

1 RNAAlign2D – a rapid method for combined RNA structure and sequence-based alignment

2 using a pseudo-amino acid substitution matrix

3 Tomasz Woźniak¹, Małgorzata Sajek², Jadwiga Jaruzelska¹ and Marcin Piotr Sajek^{1,3*}

4 ¹Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań,
5 Poland

6 ²Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology,
7 Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań,
8 Poland

9 ³RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045,
10 USA

11 *Correspondence: marcin.sajek@igcz.poznan.pl; tel. +48 61 6579206

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

12 Abstract

113 *Background*

2
3
4 The functions of RNA molecules are mainly determined by their secondary structures. These
5
6 functions can also be predicted using bioinformatic tools that enable the alignment of multiple
7
8 RNAs to determine functional domains and/or classify RNA molecules into RNA families.
9

10
11 However, the existing multiple RNA alignment tools, which use structural information, are slow in
12
13 aligning long molecules and/or a large number of molecules. Therefore, a more rapid tool for
14
15 multiple RNA alignment may improve the classification of known RNAs and help to reveal the
16
17 functions of newly discovered RNAs.
18
19

20 *Results*

21
22 Here, we introduce an extremely fast Python-based tool called RNAlign2D. It converts RNA
23
24 sequences to pseudo-amino acid sequences, which incorporate structural information, and uses a
25
26 customizable scoring matrix to align these RNA molecules via the multiple protein sequence
27
28 alignment tool MUSCLE.
29
30

31 32 *Conclusions*

33
34
35 RNAlign2D produces accurate RNA alignments in a very short time. The pseudo-amino acid
36
37 substitution matrix approach utilized in RNAlign2D is applicable for virtually all protein aligners.
38
39
40
41

42 *Keywords*

43
44 RNA; RNA 2D structure; RNA alignment; structure alignment; RNA secondary structure alignment.
45
46

47
48

49
50

33 *Background*

51
52

53 RNA molecules are central players in various cellular processes, including protein biosynthesis
54
55 and gene expression regulation [1]. These functions are mainly determined by the structures of
56
57 RNAs (e.g. tRNA, ribozymes), which are often more conserved than RNA sequences [2].
58
59
60 Bioinformatic tools for multiple RNA alignments enable identification of motifs and domains,
61
62
63
64
65

38 which are crucial to predict RNA function. Structural information significantly improves alignment
139 quality, as compared to alignments based solely on sequence information. Thus far, secondary
2 structure data (2D structures) are available for > 100,000 RNAs, and the number of RNAs for which
3 the data are available continues to rise [3] in association with the development of high-throughput
4 experimental methods to analyze 2D RNA structures *in vitro* and *in vivo* (for review see [4]).
5
641
7
842
8
9
10

1143 Several tools to align the structure of RNA molecules have been developed, such as multiple
12

1344 sequence and structure alignment tools, which are usually based on 2D structure prediction
14

1545 algorithms (e.g., TurboFoldII [5] and MAFFT [6], LocARNA [7] and CARNA [8]). LocARNA and
16

171846 CARNA can also use a fixed 2D structure as input. These tools can be divided into three main
18

192147 types. The first entails implementation of the Sankoff algorithm [9], and structure prediction and
20

212348 alignment are performed simultaneously (e.g. LocARNA [7], CARNA [8] or FOLDALIGN [10]).
22

232549 Sankoff algorithm requires $O(N^6)$ time, where N denotes the length of the compared sequences [9].
24

25272850 Therefore, to reduce complexity, FOLDALIGN uses several heuristics such as the maximum length
26

273051 of the alignment; a maximum difference between any two subsequences being aligned [10].
28

29323352 LocARNA and CARNA use a simplified energy model based on base pair probability matrices to
30

313553 reduce the run-time [7,8]. Additionally, CARNA aligns RNAs with multiple structures per RNA or
32

33373854 entire structure ensembles without committing to a single consensus structure. Instead of scoring the
34

354055 alignment of only a subset of the base pairs, it scores the matches of all base pairs in the base pair
36

374256 probability dot plots, which allows aligning of the entire Boltzmann distributed ensemble of
38

39444557 structures [8]. In the second group, alignment is based on the sequence and the generated
40

41475858 information is used to perform structure prediction (e.g. TurboFold II [5], RNAalifold [11]). The
42

43505959 third group entails tools that first predict the structure and then perform the alignment, such as
44

4552605260 RNAshapes followed by RNAforester [12,13]. However, the tools mentioned can be slow,
46

4755615561 especially for the analysis of large numbers of long RNA sequences (e.g., 16S rRNA), where
48

4957625762 specialized tools designed for a particular RNA family may be more suitable (e.g. SSU-ALIGN [14]
50

5159635963 for 16S rRNA).
52

5361

62

63

64

65

64 To generate alignments of large numbers of long RNA sequences in a short time, we have

165 developed RNAlign2D, a rapid Python tool that aligns multiple RNA molecules based on 2D
2
3 structure information. It does so by using a pseudo-amino acid substitution matrix, in which RNA
4
5 sequence and structure are indicated by the use of 1 of 20 characters combined with the protein
6
7 aligner MUSCLE [15] The idea of using structural information in the sequence alignment was
8
9 proposed in the early 90's [16] and was further implemented in STRAL [17]. Our approach
10
11 represents an alternative solution, dedicated mainly to aligning RNA molecules with known 2D
12
13 structures, whose number is still growing. RNAlign2D can be applied to perform alignment of
14
15 either modified or unmodified RNA sequences as well as RNA sequences that contain pseudoknots.
16
17
18 Lastly, the RNAlign2D tool can be customized to be compatible with virtually all multiple sequence
19
20 alignment tools that perform protein alignment.
21
22
23
24
25
26
27
28 **Implementation**
29
30
31 *General idea*
32
33 Sequence alignments of RNA are based on aligning four residues: A, C, G, and U. It is possible
34
35 to use a similar approach to align secondary structures written in dot-bracket format, where '.'
36
37 represents unpaired nucleotides, '(' and ')' denote paired nucleotides, and other types of brackets are
38
39 used in the case of pseudoknots [18,19]. To do so, each dot or bracket is converted into a letter
40
41 arbitrarily assigned to it. In this way, it is possible to align simple secondary structures containing
42
43
44
45
46
47
48
49
50 pseudoknots '[and]', the alphabet has to be extended to at least five letters. One possible solution
51
52 is to switch from the RNA alphabet to protein alphabet and use protein alignment tools to align the
53
54 secondary structure of RNA. The protein alphabet consists of 20 letters, therefore other characters
55
56 like '{, '}' or '<, '>', representing higher-order (nested) pseudoknots [19], can be added. However,
57
58 higher-order pseudoknots are rather rare. An alternative solution is a combination of RNA
59
60 secondary structure with its sequence, creating the pseudo-amino acid sequence described below.
61
62
63
64
65

90 *Pseudo-amino acid conversion*

191 As described above, there are two ways to utilize 20 characters of the protein alphabet to
2
3 represent RNA structure:
4

5
6 93 1) use dot bracket notation ‘.’, ‘(‘, ‘)’, ‘[‘, and ‘]’ for dot-bracket structures in combination with
7
8 94 RNA sequence (20 combinations) to represent each of the RNA nucleotides and the secondary
9
10 1195 structure assigned to it (e.g., A and ‘.’ when the A nucleotide is in a single-stranded region),
11
12
13 1396 2) arbitrarily assign one of the letters from the protein alphabet to structural elements from
14
15 1697 dotbracket notation without combining it with RNA sequence.
16
17

18 1898 In this way, it is possible to convert secondary structure or secondary structure with RNA
19
20 2199 sequence to a new sequence that utilizes the protein alphabet – the pseudo-amino acid sequence.
21
22
23 2300 This process is fully reversible, therefore the secondary structure (together with RNA sequence in
24
25 2501 the first case) can be easily obtained from pseudo-amino acid sequence. However, pseudo-amino
26
27 2602 acid sequences have nothing to do with the protein sequences encoded in mRNA, except for using
28
29
30 3003 the same alphabet.
31

32
33 3104 Both approaches to the conversion have their drawbacks. In the first case, there are limitations
34
35 3505 for higher-order pseudoknots – they are treated as unpaired regions to keep proper pairing for
36
37 3706 remaining base pairs. In the second case, there is no information about RNA sequence that may help
38
39
40 4007 prepare better alignment.
41

42
43 4208 Details regarding the conversion into all 20 combinations are shown in Figure 1B and
44
45 4509 Supplementary Figure 1B.
46

47
48 4710 It is noteworthy that pseudoknots may be defined in two ways: ((([[[...))))]] represents exactly
49
50 4911 the same structure as [[[(((...))))]]. Therefore, we introduced an additional tool that uniformly
51
52 5112 converts such structures into one common notation.
53

54
55 5413 After the conversion of RNA sequences to pseudo-amino acids, the running of a multiple
56
57 5714 sequence alignment program dedicated to protein sequences provides the most adequate structural
58
59 5915 RNA alignment. The MUSCLE program provides such a function for RNAlign2D, utilizing a
60
61
62
63
64
65

116 scoring matrix dedicated to RNA structural alignment. The default scoring matrix for sequence and
117 structure conversion is shown in Figure 1B, and for structure-only conversion, in Supplementary
2
3 Figure 1B.
4
5
6 19 *Scoring matrix*
7
8 20 Scoring matrix was automatically generated using a selected set of parameters describing
9 scores for pairs of dot-brackets. Different scores are assigned to the same type of bracket or two
10
11 dots, opposite brackets, different brackets, brackets and dots. Moreover, there is an additional bonus
12
13 for the same sequence in the aligned molecules. In total, there are eight parameters, including gap
14
15 opening and gap extension penalty. Theoretically, it is possible to introduce more parameters or
16
17 even to treat each entry in the matrix separately, but it will most likely lead to overfitting, as there
18
19 are not enough aligned sequences that can be used to calculate the scoring matrix in this way. To
20
21 perform an optimal alignment, every parameter of the scoring matrix was optimized using
22
23 BraliBase 2.1 [20] k7 dataset (further excluded from benchmarks). Optimization lasted 50 iterations
24
25 and was performed with 18 sets of starting parameters (part of them selected randomly and the rest
26
27 arbitrary) to reduce risk of local optimum. In each step values in range <current value -4, current
28
29 value +4> were tested. In case of a higher score, a new value was set, until optimization was
30
31 complete, in case of equal score there was random chance to change value to the new one. For
32
33 optimization purposes, SPS score + PPV score + 2 * structural distance score values were used,
34
35 with maximizing SPS and PPV and minimizing structural distance. Structural distance score values
36
37 were calculated as 1 - (mean_distance/ length of sequence). The final values for parameters are as
38
39 follows: same brackets: +5; two dots: +6; different brackets with the same orientation: +2; brackets
40
41 with different orientation: -10; bracket and dot: -8; bonus for the same sequence: +5; gap opening: -
42
43 12; gap extension: -1.
44
45
46
47
48
49
50
51
52
53
54
55
56
57 39 *The RNAAlign2D tool*
58
59
60 RNAAlign2D is a command line tool written as a Python3 script that works in UNIX-based
61
62 operating systems. It is installed via python3-setuptools. Furthermore, MUSCLE aligner requires
63
64
65

