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Abstract 29 

Understanding the regulatory architecture of phenotypic variation is a fundamental goal 30 

in biology, but connections between gene regulatory network (GRN) activity and individual 31 

differences in behavior are poorly understood. We characterized the molecular basis of 32 

behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage 33 

in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, 34 

we discovered these colonies contain a continuum of phenotypes, with some individuals 35 

specialized for either egg-laying or foraging and “generalists” that perform both. Brain gene 36 

expression and chromatin accessibility profiles were correlated with behavioral variation, with 37 

generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed 38 

for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, 39 
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and behavior-associated regulatory regions had more TF motifs. These results provide new 40 

insights into the important role played by brain GRN plasticity in the regulation of behavior, with 41 

implications for social evolution. 42 

 43 

Introduction 44 

 Understanding the genomic regulatory architecture of phenotypic plasticity is necessary 45 

to achieve comprehensive knowledge of the mechanisms and evolution of complex traits. While 46 

a growing body of knowledge exists on specific regulatory mechanisms involved in 47 

developmental plasticity, less is known about the regulation of behavioral plasticity. Behavioral 48 

plasticity is of special interest and presents unique challenges, as behavioral traits derive from 49 

the integrated actions of genetic, transcriptomic, and neuronal networks (Sinha et al., 2020). 50 

Over the past 20 years, a close relationship between behavioral variation and brain gene 51 

expression has been documented across a range of organisms and behaviors (e.g., Zayed and 52 

Robinson, 2012). Still, the regulatory architecture underlying connections between the genome, 53 

brain, environment, and behavior are not well resolved, in part because behavior is itself a 54 

complex phenotype with substantial variation between individuals. To fully understand how 55 

genomic and transcriptomic variation is transduced into behavioral plasticity, we need both high-56 

dimensional behavioral data at the individual level as well as information on regulatory 57 

genomics for those same individuals.  58 

 Modification of gene regulatory networks (GRNs) has emerged as an important driver of 59 

plasticity during the development and evolution of morphological phenotypes. For example, 60 

gains and losses of cis-regulatory elements (e.g., binding sites for transcription factors (TFs)) 61 

influence species-specific wing melanization patterns in Heliconius butterflies and Drosophila      62 

flies (Prud’homme et al., 2006; Reed et al., 2011; Werner et al., 2010). Pelvic loss in stickleback 63 

fish convergently evolved through deletion of a tissue-specific enhancer of the TF Pitx1 in 64 

multiple natural populations (Chan et al., 2010). In other cases, similar morphological novelties 65 

arose independently through modification of distinct developmental programs, as observed for 66 

beak size variation across clades of finches (Mallarino et al., 2012). Recruitment of genes 67 

involved in developmental plasticity in the evolution of novel phenotypes is thought to be 68 

facilitated by the fact that TFs and other regulatory genes often have great temporal flexibility, 69 

with extensive variation in expression across developmental time (Dufour et al., 2020). 70 
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 Similar to its role in morphological variation, plasticity in GRNs is theorized to influence 71 

behavioral variation, over both organismal and evolutionary time scales (Sinha et al., 2020). 72 

Brain gene expression is often responsive to environmental stimuli (Chandrasekaran et al., 2011; 73 

Cummings et al., 2008; Mukherjee et al., 2018; Rittschof et al., 2014; Whitfield et al., 2003) and 74 

the regulatory activity of many TFs is context-specific with respect to behavioral state 75 

(Chandrasekaran et al., 2011; Hamilton et al., 2019). In addition, modification of hormone 76 

signaling and GRNs in peripheral tissues has effects on brain GRNs and resulting behavior 77 

(Ament et al., 2012). These results demonstrate that GRNs are plastic not only across 78 

developmental timescales but also influence real-time behavioral variation. Still, the link 79 

between changes in GRNs and behavioral plasticity is weaker than for developmental plasticity 80 

(Sinha et al., 2020), and to our knowledge, no empirical studies have linked brain GRN plasticity 81 

to individual differences in behavior.  82 

Eusocial insects are ideal for studying how GRN activity influences both developmental 83 

and behavioral plasticity at the individual scale. Eusociality is characterized by a reproductive 84 

division of labor between queen and worker castes, representing a developmentally plastic 85 

polyphenism well-studied in many species (e.g., Holldobler and Wilson, 1990; Michener, 1974; 86 

O’Donnell, 1998; Wheeler, 1986). Queens are specialized for reproductive functions, including 87 

mating and egg-laying, and in species with complex eusociality have levels of fecundity orders 88 

of magnitude greater than their solitary ancestors. Workers, on the other hand, typically do not 89 

perform reproductive behaviors and in many cases are sterile or unable to mate, instead 90 

performing many different non-reproductive behaviors in a colony that are essential for colony 91 

growth and development. Species with complex eusociality also often show additional within-92 

caste behavioral plasticity, with individuals specializing on specific subsets of tasks based on 93 

differences in worker age, morphology, or genetic predisposition. The extensive behavioral 94 

plasticity observed in colonies of eusocial species may be linked to ancestral developmental 95 

plasticity (Kapheim et al., 2020), highlighting the interconnectedness of gene regulation in both 96 

developmental and behavioral phenotypes relevant for social behavior (Sinha et al., 2020). 97 

We studied the relationship between brain GRN activity and behavior at the individual 98 

scale. We focused on a recently discovered, surprising form of behavioral plasticity among 99 

worker honey bees. Honey bee workers do not mate, but they possess functional ovaries and can 100 

produce viable haploid eggs. Laying workers (LW) are rare in queenright colonies (Ratnieks, 101 
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1993; Visscher, 1996) but frequent in situations of permanent queenlessness, when colonies lose 102 

their queen and then fail to rear a replacement queen. In these cases, up to 50% of workers may 103 

activate their ovaries (Sakagami, 1954) and some of these workers lay eggs, producing thousands 104 

of drones prior to colony death (Page and Erickson, 1988). Recently, it was discovered that some 105 

LWs engage in both reproductive and non-reproductive behaviors (Naeger et al., 2013), a level 106 

of behavioral plasticity not previously described in honey bee workers. Studying honey bee 107 

workers in LW colonies enables investigation of the molecular architecture of behavioral 108 

variation typically only seen when comparing queens and workers, without the confounds of 109 

caste-specific developmental and physiological differences. 110 

Recent advances in machine learning and automatic behavioral tracking have enabled the 111 

study of individual behavior for thousands of members within social insect colonies (Crall et al., 112 

2015; Gernat et al., 2018; Greenwald et al., 2015; Mersch et al., 2013; Wario et al., 2015; Gernat 113 

et al. 2020). We used automatic behavioral tracking, genomics, and the extensive behavioral 114 

plasticity present in honey bee colonies with LW to test the hypothesis that individual differences 115 

in behavior are associated with changes in the activity of brain GRNs (i.e., changes in the 116 

expression of TFs and their target genes). Our results provide key insights into the mechanisms 117 

underlying the regulation of individual differences in behavior by brain GRNs. 118 

 119 

Results 120 

Extensive variation in behavior across laying workers 121 

To define the behavior of individual bees, we deployed a high-resolution, automatic 122 

behavior monitoring system on six LW colonies in which each bee (n=800 per colony) was 123 

individually barcoded, similar to Gernat et al. (2018). Our extension of this system identifies the 124 

location and heading direction of each individual once per second, and uses convolutional neural 125 

networks and machine learning to detect behaviors (Gernat et al., 2020). For each individual 126 

across seven days of tracking (when bees were 15-21 days old), egg-laying events and foraging 127 

trips were detected from images of the hive interior and entrance (Figure 1A). A total of 115,281 128 

egg-laying events and 96,086 foraging trips were predicted for the six colonies (Supplementary 129 

File 1). 130 

Colonies exhibited considerable variation in the proportion of bees engaged in egg-laying 131 

and/or foraging. With the exception of colony F, more workers were identified as layers than 132 
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foragers (Figure 1B). Across all colonies, a high proportion of bees were observed laying eggs 133 

(54% with at least two egg-laying events on at least one day) or foraging (28% with at least two 134 

foraging trips on at least one day) during the recording period, while 10.8% of bees performed 135 

both egg-laying and foraging on the same day at least once during the seven days of tracking. A 136 

small number of these “generalist” bees (1.3%; 45 individuals) were exceptional in their 137 

consistent high performance of both measured behaviors, with a minimum of two egg-laying 138 

events and two foraging trips on the same day, across at least three days. Three-day ethograms of 139 

an egg-layer, generalist, and forager are shown in Figure 1C. Ovary dissection of a subset of 140 

individuals revealed that 100% of specialized egg-layers and generalists had active ovaries 141 

(ovary scores of 3-5; Hess 1942), compared with only 54% of the specialized foragers (Figure 142 

1D; Supplementary File 2). Of the foragers with activated ovaries, 13/14 had five or fewer 143 

predicted egg-laying events, compared with generalists and layers, which laid an average of 206 144 

eggs (range: 64-774). 145 

The daily and lifetime behavior of each bee was summarized using two behavioral 146 

scores: the “specialist” score, which describes how specialized an individual was on either egg-147 

laying or foraging, and the “generalist” score, which describes how much an individual 148 

performed both egg-laying and foraging. Scores were derived from daily normalized ranks 149 

within colonies to allow comparison across days and colonies with differing overall activity 150 

levels; bees that performed neither egg-laying nor foraging across the experiment have both 151 

specialist and generalist scores of 0. Scores were mapped onto a two-dimensional color space for 152 

visualization of behavior over time (Figure 2A; Figure 2- figure supplements 1-2; Supplementary 153 

File 1). 154 

 155 

Influence of worker source colony on behavior 156 

To study the influence of source colony (including genetics and development) on 157 

behavior, experimental colonies were assembled with workers from different source colonies 158 

headed by unrelated queens. A subset of source colonies (4/6) was pre-screened for worker egg-159 

laying in queenless laboratory cages and showed variation in the timing and extent of egg-laying 160 

