP450 or any proximal pathway, such as 

Nipsap1, Afmid, or Tmem205 (all hits are detailed in Table S7). Similar patterns were 

seen with other gene sets. For instance, the mitochondrial translation gene set 

(Reactome, M27446) yielded 71 candidate genes. Only one was found in common to 

mRNA and protein searches: Cox4i1 (Figure 5F and Table S7). Among those 71 

candidate genes, 55 were associated to the mitochondria and 13 to the respiratory 

chain (Figure 5G). The remaining 16 candidate genes, including 5 proteasomal 

genes, had no established functional or positional connection to the mitochondria 

(Table S7), such as Mien1, Nedd8, and Tmed1.  

We next considered two potential analytical extensions to stability inference. First, 

the target variable does not have to be a gene set; it can be any variable(s) expected 

to have common causal and response factors. We first examined overall body weight 

as a function of diet (Figure 5H). As gene expression cannot affect diet in this study 

(i.e. taste preferences are not a factor), diet has a large unidirectional and causal 

impact on body weight (p = 1e-32), and diet drives nearly half of all variance in body 



 18

weight (Figure S1C). Thus, we should expect to see body weight-associated genes 

lie far away from the X=Y axis as a function of diet, but not age. Indeed, we observe 

that among the 94 candidate transcripts or proteins related to weight as a function of 

diet, 95% have predictions of causal direction. Conversely, only 41 transcripts or 

proteins were associated with body weight as a function of age between 6 to 24 

months (which has no uniform on body weight, p = 0.32), with 23% yielding causal 

information (Figure S4E, Table S7, sheet “BodyWeight”). The second additional 

possibility that we considered is to use a causal independent variable other than diet 

and age. The genotype axis can be subdivided: every gene has two possible alleles 

(i.e. “B” or “D” from the B-X-D population). Due to the huge size of such a search 

space, we cannot check how every gene network diverges as a consequence of 

every variant allele. As with selecting gene sets of interest using prior knowledge, we 

must select genetic targets of interest on which to separate using starting 

hypotheses. The BXDs have two diverging alleles of Cox7a2l, where a cis-acting 

variant leads to major changes in protein organization of OXPHOS complexes [18]. 

We examined causal associations with the mitochondrial translation (ribosome) gene 

set, which should be generally upstream of OXPHOS, particularly as a result of this 

specific Cox7a2l variant which affects supercomplex stability. As expected, analyses 

discovered many logical interacting genes with the mitochondrial ribosome: 

predominantly OXPHOS subunits and UPRmt regulators (Figure 5I). Moreover, the 

mRNA hits are found near a line where X=Y, whereas protein hits are shifted further 

away. This is expected, as variant alleles of Cox7a2l are known to affect gene 

networks and organization of oxidative phosphorylation complexes—but only at the 

protein level [18]. That is, the Cox7a2l allele only provides causal effects on protein-

level data. If the same input data are used, but strains are instead segregated by 

their allele of a functionally unrelated gene, such as Hmgcs2, gene hits are instead 

near the X=Y axis (Figure S4F). Thus, as with the associations between body weight 

and gene expression, the same input data yield different hit genes and differing 

estimates of causal associations depending on the separating variable—and causal 

information is only yielded in cases where the separating variable (e.g. diet) has an 

impact on the target trait (e.g. body weight).  

 

DISCUSSION 



 19

Aging is a dynamic process driven by a complex longitudinal mixture of genetic 

predestination, environmental effects, stochastic processes, and their interactions 

(GxE). Despite the relatively high heritability of longevity and wealth of knowledge 

about aging, much remains unknown about molecular causality even for well-studied 

aging processes such as mitochondrial stress, telomere shortening, and DNA 

methylation. Greying hair and shortened telomeres have strong, clear associations 

with age, but it remains a challenge to causally determine whether a hypothetical 

telomere-lengthening treatment would improve lifespan any more than does black 

hair dye. Even when causality with lifespan has been shown, such as the effect of CR 

on lifespan, it is essential to deconvolute the effects of genetic background. Indeed, 

in mammals, CR has been causally shown to both shorten and extend lifespan, 

depending on genetic background [56, 57]. These phenotypic effects are highly 

reproducible, indicating that variant molecular mechanisms activate only be evident 

under certain genotypes and environments. Here, we provide a large, novel multi-

omics aging dataset and demonstrate how multivariate experimental designs can be 

combined with causal data analysis strategies to examine longstanding questions in 

how molecular factors vary and cause complex traits as a function of GxExA. 

We measured the transcriptional, proteomic, and metabolomic landscapes of livers 

from 300 different cohorts of the BXD mouse population as a function of age, sex, 

strain, or diet. Genetic differences alone explained ~28% of variation for all molecular 

measurement layers, dwarfing genetically-independent effects of diet and age (< 

5%). However, diet and age do have a substantial effect: interactions between 

genotype, diet, and age explained a further ~34% of variance. Rather, diet and age 

have a striking impact on molecular expression, but they are highly dependent upon 

their interactions with the genome. This suggests that the unitary effect of any single 

factor will progressively diminish with additional environmental variables while 

interaction effects will increase—an inevitable complication for the study of aging in 

natural populations. That is, once a population is diverse enough for its genes and its 

environment, even genes that are strongly modulated by environmental factors (e.g. 

CYP450 genes by specific dietary compounds) will have their effect linked to any one 

single factor gradually diluted. This observation raises a critical converse: studies 

using single, fixed environmental variables will struggle to extrapolate their findings to 

a general population—especially if this is compounded by the presence of additional 

hidden variables as is inevitable for the study of age (as we have seen for CR). In 
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order to demystify the heritable molecular factors driving complex traits, we must 

consider study designs with multiple, simultaneous, independent variables to 

measure, and then decipher, the interactions.  

