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Abstract

Identification of patients with life-threatening diseases including leukemias or infections such
as tuberculosis and COVID-19 is an important goal of precision medicine. We recently
illustrated that leukemia patients are identified by machine learning (ML) based on their blood
transcriptomes. However, there is an increasing divide between what is technically possible
and what is allowed because of privacy legislation. To facilitate integration of any omics data
from any data owner world-wide without violating privacy laws, we here introduce Swarm
Learning (SL), a decentralized machine learning approach uniting edge computing,
blockchain-based peer-to-peer networking and coordination as well as privacy protection
without the need for a central coordinator thereby going beyond federated learning. Using
more than 14,000 blood transcriptomes derived from over 100 individual studies with non-
uniform distribution of cases and controls and significant study biases, we illustrate the
feasibility of SL to develop disease classifiers based on distributed data for COVID-19,
tuberculosis or leukemias that outperform those developed at individual sites. Still, SL
completely protects local privacy regulations by design. We propose this approach to

noticeably accelerate the introduction of precision medicine.

Introduction

Fast and reliable detection of patients with severe illnesses is a major goal of precision
medicine'. The measurement of molecular phenotypes for example by omics technologies?
and the application of sophisticated bioinformatics including artificial intelligence (Al)
approaches®’ opens up the possibility for physicians to utilize large-scale data for diagnostic
purposes in an unprecedented way. Yet, there is an increasing divide between what is
technically possible and what is allowed because of privacy legislation® (hhs.gov,
https://www.hhs.gov/hipaa/index.html, 2020; Intersoft Consulting, General Data Protection
Regulation, https://gdpr-info.eu; Convention for the Protection of Individuals with regard to
Automatic Processing of Personal Data, https://rm.coe.int/16808ade9d). Particularly, in a
global health crisis, as in the case of the infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) leading to the pandemic spread of coronavirus disease 2019
(COVID-19)*", reliable, fast, secure and privacy-preserving technical solutions based on Al
principles are now believed to add to the armamentarium to quickly answer important

questions in the fight against such threats'>'5. These Al-based concepts range from protein
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84  structure prediction'®, drug target prediction’, knowledge sharing'®, tools for population
85  control'®? to the assistance of healthcare personnel, e.g. by developing Al-based coronavirus
86  diagnostic software?'?2, Considering the more clinically oriented Al-based technical solutions,
87  any such progress might also induce improvements for a variety of deadly diseases including
88  other major infections or cancer?. For example, the principles of a recently introduced Al-
89  system for diagnosing COVID-19 pneumonia and predicting disease outcome using computed
90 tomography?? might be further developed to identify patients with tuberculosis or lung cancer
91 in the future?*. At the same time, we need to consider important standards relating to data
92  privacy and protection, such as Convention 108(+) of the Council of Europe (Convention for
93 the Protection of Individuals with regard to Automatic Processing of Personal Data,
94  https://rm.coe.int/16808ade9d), which regulate the use and sharing of health data including in

95  Al-based approaches, irrespective of the occurrence of a pandemic crisis.

96  Al-based solutions intrinsically rely on appropriate algorithms?°, but even more so on large

97 enough datasets for training purposes®. Since the domain of medicine is inherently

98 decentralized, the volume of data available locally is often insufficient to train reliable

99 classifiers?’~2°. As a consequence, centralization of data, for example via cloud solutions, has
100  been one model to address the local limitations*°-32. While beneficial from an Al-perspective,
101  centralized solutions were shown to have other inherent hurdles, including increased data
102 traffic of large medical data, data ownership, privacy and security concerns when ownership
103 is disconnected from access and usage curation and thereby creating data monopolies
104  favoring data aggregators?®. Consequently, solutions to the challenges of central data models
105 in Al - particular when dealing with medical data - must be effective, with high accuracy and
106 efficiency, privacy- and ethics-preserving, secure, and fault-tolerant by design33-%¢. Federated
107 Al has been introduced to address some of these aspects?3"-3°. While data are kept locally
108 (at the edge) and privacy issues are addressed*®4', the model parameters in federated Al are
109  still handled by central custodians who as the intermediaries concentrate power of the learning

110  to themselves. Furthermore, such star-shaped architectures decrease fault tolerance.

111 We hypothesized that completely decentralized Al solutions overcome current technical
112  shortcomings and at the same time accommodate for inherently decentralized data structures
113  in medicine as well as pronounced data privacy and security regulations. The solution would
114 1) need to keep large medical data locally with the data owner, 2) require no raw data
115  exchange thereby also reducing data traffic and issues related to central storage, 3) provide
116  high level data security and privacy protection, 4) guarantee secure, transparent and fair
117  onboarding of decentralized members participating in the learning network without the need
118 for a central custodian, 5) allow for parameter merging with equal rights for all members

119  requiring no central custodian, and 6) protect the ML models from attacks. To address these

4
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120 points, we introduce the concept of Swarm Learning (SL). SL combines decentralized
121 hardware infrastructures, distributed ML technique based on standardized Al engines with a
122  permissioned blockchain to securely onboard members, dynamically elect the leader among
123  the members, and merge model parameters. All processes are orchestrated by an SL library
124 and an iterative learning procedure applying Al solutions to compute problems with

125  decentralized private data.

126  Medicine is a prime example to illustrate the advantages of this Al approach. Without any
127  doubt, numerous medical features including radiograms or computed tomographies,
128 proteomes, metagenomes or microbiomes derived from body fluids including nasal or throat
129  swaps, blood, urine or stool are all excellently suitable medical data for the development of Al-
130  based diagnostic or outcome prediction classifiers. We here chose to evaluate the cellular
131  compartment of peripheral blood, either in form of peripheral blood mononuclear cells (PBMC)
132  or whole blood-derived transcriptomes, since blood-derived transcriptomes include important
133 information about the patients’ immune response during a certain disease, which in itself is an
134  important molecular information*?43, In other words, in addition to the use of blood-derived
135  high-dimensional molecular features for a diagnostic or outcome classification problem, blood
136  transcriptomes could be further utilized in the clinic to systematically characterize ongoing
137  pathophysiology, predict patient-specific drug targets and trigger additional studies targeting
138  defined cell types or molecular pathways, making this feature space even more attractive to
139  answer a wide variety of medical questions. Here, we illustrate that newly generated blood
140 transcriptome data together with data derived from more than 14,000 samples in more than
141 100 studies combined with Al-based algorithms in a Swarm Learning environment can be
142  successfully applied in real-world scenarios to detect patients with leukemias, tuberculosis or
143  active COVID-19 disease in an outbreak scenario across distributed datasets without the

144  necessity to negotiate and contractualize data sharing.
145

146
147 Results

148 Concept of Swarm Learning

149  Machine learning (ML) of any data including genome or transcriptome data requires the
150 availability of sufficiently large datasets?4 and the respective compute infrastructure including
151 data storage for data processing and analytics**. Conceptually, if data and compute
152  infrastructure is sufficiently available locally, ML can be performed locally (‘at the edge’) (Fig.

153 1a). However, often medical data are not sufficiently large enough locally and similar
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154  approaches are performed at different locations in a disconnected fashion. These limitations
155  have been overcome by cloud computing where data are moved centrally to perform training
156 of ML algorithms in a centralized compute environment (Fig. 1b). Compared to local
157  approaches, cloud computing can significantly increase the amount of data for training ML
158  algorithms and therefore significantly improve their results?®. However, cloud computing has
159  other disadvantages such as data duplication from local to central data storage, increased
160 data traffic and issues with locally differing data privacy and security regulations*. As an
161  alternative, federated cloud computing approaches such as Google’s federated learning® and
162 Facebook’s elastic averaging SGD (Deep learning with Elastic Averaging SGD,
163  http://papers.neurips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf) have been
164  developed. In these models, dedicated parameter servers are responsible for aggregating and
165  distributing local learning (Fig. 1¢). A disadvantage of such star-shaped system architectures
166 is the remainder of a central structure, which hampers implementation across different
167 jurisdictions and therefore still requires the respective legal negotiations. Furthermore, the risk

168  for a single point of failure at the central structure reduces fault-tolerance.

169 In an alternative model, which we introduce here as Swarm Learning (SL), we dismiss the
170  dedicated server and allow parameters and models to be shared only locally (Fig. 1d). While
171 parameters are shared via the swarm network, the models are built independently on private
172  data at the individual sites, here referred to as swarm edge nodes (short ‘nodes’) (Fig. 1e). SL
173  provides security measures to guarantee data sovereignty, security and privacy realized by a
174  private permissioned blockchain technology which enables different organizations or consortia
175 to efficiently collaborate (Fig. 1f). In a private permissioned blockchain network, each
176  participant is well defined and only pre-authorized participants can execute the transactions.
177  Hence, they use computationally inexpensive consensus algorithms, which offers better
178  performance and scalability. Onboarding of new members or nodes can be done dynamically
179  with the appropriate authorization measures to know the participants of the network, which
180 allows continuous scaling of learning (Extended Data Fig. 1a). A new node enrolls via a
181 blockchain smart contract, obtains the model, and performs local model training until defined
182  conditions for synchronization are met. Next, model parameters are exchanged via a Swarm
183  API with the rest of the swarm members and merged for an updated model with updated
184  parameter settings to start a new round of training at the nodes. This process is repeated until
185  stopping criterions are reached, which are negotiated between the swarm nodes/members.
186 The leader is dynamically elected using a blockchain smart contract for merging the
187 parameters and there is no need for a central coordinator in this swarm network. The
188  parameter merging algorithm is executed using a blockchain smart contract thus protects it

189 from semi-honest or dishonest participants. The parameters can be merged by the leader
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190 using different functions including average, weighted average, minimum, maximum, or median
191  functions. The various merge techniques and merge frequency enables SL to efficiently work
192  with imbalanced and biased data. As currently developed, SL works with parametric models

193  with finite sets of parameters, such as linear regression or neural network models.