142 separate installation. RNAlign2D was tested with MUSCLE v3.8.31. RNAlign2D performs the
143 following processing steps (Figure 1C): (1) removes modifications from RNA sequences (it uses
2 abbreviations for modifications from the MODOMICS database [21]) ; (2) converts the secondary
3 structures and sequence of the RNAs to pseudo-amino acid sequences; (3) runs the MUSCLE
4 program with the given sequence, scoring matrix, and penalties for gap opening and extension; (4)
5 converts the aligned pseudo-amino acid sequences to RNA sequences and secondary structures; (5)
6 restores the original modifications to each sequence. RNAlign2D consists of an alignment tool,
7 predefined matrices, a scoring matrix creation tool, a modification removal tool, consensus structure
8 calculation tool, and a pseudoknots standardization tool. It also contains a set of files with test
9 sequences to perform alignment.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

RNAlign2D can be run by simply writing the following command in a terminal: *rnalign2d -i input_file_name -o output_file_name*. Additional flags allow the users to provide their own scoring matrix, apply penalties for gap opening and/or extension, to choose the running mode ('simple' or 'pseudo'), or to standardize pseudoknot notations. Additionally, the script 'create_matrix.py' allows the user to define a customized scoring matrix and calculate_consensus.py to calculate consensus structure for a given alignment. The 'pseudo' mode is experimental feature for higher order pseudoknots, where sequence is not taken into account and it should be used sparingly.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The input file used to run RNAlign2D in both 'simple' and 'pseudo' mode is a FASTA-like file including a header followed by a line containing the sequence and 2D structure in a dot-bracket format. In the 'pseudo' mode, the sequence line in this file is omitted during conversion and alignment. When structures with higher-order pseudoknots are analyzed in the 'simple' mode, the residues in higher-order pseudoknots are treated as unpaired residues to ensure proper pairing of remaining residues. Moreover, RNAlign2D 'normalizes' structures to ensure that pseudoknots are written in a uniform way.

66 67 **Results**

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168 *Benchmark – sum-of-pair-scores and positive predictive values*

169 RNAAlign2D was compared with LocARNA, CARNA, MAFFT, TurboFold II, and STRAL,
2
3 using BraliBase 2.1 [20] and data from the RNAStralign database [5] as benchmark datasets.
4
5 LocARNA and CARNA were selected because they can use fixed 2D structure as input. MAFFT
6
7 and TurboFold II showed the best performance in the previously published benchmark [5]. STRAL
8
9 utilizes structural information to perform sequence alignment [17]. The sum-of-pair scores (SPSs),
10
11
12 positive predictive values (PPVs), structural distance, and running times for each program were
13
14
15 calculated.
16
17

1876 For alignment of the BraliBase 2.1 benchmark dataset, RNAAlign2D, LocARNA, and CARNA
1877 generated similar mean SPSs and PPVs for all datasets, which ranged from 0.89 to 0.93 (Figure 2).
1878 The mean PPV ranged from 0.71 (k15, LocARNA) to 0.91 (k2, RNAAlign2D, LocARNA, and
1879 CARNA) (Figure 3). For MAFFT, STRAL, and TurboFold II, those values were lower for most
1880 datasets, except PPV for k15, where MAFFT and TurboFold II were comparable to RNAAlign2D,
1881 LocARNA, and CARNA.
1882

32 The RNAAlign2D scoring matrix was optimized on the k7 dataset from BraliBase2.1. To ensure
33 that there was no overfitting, we recalculated SPSs and PPVs on the k2, k3, k5, and k10 datasets
34 without alignments containing ≥ 2 (k2, k3), ≥ 3 (k5), and ≥ 5 (k10) common sequences with the k7
35 dataset for RNAAlign2D. We observed only minor, non-significant changes, which means that our
36 scoring matrix is not over-fitted.
37
38

44 To check the performance of alignment of RNA sequences from specific RNA families, we
45 used the RNAStralign benchmark dataset [5]. When this benchmark dataset was aligned, TurboFold
46 II showed the best performance in case of 16S rRNA and ribonuclease P (RNase P) SPS values,
47 where RNAAlign2D was only slightly worse and outperformed other programs. RNAAlign2D
48 produced the best alignments for RNase P in terms of PPV values and for telomerase dataset (both
49 SPS and PPV). When signal recognition particle (SRP) RNA sequences were aligned, RNAAlign2D
50 outperformed only STRAL, produced very similar alignments to MAFFT (in terms of PPV) and
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65

194 worse than other programs used in the benchmark (Figures 4–5). In general, among alignment of all
195 the analyzed RNAs from different families, alignment of the SRP RNA yielded the lowest SPS and
2
3 PPV. Examples of alignments for each of the above-mentioned families are shown in Figure 6.
4
5
6
7
8
9

97 The SPSs, PPVs, and standard deviations from the alignment of all datasets with all the
7
8 alignment tools tested are summarized in Supplementary Table S1.
9

10
11 *Structural distance*
12

1300 As expected, programs that utilize known RNA structures produce better structural alignments
14
15 than those that predict 2D structures. For the BraliBase2.1 benchmark, RNAAlign2D, LocARNA,
16
17 and CARNA have similar, very low mean structural distances, while for STRAL and TurboFold II
18
19 these distances are much higher (Figure 7). A similar situation is observed for 16S rRNA and RNase
20
21 P datasets from the RNAStralign benchmark. For SRP and telomerase datasets, the programs that
22
23 utilize the Sankoff algorithm outperform RNAAlign2D, which in turn outperforms STRAL and
24
25 TurboFold II (Figure 8).
26
27
28

29
30 *Alignment time*
31

3208 Alignment times from each of the analyzed groups of RNAs from the RNAStralign benchmark
33
34 datasets were determined and compared. RNAAlign2D was the fastest tool for the alignment of
35
36 datasets containing 20 and 10 molecules (Figure 9), with the alignment time varying from < 1 to 4
37
38 s. STRAL had a similar runtime for datasets containing five molecules. However, in the case of 16S
39
40 rRNA, we were unable to perform alignment with STRAL due to ‘Segmentation fault’ error.
41
42 Alignment lasted 5–3061 s for LocARNA, 3–34198 s for CARNA, 1–284 s for MAFFT, 24–27252
43
44 s for TurboFold II, and between <1 and 20 s for STRAL. Therefore, by simplifying the sequence
45
46 and 2D structure to pseudo-amino acid sequence as well as using MUSCLE protein aligner, we
47
48 shortened the alignment time enormously. The obtained results are summarized in Supplementary
49
50 Table S2.
51
52
53
54
55

56
57 **Discussion**
58

59
60
61
62
63
64
65

220 RNAAlign2D is an extremely fast RNA alignment tool and thus allows the alignment of
221 hundreds of RNA molecules in a very short time. It mediates alignment of RNA molecules with
222 known 2D structures, where 2D structure is required as part of the input. RNAAlign2D contains an
223 option to model missing structures by using RNAfold from the ViennaRNA package [22], but in
224 contrast to some existing programs (such as TurboFold II [5]), optimization of the structure
225 prediction algorithm was beyond the scope of the project. Our tool is optimized for RNAs with
226 known 2D structures. The biggest advantage of RNAAlign2D is its faster speed in comparison to
227 other tools, which was achieved by transformation of the sequence and 2D structure to pseudo-
228 amino acid sequence followed by using a protein aligner (MUSCLE) to perform multiple sequence
229 alignment (Figure 1). We chose MUSCLE aligner because of its good performance between 200
230 and 1000 sequences, which in our opinion would be the most common range of sequence number
231 for RNAAlign2D [23]. It is worth noting that the pseudo-amino acid term introduced in this paper
232 refers to the method of encoding RNA sequence and 2D structure information as amino acid
233 sequence, although it shares no similarities with pseudo amino acid composition (PseAAC)
234 introduced by Chou, 2001 [24].

355 Overall, the RNAAlign2D alignment performance (as indicated by SPSs and PPVs) is similar to
356 LocARNA, CARNA, and TurboFold II, but RNAAlign2D aligned the RNA sequences several
357 hundred times faster than those tools. In some cases (e.g. RNase P and telomerase), it produced
358 better alignment. In comparison to MAFFT and STRAL, RNAAlign2D produced better alignment in
359 the majority of benchmark datasets. However, alignment accuracy was strongly dependent on the
360 RNA family and the different average pairwise sequence identity (APSI) values of the aligned
361 sequences. Based on our benchmark results, RNAAlign2D can be recommended as a first-choice tool
362 for the alignment of large numbers of sequences with an $APSI \geq 50\%$. For instance, it can be used to
363 align all members of a particular RNA family or all known tRNA isoacceptors/isodecoders for a
364 specific amino acid. Results of such alignments can be further utilized to perform and/or improve
365 3D structure modeling.

