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Abstract

Background

The functions of RNA molecules are mainly determined by their secondary structures. These
functions can also be predicted using bioinformatic tools that enable the alignment of multiple
RNAs to determine functional domains and/or classify RNA molecules into RNA families.
However, the existing multiple RNA alignment tools, which use structural information, are slow in
aligning long molecules and/or a large number of molecules. Therefore, a more rapid tool for
multiple RNA alignment may improve the classification of known RNAs and help to reveal the
functions of newly discovered RNAs.

Results

Here, we introduce an extremely fast Python-based tool called RNAlign2D. It converts RNA
sequences to pseudo-amino acid sequences, which incorporate structural information, and uses a
customizable scoring matrix to align these RNA molecules via the multiple protein sequence
alignment tool MUSCLE.

Conclusions

RNALlign2D produces accurate RNA alignments in a very short time. The pseudo-amino acid

substitution matrix approach utilized in RNAlign2D is applicable for virtually all protein aligners.
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Background

RNA molecules are central players in various cellular processes, including protein biosynthesis
and gene expression regulation [1]. These functions are mainly determined by the structures of
RNAs (e.g. tRNA, ribozymes), which are often more conserved than RNA sequences [2].

Bioinformatic tools for multiple RNA alignments enable identification of motifs and domains,
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which are crucial to predict RNA function. Structural information significantly improves alignment
quality, as compared to alignments based solely on sequence information. Thus far, secondary
structure data (2D structures) are available for > 100,000 RNAs, and the number of RNAs for which
the data are available continues to rise [3] in association with the development of high-throughput
experimental methods to analyze 2D RNA structures in vitro and in vivo (for review see [4]).
Several tools to align the structure of RNA molecules have been developed, such as multiple
sequence and structure alignment tools, which are usually based on 2D structure prediction
algorithms (e.g., TurboFoldIl [S] and MAFFT [6], LocARNA [7] and CARNA [8]). LocARNA and
CARNA can also use a fixed 2D structure as input. These tools can be divided into three main
types. The first entails implementation of the Sankoff algorithm [9], and structure prediction and
alignment are performed simultaneously (e.g. LocARNA [7], CARNA [8] or FOLDALIGN [10]).
Sankoff algorithm requires O(N®) time, where N denotes the length of the compared sequences [9].
Therefore, to reduce complexity, FOLDALIGN uses several heuristics such as the maximum length
of the alignment; a maximum difference between any two subsequences being aligned [10].
LocARNA and CARNA use a simplified energy model based on base pair probability matrices to
reduce the run-time [7,8]. Additionally, CARNA aligns RNAs with multiple structures per RNA or
entire structure ensembles without committing to a single consensus structure. Instead of scoring the
alignment of only a subset of the base pairs, it scores the matches of all base pairs in the base pair
probability dot plots, which allows aligning of the entire Boltzmann distributed ensemble of
structures [8]. In the second group, alignment is based on the sequence and the generated
information is used to perform structure prediction (e.g. TurboFold II [5], RNAalifold [11]). The
third group entails tools that first predict the structure and then perform the alignment, such as
RNAshapes followed by RNAforester [12,13]. However, the tools mentioned can be slow,
especially for the analysis of large numbers of long RNA sequences (e.g., 16S rRNA), where
specialized tools designed for a particular RNA family may be more suitable (e.g. SSU-ALIGN [14]

for 16S rRNA).
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To generate alignments of large numbers of long RNA sequences in a short time, we have
developed RNAlign2D, a rapid Python tool that aligns multiple RNA molecules based on 2D
structure information. It does so by using a pseudo-amino acid substitution matrix, in which RNA
sequence and structure are indicated by the use of 1 of 20 characters combined with the protein
aligner MUSCLE [15] The idea of using structural information in the sequence alignment was
proposed in the early 90’s [16] and was further implemented in STRAL [17]. Our approach
represents an alternative solution, dedicated mainly to aligning RNA molecules with known 2D
structures, whose number is still growing. RNAlign2D can be applied to perform alignment of
either modified or unmodified RNA sequences as well as RNA sequences that contain pseudoknots.
Lastly, the RNAlign2D tool can be customized to be compatible with virtually all multiple sequence

alignment tools that perform protein alignment.