Over the past decade, it has become increasingly recognized that analyses using 

mRNA or protein measurements often yield substantially different conclusions, even 

when measured at the same time in the same samples. That is, transcripts are not 

merely an intermediate proxy for protein. We observe here that a typical transcript 

and protein respond across complex GxExA stimuli with only moderate concomitance 

(rho ~ 0.14). This general conclusion has numerous exceptions, e.g. factors leading 

to large effect sizes changes at the transcriptional level are far more likely to replicate 

at the protein level. Conversely, genes in complexes are far less likely to have shared 

differentiation in response to a stimulus even if highly variable according to GxExA. 

We have examined our multi-omic dataset to uncover candidate genes related to age 

and uncovered a few novel aging candidates from different pathways. One gene, 

Ctsd, has a clear C. elegans ortholog, asp-4, which we discovered reduces lifespan 

when knocked out in both control worms and in long-lived daf-2 worms. However, 

relatively few candidate genes stood out as varying strongly with age. Indeed, 

numerous aging studies have now shown that only a few genes have large effect 

sizes (e.g. > 2-fold) as a consequence of lifespan [25, 26], and these may not be the 

most important genes in terms of causality. A 2-fold change is relatively “moderate” 

for variant expression in a single gene, but we must consider changes in entire 

pathways: a 2-fold change in expression of the entire OXPHOS pathway is a striking 

impact, as is a 2-fold change in a phenotype such as exercise capacity, insulin 

response, or lifespan. Consequently, we must design studies keeping in mind that 

99% of gene variants will vary by less than 2-fold across age. Fortunately, it is now 

possible to quantify the transcriptome and proteome across hundreds of samples 

with sufficient precision to detect small fold changes [58]. This improves our ability to 

detect smaller effect sizes, but more importantly opens new avenues in biostatistics. 

Differential expression analysis benefits from larger sample sizes, but in practical 

terms the returns quickly diminish for now-traditional bioinformatic approaches like 

volcano plots or GSEA. While an n of 10,000 transcriptomes or proteomics would 

allow tiny effect sizes to be determined “significant”, such effects are of limited 

translational utility. Scientists are obligated to find new statistical rationales for 

generating these larger datasets. This requires fundamentally adapting experimental 
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design, rather than simply upscaling studies focusing on single axes of variation. 

Recent translations of machine learning advances to biology have become popular, 

especially for unsupervised analysis of genome data and imaging, but these 

algorithms tend to require sample sizes that are still orders of magnitude larger than 

are realistic for gene expression studies (e.g. n > 100,000), resulting in a  “p ≫ n” (or 

“big-p, little-n”) problem. Furthermore, such approaches tend to search for consensus 

across input datasets [59]. However, differences in molecular networks as a 

consequence of different independent study variables can also indicate the causality 

behind pathway variance; a true association connecting a node (e.g. a transcript) to 

body weight gain in animals fed HFD may not be evident in animals fed CD. These 

inconsistent, or unstable, edges need to be retained, examined, and ranked, as we 

have shown in this study. Addressing these issues requires substantial knowledge of 

biological priors. Due to the difficulty of collecting tens of thousands of tissue 

samples, let alone processing multi-omics on them, even in the next decade, 

expression studies will remain far below of the sample size necessary for the 

“classical” unsupervised machine learning algorithms. Here, we have applied a 

stability inference algorithm that we recently developed [15] which takes advantages 

of two aspects of this study design. First, the study’s three independent variables (i.e. 

genetics, diet, age) permit stability analysis. That is, correlation networks and 

regression analyses can be performed across the primary axis of genetics, and 

discrepancies in network connectivity as a function of diet or age can be not only 

quantified as by node centrality analysis, but also it can be inferred whether the 

discrepancy is due to the intervention, or if it is a response. Second, the study’s 

acquisition of both mRNA and protein data provides for a second “type” of 

consensus: results that are consistent across mRNA and protein gain improved 

confidence, while results that are inconsistent can be flagged according to certain 

criteria (e.g. presence of target gene in a protein complex). We have used this 

uniquely large and complex aging dataset to identify novel associations between 

molecular pathways, genes, and age and diet, and for a significant fraction of these 

candidates (~21%), their causal associations.  

Altogether, this dataset and method demonstrate how simultaneous applications 

of multiple independent variables can be used for hypothesis discovery. Concurrent 

results from a multivariate study provide increased confidence in consensus. More 

critically, if the segregating variables are known to be causal, associations which are 



 22

condition-dependent can in some cases be statistically shown as upstream or 

downstream, rather than results considered ephemeral and inconsistent, then 

discarded. This requires a study design which is at present fairly unusual and which 

we aim to popularize with this work: designing studies with multiple independent 

variables in a full (or nearly-full) fractional design [60], and with one axis sufficiently 

deep to allow the calculation of significant correlation networks. With these 

developments, we can move hypothesis discovery in data-driven studies from 

correlation networks to causal pathways.   

 

METHODS 

Supplementary figures, tables, code, and further methods are available in the online 

version of the paper.  

 

Mouse Care and Handling 

All animal care was handled according to the NIH's Guidelines for the Care and Use 

of Laboratory Animals and was also approved by the Animal Care and Use 

Committee of the University of Tennessee Health Science Center (UTHSC). 2157 

mice from 89 strains of the BXD family (including parents and both F1s) were 

followed across their lifespan. 159 animals were males and 1998 animals were 

females. Animals were maintained in the UTHSC vivarium in Specific Pathogen-Free 

(SPF) housing throughout the longevity experiment. The housing environment was a 

12-hour day/night cycle in 20–24°C temperature with housing cages of 145 in2 with 

up to 10 animals per cage. Diets were either Harlan Teklad 2018 (CD; 18.6% protein, 

6.2% fat, 75.2% carbohydrates) or Harlan Teklad 06414 (HFD; 18.4% protein, 60.3% 

fat, 21.3% carbohydrates). Water was Memphis city municipal tap water. Food and 

water were ad libitum. All animals were followed from their point of entry into the 

colony (typically around 4 months of age) until death. Animals were checked daily for 

morbidity and were weighed approximately every 2-3 months throughout their lives. 