61
62
63
64
65

246 For sequences with a low APSI (e.g. SRP RNA sequences in the RNAStralign benchmark, with
247 average APSI = 38.7%), the performance of alignment with RNAlign2D was worse than that with
248 LocARNA, CARNA, TurboFold II and MAFFT. It can be expected that a scoring matrix optimized
249 for multiple RNA families could be sub-optimal for at least some of these families, including SRP
250 in this case. We observed that in comparison to the SRP reference alignments, RNAlign2D
251 introduced in general fewer gaps, especially in the stem regions and single-nucleotide bulges.
252 Additionally, the introduced gaps are usually longer. This issue can be solved by changing the
253 parameters in the scoring matrix, decreasing gap-opening penalty, or creating a scoring matrix
254 optimized for the particular RNA family.
255

256 In terms of structural alignment quality, measured as mean structural distance between
257 consensus structure and all structures in the input, RNAlign2D outperforms tools that use RNA
258 structure prediction (STRAL and TurboFold II), which was expected. In comparison to other tools
259 that utilize known RNA structure (LocARNA and CARNA), our tool was worse in the cases of
260 telomerase and SRP, and at a very similar level for other datasets. It is worth noting here that better
261 sequence alignment does not always mean smaller structural distance (as for the telomerase
262 dataset).
263

264 We believe that there is still field for improvement of our approach in the future. To perform the
265 best benchmark possible, we decided to use most of the available alignments for benchmark
266 purposes. Therefore our training set was very limited. In case of the more manually curated
267 structural alignments were available, it might be possible to introduce machine learning methods for
268 optimization of either parameters specified in this publication or even each of the scoring matrix
269 parameters.
270

271 **Conclusions**

272 In conclusion, RNAlign2D uses a novel approach to align RNAs with known 2D structures,
273 and with the growing number of experimentally determined RNA 2D structures, this approach will
274

272 be further improved by optimization of scoring matrices for the particular RNA families and/or
273 utilizing different aligners. It offers a reliable compromise between the computationally demanding
274 approaches and fast, but much less accurate ones.
275
276

876 Materials and Methods

10 1277 *Benchmark – sum-of-pair-scores (SPSs) and positive predictive values (PPVs)*

13 1278 For benchmark purposes, RNAlign2D was compared with LocARNA (version 1.9.2.3) [7] and
14 1279 CARNA (version 1.3.4) [8], which represent other tools that use a fixed 2D structure for multiple
15 1280 RNA alignment, but also TurboFold II (version 6.2) [5] and MAFFT (version 2) [6], which produce
16 1281 the best alignments in another benchmark [5], and STRAL (version 0.5.4) [17] (with ViennaRNA
17 1282 1.8.5 [25]), which uses a similar approach to encode sequence and structure. We used two available
18 1283 benchmark datasets: BraliBase 2.1 (k2, k3, k5, k10 and k15, where k indicates the number of
19 1284 aligned sequences) [20] and the dataset in RNAStralign [5]. First, we excluded tRNA sequences
20 1285 from BraliBase 2.1 to avoid a bias towards sequences whose identities are in the ‘twilight zone’ and
21 1286 range from 40% to 60%, most of which are tRNAs [5]. The BraliBase 2.1 dataset does not contain
22 1287 information about the secondary structures of aligned RNA molecules. Therefore, we first
23 1288 downloaded data indicating the secondary structures of all RNAs in the RFAM database [26], which
24 1289 was used to create the BraliBase 2.1 benchmark dataset, from the bpRNA-1m database [3]. Next,
25 1290 we converted the downloaded .ct files to dot-bracket format. To that end, we first removed all
26 1291 commentary lines from the .ct files using a custom Python script and then performed format
27 1292 conversion with the ct2dot tool from the RNAstructure package [27]. Finally, we used a custom
28 1293 Python script to add 2D structures to the BraliBase 2.1 raw.fa files and saved only the files that
29 1294 contained 2D structures for all sequences. Additionally, for files used as input for LocARNA and
30 1295 CARNA, we added ‘#FS’ (which is required to align fixed 2D structures) to the end of each 2D
31 1296 structure line. For MAFFT, STRAL, and TurboFold II, we used regular fasta files containing only
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

297 sequence as input. A complete list of files used, together with overlapping with k7 dataset used for
298 optimization of the scoring matrix, is provided in Supplementary Table S3.

2
3
4 The benchmark on RNAsralign dataset was made as described by Tan et al. [5]. Namely, we
5
6 generated 200 groups of 5, 10 or 20 sequence homologs selected from 16S rRNA sequences from
7
8 Alphaproteobacteria, RNase P RNA sequences (bacterial type A subfamily), signal recognition
9
10 particle (SRP) RNA sequences (protozoan subfamily), and telomerase RNA sequences.

11
12
13 In the case of 16S rRNA sequences from Alphaproteobacteria, we observed differences
14
15 between some sequences in the ct files used as a test set and fasta file with reference alignment.
16
17
18 Therefore, we first removed the sequences that differed from both the test and reference sets
19
20 (RNAsralign IDs AB242948, AF301221, AY306224, AY436803, AY466761, AY785314, D14426,
21
22 D14427, D14428, D14429, D14430, D14434, D14435, D84526, DQ303351, M803809, U71005,
23
24
25 X79735, and X79738) and then proceeded to selection and analysis.

26
27
28 Sequences from the protozoan SRP reference alignment file contain a considerably higher
29
30 number of unknown bases (Ns) than the same sequences in the test dataset used to perform
31
32 alignments. Therefore, we utilized a custom Python script to replace unknown bases in the reference
33
34 sequences based on the test dataset sequences and then employed these corrected reference
35
36 sequences to calculate alignment accuracy.

37
38
39 We ran LocARNA, CARNA, STRAL, TurboFold II, and RNAlign2D ('simple' mode) with the
40
41 following default parameters to align the complete benchmark datasets: #locARNA, mlocarna
42
43 \$file.raw.fa; #CARNA, mlocarna -pw-aligner carna \$file.raw.fa; #STRAL, ./stral \$file.fa;
44
45
46 TurboFold II, ./TurboFold \$file.config.txt (Mode = MEA, Gamma = 0.3, Iterations = 3,
47
48 MaximumPairingDistance = 0, Temperature = 310.15) ; #RNAlign2D, rnalign2d -i \$file.raw.fa -o
49
50 \$file.raw.fa.out. MAFFT was used in mxscarna mode, to predict RNA 2D structure #
51
52
53 ./mafft_mxscarnamode \$file.fa.

54
55
56 In the next step, SPSs and PPVs were calculated for each alignment. The output files of
57
58 LocARNA and CARNA are in ClustalW aln format. To perform the calculations, we converted
59
60 LocARNA and CARNA are in ClustalW aln format. To perform the calculations, we converted
61
62
63
64
65

323 these files to FASTA format using the fasconvert tool from the FAST package (version 1.06) [28].
324 The output of RNAlign2D is a modified FASTA format including a header followed by a line
2
325 containing the sequence and 2D structure in dot-bracket format. Therefore, the 2D structure line
4
5
626 was removed using sed (sed 'n; n; d' < \$file.raw.fa.out > \$file.out.fasta). Other programs used in
7
827 benchmark return output in fasta format, but STRAL put the empty line between aligned sequences.
9
10
1128 This empty line was removed using sed (sed -i '/^\$/d' \$file.fa.out). FASTA files were sorted using a
12
1329 custom Perl script. SPS values were calculated using the compalignp program [29], where they are
14
15
1630 defined as the averaged identity over all $N(N-1)/2$ pairwise alignments. PPVs were calculated by
17
1831 applying a modified Python script used by another group [5]. Firstly, positions for each nucleotide
19
20
2132 in the test set and real set were calculated. In the next step, columns for each position were
22
2333 generated. Then the common part between columns (true positives) and difference between the test
24
25
2634 set and real set (false positives) were calculated. PPV was defined as the ratio of true positives to
27
2835 the sum of true positives and false positives.
29

3036 To compare the mean SPSs and PPVs from RNAlign2D and other benchmarked programs, we
31
3237 applied the two-sided t-test, because of its better performance in comparison to non-parametric
34
3538 statistical test for large sample sizes, also when analyzed data are not normally distributed [30,31].
36
37
3839 *Structural distance*

3940 To compare structural alignment accuracy between benchmarked programs, we calculated a
41
42
4341 mean from structural distances between consensus structure from each alignment and every single
44
45
4642 structure taken as input to the alignment, using RNAdistance (string alignment and full distance)
47
4843 from ViennaRNA package [22]. Consensus structures were calculated using custom Python script.
49
50
5144 We were unable to retrieve secondary structures predicted by MAFFT, therefore we excluded
52
53
5445 MAFFT from this analysis. t-test was used to measure statistical significance between mean
55
56
5746 structural distances. For the scoring matrix optimization purposes on k7 BraliBase 2.1 dataset 1 –
58
59
6047 (mean_distance/length of consensus structure) was used as a structural distance score.

61
62
63
64
6548 *Alignment time*

349 To determine the time required to perform each alignment, we used 40 groups of 5, 10 or 20
350 sequence homologs from the RNAStralign benchmark dataset. The LocARNA, CARNA, TurboFold
2
351 II, MAFFT, STRAL, and RNAlign2D running times for each group were measured using the bash
4
5
652 ‘time’ command.
7
853 *Figures*
9

10
1154 Figures 1–5 and 7–9 were generated using ggpubr package [32] with R.3.6.3 [33].
12
1355
14
15
1656 **Availability and Requirements**
17
1857 Project name: RNAlign2D
19
2058 Project home page: <https://github.com/tomaszwozniakihg/rnalign2d>
21
2259 Operating system(s): Linux, Mac OSX
23
2460 Programming language: Python 3
25
2661 Other requirements: MUSCLE (tested on version 3.8.31), pytest (tested on version 5.1.3), Vienna
27
2862 RNA (optional, tested on version 2.4.14)
29
3063 License: MIT
31
3264 Any restrictions to use by non-academics: no
33
3465
35
3666 **List of abbreviations**
37
3867 tRNA: transfer RNA
39
4068 2D structure: secondary structure
41
4269 rRNA: ribosomal RNA
43
4470 SPS: Sum-of-pair score
45
4671 PPV: Positive predictive value
47
4872 RNase P: Ribonuclease P
49
5073 SRP: Signal recognition particle
51
5274 APSI: Average per sequence identity
53
54
5575
56
5776
58
5977
60
61
62
63
64
65

375

376 **Declarations**

2
377 Ethics approval and consent to participate: Not applicable
4

5
678 Consent for publication: Not applicable
7

879 **Availability of data and materials**
9

10
1280 All data generated or analyzed during this study are included in this published article and its
12
1381 supplementary information files.
14

15
1682 **Competing interests**
17

1883 The authors declare that they have no competing interests
19

20
2184 **Funding**
22

2385 Funding for open access charge: Institute of Human Genetics, Polish Academy of Sciences. The
24
2586 funding body did not play any roles in the study design; nor in the data collection, analysis and
26
2787 interpretation, or in the writing of the paper.
28

29
3088 **Authors' contributions**
31

32
3389 Conceptualization, T.W. and M.P.S.; Data curation, M.P.S.; Formal analysis, T.W., M.S., and M.P.S.;
34
3590 Investigation, T.W. and M.P.S.; Methodology, T.W., M.S., and M.P.S.; Resources, J.J.; Software,
36
37891 T.W.; Supervision, M.P.S.; Visualization, T.W., M.S., and M.P.S.; Writing – original draft, T.W. and
38
3992 M.P.S; Writing – review & editing, T.W., M.S., J.J., and M.P.S.
40

41
42893 All authors have read and approved the final version of the manuscript.
43

44
4594 **Acknowledgements**
46

4795 We thank Dr. David Mathews and Dr. Zen Tan for providing useful scripts to calculate alignment
48
4996 accuracy, Dr. Tomasz Górecki for discussions of statistical analysis, Matisa Alla, Amber Baldwin
50
5197 and Kimberly Wellman for critical reading the manuscript.
52

53
5498 Some part of this work was previously presented as a poster entitled “RNAAlign2D- RNA sequence
55
56 and structure multiple alignment tool, based on pseudo-amino acids substitution matrix”, at the
57
5899 Autumn Workshop PTBI 2020.
59
6000

61
62
63
64
65

401

402 **References**

2

3 1. Morris KV, Mattick JS. The rise of regulatory RNA. *Nat. Rev. Genet.* 2014;15:423–437;doi:
4 10.1038/nrg3722.

