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Single-cell CRISPR screens are the most promising biotechnology for mapping reg-
ulatory elements to their target genes at genome-wide scale. However, the analysis
of these screens presents significant statistical challenges. For example, technical
factors like sequencing depth impact not only expression measurement but also per-
turbation detection, creating a confounding effect. We demonstrate on two recent
high multiplicity of infection single-cell CRISPR screens how these challenges cause
calibration issues among existing analysis methods. To address these challenges, we
propose SCEPTRE: analysis of single-cell perturbation screens via conditional re-
sampling. This methodology, designed to avoid calibration issues due to technical
confounders and expression model misspecification, infers associations between per-
turbations and expression by resampling the former according to a working model
for perturbation detection probability in each cell. SCEPTRE demonstrates excel-
lent calibration and sensitivity on the CRISPR screen data and yields hundreds of
new regulatory relationships, supported by orthogonal functional evidence.
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The noncoding genome plays a crucial role in human development and homeostasis:
over 90% of loci implicated by GWAS in diseases lie in regions outside protein-coding
exons'. Enhancers and silencers, segments of DNA that modulate the expression of a
gene or genes in cis, harbor many or most of these noncoding trait loci. While millions
of cis-regulatory elements (CREs) have been nominated through biochemical annotations,
the functional role of these CREs, including the genes that they target, remain essentially
unknown’. A central challenge over the coming decade, therefore, is to unravel the cis-
regulatory landscape of the genome across various cell types and diseases.

Single-cell CRISPR screens (implemented by Perturb-seq®*, CROP-seq’, ECCITE-
seq®, and other protocols) are the most promising technology for mapping CREs to their
target genes at genome-wide scale. Single-cell CRISPR screens pair CRISPR perturba-
tions with single-cell sequencing to survey the effects of perturbations on cellular pheno-
types, including the transcriptome. High multiplicity of infection (MOI) screens deliver
dozens perturbations to each cell’™, enabling the interrogation of hundreds or thousands
of CREs in a single experiment. Single-cell screens overcome the limitations of previous
technologies for mapping CREs’: unlike eQTLs, single-cell screens are high-resolution
and can target rare variants, and unlike bulk screens, single-cell screens measure the im-
pact of perturbations on the entire transcriptome.

Despite their promise, high-MOI single cell CRISPR screens pose significant statisti-
cal challenges. In particular, researchers have encountered substantial difficulties in cali-
brating tests of association between a CRISPR perturbation and the expression of a gene.
Gasperini et al.” found considerable inflation in their negative binomial regression based
p-values for negative control perturbations. Similarly, Xie et al.® found an excess of false
positive hits in their rank-based Virtual FACS analysis. Finally, Yang et al.'” found that
their permutation-based sScMAGeCK-RRA method deems almost all gene-enhancer pairs
significant in a reanalysis of the Gasperini et al. data. These works propose ad hoc fixes
to improve calibration, but we argue that these adjustments are insufficient to address the
issue. Miscalibrated p-values can adversely impact the reliability of data analysis conclu-
sions by creating excesses of false positive and false negative discoveries.

In this work we make two contributions. We (i) elucidate core statistical challenges
at play in high-MOI single-cell CRISPR screens and (ii) present a novel analysis method-
ology to address them. We identify a key challenge that sets single-cell CRISPR screens
apart from traditional differential expression experiments: the “treatment”—in this case
the presence of a CRISPR perturbation in a given cell—is subject to measurement error !+ 12,
In fact, underlying this measurement error are the same technical factors contributing to
errors in the measurement of gene expression, including sequencing depth and batch ef-
fects. These technical factors therefore act as confounders, invalidating traditional non-
parametric calibration approaches. On the other hand, parametric modeling of single-cell
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expression data is also fraught with unresolved difficulties.

To address these challenges, we propose SCEPTRE (analysis of Single-CEIll PerTur-
bation screens via conditional REsampling; pronounced “scepter’”). SCEPTRE is based on
the conditional randomization test'?, a powerful and intuitive statistical methodology that,
like parametric methods, enables simple confounder adjusment, and like nonparametric
methods, is robust to expression model misspecification. We used SCEPTRE to analyze
two recent, large-scale, high-MOI single-cell CRISPR screen experiments. SCEPTRE
demonstrated excellent calibration and sensitivity on the data and revealed hundreds of
new regulatory relationships, validated using a variety of orthogonal functional assays.
In the Discussion we describe an independent work conducted in parallel to the current
study in which we leveraged biobank-scale GWAS data, single-cell CRISPR screens, and
SCEPTRE to dissect the cis and trans effects of noncoding variants associated with blood
diseases'*. This work highlights what we see as a primary application of SCEPTRE: dis-
secting regulatory mechanisms underlying GWAS associations.

Results

Analysis challenges. We examined two recent single-cell CRISPR screen datasets — one
produced by Gasperini et al.” and the other by Xie et al.® — that exemplify several of the
analysis challenges in high-MOI single-cell CRISPR screens. Gasperini et al. and Xie et al.
used CRISPRI to perturb putative enhancers at high MOI in K562 cells. They sequenced
polyadenylated gRNAs alongside the whole transcriptome and assigned perturbation iden-
tities to cells by thresholding the resulting gRNA UMI counts.