194  Ateach node, SL is conceptually divided into infrastructure and application layer (Fig. 1g). On
195  top of the physical infrastructure layer (hardware) the application environment contains the ML
196  platform, the blockchain, and the SL library (SLL) including the Swarm API in a containerized
197  deployment, which allows SL to be executed in heterogeneous hardware infrastructures (Fig.
198 19, Supplementary Information). The application layer consists of the content, the models
199 from the respective domain, here medicine (Fig. 1g), for example blood transcriptome data
200 from patients with leukemias, tuberculosis and COVID-19 (Fig. 1h-l). Collectively, Swarm
201  Learning allows for a completely decentralized and therefore democratized, secure, privacy-
202  preserving, hardware-independent, and scalable machine learning environment, applicable to

203  many scenarios and domains, which we demonstrate with three medical examples.
204

205 Swarm learning robustly predicts leukemias from peripheral blood mononuclear cell
206 data

207  As afirst use case, we chose transcriptomes derived from peripheral blood mononuclear cells
208 (PBMC) of more than 12,000 individuals (Fig. 1h-j) separated into three individual datasets
209 (A1, A2, A3) based on the technology used for generating the transcriptomes (2 different
210  microarrays, RNA-seq)*’. We used a deep neural network (Keras, https://keras.io/, 2015) as
211 the machine learning approach in all three use cases. To assess performance metrics of SL,
212 we simulated scenarios by dividing up the individual samples derived from several
213  independently performed studies (see Material and Methods) within each of the three datasets
214  into non-overlapping training and test sets. The training sets were then distributed to three
215  nodes for training and classifiers were tested at a fourth node (independent test set) (Fig. 2a).
216 By assigning the training data to the nodes in different distributions, we mimicked several
217  clinically relevant scenarios (Supplementary Table 1). As cases, we first used samples
218  defined as acute myeloid leukemia (AML), all other samples are termed ‘controls’. Each node
219  within this simulation could stand for a large hospital or center, a network of hospitals
220 performing individual studies together, a country or any other independent institutional

221 organization generating such medical data with local privacy requirements.

222 In a first scenario, we randomly distributed samples per node as well as cases and controls
223  unevenly at the nodes and between nodes (dataset A2) (Fig. 2b). Sample distribution between

224  sample sets was permuted 100 times (Fig. 2b, middle panel) to determine the influence of
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225 individual samples on overall performance. Among the nodes, the best test results were
226  obtained by node one with a mean accuracy of 97.0%, mean sensitivity of 97.5% and mean
227  specificity of 96.3% with an even distribution between cases and controls, albeit this node had
228 the smallest number of overall training samples. Node 2 did not produce any meaningful
229  results, which was due to a too low ratio of cases to controls (1:99) for training. Surprisingly,
230 node 3 with the largest number of samples, but an uneven distribution (70% cases : 30%
231  controls) performed worse than node 1 with a mean balanced accuracy of 95.1%. Most
232  importantly, however, SL outperformed each of the nodes resulting in a higher test accuracy
233 in 97.0% of all permutations (mean balanced accuracy 97.7%) (Fig. 2b, right panel,
234  Supplementary Table 4). The balanced accuracy of SL was significantly higher (p < 0.001)
235 when compared to the performance of each of the three nodes, despite the fact that
236  information from the poorly performing node 2 was integrated. We also calculated this scenario
237 in datasets A1 and A3 and obtained rather similar results strongly supporting that the
238  performance improvement of SL over single nodes is independent of data collection (studies)
239 and even experimental technologies (microarray (datasets A1, A2), RNA-seq (dataset A3)

240  used for data generation (Extended Data Fig. 2).

241  To test whether more evenly distributed samples at the nodes would improve individual node
242  performance, we distributed similar numbers of samples to each of the nodes but kept
243  case:control ratios as in scenario 1 (Fig. 2c, Extended Data Fig. 3). While there was a slight
244  increase in test accuracy at nodes 1 and 2, node 3 performed worse with also higher variance.
245  More importantly, SL still resulted in the best performance metrics (mean 98.5% accuracy)
246  with slightly but significantly (p<0.001) increasing performance compared to the first scenario.
247  Results derived from datasets A1 and A3 echoed these findings (Extended Data Fig. 3).

248 In a third scenario, we distributed the same number of samples across all three nodes, but
249 increased potential batch effects between nodes, by distributing samples of a clinical study
250 independently performed and published in the past only to a dedicated training node. In this
251 scenario, cases and control ratios varied between nodes and left out samples (independent
252  samples) from the same published studies were combined for testing at node 4. Performance
253  of the three nodes was very comparable, but never reached SL results (mean 98.3% accuracy,
254  swarm outperformed all nodes with p<0.001, Fig. 2d., Extended Data Fig. 4b,
255  Supplementary Data Table 4), which was also true for datasets A1 and A3 (Extended Data
256  Fig. 4c-d). Even when further increasing batch effects by distributing samples from
257  independent published studies to the test node, which means that training and test datasets
258 come from studies performed and published independently, SL outperformed the individual

259  nodes, albeit the variance in the results was increased both at each node and for SL, indicating
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260 that study design has an overall impact on classifier performance and that this is still seen in
261  SL (mean 95.6% accuracy, Extended Data Fig. 4e).

262 In a fourth scenario, we further optimized the nodes by increasing the overall sample size at
263 node 3 and keeping case:control ratios even at all nodes (Fig. 2e, Extended Data Fig. 5a-d).
264  Clearly, node performance further improved with little variance between permutations,
265 however, even under these ‘node-optimized’ conditions, SL led to higher performance

266  parameters.

267 In afifth scenario, we tested whether or not SL was ‘immune’ against the impact of the data
268 generation procedure (microarray versus RNA-seq) (Fig. 2f, Extended Data Fig. 5e,f). We
269 recently demonstrated that classifiers trained on data derived by one technology (e.g.
270  microarrays) do not necessarily perform well on another (e.g. RNA-seq)*. To test this
271  influence on SL, we distributed the samples from the three different datasets (A1-A3) to one
272  node each, e.g. dataset A1 was used for training only at node 1. We used 20% of the data
273  (independent non-overlapping to the training data) from each dataset (A1-A3) and combined
274  them to form the test set (node 4). Node 3, trained on RNA-seq data, performed poorly on the
275 combined dataset due to the fact that two-thirds of the data in the test set were microarray-
276  derived data. Nodes 1 and 2 performed reasonably well with mean accuracies of 96.1% (node
277 1) and 97.5% (node 2), however did not reach the test accuracy of SL (98.8%), which also
278 indicated that SL is much more robust toward effects introduced by different data production

279  technologies in transcriptomics (Fig. 2f, Extended Data Fig. 5e,f).

280 Finally, we repeated several of these scenarios with acute lymphoblastic leukemia (ALL) as
281  the second most prevalent disease in dataset A2 (Extended Data Fig. 6 and data not shown)
282  and demonstrated very similar results with SL outperforming the classifiers built at the nodes.
283  Collectively, these simulations using real-world transcriptome data collected from more than
284 100 individual studies illustrate that SL would not only allow data to be kept at the place of
285 generation and ownership, but it also outperforms every individual node in numerous
286  scenarios, even in those with nodes included that cannot provide any meaningful classifier
287  results.

288
289  Swarm learning to identify patients with tuberculosis

290 In infectious diseases, heterogeneity may be more pronounced compared to leukemia,
291  therefore we built a second use case predicting cases with tuberculosis (Tb) from full blood
292 transcriptomes. Of interest, previous work in smaller studies had already suggested that acute

293  tuberculosis or outcome of tuberculosis treatment can be revealed by blood transcriptomics
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294 %852 To apply SL, we generated a new dataset based on full blood transcriptomes derived by
295 PaxGene blood collection followed by bulk RNA-sequencing. We also generated new blood
296 transcriptomes and added existing studies to the dataset compiling a total of 1,999 samples
297  from nine individual studies including 775 acute and 277 latent Tb cases (Fig. 1k, Extended
298 Data Fig. 7a, Supplementary Table 2). These data are more challenging, since infectious
299 diseases show more variety due to biological differences with respect to disease severity,
300 phase of the disease or the host response. But also the technology itself is more variable with
301  numerous different approaches for full blood transcriptome sample processing, library
302  production and sequencing, which can introduce technical noise and batches between
303  studies. As a first scenario, we used all Tb samples (latent and acute) as cases and divided
304  Tb cases and controls evenly among the nodes (Extended Data Fig. S7a-b, Supplementary
305 Table 1). Similar to AML and ALL, in detecting Tb, SL outperformed the individual nodes in
306 accuracy (mean 93.4%), sensitivity (mean 96.0%) and specificity (mean 90.9%) (Extended
307 DataFig. S7b). To increase the challenge, we decided to assess prediction of acute Tb cases
308 only. In this scenario, latent Tb are not treated as cases but rather as controls (Extended Data
309 Fig. S7a). For the first scenario, we kept cases and controls even at all nodes but further
310 reduced the number of training samples (Fig. 3a-b). As expected in this more challenging
311 scenario, distinguishing acute Tb from the control cohort (including latent Tb samples), overall
312  performance (mean balanced accuracy 89.1%, mean sensitivity 92.2%, mean specificity
313  86.0%) slightly dropped, but still SL performed better than any of the individual nodes (p<0.01
314  for swarm vs. each node, Fig. 3b). To determine whether sample size impacts on prediction
315  results in this scenario, we reduced the number of samples at each training node (1-3) by
316  50%, but kept the ratio between cases and controls (Extended Data Fig. S7c). Still, SL
317  outperformed the nodes, but all statistical readouts (mean accuracy 86.5%, mean sensitivity
318  87.8%, mean specificity 84.8%) at all nodes and SL showed lower performance, following
319  general observations of Al with better performance when increasing training data?. We next
320 altered the scenario by dividing up the three nodes into six smaller nodes (Fig. 3¢, samples
321  per node reduced by half in comparison to Fig. 3a-b), a scenario that can be envisioned in the
322  domain of medicine in many settings, for example if several smaller medical centers with less
323  cases would join efforts (Fig. 3d). Clearly, each individual node performed worse, but for SL
324  the results did not deteriorate (mean accuracy 89.2%, mean sensitivity 90.7%, mean
325  specificity 88.2% with significant difference to each of the nodes in all performance measures,
326  see Supplementary Table 4), again illustrating the strength of the joined learning effort, while

327  completely respecting each individual node’s data privacy.