Implementation
General idea

Sequence alignments of RNA are based on aligning four residues: A, C, G, and U. It is possible
to use a similar approach to align secondary structures written in dot-bracket format, where °.’
represents unpaired nucleotides, ‘(’ and ‘)’ denote paired nucleotides, and other types of brackets are
used in the case of pseudoknots [18,19]. To do so, each dot or bracket is converted into a letter
arbitrarily assigned to it. In this way, it is possible to align simple secondary structures containing
‘’, “.’, and )’ using 3 letters from the RNA alphabet. To introduce characters describing (first level)
pseudoknots ‘[” and ‘]’, the alphabet has to be extended to at least five letters. One possible solution
is to switch from the RNA alphabet to protein alphabet and use protein alignment tools to align the
secondary structure of RNA. The protein alphabet consists of 20 letters, therefore other characters
like <{’, °}’ or *<’, °>’, representing higher-order (nested) pseudoknots [19], can be added. However,

higher-order pseudoknots are rather rare. An alternative solution is a combination of RNA

secondary structure with its sequence, creating the pseudo-amino acid sequence described below.
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Pseudo-amino acid conversion
As described above, there are two ways to utilize 20 characters of the protein alphabet to

represent RNA structure:

1) wuse dot bracket notation °.’, “(‘, ), [, and ‘]’ for dot-bracket structures in combination with
RNA sequence (20 combinations) to represent each of the RNA nucleotides and the secondary
structure assigned to it (e.g., A and ‘.’ when the A nucleotide is in a single-stranded region),

2) arbitrarily assign one of the letters from the protein alphabet to structural elements from
dotbracket notation without combining it with RNA sequence.

In this way, it is possible to convert secondary structure or secondary structure with RNA
sequence to a new sequence that utilizes the protein alphabet — the pseudo-amino acid sequence.
This process is fully reversible, therefore the secondary structure (together with RNA sequence in
the first case) can be easily obtained from pseudo-amino acid sequence. However, pseudo-amino
acid sequences have nothing to do with the protein sequences encoded in mRNA, except for using
the same alphabet.

Both approaches to the conversion have their drawbacks. In the first case, there are limitations
for higher-order pseudoknots — they are treated as unpaired regions to keep proper pairing for
remaining base pairs. In the second case, there is no information about RN A sequence that may help
prepare better alignment.

Details regarding the conversion into all 20 combinations are shown in Figure 1B and
Supplementary Figure 1B.

It is noteworthy that pseudoknots may be defined in two ways: ((([[[...)))]]] represents exactly
the same structure as [[[(((...]]]))). Therefore, we introduced an additional tool that uniformly
converts such structures into one common notation.

After the conversion of RNA sequences to pseudo-amino acids, the running of a multiple
sequence alignment program dedicated to protein sequences provides the most adequate structural

RNA alignment. The MUSCLE program provides such a function for RNAlign2D, utilizing a
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scoring matrix dedicated to RNA structural alignment. The default scoring matrix for sequence and
structure conversion is shown in Figure 1B, and for structure-only conversion, in Supplementary
Figure 1B.
Scoring matrix

Scoring matrix was automatically generated using a selected set of parameters describing
scores for pairs of dot-brackets. Different scores are assigned to the same type of bracket or two
dots, opposite brackets, different brackets, brackets and dots. Moreover, there is an additional bonus
for the same sequence in the aligned molecules. In total, there are eight parameters, including gap
opening and gap extension penalty. Theoretically, it is possible to introduce more parameters or
even to treat each entry in the matrix separately, but it will most likely lead to overfitting, as there
are not enough aligned sequences that can be used to calculate the scoring matrix in this way. To
perform an optimal alignment, every parameter of the scoring matrix was optimized using
BraliBase 2.1 [20] k7 dataset (further excluded from benchmarks). Optimization lasted 50 iterations
and was performed with 18 sets of starting parameters (part of them selected randomly and the rest
arbitrary) to reduce risk of local optimum. In each step values in range <current value -4, current
value +4> were tested. In case of a higher score, a new value was set, until optimization was
complete, in case of equal score there was random chance to change value to the new one. For
optimization purposes, SPS score + PPV score + 2 * structural distance score values were used,
with maximizing SPS and PPV and minimizing structural distance. Structural distance score values
were calculated as 1 - (mean_distance/ length of sequence). The final values for parameters are as
follows: same brackets: +5; two dots: +6; different brackets with the same orientation: +2; brackets
with different orientation: -10; bracket and dot: -8; bonus for the same sequence: +5; gap opening: -
12; gap extension: -1.
The RNAlign2D tool