5

6 2. Capriotti E, Marti-Renom MA. Quantifying the relationship between sequence and three-
7 dimensional structure conservation in RNA. *BMC Bioinformatics*
8

9 1406 2010;11:322;doi:10.1186/1471-2105-11-322.

10

11 3. Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. BPRNA: Large-scale automated
12 annotation and analysis of RNA secondary structure. *Nucleic Acids Res.* 2018;46:5381–
13 5394;doi:10.1093/nar/gky285.

14

15 4. Kwok KC, Tang Y, Assmann SM, Bevilacqua PC. The RNA structurome: transcriptome-wide
16 structure probing with next-generation sequencing. *Trends Biochem. Sci.* 2015;40:221–232;doi:
17

18 2413 10.1016/j.tibs.2015.02.005.

19

20 5. Tan Z, Fu Y, Sharma G, Mathews DH. TurboFold II: RNA structural alignment and secondary
21 structure prediction informed by multiple homologs. *Nucleic Acids Res.* 2017;45:11570–
22 11581;doi:10.1093/nar/gkx815.

23

24 6. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural
25 information into a MAFFT-based framework. *BMC Bioinformatics* 2008;9:212,
26

27 4419 doi:10.1186/1471-2105-9-212.

28

29 7. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring Noncoding RNA Families and
30 Classes by Means of Genome-Scale Structure-Based Clustering. *PLoS Comput. Biol.*
31

32 4721 2007;3:e65;doi:10.1371/journal.pcbi.0030065.

33

34 8. Sorescu, DA, Möhl M, Mann M, Backofen R, Will S. CARNA-alignment of RNA structure
35 ensembles. *Nucleic Acids Res.* 2012;40:49–53;doi:10.1093/nar/gks491.

36

37 5425 9. Sankoff, D. Simultaneous solution of the RNA folding, alignment and protosequence problems.
38

39 5926 SIAM J. Appl. Math. 1985;45:810-825

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

427 10. Sundfeld D, Havgaard J.H, de Melo A.C, Gorodkin J. Foldalign 2.5: multithreaded
428 implementation for pairwise structural RNA alignment. *Bioinformatics*. 2016;32:1238-1240;doi:
2
3
4
5
6
7
8
9
10
11. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus
12 structure prediction for RNA alignments. *BMC Bioinformatics*. 2008;9:474;doi: 10.1186/1471-
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
10. Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R. RNASHapes: an integrated RNA
analysis package based on abstract shapes. *Bioinformatics*. 2006;22:500-503;doi:
10.1093/bioinformatics/btk010.
13. Hochsmann M, Toller T, Giegerich R, Kurtz S. Local similarity in RNA secondary structures.
Proceedings of the IEEE Bioinformatics Conference 2003. 2003;2:159–168
14. Nawrocki EP. Structural RNA Homology Search and Alignment using Covariance Models.
Ph.D. thesis, Washington University in Saint Louis, School of Medicine; 2009.
15. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Res. 2004;32:1792–1797;doi:10.1093/nar/gkh340.
16. Hofacker IL, Fontana W, Stadler, PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and
comparison of RNA secondary structures. *Chemical Monthly*. 1994;125:167-188
17. Dalli D, Wilm A, Mainz I, Steger G. STRAL: progressive alignment of non-coding RNA using
base pairing probability vectors in quadratic time. *Bioinformatics*. 2006;22:1593-1599;doi:
10.1093/bioinformatics/btl142.
18. Staple DW, Butcher SE. Pseudoknots: RNA Structures with Diverse Functions. *PLoS Biol.*
2005,3:e213;doi: 10.1371/journal.pbio.0030213.
19. Antczak M, Popenda M, Zok T, Zurkowski M, Adamiak RW, Szachniuk M. New algorithms to
represent complex pseudoknotted RNA structures in dot-bracket notation. *Bioinformatics*.
2018,15:1304–1312;doi: 10.1093/bioinformatics/btx783.

452 20. Wilm A, Mainz I, Steger G. An enhanced RNA alignment benchmark for sequence alignment
453 programs. *Algorithms Mol. Biol.* 2006;1:1–11;doi:10.1186/1748-7188-1-19.
2
3
454 21. Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, Wirecki TK, de Crécy-Lagard
4
5
655 V, Ross R, Limbach P.A, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA
7
856 modification pathways. 2017 update. *Nucleic Acids Res.* 2018;46:D303–
9
10
1457 D307;doi:10.1093/nar/gkx1030.
12
1458 22. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL.
14
15
1659 ViennaRNA Package 2.0. *Algorithms Mol. Biol.* 2011;6:26;doi:10.1186/1748-7188-6-26.
17
1460 23. Le Q, Sievers F, Higgins DG. Protein multiple sequence alignment benchmarking through
19
20
2161 secondary structure prediction. *Bioinformatics* 2017;33:1331–
22
2362 1337;doi:10.1093/bioinformatics/btw840.
24
2563 24. Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition.
26
27
2864 *Proteins Struct. Funct. Genet.* 2001;43:246–255;doi:10.1002/prot.1035.
29
3065 25. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA Websuite.
31
32
3366 *Nucleic Acids Res.* 2008;W70–W74;doi:10.1093/nar/gkn188
34
3567 26. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn
36
37
3868 RD, Petrov AI. Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families.
39
40
4169 *Nucleic Acids Res.* 2018;46:D335–D342;doi:10.1093/nar/gkx1038.
42
4370 27. Reuter JS, Mathews DH. RNAstructure: Software for RNA secondary structure prediction and
44
45
4671 analysis. *BMC Bioinformatics* 2010;11:129;doi:10.1186/1471-2105-11-129.
47
48
4972 28. Lawrence TJ, Kauffman KT, Amrine KCH, Carper DL, Lee RS, Becich PJ, Canales CJ, Ardell
50
51
5273 DH. FAST: FAST Analysis of Sequences Toolbox. *Front. Genet.*
53
54
5574 2015;6:172;doi:10.3389/fgene.2015.00172.
56
57
5875 29. BRAliBase (2.1). <http://www.biophys.uni-duesseldorf.de/bralibase/>
59
60
6176 30. Canavos GC. The sensitivity of the one-sample and two-sample Student t statistics. *Comput Stat
62
63
6477 Data Anal.* 1988;6:39–46;doi: 10.1016/0167-9473(88)90061-8.
65

478 31. Fagerland WM. t-tests, non-parametric tests, and large studies—a paradox of statistical
479 practice?. BMC Med Res Methodol. 2012;12:78;doi: 10.1186/1471-2288-12-78.
2
3
4
5
6
7
8
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