662 animals were sacrificed at specific ages for tissue collection across cohort (i.e. 

diet, strain, sex, and age) while all other animals lived out their natural lifespans. For 

animals living out their natural lifespan, ~90% died naturally while the remaining 

~10% were euthanized according to AAALAC guidelines and made by an 

independent veterinarian at the UTHSC facility. Euthanized animals were retained for 
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lifespan calculations, with the expectation that they would have otherwise died shortly 

thereafter.  

Of note: on April 28, 2016 all mice were moved from the study's major housing 

facility ("Nash", which was slated for demolition) to a new building ("TSRB"). By this 

point, 94% of sacrificed individuals had been born, raised, and sacrificed in the Nash 

facility, so only 6% of individuals processed for omics analysis were moved, all of 

which were sacrificed between 1 September and 26 October 2016, i.e. after 4 to 5 

months of acclimatization.  

 

Aging Calculations 

Lifespan calculations and significance tests were made using the "survival" package 

on R with the survfit and survdiff functions. 1495 deaths were recorded, of which 

1386 were female. 40 of these female deaths were suppressed prior to lifespan 

calculations for various reasons, e.g. 7 mice died due to flooded cages, 2 animals 

were accidentally entered at far too old an age (>1.5 years), 2 mice were found with 

broken limbs, 6 were sacrificed for an urgent revision for an unrelated paper, 3 mice 

died before the average age of entry into the colony (7 months), and the rest were 

removed by the veterinarian for non-definitively-aging related reasons (e.g. significant 

seizures noted during body weighings). The 662 animals which were sacrificed for 

this study’s tissue collection aim were not used for lifespan calculations.  

 

Cohort Sacrifice Selection 

Animals were selected for tissue harvest with the following aims: 2 animals per strain, 

diet, and age, for a target of 4 age points, i.e. up to a target maximum of 16 sacrificed 

animals per strain (2 replicates * 2 diets * 4 ages). In the final sample collection 

database, an average of 11 animals were available per strain (60 strains, 662 

animals). The target ages were 7, 12, 18, and 24 months of age. Roughly every 3 

months for the duration of the experiment, ~40 animals were selected for sacrifice, 

with approximately 15 animals sacrificed per day over the course of 3 or 4 continuous 

days. Animals were removed from the aging colony the night prior to sacrifice, but 

retained access to food and water. Sacrifices started at approximately 9am with the 

anesthetic Avertin used via intraperitoneal injection of 0.2 mL per 10 g of body 

weight. Animals were perfused with ice cold phosphate-buffered saline. The liver was 

the first organ harvested. The gall bladder was removed, the liver weighed, and then 
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immediately frozen in liquid nitrogen in 20 mL scintillator vials. When reporting the 

number of strains analyzed for each part of this study, we count the two F1s—B6D2 

and D2B6—and the parental strains. Although F1 hybrids are not "inbred strains", 

they can be reliably and reproducibly generated to provide biological replicates, and 

thus can be used as reliably as inbred strains for studies on gene-by-environment 

interactions. C57BL/6J and DBA/2J are counted as “BXD strains” for simplicity, 

although like the F1s, they do not help with QTL in the context of this study. A more 

detailed breakdown of BXD genetics has been published recently [61].  

 

Time Points for Aging Calculations 

While CD and HFD comparisons were binary, comparisons across age were 

somewhat more challenging. For some analyses, linear regression was used for time 

at sacrifice (or measurement) against the target variable. However, for other 

analyses, particularly GSEA, age-QTLs, and causal inference, discrete bins were 

used. For binning animals based on age group, animals were binned by absolute 

age—i.e. not normalized by strain lifespan—with young mice considered those 

sacrificed before 419 days of age, and old mice considered those beyond 431 days 

of age, with a mean±σ of 293±80 vs 615±97, respectively. Note that the bins are 

more distinct than the standard deviations suggest as the age distribution for 

sacrificed individuals is not normal; e.g. only 12 animals were sacrificed between the 

ages of 400 and 500 days; see Table S1 or Figure S1D for more details. 

 

Transcriptomics 

RNA was prepared using TRIzol reagent and cleaned up with RNEasy MinElute kits 

(Qiagen). RNA-seq and RNA integrity (RIN) checks were performed by NovoGene on 

a HiSeq PE150. Samples with RIN ≥ 6.0 were retained for RNA-seq. All samples 

were run with 20 million reads. Normalization was performed by ComBat. All RNA-

seq data were scaled by adding 1 to the normalized counts and then taking the log2. 

127 genes were removed from paired analysis due to the measurements being > 

50% “0” at the mRNA level. Transcripts with more than half zeroes were not 

considered for mRNA–protein  correlation due to this high number of matching values 

which throw off Spearman correlations. A further 38 genes had up to 100 counts of 0 

which have lower than average (rho = 0.05) correlation with their transcript. Of these 

163 genes, twelve of these genes were significantly affected by diet, and one by age, 
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while all genes had significantly lower than average correlation with their protein level 

(rho = 0.05). Good data could potentially be contained for these transcripts, but given 

the preponderance of noise, we have discounted all mRNAs with more than half read 

counts of zero. All measurements, including those with high “0” counts, are included 

in Table S2. Note that for multi-omics analyses we only used the 3772 genes with 

overlapping mRNA and protein data, but all RNA-seq data for all transcripts is 

included in Table S2. 

 

Proteomics 

A detailed step-by-step protocol has been published for the sample [62]. In brief: liver 

samples were first entirely pulverized by mortar and pestle in liquid nitrogen, proteins 

were then extracted from ~20-50 mg of powered liver in 750 µL of RIPA-M buffer. 