328  Albeit aware of the fact that - in general - acute Tb is an endemic disease and does not tend

329 to develop towards a pandemic such as the current COVID-19 pandemics, we utilized the Tb

10
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330 blood transcriptomics dataset to simulate potential outbreak and epidemic scenarios to
331  determine benefits, but also potential limitations of SL and how to address them (Fig. 3e-l).
332  The first scenario reflects a situation in which three independent regions (simulated by the
333 nodes), would already have sufficient but different numbers of disease cases. Furthermore,
334 cases and controls were kept even at the test node (Fig. 3e-f). Overall, compared to the
335  scenario described in Fig. 3¢, results for the swarm were almost comparable (mean accuracy
336  89.0%, mean sensitivity 94.4%, mean specificity 83.4%), while the results for the node with
337  the lowest number of cases and controls (node 2) dropped noticeable (mean accuracy 82.2%,
338 mean sensitivity 88.8%, mean specificity 75.4%, Fig. 3f). When reducing the prevalence at
339 the test node by increasing the number of controls (Fig. 3g-h), this effect was even more
340  pronounced, while the performance of the swarm was almost unaffected (mean balanced
341  accuracy 89.0%).

342  We decreased the number of cases at a second training node (node 1) (Fig. 3i-l), which clearly
343  reduced test performance for this particular node (Fig. 3i-j), while test performance of the
344  swarm was only slightly inferior to the prior scenario (mean balanced accuracy 87.5%, no
345  significant difference to the prior scenario). Only when reducing the prevalence at the test
346  node (Fig. 3k-l1), we saw a further drop in mean specificity for the swarm (81.0%), while
347  sensitivity stayed similarly high (93.0%). Finally, we further reduced the prevalence at two
348 training nodes (node 2: 1:10; node 3: 1:5) as well as the test node (Extended Data Fig. 8a-
349 b). Lowering the prevalence during training resulted in very poor test performance at these
350 two nodes (balanced accuracy node 2: 59.8%, balanced accuracy node 3: 74.8%), while
351  specificity was high (node 2: 98.4%, node 3: 93.8%). SL showed highest accuracy (mean
352  balanced accuracy 86.26%) and F-statistics (90.0%) but was outperformed for sensitivity by
353 node 1 (swarm: 80.0%, node1l: 87.8%), which showed poor performance concerning
354  specificity (swarm: 92.4%, node1: 84.8%). Vice versa, node 2 outperformed the swarm for
355  specificity (98.4%), but showed very poor sensitivity (21.2%) (Extended Data Fig. 8b). When
356 lowering prevalence at the test node (Extended Data Fig. 8c-d), it became clear that all
357 performance parameters including the F1 statistics were more resistant for the swarm
358 compared to individual nodes. Taken together, using whole blood transcriptomes instead of
359 PBMC and acute Tb as the disease instead of leukemia, we present a second use case
360 illustrating that Swarm Learning integrating several individual nodes outperforms each node.
361 Furthermore, we gained initial insights into the potential of SL to be utilized in a disease

362 outbreak scenario.
363

364 Identification of COVID-19 patients in an outbreak scenario
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365 Based on the promising results obtained for tuberculosis, we collected blood from COVID-19
366  patients at two sites in Europe (Athens, Greece; n=39 samples, Nijmegen, n=93 samples) and
367 generated whole blood transcriptomes by RNA-sequencing. We used the dataset described
368  for Tb as the framework and included the COVID-19 samples (Fig. 1) for assessing whether
369  SL could be applied early on to detect patients with a newly identified disease. While COVID-
370 19 patients are currently identified by PCR-based assays to detect viral RNA%, we use this
371  case as a proof-of-principle study to illustrate how SL could be used even very early on during
372  an outbreak based on the patients’ immune response captured by analysis of the circulating
373 immune cells in the blood. Here, blood transcriptomes only present a potential feature space
374  to illustrate the performance of SL. Furthermore, assessing the specific host response, in
375 addition to disease prediction, might be beneficial in situations for which the pathogen is
376  unknown, specific pathogen tests not yet possible, and blood transcriptomics can contribute
377  tothe understanding of the host’s immune response®. Lastly, while we do not have the power
378  yet, blood transcriptome-based machine learning might be used to predict severe COVID-19

379  cases, which cannot be done by viral testing alone.

380 COVID-19 induces very strong changes in peripheral blood transcriptomes®*. Following our
381 experience with the leukemia and tuberculosis use cases, we first tested classifier
382  performance for evenly distributed cases and controls at both training nodes and the test node
383 (Extended Data Fig. 9a,b, Supplementary Table 1). We reached very high statistical
384  performance parameters, including high F1-statistics with SL showing highest mean values
385  for accuracy (96.4%), sensitivity (97.8%), and F1 score (96.4%) (Extended Data Fig. 9b,
386 summary statistics for all figures are listed in Supplementary Table 4). Reducing the
387  prevalence at the test node (11:25 cases:controls) reduced all test parameters (Extended
388 Data Fig. 9¢), but only when we reduced the prevalence even further (1:44 ratio, Extended
389 Data Fig. 9d), F1-statistics was clearly reduced, albeit SL again performing best. We next
390 reduced the cases at all training nodes (Extended Figure 10), but even under these
391  conditions, we observed still very high values for accuracy, sensitivity, specificity and F1

392  scores, both derived by training at individual nodes or by SL (Extended Figure 10a-f).

393  We then reduced the cases at all three training nodes to very low numbers, a scenario that
394  might be envisioned very early during an outbreak scenario (Fig. 4a). Node 1 contained only
395 20 cases, node 2 10 cases and node 3 only 5 cases. At each node, controls outhumbered
396 cases by 1:5, 1:10, or 1:20. At the test node, we varied the prevalence from 1:1 (Fig. 4b), 1:2
397 (Fig. 4c) to 1:10 (Fig. 4d). Based on our findings for Tb (Extended Data Fig. 8), we expected
398 classifier performance to deteriorate under these conditions. We only observed decreased
399 performance at nodes 2 and 3 in these scenarios with SL outperforming these nodes with

400 p<0.05 for all performance measures, e.g. at a test node prevalence of 1:10 (accuracy
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401  (99.3%), sensitivity (95.1%), specificity (99.7%) and F1-statistics (99.7%) (Fig. 4d). Finally,
402  we simulated a scenario with four instead of three training nodes with very few cases per node
403 (Extended Data Fig. 11a-d), in an otherwise similar scenario as described for Fig. 4. Even for
404  a simulated prevalence of 1:10 cases versus controls at the test node, we determined high
405 test performance parameters for SL, with swam performance being significantly higher than
406 node performances (SL accuracy (99.1%), sensitivity (92.0%), specificity (99.9%), F1 statistics
407  (99.7%) (Extended Data Fig. 11) with the lowest variance in performance, while results at
408 individual notes were very variable and deteriorated with low case numbers at the training
409 node. Collectively, we provide first evidence that blood transcriptomes taken from patients with
410 COVID-19 harbor very strong biological changes and these translate into a very powerful
411  feature space for applying machine learning to the detection of patients with this new infectious

412  disease, particularly when applying SL.

413

414 Discussion

415  The introduction of precision medicine based on high-resolution molecular and imaging data
416  will heavily rely on trustworthy machine learning algorithms in compute environments that are
417  characterized by high accuracy and efficiency, that are privacy- and ethics-preserving, secure,
418 and that are fault-tolerant by design33-6. At the same time, privacy legislation is becoming
419  increasingly strict, as risks of cloud-based and central data-acquisition are recognized. Here,
420  we introduce Swarm Learning, which combines blockchain technology and machine learning
421 environments organized in a swarm network architecture with independent swarm edge nodes
422  that harbor local data, compute infrastructure and execute the shared learning models that
423  make central data acquisition obsolete. During iterations of SL, one of the nodes is chosen to
424  lead the iteration, which does not require a central parameter server anymore thereby
425  restricting centralization of learned knowledge and at the same time increasing resiliency and
426  fault tolerance. In fact, these are the most important improvements over current federated
427  computing models. Furthermore, private permissioned blockchain technology, harboring all
428 rules of interaction between the nodes, is the Swarm Learning’s inherent privacy- and ethics-
429  preserving strategy. This is of particular interest to medical data and could be adapted by other
430 federated learning systems. To understand whether the concept of swarm learning would also
431  be characterized by high efficiency and high accuracy, we built three medical use cases based
432  on blood transcriptome data, which are high-dimensional data derived from blood, one of the
433 major tissues used for diagnostic purposes in medicine. First, utilizing three previously
434  compiled datasets (A1-3) of peripheral blood mononuclear cells derived from patients with

435  acute myeloid leukemia, we provide strong evidence that SL-based classifier generation using
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436  a well-established neural network algorithm outperforms individual nodes, even in scenarios
437  where individual contributing swarm nodes were performing rather poorly. Most striking,
438 swarm learning was even improving performance parameters when training of individual
439 nodes was based on technically different data, a situation that was previously shown to
440 deteriorate classifier performance*’. With these promising results, we generated a more
441 challenging use case in infectious disease patients, detecting Tb based on full blood
442  transcriptomes. Also in this case, SL outperformed individual nodes. Using Tb to simulate
443  scenarios that could be envisioned for building blood transcriptome classifiers for patients
444  during an outbreak situation, we further illustrate the power of SL over individual nodes.
445  Considering the difficulty to quickly negotiate data sharing protocols or contracts during an
446  epidemic or pandemic outbreak, we deduce from these findings that SL would be an ideal
447  strategy for independent producer of medical data to quickly team up to increase the power to
448  generate robust and reliable machine learning-based disease or outcome prediction classifier

449  without the need to share data or relocate data to central cloud storages.