RNAlign2D is a command line tool written as a Python3 script that works in UNIX-based

operating systems. It is installed via python3-setuptools. Furthermore, MUSCLE aligner requires
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separate installation. RNAlign2D was tested with MUSCLE v3.8.31. RNAlign2D performs the
following processing steps (Figure 1C): (1) removes modifications from RNA sequences (it uses
abbreviations for modifications from the MODOMICS database [21]) ; (2) converts the secondary
structures and sequence of the RNAs to pseudo-amino acid sequences; (3) runs the MUSCLE
program with the given sequence, scoring matrix, and penalties for gap opening and extension; (4)
converts the aligned pseudo-amino acid sequences to RNA sequences and secondary structures; (5)
restores the original modifications to each sequence. RNAlign2D consists of an alignment tool,
predefined matrices, a scoring matrix creation tool, a modification removal tool, consensus structure
calculation tool, and a pseudoknots standardization tool. It also contains a set of files with test
sequences to perform alignment.

RNAlign2D can be run by simply writing the following command in a terminal: rnalign2d -i
input_file_name -o output_file_name. Additional flags allow the users to provide their own scoring
matrix, apply penalties for gap opening and/or extension, to choose the running mode (‘simple’ or
‘pseudo’), or to standardize pseudoknot notations. Additionally, the script ‘create_matrix.py’ allows
the user to define a customized scoring matrix and calculate_consensus.py to calculate consensus
structure for a given alignment. The ‘pseudo’ mode is experimental feature for higher order
pseudoknots, where sequence is not taken into account and it should be used sparingly.

The input file used to run RNAlign2D in both ‘simple’ and ‘pseudo’ mode is a FASTA-like file
including a header followed by a line containing the sequence and 2D structure in a dot-bracket
format. In the ‘pseudo’ mode, the sequence line in this file is omitted during conversion and
alignment. When structures with higher-order pseudoknots are analyzed in the ‘simple’ mode, the
residues in higher-order pseudoknots are treated as unpaired residues to ensure proper pairing of
remaining residues. Moreover, RNAlign2D ‘normalizes’ structures to ensure that pseudoknots are

written in a uniform way.

Results
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Benchmark — sum-of-pair-scores and positive predictive values

RNAlign2D was compared with LocARNA, CARNA, MAFFT, TurboFold II, and STRAL,
using BraliBase 2.1 [20] and data from the RNAStralign database [5] as benchmark datasets.
LocARNA and CARNA were selected because they can use fixed 2D structure as input. MAFFT
and TurboFold II showed the best performance in the previously published benchmark [5]. STRAL
utilizes structural information to perform sequence alignment [17]. The sum-of-pair scores (SPSs),
positive predictive values (PPVs), structural distance, and running times for each program were
calculated.

For alignment of the BraliBase 2.1 benchmark dataset, RNAlign2D, LocARNA, and CARNA
generated similar mean SPSs and PPVs for all datasets, which ranged from 0.89 to 0.93 (Figure 2).
The mean PPV ranged from 0.71 (k15, LocARNA) to 0.91 (k2, RNAlign2D, LocARNA, and
CARNA) (Figure 3). For MAFFT, STRAL, and TurboFold II, those values were lower for most
datasets, except PPV for k15, where MAFFT and TurboFold II were comparable to RNAlign2D,
LocARNA, and CARNA.

The RNAlign2D scoring matrix was optimized on the k7 dataset from BraliBase2.1. To ensure
that there was no overfitting, we recalculated SPSs and PPVs on the k2, k3, k5, and k10 datasets
without alignments containing > 2 (k2, k3), > 3 (k5), and > 5 (k10) common sequences with the k7
dataset for RNAlign2D. We observed only minor, non-significant changes, which means that our
scoring matrix is not over-fitted.