The remaining cell pellet was then lysed fully in 8M of urea. The fractions were 

combined and 100 µg of each sample precipitated with acetone overnight at -20°C. 

The precipitated sample was resuspended in urea, reduced with dithiothreitol, and 

alkylated with iodoacetamide. Samples were diluted to 1.5M urea and then digested 

overnight (22 hours) using modified porcine trypsin. Peptides were cleaned C18 

MACROSpin plates (Nest Group). Roughly 1.5 µg of each peptide sample was 

loaded onto a PicoFrit emitter on an Eksigent LC system coupled to an AB Sciex 

6600 TripleTOF mass spectrometer and acquired in SWATH data-independent 

acquisition mode (DIA) [63] with 100 variable windows in a 60 minute gradient. A 

recent review also provides more detail on the full DIA pipeline [64]. In brief, the 

resulting .wiff files were converted to mzXML using Proteowizard 3.0.5533 before 

being run through the OpenSWATH pipeline v2.4.0 [65]. The library used was 

merged from our prior mouse library [28] together with part of the PanHuman library 

[66]. All peptides in the PanHuman library were BLASTed against the canonical 

mouse proteome from UniProt, version downloaded July 2017. Peptides which were 

found to be proteotypic in mouse, and not already extant in the mouse library, were 

then merged with the mouse library. Note that all runs for both human and mouse 

library generation were acquired with on the same machine (a TripleTOF 5600+) with 

the same settings (detailed in [66]). This merged "PanMouse" library contains 

103,644 proteotypic peptides corresponding to 8219 unique proteins. This library was 

used to search the mzXML files for the OpenSWATH pipeline using the 

msproteomicstools package available on GitHub. Scoring and filtering were done by 
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PyProphet at 1% peptide FDR, followed by cross-run alignment with TRIC using a 

max retention time difference of 60 seconds and a target 1% FDR, 29935 proteotypic 

peptides were identified which corresponding to 3694 unique proteins, were 

quantified across the 375 retained MS injections. Proteome data were segregated 

into batches based on noted changes during mass spectrometry (LC column change, 

MS tuning and cleaning). Within batch, samples were normalized by LOESS followed 

by across-batch normalization with ComBat, a synthetic approach based off of similar 

concerns with other large omics datasets. Due to the unexpected complexity of this 

normalization, we turned this approach and sample QC into a separate publication 

[67].  

 

Metabolomics 

Pre-homogenized liver samples of were precisely weighed (to a target of ~20 mg) 

and then extracted in ~7 mL of a solution of 40% acetonitrile, 40% methanol, and 

20% water, incubated for 24 hours at -20°C. The suspension was then centrifuged, 

the supernatant transferred to a new tube, and then lyophilized. Dried samples were 

kept at -80°C until ready to be injected on the mass spectrometer, when they were 

resuspended in water according to the weight of the input tissue sample to a target of 

5 mg/mL. The same extraction of all 621 samples was done in duplicate, starting 

from the same pre-homogenized liver sample, approximately one month apart, which 

is detailed by the “Run1” and “Run2” suffix in the data (Table S2). Untargeted 

metabolomics analysis was performed on an Agilent 6550 QTOF instrument in 

negative mode at 4 GHz, for a mass range of 50–1000 Da using a previously-

described protocol [68]. All samples were injected in technical duplicates in both 

experiments, and nearly all samples were injected in biological duplicates, i.e. each 

liver sample was injected 4 times to allow measurement stability to be calculated, so 

most cohorts had 8 measurements (2 full-process replicates * 2 technical replicates * 

2 biological replicates (usually) per age-strain-diet cohort). An average of 19,000 

features were detected in the runs, of which about 400 could be tentatively annotated 

as deprotonated metabolites listed in the Human Metabolome Database. Both 

experimental runs were run approximately one month apart, with all samples in each 

run being extracted and run in technical duplicate the same sequence both times.  

 

Hypothesis Discovery, Causal Inference, and Machine Learning Methods 
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For our network expansion analysis we employed a novel regression and variable 

selection technique [15], which is optimized for gene expression studies and explicitly 

allows incorporating causal reasoning similar to a method we recently published [16]. 

Our preliminary goal was to determine which genes are functionally related to a given 

pathway. The secondary goal was to determine if the gene was varying as a function 

of a secondary independent variable (e.g. diet, age), and if it was, then the causal 

directionality of this association with the target pathway and its sign (positive or 

negative, i.e. promotive or inhibitory). To this end, we compute the average 

expression level of the given pathway and use it as a response variable. Then, we 

randomly sample subsets of the pre-selected predictors and regress each subset 

onto the response resulting in a single regression coefficient. The individual 

regression coefficients are finally combined by a weighted average, where the 

weights are selected to ensure both good predictive performance and stability across 

the independent variable (diet, age, or a Mendelian QTL). By assessing the predictive 

performance of these regressions, we then rank the genes by their functional relation 

to the response (large values indicate a strong functional relation, small values a 

weak functional relation). For Mendelian separation using COX7A2L and HMGCS2, 

the 20 heterozygous F1 animals were removed. The selection procedure also uses 

stability selection [55] in order to control false discoveries and improve reliability. 

Furthermore, to empirically benchmark the false discovery rate, we perform a 

permutation based analysis as follows (Figure S4B): We apply the entire selection 

procedure 100 times by permuting the observations of the response variable in each 

iteration and keeping everything else fixed (and hence preserving the correlation 

structure between the predictors). This analysis was performed for all the pathways 

we considered. Note that the gene set “Random75” finds significant correlations—this 

is expected as there is 75 random genes are using their true expression data, thus 

true correlations are expected, just they are not expected to be related to any specific 

pathway.  