180 32. Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. <https://cran.r-project.org/web/packages/ggpubr/>
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
555100
555101
555102
555103
555104
555105
555106
555107
555108
555109
555110
555111
555112
555113
555114
555115
555116
555117
555118
555119
555120
555121
555122
555123
555124
555125
555126
555127
555128
555129
555130
555131
555132
555133
555134
555135
555136
555137
555138
555139
555140
555141
555142
555143
555144
555145
555146
555147
555148
555149
555150
555151
555152
555153
555154
555155
555156
555157
555158
555159
555160
555161
555162
555163
555164
555165
555166
555167
555168
555169
555170
555171
555172
555173
555174
555175
555176
555177
555178
555179
555180
555181
555182
555183
555184
555185
555186
555187
555188
555189
555190
555191
555192
555193
555194
555195
555196
555197
555198
555199
555200
555201
555202
555203
555204
555205
555206
555207
555208
555209
555210
555211
555212
555213
555214
555215
555216
555217
555218
555219
555220
555221
555222
555223
555224
555225
555226
555227
555228
555229
555230
555231
555232
555233
555234
555235
555236
555237
555238
555239
555240
555241
555242
555243
555244
555245
555246
555247
555248
555249
555250
555251
555252
555253
555254
555255
555256
555257
555258
555259
555260
555261
555262
555263
555264
555265
555266
555267
555268
555269
555270
555271
555272
555273
555274
555275
555276
555277
555278
555279
555280
555281
555282
555283
555284
555285
555286
555287
555288
555289
555290
555291
555292
555293
555294
555295
555296
555297
555298
555299
555300
555301
555302
555303
555304
555305
555306
555307
555308
555309
555310
555311
555312
555313
555314
555315
555316
555317
555318
555319
555320
555321
555322
555323
555324
555325
555326
555327
555328
555329
555330
555331
555332
555333
555334
555335
555336
555337
555338
555339
555340
555341
555342
555343
555344
555345
555346
555347
555348
555349
555350
555351
555352
555353
555354
555355
555356
555357
555358
555359
555360
555361
555362
555363
555364
555365
555366
555367
555368
555369
555370
555371
555372
555373
555374
555375
555376
555377
555378
555379
555380
555381
555382
555383
555384
555385
555386
555387
555388
555389
555390
555391
555392
555393
555394
555395
555396
555397
555398
555399
555400
555401
555402
555403
555404
555405
555406
555407
555408
555409
555410
555411
555412
555413
555414
555415
555416
555417
555418
555419
555420
555421
555422
555423
555424
555425
555426
555427
555428
555429
555430
555431
555432
555433
555434
555435
555436
555437
555438
555439
555440
555441
555442
555443
555444
555445
555446
555447
555448
555449
555450
555451
555452
555453
555454
555455
555456
555457
555458
555459
555460
555461
555462
555463
555464
555465
555466
555467
555468
555469
555470
555471
555472
555473
555474
555475
555476
555477
555478
555479
555480
555481
555482
555483
555484
555485
555486
555487
555488
555489
555490
555491
555492
555493
555494
555495
555496
555497
555498
555499
555500
555501
555502
555503
555504
555505
555506
555507
555508
555509
555510
555511
555512
555513
555514
555515
555516
555517
555518
555519
555520
555521
555522
555523
555524
555525
555526
555527
555528
555529
555530
555531
555532
555533
555534
555535
555536
555537
555538
555539
555540
555541
555542
555543
555544
555545
555546
555547
555548
555549
555550
555551
555552
555553
555554
555555
555556
555557
555558
555559
555560
555561
555562
555563
555564
555565
555566
555567
555568
555569
555570
555571
555572
555573
555574
555575
555576
555577
555578
555579
555580
555581
555582
555583
555584
555585
555586
555587
555588
555589
555590
555591
555592
555593
555594
555595
555596
555597
555598
555599
5555100
5555101
5555102
5555103
5555104
5555105
5555106
5555107
5555108
5555109
5555110
5555111
5555112
5555113
5555114
5555115
5555116
5555117
5555118
5555119
5555120
5555121
5555122
5555123
5555124
5555125
5555126
5555127
5555128
5555129
5555130
5555131
5555132
5555133
5555134
5555135
5555136
5555137
5555138
5555139
5555140
5555141
5555142
5555143
5555144
5555145
5555146
5555147
5555148
5555149
5555150
5555151
5555152
5555153
5555154
5555155
5555156
5555157
5555158
5555159
5555160
5555161
5555162
5555163
5555164
5555165
5555166
5555167
5555168
5555169
5555170
5555171
5555172
5555173
5555174
5555175
5555176
5555177
5555178
5555179
5555180
5555181
5555182
5555183
5555184
5555185
5555186
5555187
5555188
5555189
5555190
5555191
5555192
5555193
5555194
5555195
5555196
5555197
5555198
5555199
5555200
5555201
5555202
5555203
5555204
5555205
5555206
5555207
5555208
5555209
5555210
5555211
5555212
5555213
5555214
5555215
5555216
5555217
5555218
5555219
5555220
5555221
5555222
5555223
5555224
5555225
5555226
5555227
5555228
5555229
5555230
5555231
5555232
5555233
5555234
5555235
5555236
5555237
5555238
5555239
5555240
5555241
5555242
5555243
5555244
5555245
5555246
5555247
5555248
5555249
5555250
5555251
5555252
5555253
5555254
5555255
5555256
5555257
5555258
5555259
5555260
5555261
5555262
5555263
5555264
5555265
5555266
5555267
5555268
5555269
5555270
5555271
5555272
5555273
5555274
5555275
5555276
5555277
5555278
5555279
5555280
5555281
5555282
5555283
5555284
5555285
5555286
5555287
5555288
5555289
5555290
5555291
5555292
5555293
5555294
5555295
5555296
5555297
5555298
5555299
5555300
5555301
5555302
5555303
5555304
5555305
5555306
5555307
5555308
5555309
5555310
5555311
5555312
5555313
5555314
5555315
5555316
5555317
5555318
5555319
5555320
5555321
5555322
5555323
5555324
5555325
5555326
5555327
5555328
5555329
5555330
5555331
5555332
5555333
5555334
5555335
5555336
5555337
5555338
5555339
5555340
5555341
5555342
5555343
5555344
5555345
5555346
5555347
5555348
5555349
5555350
5555351
5555352
5555353
5555354
5555355
5555356
5555357
5555358
5555359
5555360
5555361
5555362
5555363
5555364
5555365
5555366
5555367
5555368
5555369
5555370
5555371
5555372
5555373
5555374
5555375
5555376
5555377
5555378
5555379
5555380
5555381
5555382
5555383
5555384
5555385
5555386
5555387
5555388
5555389
5555390
5555391
5555392
5555393
5555394
5555395
5555396
5555397
5555398
5555399
5555400
5555401
5555402
5555403
5555404
5555405
5555406
5555407
5555408
5555409
5555410
5555411
5555412
5555413
5555414
5555415
5555416
5555417
5555418
5555419
5555420
5555421
5555422
5555423
5555424
5555425
5555426
5555427
5555428
5555429
5555430
5555431
5555432
5555433
5555434
5555435
5555436
5555437
5555438
5555439
5555440
5555441
5555442
5555443
5555444
5555445
5555446
5555447
5555448
5555449
5555450
5555451
5555452
5555453
5555454
5555455
5555456
5555457
5555458
5555459
5555460
5555461
5555462
5555463
5555464
5555465
5555466
5555467
5555468
5555469
5555470
5555471
5555472
5555473
5555474
5555475
5555476
5555477
5555478
5555479
5555480
5555481
5555482
5555483
5555484
5555485
5555486
5555487
5555488
5555489
5555490
5555491
5555492
5555493
5555494
5555495
5555496
5555497
5555498
5555499
5555500
5555501
5555502
5555503
5555504
5555505
5555506
5555507
5555508
5555509
5555510
5555511
5555512
5555513
5555

503 Figure 5. Box and whisker plots comparing positive predictive values (PPVs) for the alignment of
504 200 groups of 5, 10, and 20 homologous sequences from the entire RNAStralign benchmark
505 2 dataset with RNAlign2D, CARNA, LocARNA, MAFFT, STRAL, and TurboFold II. P-values
506 5 were calculated using two-sided t-test.
507 7

508 8 Figure 6. Comparison of alignments produced by tools that utilize known 2D structures for
509 9 alignment (RNAlign2D, CARNA, and LocARNA) for 16S rRNA, RNase P, SRP, and telomerase
510 10 families. Examples were chosen from RNAStralign datasets containing 5 sequences. A 75-
511 11 nucleotide window is shown for each alignment. Numbers on the right side of alignments indicate
512 12 the length of a particular sequence within the 75-nt window.
513 13

514 14 Figure 7. Box and whisker plots comparing structural distances for the alignment of all sequences in
515 15 the BraliBase 2.1 benchmark dataset with RNAlign2D, CARNA, LocARNA, MAFFT, STRAL,
516 16 and TurboFold II (k indicates the number of aligned sequences). P-values were calculated using
517 17 two-sided t-test.
518 18

519 19 Figure 8. Box and whisker plots comparing structural distances for the alignment of 200 groups of
520 20 5, 10, and 20 homologous sequences from the entire RNAStralign benchmark dataset with
521 21 32 RNAlign2D, CARNA, LocARNA, MAFFT, STRAL, and TurboFold II. P-values were calculated
522 22 33 using two-sided t-test.
523 23

524 24 Figure 9. Comparison of alignment performance times between RNAlign2D, CARNA, LocARNA,
525 25 42 MAFFT, STRAL, and TurboFold II for 10 sets of 5-, 10- and 20-sequences alignment from
526 26 43 RNAStralign benchmark dataset. Measurement was not performed for STRAL and 16S rRNA
527 27 44 dataset, because of occurring ‘segmentation fault’ error. Note that time [s] is shown at the log10
528 28 45 scale.
529 29

530 30 Supplementary Figure 1. (A) Structure conversion to a pseudo-amino acid sequence for RNA with
531 31 54 higher-level pseudoknots. (B) Conversion of structure elements to pseudo-amino acids and their
532 32 55 scores (left) and the default scoring matrix (right).
533 33
534 34
535 35

536 36
537 37
538 38
539 39
540 40
541 41
542 42
543 43
544 44
545 45
546 46
547 47
548 48
549 49
550 50
551 51
552 52
553 53
554 54
555 55
556 56
557 57
558 58
559 59
560 60
561 61
562 62
563 63
564 64
565 65

529 Supplementary Table 1. Mean sum-of-pair scores (SPS) and positive predictive values (PPVs) with
530 standard deviations obtained in BraliBase2.1 and RNAStralign benchmarks. In the highlighted
2 fields, values differed between the full BraliBase2.1 benchmark (top values) and a smaller version
3 of benchmark, where datasets containing ≥ 2 (k2, k3), ≥ 3 (k5), and ≥ 5 (k10) common sequences
4
5
6
7
8
9 with k7 dataset were excluded (bottom values in parentheses).

10
11 Supplementary Table 2. Running time measurement for RNAlign2D in comparison to other
12 aligners.
13
14

15
16 Supplementary Table 3. Bralibase2.1 dataset used to prepare benchmark. Additional sheet contains
17 the numbers of overlapping sequences between the k7 dataset used for scoring matrix optimization
18 and other Bralibase2.1 datasets.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

