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Abstract 51 

Identification of patients with life-threatening diseases including leukemias or infections such 52 

as tuberculosis and COVID-19 is an important goal of precision medicine. We recently 53 

illustrated that leukemia patients are identified by machine learning (ML) based on their blood 54 

transcriptomes. However, there is an increasing divide between what is technically possible 55 

and what is allowed because of privacy legislation. To facilitate integration of any omics data 56 

from any data owner world-wide without violating privacy laws, we here introduce Swarm 57 

Learning (SL), a decentralized machine learning approach uniting edge computing, 58 

blockchain-based peer-to-peer networking and coordination as well as privacy protection 59 

without the need for a central coordinator thereby going beyond federated learning. Using 60 

more than 14,000 blood transcriptomes derived from over 100 individual studies with non-61 

uniform distribution of cases and controls and significant study biases, we illustrate the 62 

feasibility of SL to develop disease classifiers based on distributed data for COVID-19, 63 

tuberculosis or leukemias that outperform those developed at individual sites. Still, SL 64 

completely protects local privacy regulations by design. We propose this approach to 65 

noticeably accelerate the introduction of precision medicine.  66 

 67 

 68 

Introduction 69 

Fast and reliable detection of patients with severe illnesses is a major goal of precision 70 

medicine1. The measurement of molecular phenotypes for example by omics technologies2 71 

and the application of sophisticated bioinformatics including artificial intelligence (AI) 72 

approaches3–7 opens up the possibility for physicians to utilize large-scale data for diagnostic 73 

purposes in an unprecedented way. Yet, there is an increasing divide between what is 74 

technically possible and what is allowed because of privacy legislation8  (hhs.gov, 75 

https://www.hhs.gov/hipaa/index.html, 2020; Intersoft Consulting, General Data Protection 76 

Regulation, https://gdpr-info.eu; Convention for the Protection of Individuals with regard to 77 

Automatic Processing of Personal Data, https://rm.coe.int/16808ade9d). Particularly, in a 78 

global health crisis, as in the case of the infection with severe acute respiratory syndrome 79 

coronavirus 2 (SARS-CoV-2) leading to the pandemic spread of coronavirus disease 2019 80 

(COVID-19)9–11, reliable, fast, secure and privacy-preserving technical solutions based on AI 81 

principles are now believed to add to the armamentarium to quickly answer important 82 

questions in the fight against such threats12–15. These AI-based concepts range from protein 83 
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structure prediction16, drug target prediction17, knowledge sharing18, tools for population 84 

control19,20 to the assistance of healthcare personnel, e.g. by developing AI-based coronavirus 85 

diagnostic software21,22. Considering the more clinically oriented AI-based technical solutions, 86 

any such progress might also induce improvements for a variety of deadly diseases including 87 

other major infections or cancer23. For example, the principles of a recently introduced AI-88 

system for diagnosing COVID-19 pneumonia and predicting disease outcome using computed 89 

tomography22 might be further developed to identify patients with tuberculosis or lung cancer 90 

in the future24. At the same time, we need to consider important standards relating to data 91 

privacy and protection, such as Convention 108(+) of the Council of Europe (Convention for 92 

the Protection of Individuals with regard to Automatic Processing of Personal Data, 93 

https://rm.coe.int/16808ade9d), which regulate the use and sharing of health data including in 94 

AI-based approaches, irrespective of the occurrence of a pandemic crisis.  95 

AI-based solutions intrinsically rely on appropriate algorithms25, but even more so on large 96 

enough datasets for training purposes26. Since the domain of medicine is inherently 97 

decentralized, the volume of data available locally is often insufficient to train reliable 98 

classifiers27–29. As a consequence, centralization of data, for example via cloud solutions, has 99 

been one model to address the local limitations30–32. While beneficial from an AI-perspective, 100 

centralized solutions were shown to have other inherent hurdles, including increased data 101 

traffic of large medical data, data ownership, privacy and security concerns when ownership 102 

is disconnected from access and usage curation and thereby creating data monopolies 103 

favoring data aggregators26. Consequently, solutions to the challenges of central data models 104 

in AI - particular when dealing with medical data - must be effective, with high accuracy and 105 

efficiency, privacy- and ethics-preserving, secure, and fault-tolerant by design33–36. Federated 106 

AI has been introduced to address some of these aspects26,37–39. While data are kept locally 107 

(at the edge) and privacy issues are addressed40,41, the model parameters in federated AI are 108 

still handled by central custodians who as the intermediaries concentrate power of the learning 109 

to themselves. Furthermore, such star-shaped architectures decrease fault tolerance.  110 

We hypothesized that completely decentralized AI solutions overcome current technical 111 

shortcomings and at the same time accommodate for inherently decentralized data structures 112 

in medicine as well as pronounced data privacy and security regulations. The solution would 113 

1) need to keep large medical data locally with the data owner, 2) require no raw data 114 

exchange thereby also reducing data traffic and issues related to central storage, 3) provide 115 

high level data security and privacy protection, 4) guarantee secure, transparent and fair 116 

onboarding of decentralized members participating in the learning network without the need 117 

for a central custodian, 5) allow for parameter merging with equal rights for all members 118 

requiring no central custodian, and 6) protect the ML models from attacks. To address these 119 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.171009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171009
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

points, we introduce the concept of Swarm Learning (SL). SL combines decentralized 120 

hardware infrastructures, distributed ML technique based on standardized AI engines with a 121 

permissioned blockchain to securely onboard members, dynamically elect the leader among 122 

the members, and merge model parameters. All processes are orchestrated by an SL library 123 

and an iterative learning procedure applying AI solutions to compute problems with 124 

decentralized private data.  125 

Medicine is a prime example to illustrate the advantages of this AI approach. Without any 126 

doubt, numerous medical features including radiograms or computed tomographies, 127 

proteomes, metagenomes or microbiomes derived from body fluids including nasal or throat 128 

swaps, blood, urine or stool are all excellently suitable medical data for the development of AI-129 

based diagnostic or outcome prediction classifiers. We here chose to evaluate the cellular 130 

compartment of peripheral blood, either in form of peripheral blood mononuclear cells (PBMC) 131 

or whole blood-derived transcriptomes, since blood-derived transcriptomes include important 132 

information about the patients’ immune response during a certain disease, which in itself is an 133 

important molecular information42,43. In other words, in addition to the use of blood-derived 134 

high-dimensional molecular features for a diagnostic or outcome classification problem, blood 135 

transcriptomes could be further utilized in the clinic to systematically characterize ongoing 136 

pathophysiology, predict patient-specific drug targets and trigger additional studies targeting 137 

defined cell types or molecular pathways, making this feature space even more attractive to 138 

answer a wide variety of medical questions. Here, we illustrate that newly generated blood 139 

transcriptome data together with data derived from more than 14,000 samples in more than 140 

100 studies combined with AI-based algorithms in a Swarm Learning environment can be 141 

successfully applied in real-world scenarios to detect patients with leukemias, tuberculosis or 142 

active COVID-19 disease in an outbreak scenario across distributed datasets without the 143 

necessity to negotiate and contractualize data sharing. 144 

 145 

 146 

Results 147 

Concept of Swarm Learning 148 

Machine learning (ML) of any data including genome or transcriptome data requires the 149 

availability of sufficiently large datasets26,44 and the respective compute infrastructure including 150 

data storage for data processing and analytics45. Conceptually, if data and compute 151 

infrastructure is sufficiently available locally, ML can be performed locally (‘at the edge’) (Fig. 152 

1a). However, often medical data are not sufficiently large enough locally and similar 153 
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approaches are performed at different locations in a disconnected fashion. These limitations 154 

have been overcome by cloud computing where data are moved centrally to perform training 155 

of ML algorithms in a centralized compute environment (Fig. 1b). Compared to local 156 

approaches, cloud computing can significantly increase the amount of data for training ML 157 

algorithms and therefore significantly improve their results26. However, cloud computing has 158 

other disadvantages such as data duplication from local to central data storage, increased 159 

data traffic and issues with locally differing data privacy and security regulations46. As an 160 

alternative, federated cloud computing approaches such as Google’s federated learning38 and 161 

Facebook’s elastic averaging SGD (Deep learning with Elastic Averaging SGD, 162 

http://papers.neurips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf) have been 163 

developed. In these models, dedicated parameter servers are responsible for aggregating and 164 

distributing local learning (Fig. 1c). A disadvantage of such star-shaped system architectures 165 

is the remainder of a central structure, which hampers implementation across different 166 

jurisdictions and therefore still requires the respective legal negotiations. Furthermore, the risk 167 

for a single point of failure at the central structure reduces fault-tolerance.  168 

In an alternative model, which we introduce here as Swarm Learning (SL), we dismiss the 169 

dedicated server and allow parameters and models to be shared only locally (Fig. 1d). While 170 

parameters are shared via the swarm network, the models are built independently on private 171 

data at the individual sites, here referred to as swarm edge nodes (short ‘nodes’) (Fig. 1e). SL 172 

provides security measures to guarantee data sovereignty, security and privacy realized by a 173 

private permissioned blockchain technology which enables different organizations or consortia 174 

to efficiently collaborate (Fig. 1f).  In a private permissioned blockchain network, each 175 

participant is well defined and only pre-authorized participants can execute the transactions. 176 

Hence, they use computationally inexpensive consensus algorithms, which offers better 177 

performance and scalability. Onboarding of new members or nodes can be done dynamically 178 

with the appropriate authorization measures to know the participants of the network, which 179 

allows continuous scaling of learning (Extended Data Fig. 1a). A new node enrolls via a 180 

blockchain smart contract, obtains the model, and performs local model training until defined 181 

conditions for synchronization are met. Next, model parameters are exchanged via a Swarm 182 

API with the rest of the swarm members and merged for an updated model with updated 183 

parameter settings to start a new round of training at the nodes. This process is repeated until 184 

stopping criterions are reached, which are negotiated between the swarm nodes/members. 185 

The leader is dynamically elected using a blockchain smart contract for merging the 186 

parameters and there is no need for a central coordinator in this swarm network. The 187 

parameter merging algorithm is executed using a blockchain smart contract thus protects it 188 

from semi-honest or dishonest participants. The parameters can be merged by the leader 189 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.171009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171009
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

using different functions including average, weighted average, minimum, maximum, or median 190 

functions. The various merge techniques and merge frequency enables SL to efficiently work 191 

with imbalanced and biased data. As currently developed, SL works with parametric models 192 

with finite sets of parameters, such as linear regression or neural network models.  193 