450 In addition, we tested whether we could build a disease prediction classifier for COVID-19 in
451  an outbreak scenario. Building on our knowledge that blood transcriptomes of COVID-19
452  patients are significantly altered with hundreds of genes being changed in expression and with
453  a rather specific signature compared to other infectious diseases®, we hypothesized that it
454  should be possible to build such a classifier with a rather small number of samples. Here, we
455  provide evidence that classifiers with high accuracy, sensitivity, specificity, and also high F1-
456  statistics can be generated to identify patients with COVID-19 based on their blood
457  transcriptomes. Moreover, we illustrate the power of SL that would allow to quickly increase
458 the power of classifier generation even under very early outbreak scenarios with very few
459 cases used at the training nodes, which could be e.g. collaborating hospitals in an outbreak
460 region. Since data do not have to be shared, additional hospitals could benefit from such a
461  system by applying the classifiers to their new patients and once classified, one could even
462  envision an onboarding of these hospitals for an adaptive classifier improvement schema.
463  Albeit technically feasible, we are fully aware that such scenarios require further classifier
464  testing and confirmation, but also an assessment of how this could be integrated in existing
465 legal and ethical regulations at different regions in the world>¢. Furthermore, we appreciate
466  that other currently less expensive data might be suitable for generating classifiers to identify
467 COVID-19 patients. For example, if highly standardized clinical data would become
468 available, SL could be used to interrogate the clinical feature space at many clinics worldwide
469  without any need to exchange the data to develop high performance classifiers for detecting
470 COVID-19 patients. Similarly, recently introduced Al-systems using imaging data?'-?> might be

471  more easily scaled if many hospitals with such data could be connected via SL. Irrespective
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472  of these additional opportunities using other parameter spaces, we would like to suggest blood
473  transcriptomics as a promising new alternative due to its very strong signal in COVID-19. A
474  next step will be to determine whether blood transcriptomes taken at early time points could
475  be used to predict severe disease courses, which might allow physicians to introduce novel
476 treatments at an earlier time point. Furthermore, we propose to develop an international
477  database of blood transcriptomes that could be utilized for the development of predictive
478  classifiers in other infectious and non-infectious diseases as well. It could be envisioned that
479  such an SL-based learning scheme could be deployed as a permanent monitoring or early
480 warning system that runs by default, looking for unusual movements in molecular profiles.
481  Collectively, SL together with transcriptomics but also other medical data is a very promising
482  approach to democratize the use of Al among the many stakeholders in the domain of
483 medicine while at the same time resulting in more data privacy, data protection and less data
484  traffic.

485  With increasing efforts to enforce data privacy and security of medical data® (hhs.gov,
486  https://www.hhs.gov/hipaa/index.html, 2020; Intersoft Consulting, General Data Protection
487  Regulation, https://gdpr-info.eu) and to reduce data traffic and duplication of large medical
488 data, a decentralized data model will become the preferred choice of handling, storing,
489  managing and analyzing medical data®. This will not be restricted to omics data as exemplified
490 here, but will extend to other large medical data such as medical imaging data>®*¢. Particularly
491  inoncology, great successes applying machine learning have already been reported for tumor
492  detection*"%557:%8  subtyping®®®°, grading®', genomic characterization®?, or outcome
493  prediction®®, yet progress is hindered by too small datasets at any given institution?® with
494  current privacy regulations® (hhs.gov, https://www.hhs.gov/hipaa/index.html, 2020; Intersoft
495  Consulting, General Data Protection Regulation, https://gdpr-info.ee) making it less appealing
496 to develop centralized Al systems. We introduce Swarm Learning as a decentralized learning
497  system with access to data stored locally that can replace the current paradigm of data sharing
498 and centralized storage while preserving data privacy in cross-institutional research in a wide
499  spectrum of biomedical disciplines. Furthermore, SL can easily inherit developments to further
500 preserve privacy such as functional encryption®, or encrypted transfer learning approaches®®.
501 In addition, the blockchain technology applied here provides robust measures against semi-
502 honest or dishonest participants/adversaries who might attempt to undermine a Swarm
503  Network. Another important aspect for wide employment of SL in the research community and
504 in real-world applications is the ease of use of the Swarm API, which will make it easier for
505 researchers and developers to include novel developments such as for example private

506  machine learning in TensorFlow®®.
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507  There is no doubt that numerous medical and other data types as well as a vast variety of
508 computational approaches can be used during a pandemic™. We do not want to imply that
509  blood transcriptomics would be the preferred solution for the many questions that Al and
510  machine learning could help to solve during such a crisis. Although, at the same time, we have
511 recently shown that blood transcriptomics can be used to define molecular phenotypes of
512  COVID-19, uncover the deviated immune response in severe COVID-19 patients, define
513  unique patterns of the disease in comparison to other diseases and can be utilized to predict
514  potential drugs to be repurposed for COVID-19 therapy (Aschenbrenner et al. unpublished
515  results). Therefore, we explored blood transcriptomics as a unique and rich feature space and
516 a good example to illustrate the advantages of SL in identifying COVID-19 patients. Once
517 larger datasets become available, SL could be used to identify patients at risk to develop

518 severe COVID-19 early after onset of symptoms.

519  Another important quest that has been proposed is global collaboration and data-sharing™.
520 While we could not agree more about the need for global collaboration - an inherent
521 characteristic of SL - we favor systems that do not require data sharing but rather support
522  global collaboration with complete data privacy preservation. Particularly, if using medical data
523 that can also be used to interrogate medical issues unrelated to COVID-19. Indeed,
524  statements by lawmakers have been triggered, clearly indicating that privacy rules also fully
525  apply during the pandemics (EU Digital Solidarity: a call for a pan-European approach against
526 the pandemic, Wojciech Wiewiorowski, https://edps.europa.eu/sites/edp/files/publication
527  /2020-04-06_eu_digital_solidarity_covid19_en.pdf, 2020). Particular in a crisis situation such
528 as the current pandemic, Al systems need to comply with ethical principles and respect human
529 rights'. We therefore argue that systems such as Swarm Learning that allow fair, transparent
530 and still highly regulated shared data analytics while preserving data privacy regulations are
531  to be favored, particularly during times of high urgency to develop supportive tools for medical
532  decision making. We therefore also propose to explore SL for image-based diagnostics of
533 COVID-19 from patterns in X-ray images or computed tomography (CT) scans?'?2, structured
534  health records®’, or wearables for disease tracking'. Swarm learning would also have the
535 advantage that model and code sharing as well as dissemination of new applications is easily
536  scalable, because onboarding of new swarm participants is structured by blockchain
537 technology, while scaling of data sharing is not even necessary due the inherent local
538 computing of the data'®. Furthermore, swarm learning can reduce the burden of establishing

539  global, comprehensive, open, and verified datasets.

540  Collectively, we introduce Swarm Learning defined by the combination of blockchain

541  technology and decentralized machine learning in an entirely democratized approach
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eliminating a central player and therefore representing a uniquely fitting strategy for the
inherently locally organized domain of medicine. We used blood transcriptomes in three
scenarios as use cases since they combine blood as the most widely used surrogate tissue
for diagnostic purposes with an omics technology producing high-dimensional data with many
parameters. Since the deployment of Swarm Learning due to ease of use of Swarm Learning
libraries is a rather simple task, we propose to expand the use of this technology and further
develop such classifiers in a unifying fashion across centers worldwide without any need to
share the data itself. Our use cases are supposed to serve as examples for other high-
dimensional data in the domain of medicine, but certainly also many other areas of research

and application against the pandemics and beyond.
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606  Figure 1. Concept of Swarm Learning

607 (a-d) The principles of Swarm Learning in contrast to other machine learning concepts. (a)
608 lllustration of the concept of local learning with data and computation at different, but
609 disconnected locations. (b) Principle of cloud-based machine learning where data from
610  contributing centers move copies of the data to a central cloud-based storage; centrally
611  located data are then used for central - often cloud-based - machine learning. (¢) Federated
612  learning with data being kept with the data contributor and computing is also performed at the
613  site of local data storage and availability, yet parameter settings of machine learning are
614  orchestrated by a central parameter server. (d) Swarm Learning principle with swarm nodes
615  being connected in a democratic fashion (enabled by blockchain technology) without the need
616  for a central custodian or parameter server. Data privacy is preserved, data is kept where it is
617  generated, computation is achieved locally and learning parameters are shared within the
618  Swarm Network. (e) Schematic representation of the Swarm Network consisting of the Swarm
619 Edge Nodes (short ‘nodes’) that exchange parameters for learning, which is implemented
620 using blockchain technology. Use of private data at each node together with the model
621  provided via Swarm Network. (f) Concept and outline of the private permissioned blockchain
622 network as a layer of the Swarm Learning network. Each node consists of the blockchain,
623 including the ledger and smart contract, as well as the Swarm Learning Library (SLL) with the
624  API to interact with other nodes within the network. (g) Application and infrastructure layer as
625 part of the Swarm Learning concept. (h-lI) Description of the transcriptome datasets used
626  within this study: Dataset (h) A1 and (i) A2, two microarray-based transcriptome datasets of
627  peripheral blood mononuclear cells (PBMC). (j) Dataset A3, RNA-seq based transcriptomes
628 of PBMC. Dataset (k) B and (I) C, RNA-seq based whole blood transcriptome datasets.
629  Abbreviations: AML, Acute Myeloid Leukemia; ALL, Acute Lymphoblastic Leukemia; COVID-
630 19, CoronaVirus Disease 2019; API, Application Programming Interface; ML, Machine
631 Learning; TF, Tensor Flow; KERAS, Open Source Deep Learning Library; AMbI, Acute
632 Myeloblastic Leukemia; CML, Chronic Myeloid Leukemia; CLL, Chronic Lymphocytic
633 Leukemia; Inf., Infections, Diab., Diabetes Type Il; MDS, Myelodysplastic Syndrome; MS,
634 multiple sclerosis; JIA, Juvenile idiopathic arthritis; Tb, tuberculosis; HIV, Human

635 Immunodeficiency Virus, AID, Acute Infectious Disease. SLL Swarm Learning Library.
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637  Figure 2. Swarm learning to predict leukemias from PBMC data