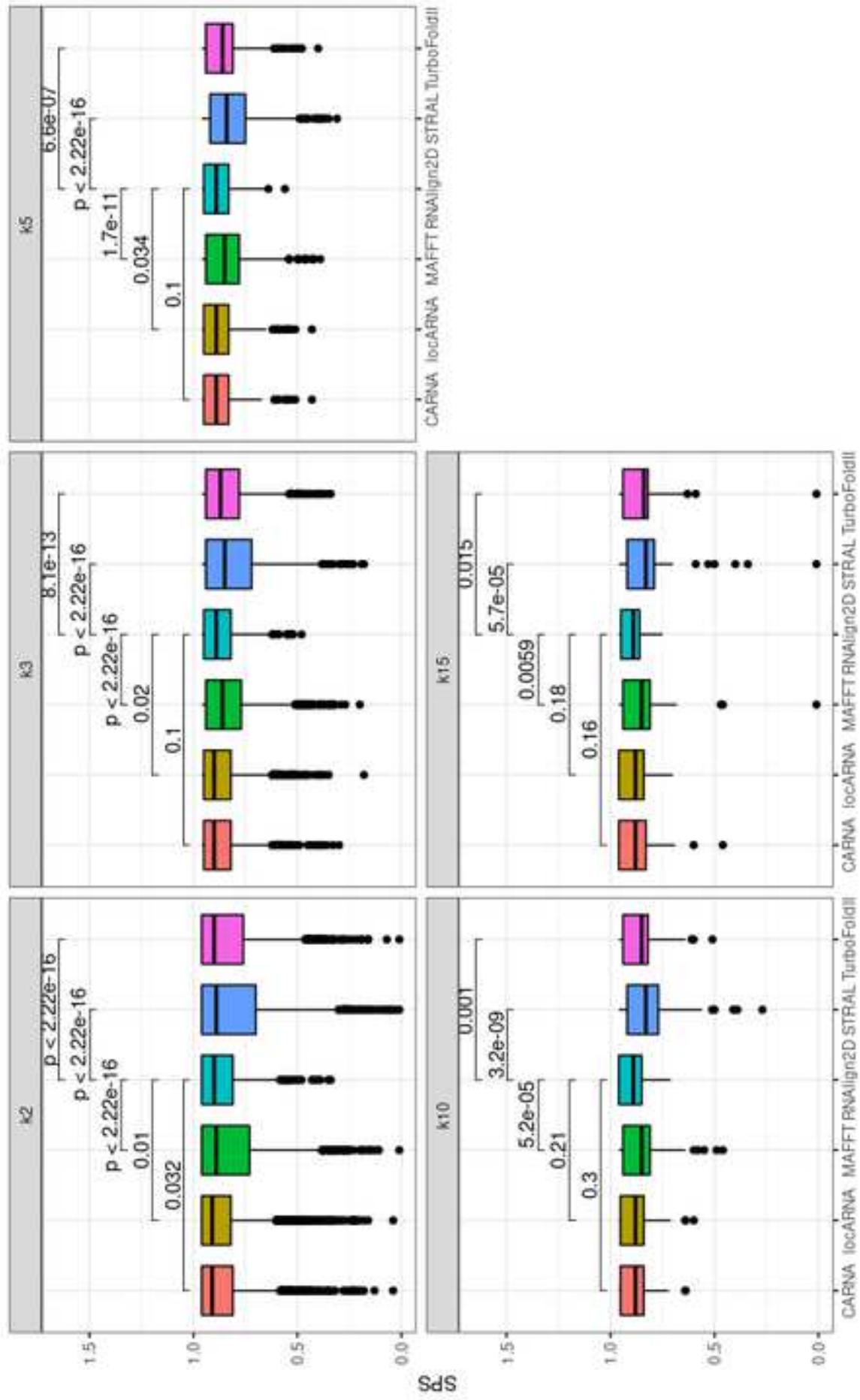


Figure 2

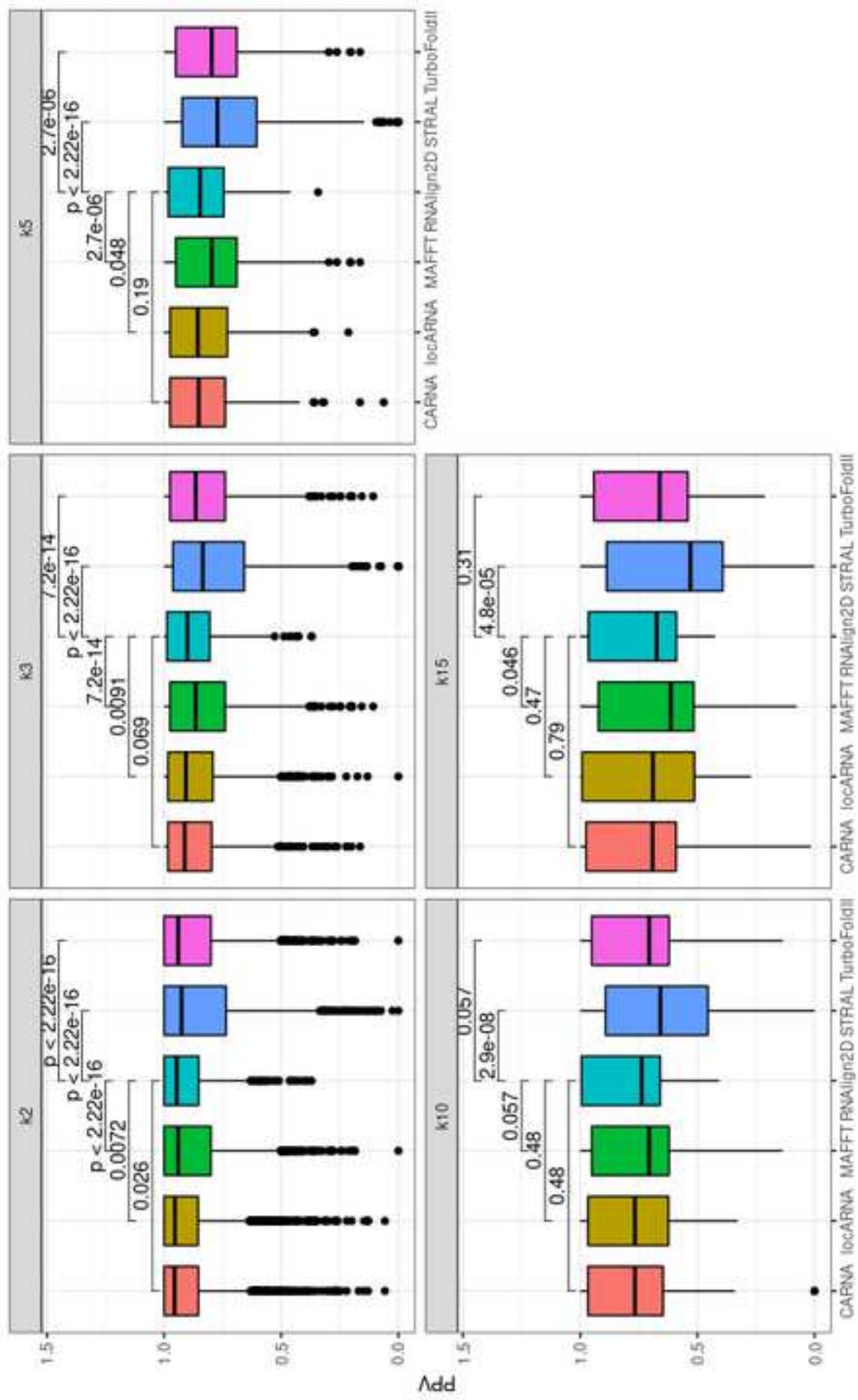


Figure 4

[Click here to access/download;Figure;Figure4.png](#)

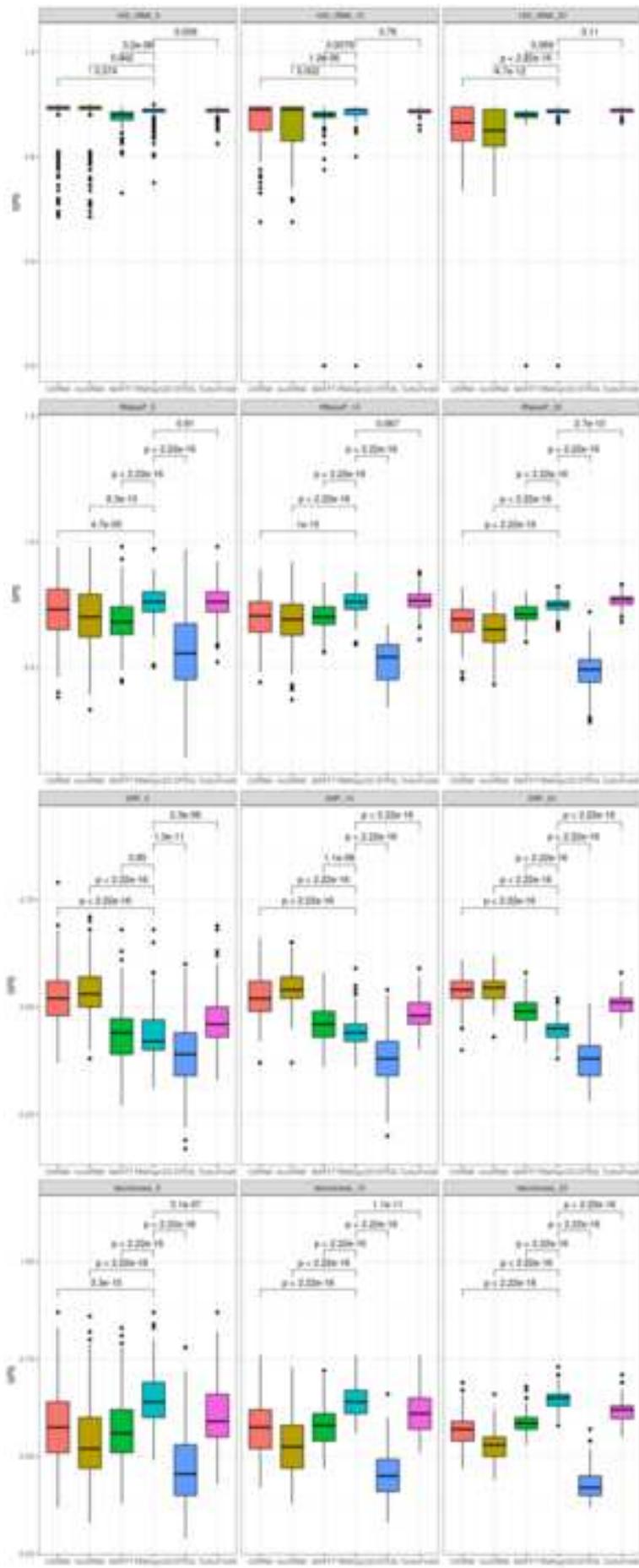
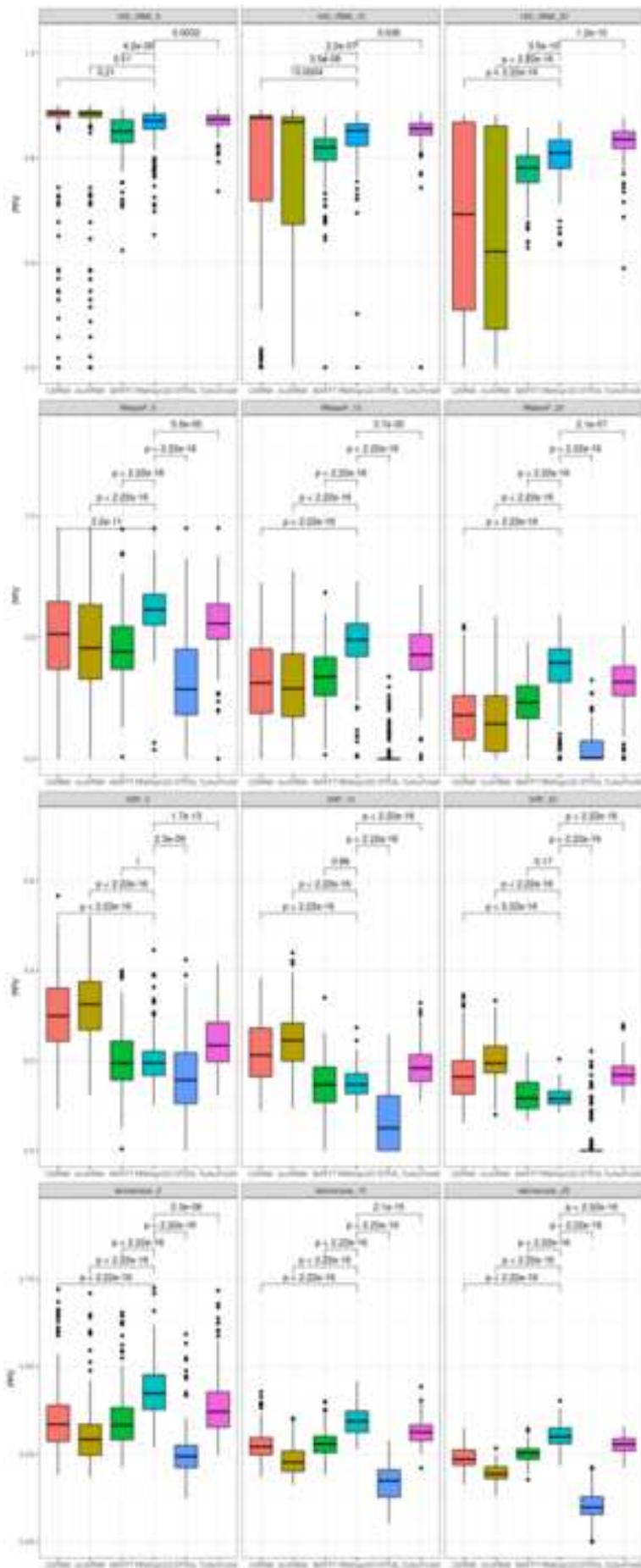