(Figure 2- figure supplement 3). Bees in colonies A-C were derived from colonies with naturally 161 

mated queens. Queens of Apis mellifera mate multiply with up to ~20 males and produce 162 

workers with a mix of paternal genotypes (Adams et al., 1977; Estoup et al., 1994; Lobo and 163 
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Kerr, 1993); workers derived from these colonies were therefore assumed to be a mix of many 164 

patrilines. In contrast, experimental colonies D-F were assembled of workers obtained from two 165 

different source colonies, each of which was headed by a queen artificially inseminated with the 166 

semen of a single different drone (SDI). Workers within each SDI source colony are highly 167 

genetically related compared with workers from a naturally mated queen colony (average 168 

relatedness = 0.75 due to haplodiploidy).  169 

Using SDI colonies allowed us to more easily explore whether the genetic and 170 

environmental differences between source colonies would lead to segregation of reproductive 171 

and non-reproductive behavior when mixed into the same (queenless) environment. In both 172 

colonies D and E, which were replicates of the same two SDI queens’ offspring, the behavior of 173 

workers differed considerably by source: one source colony (SDI 1) comprised the majority of 174 

foragers, while the other (SDI 2) contained the majority of egg-layers (Figure 1B; Figure 2- 175 

figure supplement 2). In colony F the two SDI source colony progeny contributed more equally 176 

to foraging, while the most specialized egg-laying bees were predominantly from just one source 177 

colony (Figure 1B; Figure 2- figure supplement 2, SDIs 3 and 4). However, even in colonies 178 

where SDI source was clearly influential, specialized foragers and layers were identified from 179 

both sources, indicating that colony genetics and development are not the only contributors to 180 

individual variation in the likelihood of performing these behaviors. Similar patterns of 181 

specialization were observed in colonies A-C and D-F (Figure 1B; Figure 2- figure supplement 182 

2), indicating that they were not an artifact of decreased intracolonial genetic diversity. 183 

 184 

Specialized behavioral groups are highly transcriptionally and epigenetically distinct 185 

A subset of highly specialized foragers, egg-layers, and generalist individuals were 186 

selected from two experimental colonies (from only one source SDI each, to minimize genetic 187 

variation among individuals) for brain gene expression and chromatin accessibility profiling 188 

(Figure 2A). Sampled individuals were among those with the most extreme specialist and 189 

generalist scores within each colony, and were assigned to behavioral groups based upon their 190 

lifetime behavior. Principal component analysis (PCA) on behavioral data for these individuals 191 

shows these three groups are behaviorally distinct, with generalists intermediate and more 192 

variable than forager and layer groups (Figure 2B). 193 
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Consistent with strong behavioral differentiation, foragers and layers exhibited 194 

widespread differences in brain gene expression, with differential expression of nearly half 195 

(46%) of all genes expressed in the brain (Figure 2C; Supplementary File 3). Differences in brain 196 

gene expression were much stronger between foragers and layers (4506 differentially expressed 197 

genes, DEGs; FDR<0.05) than for generalists relative to the two specialist groups (648 generalist 198 

vs. layer and 374 generalist vs. forager DEGs). Generalists shared transcriptional profiles of both 199 

foragers and layers, with nearly all genes differentially expressed between generalists and either 200 

specialized group also present on the forager vs. layer DEG list (Figure 2C). 201 

Forager vs. layer DEGs were enriched for cytoplasmic translation and transport gene 202 

ontology (GO) biological processes, along with many metabolic and biosynthetic processes 203 

(Supplementary File 3; FDR<0.05). All enriched GO terms but one (114 of 115) were for genes 204 

more highly expressed in foragers relative to layers (forager-biased genes). The only GO term 205 

enriched in layer-biased genes relative to foragers, cytoplasmic translation, was also the only 206 

enriched GO term for genes overexpressed in generalists relative to foragers. Similarly, GO 207 

terms enriched in generalist-biased genes (relative to layers) included many of the transport 208 

terms enriched among forager-biased genes (Supplementary File 3). 209 

In addition to differences in brain gene expression, layers and foragers showed 210 

differences in accessible chromatin in the brain based on the Assay for Transposase-Accessible 211 

Chromatin using sequencing (ATAC-seq; Buenrostro et al., 2013). 1794 differentially accessible 212 

peaks (DAPs; FDR<0.05) were identified between foragers and layers, proximal to 1207 genes 213 

(Figure 2D; Supplementary File 4). Forager-biased DEGs and genes proximal to forager-biased 214 

DAPs overlapped significantly, 1.2x more than expected by chance (p=0.01 for hypergeometric 215 

test of overlap). Genes proximal to peaks of accessible chromatin (regardless of differential 216 

status) were on average more highly expressed than genes without proximal peaks (p<0.0001, 217 

Kolmogorov-Smirnov test), supporting a signal of transcriptional activation near ATAC-seq 218 

peaks (Figure 2- figure supplement 4). No DAPs were identified for foragers relative to 219 

generalists, and there were only 16 DAPs (assigned to 13 genes) for generalists relative to layers 220 

(Figure 2D). These 13 genes also had DAPs for foragers relative to layers (Figure 2D). DAPs 221 

between foragers and layers were enriched for 148 GO terms (FDR<0.05), including 222 

developmental processes, morphogenesis, and metabolism (Supplementary File 4). Similar to 223 

differentially expressed genes, GO enrichment signal came from those DAPs with a bias in 224 
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foragers (i.e., more accessible in foragers relative to layers); no significantly enriched GO terms 225 

were identified from layer-biased peaks, despite 44% of differential peaks being more accessible 226 

in layers compared to foragers. 227 

 228 

Brain gene expression and chromatin accessibility are correlated with behavioral variation 229 

Our high-resolution behavioral data allowed us to test whether molecular and behavioral 230 

variation were connected not only at the group level, but for individuals as well. Using PCA, we 231 

found that degree of individual behavioral specialization was significantly correlated with 232 

measures of both brain gene expression and chromatin accessibility (Figure 2E-F). Among PCs 233 

for gene expression, PCs 1 and 2, which explained 31.1 and 11.9% of the total variance in gene 234 

expression, respectively, were significantly correlated with individual behavioral specialist score 235 

(Figure 2E). Generalists showed intermediate values of these PCs, consistent with an 236 

intermediate brain transcriptomic profile.  Genes with extreme PC loading values (upper and 237 

lower 5% of loadings) for PC1 were enriched for transmembrane and ion transport, functions 238 

related to aerobic and cellular respiration, and energy transport (Supplementary File 5). PC2 239 

extreme loading genes were enriched for processes relating to detection of light, 240 

phototransduction, and sensory perception (Supplementary File 5). Extreme loadings for both 241 

PC1 and PC2 overlapped significantly with DEGs in the pairwise comparison of layers and 242 

foragers (PC1: RF=1.2, p=1.39e-06, PC2: RF=1.7, p=8.39e-91). 243 

Similarly, PCA of chromatin accessibility data revealed PCs that were correlated with 244 

behavioral variation. Accessibility PCs 2, 3, and 4 were all significantly correlated with the 245 

individual behavioral specialist score (Figure 2F). Genes with extreme PC loading values for 246 

each correlated PC showed enrichment for multiple GO terms, including biological processes 247 

related to cell-cell adhesion, locomotion, axon guidance, neuron projection guidance, and 248 

synapse organization (Supplementary File 6). Many GO terms (11 of 37) were enriched for 249 

extreme loading genes of both PCs 2 and 3, while synapse organization was the only enriched 250 

term for loadings of PC4. 251 

  252 

GRN activity links molecular and behavioral phenotypes 253 

To test the role of transcription factor (TF) and gene regulatory plasticity in the regulation 254 

of LW behavioral phenotypes, we conducted TF motif analyses and brain GRN reconstruction 255 
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(Chandrasekaran et al., 2011), individualized for each bee. The activity of many TF modules 256 

(TFs and their predicted targets) showed significant correlations with individual variation in 257 

several behavioral metrics, including numbers of eggs laid (50 TF modules), number of foraging 258 

trips (74 TF modules), and proportion of returning foraging trips with pollen loads (41 TF 259 

modules) (Figure 3A; Supplementary File 8). At the individual level, 23 TF modules were 260 

correlated with all 9 behavioral and physiological metrics (Figure 3- figure supplement 1; 261 

Supplementary File 8). These behaviorally correlated TF modules include TFs involved in JH 262 

signaling (usp, Kr-h1, and Blimp-1), histone acetylation (trx), neuronal remodeling (Kr-h1, 263 

Hr51, trx), and circadian rhythms (opa and Hr51). 264 

In addition to the correlations between TF module activity and behavior, many TF motifs 265 

were enriched in peaks of differential accessibility or in the regulatory regions of DEGs between 266 

specialized layers and foragers. 77 out of 223 motifs (functionally validated in Drosophila 267 

melanogaster, Zhu et al., 2011) were enriched in layer vs. forager DAPs (q-val<0.01, 268 

Supplementary File 7), and 14 motifs were specifically enriched in the regulatory regions of 269 

forager-upregulated DEGs (q-val<0.2, Supplementary File 7). Nine motifs were common to both 270 

sets (Figure 3B-C), including binding sites for TFs involved in regulating nervous system 271 

development (hairy, side, sr, and klu), transcription (max/mnt), juvenile hormone (JH) signaling 272 

(tai and tai/met), chromatin modification (trl), and circadian rhythms (cwo). These motifs were 273 

centrally enriched within DAPs (Figure 3B), and showed two peaks of elevated binding 274 

probability in the promoter regions of forager-biased DEGs, one ~3kb upstream of 275 

transcriptional start sites (TSSs) and a second overlapping TSSs (Figure 3C). By contrast, only 276 

two TF motifs were significantly enriched in the regulatory regions of specialist vs. generalist 277 