At each node, SL is conceptually divided into infrastructure and application layer (Fig. 1g). On 194 

top of the physical infrastructure layer (hardware) the application environment contains the ML 195 

platform, the blockchain, and the SL library (SLL) including the Swarm API in a containerized 196 

deployment, which allows SL to be executed in heterogeneous hardware infrastructures (Fig. 197 

1g, Supplementary Information). The application layer consists of the content, the models 198 

from the respective domain, here medicine (Fig. 1g), for example blood transcriptome data 199 

from patients with leukemias, tuberculosis and COVID-19 (Fig. 1h-l). Collectively, Swarm 200 

Learning allows for a completely decentralized and therefore democratized, secure, privacy-201 

preserving, hardware-independent, and scalable machine learning environment, applicable to 202 

many scenarios and domains, which we demonstrate with three medical examples.  203 

  204 

Swarm learning robustly predicts leukemias from peripheral blood mononuclear cell 205 

data 206 

As a first use case, we chose transcriptomes derived from peripheral blood mononuclear cells 207 

(PBMC) of more than 12,000 individuals (Fig. 1h-j) separated into three individual datasets 208 

(A1, A2, A3) based on the technology used for generating the transcriptomes (2 different 209 

microarrays, RNA-seq)47. We used a deep neural network (Keras, https://keras.io/, 2015) as 210 

the machine learning approach in all three use cases. To assess performance metrics of SL, 211 

we simulated scenarios by dividing up the individual samples derived from several 212 

independently performed studies (see Material and Methods) within each of the three datasets 213 

into non-overlapping training and test sets. The training sets were then distributed to three 214 

nodes for training and classifiers were tested at a fourth node (independent test set) (Fig. 2a). 215 

By assigning the training data to the nodes in different distributions, we mimicked several 216 

clinically relevant scenarios (Supplementary Table 1). As cases, we first used samples 217 

defined as acute myeloid leukemia (AML), all other samples are termed ‘controls’. Each node 218 

within this simulation could stand for a large hospital or center, a network of hospitals 219 

performing individual studies together, a country or any other independent institutional 220 

organization generating such medical data with local privacy requirements.  221 

In a first scenario, we randomly distributed samples per node as well as cases and controls 222 

unevenly at the nodes and between nodes (dataset A2) (Fig. 2b). Sample distribution between 223 

sample sets was permuted 100 times (Fig. 2b, middle panel) to determine the influence of 224 
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individual samples on overall performance. Among the nodes, the best test results were 225 

obtained by node one with a mean accuracy of 97.0%, mean sensitivity of 97.5% and mean 226 

specificity of 96.3% with an even distribution between cases and controls, albeit this node had 227 

the smallest number of overall training samples. Node 2 did not produce any meaningful 228 

results, which was due to a too low ratio of cases to controls (1:99) for training. Surprisingly, 229 

node 3 with the largest number of samples, but an uneven distribution (70% cases : 30% 230 

controls) performed worse than node 1 with a mean balanced accuracy of 95.1%. Most 231 

importantly, however, SL outperformed each of the nodes resulting in a higher test accuracy 232 

in 97.0% of all permutations (mean balanced accuracy 97.7%) (Fig. 2b, right panel, 233 

Supplementary Table 4). The balanced accuracy of SL was significantly higher (p < 0.001) 234 

when compared to the performance of each of the three nodes, despite the fact that 235 

information from the poorly performing node 2 was integrated. We also calculated this scenario 236 

in datasets A1 and A3 and obtained rather similar results strongly supporting that the 237 

performance improvement of SL over single nodes is independent of data collection (studies) 238 

and even experimental technologies (microarray (datasets A1, A2), RNA-seq (dataset A3) 239 

used for data generation (Extended Data Fig. 2).  240 

To test whether more evenly distributed samples at the nodes would improve individual node 241 

performance, we distributed similar numbers of samples to each of the nodes but kept 242 

case:control ratios as in scenario 1 (Fig. 2c, Extended Data Fig. 3). While there was a slight 243 

increase in test accuracy at nodes 1 and 2, node 3 performed worse with also higher variance. 244 

More importantly, SL still resulted in the best performance metrics (mean 98.5% accuracy) 245 

with slightly but significantly (p<0.001) increasing performance compared to the first scenario. 246 

Results derived from datasets A1 and A3 echoed these findings (Extended Data Fig. 3).  247 

In a third scenario, we distributed the same number of samples across all three nodes, but 248 

increased potential batch effects between nodes, by distributing samples of a clinical study 249 

independently performed and published in the past only to a dedicated training node. In this 250 

scenario, cases and control ratios varied between nodes and left out samples (independent 251 

samples) from the same published studies were combined for testing at node 4. Performance 252 

of the three nodes was very comparable, but never reached SL results (mean 98.3% accuracy, 253 

swarm outperformed all nodes with p<0.001, Fig. 2d., Extended Data Fig. 4b, 254 

Supplementary Data Table 4), which was also true for datasets A1 and A3 (Extended Data 255 

Fig. 4c-d). Even when further increasing batch effects by distributing samples from 256 

independent published studies to the test node, which means that training and test datasets 257 

come from studies performed and published independently, SL outperformed the individual 258 

nodes, albeit the variance in the results was increased both at each node and for SL, indicating 259 
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that study design has an overall impact on classifier performance and that this is still seen in 260 

SL (mean 95.6% accuracy, Extended Data Fig. 4e).  261 

In a fourth scenario, we further optimized the nodes by increasing the overall sample size at 262 

node 3 and keeping case:control ratios even at all nodes (Fig. 2e, Extended Data Fig. 5a-d). 263 

Clearly, node performance further improved with little variance between permutations, 264 

however, even under these ‘node-optimized’ conditions, SL led to higher performance 265 

parameters.  266 

In a fifth scenario, we tested whether or not SL was ‘immune’ against the impact of the data 267 

generation procedure (microarray versus RNA-seq) (Fig. 2f, Extended Data Fig. 5e,f). We 268 

recently demonstrated that classifiers trained on data derived by one technology (e.g. 269 

microarrays) do not necessarily perform well on another (e.g. RNA-seq)47. To test this 270 

influence on SL, we distributed the samples from the three different datasets (A1-A3) to one 271 

node each, e.g. dataset A1 was used for training only at node 1. We used 20% of the data 272 

(independent non-overlapping to the training data) from each dataset (A1-A3) and combined 273 

them to form the test set (node 4). Node 3, trained on RNA-seq data, performed poorly on the 274 

combined dataset due to the fact that two-thirds of the data in the test set were microarray-275 

derived data. Nodes 1 and 2 performed reasonably well with mean accuracies of 96.1% (node 276 

1) and 97.5% (node 2), however did not reach the test accuracy of SL (98.8%), which also 277 

indicated that SL is much more robust toward effects introduced by different data production 278 

technologies in transcriptomics (Fig. 2f, Extended Data Fig. 5e,f).  279 

Finally, we repeated several of these scenarios with acute lymphoblastic leukemia (ALL) as 280 

the second most prevalent disease in dataset A2 (Extended Data Fig. 6 and data not shown) 281 

and demonstrated very similar results with SL outperforming the classifiers built at the nodes. 282 

Collectively, these simulations using real-world transcriptome data collected from more than 283 

100 individual studies illustrate that SL would not only allow data to be kept at the place of 284 

generation and ownership, but it also outperforms every individual node in numerous 285 

scenarios, even in those with nodes included that cannot provide any meaningful classifier 286 

results. 287 

 288 

Swarm learning to identify patients with tuberculosis 289 

In infectious diseases, heterogeneity may be more pronounced compared to leukemia, 290 

therefore we built a second use case predicting cases with tuberculosis (Tb) from full blood 291 

transcriptomes. Of interest, previous work in smaller studies had already suggested that acute 292 

tuberculosis or outcome of tuberculosis treatment can be revealed by blood transcriptomics 293 
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48–52. To apply SL, we generated a new dataset based on full blood transcriptomes derived by 294 

PaxGene blood collection followed by bulk RNA-sequencing. We also generated new blood 295 

transcriptomes and added existing studies to the dataset compiling a total of 1,999 samples 296 

from nine individual studies including 775 acute and 277 latent Tb cases (Fig. 1k, Extended 297 

Data Fig. 7a, Supplementary Table 2). These data are more challenging, since infectious 298 

diseases show more variety due to biological differences with respect to disease severity, 299 

phase of the disease or the host response. But also the technology itself is more variable with 300 

numerous different approaches for full blood transcriptome sample processing, library 301 

production and sequencing, which can introduce technical noise and batches between 302 

studies. As a first scenario, we used all Tb samples (latent and acute) as cases and divided 303 

Tb cases and controls evenly among the nodes (Extended Data Fig. S7a-b, Supplementary 304 

Table 1). Similar to AML and ALL, in detecting Tb, SL outperformed the individual nodes in 305 

accuracy (mean 93.4%), sensitivity (mean 96.0%) and specificity (mean 90.9%) (Extended 306 

Data Fig. S7b). To increase the challenge, we decided to assess prediction of acute Tb cases 307 

only. In this scenario, latent Tb are not treated as cases but rather as controls (Extended Data 308 

Fig. S7a). For the first scenario, we kept cases and controls even at all nodes but further 309 

reduced the number of training samples (Fig. 3a-b). As expected in this more challenging 310 

scenario, distinguishing acute Tb from the control cohort (including latent Tb samples), overall 311 

performance (mean balanced accuracy 89.1%, mean sensitivity 92.2%, mean specificity 312 

86.0%) slightly dropped, but still SL performed better than any of the individual nodes (p<0.01 313 

for swarm vs. each node, Fig. 3b). To determine whether sample size impacts on prediction 314 

results in this scenario, we reduced the number of samples at each training node (1-3) by 315 

50%, but kept the ratio between cases and controls (Extended Data Fig. S7c). Still, SL 316 

outperformed the nodes, but all statistical readouts (mean accuracy 86.5%, mean sensitivity 317 