 

C. elegans Testing 

For selecting orthologs, each of the top 100 genes from CD and HFD for mRNA and 

protein—a total of 300 unique genes as roughly 25% of the top 100 were picked up in 

at least two conditions—was checked in WormBase for orthologs. Genes with a 

single annotated ortholog were considered for further analysis. Genes such as 
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Cyp4f18 matched to dozens of orthologs—essentially the entire family of cytochrome 

P450 genes—and were thus considered too non-specific for reasonable cross-

species analysis, but could potentially be of further use for checking the associations 

between pathways and aging. To test Ctsd, C. elegans populations were maintained 

on NGM plates seeded with Escherichia coli bacteria at room temperature, with the 

exception that temperature-sensitive mutants were incubated at 15°C. For this work 

the C. elegans strains wildtype N2 and RB2035 asp-4(ok2693) were used as well as 

the RNAi clones L4440 (empty vector control) and daf-2 (RNAi, Vidal library [69]). 

Animals were age-synchronized using population lysis [70] and then transferred at 

the late L4 stage to plates seeded with the selected RNAi clone and containing 50 

μM 5-Fluoro-2'deoxyuridine (FUDR). Depending on the genotype, animals were 

placed at 15°C (N2 and RB2035) to complete their development. After the L4 stage 

all animals were shifted permanently to 20°C and their survival was quantified. 

Manual survival scoring (by hand) was conducted as described previously [71]. 

Briefly, individuals which did not move in response to being prodded were classified 

as dead. Automated lifespan measurements were conducted using air-cooled Epson 

V800 flatbed scanners at scanning intervals of 30 minutes as described [72]. For the 

automated measurements the animals were transferred to fresh plates (BD Falcon 

Petri Dishes, 50x9mm) at day four of adulthood to facilitate the image detection 

process by removing as many eggs as possible. The survival data was analyzed 

using R in combination with the survival (v3.1-12) and survminer (v0.3.1) libraries. In 

the analysis, all animals which were observed to burrow, undergo bagging, explode 

or have escaped the agar surface were censored, and the L4 stage was set as the 

timepoint zero. The survival function was estimated utilizing the product-limit (Kaplan-

Meier) approach and the null hypothesis was tested using the log-rank (Mantel-Cox) 

method. 

 

Miscellaneous Bioinformatics and Statistical Tests 

All functions should work in R 4.0.4. QTL calculations were performed with r/QTL2 

v0.22-11 (2020-07-09) [73] using a linear mixed model and a kinship matrix 

generated by the “leave one chromosome out” (loco) method. Genotypes used were 

from the 2019 build of the BXD genotypes from GeneNetwork [74]. Transcript QTLs 

are referred to as eQTLs ("expression” QTLs). Protein QTLs are referred to as 

pQTLs, and metabolite QTLs as mQTLs. The blood serum measurements are 
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considered as clinical phenotypes rather than as a part of metabolomics or 

proteomics due partly for historical categorization standards, and also due to 

differences in the measurement technologies and (in this particular study) source 

tissue. QTLs were declared as cis if their peak LOD region was within ±10 MB of the 

gene location. All cis-QTLs are included in a supplemental data file as their 

generation is computationally intensive (Table S3, sheet 2). The code for generating 

these QTLs is also included (attached code files, filename 

b_Figure2_HelperFile_QTLs.r). 

Distributions (e.g. Figure 4B) were compared using a chi-squared test or 

Kalmogorov–Smirnov, as indicated. The R package “corrgram” v1.13 was used for 

generating correlation matrices. Two group comparisons were made by Welch's t-

test. Multiple group comparisons were made by ANOVA with Tukey post-hoc tests. 

The contribution of each independent variable to trait expression was calculated 

using ANCOVA. Correlations were performed using Pearson (r) or Spearman (rho), 

as indicated. To determine community structure in correlation networks, the package 

ggbiplot v0.55 was used. Adjusted p-values were calculated using the Benjamini-

Hochberg method of the p.adjust function in the R library stats (v4.0.4). Spearman 

correlation networks were plotted using the imsbInfer v0.2.4 library in R (itself based 

off of the R library called iGraph). Lifespan calculations for mice and significance 

tests were made using the "survival" v3.2-7 package on R with the survfit and survdiff 

functions. Lifespan calculations for C. elegans are detailed in the C. elegans section. 

The output longevity data were retained for strains with ≥ 6 recorded lifespans within 

a cohort. To compare lifespan across diet, a minimum of 12 natural deaths were thus 

necessary. Outliers were removed with the R library “outliers” (v0.14) using the 

“rm.outlier” function.  

Reference gene sets for the functional analyses in Figures 3–5 were taken from 

the "C2" curated gene set lists on the GSEA website using version 4.0.0. The exact 

reference names of all 25 gene sets are in Table S6. Note that this analysis only 

considers the 3772 genes with both mRNA and protein data. Canonical functional 

gene assignments were curated either from GSEA (for pathway membership) or for 

CORUM (for complex membership). To determine the significance of correlation 

networks, random networks were permuted using the same number of nodes as in 

the target network, but randomly selected from amongst the 3772 other proteins and 

mRNA. For networks with multiple categories of gene sets, the target and random 
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networks were computed both on a per-set basis as well as the total set and the 

interaction between the sets. 10,000 random networks were permuted for each 

comparison, and networks were assigned p-values based on this permutation, 

according to how many random gene sets had at least as many edges as the target 

set at the given cutoff, or assigned p < 0.0001 if no random network had as many 

edges as the input network at the cutoff. All figures were generated either in R and 

refined in Adobe Illustrator, or were hand-drawn entirely in Adobe Illustrator (e.g. 

Figure 1B, Figure 3A). 