DEGs (mad and ken, Supplementary File 7), and no motifs were enriched within DAPs between 278 

generalists and either specialist group (Supplementary File 7), likely due in part to the small 279 

number of DAPs distinguishing generalists and specialists (Figure 2D). Many of the motifs 280 

enriched within DAPs or DEG promoters are binding sites for TFs that were themselves 281 

differentially expressed, including cwo, tai/met, side, h, and sr (Supplementary File 3). 282 

Across individuals, GRN activity was largely consistent within each behavioral group 283 

(Figure 4A), with TF module activity most distinct between layers and foragers. The relationship 284 

between TF expression and behavior was so strong that it was possible to predict individual 285 

behavior based solely upon the expression of TFs in the brain using a machine-learning 286 
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algorithm and leave-one-out cross validation (Figure 4B; Figure 4- figure supplement 1). TF 287 

expression correctly predicted 100% of foragers and 94% of layers. By contrast, it was not 288 

possible to predict generalists based on brain TF expression (only 1 of 8 correctly classified). 289 

 290 

 291 

Comparative analyses of LW colony behavioral phenotypes and other social insect phenotypes 292 

The performance of both egg laying and foraging by individuals in LW colonies, 293 

previously reported in Naeger et al. (2013), is unusual for honey bees; these behaviors are 294 

otherwise confined to separate castes (queens and workers). This raises the question of whether 295 

the mechanisms underlying LW behavior reflect caste-related molecular differences. We 296 

compared our gene expression results to previous studies of queens, workers, and worker 297 

subcastes in various species of social insects to ask whether the molecular architecture of LW 298 

phenotypes may be useful in the context of understanding additional social phenotypes. 299 

In comparison with honey bee subcastes, forager-biased genes in LW colonies showed 300 

significant overlap with forager-biased genes in two studies of queenright colonies (when 301 

compared with nurses) (RF=1.7 p=1.707e-09; Alaux et al., 2009; RF=1.9 p=1.740e-07; Whitfield 302 

et al., 2003; Supplementary File 9). Layer-biased genes in this study overlapped with genes 303 

upregulated in nurses relative to foragers in these queenright colonies (RF=1.7, p=3.656e-10; 304 

Alaux et al., 2009; RF=2.0, p=1.116e-13; Whitfield et al., 2003; Supplementary File 9). 305 

In addition, differences in brain gene expression between egg-layers and foragers 306 

mirrored caste-related differences across species. Genes differentially expressed between 307 

foragers and egg-layers in this study were enriched for previously identified queen vs. worker 308 

brain DEGs in Megalopta genalis bees, which facultatively engage in both reproductive and non-309 

reproductive behaviors (RF:1.3, p=0.009; Jones et al., 2017; Supplementary File 9). Overlap was 310 

in the expected direction, with queen-biased genes in M. genalis overlapping layer-biased genes 311 

(RF:2.5, p=0.003) and worker-biased genes overlapping forager-biased genes (RF:1.6, p=0.01). 312 

Further, worker-upregulated DEGs in the primitively eusocial wasp, Polistes metricus 313 

overlapped significantly with forager-upregulated genes in this study (RF:2.6, p<0.0001; Toth et 314 

al., 2010). In comparison with honey bee unmated queens and workers, overlap was significant 315 

but in an unexpected direction: queen- and worker-biased genes overlapped with forager- and 316 
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layer- upregulated genes, respectively (RF:1.4, p=5.495e-08 and RF:1.2, p=0.008; Grozinger et 317 

al., 2007; Supplementary File 9). 318 

Additionally, forager vs. layer DEGs in this study were enriched for genes identified as 319 

under selection in two studies of social evolution. Forager vs. layer DEGs overlapped 320 

significantly with genes undergoing positive selection in honey bees (RF=1.1, p=0.015; Harpur 321 

et al., 2014; Supplementary File 9) and across highly eusocial species relative to solitary or 322 

primitively eusocial species (Woodard et al., 2011; Supplementary File 9). Genes under selection 323 

in highly eusocial lineages were enriched specifically for genes identified here as upregulated in 324 

foragers relative to layers (RF=1.4, p=0.009), but not for layer-biased DEGs (p=0.106) 325 

(Supplementary File 9). Forager vs. layer DEGs were not significantly enriched for genes that 326 

were identified in a third study as under selection in social lineages of bees (p=0.262; Kapheim 327 

et al., 2015; Supplementary File 9). Many of the forager vs. layer DEGs also found to be 328 

undergoing positive selection were related to metabolism (Supplemental File 9). 329 

 330 

TFs involved in LW plasticity previously implicated in social evolution 331 

Given that differences in brain gene expression between egg-layers and foragers reflect 332 

caste-related differences, we also tested whether there is overlap between TFs involved in LW 333 

plasticity and those previously implicated in social evolution. Indeed, many of the TFs we 334 

identified above as related to behavioral plasticity based on motif enrichment, group predictive 335 

analysis, or brain GRN activity were previously known to be associated with social behavior on 336 

an evolutionary timescale. A comparative analysis of the genomes of ten bee species (Kapheim 337 

et al., 2015) identified 13 TF motifs with associations between binding strength and social 338 

complexity. Nine of those 13 motifs were also detected above as enriched within specialist DAPs 339 

or DEG regulatory regions (p=0.015, hypergeometric test of overlap), and 6 of those 9 are 340 

binding sites for TFs included in the above individualized GRNs. Along with TF module 341 

correlation and behaviorally-predictive TF expression, these results highlight a set of 15 TFs as 342 

compelling candidates in social plasticity and evolution, with significant associations in at least 3 343 

of the 5 analyses (Figure 5; Table 1). The 15 TFs have functions related to known mechanisms 344 

associated with social behavior, including brain development (Hamilton et al., 2016), JH 345 

signaling (Woodard et al., 2011), and chromatin changes via histone acetylation (Simola et al., 346 

2015). 347 
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 348 

Discussion 349 

Uncovering the regulatory mechanisms involved in behavioral plasticity is important to 350 

fully understand how behavioral phenotypes develop and evolve. We used automatic behavioral 351 

tracking and genomics to uncover the role of brain GRN activity in the extensive behavioral 352 

variation observed in colonies of laying worker honey bees. We discovered that continuous 353 

phenotypic variation is associated with continuous variation in both brain gene expression and 354 

brain chromatin accessibility, and that TF activity is predictive of behavioral phenotype at the 355 

individual level. These results provide new mechanistic insights into the important role played by 356 

brain GRNs in the regulation of behavioral variation, with implications for understanding the 357 

mechanisms and evolution of complex traits.  358 

Our high-dimensional behavioral data revealed a near continuous distribution of 359 

phenotypes along an axis of egg-laying and foraging, two behaviors that are typically expressed 360 

separately in the queen and worker castes of honey bee colonies. Consistent with previous 361 

reports of ovary activation in queenless colonies (Page and Erickson, 1988; Sakagami, 1954), 362 

over half of workers tracked laid eggs. Some of these workers also engaged in foraging, 363 

consistent with the observations of Naeger et al. (2013), which supports the suggestion that some 364 

laying workers are not “selfish” reproducers but engage in activities that may benefit the colony 365 

as a whole. We also showed a decoupling between ovary status and behavior for some 366 

individuals, unlike what has been observed in many other social insect species (Barth et al., 367 

1975; Michener, 1974; Wilson, 1971). Two-thirds (14/21) of the foragers had activated ovaries, 368 

but most laid eggs infrequently or not at all, demonstrating that ovary activation alone is not a 369 

strong predictor of exactly which individuals will lay eggs. This decoupling of reproductive 370 

physiology from reproductive behavior is consistent with the evolutionary co-option of 371 

reproductive signaling pathways for non-reproductive behaviors, a phenomenon well 372 

documented in honey bees (Tsuruda et al., 2008; Graham et al., 2011; Page et al., 2012). Given 373 

previous demonstrations of cross-talk between peripheral tissues and brain gene networks in the 374 

honey bee (Ament et al., 2012; Wheeler et al., 2013), our results further suggest that behavioral 375 

variation in queenless workers likely involves the coordinated actions of multiple tissue types, 376 

including the ovary.  377 
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 Like the task specialization observed in typical, queenright colonies of honey bees and 378 

many other social insects (Oster and Wilson, 1979), the majority of individuals in LW colonies 379 

showed consistency in performance of either egg-laying or foraging, but not both. It is important 380 

to note that genetic variation may contribute to individual differences in behavior (Page and 381 

Robinson, 1991; Page and Robinson, 1994). However, the induction of egg-laying behavior in 382 

queenless colonies is itself a plastic response, suggesting that at least for egg-laying and 383 

generalist individuals, a combination of hereditary and environmental factors likely influence the 384 

development of these behavioral phenotypes. Task specialization can contribute to increased 385 

efficiency in social insects, either through learning or reduction of task switching costs 386 

(Holldobler and Wilson, 1990; Jeanson et al., 2008; Trumbo and Robinson, 1997; c.f. Dornhaus, 387 

2008). In queenless colonies of honey bees, specialization along a reproductive/non-reproductive 388 

axis may lead to increased production of haploid males prior to the death of workers, with 389 

specialized foragers collecting food for these developing drones while specialized egg-layers 390 

work to produce thousands of drones synchronously in these terminal colonies (Page and 391 

Erickson, 1988). These findings suggest that LW honey bees may display a form of colony 392 

organization that is adaptive, as opposed to one of chaos and competition, which has long been 393 

thought to characterize LW colonies (Morse, 1990; Ratnieks et al., 2006; Ratnieks and 394 

Wenseleers, 2008; Dadant & Sons, 1975; Wenseleers and Ratnieks, 2006). Worker derived 395 

drones have viable sperm (Gençer and Kahya, 2011) and therefore may provide a permanently 396 

queenless honey bee colony with a final fitness opportunity if the males can successfully mate 397 

with queens. It is difficult to evaluate this hypothesis because the incidence of permanently 398 

queenless colonies is not known in natural populations of honey bees. However, production of 399 

drones by workers in LW colonies is similar to that observed in bumble bees, where worker 400 

competition over male production is a normal part of the colony cycle after queen death (Cnaani 401 

et al., 2002; Free, 1955), or even prior to queen death in some species (Velthuis and Duchateau, 402 