Both Gasperini et al. and Xie et al. encountered substantial difficulties in calibrating
tests of association between candidate enhancers and genes. Gasperini et al. computed
p-values using a DESeq2'"-inspired negative binomial regression analysis implemented
in Monocle2'®, and Xie et al. computed p-values using Virtual FACS, a nonparametric
method proposed by these authors. Gasperini et al. assessed calibration by pairing each
of 50 non-targeting (or negative) control gRNAs with each protein-coding gene. These
“null” p-values exhibited inflation, deviating substantially from the expected uniform dis-
tribution (Figure 1a, red). To assess the calibration of Virtual FACS in a similar manner,
we constructed a set of in silico negative control pairs of genes and gRNAs on the Xie et al.
data (see Methods). The resulting p-values were likewise miscalibrated, with some pairs
exhibiting strong conservative bias and others strong liberal bias (Figure 1a, gray-green).

A core challenge in the analysis of single-cell CRISPR screens is the presence of
confounders, technical factors that impact both gRNA detection probability and gene ex-
pression. The total number of gRNAs detected in a cell increases with the total num-
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ber of mRNA UMIs detected in a cell (p = 0.35,p < 107'° in Gasperini et al. data;
p = 0.25,p < 1071 in Xie et al. data; Figures 1b-c). Techical covariates, such as se-
quencing depth and batch, induce a correlation between gRNA detection probability and
gene expression, even in the absence of a regulatory relationship (Figure 1d). This con-
founding effect can lead to severe test miscalibration and is especially problematic for
traditional nonparametric approaches, which implicitly (and incorrectly) treat cells sym-
metrically with respect to confounders.

Parametric regression approaches, like negative binomial regression, are the most straight-
forward way to adjust for confounders. However, parametric methods rely heavily on cor-
rect model specification, a challenge in single-cell analysis given the heterogeneity and
complexity of the count data. We hypothesized that inaccurate estimation of the negative
binomial dispersion parameter was (in part) responsible for the p-value inflation observed
by Gasperini et al. Monocle2 estimates a raw dispersion for each gene, fits a parametric
mean-dispersion relationship across genes, and finally collapses raw dispersion estimates
onto this fitted line (Figure le). We computed the deviation from uniformity of the nega-
tive control p-values for each gene using the Kolmogorov-Smirnov (KS) test, represented
by the color of each point in Figure le. Circled genes had significantly miscalibrated p-
values based on a Bonferroni correction at level o = 0.05. Genes significantly above the
curve showed marked signs of p-value inflation, suggesting model misspecification.

Gasperini et al. and Xie et al. incorporated ad hoc adjustments into their analyses to
remedy the observed calibration issues. On closer inspection, however, these efforts were
not satisfactory to ensure reliability of the results. Gasperini et al. attempted to calibrate
p-values against the distribution negative control p-values instead of the more standard
uniform distribution. This adjustment lead to overcorrection for some gene-enhancer pairs
(false negatives) and undercorrection for others (false positives) (Figure S1). Along similar
lines Xie et al. compared their Virtual FACS p-values to gene-specific simulated null p-
values to produce “‘significance scores” that were used to determine significance. These
significance scores were challenging to interpret and could not be subjected to multiple
hypothesis testing correction procedures, as they are not p-values.

Improvements to the negative binomial approach. We attempted to alleviate the mis-
calibration within the negative binomial regression framework by following the recom-
mendations of Hafemeister and Satija, who recently proposed a strategy for parametric
modeling of single-cell RNA-seq data'”. First, we abandoned the DESeq2-style size fac-
tors of Monocle2 and instead corrected for sequencing depth by including it as a covariate
in the negative binomial regression model. Second, we adopted a more flexible disper-
sion estimation procedure: we (i) computed raw dispersion estimates for each gene, (ii)
regressed the raw dispersion estimates onto the mean gene expressions via kernel regres-
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Figure 1: CRISPR screen analysis challenges can lead to false positives and false neg-
atives. a, QQ-plot of negative control p-values produced by Gasperini et al. (red; down-
sampled for visualization) and Xie et al. (gray-green). These p-values deviate substantially
from the expected uniform distribution, indicating test miscalibration. b-d, Technical fac-
tors, such as sequencing depth and batch, impact gRNA detection probability and observed
gene expression levels in both Gasperini et al. (b) and Xie et al. (c) data. Thus, technical
factors act as confounders (d), differentiating CRISPR screens from traditional differential
expression applications. e, Monocle2 estimates the dispersion of each gene by projecting
each gene’s raw dispersion estimate onto the fitted raw dispersion-mean expression curve.
This estimation procedure leads to miscalibration for high-dispersion genes.

sion, and (ii1) projected the raw dispersion estimates onto the fitted nonparametric regres-
sion curve.

We reanalyzed the Gasperini et al. negative control data using the improved negative
binomial regression approach. In addition to sequencing depth, we included as covariates
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in the regression model the total number of expressed genes per cell, as well as the tech-
nical factors accounted for in the original analysis (total number of gRNAs detected per
cell, percentage of transcripts mapped to mitochondrial genes, and sequencing batch). We
likewise applied the improved negative binomial approach to the Xie et al. negative control
data, including sequencing depth, number of detected gRNA UMIs per cell, and sequenc-
ing batch as regression covariates in the latter analysis. While the improved negative
binomial regression exhibited better calibration than Monocle regression on the Gasperini
et al. data (Figure 3b), it showed clear signs of p-value inflation on both datasets (Figure
3b-c). We concluded that parametric count models likely are challenging to calibrate to
high-MOI single-cell CRISPR screen data.