 

SUPPLEMENTARY INFORMATION & DATA AVAILABILITY 

Supplementary figures and tables are included. All code required for generating the 

figures, along with some helper files, are also included. Raw mass spectrometry data 

for metabolomics are available on the MassIVE resource under accession ID 

MSV000081441 with reviewer access ftp://MSV000081441@massive.ucsd.edu 

(login is "Guest" with no password). Raw mass spectrometry data for proteomics are 

available on ProteomeXchange [75] under accession ID PXD009160 with reviewer 

login reviewer08961@ebi.ac.uk and password MuFdMZtp. The full transcriptomics 

data are available on GeneNetwork.org under Species: mouse, Group: BXD NIA 

Longevity Study, Type: Liver mRNA, and Dataset: UTHSC BXD Harvested Liver 

RNA-Seq. All processed data, for the omics layers and the phenotypes, are available 

in a “ready to use” Table S2, which is the version of the data that was used to 

generate the figures.  
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Figure 1. Overview of Aging Colony 

(A) Study overview. Animals entered the aging program at around 151 days of age 

and were set into dietary cohorts. 662 individuals were selected for sacrifice at 7, 12, 

18, and/or 24 months of age for sacrifice. (B) Workflow of the lifespan and tissue 

collection cohorts. The 662 individuals are from 309 cohorts according to diet, age, 

sex, and strain. 343 individuals were selected for omics profiling, corresponding to 

300 distinct cohorts out of the 309 originally acquired. Of the 1495 natural deaths, 

1336 were used for lifespan calculations (see Methods). (C) Kaplan–Meier survival 

curves for CD and HFD females, irrespective of strain. (D) Kaplan–Meier survival 

curves for all 60 BXD strains with at least 8 natural deaths in the female cohorts, 

irrespective of diet. (E) Weight-over-time for 212 CD (left) and 90 HFD (right) 

individuals which reached ≥ 800 days of age. All animals were weighed bimonthly. 

(F) Violin plots of body weight at 18±1.8 months of age in each diet. (G) ALPL serum 

metabolite levels across BXD strains as a function of several cofactors. The 

canonical allelic effect is clear for young, CD cohorts but it is masked by GxExA in 

other cohorts.  

 

Figure 2. Multi-omics Overview of mRNA, Protein, and Metabolite Liver 
Expression  

(A) Volcano plot for all 3772 transcripts and proteins measured in both expression 

types. 22% of transcripts and 35% of proteins were significantly affected by diet. (B) 

Variation explained (ANCOVA) as a function of the independent variables, their 

interactions, and the residual. The “interact” term is the sum of all interactions 

between diet*age, diet*strain, age*strain, age*diet, and age*diet*strain. (C) 

Correlation density plot of the relationship between the effects of diet (left) and age 

(right) on genes’ product mRNAs and proteins. Brighter colors represent higher 

density data. This is the data from the X-axes in the Volcano plots in (A); transcripts 

that are affected strongly by diet or age tend to be proteins which are significantly 

affected. (D) Correlation of average mRNA and protein levels across all samples and 

all genes, i.e. lowly-expressed transcripts tend to be lowly-expressed proteins and 

vice-versa. (E) Density plot showing ~33% of transcripts significantly covary with their 

protein (i.e. area under the blue curve but above the black curve of randomized 

data). (F) (Left) Density plot of mRNA–protein correlations as a function of the mRNA 

expression variance; (right) density plot showing correlation as a function of cis-QTL 

presence; (center-right) as a function of diet (G) Density plot of correlation as a 
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function of the gene existing in a complex. Reported p-values are for the 

comparisons marked with an asterisk (*). (H) (Left) Genes with highly-significant cis-

QTLs (LOD ≥ 4) in CD cohorts at the mRNA and protein level. (Middle) Slopegraph 

showing the change in LOD score between mRNA and protein; (Right) Venn diagram 

showing ~50% cis-QTL overlap at more permissive cutoffs (LOD ≥ 4 in discovery 

cohort, ≥ 2 in validation cohort). (I) (Left) Across diet at the mRNA level, roughly half 

of cis-eQTLs are found congruently. (Middle) Slopegraph showing the change in LOD 

score across diet. (Right) Venn diagram accounting for less strict alignment cutoffs, 

showing ≥ 90% of cis-eQTLs align across diet.  

 

Figure 3. Aging Candidate Discovery & C. elegans 

(A) DAVID analysis of the top transcripts and proteins which correlate with the 

measured age of the mouse when the tissue was taken. (B) GSEA for the matrisome 

gene set (a superset of ECM genes) showing a large enrichment with age for both 

mRNA and protein. (C) Ctsd gene expression as a function of age, using a bimodal 

cutoff. Note that the age groups are relatively discrete. (D) Correlation plots of age 

versus Ctsd and CTSD, showing a significant correlation with age regardless of 

dietary conditions. (E) Longevity analysis of RB2035, a mutant C. elegans with the 

removal of the Ctsd homolog asp-4, compared to wildtype N2 C. elegans. (F) Repeat 

of experiment in panel E. 

 

Figure 4. Functional Gene Networks of Transcripts and Their Proteins  

(A) OXPHOS Spearman correlation networks for the 75 genes with both mRNA (left) 

and protein (right) measurements. Node color represents to which component of 

OXPHOS the gene belongs. Red-highlighted nodes are mitochondrially-encoded. 

NDUFA4 is a Complex IV member, despite its gene symbol [76]. (B) Spearman 

correlation density plot corresponding to (A), now showing all 5550 correlations for 

mRNA and protein networks (i.e. 75^2 minus identity) and “Across” for the 11000 

correlations in the mRNA–protein correlation network (i.e. all possible connections 

between nodes where one node is an mRNA and the other is a protein). (C) 

Spearman correlation network for both mRNA (blue) and protein (red) in the 

cholesterol biosynthesis network. (D) Density plot corresponding to panel C. Of all 

1088 possible edges (272 within mRNA and within protein, and 544 across), 409 are 

significant at p < 0.0001 (i.e. the edges drawn in panel C). (E) Spearman correlation 
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network for the cholesterol biosynthesis and beta oxidation gene networks for mRNA 

(left) and protein (right) drawn together. (F) Spearman correlation density plot for the 

above graphs. “Across” means within mRNA and protein, but across beta oxidation to 

cholesterol nodes. (G) GSEA enrichment for the OXPHOS and cholesterol gene sets 

as a function of age for mRNA and protein levels. (H) PCA plot of the first two 

principal components of the OXPHOS and cholesterol protein pathways as a function 

of age and diet, respectively, visualizing the moderate, significant, separation by 

these two variables. (I) Correlation density plot of OXPHOS versus age and 

cholesterol versus diet. 