87.8%, mean specificity 84.8%) at all nodes and SL showed lower performance, following 318 

general observations of AI with better performance when increasing training data26. We next 319 

altered the scenario by dividing up the three nodes into six smaller nodes (Fig. 3c, samples 320 

per node reduced by half in comparison to Fig. 3a-b), a scenario that can be envisioned in the 321 

domain of medicine in many settings, for example if several smaller medical centers with less 322 

cases would join efforts (Fig. 3d). Clearly, each individual node performed worse, but for SL 323 

the results did not deteriorate (mean accuracy 89.2%, mean sensitivity 90.7%, mean 324 

specificity 88.2% with significant difference to each of the nodes in all performance measures, 325 

see Supplementary Table 4), again illustrating the strength of the joined learning effort, while 326 

completely respecting each individual node’s data privacy.  327 

Albeit aware of the fact that - in general - acute Tb is an endemic disease and does not tend 328 

to develop towards a pandemic such as the current COVID-19 pandemics, we utilized the Tb 329 
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blood transcriptomics dataset to simulate potential outbreak and epidemic scenarios to 330 

determine benefits, but also potential limitations of SL and how to address them (Fig. 3e-l). 331 

The first scenario reflects a situation in which three independent regions (simulated by the 332 

nodes), would already have sufficient but different numbers of disease cases. Furthermore, 333 

cases and controls were kept even at the test node (Fig. 3e-f). Overall, compared to the 334 

scenario described in Fig. 3c, results for the swarm were almost comparable (mean accuracy 335 

89.0%, mean sensitivity 94.4%, mean specificity 83.4%), while the results for the node with 336 

the lowest number of cases and controls (node 2) dropped noticeable (mean accuracy 82.2%, 337 

mean sensitivity 88.8%, mean specificity 75.4%, Fig. 3f). When reducing the prevalence at 338 

the test node by increasing the number of controls (Fig. 3g-h), this effect was even more 339 

pronounced, while the performance of the swarm was almost unaffected (mean balanced 340 

accuracy 89.0%).  341 

We decreased the number of cases at a second training node (node 1) (Fig. 3i-l), which clearly 342 

reduced test performance for this particular node (Fig. 3i-j), while test performance of the 343 

swarm was only slightly inferior to the prior scenario (mean balanced accuracy 87.5%, no 344 

significant difference to the prior scenario). Only when reducing the prevalence at the test 345 

node (Fig. 3k-l), we saw a further drop in mean specificity for the swarm (81.0%), while 346 

sensitivity stayed similarly high (93.0%). Finally, we further reduced the prevalence at two 347 

training nodes (node 2: 1:10; node 3: 1:5) as well as the test node (Extended Data Fig. 8a-348 

b). Lowering the prevalence during training resulted in very poor test performance at these 349 

two nodes (balanced accuracy node 2: 59.8%, balanced accuracy node 3: 74.8%), while 350 

specificity was high (node 2: 98.4%, node 3: 93.8%). SL showed highest accuracy (mean 351 

balanced accuracy 86.26%) and F-statistics (90.0%) but was outperformed for sensitivity by 352 

node 1 (swarm: 80.0%, node1: 87.8%), which showed poor performance concerning 353 

specificity (swarm: 92.4%, node1: 84.8%). Vice versa, node 2 outperformed the swarm for 354 

specificity (98.4%), but showed very poor sensitivity (21.2%) (Extended Data Fig. 8b). When 355 

lowering prevalence at the test node (Extended Data Fig. 8c-d), it became clear that all 356 

performance parameters including the F1 statistics were more resistant for the swarm 357 

compared to individual nodes. Taken together, using whole blood transcriptomes instead of 358 

PBMC and acute Tb as the disease instead of leukemia, we present a second use case 359 

illustrating that Swarm Learning integrating several individual nodes outperforms each node. 360 

Furthermore, we gained initial insights into the potential of SL to be utilized in a disease 361 

outbreak scenario.   362 

 363 

Identification of COVID-19 patients in an outbreak scenario 364 
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Based on the promising results obtained for tuberculosis, we collected blood from COVID-19 365 

patients at two sites in Europe (Athens, Greece; n=39 samples, Nijmegen, n=93 samples) and 366 

generated whole blood transcriptomes by RNA-sequencing. We used the dataset described 367 

for Tb as the framework and included the COVID-19 samples (Fig. 1l) for assessing whether 368 

SL could be applied early on to detect patients with a newly identified disease. While COVID-369 

19 patients are currently identified by PCR-based assays to detect viral RNA53, we use this 370 

case as a proof-of-principle study to illustrate how SL could be used even very early on during 371 

an outbreak based on the patients’ immune response captured by analysis of the circulating 372 

immune cells in the blood. Here, blood transcriptomes only present a potential feature space 373 

to illustrate the performance of SL. Furthermore, assessing the specific host response, in 374 

addition to disease prediction, might be beneficial in situations for which the pathogen is 375 

unknown, specific pathogen tests not yet possible, and blood transcriptomics can contribute 376 

to the understanding of the host’s immune response54. Lastly, while we do not have the power 377 

yet, blood transcriptome-based machine learning might be used to predict severe COVID-19 378 

cases, which cannot be done by viral testing alone.  379 

COVID-19 induces very strong changes in peripheral blood transcriptomes54. Following our 380 

experience with the leukemia and tuberculosis use cases, we first tested classifier 381 

performance for evenly distributed cases and controls at both training nodes and the test node 382 

(Extended Data Fig. 9a,b, Supplementary Table 1). We reached very high statistical 383 

performance parameters, including high F1-statistics with SL showing highest mean values 384 

for accuracy (96.4%), sensitivity (97.8%), and F1 score (96.4%) (Extended Data Fig. 9b, 385 

summary statistics for all figures are listed in Supplementary Table 4). Reducing the 386 

prevalence at the test node (11:25 cases:controls) reduced all test parameters (Extended 387 

Data Fig. 9c), but only when we reduced the prevalence even further (1:44 ratio, Extended 388 

Data Fig. 9d), F1-statistics was clearly reduced, albeit SL again performing best. We next 389 

reduced the cases at all training nodes (Extended Figure 10), but even under these 390 

conditions, we observed still very high values for accuracy, sensitivity, specificity and F1 391 

scores, both derived by training at individual nodes or by SL (Extended Figure 10a-f).  392 

We then reduced the cases at all three training nodes to very low numbers, a scenario that 393 

might be envisioned very early during an outbreak scenario (Fig. 4a). Node 1 contained only 394 

20 cases, node 2 10 cases and node 3 only 5 cases. At each node, controls outnumbered 395 

cases by 1:5, 1:10, or 1:20. At the test node, we varied the prevalence from 1:1 (Fig. 4b), 1:2 396 

(Fig. 4c) to 1:10 (Fig. 4d). Based on our findings for Tb (Extended Data Fig. 8), we expected 397 

classifier performance to deteriorate under these conditions. We only observed decreased 398 

performance at nodes 2 and 3 in these scenarios with SL outperforming these nodes with 399 

p<0.05 for all performance measures, e.g. at a test node prevalence of 1:10 (accuracy 400 
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(99.3%), sensitivity (95.1%), specificity (99.7%) and F1-statistics (99.7%) (Fig. 4d). Finally, 401 

we simulated a scenario with four instead of three training nodes with very few cases per node 402 

(Extended Data Fig. 11a-d), in an otherwise similar scenario as described for Fig. 4. Even for 403 

a simulated prevalence of 1:10 cases versus controls at the test node, we determined high 404 

test performance parameters for SL, with swam performance being significantly higher than 405 

node performances (SL accuracy (99.1%), sensitivity (92.0%), specificity (99.9%), F1 statistics 406 

(99.7%) (Extended Data Fig. 11) with the lowest variance in performance, while results at 407 

individual notes were very variable and deteriorated with low case numbers at the training 408 

node. Collectively, we provide first evidence that blood transcriptomes taken from patients with 409 

COVID-19 harbor very strong biological changes and these translate into a very powerful 410 

feature space for applying machine learning to the detection of patients with this new infectious 411 

disease, particularly when applying SL.  412 

 413 

Discussion 414 

The introduction of precision medicine based on high-resolution molecular and imaging data 415 

will heavily rely on trustworthy machine learning algorithms in compute environments that are 416 

characterized by high accuracy and efficiency, that are privacy- and ethics-preserving, secure, 417 

and that are fault-tolerant by design33–36. At the same time, privacy legislation is becoming 418 

increasingly strict, as risks of cloud-based and central data-acquisition are recognized. Here, 419 

we introduce Swarm Learning, which combines blockchain technology and machine learning 420 

environments organized in a swarm network architecture with independent swarm edge nodes 421 

that harbor local data, compute infrastructure and execute the shared learning models that 422 

make central data acquisition obsolete. During iterations of SL, one of the nodes is chosen to 423 

lead the iteration, which does not require a central parameter server anymore thereby 424 

restricting centralization of learned knowledge and at the same time increasing resiliency and 425 

fault tolerance. In fact, these are the most important improvements over current federated 426 

computing models. Furthermore, private permissioned blockchain technology, harboring all 427 

rules of interaction between the nodes, is the Swarm Learning’s inherent privacy- and ethics-428 

preserving strategy. This is of particular interest to medical data and could be adapted by other 429 

federated learning systems. To understand whether the concept of swarm learning would also 430 

be characterized by high efficiency and high accuracy, we built three medical use cases based 431 

on blood transcriptome data, which are high-dimensional data derived from blood, one of the 432 

major tissues used for diagnostic purposes in medicine. First, utilizing three previously 433 

compiled datasets (A1-3) of peripheral blood mononuclear cells derived from patients with 434 

acute myeloid leukemia, we provide strong evidence that SL-based classifier generation using 435 
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a well-established neural network algorithm outperforms individual nodes, even in scenarios 436 

where individual contributing swarm nodes were performing rather poorly. Most striking, 437 

swarm learning was even improving performance parameters when training of individual 438 

nodes was based on technically different data, a situation that was previously shown to 439 

deteriorate classifier performance47. With these promising results, we generated a more 440 

challenging use case in infectious disease patients, detecting Tb based on full blood 441 

transcriptomes. Also in this case, SL outperformed individual nodes. Using Tb to simulate 442 

scenarios that could be envisioned for building blood transcriptome classifiers for patients 443 

during an outbreak situation, we further illustrate the power of SL over individual nodes. 444 

Considering the difficulty to quickly negotiate data sharing protocols or contracts during an 445 

epidemic or pandemic outbreak, we deduce from these findings that SL would be an ideal 446 

strategy for independent producer of medical data to quickly team up to increase the power to 447 

generate robust and reliable machine learning-based disease or outcome prediction classifier 448 

without the need to share data or relocate data to central cloud storages.  449 

In addition, we tested whether we could build a disease prediction classifier for COVID-19 in 450 

an outbreak scenario. Building on our knowledge that blood transcriptomes of COVID-19 451 

patients are significantly altered with hundreds of genes being changed in expression and with 452 

a rather specific signature compared to other infectious diseases54, we hypothesized that it 453 

should be possible to build such a classifier with a rather small number of samples. Here, we 454 

provide evidence that classifiers with high accuracy, sensitivity, specificity, and also high F1-455 

statistics can be generated to identify patients with COVID-19 based on their blood 456 

transcriptomes. Moreover, we illustrate the power of SL that would allow to quickly increase 457 

the power of classifier generation even under very early outbreak scenarios with very few 458 

cases used at the training nodes, which could be e.g. collaborating hospitals in an outbreak 459 

region. Since data do not have to be shared, additional hospitals could benefit from such a 460 

system by applying the classifiers to their new patients and once classified, one could even 461 

envision an onboarding of these hospitals for an adaptive classifier improvement schema. 462 