To check the performance of alignment of RNA sequences from specific RNA families, we
used the RNAStralign benchmark dataset [5]. When this benchmark dataset was aligned, TurboFold
IT showed the best performance in case of 16S rRNA and ribonuclease P (RNase P) SPS values,
where RNAlign2D was only slightly worse and outperformed other programs. RNAlign2D
produced the best alignments for RNase P in terms of PPV values and for telomerase dataset (both
SPS and PPV). When signal recognition particle (SRP) RNA sequences were aligned, RNAlign2D

outperformed only STRAL, produced very similar alignments to MAFFT (in terms of PPV) and
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worse than other programs used in the benchmark (Figures 4-5). In general, among alignment of all
the analyzed RNAs from different families, alignment of the SRP RNA yielded the lowest SPS and
PPV. Examples of alignments for each of the above-mentioned families are shown in Figure 6.

The SPSs, PPVs, and standard deviations from the alignment of all datasets with all the
alignment tools tested are summarized in Supplementary Table S1.
Structural distance

As expected, programs that utilize known RNA structures produce better structural alignments
than those that predict 2D structures. For the BraliBase2.1 benchmark, RNAlign2D, LocARNA,
and CARNA have similar, very low mean structural distances, while for STRAL and TurboFold II
these distances are much higher (Figure 7). A similar situation is observed for 16S rRNA and RNase
P datasets from the RNAStralign benchmark. For SRP and telomerase datasets, the programs that
utilize the Sankoff algorithm outperform RNAlign2D, which in turn outperforms STRAL and
TurboFold II (Figure 8).
Alignment time

Alignment times from each of the analyzed groups of RNAs from the RN AStralign benchmark
datasets were determined and compared. RN Align2D was the fastest tool for the alignment of
datasets containing 20 and 10 molecules (Figure 9), with the alignment time varying from < 1 to 4
s. STRAL had a similar runtime for datasets containing five molecules. However, in the case of 16S
rRNA, we were unable to perform alignment with STRAL due to ‘Segmentation fault’ error.
Alignment lasted 5-3061 s for LocARNA, 3-34198 s for CARNA, 1-284 s for MAFFT, 24-27252
s for TurboFold II, and between <1 and 20 s for STRAL. Therefore, by simplifying the sequence
and 2D structure to pseudo-amino acid sequence as well as using MUSCLE protein aligner, we
shortened the alignment time enormously. The obtained results are summarized in Supplementary

Table S2.

Discussion
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RNAlign2D is an extremely fast RNA alignment tool and thus allows the alignment of
hundreds of RNA molecules in a very short time. It mediates alignment of RNA molecules with
known 2D structures, where 2D structure is required as part of the input. RNAlign2D contains an
option to model missing structures by using RNAfold from the ViennaRNA package [22], but in
contrast to some existing programs (such as TurboFold II [5]), optimization of the structure
prediction algorithm was beyond the scope of the project. Our tool is optimized for RNAs with
known 2D structures. The biggest advantage of RNAlign2D is its faster speed in comparison to
other tools, which was achieved by transformation of the sequence and 2D structure to pseudo-
amino acid sequence followed by using a protein aligner (MUSCLE) to perform multiple sequence
alignment (Figure 1). We chose MUSCLE aligner because of its good performance between 200
and 1000 sequences, which in our opinion would be the most common range of sequence number
for RNAlign2D [23]. It is worth noting that the pseudo-amino acid term introduced in this paper
refers to the method of encoding RNA sequence and 2D structure information as amino acid
sequence, although it shares no similarities with pseudo amino acid composition (PseAAC)
introduced by Chou, 2001 [24].

Overall, the RNAlign2D alignment performance (as indicated by SPSs and PPVs) is similar to
LocARNA, CARNA, and TurboFold II, but RNAlign2D aligned the RNA sequences several
hundred times faster than those tools. In some cases (e.g. RNase P and telomerase), it produced
better alignment. In comparison to MAFFT and STRAL, RNAlign2D produced better alignment in
the majority of benchmark datasets. However, alignment accuracy was strongly dependent on the
RNA family and the different average pairwise sequence identity (APSI) values of the aligned
sequences. Based on our benchmark results, RNAlign2D can be recommended as a first-choice tool
for the alignment of large numbers of sequences with an APSI > 50%. For instance, it can be used to
align all members of a particular RNA family or all known tRNA isoacceptors/isodecoders for a
specific amino acid. Results of such alignments can be further utilized to perform and/or improve

3D structure modeling.
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For sequences with a low APSI (e.g. SRP RNA sequences in the RNAStralign benchmark, with
average APSI = 38.7%), the performance of alignment with RNAlign2D was worse than that with
LocARNA, CARNA, TurboFold IT and MAFFT. It can be expected that a scoring matrix optimized
for multiple RNA families could be sub-optimal for at least some of these families, including SRP
in this case. We observed that in comparison to the SRP reference alignments, RNAlign2D
introduced in general fewer gaps, especially in the stem regions and single-nucleotide bulges.
Additionally, the introduced gaps are usually longer. This issue can be solved by changing the
parameters in the scoring matrix, decreasing gap-opening penalty, or creating a scoring matrix
optimized for the particular RNA family.