SCEPTRE: Analysis of single-cell perturbation screens via conditional resampling.
To address the challenges identified above, we propose SCEPTRE, a methodology for
single-cell CRISPR screens based on the simple but powerful conditional randomization
test'? (Figure 2). To assess the association between a given gRNA and gene, we first fit the
improved negative binomial statistic described above. This yields a z-value, which typi-
cally would be compared to a standard normal null distribution based on the parametric
negative binomial model. Instead, we build a null distribution for this statistic via condi-
tional resampling. First, we estimate the probability that the gRNA will be detected in a
given cell based on the cell’s technical factors, such as sequencing depth and batch. Next,
we resample a large number of “null” datasets, holding gene expression and technical fac-
tors constant while redrawing gRNA assignment independently for each cell based on its
fitted probability. We compute a negative binomial z-value for each resampled dataset,
resulting in an empirical null distribution (gray histogram in Figure 2). Finally, we com-
pute a left-, right-, or two-tailed probability of the original z-value under the emprical null
distribution, yielding a well-calibrated p-value. We note that SCEPTRE in principle is
compatible with any test statistic that reasonably tracks the expression data, including, for
example, statistics based on machine learning algorithms.

We leverage several computational accelerations to enable SCEPTRE to scale to large
single-cell CRISPR screen datasets. First, we approximate the null histogram of the resam-
pled test statistics using a skew-t distribution to obtain precise p-values based on a limited
number of resamples (500 in the current implementation). Second, we employ statistical
shortcuts that reduce the cost of each resample by a factor of about 100 (see Methods).
Finally, we implement the algorithm such that it can run in parallel on hundreds or thou-
sands of processors on a computer cluster. (We used this approach in our independent
study of noncoding blood trait GWAS loci'*.) Overall, we estimate that SCEPTRE can
analyze 2.5 million gene-gRNA pairs on a dataset of 200,000 cells in a single day using
500 processors.
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Figure 2: SCEPTRE: Analysis of single-cell perturbation screens via conditional re-
sampling. A schematic and outline of the SCEPTRE methodology for one gene and one
gRNA is shown. SCEPTRE estimates the probability of gRNA detection in each cell based
on its technical factors. It then builds a null distribution for the negative binomial z-value
by independently resampling gRNA presence or absence for each cell according to these
probabilities to form “negative control” datasets. A skew-¢ distribution is fit to the result-
ing histogram to obtain precise p-values based on a limited number of resamples, against
which the original NB z-value is compared. The dashed line shows the standard normal
distribution, against which the NB z-value typically would be compared.
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SCEPTRE demonstrates good calibration and sensitivity on real and simulated data.
First, we demonstrated the calibration of SCEPTRE in a small, proof-of-concept simula-
tion study (Figure 3a). We considered a class of negative binomial regression models with
fixed dispersion and two technical covariates (sequencing depth and batch). We simulated
expression data for a single gene in 1000 cells using four models selected from this class:
the first with dispersion = 1, the second with dispersion = 0.2, the third with dispersion
= b, and the last with dispersion = 1, but with 25% zero-inflation. We also simulated
negative control gRNA data using a logistic regression model with the same covariates as
the gene expression model. We assessed the calibration of three methods across the four
simulated datasets: SCEPTRE, improved negative binomial regression, and scMAGeCK-
LR!°, a recently-proposed, permutation-based nonparametric method. To assess the im-
pact of model misspecification on SCEPTRE and the improved negative binomial method
(on which SCEPTRE relies), we fixed the dispersion of the negative binomial method to
1 across all four simulated datasets. The negative binomial method worked as expected
when the model was correctly specified but broke down in all three cases of model mis-
specification. scMAGeCK-LR exhibited poor calibration across all simulated datasets,
likely because, as a traditional nonparametric method, it failed to adequately account for
confounders. Finally, SCEPTRE was well-calibrated in all settings.

Next, to assess the calibration of SCEPTRE on real data, we used SCEPTRE to test the
association between negative control gRNAs and genes in the Gasperini et al. data (Figure
3b) and Xie et al. data (Figure 3c). We compared SCEPTRE to the improved negative
binomial method, as well as to the original analysis methods (i.e., Monocle regression
on the Gasperini et al. data and Virtual FACS on the Xie et al. data). We did not apply
scMAGeCK-LR to these data given its poor calibration on the simulated data. SCEPTRE
showed excellent calibration on both datasets; by contrast, Monocle regression and im-
proved negative binomial regression demonstrated signs of severe p-value inflation, while
Virtual FACS exhibited a bimodal p-value distribution.