2011).  403 

 Consistent with many other studies of behavior and brain gene expression across animal 404 

species (e.g., Bukhari et al., 2019; Mello et al., 1992; Whitfield et al., 2003), we identified robust 405 

brain transcriptional signatures associated with specific behavioral states. Beyond these group 406 

level differences, we also discovered that large components of this molecular variation were 407 

correlated with behavior, and both behavior and brain gene regulatory activity were continuous 408 
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across bees. Our finding that both brain gene expression and chromatin accessibility vary 409 

continuously with behavioral phenotype suggests that behavioral plasticity is subserved by 410 

continuously varying molecular programs, rather than threshold-based or quantized changes. 411 

At the individual bee level, changes in the expression of TFs, accessibility of TF motifs 412 

in enhancers and promoters, and activity of TF module target genes were all strongly associated 413 

with behavioral state. This is highlighted by the results of our predictive analysis, where 97% of 414 

specialists were accurately predicted to phenotype based on TF expression alone, despite the 415 

small number of TFs relative to all differentially expressed genes. Spatial and temporal 416 

integration of discrete events such as TF binding, aggregated at the whole brain level and across 417 

TFs and genes, may lead to the continuous variation we observed in gene expression and 418 

chromatin accessibility (e.g., Araya et al., 2014). 419 

In addition to predicting the collective behavioral phenotypes of individual bees, our 420 

analysis of GRNs allowed us to probe the influence of TF module activity on single behaviors. 421 

We identified a set of 23 TF modules that were associated with all aspects of behavior and 422 

physiology we measured. These TFs appear to coordinate sets of behaviors that are not overtly 423 

linked (e.g., proportion of nectar foraging trips and number of eggs laid) but may be influenced 424 

by the same regulatory machinery. Three of these modules are activated by TFs downstream of 425 

JH, a hormone with numerous well-studied roles in social insect behavior, including the 426 

regulation of oogenesis in queens and age-related division of labor in workers (Amdam et al., 427 

2008; Hamilton et al., 2017; Page et al., 2012). Our results are consistent with a role of JH 428 

signaling in queenless colonies of worker honey bees, regulating a behavioral division of labor 429 

between specialized egg-layers and foragers. These findings match previous work describing 430 

differences in JH titers between egg-laying workers and foragers in queenless colonies 431 

(Robinson et al., 1992), and suggest that mechanisms underlying variation in egg-laying 432 

behavior may be similar to nurse/forager differences in queenright colonies. Overlap in brain 433 

gene expression profiles between nurses and egg-layers further supports this conclusion. 434 

By combining our analysis of GRNs in individual bees with motif enrichment in gene 435 

regulatory regions across individuals, we identified a set of 15 TFs which appear to play a key 436 

role in regulating specialist behavioral phenotypes (Figure 5). Intriguingly, many of these TFs 437 

were also identified as relevant for social evolution, with increases in TF motif presence in gene 438 

promoters of social compared with solitary species of bees (Kapheim et al., 2015). We observed 439 
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especially strong overlap of these evolutionarily-implicated TFs and those with motif enrichment 440 

within differentially expressed genes or differentially accessible chromatin of specialist 441 

phenotypes. This suggests that regulatory regions that arise during evolutionary transitions to 442 

eusociality may be maintained and even further refined for the regulation of specialized 443 

subcastes in social species. In contrast, comparatively little overlap was seen when comparing 444 

evolutionarily-implicated TFs with TFs whose expression was most predictive of specialist 445 

behavioral phenotypes. This mismatch between TF expression and motif presence may reflect 446 

the complexity of GRNs, where genetic and epigenetic landscapes modulate the effects of TF 447 

activity. Alternatively, these results may reflect differences in the mechanisms underlying intra- 448 

vs. interspecific variation in social behavior. Further research exploring the role of these TFs and 449 

their activity in a range of contexts is needed to provide clarity on these results. 450 

While behavioral specialization appears to be common among members of queenless 451 

honey bee colonies, the finding of even a small number of generalist bees who perform both egg-452 

laying and foraging has intriguing implications. The presence of these generalists suggests that 453 

despite the long divergence from a solitary ancestor (~85 my, Branstetter et al., 2017), honey 454 

bees retain great flexibility for performance of multiple behaviors that are typically confined to 455 

either the queen or worker caste. Latent plasticity in social insects that is inducible under extreme 456 

conditions is also seen in morphologically and temporally defined worker subcastes under 457 

queenright conditions (Robinson, 1992; Simola et al., 2015; Wilson, 1980). Generalists showed 458 

high variation in behavior, and similarly were difficult to predict phenotypically based on TF 459 

activity, unlike specialists. Further, brain GRN activity in these individuals was less defined, 460 

with fewer TF modules showing significant up- or down-regulation in generalist individuals 461 

compared with specialists. Combined with PCA on brain gene expression and chromatin 462 

accessibility, these findings suggest that generalists are molecularly intermediate between 463 

specialized groups. 464 

Our discovery of intermediate generalist phenotypes in laying worker colonies, along 465 

with their molecular signatures, provides support for one of the leading theories of eusocial 466 

evolution, the Ovarian Ground Plan Hypothesis (OGPH). The OGPH posits that the emergence 467 

of queen and worker castes from solitary ancestors involved the genetic decoupling of 468 

reproductive and non-reproductive behavioral programs through changes in gene regulation 469 

acting on ancestral plasticity (Gadagkar, 1997; Turillazzi and West-Eberhard, 1996; West-470 
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Eberhard, 1987). The phenotypic continuum we observed in laying worker colonies, with both 471 

reproductive and non-reproductive specialists as well as generalists, suggests that this decoupling 472 

process is at least partially reversible and/or incomplete in honey bees, unlike in eusocial species 473 

where workers lack reproductive anatomy and corresponding behaviors entirely (e.g., ants and 474 

higher termites). Additionally, molecular characterization of this behavioral variation, especially 475 

our TF analyses, supports the hypothesis that incremental changes in gene regulatory network 476 

activity led to the decoupling of solitary behavioral programs into distinct queen and worker 477 

castes. This hypothesis is consistent with previous research linking changes in TF activity with 478 

social evolution (Kapheim et al., 2015, 2020). If correct, this hypothesis provides a framework 479 

for understanding the evolution of eusociality at the molecular level. 480 

 481 

Materials and Methods  482 

Bees and colony setup  483 

Source colonies 484 

Honey bee colonies were maintained according to standard beekeeping practices at the 485 

University of Illinois Bee Research Facility in Urbana, Illinois. One-day-old adult worker bees 486 

were obtained by removing sealed honeycomb frames of late-stage pupae from source colonies 487 

in the field and housing them in an incubator inside emergence cages at 34 °C and 50% relative 488 

humidity. Bees were removed from frames daily to collect adults less than 24 hours old.  489 

Prior to establishing the colonies of barcoded bees, 16 source colonies were screened for 490 

worker egg-laying (“laying worker”, LW) potential by stocking Plexiglas cages with 50-100 one-491 

day-old workers and holding them in queenless, broodless conditions. Cages contained small 492 

pieces of 3D-printed honeycomb (similar to Fine et al., 2018) to provide a standardized location 493 

for workers to lay eggs, as well as 50% sucrose solution and pollen paste (45:45:10 ratio by 494 

weight of pollen, honey, and water) provided ad libitum and refreshed daily. Cages were 495 

monitored daily to count eggs. We found, as in other studies, variation in the timing and extent of 496 

LW development among different source colonies (Fig. 2 – figure supplement 3), reflecting the 497 

effect of genotypic and/or environmental differences on laying worker potential (Miller III and 498 

Ratnieks, 2001; Page and Robinson, 1994; Robinson et al., 1990; Velthuis, 1970). When 499 

possible, source colonies were chosen from among those screened that displayed high levels of 500 

worker egg-laying in cages within 14 days. 501 
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To reduce genetic variation among bees used for sequencing, experimental colonies D-F 502 

were established from a mix of two source colonies each headed by a queen of either Apis 503 

mellifera ligustica or Apis mellifera carnica origin who had been artificially inseminated with 504 

semen from a single drone (SDI) (queen rearing and inseminations performed by Sue Cobey, 505 

Honey Bee Insemination Service; Washington State University; US stocks of bees are primarily, 506 

but not completely ligustica or carnica). Experimental colonies A-C were established from 507 

naturally mated, Apis mellifera ligustica source colonies. Honeycomb frames of late-stage pupae 508 

were removed from source colonies and maintained in an indoor incubator. Worker bees were 509 

collected from these frames each day to obtain 0-24 hr old individuals for barcoding. A total of 510 

800 bees were used for each experimental colony, collected and barcoded over 1-2 days upon 511 

eclosion (Supplementary File 10). 512 

Barcoding bees 513 
Bees were tagged with “bCode” barcodes as in Gernat et al. (2018). Unique sets of 514 

bCodes were used to differentiate bees barcoded on different days, as well as to differentiate bees 515 

from different source colonies in colonies D-F. To attach bCodes to bees, workers were 516 

anesthetized on ice and then positioned using soft forceps (BioQuip, Compton, CA). A small 517 

drop of Loctite Super Glue Gel Control (Henkel, Düsseldorf, Germany) was applied to the center 518 

of the thorax of each bee, followed by a bCode positioned with its left and right edge parallel to 519 

the anteroposterior axis of the bee. Bees were carefully placed in plastic dishes until they 520 

recovered from cold anesthetization, at which point the glue was dry. After waking, all bees were 521 

placed in a large container with Fluon®-coated walls (Insect-a-Slip, BioQuip) where honey was 522 

provided ad libitum until placement into a custom observation hive, described below. At the end 523 

of each barcoding day, bees were carefully transferred into the observation hive. 524 