Albeit technically feasible, we are fully aware that such scenarios require further classifier 463 

testing and confirmation, but also an assessment of how this could be integrated in existing 464 

legal and ethical regulations at different regions in the world5,6. Furthermore, we appreciate 465 

that other currently less expensive data might be suitable for generating classifiers to identify 466 

COVID-19 patients10. For example, if highly standardized clinical data would become 467 

available, SL could be used to interrogate the clinical feature space at many clinics worldwide 468 

without any need to exchange the data to develop high performance classifiers for detecting 469 

COVID-19 patients. Similarly, recently introduced AI-systems using imaging data21,22 might be 470 

more easily scaled if many hospitals with such data could be connected via SL. Irrespective 471 
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of these additional opportunities using other parameter spaces, we would like to suggest blood 472 

transcriptomics as a promising new alternative due to its very strong signal in COVID-19. A 473 

next step will be to determine whether blood transcriptomes taken at early time points could 474 

be used to predict severe disease courses, which might allow physicians to introduce novel 475 

treatments at an earlier time point. Furthermore, we propose to develop an international 476 

database of blood transcriptomes that could be utilized for the development of predictive 477 

classifiers in other infectious and non-infectious diseases as well. It could be envisioned that 478 

such an SL-based learning scheme could be deployed as a permanent monitoring or early 479 

warning system that runs by default, looking for unusual movements in molecular profiles. 480 

Collectively, SL together with transcriptomics but also other medical data is a very promising 481 

approach to democratize the use of AI among the many stakeholders in the domain of 482 

medicine while at the same time resulting in more data privacy, data protection and less data 483 

traffic.  484 

With increasing efforts to enforce data privacy and security of medical data8  (hhs.gov, 485 

https://www.hhs.gov/hipaa/index.html, 2020; Intersoft Consulting, General Data Protection 486 

Regulation, https://gdpr-info.eu) and to reduce data traffic and duplication of large medical 487 

data, a decentralized data model will become the preferred choice of handling, storing, 488 

managing and analyzing medical data26. This will not be restricted to omics data as exemplified 489 

here, but will extend to other large medical data such as medical imaging data55,56. Particularly 490 

in oncology, great successes applying machine learning have already been reported for tumor 491 

detection47,55,57,58, subtyping59,60, grading61, genomic characterization62, or outcome 492 

prediction63, yet progress is hindered by too small datasets at any given institution26 with 493 

current privacy regulations8 (hhs.gov, https://www.hhs.gov/hipaa/index.html, 2020; Intersoft 494 

Consulting, General Data Protection Regulation, https://gdpr-info.ee) making it less appealing 495 

to develop centralized AI systems. We introduce Swarm Learning as a decentralized learning 496 

system with access to data stored locally that can replace the current paradigm of data sharing 497 

and centralized storage while preserving data privacy in cross-institutional research in a wide 498 

spectrum of biomedical disciplines. Furthermore, SL can easily inherit developments to further 499 

preserve privacy such as functional encryption64, or encrypted transfer learning approaches65. 500 

In addition, the blockchain technology applied here provides robust measures against semi-501 

honest or dishonest participants/adversaries who might attempt to undermine a Swarm 502 

Network. Another important aspect for wide employment of SL in the research community and 503 

in real-world applications is the ease of use of the Swarm API, which will make it easier for 504 

researchers and developers to include novel developments such as for example private 505 

machine learning in TensorFlow66.  506 
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There is no doubt that numerous medical and other data types as well as a vast variety of 507 

computational approaches can be used during a pandemic14. We do not want to imply that 508 

blood transcriptomics would be the preferred solution for the many questions that AI and 509 

machine learning could help to solve during such a crisis. Although, at the same time, we have 510 

recently shown that blood transcriptomics can be used to define molecular phenotypes of 511 

COVID-19, uncover the deviated immune response in severe COVID-19 patients, define 512 

unique patterns of the disease in comparison to other diseases and can be utilized to predict 513 

potential drugs to be repurposed for COVID-19 therapy (Aschenbrenner et al. unpublished 514 

results). Therefore, we explored blood transcriptomics as a unique and rich feature space and 515 

a good example to illustrate the advantages of SL in identifying COVID-19 patients. Once 516 

larger datasets become available, SL could be used to identify patients at risk to develop 517 

severe COVID-19 early after onset of symptoms.  518 

Another important quest that has been proposed is global collaboration and data-sharing13. 519 

While we could not agree more about the need for global collaboration - an inherent 520 

characteristic of SL - we favor systems that do not require data sharing but rather support 521 

global collaboration with complete data privacy preservation. Particularly, if using medical data 522 

that can also be used to interrogate medical issues unrelated to COVID-19. Indeed, 523 

statements by lawmakers have been triggered, clearly indicating that privacy rules also fully 524 

apply during the pandemics (EU Digital Solidarity: a call for a pan-European approach against 525 

the pandemic, Wojciech Wiewiórowski, https://edps.europa.eu/sites/edp/files/publication 526 

/2020-04-06_eu_digital_solidarity_covid19_en.pdf, 2020). Particular in a crisis situation such 527 

as the current pandemic, AI systems need to comply with ethical principles and respect human 528 

rights14. We therefore argue that systems such as Swarm Learning that allow fair, transparent 529 

and still highly regulated shared data analytics while preserving data privacy regulations are 530 

to be favored, particularly during times of high urgency to develop supportive tools for medical 531 

decision making. We therefore also propose to explore SL for image-based diagnostics of 532 

COVID-19 from patterns in X-ray images or computed tomography (CT) scans21,22, structured 533 

health records67, or wearables for disease tracking14. Swarm learning would also have the 534 

advantage that model and code sharing as well as dissemination of new applications is easily 535 

scalable, because onboarding of new swarm participants is structured by blockchain 536 

technology, while scaling of data sharing is not even necessary due the inherent local 537 

computing of the data14. Furthermore, swarm learning can reduce the burden of establishing 538 

global, comprehensive, open, and verified datasets.  539 

Collectively, we introduce Swarm Learning defined by the combination of blockchain 540 

technology and decentralized machine learning in an entirely democratized approach 541 
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eliminating a central player and therefore representing a uniquely fitting strategy for the 542 

inherently locally organized domain of medicine. We used blood transcriptomes in three 543 

scenarios as use cases since they combine blood as the most widely used surrogate tissue 544 

for diagnostic purposes with an omics technology producing high-dimensional data with many 545 

parameters. Since the deployment of Swarm Learning due to ease of use of Swarm Learning 546 

libraries is a rather simple task, we propose to expand the use of this technology and further 547 

develop such classifiers in a unifying fashion across centers worldwide without any need to 548 

share the data itself. Our use cases are supposed to serve as examples for other high-549 

dimensional data in the domain of medicine, but certainly also many other areas of research 550 

and application against the pandemics and beyond.   551 
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Figure 1. Concept of Swarm Learning 606 

(a-d) The principles of Swarm Learning in contrast to other machine learning concepts. (a) 607 

Illustration of the concept of local learning with data and computation at different, but 608 

disconnected locations. (b) Principle of cloud-based machine learning where data from 609 

contributing centers move copies of the data to a central cloud-based storage; centrally 610 

located data are then used for central - often cloud-based - machine learning. (c) Federated 611 

learning with data being kept with the data contributor and computing is also performed at the 612 

site of local data storage and availability, yet parameter settings of machine learning are 613 

orchestrated by a central parameter server. (d) Swarm Learning principle with swarm nodes 614 

being connected in a democratic fashion (enabled by blockchain technology) without the need 615 

for a central custodian or parameter server. Data privacy is preserved, data is kept where it is 616 

generated, computation is achieved locally and learning parameters are shared within the 617 

Swarm Network. (e) Schematic representation of the Swarm Network consisting of the Swarm 618 

Edge Nodes (short ‘nodes’) that exchange parameters for learning, which is implemented 619 

using blockchain technology. Use of private data at each node together with the model 620 

provided via Swarm Network. (f) Concept and outline of the private permissioned blockchain 621 

network as a layer of the Swarm Learning network. Each node consists of the blockchain, 622 

including the ledger and smart contract, as well as the Swarm Learning Library (SLL) with the 623 

API to interact with other nodes within the network. (g) Application and infrastructure layer as 624 

part of the Swarm Learning concept. (h-l) Description of the transcriptome datasets used 625 

within this study: Dataset (h) A1 and (i) A2, two microarray-based transcriptome datasets of 626 

peripheral blood mononuclear cells (PBMC). (j) Dataset A3, RNA-seq based transcriptomes 627 

of PBMC. Dataset (k) B and (l) C, RNA-seq based whole blood transcriptome datasets. 628 

Abbreviations: AML, Acute Myeloid Leukemia; ALL, Acute Lymphoblastic Leukemia; COVID-629 

19, CoronaVirus Disease 2019; API, Application Programming Interface; ML, Machine 630 

Learning; TF, Tensor Flow; KERAS, Open Source Deep Learning Library; AMbl, Acute 631 

Myeloblastic Leukemia; CML, Chronic Myeloid Leukemia; CLL, Chronic Lymphocytic 632 

Leukemia; Inf., Infections, Diab., Diabetes Type II; MDS, Myelodysplastic Syndrome; MS, 633 

multiple sclerosis; JIA, Juvenile idiopathic arthritis; Tb, tuberculosis; HIV, Human 634 

Immunodeficiency Virus, AID, Acute Infectious Disease. SLL Swarm Learning Library.  635 
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Figure 2. Swarm learning to predict leukemias from PBMC data 637 

(a) Schematic representation of the use of the transcriptome data derived from more than 638 

12,000 individuals in over 100 individual studies47. Principle of distribution of data to individual 639 

Swarm Edge Nodes (short ‘nodes’). Nodes 1-3 were used for training, node 4 for testing. 640 