To assess the sensitivity of SCEPTRE, we applied it to test the 381 positive control
pairs of genes and TSS-targeting gRNAs assayed by Gasperini et al. (Figure 3d). Allowing
for the fact that the empirical correction employed by Gasperini et al. limited the accuracy
of p-values to about 1075, the SCEPTRE p-values for the positive controls were highly
significant, and in particular, almost always more significant than the original empirical
p-values, indicating greater sensitivity. Finally, we assessed the sensitivity of SCEPTRE
on the Xie et al. data. Xie et al. conducted an arrayed CRISPR screen with bulk RNA-
seq readout of ARL15-enh, a putative enhancer of gene ARLI5. Both SCEPTRE and the
bulk RNA-seq differential expression analysis rejected ARLI5 (and only ARLIS5) at an
FDR of 0.1 after a Benjamini-Hochberg (BH) correction, increasing our confidence in the
calibration and sensitivity of SCEPTRE (Figure 3e).
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Figure 3: SCEPTRE demonstrates good calibration and sensitivity under known
ground truth. a, Numerical simulation comparing three methods — SCEPTRE, improved
negative binomial regression, and scMAGeCK-LR — on four simulated datasets. Only
SCEPTRE maintained calibration despite model misspecification and confounder pres-
ence. b-c, Application of SCEPTRE, improved negative binomial regression, Monocle
regression, and Virtual FACS to pairs of negative control gRNAs and genes in (b) the
Gasperini et al. data, and (c) the Xie et al. data. Compared to the other methods, SCEPTRE
showed excellent calibration. d, SCEPTRE p-values for Gasperini et al. TSS-targeting
controls were highly significant, and in general, more significant than the original em-
pirical p-values. e, Comparison of p-values produced by SCEPTRE for ARL15-enh to
p-values produced by an arrayed, bulk RNA-seq CRISPR screen of ARL15-enh. The re-
sults of the two analyses coincided exactly, with both analyses rejecting gene ARL15 (and
only gene ARLI15) after a BH correction. Dotted blue lines, rejection thresholds.

Analysis of candidate cis-regulatory pairs. We applied SCEPTRE to test all candidate
cis-regulatory pairs in the Gasperini et al. (n = 84, 595) and Xie et al. (n = 3, 553) data.
A given gene and gRNA were considered a “candidate pair” if the gRNA targeted a site
within one Mb the gene’s TSS. SCEPTRE discovered 563 and 135 gene-enhancer links at
an FDR of 0.1 on the Gasperini et al. and Xie et al. data, respectively. We used several
functional assays to quantify the enrichment of SCEPTRE’s discovery set for regulatory
biological signals, and we compared the SCEPTRE results to those of the original meth-
ods.

SCEPTRE’s discovery set on the Gasperini et al. data was highly biologically plausi-
ble, and in particular, more enriched for biological signals of regulation than the original
discovery set. Gasperini et al. discovered 470 gene-gRNA pairs at a reported FDR of
0.1. The SCEPTRE p-values and original empirical p-values diverged substantially: of the
670 gene-enhancer pairs discovered by either method, SCEPTRE and the original method
agreed on only 363, or 54% (Figure 4a). Gene-enhancer pairs discovered by SCEPTRE
were physically closer (mean distance = 65 kb) to each other than those discovered by
the original method (mean distance = 81 kb; Figure 4b). Furthermore, SCEPTRE’s gene-
enhancer pairs fell within the same topologically associating domain (TAD) at a higher
frequency (74%) than the original pairs (71%). Pairs within the same TAD showed similar
levels of HI-C interaction frequency across methods, despite the fact that SCEPTRE dis-
covered 85 more same-TAD pairs (Figure 4c). Finally, enhancers discovered by SCEPTRE
showed improved enrichment across all eight cell-type relevant ChIP-seq targets reported
by Gasperini et al. (Figure 4d). When we compared discoveries unique to SCEPTRE
(n = 200) against those unique to the original method (n = 107), the disparities became
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more extreme (Figure S3). For example, only 57% of pairs unique to the original method
fell within the same TAD, compared to 73% unique to SCEPTRE. We concluded that
many pairs in the Gasperini et al. discovery set likely were false positives.
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Figure 4: Application of SCEPTRE to Gasperini et al. data yields biologically plau-
sible gene-enhancer links. a, Comparison of the original empirical p-values to those ob-
tained from SCEPTRE. The two analysis methods differed substantially, with 200 gene-
enhancer links discovered only by SCEPTRE and 107 discovered only by the original
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analysis. Annotatations correspond to pairs in panel (b). b, Distribution of distances from
TSS to upstream paired enhancers. Compared to the original analysis, SCEPTRE paired
genes with nearer enhancers on average. ¢, For those gene-enhancer pairs falling in the
same TAD, the cumulative distribution of the fractional rank of the HI-C interaction fre-
quency compared to other distance-matched loci pairs within the same TAD. SCEPTRE
showed similar enrichment despite finding 25% more within-TAD pairs. Inset table shows
gene-enhancer pairs falling in the same TAD. SCEPTRE found 93 more total pairs, and
a higher percentage of pairs fell within the same TAD. d, Enrichment of ChIP-seq sig-
nal from seven cell-type relevant transcription factors and one histone mark (H3K27ac)
among paired enhancers. SCEPTRE showed stronger enrichment across all ChIP-seq tar-
gets. e, Five gene-enhancer pairs discovered by SCEPTRE but not the original analysis,
each supported by a whole blood GTEx eQTL or FANTOM enhancer RNA correlation
p-value.