638 (a) Schematic representation of the use of the transcriptome data derived from more than
639 12,000 individuals in over 100 individual studies*’. Principle of distribution of data to individual
640 Swarm Edge Nodes (short ‘nodes’). Nodes 1-3 were used for training, node 4 for testing.
641  Swarm Learning (SL) was achieved by integrating nodes 1-3 for training following procedures
642  described in detail in Supplementary Information. (b) Scenario using Dataset A2. Left panel
643 illustrating the setting of the scenario concerning distribution of cases and controls to individual
644  nodes, as well as total number of samples used for this scenario. Cases (red bar) and controls
645  (blue bar) were distributed unevenly among nodes, the number of samples distributed to each
646 node was also uneven in this scenario. Middle panel shows results of accuracy of all 100
647  permutations performed for the 3 training nodes individually as well as the results obtained by
648  SL. Accuracy is defined for the independent fourth node used for testing only. Right panel
649  represents box-whisker plot representation of the individual data presented in the middle panel
650 showing mean, 1st and 3rd quartile and whisker type Min/Max. (¢) Scenario with uneven
651 numbers of cases and controls at the different training nodes but similar numbers of samples
652  at each node to determine impact of these changes on SL performance. Left panel: schematic
653  representation of scenario and right panel: results obtained for accuracy at the test node (node
654  4) for each of the three training nodes 1-3 and SL independently as box and whisker plot with
655 the same parameter as described for (b). (d) Scenario with even numbers at each of the
656 nodes, schematic representation (left panel) and visualization of results as box-whisker plots
657 as in (b) and (c). (e) Scenario with even distribution of cases and controls at each training
658 node, but different numbers of samples at each node and overall increase in numbers of
659 samples. Representation of schema and data visualization as in (b-d). (f) Scenario where each
660 node obtained samples from different Datasets (node 1: Dataset A1, node 2: Dataset A2, node
661 3, Dataset A3). Node 4 obtained samples from each Dataset A1-A3 to define impact on
662 technical bias on Swarm Learning performance. Representation of schema and data
663  visualization as in (b-e). Statistical differences between results derived by SL and individual
664 nodes including all permutations performed were calculated with Wilcoxon signed rank test

665  with continuity correction; asterisk and line: p<0.05.
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668  Figure 3. Swarm learning to identify patients with tuberculosis

669 (a-l) Principle of distribution of data to individual Swarm Edge Nodes (short ‘nodes’). Nodes
670 1-3 were used for training, node 4 for testing. Swarm Learning (SL) was achieved by
671 integrating nodes 1-3 for training following procedures described in detail in Supplementary
672 Information. All scenarios use dataset B and use acute TB as case and the remaining samples
673 as controls. Left panels (a,c,e,q,i,k) illustrate the setting of the scenarios concerning
674  distribution of cases (red bar) and controls (blue bar) to individual nodes, as well as total
675 number of samples used for the scenario. Percentage at each node reflects the use of samples
676  out of the complete dataset. (a) Scenario with even number of cases at each training node
677  and the test node. (b) Evaluation of the scenario presented in (a) showing accuracy, sensitivity
678  and specificity of five permutations for each training node and SL at node 4 (test node) as box-
679  whisker plot (mean, 1st and 3rd quartile, whisker type Min/Max). (¢) Scenario similar to (a) but
680  with six training nodes. (d) Evaluation of scenario (c) as described in (b) but for all six training
681 nodes. (e) Scenario where the training nodes have evenly distributed numbers of cases and
682  controls at each training node, but node 2 has lower numbers of samples. (f) Evaluation of
683  scenario (e) as described in (b). (g) Scenario similar to (e) but with reduced prevalence at the
684  test node. (h) Evaluation of scenario (g) as described in (b). (i) Scenario with even distribution
685  of cases and controls at each training node, but node 1 only has a very small training set. The
686 test set is evenly distributed. (j) Evaluation of scenario (i) as described in (b). (k) Scenario
687  similar to (i) but with uneven distribution in the test node. (I) Evaluation of scenario (k) as
688  described in (b). Statistical differences between results derived by SL and individual nodes
689 including all permutations performed were calculated with Wilcoxon signed rank test with

690 continuity correction; asterisk and line: p<0.05.
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693  Figure 4. Identification of COVID-19 patients in an outbreak scenario

694  (a) Description of an outbreak scenario for COVID-19 using Dataset C. Nodes 1-3 were used
695 for training, node 4 for testing. Swarm Learning (SL) was achieved by integrating nodes 1-3
696  for training following procedures described in detail in Supplementary Information. COVID-19
697 samples were used as cases. In this scenario, node 1 would be the outbreak node with the
698  highest prevalence. Training node 2 has fewer cases and is an early secondary node, and
699 node 3 acts as a later secondary node. The spreading is tested on the testing node with three
700 different prevalences (b,c,d) and shown as box-whisker plot (mean, 1st and 3rd quartile,
701 whisker type Min/Max). (b) Evaluation of (a) with even prevalence showing accuracy,
702  sensitivity, specificity and F1-score of fifty permutations for each training node and the SL
703  (node 4). (c) Evaluation (as described in (b)) of scenario (a) using a 1:2 ratio for cases and
704  controls in the test set. (d) Evaluation (as described in (b)) of scenario (a) using a 1:10 ratio in
705  the test set to simulate detection in regions with new infections. Statistical differences between
706 results derived by SL and individual nodes including all permutations performed were

707  calculated with Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.
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713  enrolled within the Swarm Network via private permissioned blockchain contract.
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Extended Data Figure 2
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Extended Data Figure 2. Scenario corresponding to Fig. 2b in dataset A1 and A3

Main settings are identical to what is described in Fig. 2 for Dataset A2. (a) Scenario with
different prevalence of AML and different number of samples at each training node. The test
set has an even distribution. (b) Evaluation of test accuracy for 100 permutations of dataset
A1 per node and swarm. (c) Evaluation using dataset A3. Statistical differences between
results derived by SL and individual nodes including all permutations performed were

calculated with Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 3. Scenario corresponding to Fig. 2c in dataset A1 and A3

Main settings are identical to what is described in Fig. 2 for dataset A2. (a) Scenario with
similar training set sizes per node but decreasing prevalence. The test set ratio is 1:1. (b)
Evaluation of the test accuracy over 100 permutation for dataset A2 (corresponding to Fig.
2c). (c) Evaluation of the test accuracy over 100 permutation for dataset A1. (d) Evaluation of
the test accuracy over 100 permutation for dataset A3. Box-whisker plots (mean, 1st and 3rd
quartile, whisker type Min/Max). Statistical differences between results derived by SL and
individual nodes including all permutations performed were calculated with Wilcoxon signed

rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 4
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735 Extended Data Figure 4. Scenario corresponding to Fig. 2d in dataset A1 and A3

736  Main settings are identical to what is described in Fig. 2 for dataset A2. (a) Scenario with
737  similar sample sizes among three nodes, but with independent studies at each training node.
738 Case and control ratios varied for each permutation. Testing samples are sampled from the
739  studies also present in the training data. (b) Evaluation of the test accuracy over 100
740  permutation for dataset A2 (corresponding to Fig. 2d). (c) Evaluation of the test accuracy over
741 100 permutation for dataset A1. (d) Evaluation of the test accuracy over 100 permutation for
742  dataset A3. (e) In this scenario, samples at the test node were derived from published studies
743  completely independent from the studies used for training at the training nodes. Evaluation of
744  the test accuracy over 100 permutation for dataset A2. Box-whisker plots (mean, 1st and 3rd
745  quartile, whisker type Min/Max). Statistical differences between results derived by SL and
746  individual nodes including all permutations performed were calculated with Wilcoxon signed

747  rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 5
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Extended Data Figure 5. Scenario corresponding to Fig. 2e in dataset A1 and A3

Main settings are identical to what is described in Fig. 2 for dataset A2. (a) The case:control
distribution is even, the training sets increase from node 1 to node 3. The test set is evenly
split. (b) Test accuracy for evaluation of dataset A2 (corresponding to Fig. 2e). (c) Test
accuracy for evaluation of dataset A1. (d) Test accuracy for evaluation of dataset A3. (e)
Scenario where the data sets A1, A2, and A3 are assigned to a single training node each.
Scenario similar to (a) but with equal training set sizes. (f) Evaluation results of 100
permutations (corresponding to Fig. 2f). Box-whisker plots (mean, 1st and 3rd quartile, whisker
type Min/Max). Statistical differences between results derived by SL and individual nodes
including all permutations performed were calculated with Wilcoxon signed rank test with

continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 6. Scenario for ALL in dataset 2

Main settings are identical to what is described in Fig. 2 for dataset A2. Here cases are
samples derived from patients with ALL, while all other samples are controls (including AML).
(a) Scenario for the detection of ALL in dataset A2. The training sets are evenly distributed
among the nodes. The test ratio is 1:1. (b) Evaluation of scenario (a) for test accuracy over
100 permutations. Box-whisker plot (mean, 1st and 3rd quartile, whisker type Min/Max).
Statistical differences between results derived by SL and individual nodes including all
permutations performed were calculated with Wilcoxon signed rank test with continuity

correction; asterisk and line: p<0.05.
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Extended Data Figure 7
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Extended Data Figure 7. Scenario for detecting all Tb versus controls

(a) Description of the different group settings used based on the assignment of latent Tb to
control or case. (b) Evaluation of a scenario where acute and latent Tb are cases. The data is
evenly distributed among the training nodes. The scenario is evaluated as described in Figure
3 (b). (c) Scenario designed similar to (b) but latent Tb is part of control. Box-whisker plot
(mean, 1st and 3rd quartile, whisker type Min/Max). Statistical differences between results
derived by SL and individual nodes including all permutations performed were calculated with

Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 8: Scenario detecting acute Tb with low prevalence at training

nodes

(a) Scenario with training nodes having different prevalence: node 2 has only a 1:10 ratio.
Three prevalence scenarios are used in the test set. (b) Evaluation of scenario (a) showing
accuracy, sensitivity, specificity and F1 score. (c) Similar scenario as in (a) but prevalence
changed to 1:3 cases: controls in the training set. (d) Similar scenario as in (a) but prevalence
changed to 1:10 cases: controls in the training set. Box-whisker plot (mean, 1st and 3rd
quartile, whisker type Min/Max). Statistical differences between results derived by SL and
individual nodes including all permutations performed were calculated with Wilcoxon signed

rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 9
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Extended Data Figure 9. Baseline scenario for detecting COVID-19 patients