Swarm Learning (SL) was achieved by integrating nodes 1-3 for training following procedures 641 

described in detail in Supplementary Information. (b) Scenario using Dataset A2. Left panel 642 

illustrating the setting of the scenario concerning distribution of cases and controls to individual 643 

nodes, as well as total number of samples used for this scenario. Cases (red bar) and controls 644 

(blue bar) were distributed unevenly among nodes, the number of samples distributed to each 645 

node was also uneven in this scenario. Middle panel shows results of accuracy of all 100 646 

permutations performed for the 3 training nodes individually as well as the results obtained by 647 

SL. Accuracy is defined for the independent fourth node used for testing only. Right panel 648 

represents box-whisker plot representation of the individual data presented in the middle panel 649 

showing mean, 1st and 3rd quartile and whisker type Min/Max. (c) Scenario with uneven 650 

numbers of cases and controls at the different training nodes but similar numbers of samples 651 

at each node to determine impact of these changes on SL performance. Left panel: schematic 652 

representation of scenario and right panel: results obtained for accuracy at the test node (node 653 

4) for each of the three training nodes 1-3 and SL independently as box and whisker plot with 654 

the same parameter as described for (b). (d) Scenario with even numbers at each of the 655 

nodes, schematic representation (left panel) and visualization of results as box-whisker plots 656 

as in (b) and (c). (e) Scenario with even distribution of cases and controls at each training 657 

node, but different numbers of samples at each node and overall increase in numbers of 658 

samples. Representation of schema and data visualization as in (b-d). (f) Scenario where each 659 

node obtained samples from different Datasets (node 1: Dataset A1, node 2: Dataset A2, node 660 

3, Dataset A3). Node 4 obtained samples from each Dataset A1-A3 to define impact on 661 

technical bias on Swarm Learning performance. Representation of schema and data 662 

visualization as in (b-e). Statistical differences between results derived by SL and individual 663 

nodes including all permutations performed were calculated with Wilcoxon signed rank test 664 

with continuity correction; asterisk and line: p<0.05.  665 
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Figure 3. Swarm learning to identify patients with tuberculosis 668 

(a-l) Principle of distribution of data to individual Swarm Edge Nodes (short ‘nodes’). Nodes 669 

1-3 were used for training, node 4 for testing. Swarm Learning (SL) was achieved by 670 

integrating nodes 1-3 for training following procedures described in detail in Supplementary 671 

Information. All scenarios use dataset B and use acute TB as case and the remaining samples 672 

as controls. Left panels (a,c,e,g,i,k) illustrate the setting of the scenarios concerning 673 

distribution of cases (red bar) and controls (blue bar) to individual nodes, as well as total 674 

number of samples used for the scenario. Percentage at each node reflects the use of samples 675 

out of the complete dataset. (a) Scenario with even number of cases at each training node 676 

and the test node. (b) Evaluation of the scenario presented in (a) showing accuracy, sensitivity 677 

and specificity of five permutations for each training node and SL at node 4 (test node) as box-678 

whisker plot (mean, 1st and 3rd quartile, whisker type Min/Max). (c) Scenario similar to (a) but 679 

with six training nodes. (d) Evaluation of scenario (c) as described in (b) but for all six training 680 

nodes. (e) Scenario where the training nodes have evenly distributed numbers of cases and 681 

controls at each training node, but node 2 has lower numbers of samples. (f) Evaluation of 682 

scenario (e) as described in (b). (g) Scenario similar to (e) but with reduced prevalence at the 683 

test node. (h) Evaluation of scenario (g) as described in (b). (i) Scenario with even distribution 684 

of cases and controls at each training node, but node 1 only has a very small training set. The 685 

test set is evenly distributed. (j) Evaluation of scenario (i) as described in (b). (k) Scenario 686 

similar to (i) but with uneven distribution in the test node. (l) Evaluation of scenario (k) as 687 

described in (b). Statistical differences between results derived by SL and individual nodes 688 

including all permutations performed were calculated with Wilcoxon signed rank test with 689 

continuity correction; asterisk and line: p<0.05.  690 
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Figure 4. Identification of COVID-19 patients in an outbreak scenario 693 

(a) Description of an outbreak scenario for COVID-19 using Dataset C. Nodes 1-3 were used 694 

for training, node 4 for testing. Swarm Learning (SL) was achieved by integrating nodes 1-3 695 

for training following procedures described in detail in Supplementary Information. COVID-19 696 

samples were used as cases. In this scenario, node 1 would be the outbreak node with the 697 

highest prevalence. Training node 2 has fewer cases and is an early secondary node, and 698 

node 3 acts as a later secondary node. The spreading is tested on the testing node with three 699 

different prevalences (b,c,d) and shown as box-whisker plot (mean, 1st and 3rd quartile, 700 

whisker type Min/Max). (b) Evaluation of (a) with even prevalence showing accuracy, 701 

sensitivity, specificity and F1-score of fifty permutations for each training node and the SL 702 

(node 4). (c) Evaluation (as described in (b)) of scenario (a) using a 1:2 ratio for cases and 703 

controls in the test set. (d) Evaluation (as described in (b)) of scenario (a) using a 1:10 ratio in 704 

the test set to simulate detection in regions with new infections. Statistical differences between 705 

results derived by SL and individual nodes including all permutations performed were 706 

calculated with Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05. 707 
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 708 

 709 

 710 

Extended Data Figure 1. corresponding to Fig. 1  711 

Schematics of the principles of the workflow of Swarm Learning once the nodes have been 712 

enrolled within the Swarm Network via private permissioned blockchain contract. 713 
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Extended Data Figure 2. Scenario corresponding to Fig. 2b in dataset A1 and A3 716 

Main settings are identical to what is described in Fig. 2 for Dataset A2. (a) Scenario with 717 

different prevalence of AML and different number of samples at each training node. The test 718 

set has an even distribution. (b) Evaluation of test accuracy for 100 permutations of dataset 719 

A1 per node and swarm. (c) Evaluation using dataset A3. Statistical differences between 720 

results derived by SL and individual nodes including all permutations performed were 721 

calculated with Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05. 722 
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Extended Data Figure 3. Scenario corresponding to Fig. 2c in dataset A1 and A3 724 

Main settings are identical to what is described in Fig. 2 for dataset A2. (a) Scenario with 725 

similar training set sizes per node but decreasing prevalence. The test set ratio is 1:1. (b) 726 

Evaluation of the test accuracy over 100 permutation for dataset A2 (corresponding to Fig. 727 

2c). (c) Evaluation of the test accuracy over 100 permutation for dataset A1. (d) Evaluation of 728 

the test accuracy over 100 permutation for dataset A3. Box-whisker plots (mean, 1st and 3rd 729 

quartile, whisker type Min/Max). Statistical differences between results derived by SL and 730 

individual nodes including all permutations performed were calculated with Wilcoxon signed 731 

rank test with continuity correction; asterisk and line: p<0.05.  732 
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Extended Data Figure 4. Scenario corresponding to Fig. 2d in dataset A1 and A3 735 

Main settings are identical to what is described in Fig. 2 for dataset A2. (a) Scenario with 736 

similar sample sizes among three nodes, but with independent studies at each training node. 737 

Case and control ratios varied for each permutation. Testing samples are sampled from the 738 

studies also present in the training data. (b) Evaluation of the test accuracy over 100 739 

permutation for dataset A2 (corresponding to Fig. 2d). (c) Evaluation of the test accuracy over 740 

100 permutation for dataset A1. (d) Evaluation of the test accuracy over 100 permutation for 741 

dataset A3. (e) In this scenario, samples at the test node were derived from published studies 742 

completely independent from the studies used for training at the training nodes. Evaluation of 743 

the test accuracy over 100 permutation for dataset A2. Box-whisker plots (mean, 1st and 3rd 744 

quartile, whisker type Min/Max). Statistical differences between results derived by SL and 745 

individual nodes including all permutations performed were calculated with Wilcoxon signed 746 

rank test with continuity correction; asterisk and line: p<0.05.  747 
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Extended Data Figure 5. Scenario corresponding to Fig. 2e in dataset A1 and A3 750 

Main settings are identical to what is described in Fig. 2 for dataset A2. (a) The case:control 751 

distribution is even, the training sets increase from node 1 to node 3. The test set is evenly 752 

split. (b) Test accuracy for evaluation of dataset A2 (corresponding to Fig. 2e). (c) Test 753 

accuracy for evaluation of dataset A1. (d) Test accuracy for evaluation of dataset A3. (e) 754 

Scenario where the data sets A1, A2, and A3 are assigned to a single training node each. 755 

Scenario similar to (a) but with equal training set sizes. (f) Evaluation results of 100 756 

permutations (corresponding to Fig. 2f). Box-whisker plots (mean, 1st and 3rd quartile, whisker 757 

type Min/Max). Statistical differences between results derived by SL and individual nodes 758 

including all permutations performed were calculated with Wilcoxon signed rank test with 759 

continuity correction; asterisk and line: p<0.05.  760 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.171009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171009
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

 761 

  762 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.25.171009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171009
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

Extended Data Figure 6. Scenario for ALL in dataset 2 763 

Main settings are identical to what is described in Fig. 2 for dataset A2. Here cases are 764 

samples derived from patients with ALL, while all other samples are controls (including AML). 765 

(a) Scenario for the detection of ALL in dataset A2. The training sets are evenly distributed 766 

among the nodes. The test ratio is 1:1. (b) Evaluation of scenario (a) for test accuracy over 767 

100 permutations. Box-whisker plot (mean, 1st and 3rd quartile, whisker type Min/Max). 768 

Statistical differences between results derived by SL and individual nodes including all 769 

permutations performed were calculated with Wilcoxon signed rank test with continuity 770 

correction; asterisk and line: p<0.05.  771 
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Extended Data Figure 7. Scenario for detecting all Tb versus controls 773 

(a) Description of the different group settings used based on the assignment of latent Tb to 774 

control or case. (b) Evaluation of a scenario where acute and latent Tb are cases. The data is 775 

evenly distributed among the training nodes. The scenario is evaluated as described in Figure 776 

3 (b). (c) Scenario designed similar to (b) but latent Tb is part of control. Box-whisker plot 777 

(mean, 1st and 3rd quartile, whisker type Min/Max). Statistical differences between results 778 

derived by SL and individual nodes including all permutations performed were calculated with 779 

Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.  780 
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Extended Data Figure 8: Scenario detecting acute Tb with low prevalence at training 783 

nodes 784 

(a) Scenario with training nodes having different prevalence: node 2 has only a 1:10 ratio. 785 