Figure 5

[Click here to access/download;Figure;Figure5.png](#)

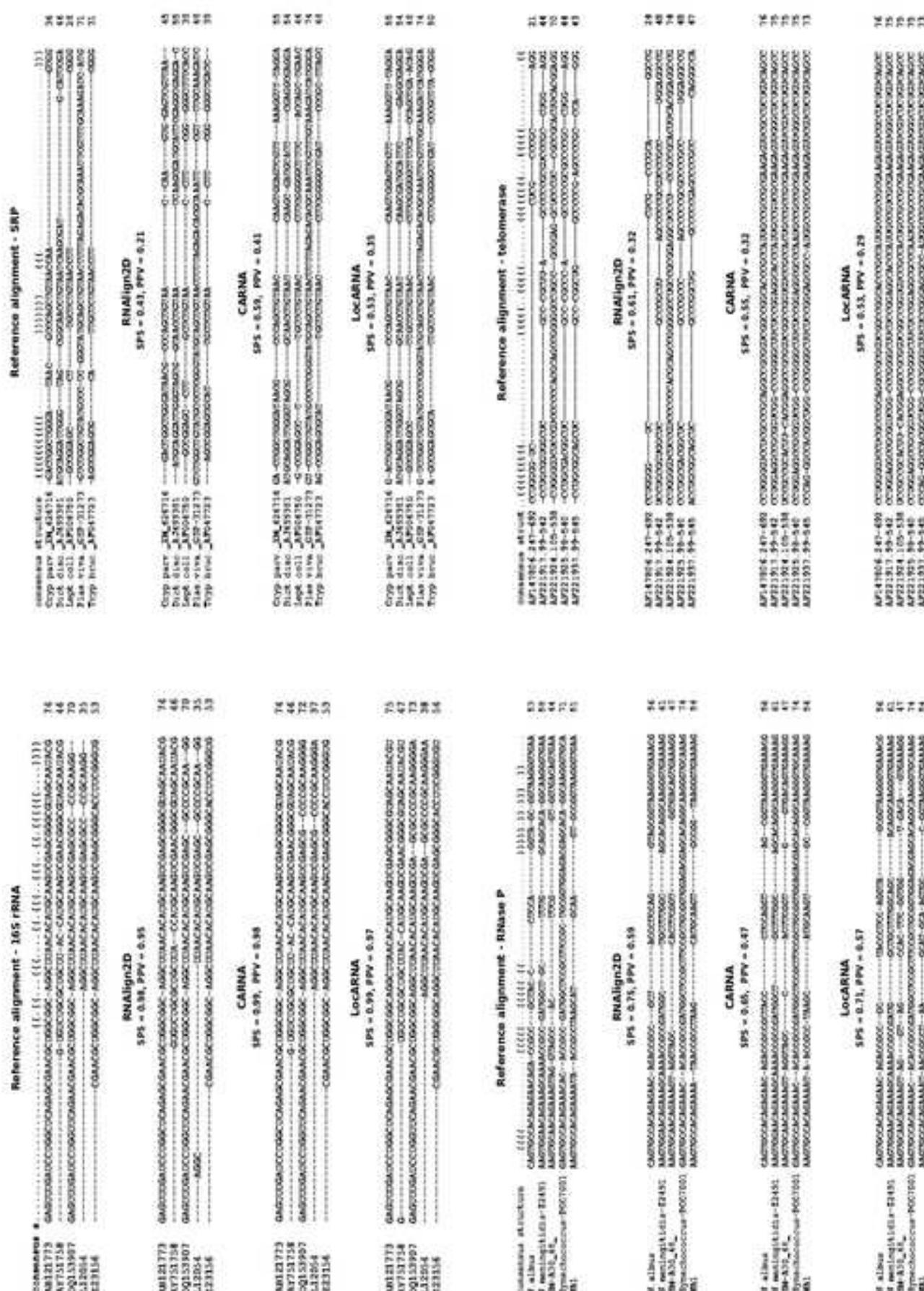


Figure 6

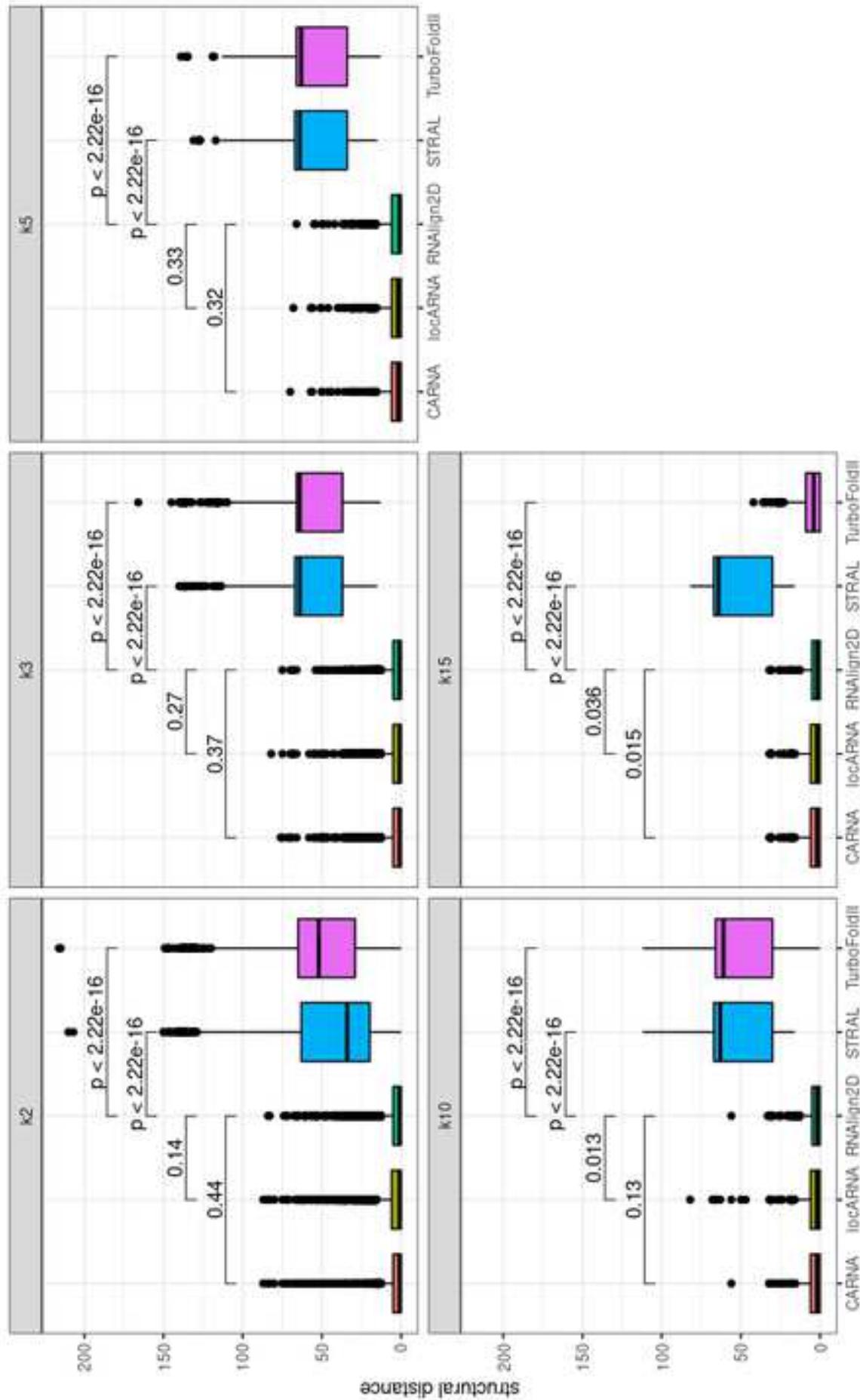