(a) Scenario with even training set distribution among nodes 1-3. Three different testing sets
with different prevalence are simulated. (b) Evaluation of (a) for a 22:25 case: control ratio
showing accuracy, sensitivity, specificity and F1 score. (¢) Evaluation results of scenario (a)
for a 11:25 ratio. (d) Evaluation results of scenario (a) for a 1:44 prevalence. Box-whisker plot
(mean, 1st and 3rd quartile, whisker type Min/Max). Statistical differences between results
derived by SL and individual nodes including all permutations performed were calculated with

Wilcoxon signed rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 10. Scenario with reduced prevalence at training nodes for
detecting COVID-19 patients

(a) This scenario has the same sample size at each training node, but the prevalence
decreases from node 1 to node 3. There are two different test sets (b) and (c). (b) Evaluation
of scenario (a) with 22:25 ratio at the test node. (c¢) Results for the evaluation of scenario (a)
with reduced prevalence. (d) Scenario similar to (a) but the prevalence has a steeper decrease
between node 1 and 3. (e) Evaluation of scenario (d) with a ratio of 37:50 at the test node. (f)
Evaluation of (d) with a reduced prevalence compared to (e). Box-whisker plot (mean, 1st and
3rd quartile, whisker type Min/Max). Statistical differences between results derived by SL and
individual nodes including all permutations performed were calculated with Wilcoxon signed

rank test with continuity correction; asterisk and line: p<0.05.
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Extended Data Figure 11
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Extended Data Figure 11. Scenario with reduced prevalence in training and test set at
a 4-node setting (a) This scenario has even training set sizes among the nodes with the
prevalence ranging from 10% at node 1 to 3% at nodes 3 and 4. There are three different test
sets (b), (c) and (d) with decreasing prevalence and increasing total sample size. (b)
Evaluation of scenario (a) with 111:100 ratio. (c) Evaluation of scenario (a) with 1:4 ratio and
increased sample number of the test set. (d) Results of scenario (a) with 1:10 prevalence and
increased sample number of the test set. Box-whisker plot (mean, 1st and 3rd quartile, whisker
type Min/Max). Statistical differences between results derived by SL and individual nodes
including all permutations performed were calculated with Wilcoxon signed rank test with

continuity correction; asterisk and line: p<0.05.
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827 Supplementary Information

828 (Material and Methods)
829

830 Datasets

831  Peripheral blood mononuclear cell (PBMC) derived transcriptome dataset (Dataset A)

832  We used a previously described dataset containing over 12,000 transcriptomes derived from
833  peripheral blood mononuclear cells (PBMC), deposited at the National Center for
834  Biotechnology Information Gene Expression Omnibus® (GEQO) under SuperSeries
835 GSE122517 or via the individual SubSeries GSE122505 (dataset 1), GSE122511 (dataset 2)
836 and GSE122515 (dataset 3). Briefly, this dataset was generated by inspection of all publicly
837 available datasets at GEO on September 20th, 2017. Inclusion criteria were cell type (PMBCs)
838 and species (Homo sapiens). Existing GEO SuperSeries were excluded to avoid duplicated
839 samples. According to data generation method, three datasets were established; dataset 1,
840 generated with Affymetrix HG-U133 A microarrays (n=2,500), dataset 2 with Affymetrix HG-
841 U133 2.0 microarrays (n=8,348), and dataset 3 with high-throughput RNA sequencing (RNA-
842 seq)(n=1,181). Data were curated as previously described*’. All sample information is listed

843 in Supplementary Table 2.
844
845 Whole blood derived transcriptomes for the prediction of tuberculosis (Dataset B)

846  To establish a dataset based on whole blood transcriptomes we generated new data from
847  healthy controls (Rhineland Study) and combined these with previously generated data that
848 had been deposited in Gene Expression Omnibus (GEO). We screened for transcriptome
849  datasets derived from human whole blood samples, which were collected using the PAXgene
850 Blood RNA System. In total, nine independent datasets were selected to be included in the
851  present study (GSE101705 (n=44); GSE107104 (n=33), GSE112087 (n=120), GSE128078
852  (n=99), GSE66573 (n=14), GSE79362 (n=355), GSE84076 (n=36); GSE89403 (n=914)). The
853 newly generated 384 whole blood samples were sampled in context of the Rhineland Study
854 led by the German Center for Neurodegenerative Diseases (DZNE), which is an extensive
855  longitudinal study monitoring healthy individuals over 2 decades. Approval to undertake the
856 Rhineland Study was obtained from the ethics committee of the University of Bonn, Medical
857  Faculty. The study is carried out in accordance with the recommendations of the International
858 Conference on Harmonization (ICH) Good Clinical Practice (GCP) standards (ICH-GCP).

859  Written informed consent was obtained from all participants in accordance with the Declaration
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860  of Helsinki. Overnight fasting blood was collected from all participants, including a PAXgene®
861  tube for RNA extraction and RNA-seq analysis. In total, Dataset B contained 1999 samples
862 from patients with active tuberculosis (n=775), latent tuberculosis (n=277), fatigue (n=55),
863 autoimmune diseases (n=68), HIV (n=16) and controls (n=808). Sample information is listed

864 in Supplementary Table 2.
865

866 Whole blood derived transcriptome dataset for the prediction of COVID-19 (Dataset C)
867

868 Todevelop classifiers based on whole blood transcriptomes able to predict COVID-19 patients
869  we collected an additional 134 PAXgene® tubes for RNA extraction and RNA-seq analysis
870 from COVID-19 patients, of which 93 whole blood samples at the Intensive Care Unit of the
871 Radboud University Medical Centre in Nijmegen, the Netherlands, and 41 samples were either
872  collected at the Sotiria Athens General Hospital or the ATTIKON University General Hospital
873 in Athens, Greece. For all COVID-19 patients, the study was carried out in accordance with
874  the applicable rules concerning the review of research ethics committees and informed
875  consent. All patients or legal representatives were informed about the study details and could
876  decline to participate. COVID-19 was diagnosed by a positive SARS-CoV-2 RT-PCR test in
877 nasopharyngeal or throat swabs and/or by typical chest CT-scan finding. Blood for RNA-seq
878  analysis was sampled on day 0 to 11 after admission. In the cohort in Athens, blood samples
879  from ten healthy donors who were tested negative on SARS-CoV-2 were included as controls.
880  The newly generated samples from the COVID-19 patients and the controls from Athens were
881 combined with dataset B (see above) to establish Dataset C. As a result, in addition to the
882 1999 samples derived from Dataset B, Dataset C included further 10 healthy controls and 134
883  dutch COVID-19 samples, which makes a total of 2,143 samples. Sample information is listed

884  in Supplementary Tables 2 and 6.
885
886 Pre-processing

887 PBMC transcriptome dataset (Dataset A)

888  We used a previously published dataset compiled for predicting AML in blood transcriptomes
889  derived from peripheral blood mononuclear cells (PBMC)*. Briefly, all raw data files were
890 downloaded from GEO and the RNA-seq data was preprocessed using the kallisto aligner
891  against the human reference genome gencode v27 (GRCh38.p10). For normalization, we
892  considered all platforms independently, meaning that normalization was performed separately

893 for the samples in Dataset A1, A2 and A3, respectively. Microarray data (Datasets A1 and A2)
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894 was normalized using the robust multichip average (RMA) expression measures®, as
895 implemented in the R package affy’. RNA-seq data (Dataset A3) was normalized with the R
896 package DESeq2 using standard parameters’’. In order to keep the datasets comparable,
897  data was filtered for genes annotated in all three datasets, which resulted in 12,708 genes. No
898 filtering of low-expressed genes was performed. All scripts used in this study for pre-
899 processing are provided as a docker container on Docker Hub (docker hub,

900 https://hub.docker.com/r/schultzelab /aml_classifier).
901
902 Whole blood derived transcriptome datasets (Datasets B and C)

903  Since alignment of whole blood transcriptome data can be performed in numerous different
904  ways, we re-aligned all downloaded and collected datasets which were 4.7 Terabyte in size
905 and comprised a total of 7.8 Terabases, to the human reference genome gencode v33
906 (GRCh38.p13) and quantified transcript counts using STAR, an ultrafast universal RNA-seq
907  aligner (version 2.7.3a) 72. For all samples in Datasets B and C, raw counts were imported
908 using DESeqDataSetFromMatrix function and size factors for normalization were calculated
909 using the DESeq function using standard parameters’’. This was done separately for Dataset
910 B and Dataset C. Since some of the samples were prepared with poly-A selection to enrich
911  for protein-coding mMRNAs, we filtered the complete dataset for protein-coding genes in order
912 to ensure greater comparability across library preparation protocols. Furthermore, we
913  excluded all ribosomal protein-coding genes, as well as mitochondrial genes and genes coding
914  for hemoglobins, which resulted in 18,135 transcripts as the feature space in Dataset B and
915 19,358 transcripts in Dataset C. Furthermore, transcripts with an overall expression < 10 were
916  excluded from further analysis. Other than that, no filtering of transcripts was performed. Prior
917  to use in machine learning we performed a rank transformation to normality on both datasets
918 B and C". Briefly, transcript expression values were transformed from RNAseq counts to their
919  respective ranks. This was done transcript-wise, meaning all transcript expression values per
920 sample were given a rank based on ordering them from lowest to highest value. The rankings
921  were then turned into quantiles and transformed via the inverse cumulative distribution
922  function of the Normal distribution. This leads to all transcripts following the exact same
923  distribution (that is, a standard Normal with a mean of 0 and a standard deviation of 1) across