Three prevalence scenarios are used in the test set. (b) Evaluation of scenario (a) showing 786 

accuracy, sensitivity, specificity and F1 score. (c) Similar scenario as in (a) but prevalence 787 

changed to 1:3 cases: controls in the training set. (d) Similar scenario as in (a) but prevalence 788 

changed to 1:10 cases: controls in the training set. Box-whisker plot (mean, 1st and 3rd 789 

quartile, whisker type Min/Max). Statistical differences between results derived by SL and 790 

individual nodes including all permutations performed were calculated with Wilcoxon signed 791 

rank test with continuity correction; asterisk and line: p<0.05.  792 
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Extended Data Figure 9. Baseline scenario for detecting COVID-19 patients 795 

(a) Scenario with even training set distribution among nodes 1-3. Three different testing sets 796 

with different prevalence are simulated. (b) Evaluation of (a) for a 22:25 case: control ratio 797 

showing accuracy, sensitivity, specificity and F1 score. (c) Evaluation results of scenario (a) 798 

for a 11:25 ratio. (d) Evaluation results of scenario (a) for a 1:44 prevalence. Box-whisker plot 799 

(mean, 1st and 3rd quartile, whisker type Min/Max). Statistical differences between results 800 

derived by SL and individual nodes including all permutations performed were calculated with 801 

Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.  802 
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Extended Data Figure 10. Scenario with reduced prevalence at training nodes for 804 

detecting COVID-19 patients 805 

(a) This scenario has the same sample size at each training node, but the prevalence 806 

decreases from node 1 to node 3. There are two different test sets (b) and (c). (b) Evaluation 807 

of scenario (a) with 22:25 ratio at the test node. (c) Results for the evaluation of scenario (a) 808 

with reduced prevalence. (d) Scenario similar to (a) but the prevalence has a steeper decrease 809 

between node 1 and 3. (e) Evaluation of scenario (d) with a ratio of 37:50 at the test node. (f) 810 

Evaluation of (d) with a reduced prevalence compared to (e). Box-whisker plot (mean, 1st and 811 

3rd quartile, whisker type Min/Max). Statistical differences between results derived by SL and 812 

individual nodes including all permutations performed were calculated with Wilcoxon signed 813 

rank test with continuity correction; asterisk and line: p<0.05.  814 
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Extended Data Figure 11. Scenario with reduced prevalence in training and test set at 817 

a 4-node setting (a) This scenario has even training set sizes among the nodes with the 818 

prevalence ranging from 10% at node 1 to 3% at nodes 3 and 4. There are three different test 819 

sets (b), (c) and (d) with decreasing prevalence and increasing total sample size. (b) 820 

Evaluation of scenario (a) with 111:100 ratio. (c) Evaluation of scenario (a) with 1:4 ratio and 821 

increased sample number of the test set. (d) Results of scenario (a) with 1:10 prevalence and 822 

increased sample number of the test set. Box-whisker plot (mean, 1st and 3rd quartile, whisker 823 

type Min/Max). Statistical differences between results derived by SL and individual nodes 824 

including all permutations performed were calculated with Wilcoxon signed rank test with 825 

continuity correction; asterisk and line: p<0.05.  826 
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Supplementary Information 827 

(Material and Methods) 828 

 829 

Datasets 830 

Peripheral blood mononuclear cell (PBMC) derived transcriptome dataset (Dataset A) 831 

We used a previously described dataset containing over 12,000 transcriptomes derived from 832 

peripheral blood mononuclear cells (PBMC), deposited at the National Center for 833 

Biotechnology Information Gene Expression Omnibus68 (GEO) under SuperSeries 834 

GSE122517 or via the individual SubSeries GSE122505 (dataset 1), GSE122511 (dataset 2) 835 

and GSE122515 (dataset 3). Briefly, this dataset was generated by inspection of all publicly 836 

available datasets at GEO on September 20th, 2017. Inclusion criteria were cell type (PMBCs) 837 

and species (Homo sapiens). Existing GEO SuperSeries were excluded to avoid duplicated 838 

samples. According to data generation method, three datasets were established; dataset 1, 839 

generated with Affymetrix HG-U133 A microarrays (n=2,500), dataset 2 with Affymetrix HG-840 

U133 2.0 microarrays (n=8,348), and dataset 3 with high-throughput RNA sequencing (RNA-841 

seq)(n=1,181). Data were curated as previously described47. All sample information is listed 842 

in Supplementary Table 2.  843 

 844 

Whole blood derived transcriptomes for the prediction of tuberculosis (Dataset B) 845 

To establish a dataset based on whole blood transcriptomes we generated new data from 846 

healthy controls (Rhineland Study) and combined these with previously generated data that 847 

had been deposited in Gene Expression Omnibus (GEO). We screened for transcriptome 848 

datasets derived from human whole blood samples, which were collected using the PAXgene 849 

Blood RNA System. In total, nine independent datasets were selected to be included in the 850 

present study (GSE101705 (n=44); GSE107104 (n=33), GSE112087 (n=120), GSE128078 851 

(n=99), GSE66573 (n=14), GSE79362 (n=355), GSE84076 (n=36); GSE89403 (n=914)). The 852 

newly generated 384 whole blood samples were sampled in context of the Rhineland Study 853 

led by the German Center for Neurodegenerative Diseases (DZNE), which is an extensive 854 

longitudinal study monitoring healthy individuals over 2 decades. Approval to undertake the 855 

Rhineland Study was obtained from the ethics committee of the University of Bonn, Medical 856 

Faculty. The study is carried out in accordance with the recommendations of the International 857 

Conference on Harmonization (ICH) Good Clinical Practice (GCP) standards (ICH-GCP). 858 

Written informed consent was obtained from all participants in accordance with the Declaration 859 
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of Helsinki. Overnight fasting blood was collected from all participants, including a PAXgene® 860 

tube for RNA extraction and RNA-seq analysis. In total, Dataset B contained 1999 samples 861 

from patients with active tuberculosis (n=775), latent tuberculosis (n=277), fatigue (n=55), 862 

autoimmune diseases (n=68), HIV (n=16) and controls (n=808). Sample information is listed 863 

in Supplementary Table 2.  864 

 865 

Whole blood derived transcriptome dataset for the prediction of COVID-19 (Dataset C) 866 

 867 

To develop classifiers based on whole blood transcriptomes able to predict COVID-19 patients 868 

we collected an additional 134 PAXgene® tubes for RNA extraction and RNA-seq analysis 869 

from COVID-19 patients, of which 93 whole blood samples at the Intensive Care Unit of the 870 

Radboud University Medical Centre in Nijmegen, the Netherlands, and 41 samples were either 871 

collected at the Sotiria Athens General Hospital or the ATTIKON University General Hospital 872 

in Athens, Greece. For all COVID-19 patients, the study was carried out in accordance with 873 

the applicable rules concerning the review of research ethics committees and informed 874 

consent. All patients or legal representatives were informed about the study details and could 875 

decline to participate. COVID-19 was diagnosed by a positive SARS-CoV-2 RT-PCR test in 876 

nasopharyngeal or throat swabs and/or by typical chest CT-scan finding. Blood for RNA-seq 877 

analysis was sampled on day 0 to 11 after admission. In the cohort in Athens, blood samples 878 

from ten healthy donors who were tested negative on SARS-CoV-2 were included as controls. 879 

The newly generated samples from the COVID-19 patients and the controls from Athens were 880 

combined with dataset B (see above) to establish Dataset C. As a result, in addition to the 881 

1999 samples derived from Dataset B, Dataset C included further 10 healthy controls and 134 882 

dutch COVID-19 samples, which makes a total of 2,143 samples. Sample information is listed 883 

in Supplementary Tables 2 and 6.  884 

 885 

Pre-processing  886 

PBMC transcriptome dataset (Dataset A) 887 

We used a previously published dataset compiled for predicting AML in blood transcriptomes 888 

derived from peripheral blood mononuclear cells (PBMC)47. Briefly, all raw data files were 889 

downloaded from GEO and the RNA-seq data was preprocessed using the kallisto aligner 890 

against the human reference genome gencode v27 (GRCh38.p10). For normalization, we 891 

considered all platforms independently, meaning that normalization was performed separately 892 

for the samples in Dataset A1, A2 and A3, respectively. Microarray data (Datasets A1 and A2) 893 
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was normalized using the robust multichip average (RMA) expression measures69, as 894 

implemented in the R package affy70. RNA-seq data (Dataset A3) was normalized with the R 895 

package DESeq2 using standard parameters71. In order to keep the datasets comparable, 896 

data was filtered for genes annotated in all three datasets, which resulted in 12,708 genes. No 897 

filtering of low-expressed genes was performed. All scripts used in this study for pre-898 

processing are provided as a docker container on Docker Hub (docker hub, 899 

https://hub.docker.com/r/schultzelab /aml_classifier).  900 

 901 

Whole blood derived transcriptome datasets (Datasets B and C) 902 

Since alignment of whole blood transcriptome data can be performed in numerous different 903 

ways, we re-aligned all downloaded and collected datasets which were 4.7 Terabyte in size 904 

and comprised a total of 7.8 Terabases, to the human reference genome gencode v33 905 

(GRCh38.p13) and quantified transcript counts using STAR, an ultrafast universal RNA-seq 906 

aligner (version 2.7.3a) 72. For all samples in Datasets B and C, raw counts were imported 907 

using DESeqDataSetFromMatrix function and size factors for normalization were calculated 908 

using the DESeq function using standard parameters71. This was done separately for Dataset 909 

B and Dataset C. Since some of the samples were prepared with poly-A selection to enrich 910 

for protein-coding mRNAs, we filtered the complete dataset for protein-coding genes in order 911 

to ensure greater comparability across library preparation protocols. Furthermore, we 912 

excluded all ribosomal protein-coding genes, as well as mitochondrial genes and genes coding 913 

for hemoglobins, which resulted in 18,135 transcripts as the feature space in Dataset B and 914 

19,358 transcripts in Dataset C. Furthermore, transcripts with an overall expression < 10 were 915 

excluded from further analysis. Other than that, no filtering of transcripts was performed. Prior 916 

to use in machine learning we performed a rank transformation to normality on both datasets 917 

B and C73. Briefly, transcript expression values were transformed from RNAseq counts to their 918 

respective ranks. This was done transcript-wise, meaning all transcript expression values per 919 

sample were given a rank based on ordering them from lowest to highest value. The rankings 920 

were then turned into quantiles and transformed via the inverse cumulative distribution 921 

function of the Normal distribution. This leads to all transcripts following the exact same 922 

distribution (that is, a standard Normal with a mean of 0 and a standard deviation of 1) across 923 

all samples 924 

Methods details 925 

Scenarios for prediction of AML 926 
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We previously demonstrated that ML on PBMC transcriptomes can be utilized to predict 927 