 525 

Behavioral tracking 526 

Hive monitoring 527 

Barcoded bees were housed in a glass-walled observation hive with a one-sided plastic 528 

honeycomb frame, as in Gernat et al. (2018). Bees were unable to access the back side of the 529 

honeycomb, and could exit the hive through a plastic tube to the outside. Colonies were 530 

maintained in a dark room with a heater and humidifier that kept the room at approximately 32°C 531 

and 50% relative humidity. 532 
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Infrared light (not visible to bees) was used to illuminate the hive from both the front and 533 

back while capturing hive images. Images were acquired at one-second resolution with a 534 

monochrome Prosilica GX6600 machine vision camera (Allied Vision, Stadtroda, Germany) fitted 535 

with a Nikkor AF 135 mm f/2 D DC prime lens (Nikon, Minato City, Japan). Additional details 536 

about image acquisition can be found in Gernat et al. (2018). Images were saved to a redundant 537 

array of independent disks, then copied onto a computing cluster (Biocluster, UIUC) for analysis 538 

after the end of each experimental recording period. 539 

Entrance monitoring 540 

Colonies of barcoded bees were given access to the outside via a tube connected through 541 

an exterior wall of the Bee Research Facility to an entrance equipped with an automated flight 542 

activity monitor as in Geffre et al. (2020). This monitor included a maze to slow down incoming 543 

and outgoing bees, and a Raspberry Pi camera (5 megapixel v1.3, Adafruit, New York, NY) that 544 

imaged the maze twice per second from 07:00 until 19:00 daily. The camera was controlled by a 545 

Raspberry Pi 2B computer running the Raspian 8 operating system. Images were acquired using 546 

the raspistill program and the following options: -n -ISO 400 -w 2593 -h 1400 -cfx 128:128 -x 547 

none -e jpg -q 90 -tl 500 -t 595000 -bm. 548 

Barcode detection  549 

Barcodes were detected in hive images as in Gernat et al. (2018) and filtered to facilitate 550 

subsequent behavioral analyses. Filtering involved removal of potential tracking errors, including 551 

removal of barcodes that did not pass read error correction. In addition, records for barcodes that 552 

were read twice in the same image were removed, as were hive image records of the same barcode 553 

identified more than 5 cm/second between successive detections, which are likely to be 554 

misidentifications. An average of 94.51% of detections remained after these filtering steps (range 555 

across colonies: 91.94-97.11%). Finally, the time of death of each bee was estimated using the last 556 

time she was observed for at least 4 minutes during a 5-minute window above the third row of 557 

honeycomb cells from the bottom of the hive; dead bees tend to accumulate below this level prior 558 

to being removed by other bees (Gernat et al., 2018). Records for bees following their time of 559 

death were filtered out so behavioral scores (below) were calculated only over times in which bees 560 

were alive. 561 

In entrance monitor images, barcodes were similarly detected as in hive images, but with 562 

parameters adjusted for images produced by the Raspberry Pi camera. Fast-moving bees were not 563 
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filtered out in entrance images, because bees do move quickly through the entrance monitor and 564 

due to the relatively small number of bees that fit into the maze, spurious fast movement due to 565 

bCode decoding errors is unlikely. 566 

Egg-laying detector  567 

Annotated image library  568 

Hive images from three experimental colonies and across 12 different days were used for 569 

manual annotation of egg-laying events. The software Fiji (Schindelin et al., 2012) was used to 570 

mark the bCode positions of all workers laying eggs in an initial set of 1500 hive images, followed 571 

by an additional set of 782 images, each annotated by three independent observers. After the initial 572 

identification of egg-laying bees in these images, the two seconds before and after each egg-laying 573 

event were also annotated for those bees. Bees not marked as laying eggs with visible bCodes were 574 

considered non-egg-laying for training of the CNN, below. 575 

CNN training and performance estimation 576 

Two convolutional neural networks (CNNs) were trained on the annotated egg-laying 577 

images, using TensorFlowTM (Abadi et al., 2016). Methods are described fully in Gernat et al. 578 

(2020) and are presented briefly here. The first CNN used images cropped to include just a small 579 

rectangular region behind the barcode of each bee. For egg-laying bees, these images show the 580 

honeycomb, because their abdomen is backed into the comb and thus not visible. For non-layers, 581 

these images show the abdomen. The CNN was trained to differentiate between these two cases. 582 

The second CNN was applied to images of bees that were identified as potential egg-layers by the 583 

first CNN. It used slightly larger images that showed the entire bee and was trained to use 584 

information about the bee’s posture and her immediate surroundings to identify false positives, 585 

which were subsequently filtered out. 586 

Application of a CNN to an image results in a score between 0 and 1 that reflects the 587 

likelihood of that image showing the event of interest. Deciding whether a score is sufficiently 588 

high for assuming that the event took place involves thresholding that score. To choose thresholds 589 

for each CNN score and a minimum egg-laying duration, a calibration set of images, which were 590 

not used for training the CNNs, was used to estimate the performance of the egg-laying detector 591 

for different threshold combinations. Thresholds were chosen from this calibration set to maximize 592 

the detector’s positive predictive value, then were applied to an independent test set of images that 593 

had also never been seen by the detector to obtain unbiased performance values. Based on the 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.09.09.289272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289272
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

performance estimation on the test set of images, the egg-laying detector had the following 595 

performance: 99.71% accuracy, 35.39% sensitivity, 100% specificity, 100% positive predictive 596 

value, and 99.71% negative predictive value. Minimizing false positives came at a cost to 597 

sensitivity, but bees who lay eggs will likely do so more than once over the course of the 598 

experiment and can thus still be identified as egg-layers (honey bees possess multiple ovarioles, 599 

each of which can develop eggs simultaneously (Hess, 1942)). Egg-laying detections were further 600 

aggregated into events: subsequent detections that occurred within 10 seconds and 11.2 mm (the 601 

width of two honeycomb cells) of one another were assumed to belong to the same egg-laying 602 

event and were merged. 603 

Filtering and annotation of entrance data 604 

Raw detections of bees in the entrance were filtered as in Geffre et al. (2020). Briefly, a 605 

bee must traverse at least one-third the distance of the entrance monitor to be counted, and 606 

traversals that occurred within 10 seconds of each other were merged into a single event. These 607 

traversal events were then determined to be incoming or outgoing based on the positional 608 

coordinates of the bee at the start and end times of each event. Numbers of foraging trips 609 

(Supplementary File 1) was inferred from series of outgoing and incoming events. 610 

Incoming foraging trips were additionally annotated with trophallaxis data to determine 611 

whether a forager likely returned with nectar. CNNs trained to identify pairs of bees engaged in 612 

trophallaxis as well as the direction of trophallaxis (i.e., which bee was donor and which was 613 

recipient; Gernat et al., 2020) were used to annotate incoming trips for all bees. Parameters used 614 

for the detector resulted in the following performance metrics based on test images: 88.7% 615 

sensitivity, 99.6% specificity, 90.4% positive predictive value, 99.6% negative predictive value, 616 

and 88.9% accuracy in determining trophallactic role (donor or receiver) of each bee. If a bee was 617 

a trophallaxis donor within 5 minutes after returning from a trip (Seeley, 2009), with no 618 

trophallaxis reception prior to the donation, that foraging trip was annotated as a nectar trip. 619 

Additionally, incoming trips were manually annotated for pollen on the hindlegs of returning bees 620 

for colonies D-F. Combining these nectar and pollen data for each trip, the proportion of foraging 621 

trips with nectar (“p.nectar”), pollen (“p.pollen”) or both (“p.both”) were calculated per bee in 622 

these colonies. 623 
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Specialist and generalist scores  624 

In order to characterize the activity of egg-laying and foraging for each bee, two behavioral 625 

scores were created. The “specialist” score describes how specialized an individual was on either 626 

egg-laying (scores near -1) or foraging (scores near +1) relative to other bees in the colony; bees 627 

that consistently performed both egg-laying and foraging, or that performed neither behavior, have 628 

specialist scores near 0. The generalist score ranges from 0 to 1 and describes the degree to which 629 

an individual performed both egg-laying and foraging behaviors, differentiating bees with 630 

specialist scores near 0 based on the performance (or not) of egg-laying and foraging. Scores were 631 

created by first counting the number of egg-laying and foraging events per day. Bees were then 632 

ranked for each behavior relative to other bees in the colony on the same day, with tying ranks 633 

being assigned the minimal rank (e.g., if three bees were tied between the 4th and 8th ranked bees, 634 

they all received a rank of 5). Ranks were then normalized by dividing by the maximum rank, so 635 

that all ranks were in the range [0,1]. The normalized rank space for each bee (i.e., normalized 636 

egg-laying rank and normalized foraging rank) was then mapped to behavioral scores (and 637 

corresponding color space) using the following formulae in polar coordinates (ρ,ϴ) on the two-638 

dimensional rank space: generalist score = (1/2)ρ2sin42ϴ, specialist score= sin(ϴ-π/4)ρ4cos42ϴ. 639 

Note that the numerical value of the scores has no biological meaning, but is simply a mapping 640 

from rank space to the space of colors as shown in Figure 2- figure supplement 1. 641 

Selection of bees for sequencing 642 

The median of specialist and generalist scores was weighted to emphasize the latter part of 643 

the experiment; days 15-21 received a weight of 1-7, respectively, and each day’s score was 644 

multiplied by this weight. These scores were used to characterize the overall behavior of each bee 645 

in the colony. The rank approach allowed for normalization across days with different overall 646 

levels of activity in the colony, and the median score across days provides an overall assessment 647 

of the lifetime behavior of each bee. These weighted median scores were used to rank all bees, and 648 

the top ranking specialists and generalists from two colonies were selected for brain RNA 649 

sequencing (RNAseq) and Assay for Transposase-Accessible Chromatin using sequencing 650 

(ATACseq). Scores for each sequenced bee (n=45, 25 from colony E, 20 from colony F), as well 651 

as total numbers of detected egg-laying and foraging events per bee, are provided in 652 

Supplementary File 2. 653 
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To examine variation in behavior within and among groups, principal component analysis 654 