In terms of structural alignment quality, measured as mean structural distance between
consensus structure and all structures in the input, RNAlign2D outperforms tools that use RNA
structure prediction (STRAL and TurboFold IT), which was expected. In comparison to other tools
that utilize known RNA structure (LocARNA and CARNA), our tool was worse in the cases of
telomerase and SRP, and at a very similar level for other datasets. It is worth noting here that better
sequence alignment does not always mean smaller structural distance (as for the telomerase
dataset).

We believe that there is still field for improvement of our approach in the future. To perform the
best benchmark possible, we decided to use most of the available alignments for benchmark
purposes. Therefore our training set was very limited. In case of the more manually curated
structural alignments were available, it might be possible to introduce machine learning methods for
optimization of either parameters specified in this publication or even each of the scoring matrix

parameters.

Conclusions
In conclusion, RNAlign2D uses a novel approach to align RNAs with known 2D structures,

and with the growing number of experimentally determined RNA 2D structures, this approach will
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be further improved by optimization of scoring matrices for the particular RNA families and/or
utilizing different aligners. It offers a reliable compromise between the computationally demanding

approaches and fast, but much less accurate ones.

Materials and Methods
Benchmark — sum-of-pair-scores (SPSs) and positive predictive values (PPVs)

For benchmark purposes, RNAlign2D was compared with LocARNA (version 1.9.2.3) [7] and
CARNA (version 1.3.4) [8], which represent other tools that use a fixed 2D structure for multiple
RNA alignment, but also TurboFold II (version 6.2) [5] and MAFFT (version 2) [6], which produce
the best alignments in another benchmark [5], and STRAL (version 0.5.4) [17] (with ViennaRNA
1.8.5 [25]) , which uses a similar approach to encode sequence and structure. We used two available
benchmark datasets: BraliBase 2.1 (k2, k3, k5, k10 and k15, where k indicates the number of
aligned sequences) [20] and the dataset in RNAStralign [5]. First, we excluded tRNA sequences
from BraliBase 2.1 to avoid a bias towards sequences whose identities are in the ‘twilight zone’ and
range from 40% to 60%, most of which are tRNAs [5]. The BraliBase 2.1 dataset does not contain
information about the secondary structures of aligned RNA molecules. Therefore, we first
downloaded data indicating the secondary structures of all RNAs in the RFAM database [26], which
was used to create the BraliBase 2.1 benchmark dataset, from the bpRNA-1m database [3]. Next,
we converted the downloaded .ct files to dot-bracket format. To that end, we first removed all
commentary lines from the .ct files using a custom Python script and then performed format
conversion with the ct2dot tool from the RNAstructure package [27]. Finally, we used a custom
Python script to add 2D structures to the BraliBase 2.1 raw.fa files and saved only the files that
contained 2D structures for all sequences. Additionally, for files used as input for LocARNA and
CARNA, we added © #FS’ (which is required to align fixed 2D structures) to the end of each 2D

structure line. For MAFFT, STRAL, and TurboFold II, we used regular fasta files containing only
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sequence as input. A complete list of files used, together with overlapping with k7 dataset used for
optimization of the scoring matrix, is provided in Supplementary Table S3.

The benchmark on RNAStralign dataset was made as described by Tan et al. [5]. Namely, we
generated 200 groups of 5, 10 or 20 sequence homologs selected from 16S rRNA sequences from
Alphaproteobacteria, RNase P RNA sequences (bacterial type A subfamily), signal recognition
particle (SRP) RNA sequences (protozoan subfamily), and telomerase RNA sequences.