AML47. Based on this experience, we generated sample sets within three independent 928 

transcriptome datasets (dataset A1-A3, see above) to assess different scenarios in a three-929 

node setting for training with a fourth node only used for testing. As indicated in Fig. 2, six 930 

scenarios with varying numbers of samples per node and varying ratios between cases and 931 

controls at each node where defined. For predicting AML, all samples derived from AML 932 

patients were classified as cases, while all other samples were labeled controls. When 933 

predicting ALL, all samples derived from ALL patients were classified as cases and all others 934 

as controls. For each scenario (Fig. 2) and each dataset we permuted the sample distribution 935 

100 times, resulting in a total of 5,594 individual predictions. The different scenarios were 936 

chosen to address the influence of sample numbers per node, the case control ratio, study 937 

design-related batch effects, and transcriptome technologies used on classifier performance 938 

at the nodes, but more importantly on swarm learning performance. Sample distributions for 939 

all permutations within all scenarios are listed in Supplementary Table 1.  940 

 941 

Scenarios for detecting patients with acute TB 942 

In line with the experience we gained from the prediction of AML, we used dataset B to 943 

generate scenarios for the prediction of tuberculosis in various settings, again using different 944 

scenarios in a three-node setting for training with a fourth node only used for testing. In one 945 

scenario, all patients with tuberculosis (Tb) including patients with latent and acute Tb were 946 

treated as cases, while all others were defined as controls (Extended Data Fig. 6b). In all 947 

other scenarios, cases were restricted to acute Tb patients’ samples, while patients with latent 948 

Tb were defined as controls together with all other non-Tb samples. Here, the question to be 949 

answered is, whether the classifiers can identify patients with acute Tb and can distinguish 950 

them from latent Tb and other conditions.  951 

In one scenario (Fig. 3c-d), we added three additional training nodes to test dependency of 952 

classifier performance by the number of nodes. As indicated in Fig. 3, three scenarios with 953 

varying numbers of samples per node and varying ratios between cases and controls at each 954 

node where defined. For scenarios described within Fig. 3e,g and Fig. 3i,k, we tested two 955 

prevalence scenarios in the test set. For each scenario (Fig. 3) we permuted the sample 956 

distribution 5-10 times, resulting in a total of 325 individual predictions. To mimic an outbreak 957 

scenario, we reduced cases also at the training nodes to determine the effects on Swarm 958 

Learning performance. Sample distributions for all permutations within all scenarios are listed 959 

in Supplementary Table 1. 960 

 961 
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Simulation of an outbreak scenario to detect COVID-19 patients 962 

Based on the promising results obtained with tuberculosis, we next intended to simulate 963 

classifier building and testing for the prediction of COVID-19 in a SL setting. We used dataset 964 

B and added 144 additional samples, of which 139 samples were derived from COVID-19 965 

patients (see above). We applied a three-node setting for training with a fourth node only used 966 

for testing.  967 

In one scenario (Extended Data Fig. 8), we kept cases (n=30) and controls (n=30) evenly 968 

distributed among the three training nodes and tested three different prevalence scenarios at 969 

the test node (22:25; 11:25; 1:44). In a second scenario (Extended Data Fig. 9a-c) we 970 

changed the ratio of cases and controls at each node (node 1: 40:60, node 2: 30:70, node 3: 971 

20:80) and tested two prevalence scenarios at the test node (22:25; 11:25). In a third scenario 972 

(Extended Data Fig. 9a-c) we further reduced the number of cases at the training nodes 973 

further (node 1: 30:70, node 2: 20:80, node 3: 10:90) and tested two prevalence scenarios at 974 

the test node (37:50; 37:75).  975 

Lastly, we tested an outbreak scenario (Fig. 4) with very few cases at the outbreak node 1 976 

(20:80), an early secondary node (10:90) and a later secondary node (5:95) and three 977 

prevalence scenarios at the test node (1:1, 1:2, 1:10), resulting in a total of 220 individual 978 

predictions Sample distributions for all permutations within all scenarios are listed in 979 

Supplementary Table 1.  980 

 981 

Application layer  982 

The application layer (see also Fig. 1g) consists of disease models for which definitions are 983 

given, which samples are cases and which samples are controls. For example, if the classifier 984 

is supposed to detect all patients with tuberculosis (Tb), the model includes patients with latent 985 

and acute tuberculosis as cases and all other samples as controls. However, if only patients 986 

with acute tuberculosis are intended to be detected as cases, the model is changed in that 987 

cases are now only patient samples derived from patients with acute Tb, while samples from 988 

patients with latent Tb are now treated as controls, similar to all other non-Tb samples. The 989 

cases and controls used for each scenario are given in the result section in more detail. For 990 

each mode, classifiers are generated by applying neural networks (for description see below) 991 

Computation and analysis 992 

Neural network algorithm  993 
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We leveraged a deep neural network with a sequential architecture as implemented in the 994 

keras library (Keras, https://keras.io/, 2015). Briefly, the neural network consists of one input 995 

layer, eight hidden layers and one output layer. The input layer is densely connected and 996 

consists of 256 nodes, a rectified linear unit activation function and a dropout rate of 40%. 997 

From the first to the eighth hidden layer, nodes are reduced from 1024 to 64 nodes, and all 998 

layers contain a rectified linear unit activation function, a kernel regularization with an L2 999 

regularization factor of 0.005 and a dropout rate of 30%. The output layer is densely connected 1000 

and consists of 1 node and a sigmoid activation function. The model is configured for training 1001 

with Adam optimization and to compute the binary cross-entropy loss between true labels and 1002 

predicted labels. 1003 

The model has been translated from R to Python in order to make it compatible with the swarm 1004 

learning library. This model is used for training both the individual nodes as well as swarm 1005 

learning. The model is trained over 100 epochs, with varying batch sizes. The batch size of 8, 1006 

16, 32, 64 and 128 are used depending on the number of training samples.  1007 

 1008 

Preparation and adaptation of neural network code to be used in a swarm learning 1009 

environment 1010 

A swarm callback is introduced to integrate the model with the Swarm Learning library. 1011 

Minimum number of nodes for synchronization, synchronization interval, validation dataset 1012 

and batch size are passed as parameters to swarm callback. The swarm call back API is 1013 

swCallback = SwarmCallback( sync_interval =  <number of training batches between syncs>,  1014 
min_peers = <minimum peers>,  1015 
val_data = <validation dataset>,  1016 
val_batch_size = <validation batch size>,  1017 
node_weightage = <relative weightage of node’s model weights>) 1018 

sync_interval specifies the synchronization interval, 1019 

min_peers specifies the minimum number of nodes for model synchronization,  1020 

val_data specifies the validation data set, 1021 

val_batch_size specifies the validation batch size, 1022 

model_name specifies the name of the model, 1023 

node_weightage specifies the relative weightage to be given to model weights of this node 1024 

 1025 

Parameter tuning 1026 

For some of the scenarios we tuned model hyperparameters. For some scenarios we also 1027 

tuned Swarm Learning parameters to get better performance, for example higher sensitivity. 1028 
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For AML Fig. 2e, Extended Data Fig. 2 and Fig. 2f, dropout rate is reduced to 10% to get 1029 

better performance. For AML Fig. 2b, Extended Data Fig. 1, dropout rate is reduced to 10% 1030 

and increased the Epochs to 300 to get better performance. We also used the adaptive_rv 1031 

parameter in the Swarm Learning API to adjust the merge frequency dynamically based on 1032 

model convergence to improve the training time. For TB and COVID-19 tests dropout rate is 1033 

reduced to 10% for all scenarios. For the TB scenarios in Extended Data Fig. 7a,b, the 1034 

node_weightage parameter of Swarm Learning callback API is used to give more weightage 1035 

to the nodes that have higher case samples.  1036 

 1037 

Infrastructure layer  1038 

Description of the hardware architecture applied for simulations 1039 

For all simulations provided in this project we used 2 HPE Apollo 6500 Gen 10 server, each 1040 

with 4 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, a 3.2 TB hard disk drive, 256 GB RAM, 1041 

8 Tesla P100 GPUs, 1GB network interface card for LAN access and infiniBand FDR for high 1042 

speed interconnect and networked storage access. The Swarm Network is created with 3 1043 

nodes, each node is a docker container with 1 GPU. Multiple experiments were run in parallel 1044 

using the above described configuration.  1045 

Overall, we performed 6,139 analyses including six scenarios for all three AML datasets, nine 1046 

scenarios for Tb and 10 scenarios for COVID-19. We performed 5 to 100 permutations per 1047 

scenario, each permutation took approximately 30 minutes, which resulted in a total of 3069,5 1048 

compute hours.  1049 

 1050 

The Swarm learning framework, library, distributed ML and blockchain technologies 1051 

Swarm Learning builds on top of two proven technologies — distributed ML and blockchain. 1052 

Distributed ML is leveraged to train a common model across multiple nodes with a subset of 1053 

the data located at each node — commonly known as the data parallel paradigm in ML — 1054 

though without a central parameter server. Blockchain lends the decentralized control, 1055 

scalability, and fault-tolerance aspects to the Swarm Network system to enable the framework 1056 

to work beyond the confines of a single enterprise. 1057 

The Swarm Learning library is a framework to enable decentralized training of ML models 1058 

without sharing the data. The Swarm Learning framework is designed to make it possible for 1059 

a set of nodes — each node possessing some training data locally — to train a common ML 1060 
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model collaboratively without sharing the training data itself. This can be achieved by individual 1061 

nodes sharing parameters (weights) derived from training the model on the local data. This 1062 

allows nodes to maintain the privacy of their raw data. Importantly, in contrast to many existing 1063 

federated learning models, a central parameter server is omitted in Swarm Learning. 1064 