(PCA) was performed on the following set of behavioral traits (see also Supplementary File 2): 655 

number of eggs laid, number of foraging events, proportion of trips with evidence of nectar 656 

collection, proportion of trips with evidence of pollen collection, and proportion of trips with 657 

evidence of both nectar and pollen. PCA was performed in R using the prcomp function and plotted 658 

using the ggplot2 package. 659 

Tissue dissection and homogenization 660 

At the end of behavioral tracking, bees were collected from each colony and stored at -661 

80°C. All colonies were collected between 21:00-23:00 to ensure foragers were inside the hive. 662 

For bees selected for sequencing, abdomens of each bee were carefully removed on dry ice and 663 

incubated for 16 hours at -20°C in RNA-later ICE (Life Technologies, Carlsbad, CA). Ovaries 664 

were imaged and assessed for ovary development using a 1-5 scale adapted from (Hess, 1942) to 665 

assign an ovary score; a score of 3-5 indicates ovary activation. These dissections confirmed that 666 

egg-layers and generalists had activated ovaries, while many foragers did not. Ovary scores, as 667 

well as number of ovarioles as determined from dissections, are given in Supplementary File 2. 668 

The head of each bee was freeze-dried at 300 milliTorr for 55 minutes, and whole brains 669 

were removed from the head capsule in a dry ice ethanol bath (Schulz and Robinson, 1999). 670 

Dissected brains were stored individually in 1.5 mL microcentrifuge tubes at -80°C until 671 

extractions. 672 

Brains were individually homogenized in 150 µL phosphate buffered saline (1X PBS, 673 

Corning, Corning, NY, cat. #21-040-CV) with protein inhibitor complex (PIC, Complete Tablets, 674 

EDTA-free Protease Inhibitor Cocktail from Roche, Basel, Switzerland, cat. #04693132001) using 675 

a motorized pestle for 20 seconds. 50 µL of this homogenate was then pipetted into 450 µL cold 676 

PBS+PIC and placed on ice for ATAC-seq library preparation (see below). The remaining 100 µL 677 

homogenate was mixed with 500 µL RLT buffer (Qiagen, Hilden, Germany) with 1% β-678 

mercaptoethanol for use in the Qiagen RNeasy Mini Kit RNA extraction protocol (see below). 679 

RNAseq library preparation and sequencing 680 

Whole brain RNA was extracted from the 600 µL homogenate in RLT buffer after an 681 

additional 30 second homogenization following the Qiagen RNeasy Mini Kit protocol, including 682 

a DNase (Qiagen) treatment to remove genomic DNA. RNA quantities were determined for each 683 
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sample using a Qubit RNA HS Assay Kit (Invitrogen, Carlsbad, CA). High RNA integrity for all 684 

samples was confirmed with Bioanalyzer 2100 RNA Pico chips (Agilent, Santa Clara, CA) prior 685 

to library preparation. 686 

RNAseq libraries were constructed and sequenced by the W.M. Keck Center for 687 

Comparative and Functional Genomics at the Roy J. Carver Biotechnology Center (University of 688 

Illinois at Urbana-Champaign). Libraries were constructed from 500 ng RNA per sample using the 689 

TruSeq Stranded mRNA HT kit (Illumina, San Diego, CA) on an ePMotion 5075 robot 690 

(Eppendorf, Hamburg, Germany). Libraries were uniquely barcoded, quantified, and pooled for 691 

sequencing across 6 lanes with 100 nt single-end sequencing on the Illumina HiSeq 4000. 692 

ATACseq library preparation and sequencing 693 

The 500 µL tissue homogenate was additionally homogenized by aspirating through a 20 694 

gauge needle followed by a 23 gauge needle 5 times each. Samples were centrifuged at 500g for 695 

5 minutes at 4°C. Supernatant was removed, and cells were resuspended in 50 µL cold PBS+PIC. 696 

15 µL of this cell suspension (approximately 1/10th of the total brain, ~100k cells) was placed into 697 

a new microcentrifuge tube, and this was centrifuged at 500g for 5 minutes at 4°C as an additional 698 

cell washing step. Supernatant was removed, and cells were gently resuspended in 50 µL cold lysis 699 

buffer prepared as in Buenrostro et al. (2015). The remainder of the ATACseq library protocol 700 

followed Buenrostro et al. (2015), with the exception of the final purification step, where a 0.8:1 701 

ratio of Ampure XP beads (Beckman Coulter, Brea, CA) to sample was used to purify each library. 702 

In addition to sample libraries, input libraries were constructed from thoracic genomic DNA from 703 

a random bee from each colony per sequencing batch using 50 ng of genomic DNA (extracted 704 

using the Gentra Puregene Tissue Kit from Qiagen, cat. #158667, following manufacturer’s 705 

protocol for DNA purification from 25 mg tissue but with 6 µL proteinase K and 4 µL RNase A 706 

at the appropriate steps). Genomic DNA was transposed with Nextera Tn5 Transposase (Nextera 707 

Kit, Illumina) following the ATACseq protocol immediately following the cell lysis step 708 

(Buenrostro et al., 2015), again using an 0.8:1 Ampure XP bead clean-up at the end of the protocol. 709 

A Qubit dsDNA HS Assay Kit (Invitrogen) was used to quantify each library, and library size and 710 

quality was assessed using a Bioanalyzer High-Sensitivity DNA Analysis kit (Agilent). 711 

ATACseq libraries, including input libraries, were pooled at equal nM concentrations and 712 

a bead clean-up (0.8:1 ratio of Ampure XP beads to sample) was performed on the pool prior to 713 

submission for sequencing. QC on the final pool was performed using qPCR and an AATI 714 
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Fragment Analyzer by the Keck Center. Libraries were sequenced across three lanes with 100 nt 715 

paired-end sequencing on the Illumina HiSeq 4000 by the Keck Center. 716 

Data processing and analysis 717 

RNAseq 718 

Sequencing of RNAseq libraries (n=45, 25 from colony E, 20 from colony F) produced 719 

1,487,641,973 reads which survived quality and adapter trimming using Trimmomatic (version 720 

0.36, parameters used: ILLUMINACLIP: 2:35:30 LEADING:20 TRAILING:20 MINLEN:30). 721 

Trimmed reads were aligned to the Apis mellifera HAv3.1 genome (NCBI accession 722 

GCA_003254395.2) using STAR (version 2.5.3) and default parameters, resulting in an average 723 

of 96.7% reads mapping uniquely. The program featureCounts from the Subread package (version 724 

1.5.2) was used to assign mapped reads to gene features from the GFF file from NCBI associated 725 

with the A. mellifera HAv3.1 genome. On average, 84.8% of uniquely mapped reads were assigned 726 

to gene features using featureCounts. 727 

Gene counts were imported into R for differential expression analysis using edgeR. Genes 728 

with less than 1 CPM in at least 2 samples were removed, and remaining count values were 729 

normalized using the TMM method. Gene-wise variances were calculated by estimating tagwise 730 

dispersions in edgeR on filtered gene count matrices for each group separately and plotted using 731 

ggplot2. Tagwise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise 732 

comparison of groups, with FDR correction for multiple testing. Differentially expressed genes 733 

(DEGs, FDR<0.05) for each pairwise comparison are given in Supplementary File 3. 734 

ATACseq 735 

ATACseq libraries (n=48, 25 from colony E, 20 from colony F, 3 input libraries) produced 736 

1,110,401,018 paired-end reads which survived quality and adapter trimming using Trimmomatic 737 

(version 0.38, parameters used: ILLUMINACLIP: 2:15:10 HEADCROP:10 LEADING:20 738 

TRAILING 20 SLIDINGWINDOW:4:15 MINLEN:30). An average of 98.1% of reads mapped to 739 

the Apis mellifera HAv3.1 genome using bwa mem (version 0.7.17, default parameters). 740 

Duplicates were marked and removed prior to further processing using picard (version 2.10.1, 741 

average duplication level 30.2%). 742 

Peaks were called from deduplicated BAM files using MACS2 (version 2.1.1, command: 743 

callpeak, with parameters: --nomodel -g 2.5e8 --nolambda --keep-dup all --slocal 10000) using the 744 

appropriate colony and sequencing batch input as control. Peaks were called on each colony and 745 
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behavioral group separately, then merged and sorted using BEDTools (version 2.26.0, sort and 746 

merge commands). This resulted in a total of 11,614 merged peaks with an average width of 721 747 

bp. Mapped reads were counted to each peak per individual using featureCounts from the Subread 748 

package (version 1.5.2). An average of 51.0% of reads were mapped to called peaks. 749 

Peak counts were imported into R for differential accessibility analysis using edgeR. Peaks 750 

with less than 1 CPM in at least 2 samples were removed, and remaining count values were 751 

normalized using the TMM method. Gene-wise variances were calculated by estimating tagwise 752 

dispersions in edgeR on filtered gene count matrices for each group separately and plotted using 753 

ggplot2. Tagwise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise 754 

comparison of groups, with FDR correction for multiple testing. Differentially accessible peak 755 

(DAP, FDR<0.05) results for each pairwise comparison are given in Supplementary File 4. 756 

Functional annotation of differential expression and chromatin accessibility 757 

Differential expression 758 

Differentially expressed gene (DEG) lists were functionally annotated using Gene 759 

Ontology (GO) by first mapping putative orthologs between Apis mellifera and Drosophila 760 

melanogaster using reciprocal best BLASTP hits (e-value cutoff = 1e-5). Only DEGs with putative 761 

D. melanogaster orthologs were included for GO enrichment, and the background list used was all 762 

tested genes (those which passed the minimum expression threshold) with putative D. 763 

melanogaster orthologs. Enrichment tests for biological processes were conducted using GOrilla 764 

(Eden et al., 2009) with all significant DEGs (FDR<0.05) against the background list. GO 765 

enrichment results for all DEG lists are given in Supplementary File 3. 766 

Differential accessibility 767 

To functionally annotate DAPs, the midpoint coordinate of the 11,614 peaks identified with 768 