924  all samples

925 Methods details

926  Scenarios for prediction of AML
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927  We previously demonstrated that ML on PBMC transcriptomes can be utilized to predict
928 AML?Y. Based on this experience, we generated sample sets within three independent
929 transcriptome datasets (dataset A1-A3, see above) to assess different scenarios in a three-
930 node setting for training with a fourth node only used for testing. As indicated in Fig. 2, six
931  scenarios with varying numbers of samples per node and varying ratios between cases and
932 controls at each node where defined. For predicting AML, all samples derived from AML
933 patients were classified as cases, while all other samples were labeled controls. When
934  predicting ALL, all samples derived from ALL patients were classified as cases and all others
935 as controls. For each scenario (Fig. 2) and each dataset we permuted the sample distribution
936 100 times, resulting in a total of 5,594 individual predictions. The different scenarios were
937 chosen to address the influence of sample numbers per node, the case control ratio, study
938 design-related batch effects, and transcriptome technologies used on classifier performance
939 at the nodes, but more importantly on swarm learning performance. Sample distributions for

940  all permutations within all scenarios are listed in Supplementary Table 1.
941
942  Scenarios for detecting patients with acute TB

943 In line with the experience we gained from the prediction of AML, we used dataset B to
944  generate scenarios for the prediction of tuberculosis in various settings, again using different
945  scenarios in a three-node setting for training with a fourth node only used for testing. In one
946  scenario, all patients with tuberculosis (Tb) including patients with latent and acute Tb were
947  treated as cases, while all others were defined as controls (Extended Data Fig. 6b). In all
948  other scenarios, cases were restricted to acute Tb patients’ samples, while patients with latent
949  Tb were defined as controls together with all other non-Tb samples. Here, the question to be
950 answered is, whether the classifiers can identify patients with acute Tb and can distinguish

951 them from latent Tb and other conditions.

952  In one scenario (Fig. 3c-d), we added three additional training nodes to test dependency of
953 classifier performance by the number of nodes. As indicated in Fig. 3, three scenarios with
954  varying numbers of samples per node and varying ratios between cases and controls at each
955 node where defined. For scenarios described within Fig. 3e,g and Fig. 3i,k, we tested two
956  prevalence scenarios in the test set. For each scenario (Fig. 3) we permuted the sample
957  distribution 5-10 times, resulting in a total of 325 individual predictions. To mimic an outbreak
958 scenario, we reduced cases also at the training nodes to determine the effects on Swarm
959  Learning performance. Sample distributions for all permutations within all scenarios are listed

960 in Supplementary Table 1.

961
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962 Simulation of an outbreak scenario to detect COVID-19 patients

963 Based on the promising results obtained with tuberculosis, we next intended to simulate
964 classifier building and testing for the prediction of COVID-19 in a SL setting. We used dataset
965 B and added 144 additional samples, of which 139 samples were derived from COVID-19
966 patients (see above). We applied a three-node setting for training with a fourth node only used
967  for testing.

968 In one scenario (Extended Data Fig. 8), we kept cases (n=30) and controls (n=30) evenly
969  distributed among the three training nodes and tested three different prevalence scenarios at
970 the test node (22:25; 11:25; 1:44). In a second scenario (Extended Data Fig. 9a-c) we
971 changed the ratio of cases and controls at each node (node 1: 40:60, node 2: 30:70, node 3:
972  20:80) and tested two prevalence scenarios at the test node (22:25; 11:25). In a third scenario
973 (Extended Data Fig. 9a-c) we further reduced the number of cases at the training nodes
974  further (node 1: 30:70, node 2: 20:80, node 3: 10:90) and tested two prevalence scenarios at
975  the test node (37:50; 37:75).

976  Lastly, we tested an outbreak scenario (Fig. 4) with very few cases at the outbreak node 1
977  (20:80), an early secondary node (10:90) and a later secondary node (5:95) and three
978  prevalence scenarios at the test node (1:1, 1:2, 1:10), resulting in a total of 220 individual
979  predictions Sample distributions for all permutations within all scenarios are listed in

980 Supplementary Table 1.

981
982  Application layer

983  The application layer (see also Fig. 1g) consists of disease models for which definitions are
984  given, which samples are cases and which samples are controls. For example, if the classifier
985  is supposed to detect all patients with tuberculosis (Tb), the model includes patients with latent
986  and acute tuberculosis as cases and all other samples as controls. However, if only patients
987  with acute tuberculosis are intended to be detected as cases, the model is changed in that
988 cases are now only patient samples derived from patients with acute Tb, while samples from
989  patients with latent Tb are now treated as controls, similar to all other non-Tb samples. The
990 cases and controls used for each scenario are given in the result section in more detail. For

991  each mode, classifiers are generated by applying neural networks (for description see below)
992 Computation and analysis

993  Neural network algorithm
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994  We leveraged a deep neural network with a sequential architecture as implemented in the

995  keras library (Keras, https://keras.io/, 2015). Briefly, the neural network consists of one input

996 layer, eight hidden layers and one output layer. The input layer is densely connected and

997  consists of 256 nodes, a rectified linear unit activation function and a dropout rate of 40%.

998  From the first to the eighth hidden layer, nodes are reduced from 1024 to 64 nodes, and all

999 layers contain a rectified linear unit activation function, a kernel regularization with an L2
1000 regularization factor of 0.005 and a dropout rate of 30%. The output layer is densely connected
1001  and consists of 1 node and a sigmoid activation function. The model is configured for training
1002  with Adam optimization and to compute the binary cross-entropy loss between true labels and
1003  predicted labels.

1004  The model has been translated from R to Python in order to make it compatible with the swarm
1005 learning library. This model is used for training both the individual nodes as well as swarm
1006 learning. The model is trained over 100 epochs, with varying batch sizes. The batch size of 8,

1007 16, 32, 64 and 128 are used depending on the number of training samples.
1008

1009 Preparation and adaptation of neural network code to be used in a swarm learning

1010 environment

1011 A swarm callback is introduced to integrate the model with the Swarm Learning library.
1012  Minimum number of nodes for synchronization, synchronization interval, validation dataset
1013  and batch size are passed as parameters to swarm callback. The swarm call back API is

1014  swCallback = SwarmCallback( sync_interval = <number of training batches between syncs>,

1015 min_peers = <minimum peers>,

1016 val_data = <validation dataset>,

1017 val_batch_size = <validation batch size>,

1018 node_weightage = <relative weightage of node’s model weights>)

1019  sync_interval specifies the synchronization interval,

1020 min_peers specifies the minimum number of nodes for model synchronization,

1021  val_data specifies the validation data set,

1022  val_batch_size specifies the validation batch size,

1023  model_name specifies the name of the model,

1024 node_weightage specifies the relative weightage to be given to model weights of this node
1025

1026  Parameter tuning

1027  For some of the scenarios we tuned model hyperparameters. For some scenarios we also

1028 tuned Swarm Learning parameters to get better performance, for example higher sensitivity.

54


https://doi.org/10.1101/2020.06.25.171009
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171009; this version posted June 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1029 For AML Fig. 2e, Extended Data Fig. 2 and Fig. 2f, dropout rate is reduced to 10% to get
1030  better performance. For AML Fig. 2b, Extended Data Fig. 1, dropout rate is reduced to 10%
1031  and increased the Epochs to 300 to get better performance. We also used the adaptive_rv
1032  parameter in the Swarm Learning API to adjust the merge frequency dynamically based on
1033  model convergence to improve the training time. For TB and COVID-19 tests dropout rate is
1034  reduced to 10% for all scenarios. For the TB scenarios in Extended Data Fig. 7a,b, the
1035 node_weightage parameter of Swarm Learning callback API is used to give more weightage

1036 to the nodes that have higher case samples.

1037

1038 Infrastructure layer

1039 Description of the hardware architecture applied for simulations

1040  For all simulations provided in this project we used 2 HPE Apollo 6500 Gen 10 server, each
1041  with 4 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, a 3.2 TB hard disk drive, 256 GB RAM,
1042 8 Tesla P100 GPUs, 1GB network interface card for LAN access and infiniBand FDR for high
1043  speed interconnect and networked storage access. The Swarm Network is created with 3
1044  nodes, each node is a docker container with 1 GPU. Multiple experiments were run in parallel

1045 using the above described configuration.

1046  Overall, we performed 6,139 analyses including six scenarios for all three AML datasets, nine
1047  scenarios for Tb and 10 scenarios for COVID-19. We performed 5 to 100 permutations per
1048  scenario, each permutation took approximately 30 minutes, which resulted in a total of 3069,5

1049  compute hours.
1050
1051  The Swarm learning framework, library, distributed ML and blockchain technologies

1052  Swarm Learning builds on top of two proven technologies — distributed ML and blockchain.
1053  Distributed ML is leveraged to train a common model across multiple nodes with a subset of
1054 the data located at each node — commonly known as the data parallel paradigm in ML —
1055 though without a central parameter server. Blockchain lends the decentralized control,
1056  scalability, and fault-tolerance aspects to the Swarm Network system to enable the framework

1057  to work beyond the confines of a single enterprise.

1058 The Swarm Learning library is a framework to enable decentralized training of ML models
1059  without sharing the data. The Swarm Learning framework is designed to make it possible for

1060 a set of nodes — each node possessing some training data locally — to train a common ML
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1061  model collaboratively without sharing the training data itself. This can be achieved by individual
1062 nodes sharing parameters (weights) derived from training the model on the local data. This
1063  allows nodes to maintain the privacy of their raw data. Importantly, in contrast to many existing

1064 federated learning models, a central parameter server is omitted in Swarm Learning.

1065 The nodes that participate in Swarm Learning, register themselves with the Swarm Network
1066  implicitly using the callback API. Here, the Swarm Network interacts with other peers using
1067  blockchain for sharing parameters and for controlling the training process. On each node, a
1068 simple Swarm callback API has to be used to enable the ML model with Swarm Learning
1069 capacities (see also code presented below). The Swarm container has to be configured to
1070 interact with the Swarm Network (network i/p and port configuration). All other complexities of
1071 setting up network, registration, parameter sharing, and parameter merging are taken care of

1072 by the Swarm callback APl and the Swarm Network infrastructure.