We highlight several especially interesting gene-enhancer pairs discovered by SCEP-
TRE. Five discoveries (Figure 4a labels 1-5; Figure 4e) were nominated as probable gene-
enhancer links by eQTL'® and eRNA'!® p-values in relevant tissue types. The SCEPTRE
p-values for these pairs were 1-2 orders of magnitude smaller than the original empirical
p-values, hinting at SCEPTRE’s greater sensitivity. Additionally, six pairs (Figure 4a, blue
triangles) were discovered by SCEPTRE but discarded as outliers by the original analysis,
underscoring SCEPTRE’s ability to handle genes with arbitrary expression distributions.

We repeated the same functional analyses for the SCEPTRE discoveries on the Xie et
al. data, comparing SCEPTRE’s results to those of Xie et al. Xie et al.’s analysis method,
Virtual FACS, outputted “significance scores” rather than p-values (see section “Analysis
challenges”). Because significance scores cannot be subjected to multiple hypothesis test-
ing correction procedures (like BH), we compared the top 135 Virtual FACS pairs (ranked
by significance score) against the set of 135 (FDR = 0.1) SCEPTRE discoveries (Figure
Sa; see Methods). Of the 186 pairs in either set, SCEPTRE and Virtual FACS agreed on
only 84, or 45%. The SCEPTRE discoveries were more biologically plausible: compared
to the Virtual FACS pairs, the SCEPTRE pairs were (i) physically closer (Figure 5b), (ii)
more likely to fall within the same TAD (Figure 5c), (iii) more likely to interact when
in the same TAD (Figure 5c¢), and (iv) more enriched for six of eight cell-type relevant
ChIP-seq targets (Figure 5d).
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Figure 5: SCEPTRE discovers biologically plausible gene-enhancer links on Xie
et al. data. a, Comparison of SCEPTRE p-values to Virtual FACS significance scores.
Significant SCEPTRE p-values (n = 135) are colored in blue and purple, and the top 135
Virtual FACS pairs, as ranked by significance score, are colored in gray-green and purple.
b-d, These panels are similar to the corresponding panels in Figure 4. The SCEPTRE pairs
were more enriched for biological signals associated with gene-gRNA links.

Discussion

In this work we illustrated a variety of statistical challenges arising in the analysis of high-
MOI single-cell CRISPR screens, leaving existing methods (based on parametric expres-
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sion models, permutations, or negative control data) vulnerable to miscalibration. To ad-
dress these challenges, we developed SCEPTRE, a resampling method based on modeling
the probability a given gRNA will be detected in a given cell, based on that cell’s technical
factors. We found that SCEPTRE exhibited very good calibration despite the presence of
confounding technical factors and misspecification of single-cell gene expression models.
We implemented computational accelerations to bring the cost of the resampling-based
methodology down to well within an order of magnitude of the traditional negative bi-
nomial parametric approach, making it quite feasible to apply for large-scale data. We
used SCEPTRE to reanalyze the Gasperini et al. and Xie et al. data. While our analysis
replicated many of their findings, it also clarified other relationships, removing a large
set (> 20% for Gasperini) of pairs that exhibited a weak relationship and adding an even
larger set (> 40% for Gasperini) of new, biologically plausible gene-enhancer relation-
ships. These links were supported by orthogonal evidence from eQTL, enhancer RNA
co-expression, ChIP-seq, and HI-C data.

As an example application of SCEPTRE, we highlight STING-seq, a platform that we
developed in parallel to the current work in an independent study'*. STING-seq leverages
biobank-scale GWAS data and single-cell CRISPR screens to map noncoding, disease-
associated variants at scale. First, we used statistical fine-mapping to identify a set of
88 putatively causal variants from 56 loci associated with quantitative blood traits. We
perturbed the selected variants at high MOI in K562 cells using an improved CRISPRi
platform and sequenced gRNAs and transcriptomes in individual cells using ECCITE-
seq®, a protocol that enables the profiling of multiple modalities and the direct capture of
gRNAs.

We then applied SCEPTRE to quantify associations between perturbations and changes
in gene expression in cis (within 500 kb) and trans. SCEPTRE confidently mapped 37 non-
coding variants to their cis target genes, in some cases identifying a causal variant among
a set of candidate variants in strong LD. Nine variants were found to regulate a gene other
than the closest gene, and four variants were found to regulate multiple genes, an apparent
example of pleiotropy. Several perturbations lead to widespread changes in gene expres-
sion, illuminating trans-effects networks. For example, two variants that were found to
regulate the transcription factor GFIIB in cis altered the expression of hundreds of genes
in trans upon perturbation; these differentially expressed genes were strongly enriched
for GFI1B binding sites and blood disease GWAS hits. We concluded on the basis of
this study SCEPTRE can power the systematic dissection regulatory networks underlying
GWAS associations.

Despite these exciting results, key challenges remain in the analysis of single-cell
CRISPR screens. Currently, SCEPTRE does not estimate the effect sizes of perturbations,
disentangle interactions among perturbed regulatory elements®*2!, or leverage information
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from off-targeting gRNAs to improve power. Such extensions could be implemented by
harnessing more sophisticated, multivariate models of gRNA detection or applying meth-
ods for estimating variable importance in the presence of possibly misspecified models??.
The statistical challenges that we identified in this study — specifying an accurate expres-
sion model, accounting for technical factors — and the solutions that we proposed — condi-
tional resampling, massively parallel association testing — will help guide the development
of future versions of SCEPTRE.