MACS2 were assigned to genes based on proximity to honey bee gene features (Apis mellifera 769 

HAv3.1 genome). The following features were considered per gene: promoters (1 kb upstream), 770 

introns, exons, 5’ UTR, 3’ UTR, upstream (10 kb upstream), and downstream (10 kb). Peaks not 771 

associated with any gene feature were classified as intergenic. When peaks were associated with 772 

multiple genes (e.g., the intron of one gene and the promoter of another), they were assigned to 773 

individual genes based on the following priority: promoter (highest priority), exon, 5’ UTR, 3’ 774 

UTR, intron, upstream, downstream (lowest priority). If a peak was present in the same highest 775 

priority class for multiple genes, it was randomly assigned to one gene. In this way, each peak was 776 
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assigned to either a single gene or considered intergenic. Of the 11,614 peaks, 1822 were assigned 777 

to the promoter region of a gene, 776 to exons, 1326 to 5’ UTRs, 273 to 3’ UTRs, 4666 to introns, 778 

1155 to upstream regions, 773 to downstream regions, and 823 peaks were located in intergenic 779 

regions. 780 

As before with GO enrichment for DEGs, differentially accessible peaks (DAPs) were 781 

functionally annotated by mapping peak-associated genes to putative orthologs in D. melanogaster 782 

using BLASTP. The background list for enrichment analyses was the list of peaks which met the 783 

minimum accessibility count threshold for analysis and which had putative orthologs in D. 784 

melanogaster. GOrilla (Eden et al., 2009) was used for enrichment tests. GO enrichment results 785 

for all DAP lists are given in Supplementary File 4. 786 

Motif enrichment of DAPs and DEG regulatory regions 787 

Transcription factor (TF) motif enrichment analysis in this study was performed similarly 788 

to the methods described in Whitney et al. (2014). The overall approach is as follows, with details 789 

below. For each TF motif, 1) genomic windows were scored for the presence of the motif, 2) 790 

window scores were combined into scores for genomic segments of interest, representing either 791 

gene regulatory regions or accessibility peaks, 3) a set of motif targets was created using a fixed 792 

cutoff on the segment scores, and 4) a statistical test for enrichment was performed between 793 

segments that were motif targets and those that were significant in differential analysis. 794 

Motif scores for genomic windows 795 

First, we divided the honey bee genome (version HAv3.1, NCBI accession 796 

GCA_003254395.2) into 500 bp windows with 250 bp shifts. We gathered a collection of 223 797 

representative TFs (Kapheim et al., 2015) and downloaded their DNA binding specificities 798 

(motifs) characterized as position weight matrices (PWMs) from FlyFactorSurvey (Zhu et al., 799 

2011). Separately for each TF motif, we ran the Stubb algorithm (Sinha et al., 2003) on all genomic 800 

windows to score them for the presence of that TF’s binding sites. Tandem repeats in the windows 801 

were masked using the Tandem Repeat Finder (Benson, 1999) before calculating the Stubb scores 802 

to avoid scoring the repeats as weak binding sites. Since the honey bee genome has significant 803 

local G/C heterogeneity (Sinha et al., 2006), we converted the raw Stubb scores for each window 804 

into G/C content-normalized empirical p-values. This was done by determining the rank of each 805 

window among all genomic windows of similar G/C content (when grouped into 20 G/C bins). 806 
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Scores for genomic segments 807 

We defined two different collections of genomic segments (accessibility peaks and gene 808 

regulatory regions) to analyze with motif enrichment in this study. Since the genomic segments 809 

may overlap with a variable number of our genomic windows, we defined a length-adjusted motif 810 

score for each segment. This score was calculated using the score of the best scoring window in 811 

that segment for the given motif and the number of windows overlapping the segment, as follows: 812 

scseg = 1 – (1 - pvalbest)N 813 

where scseg = length-adjusted motif score for the segment, N = number of windows that overlap 814 

with the scoring window, and pvalbest = best G/C normalized empirical p-value among the N 815 

overlapping windows. 816 

Statistical test for TF enrichment 817 

TF enrichment was analyzed for two sets of regions: DAPs (Differentially Accessible 818 

Peaks) and DEGs (Differentially Expressed Genes) (Supplementary File 7). 819 

For analysis of DAPs, the collection of genomic segments was defined as the combination 820 

of all DAPs and randomly selected non-accessible parts of genome that had the same distribution 821 

of lengths as those DAPs. The number of randomly selected genomic segments was set to 10 times 822 

the number of DAP segments. For each motif, the top 200 scoring segments from the collection 823 

were defined as the TF motif target set. Hypergeometric p-values were calculated for each motif-824 

DAP set pair (Supplementary File 7) to quantify the significance of the overlap between the 825 

corresponding TF motif target set and DAP set. 826 

For DEGs, the collection of genomic segments was the regulatory regions of all genes in 827 

the honey bee annotation. Each regulatory region was defined as 5kb upstream to 2kb downstream 828 

of the transcriptional start site of its gene (http://veda.cs.uiuc.edu/beeMotifScores/). The top 500 829 

scoring segments from the gene universe were selected as the TF motif target set for each motif. 830 

Finally, the significance of the overlap for each motif-DEG set pair (Supplementary File 7) was 831 

calculated with the Hypergeometric p-value. 832 

All p-values were then converted to q-values using the “qvalue” function in the R software 833 

package qvalue (Storey et al., 2019) to control the false discovery rate from multiple hypothesis 834 

testing. 835 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.09.09.289272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289272
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

For motifs enriched both within DAPs and DEG upstream regions, CentriMo (Bailey and 836 

Machanick, 2012) from MEME Suite was used to calculate and plot the probability of motif 837 

binding across 2 kb windows centered on the peak summit for DAPs and 7 kb windows (5kb 838 

upstream and 2kb downstream of the transcriptional start site (TSS)) for DEGs. These probabilities 839 

are shown in Fig. 3B-C. 840 

Individualized Gene Regulatory Network (GRN) analysis 841 

To understand how TFs orchestrate transcriptional changes in the brain, we reconstructed 842 

a gene regulatory network (GRN) model using the ASTRIX approach (Chandrasekaran, 2014; 843 

Chandrasekaran et al., 2011). ASTRIX uses gene expression data to identify interactions between 844 

TFs and their target genes. The ASTRIX algorithm has been previously used to infer brain GRN 845 

models for various organisms including the honey bee (Bukhari et al., 2017; Saul et al., 2017; 846 

Shpigler et al., 2017). These models showed significantly high accuracy in predicting gene 847 

expression changes in the brain and identified TFs that regulate social behaviors. 848 

Here we applied ASTRIX using the gene expression data of the 45 individual bees along 849 

with a list of honey bee TFs as input to identify regulatory interactions. We normalized the 850 

transcriptomics data prior to GRN construction using the ComBat algorithm (Johnson et al., 2007) 851 

to minimize batch and colony effects in the data. The effectiveness of the normalization was 852 

checked using PCA. Any TF predicted to interact with a given target gene by ASTRIX had to pass 853 

through two criteria: 1) share a significant degree of mutual information with the target gene (p-854 

value < 10-6), and 2) explain at least 10% of the variance of the target gene, quantified by Least 855 

angle regression algorithm. Similarly, each target gene included in the GRN must be predicted 856 

with a correlation of at least 0.8 by the ASTRIX model using expression levels of TFs. 857 

The GRN model built by ASTRIX predicted 2,190 genes with a Pearson’s correlation of 858 

0.8 or higher using expression levels of TFs. Overall, the GRN inferred by ASTRIX contains 4,500 859 

interactions between 190 TFs and the 2,190 target genes. The full GRN is in Supplementary File 860 

8. 861 

To determine TFs correlated with specific behaviors, we first identified genes that were 862 

strongly correlated with specific behavior scores across all individuals (FDR p-value of correlation 863 

< 0.001). TFs whose targets were over-represented among the behavior-correlated genes were then 864 

determined. Significance of the overlap between the list of behavior-correlated genes with targets 865 

of each TF (“TF module”) was estimated using the hypergeometric test. 866 
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Finally, to identify TF modules associated with expression changes in each individual 867 

(“Individualized TF modules”), genes that were upregulated or downregulated in each individual 868 

were identified using z-transformation. Genes in each individual with z-scores above 2 (i.e., 2 869 

standard deviations above mean) or below -2 were considered to be differentially expressed in an 870 

individual. This list of genes was then overlapped with TF modules to identify modules 871 

significantly associated with each individual using the hypergeometric test of overlap. 872 

We used a Random Forests classification algorithm for predicting individual behavioral 873 

group from TF expression levels. A leave-one-out cross validation analysis was performed wherein 874 

the algorithm was trained using data from the remaining 44 individuals and then used to predict 875 

the behavior of the 45th individual using its TF levels. The model achieved an accuracy of 82% in 876 

predicting behavior. Performance of the model was evaluated by comparison with random 877 

shuffling of the behavior labels. We made predictions 100 times with a different set of shuffled 878 

labels and compared the accuracy of predictions (i.e., total individuals for which behavioral group 879 

was correctly predicted) between the random model and the Random Forest algorithm using a t-880 

test (p=1 x 10-8). This suggests that TF expression levels can accurately forecast the behavior of 881 

the individual, especially for specialists. The relative importance of each TF in predicting behavior 882 

was determined using Out-of-bag predictor importance estimation, wherein each predictor’s value 883 

is permuted and the corresponding impact on model accuracy is determined (importance scores 884 

given in Supplementary File 8). The random forest classification algorithm was implemented in 885 

MATLAB with default parameters for the number of predictors sampled (square root of the 886 

number of predictors, in this case 258 TFs) and default values for the tree depth (n - 1, where n is 887 

the training data size). 888 

Selection of candidate TFs involved in specialized phenotypes 889 

Candidate TFs displayed in Fig. 5 were drawn from multiple analyses presented in this 890 

paper and in Kapheim et al. (2015). “Enriched within DAPs” indicates enrichment of the TF motif 891 

within forager vs. layer DAPs from the analysis of ATACseq data within this manuscript (see 892 