In the case of 16S rRNA sequences from Alphaproteobacteria, we observed differences
between some sequences in the ct files used as a test set and fasta file with reference alignment.
Therefore, we first removed the sequences that differed from both the test and reference sets
(RNAStralign IDs AB242948, AF301221, AY306224, AY436803, AY466761, AY785314, D14426,
D14427, D14428, D14429, D14430, D14434, D14435, D84526, DQ303351, M803809, U71005,
X79735, and X79738) and then proceeded to selection and analysis.

Sequences from the protozoan SRP reference alignment file contain a considerably higher
number of unknown bases (Ns) than the same sequences in the test dataset used to perform
alignments. Therefore, we utilized a custom Python script to replace unknown bases in the reference
sequences based on the test dataset sequences and then employed these corrected reference
sequences to calculate alignment accuracy.

We ran LocARNA, CARNA, STRAL, TurboFold II, and RNAlign2D (‘simple’ mode) with the
following default parameters to align the complete benchmark datasets: #locARNA, mlocarna
$file.raw.fa; #CARNA, mlocarna —pw-aligner carna $file.raw.fa; #STRAL, ./stral $file.fa;
TurboFold II, ./TurboFold $file.config.txt (Mode = MEA, Gamma = 0.3, Iterations = 3,
MaximumPairingDistance = 0, Temperature = 310.15) ; #RNAlign2D, rnalign2d -i $file.raw.fa -o
$file.raw.fa.out. MAFFT was used in mxscarna mode, to predict RNA 2D structure #
Jmafft_mxscarnamode $file.fa.

In the next step, SPSs and PPVs were calculated for each alignment. The output files of

LocARNA and CARNA are in ClustalW aln format. To perform the calculations, we converted
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these files to FASTA format using the fasconvert tool from the FAST package (version 1.06) [28].
The output of RNAlign2D is a modified FASTA format including a header followed by a line
containing the sequence and 2D structure in dot-bracket format. Therefore, the 2D structure line
was removed using sed (sed 'n; n; d' < $file.raw.fa.out > $file.out.fasta). Other programs used in
benchmark return output in fasta format, but STRAL put the empty line between aligned sequences.
This empty line was removed using sed (sed -i '/A$/d' $file.fa.out). FASTA files were sorted using a
custom Perl script. SPS values were calculated using the compalignp program [29], where they are
defined as the averaged identity over all N(N-1)/2 pairwise alignments. PPVs were calculated by
applying a modified Python script used by another group [5]. Firstly, positions for each nucleotide
in the test set and real set were calculated. In the next step, columns for each position were
generated. Then the common part between columns (true positives) and difference between the test
set and real set (false positives) were calculated. PPV was defined as the ratio of true positives to
the sum of true positives and false positives.

To compare the mean SPSs and PPVs from RNAlign2D and other benchmarked programs, we
applied the two-sided t-test, because of its better performance in comparison to non-parametric
statistical test for large sample sizes, also when analyzed data are not normally distributed [30,31].
Structural distance

To compare structural alignment accuracy between benchmarked programs, we calculated a
mean from structural distances between consensus structure from each alignment and every single
structure taken as input to the alignment, using RN Adistance (string alignment and full distance)
from ViennaRNA package [22]. Consensus structures were calculated using custom Python script.
We were unable to retrieve secondary structures predicted by MAFFT, therefore we excluded
MAFFT from this analysis. t-test was used to measure statistical significance between mean
structural distances. For the scoring matrix optimization purposes on k7 BraliBase 2.1 dataset 1 —
(mean_distance/length of consensus structure) was used as a structural distance score.

Alignment time
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To determine the time required to perform each alignment, we used 40 groups of 5, 10 or 20
sequence homologs from the RNAStralign benchmark dataset. The LocARNA, CARNA, TurboFold
II, MAFFT, STRAL, and RNAlign2D running times for each group were measured using the bash
‘time’ command.

Figures

Figures 1-5 and 7-9 were generated using ggpubr package [32] with R.3.6.3 [33].