Single-cell CRISPR screens will play a key role in unravelling the regulatory architec-
ture of the noncoding genome. Technological improvements and methodological innova-
tions will increase the scope, scale, and variety of theses screens over the coming years.
For example, screens of candidate CREs could be extended to different, disease-relevant
cell types and tissues (although this remains a challenge); new combinatorial indexing
strategies, such as scifi-RNA-seq, could enable the scaling-up of such screens to millions
of cells**; different CRISPR technologies, such as CRISPRa, could enable the activa-
tion, rather than repression, of candidate CREs, yielding new insights; and information-
rich, multimodal single-cell readouts could strengthen conclusions drawn about regulatory
relationship524. SCEPTRE is a flexible, robust, and efficient method: it has now success-
fully been applied to three single-cell CRISPR screen datasets, across two technologies
(CROP-seq and ECCITE-seq), to map regulatory relationships both in cis and in trans.
We expect SCEPTRE to facilitate the analysis of future single-cell screens of the noncod-
ing genome, advancing understading of CREs and enabling the detailed interpretation of
GWAS results.
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Methods

Gasperini et al. and Xie et al. data. Gasperini et al. used CROP-seq™!! to transduce
a library of CRISPR guide RNAs (gRNAs) into a population of 207,324 K562 cells ex-
pressing the Cas9-KRAB repressive complex at a high multiplicity of infection. Each cell
received an average of 28 perturbations. The gRNA library targeted 5,779 candidate en-
hancers, 50 negative controls, and 381 positive controls. Xie et al. used Mosaic-seq’®
to perturb at a high multiplicity of infection 518 putative enhancers in a population of
106,670 Cas9-KRAB-expressing K562 cells. Each putative enhancer was perturbed in an
average of 1,276 cells.

Cis and in silico negative control pairs for Xie et al. data. We generated the set of can-
didate cis gene-enhancer relationships on the Xie et al. data by pairing each protein-coding
gene with each gRNA targeting a site within 1 Mb of the TSS of the gene. This procedure
resulted in 3,553 candidate cis gene-enhancer links that we tested using SCEPTRE and
Virtual FACS.

To generate the set of in silico negative control pairs for calibration assessment, we (i)
identified gRNAs that targeted sites far (> 1 Mb) from the TSSs of known transcription
factor genes and (ii) paired these gRNAs with genes located on other chromosomes. We
excluded all pairs containing genes known to be transcription factors, and we downsam-
pled the pairs so that each gRNA was matched to 500 genes. The final in silico negative
control set consisted of 85, 000 pairs, the elements of which were not expected to exhibit
a regulatory relationship.

Conditional randomization test. Consider a particular gene/gRNA pair. For each cell
i=1,...,n,let X; € {0, 1} indicate whether the gRNA was present in the cell, let Y; €
{0,1,2,...} be the gene expression in the cell, defined as the number of unique molecular
identifiers (UMIs) from this gene, and let Z; € R be a list of cell-level technical factors.
Letting (X,Y,7) = {(X},Y;, Z;)}I,, consider any test statistic 7'(X,Y, Z) measuring
the effect of the gRNA on the expression of the gene. The conditional randomization
test'® is based on resampling the gRNA indicators independently for each cell. Letting
m; = P[X; = 1|Z;], define random variables

ind

X; ~ Ber(m;). (1)
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Then, the CRT p-value is given by
perr = B[T(X,Y, Z) 2 T(X,Y, 2) | X,Y, Z]. @

This translates to repeatedly sampling X from the distribution (1), recomputing the test
statistic with X replaced by X, and defining the p-value as the probability the resampled
test statistic exceeds the original. Under the null hypothesis that the gRNA perturbation
does not impact the cell (adjusting for technical factors), i.e. Y 1 X | Z, we obtain a
valid p-value (2), regardless of the expression distribution Y| X, Z and regardless of the
test statistic I'. We choose as a test statistic 7" the z-score of X; obtained from a negative
binomial regression of Y; on X; and Z;:

Y, g NegBin(u;, a);  log(u;) = o + Xi8 + Z1 7, €)

where « is the dispersion. Following Hafemeister and Satjia'’, we estimate o by pool-
ing dispersion information across genes, and we include sequencing depth as an entry
in the vector of technical factors Z; (see section Improvements to the negative binomial
approach).

Accelerations to the conditional randomization test. We implemented computational
accelerations to the conditional randomization test. First, we employed the recently proposed?’
distillation technique to accelerate the recomputation of the negative binomial regression
for each resample. The idea is to use a slightly modified test statistic, consisting of two
steps:

1. Fit ( BO, 7~) from the negative binomial regression (3) except without the gRNA term:
ind .
Y; ~ NegBin(u;, «);  log(u) = Bo + Z} . 4)

2. Fit B from a negative binomial regression with the estimated contributions of Z;
from step 1 as offsets:

Y; % NegBin(pu;, );  log(p) = X:8+ fo + 2/ 7. ©)

Conditional randomization testing with this two step test statistic, which is nearly identical
to the full negative binomial regression (3), is much faster. Indeed, since the first step is not
a function of X, it remains the same for each resampled triple (X, Y, Z). Therefore, only
the second step must be recomputed with each resample, and this step is faster because it
involves only a univariate regression.
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Next, we accelerated the second step above using the sparsity of the binary vector
(X1,...,X,) (or a resample of it). To do so, we wrote the log-likelihood of the reduced
negative binomial regression (5) as follows, denoting by ¢(Y;, log(x;)) the negative bino-
mial log-likelihood:

STUYL XiB+ B+ ZF7) = Y MY B+ ZFA) + Y UYi B+ Bo+ Z1F)

=C+ Y WY B+Fo+ Z17).

i X;=1

This simple calculation shows that, up to a constant that does not depend on /3, the negative
binomial log-likelihood corresponding to the model (5) is the same as that corresponding
to the model with only intercept and offset term for those cells with a gRNA:

Y; n NegBin(p;, «);  log(p;) = 5+ /6\0 + Z!5, forisuchthat X; = 1. (6)

The above negative binomial regression is therefore equivalent to equation (5), but much
faster to compute, because it involves much fewer cells. For example, in the Gasperini et
al. data, each gRNA is observed in only about 1000 of the 200,000 total cells.

SCEPTRE methodology. In practice, we must estimate the gRNA probabilities 7; as
well as the p-value pcrr. This is because usually we do not know the distribution X|Z
and cannot compute the conditional probability in equation (2) exactly. We propose to
estimate 7; via logistic regression of X on Z, and to estimate pcrr by resampling X a large
number of times and then fitting a skew-¢ distribution to the resampling null distribution
T(X,Y,Z)|X,Y,Z. We outline SCEPTRE below:

1. Fit technical factor effects (30, 7) on gene expression using the negative binomial
regression (4).

2. Extract a z-score z(X,Y, Z) from the reduced negative binomial regression (6).

3. Assume that

X; ind Ber(m;); log ( ) =7+ ZZ-TT (7

1—71'7;

for 7o € R and 7 € RY and fit (7,7) via logistic regression of X on Z. Then,
extract the fitted probabilities 7; = (1 + exp(— (7o + Z17))) "%

4. Forb=1,...,B,
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* Resample the gRNA assignments based on the probabilities 7; to obtain X* (1).

» Extracta z-score z()N( b 'Y, Z) from the reduced negative binomial regression (6).
5. Fit a skew-¢ distribution Fjy to the resampled z-scores {z(X?,Y, Z .

6. Return the p—Value ]/)\SCEPTRE = ]P)[ﬁnull S Z(X, Y, Z)]

In our data analysis we used B = 500 resamples.

Numerical simulation to assess calibration. We simulated one gene Y;, five gRNAs
X1, X2, ..., X;5, and two confounders Z;;, Z;» in n = 1000 cells. We generated the
confounders Z;; and Z;5 by sampling with replacement the batch IDs and log-transformed
sequencing depths of the cells in the Gasperini dataset. The batch ID confounder Z;;
was a binary variable, as the Gasperni data included two batches. Next, we drew the
gRNA indicators X1, X;o, ..., X;5 1.1.d. from the logistic regression model (7), with 7y =
—7,71 = —2,and 7, = 0.5. We selected these parameters to make the probability of
gRNA occurrence about 0.04 across cells. Finally, we drew the gene expression Y; from
the following zero-inflated negative binomial model:

Note that gRNA presence or absence does not impact gene expression in this model. We
set By = —2.5, 81 = —2, 5, = 0.5 to make the average gene expression about 4 across
cells. We generated the four datasets shown in Figure 3a by setting the dispersion param-
eter « and the zero inflation rate parameter A equal to the following values:

(A1) = (0,1); (Ag, a) = (0,5); (Mg ) = (0,0.2); (Ag, g) = (0.25, 1),

For the first, the negative binomial model is correctly specified. For the second and third,
the dispersion estimate of 1 is too small and too large, respectively. The last setting exhibits
zero inflation.

We applied SCEPTRE, negative binomial regression, and scMAGeCK-LR'° to the four
problem settings, each with ng;,, = 500 repetitions. The negative binomial method, and
in turn SCEPTRE, was based on the z statistic from the Hafemeister-inspired negative bi-
nomial model (3) with « = 1. scMAGeCK-LR differs from SCEPTRE and the negative
binomial method in that scMAGeCK-LR computes p-values for all enhancers simultane-
ously. Thus, to facilitate comparisons across methods, we plotted p-values corresponding
to enhancer X;; only. We used B = 500 resamples for SCEPTRE and B = 1000 permu-
tations for scMAGeCK-LR, the default choices for these methods.
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Definition of Gasperini et al. discovery set. Gasperini et al. reported a total of 664
gene-enhancer pairs, identifying 470 of these as “high-confidence.” We chose to use the
latter set, rather than the former, for all our comparisons. Gasperini et al. carried out their
ChIP-seq and HI-C enrichment analyses only on the high-confidence discoveries, so for
those comparisons we do the same. Furthermore, the 664 total gene-enhancer pairs re-
ported in the original analysis were the result of a BH FDR correction that included not
only the candidate enhancers but also hundreds of positive controls. While Bonferroni cor-
rections can only become more conservative when including more hypotheses, BH correc-
tions are known to become anticonservative when extra positive controls are included®®. To
avoid this extra risk of false positives, we chose to use the “high-confidence” set through-
out.