 

Figure 5. Network Expansion and Functional Gene Discovery 

(A) Spearman correlation plot of the core cholesterol biosynthesis network (17 red 

nodes) along with 37 candidates selected by regression analysis in protein data, 

performed separately for CD (left) and HFD (right) cohorts (dark red nodes). (B) Dot 

plot of RDH11 and OBSCN as a function of diet; note that although both have large 

diet effects, RDH11 is centrally connected in both dietary networks, but OBSCN is 

peripheral in CD. (C) Prediction–Stability plot for the cholesterol biosynthesis 

pathway in mRNA and protein as a function of diet. (D) Prediction–Stability plot for 

the CYP450 pathway showing transcript hits as a function of diet or age. (E) DAVID 

enrichment analysis of the top candidate genes found through stability analysis of the 

CYP450 pathway. (E) Prediction–Stability plot for the mitochondrial ribosomal 

pathway for mRNA and protein as a function of age. (F) Prediction–Stability plot for 

the mitochondrial translation pathway for mRNA and protein as a function of age. (G) 

DAVID enrichment analysis of the top candidate genes found through stability 

analysis of the mitochondrial ribosome pathway, showing that most hits are already 

known to be mitochondrially localized. (H) Prediction–Stability plot for the effect of 

HFD on body weight, showing a massive skew away from the X=Y axis, due to the 

causal impact of HFD on body weight. (I) Prediction–Stability plot for the 

mitochondrial translation gene set as a function of the COX7A2L allele, which is 

expected to have a downstream impact but only in protein data [18]. The average hit 

falls within |0.21| units of distance for mRNA, versus |0.33| units for protein, which is 

expected as the Cox7a2l allele is  known to have a much stronger effect on OXPHOS 

protein organization than on the equivalent mRNA networks.  
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SUPPLEMENTAL FIGURE AND TABLE LEGENDS 

Figure S1. Supplemental Overview of Phenotype Data 

(A) Histogram and dot plot of the animals with tissues collected at each time and diet, 

with the fraction of CD and HFD noted. Due to decreased lifespan in HFD, there is a 

disbalance in the CD/HFD ratio for the oldest timepoint at 24 months. (B) Significant 

lifespan correlations are observed between BXD strains in all three lifespan studies. 

(C) Proportion of variance explained by genotype, diet, age, or the interactions 

between these three variables, for key phenotypes, as calculated by ANCOVA. (D) 

Lifespan calculations as a function of genotype for two strains with extreme 

differences in lifespan: BXD13 (very short lived) and BXD91 (very long lived). (E) 

Kaplan–Meier curves for two strains with extreme effects of diet on lifespan; BXD9 is 

unaffected, while BXD65 lives almost a year shorter on HFD. (F) Lifespan correlation 

by strain between CD and HFD fed cohorts in this study. (G–H) Body weight over 

time chart for two strains with extreme effects of diet on weight; BXD16 is obese in 

either case, while BXD100 more than doubles its weight on HFD. (I) Serum alkaline 

phosphatase (ALPL) levels, segregated by different independent variables. 

 

Figure S2. Supplemental Patterns in Multifactorial, Multi-omic Analysis 

(A) Volcano plot showing the effect of age on mRNA and protein levels between old 

and young individuals. (B) Variation explained for all metabolites a function of the 

independent variables and their interactions, and the residual. (C) Correlation density 

plot of the impact of diet and age on mRNA and protein levels. (D) Histogram of the 

percentage of significantly correlated mRNA–protein pairs as a function of the 

variance of mRNA expression across the population. (E) Density plot of mRNA–

protein correlation as a function of transcript abundance. (F) Spearman correlation 

plot between expression variance and abundance for mRNA. Higher-expressed 

genes have more variance and are slightly more likely to correlate with their protein. 

(G) Histogram of the percentage of significantly correlated mRNA–protein pairs as a 

function of the size of the protein complex to which the gene belongs, using CORUM 

annotation; genes in larger complexes are much less likely to correlate between their 

mRNA and protein levels. (H) Empirical calculations of the false discovery rate of cis-

eQTLs as a function of LOD score depending on if the gene is a novel target 

(“discovery”) or the validation of expectations from independent cis-QTL data. (I) Left: 

Venn diagram of the overlap of cis-pQTLs for CD or HFD cohorts using a strict cutoff 
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of LOD ≥ 4. Middle: Slopegraph of LOD scores of all 165 genes with significant cis-

pQTLs. Right: The same Venn diagram, but now using more flexible cutoffs. (J) cis-

QTL consistency on a gene-level basis between mRNA and protein levels for just 

young individuals (left) and as a function across age for protein levels (right). The 

same patterns are observed here as for across-diet comparisons. 

 

Figure S3. Supplemental Functional Network Analysis and False Discovery 

(A) Spearman correlation network for the 75 OXPHOS genes measured at both the 

mRNA and protein level, showing the low level of connectivity between the two layers 

(~3% of edges are across mRNA to protein). (B) Top: PCA biplots for the 75 

OXPHOS genes as a function of complex membership. mRNA has no differentiation 

between complexes, while the proteins are distinct per complex, except for CIV. 