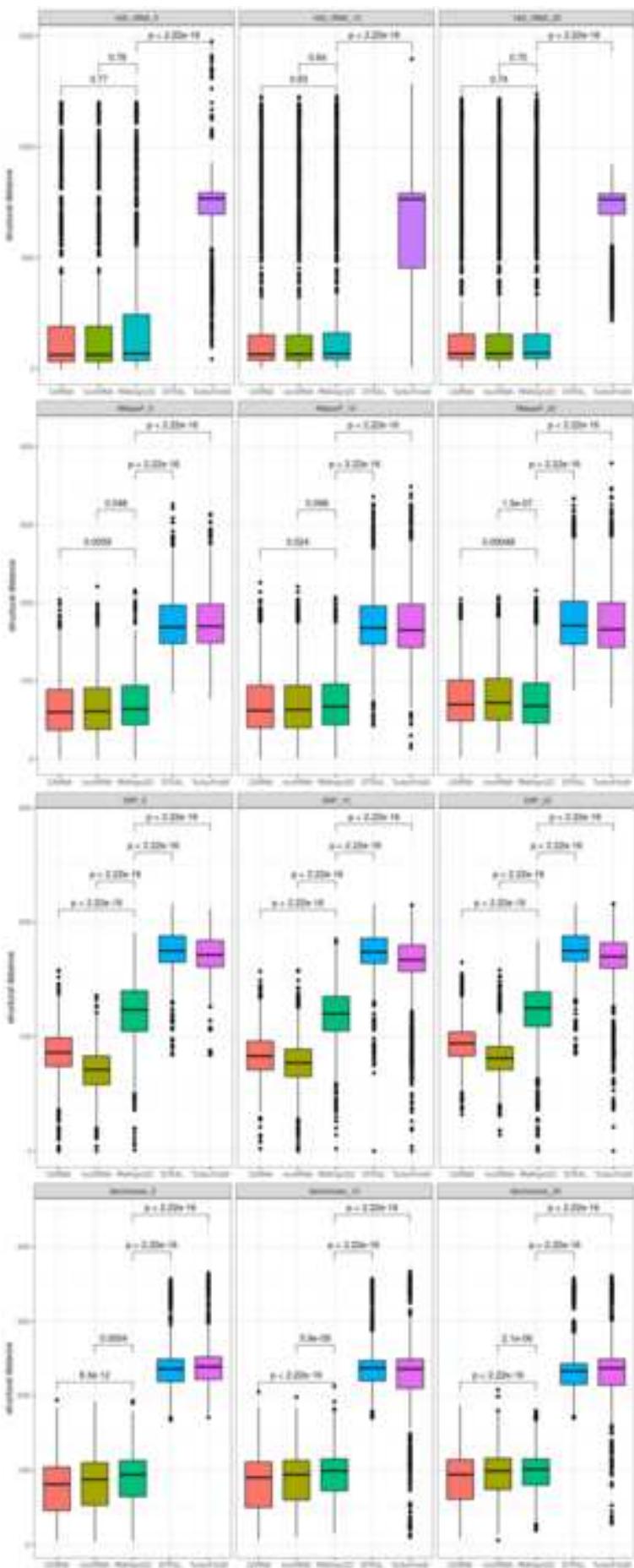
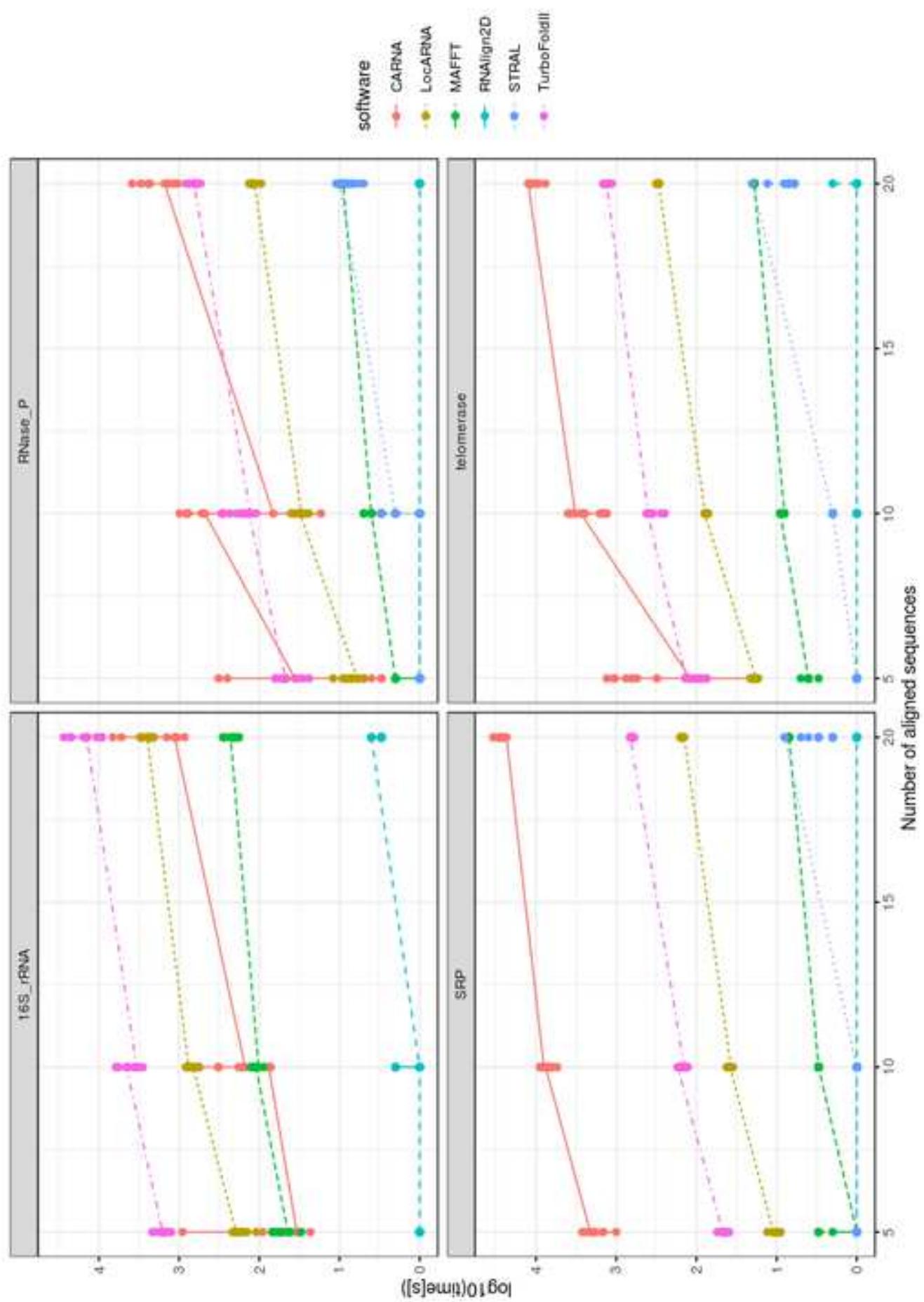
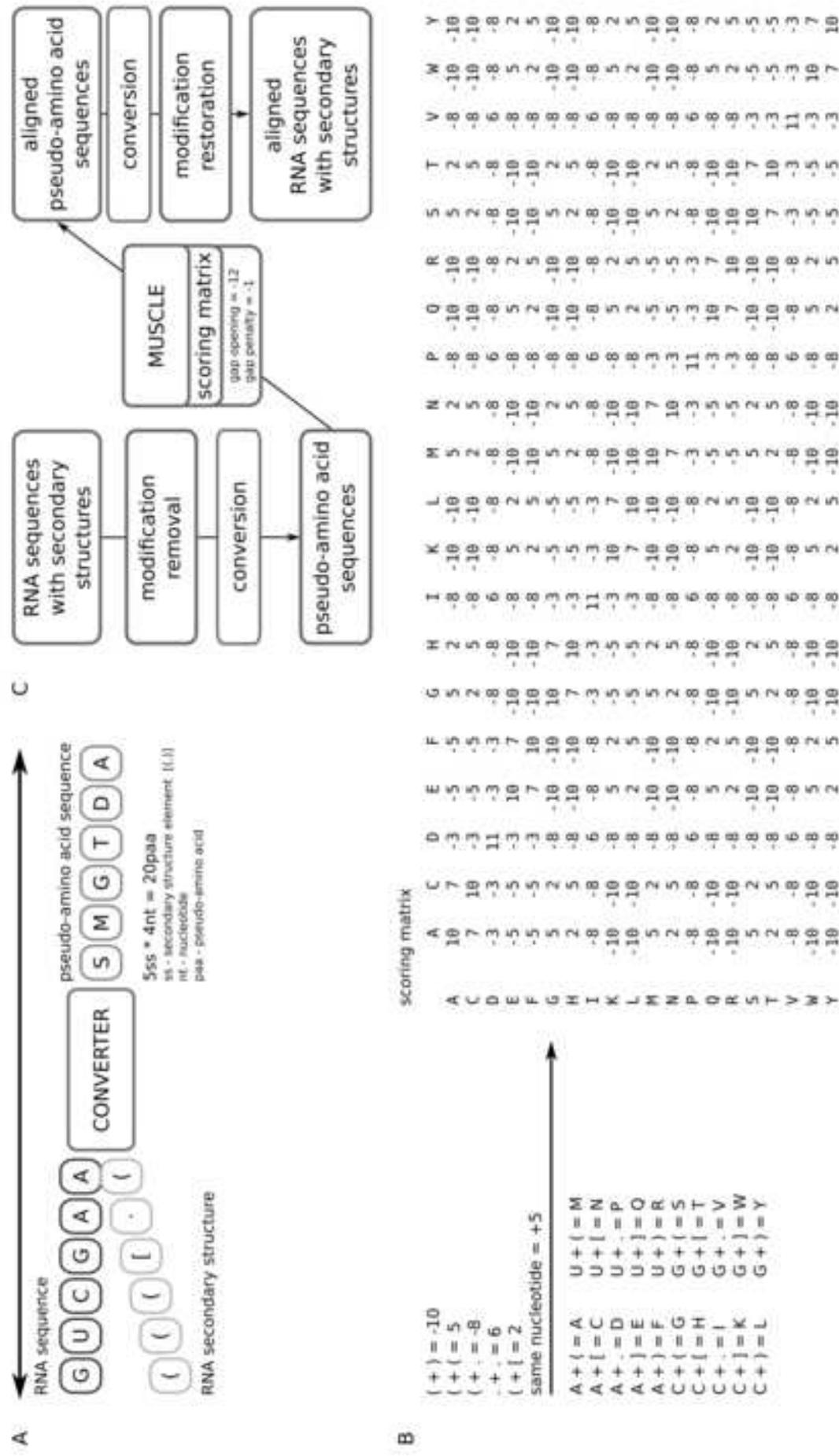





Figure 8

[Click here to access/download;Figure;Figure8.png](#)