The nodes that participate in Swarm Learning, register themselves with the Swarm Network 1065 

implicitly using the callback API. Here, the Swarm Network interacts with other peers using 1066 

blockchain for sharing parameters and for controlling the training process. On each node, a 1067 

simple Swarm callback API has to be used to enable the ML model with Swarm Learning 1068 

capacities (see also code presented below). The Swarm container has to be configured to 1069 

interact with the Swarm Network (network i/p and port configuration). All other complexities of 1070 

setting up network, registration, parameter sharing, and parameter merging are taken care of 1071 

by the Swarm callback API and the Swarm Network infrastructure.  1072 

Parameters shared from all the nodes are merged to obtain a global model. Moreover, the 1073 

merge process is not done by a static central coordinator or parameter server, but rather a 1074 

temporary leader chosen dynamically among the nodes is used to perform the merge, thereby 1075 

making the Swarm network decentralized. This provides a far greater fault-tolerance than 1076 

traditional centralized-parameter-server-based frameworks. All the nodes can perform the role 1077 

of training and merging, thereby maximising the usage of local compute. The Swarm Network 1078 

implicitly controls this.  1079 

The HPE Swarm Learning library contains 2 containers, the Swarm Network container and 1080 

the Swarm ML container.  1081 

The Swarm Network container includes 1) software to setup and initialize the Swarm Network, 1082 

2) management commands to control the Swarm Network, and 3) start/stop Swarm Learning 1083 

tasks. This container also encapsulates the blockchain software. 1084 

The Swarm ML container includes software to support 1) decentralized training, 2) integration 1085 

with ML frameworks, and 3) it exposes APIs for ML models to interact with Swarm Learning. 1086 

For any ML model to be applied to Swarm Learning, it needs to be modified using the Swarm 1087 

callback API. The callback API provides options to control the Swarm Learning processes. To 1088 

convert a ML program into a Swarm ML program the following steps have to be performed:  1089 

1. Import the SwarmCallback class from the swarm library  1090 

from swarm ‘import SwarmCallback’ 1091 
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SwarmCallback is a custom callback class that is built on the Keras Callback class.  1092 

2. Instantiate an object of the SwarmCallback class:  1093 

swarm_callback = SwarmCallback( min_peers = <peer count>,  1094 
sync_interval = <interval>,  1095 
use_adaptive_sync = <bool>,  1096 
val_batch_size = <batch size>,  1097 
val_data = <either a (x_val, y_val) tuple or a   1098 

      generator> 1099 
node_weightage = <relative weightage of node’s 1100 

model weights> ).  1101 

In this context, ‘min_peers’ specifies the minimum number of network peers required 1102 

to synchronize the insights, ‘sync_interval’ specifies the number of batches after which 1103 

a synchronization is performed, ‘use_adaptive_sync’ specifies whether the adaptive 1104 

sync interval feature should be used for tuning the sync interval. This feature is turned 1105 

off by default; ‘ val_batch_size’ specifies the size of each validation batch; ‘val_data’ 1106 

specifies the validation dataset. It can be either a (x_val, y_val) tuple or a generator;  1107 

3. Pass the object to the list of callbacks in Keras training code: model.fit(..., 1108 
callbacks = [swarm_callback]). SwarmCallback can be included along with other 1109 
callbacks also:  1110 

es_callback = EarlyStopping(...);  1111 
model.fit(..., callbacks = [es_callback, swarm_callback]) 1112 

 1113 

The Swarm Learning architecture principles 1114 

The Swarm Learning framework has two major components, 1) the Swarm ML component 1115 

runs a user-defined Machine Learning algorithm, and 2) the Swarm Network component forms 1116 

the Swarm Network based on a blockchain network.  1117 

The Swarm ML component is implemented as an API available for multiple popular 1118 

frameworks such as TensorFlow, Keras, Pytorch. This API provides an interface that is similar 1119 

to the training APIs in the native frameworks familiar to data scientists. Calling this API 1120 

automatically inserts the required hooks for Swarm Learning so that nodes seamlessly 1121 

exchange parameters and subsequently continue the training after setting the local models to 1122 

the globally merged parameters. With a few simple code changes, the entire network learns 1123 

as one cohort, with all the complexities of control and data flow taking place in an automated 1124 

fashion. 1125 
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Within the Swarm Network component each Swarm ML component interacts with each other 1126 

using the Swarm Network component’s blockchain platform to maintain global state 1127 

information about the model that is being trained and to track the training progress. The Swarm 1128 

Network components use this state and progress information to coordinate the working of the 1129 

Swarm learning. The Swarm Network is responsible for keeping the decentralized Swarm 1130 

network in a globally consistent state. The Swarm Network ensures that all operations and the 1131 

corresponding state transitions are performed in a synchronous manner. Both, state and 1132 

supported operations of the system are encapsulated in a blockchain smart contract. The 1133 

Swarm Network contains the logic to elect the leader of the Swarm for every synchronization, 1134 

implement fault-tolerance, and self-healing mechanisms, along with signaling among nodes 1135 

for commencement and completion of various phases. 1136 

The Swarm Learning framework is designed to run on both commodity and high-end 1137 

machines, supporting a heterogeneous set of infrastructure in the network. It can be deployed 1138 

within and across data centers. 1139 

In contrast to federated learning with star topology and a centralized coordinator, Swarm 1140 

Learning can support multiple topologies including fully connected, mesh, star, tree and hybrid 1141 

topologies. This flexibility provides multiple options to cater into different use cases. 1142 

 1143 

The Swarm Learning process  1144 

Swarm Learning provides a callback API to enable swift integration with multiple frameworks. 1145 

This API is incorporated into the existing ML code to quickly transform a stand-alone ML node 1146 

into a Swarm Learning participant in a non-intrusive way. It offers a set of commands (APIs) 1147 

to manage the Swarm Network and control the training.  1148 

The Swarm learning process is as follows: 1149 

The Swarm Learning process begins with enrollment of nodes with Swarm Network, which is 1150 

done implicitly by Swarm callback function when the callback is constructed. During this 1151 

process, the relevant attributes of the node are stored in the blockchain ledger. This is a one-1152 

time process. 1153 

Nodes will train the local copy of the model iteratively using private data over multiple epochs. 1154 

During each epoch, the node trains its local model using one or more data batches for a fixed 1155 

number of iterations. It regularly shares its learnings with the other Swarm nodes and 1156 

incorporates their insights. Users can control the periodicity of this sharing by defining a 1157 
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Synchronization Interval in Swarm callback API. This interval specifies the number of training 1158 

batches after which the nodes will share their learnings. 1159 

At the end of every synchronization interval, when it is time to share the learnings from the 1160 

individual models, one of the Swarm nodes is elected as a "leader" using the leader election 1161 

logic. This leader node collects the model parameters from each peer node and merges them. 1162 

The framework supports multiple merge algorithms such as mean, weighted mean, median, 1163 

and so on. Each node then uses these merged parameters to calculate various validation 1164 

metrics. These results are compared against the stopping criterion and if it is found to be met, 1165 

the Swarm Learning process is halted. Else the nodes use the merged parameters to start the 1166 

next training batch. 1167 

Swarm Learning library uses blockchain smart contracts to define the leader election logic and 1168 

the merge algorithm. The blockchain smart contracts prevents attacks from semi-honest or 1169 

dishonest participants. 1170 

 1171 

Quantification and Statistical Analysis 1172 

We evaluated binary classification model performance with sensitivity, specificity, accuracy 1173 

and f1-score metrics. Sensitivity, specificity, accuracy and f1-score were determined for every 1174 

test run. The 95% confidence intervals of all performance metrices were estimated using the 1175 

boostrapping approach74. For AML and ALL, 100 permutations per scenario were run for each 1176 

scenario. For TB the performance metrics were collected by running 10 permutations for 1177 

scenarios 1 to 4 and 5 permutations for scenarios 5 to 10. For COVID-19 the performance 1178 

metrics were collected by running 20 permutations for each scenario. All metrics are listed in 1179 

Supplementary Tables 3 and 4.  1180 

Differences in performance metrics were tested using the Wilcoxon signed rank test with 1181 

continuity correction (Individual Comparisons by Ranking Methods, Frank Wilcoxon, 1182 

https://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf). All test results are provided 1183 

in Supplementary Table 5. 1184 

To run the experiments, we used Python version 3.6.9 with Keras version 2.3.1 and 1185 

Tensorflow version 2.2.0-rc2. We used scikit-learn library version 0.23.175 to calculate values 1186 

for the metrics. Summary statistics and hypothesis tests were calculated using R version 3.5.2  1187 

(R: A language and environment for statistical computing, http://www.R-project.org/., 2015). 1188 

Calculation of each metric was done as follows: 1189 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 1190 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 1191 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 1192 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

2
 1193 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 2𝑇𝑃
 1194 

where TP=True Positive, FP=False Positive, TN=True Negative, FN=False Negative 1195 

 1196 

Data visualization  1197 

The classification report and confusion matrix was generated with scikit-learn APIs for each 1198 

permutation. Measurements of sensitivity, specificity and accuracy of each permutation run 1199 

was read into a table in Excel using Power Query and used for visualization for the different 1200 

scenarios in Power BI [Version: 2.81.5831.821 64-bit (Mai 2020)] with Box and Whisker chart 1201 

by MAQ Software (https://appsource.microsoft.com/en-us/product/power-bi-visuals/ 1202 

WA104381351).  1203 

 1204 

Data and software availability: 1205 

Processed data can be accessed via the SuperSeries GSE122517 or via the individual 1206 

SubSeries GSE122505 (dataset A1), GSE122511 (dataset A2) and GSE122515 (dataset A3). 1207 

Dataset B consists of the following series which can be accessed at GEO: GSE101705, 1208 

GSE107104, GSE112087, GSE128078, GSE66573, GSE79362, GSE84076, and GSE89403. 1209 

Furthermore, it contains the Rhineland study. This dataset is not publicly available because of 1210 

data protection regulations. Access to data can be provided to scientists in accordance with 1211 

the Rhineland Study’s Data Use and Access Policy. Requests for further information or to 1212 

access the Rhineland Study’s dataset should be directed to RS-DUAC@dzne.de. Dataset C 1213 

contains dataset B and additional samples for COVID-19. These datasets are made available 1214 

at the European Genome-Phenome Archive (EGA) under accession number 1215 

EGAS00001004502, which is hosted by the EBI and the CRG. 1216 
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The code for preprocessing and for predictions can be found at GitHub 1217 

(https://github.com/schultzelab/swarm_learning). 1218 

 1219 

 1220 

Supplementary Tables 1221 

Supplementary Table 1:   Overview over all sample numbers and scenarios 1222 

Supplementary Table 2:   Dataset annotations of Dataset A, B and C 1223 

Supplementary Table 3:   Prediction results for all scenarios and permutations  1224 

Supplementary Table 4:   Summary statistics on all prediction scenarios 1225 

Supplementary Table 5:   Statistical tests comparing single node vs. swarm predictions  1226 

Supplementary Table 6:   Covid 19 Patient characteristics  1227 
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