Availability and Requirements

Project name: RNAlign2D

Project home page: https://github.com/tomaszwozniakihg/rnalign2d

Operating system(s): Linux, Mac OSX

Programming language: Python 3

Other requirements: MUSCLE (tested on version 3.8.31), pytest (tested on version 5.1.3), Vienna
RNA (optional, tested on version 2.4.14)

License: MIT

Any restrictions to use by non-academics: no

List of abbreviations

tRNA: transfer RNA

2D structure: secondary structure
rRNA: ribosomal RNA

SPS: Sum-of-pair score

PPV: Positive predictive value
RNase P: Ribonuclease P

SRP: Signal recognition particle

APSI: Average per sequence identity
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2%91 Figure 2. Box and whisker plots comparing sum-of-pair scores (SPSs) generated for the alignment
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3392 of all sequences in the BraliBase 2.1 benchmark dataset with RNAlign2D, CARNA, LocARNA,
34

2293 MAFFT, STRAL, and TurboFold II (k indicates the number of aligned sequences). P-values were

%94 calculated using two-sided t-test.
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4495 Figure 3. Box and whisker plots comparing positive predictive values (PPVs) generated for the
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2%96 alignment of all sequences in the BraliBase 2.1 benchmark dataset with RNAlign2D, CARNA,
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4497 LocARNA, MAFFT, STRAL, and TurboFold II (k indicates the number of aligned sequences). P-
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3298 values were calculated using two-sided t-test.
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5499 Figure 4. Box and whisker plots comparing sum-of-pair scores (SPSs) for the alignment of 200
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ggOO groups of 5, 10, and 20 homologous sequences from the entire RNAStralign benchmark dataset

2801 with RNAlign2D, CARNA, LocARNA, MAFFT, STRAL, and TurboFold IL. P-values were
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503  Figure 5. Box and whisker plots comparing positive predictive values (PPVs) for the alignment of
3504 200 groups of 5, 10, and 20 homologous sequences from the entire RN AStralign benchmark
505 dataset with RNAlign2D, CARNA, LocARNA, MAFFT, STRAL, and TurboFold II. P-values
206 were calculated using two-sided t-test.
§O7 Figure 6. Comparison of alignments produced by tools that utilize known 2D structures for
1%08 alignment (RNAlign2D, CARNA, and LocARNA) for 16S rRNA, RNase P, SRP, and telomerase
1209 families. Examples were chosen from RNAStralign datasets containing 5 sequences. A 75-
1310 nucleotide window is shown for each alignment. Numbers on the right side of alignments indicate
1811 the length of a particular sequence within the 75-nt window.
2%12 Figure 7. Box and whisker plots comparing structural distances for the alignment of all sequences in
2513 the BraliBase 2.1 benchmark dataset with RNAlign2D, CARNA, LocARNA, MAFFT, STRAL,
gg 14 and TurboFold II (k indicates the number of aligned sequences). P-values were calculated using

27
2815 two-sided t-test.
29

g?l6 Figure 8. Box and whisker plots comparing structural distances for the alignment of 200 groups of

32

3317 5,10, and 20 homologous sequences from the entire RNAStralign benchmark dataset with

34

3318 RNAlign2D, CARNA, LocARNA, MAFFT, STRAL, and TurboFold II. P-values were calculated
36

gé 19  using two-sided t-test.

39

4620 Figure 9. Comparison of alignment performance times between RNAlign2D, CARNA, LocARNA,
41

3521 MAFFT, STRAL, and TurboFold II for 10 sets of 5-, 10- and 20-sequences alignment from

44
4522  RNAStralign benchmark dataset. Measurement was not performed for STRAL and 16S rRNA
46

j§23 dataset, because of occurring ‘segmentation fault’ error. Note that time [s] is shown at the log10
49

5924 scale.

51

5225

53

5 . . . . .
5%26 Supplementary Figure 1. (A) Structure conversion to a pseudo-amino acid sequence for RNA with

56
5327 higher-level pseudoknots. (B) Conversion of structure elements to pseudo-amino acids and their

2@28 scores (left) and the default scoring matrix (right).
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Supplementary Table 1. Mean sum-of-pair scores (SPS) and positive predictive values (PPVs) with
standard deviations obtained in BraliBase2.1 and RNAStralign benchmarks. In the highlighted
fields, values differed between the full BraliBase2.1 benchmark (top values) and a smaller version
of benchmark, where datasets containing > 2 (k2, k3), > 3 (k5), and > 5 (k10) common sequences
with k7 dataset were excluded (bottom values in parentheses).

Supplementary Table 2. Running time measurement for RNAlign2D in comparison to other
aligners.

Supplementary Table 3. Bralibase2.1 dataset used to prepare benchmark. Additional sheet contains
the numbers of overlapping sequences between the k7 dataset used for scoring matrix optimization

and other Bralibase2.1 datasets.
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