Bottom: Negative control PCA plots for a random selection of 75 genes, showing no 

differentiation between random sets of the same size. (C) Correlation density plots of 

correlation networks for the ribosome, mitochondrial ribosome, beta oxidation, and 

TCA cycle as a function of mRNA level, protein level, or across the two. Even in 

cases where mRNA and protein both have strong correlation networks (e.g. 

ribosome, TCA cycle), there is little or no correlation between mRNA and protein. The 

correlations of random genes within mRNA/protein or across layer is shown at the 

top-right. While the average correlation of two mRNAs is similar to the average of two 

random proteins (+0.037 for mRNA, +0.027 for protein), the standard deviation is 

highly different: ±0.252 for mRNA, ±0.122 for protein. Consequently, network 

significance is always permuted.  

 

Figure S4. Supplemental Stability Inference and False Discovery 

(A) Correlation networks of cholesterol synthesis core membership plus the top 

significant candidates as a function of CD and HFD, for mRNA. (B) The overlap of 

100 negative control permutation networks using the 68-member mitochondrial 

translation gene set (top) and the 42-member PPAR signalling pathway gene set. 

The theoretical upper-bound false discovery in this area is 1 discovery per test in the 

green area regardless of gene set. Here, for this randomized gene set, the sum of 

200 permutation tests discovers only 4 nodes in the mRNA and 2 in the protein 

network, empirically indicating a false positive of approximately 0.03 per test 

averaged across all runs. Permuted false discovery in the white area is approximately 
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1 node per test. Note that the exact cutoff values change slightly depending on input. 

(C) Prediction–stability plot for the peroxisome network in mRNA, separated by either 

diet or age. (D) Prediction–stability plot for the CYP450 network discovery at the 

mRNA (left) and protein (right) level. Significant hits are labeled. (E) Prediction–

stability plot for body weight as a function of age. Compared to body weight (Figure 

5H), where the exact same raw data are used, age provides minimal causal 

information for how gene expression varies according to body weight. (F) Prediction–

stability plot examining the mitochondrial ribosome expanded network as a function 

of Hmgcs2 allele. For the 31 protein hits, the average distance from the X=Y line is 

0.22 units according to Hmgcs2 (compared to 0.33 by Cox7a2l). 

 

Table S1. Processed Phenotype, mRNA, Protein, and Metabolite Data 

This table contains all raw longevity and body weight data, and a list of which 

harvested cohorts were selected and used for the omics experiments.  

 

Table S2. Processed Phenotype, mRNA, Protein, and Metabolite Data 

This table contains a full list of normalized measurements for every sacrificed 

individual at the mRNA, protein, and metabolite level. Note that the same 

metabolomics extraction was done twice for every liver in complete experimental 

replicate about two months apart. Each individual liver was thus run 4 times: two 

separate extractions on the same liver tissue, and then each of those extractions had 

two technical injection replicates. The two separate extractions are both included in 

the output table, prefaced with either “Metab_Run1” or “Metab_Run2”. The two 

technical injection replicates for each were averaged to provide the data in the table 

(i.e. “Run1-TechRep1” was averaged with “Run1-TechRep2” and “Run2-TechRep1” 

with “Run2-TechRep2”). Furthermore, as this metabolomics profiling was relatively 

inexpensive, we analyzed around 620 livers—so a larger set than for mRNA and 

protein—thus many more cohorts have biological replicates run in addition to the two 

different “types” of technical replicate (i.e. injection technical replicate and extraction 

technical replicate).  

 

Table S3. GO Enrichment Categories of 3772 Paired mRNA & Protein Quantified 

& cis-QTLs  



 41

Sheet 1 contains a list of the enriched GO terms for all 3772 genes that were 

measured at the mRNA and protein level, showing that certain categories are well-

covered (e.g. 37% of cytoplasm genes, p = 4e-180) while other categories are 

relatively poorly represented (e.g. only 4% of lipoprotein genes, p = 2e-6). Sheet 2 

contains a list of all LOD scores for all 3772 genes at their cis-locus as a function of 

mRNA/protein, dietary status, and age.   

 

Table S4. Aging Biomarkers 

This is a list of all genes that were highly correlated with age, their ontological sets, 

and for top hits, a breakdown of their associated C. elegans gene(s).  

 

Table S5. C. elegans Ctsd Longevity Data 

This contains the summary data and all individual worm data for both experiments on 

asp-4 knockdown (i.e. Ctsd) in C. elegans.  

 

Table S6. Candidate Gene Networks for Functional Analysis 

This table contains a list of all 25 functional gene networks analyzed at the mRNA 

and protein level. The gene sets were pre-selected by the authors for the core role 

they play in energy metabolism, and with prior hypotheses in mind that gene sets 

may be affected by diet (based on our prior experience [18]) or age (based on 

literature searches; see table). Basic summary data about each gene set are 

available, e.g. number of members, GSEA results, network significance, and 

summary of stability analysis. 

 

Table S7. Stability Analysis: Gene Hits 

This table contains all of the results from the stability analysis on all 25 candidate 

gene sets as a function of diet, age, or expression type (protein/mRNA). The gene 

sets that were highlighted in specific figure panels get a second sheet inside the table 

containing only the subset of genes that matched the stricter criteria (i.e. x- or y- axis 

values of ≥ 0.50) along with basic information about each gene (e.g. description, 

Entrez ID). Genes that had differences of ≥ 0.30 in the x and y axes were considered 

to yield causal information (e.g. such genes will correlate with the target pathway but 

only—or much more strongly—in one diet or age than the other).   
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Figure 3. Aging Candidate Discovery & C. elegans
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Figure 4. Functional Gene Networks of Transcripts and Their Proteins 
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Figure 5. Network Expansion and Functional Gene Discovery
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Figure S1. Supplemental Overview of Phenotype Data
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Figure S2. Supplemental Patterns in Multifactorial, Multi-omic Analysis
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Figure S3. Supplemental Functional Network Analysis and False Discovery
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Figure S4. Supplemental Stability Inference and False Discovery
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