1073  Parameters shared from all the nodes are merged to obtain a global model. Moreover, the
1074  merge process is not done by a static central coordinator or parameter server, but rather a
1075  temporary leader chosen dynamically among the nodes is used to perform the merge, thereby
1076  making the Swarm network decentralized. This provides a far greater fault-tolerance than
1077  traditional centralized-parameter-server-based frameworks. All the nodes can perform the role
1078  of training and merging, thereby maximising the usage of local compute. The Swarm Network

1079  implicitly controls this.

1080 The HPE Swarm Learning library contains 2 containers, the Swarm Network container and

1081 the Swarm ML container.

1082  The Swarm Network container includes 1) software to setup and initialize the Swarm Network,
1083  2) management commands to control the Swarm Network, and 3) start/stop Swarm Learning

1084  tasks. This container also encapsulates the blockchain software.

1085 The Swarm ML container includes software to support 1) decentralized training, 2) integration

1086  with ML frameworks, and 3) it exposes APIs for ML models to interact with Swarm Learning.

1087  For any ML model to be applied to Swarm Learning, it needs to be modified using the Swarm
1088 callback API. The callback API provides options to control the Swarm Learning processes. To

1089 convert a ML program into a Swarm ML program the following steps have to be performed:
1090 1. Import the SwarmCallback class from the swarm library

1091 from swarm ‘import SwarmCallback’
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1092 SwarmCallback is a custom callback class that is built on the Keras Callback class.
1093 2. Instantiate an object of the SwarmCallback class:

1094 swarm_callback = SwarmCallback( min_peers = <peer count>,

1095 sync_interval = <interval>,

1096 use_adaptive_sync = <bool>,

1097 val_batch_size = <batch size>,

1098 val_data = <either a (x_val, y_val) tuple or a
1099 generator>

1100 node_weightage = <relative weightage of node’s
1101 model weights> ).

1102 In this context, ‘min_peers’ specifies the minimum number of network peers required
1103 to synchronize the insights, ‘sync_interval’ specifies the number of batches after which
1104 a synchronization is performed, ‘use_adaptive_sync’ specifies whether the adaptive
1105 sync interval feature should be used for tuning the sync interval. This feature is turned
1106 off by default; ‘ val_batch_size’ specifies the size of each validation batch; ‘val_data’
1107 specifies the validation dataset. It can be either a (x_val, y_val) tuple or a generator;
1108 3. Pass the object to the list of callbacks in Keras training code: model.fit(...,
1109 callbacks = [swarm_callback]). SwarmCallback can be included along with other
1110 callbacks also:

1111 es_callback = EarlyStopping(...);

1112 model fit(..., callbacks = [es_callback, swarm_callback])

1113

1114  The Swarm Learning architecture principles

1115  The Swarm Learning framework has two major components, 1) the Swarm ML component
1116  runs a user-defined Machine Learning algorithm, and 2) the Swarm Network component forms

1117  the Swarm Network based on a blockchain network.

1118 The Swarm ML component is implemented as an API available for multiple popular
1119  frameworks such as TensorFlow, Keras, Pytorch. This API provides an interface that is similar
1120 to the training APIs in the native frameworks familiar to data scientists. Calling this API
1121  automatically inserts the required hooks for Swarm Learning so that nodes seamlessly
1122  exchange parameters and subsequently continue the training after setting the local models to
1123  the globally merged parameters. With a few simple code changes, the entire network learns
1124  as one cohort, with all the complexities of control and data flow taking place in an automated
1125  fashion.
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1126  Within the Swarm Network component each Swarm ML component interacts with each other
1127 using the Swarm Network component’s blockchain platform to maintain global state
1128 information about the model that is being trained and to track the training progress. The Swarm
1129  Network components use this state and progress information to coordinate the working of the
1130 Swarm learning. The Swarm Network is responsible for keeping the decentralized Swarm
1131  network in a globally consistent state. The Swarm Network ensures that all operations and the
1132  corresponding state transitions are performed in a synchronous manner. Both, state and
1133  supported operations of the system are encapsulated in a blockchain smart contract. The
1134  Swarm Network contains the logic to elect the leader of the Swarm for every synchronization,
1135 implement fault-tolerance, and self-healing mechanisms, along with signaling among nodes

1136  for commencement and completion of various phases.

1137 The Swarm Learning framework is designed to run on both commodity and high-end
1138 machines, supporting a heterogeneous set of infrastructure in the network. It can be deployed

1139  within and across data centers.

1140 In contrast to federated learning with star topology and a centralized coordinator, Swarm
1141  Learning can support multiple topologies including fully connected, mesh, star, tree and hybrid

1142  topologies. This flexibility provides multiple options to cater into different use cases.
1143
1144  The Swarm Learning process

1145  Swarm Learning provides a callback API to enable swift integration with multiple frameworks.
1146  This APl is incorporated into the existing ML code to quickly transform a stand-alone ML node
1147  into a Swarm Learning participant in a non-intrusive way. It offers a set of commands (APIs)

1148 to manage the Swarm Network and control the training.
1149  The Swarm learning process is as follows:

1150 The Swarm Learning process begins with enrollment of nodes with Swarm Network, which is
1151  done implicitly by Swarm callback function when the callback is constructed. During this
1152  process, the relevant attributes of the node are stored in the blockchain ledger. This is a one-

1153  time process.

1154  Nodes will train the local copy of the model iteratively using private data over multiple epochs.
1155  During each epoch, the node trains its local model using one or more data batches for a fixed
1156  number of iterations. It regularly shares its learnings with the other Swarm nodes and

1157  incorporates their insights. Users can control the periodicity of this sharing by defining a
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1158  Synchronization Interval in Swarm callback API. This interval specifies the number of training

1159  batches after which the nodes will share their learnings.

1160 At the end of every synchronization interval, when it is time to share the learnings from the
1161  individual models, one of the Swarm nodes is elected as a "leader" using the leader election
1162 logic. This leader node collects the model parameters from each peer node and merges them.
1163  The framework supports multiple merge algorithms such as mean, weighted mean, median,
1164  and so on. Each node then uses these merged parameters to calculate various validation
1165  metrics. These results are compared against the stopping criterion and if it is found to be met,
1166  the Swarm Learning process is halted. Else the nodes use the merged parameters to start the

1167  next training batch.

1168  Swarm Learning library uses blockchain smart contracts to define the leader election logic and
1169 the merge algorithm. The blockchain smart contracts prevents attacks from semi-honest or

1170  dishonest participants.
1171
1172  Quantification and Statistical Analysis

1173  We evaluated binary classification model performance with sensitivity, specificity, accuracy
1174  and f1-score metrics. Sensitivity, specificity, accuracy and f1-score were determined for every
1175  test run. The 95% confidence intervals of all performance metrices were estimated using the
1176  boostrapping approach’. For AML and ALL, 100 permutations per scenario were run for each
1177  scenario. For TB the performance metrics were collected by running 10 permutations for
1178  scenarios 1 to 4 and 5 permutations for scenarios 5 to 10. For COVID-19 the performance
1179  metrics were collected by running 20 permutations for each scenario. All metrics are listed in

1180 Supplementary Tables 3 and 4.

1181 Differences in performance metrics were tested using the Wilcoxon signed rank test with
1182  continuity correction (Individual Comparisons by Ranking Methods, Frank Wilcoxon,
1183  https://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf). All test results are provided
1184  in Supplementary Table 5.

1185 To run the experiments, we used Python version 3.6.9 with Keras version 2.3.1 and
1186  Tensorflow version 2.2.0-rc2. We used scikit-learn library version 0.23.17° to calculate values
1187  for the metrics. Summary statistics and hypothesis tests were calculated using R version 3.5.2
1188 (R: A language and environment for statistical computing, http://www.R-project.org/., 2015).

1189 Calculation of each metric was done as follows:
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1190 Sensitivity = e
ensitivity =
1191 Specificity = d
pecificity = TN T FP
TP + TN
1192 Accuracy =

TP+ FP+TN+FN

Sensitivity + Specificity
2

1193 Balanced Accuracy =

2TP

1194 F1 — score = FP T FN £ 2TP

1195 where TP=True Positive, FP=False Positive, TN=True Negative, FN=False Negative
1196

1197 Data visualization

1198 The classification report and confusion matrix was generated with scikit-learn APIs for each
1199  permutation. Measurements of sensitivity, specificity and accuracy of each permutation run
1200 was read into a table in Excel using Power Query and used for visualization for the different
1201  scenarios in Power Bl [Version: 2.81.5831.821 64-bit (Mai 2020)] with Box and Whisker chart
1202 by MAQ  Software (https://appsource.microsoft.com/en-us/product/power-bi-visuals/
1203  WA104381351).

1204
1205 Data and software availability:

1206  Processed data can be accessed via the SuperSeries GSE122517 or via the individual
1207  SubSeries GSE122505 (dataset A1), GSE122511 (dataset A2) and GSE122515 (dataset A3).
1208 Dataset B consists of the following series which can be accessed at GEO: GSE101705,
1209 GSE107104, GSE112087, GSE128078, GSE66573, GSE79362, GSE84076, and GSE89403.
1210  Furthermore, it contains the Rhineland study. This dataset is not publicly available because of
1211  data protection regulations. Access to data can be provided to scientists in accordance with
1212  the Rhineland Study’s Data Use and Access Policy. Requests for further information or to
1213  access the Rhineland Study’s dataset should be directed to RS-DUAC@dzne.de. Dataset C

1214  contains dataset B and additional samples for COVID-19. These datasets are made available

1215 at the European Genome-Phenome Archive (EGA) under accession number
1216 EGAS00001004502, which is hosted by the EBI and the CRG.
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1217 The code for preprocessing and for predictions can be found at GitHub

1218  (https://github.com/schultzelab/swarm_learning).

1219

1220

1221  Supplementary Tables

1222  Supplementary Table 1: Overview over all sample numbers and scenarios

1223  Supplementary Table 2: Dataset annotations of Dataset A, B and C

1224  Supplementary Table 3: Prediction results for all scenarios and permutations

1225  Supplementary Table 4: Summary statistics on all prediction scenarios

1226  Supplementary Table 5: Statistical tests comparing single node vs. swarm predictions
1227  Supplementary Table 6: Covid 19 Patient characteristics
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