Xie et al. significance scores and discovery set. Xie et al. reported a local (or cis)
discovery set, which consisted of gene-gRNA pairs with a significance score of greater
than zero (see original manuscript for definition of “significance score”®; cutoff of zero
arbitrary). This discovery set was not directly comparable to the SCEPTRE discovery set.
First, the candidate set of cis gene-gRNA pairs tested by Xie et al. consisted of gRNAs
within two Mb of a protein-coding gene or long-noncoding RNA. Our candidate cis set,
by contrast, consisted of gRNAs within one Mb of a protein-coding gene. We defined our
candidate cis set differently than Xie et al. to mantain consistency with Gasperini et al.
Second, Xie et al. appear to have used a significantly more conservative threshold than
Gasperini et al. in defining their discovery set, but this was challenging to ascertain given
the impossibility of FDR correction on the significance scores. To enable a meaningful
comparison between Virtual FACS and SCEPTRE, we therefore ranked the Virtual FACS
pairs by their significance score and selected the top n pairs, where n was the size of the
SCEPTRE discovery set at FDR 0.1.

ChIP-seq, HI-C enrichment analyses. ChIP-seq and HI-C enrichment analyses anal-
yses (see Figures 4e-f and S4) were carried out almost exactly following Gasperini et al.
The only change we made is in our quantification of the ChIP-seq enrichment (Figure 4f).
We use the odds ratio of a candidate enhancer being paired to a gene, comparing the top
and bottom ChIP-seq quintiles.
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Data availability

Analysis results are available online at ht tps: / /upenn.box.com/v/sceptre-files-v7.
All analysis was performed on publicly available data. The Gasperini et al. CRISPR screen

data® are available at www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120861.
The Xie et al. single-cell and bulk CRISPR screen data are available at www . ncbi .nlm.
nih.gov/geo/query/acc.cgi?acc=GSE129837. The ChIP-seq data are taken

from the ENCODE project” and are available at www.encodeproject.org/. The

HI-C enrichment analysis is based on the data from Rao et al.’°, available at www .ncbi .
nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525. The eQTL and eRNA co-
expression p-values are taken from the GeneHancer, database®! available as part of GeneCards
(www.genecards.org/).

Code availability

The sceptre R package is available at github.com/Katsevich-Lab/sceptre.
Vignettes and tutorials are available at katsevich-lab.github.io/sceptre/.
The scripts used to run the analyses reported in this paper are available at github.com/
Katsevich-Lab/sceptre-manuscript.
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Supplementary Figures
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Figure S1: Gasperini et al.’s empirical correction is insufficient to correct for miscal-
ibration. a, Dispersion estimation procedure employed leads to miscalibration for high-
dispersion genes, which the empirical correction does not adequately correct for, as mea-
sured by KS test applied to empirical p-values per gene (point colors). b, Raw p-values
already well-calibrated for LUC7L2 gene, so empirical correction unnecessarily shrinks
the significance of the association with TSS-targeting gRNA, depicted by horizontal lines,
by three orders of magnitude. ¢, Empirical correction not strong enough for HISTIHID,
which is among circled genes in panel a, which have an NTC-based miscalibration p-value
smaller than the Bonferroni threshold. d, Under-correction leads to two potential false dis-
coveries for HISTIHID. Dashed horizontal line represents the multiple testing threshold.
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Figure S2: Comparison of negative binomial and conditional resampling p-values
based on the same test statistic. a, The standard parametric negative binomial p-value
versus that obtained from the same test statistic by conditional resampling, for each gene
/ candidate enhancer pair (both truncated at 10~'° for visualization). The two can diverge
fairly substantially. b-d, Parametric and conditional resampling null distributions for the
negative binomial z-value in three cases: the conditional resampling p-value is more sig-
nificant (b), the parametric p-value is more significant (c), the two p-values are about the
same (d).
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Figure S3: Discoveries unique to SCEPTRE exhibited greater enrichment for bio-
logical signal than those unique to the original method. This figure shows the 200
discoveries unique to SCEPTRE and the 107 discoveries unique to the original method (in
contrast to Figure 4, which shows the entire discovery set of both methods). a, On average,
enhancers discovered by SCEPTRE were less than half the distance to their target genes
than those discovered by Gasperini et al. b, 73% of the gene-enhancer pairs discovered
by SCEPTRE fell within the same TAD, in contrast to 57% of those discovered by the
original method. HI-C interaction frequency was similar across methods (though slightly
higher for the original), despite the fact that SCEPTRE found 85 more same-TAD pairs.
¢, Enhancers returned by SCEPTRE showed significantly greater enrichment across all
ChIP-seq targets, especially H3K27ac.


https://doi.org/10.1101/2020.08.13.250092
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.250092; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Proportion enhancers paired with gene

0.3

0.3

0 1 2 3 4 5 o 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.2

available under aCC-BY-NC-ND 4.0 International license.

BRD4 DPF2 EP300 GATA2

B sceptre
. Original

H3K27ac RNF2 TALL TBL1IXR1

ChIP-seq quintiles of candidate enhancers

Figure S4: Details on ChIP-seq enrichment analysis. Fraction of candidate enhancers
paired with a gene, broken down by quintile of ChIP-seq signal (0 means the candidate
enhancer did not overlap a ChIP-seq peak), based on which the odds ratios in Figure 4e
were computed. Both methods generally pair candidate enhancers in higher ChIP-seq
quintiles more frequently, but this enrichment is more pronounced in SCEPTRE across all
eight ChIP-seq targets.
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