Motif enrichment of DAPs and DEG promoters and Supplementary File 7). Similarly, “Enriched 893 

near DEGs” indicates enrichment of the TF motif among putative regulatory regions of forager vs. 894 

layer DEGs (see Motif enrichment of DAPs and DEG promoters and Supplementary File 7). 895 

“Module correlated with behavior” indicates that TF module activity is significantly correlated 896 

with at least one behavioral metric across individuals (see Individualized Gene Regulatory 897 
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Network (GRN) analysis and Supplementary File 8). “Group Predictive TF” indicates the TF is 898 

among the 20 most informative for predicting individual group membership based on TF 899 

expression (see Individualized Gene Regulatory Network (GRN) analysis and Supplementary File 900 

8). “Implicated in eusocial evolution” indicates that the TF motif was previously found to be 901 

associated with social evolution in Kapheim et al. (2015). 902 
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Table 1. Description of 15 candidate TFs regulating specialist behavioral phenotypes in Fig. 5. 1207 

Names given are for Drosophila melanogaster motifs (Zhu et al. 2011), with homology to honey 1208 

bee genes as in Kapheim et al. (2015). Function summaries are adapted from D. melanogaster 1209 

gene annotations from FlyBase (release FB2020_05; FlyBase Consortium et al., 2019). Note that 1210 

terms related to “regulation of transcription” apply to most TFs but were omitted for brevity. 1211 

 1212 
Motif TF name Function(s) 
cwo clockwork orange circadian regulation of gene expression; dendrite morphogenesis 
tai/met taiman, Mondo ecdysone receptor co-activator; lipid and carbohydrate metabolism 
side sidestep, E(spl)mgamma-HLH pattern specification; neurogenesis; neuronal stem cell maintenance 
h hairy cell morphogenesis; tracheal system development; cellular metabolism 
sr stripe central nervous system development 
max Max cell and organismal growth 
dpn deadpan adult locomotory behavior; neuroblast development 
usf Usf [unknown] 

med Medea 
dorsal-ventral patterning; activin receptor signaling; eye 
morphogenesis; germ-line stem cell division and maintenance; neuron 
development 

opa odd paired embryogenesis; midgut development; adult head morphogenesis; 
neural stem cell development; circadian rhythm 

bab1 bric a brac 1 pattern formation; ovary morphogenesis; abdominal pigmentation; 
olfactory receptor neuron fate diversity 

deaf1 Deformed epidermal autoregulatory factor-1 embryo development; regulation of immune response 

crebA Cyclic-AMP response element binding 
protein A salivary gland development; cuticle development 

sug sugarbabe regulates expression of insulin-like peptides and genes involved in lipid 
and carbohydrate metabolism 

usp ultraspiracle cell migration; response to ecdysone; germ cell development; 
metamorphosis; mushroom body development; neuron remodeling 
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 1221 

Figure 1. Automated monitoring of behavior in queenless colonies of laying worker honey bees. 1222 
(A) Automatic behavior monitoring was performed inside the hive and at the hive entrance to 1223 
predict egg-laying and foraging events in six colonies (N=800 bees per colony at the start of each 1224 
trial). Hive images were captured 1/s for 24 h/day, and entrance images 2/s for 12 h/day 1225 
beginning when adult bees were 15 days old. (B) Proportion of bees alive each day categorized 1226 
as layers (purple), foragers (green), generalists (orange), or others (gray). For colonies A-C, 1227 
individuals were from single source colonies headed by a naturally mated queen. For colonies D-1228 
F, individuals from two source colonies headed by queens each inseminated by semen from a 1229 
single different drone (single drone inseminated, SDI) were mixed. Different source colonies are 1230 
indicated by pattern and hue. (C) Ethograms for three individuals selected for sequencing 1231 
(bCodes shown below group labels) across three days of tracking. (D) Distribution of ovary 1232 
scores for individuals selected for sequencing. Insets are images from bees with ovary scores of 1233 
1, 3, and 5. L: layer, G: generalist, F: forager. 1234 
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 1237 

Figure 2. Patterns of brain gene expression and chromatin accessibility are associated with 1238 
behavior. (A) Daily rank-normalized behavior of individuals (rows) selected for brain RNAseq 1239 
and ATACseq analysis converted to 2D colorspace from specialist and generalist scores. (B) 1240 
Principal Component Analysis (PCA) of behavioral variation for individuals chosen for brain 1241 
RNAseq and ATACseq analysis. Metrics included number of eggs laid, number of foraging 1242 
events, proportion of foraging trips with evidence of nectar collection, proportion of trips with 1243 
evidence of pollen collection, and proportion of trips with evidence of both nectar and pollen 1244 
collection. (C) Euler diagram for overlaps of pairwise differentially expressed genes (DEGs) 1245 
between behavioral groups. Note that one gene was overlapping between F vs. G and G vs. L 1246 
(but not F vs. L) and is not represented in the diagram due to graphical constraints. (D) Euler 1247 
diagram for overlaps of genes proximal to pairwise differentially accessible chromatin peaks 1248 
(DAPs) between behavioral groups. (E) PCs from PCA of brain transcriptomic profiles regressed 1249 
against specialist score (PC1: R2=0.947, p<0.0001; PC2: R2=0.838, p<0.001). (F) PCs from PCA 1250 
of brain chromatin accessibility regressed against specialist score (PC2: R2=0.584, p<0.001; 1251 
PC3: R2=0.543, p<0.0001; PC4: R2=0.187, p<0.0045; PC1: p>0.05). L: layer, G: generalist, F: 1252 
forager. 1253 
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 1254 
 1255 
Figure 3. Differences in TF activity and TF motif occurrence are associated with specific 1256 
behavioral phenotypes. (A) Circos plot representing a subset of significant correlations between 1257 
behaviors (top) and expression of TF modules (bottom). Lines connecting behaviors with TF 1258 
modules indicate significant associations. TF modules included are those mentioned in the main 1259 
text or in other figures, and five of nine traits are included for simplicity. All significant 1260 
correlations between behaviors and TF modules are given in Table S8. For behaviors, p indicates 1261 
proportion (e.g., p(pollen) is the proportion of returning foraging trips where the bee carried 1262 
pollen). (B) Motifs enriched within DAPs show maximum binding probabilities near peak 1263 
summits. (C) Motifs enriched in promoter regions of forager>layer DEGs show elevated binding 1264 
probabilities ~3kb upstream of and overlapping TSSs. Motif names and sequences are from 1265 
FlyFactor (Zhu et al. 2011) for Drosophila melanogaster. 1266 
 1267 
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 1276 
 1277 
Figure 4. TF module activity and TF expression predict individual variation in behavior. (A) TF 1278 
modules (rows) with significant up/downregulation in at least 10 individuals, sorted by 1279 
hierarchical clustering. Individuals (columns) are ordered by specialist score, with darkly colored 1280 
blocks indicating correctly classified individuals based on TF expression prediction analysis and 1281 
lightly colored blocks indicating incorrect classification. TF modules showed patterns of 1282 
differentiation between L and F, while G were more variable in module activity. Labeled 1283 
modules are those with TFs shown in panel (B) or discussed in text. (B) Class prediction analysis 1284 
based on brain TF expression correctly classified all but one specialist (L: layer, F: forager) but 1285 
only one generalist (G). Normalized expression (logCPM) of 4 of the top 20 informative TFs for 1286 
class prediction analysis are shown (others in Fig. 4 – figure supplement 1). Median of points is 1287 
represented by bold horizontal line within shaded 95% confidence interval, with length of shape 1288 
and smoothed curve showing range and density of data, respectively.   1289 
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 1298 
 1299 
Figure 5. Fifteen candidate TFs predicted to regulate egg-laying and foraging behavior based on 1300 
evidence across analyses (descriptions of categories in Materials and methods). Names given are 1301 
for Drosophila melanogaster motifs (Zhu et al. 2011), with homology to honey bee genes as in 1302 
Kapheim et al. (2015). Color of bar in first two columns indicates whether there was stronger 1303 
enrichment among forager-biased (green) or layer-biased (purple) peaks or genes. 1304 
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 1313 
 1314 
Figure 2- figure supplement 1.  Formulae and color-space mapping for specialist (left) and 1315 
generalist (right) behavioral scores. 1316 
 1317 
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 1334 

Figure 2- figure supplement 2. Daily behaviors of individual bees (rows) across time in each 1335 
colony. Colored rectangles indicate specialist and generalist scores represented in 2D color space 1336 
as shown in legend. Individuals are sorted by median lifetime specialist score. Single-drone 1337 
inseminated (SDI) queen source is shown to the right of each row for colonies D-F, where 1338 
workers were known offspring of two SDI queens per colony. In colonies A-C workers were 1339 
offspring of naturally mated queens. 1340 
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 1341 
 1342 
Figure 2- figure supplement 3.  Smoothed average egg counts for laying workers in laboratory 1343 
cages. Solid lines indicate bees from source colonies headed by a naturally-mated queen, while 1344 
dashed lines indicate bees from source colonies headed by queens instrumentally inseminated 1345 
with semen from a single drone (SDI). Colonies used as sources for behavioral tracking included 1346 
W28, W2, R25, and R45. 1347 
 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 

 1355 

 1356 

 1357 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.09.09.289272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289272
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

 1358 

Figure 2- figure supplement 4.  Histogram (bars) and density (lines) of normalized (logCPM) 1359 
gene expression for genes with (dark gray) and without (light gray) nearby peaks of chromatin 1360 
accessibility. Distributions are significantly different (p<0.0001, Kolmogorov-Smirnov test). 1361 
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 1381 
 1382 
Figure 3- figure supplement 1. Network of 23 TFs with module expression significantly 1383 
correlated with 9 behavioral and physiological metrics (see Supplementary File 2) measured 1384 
across individuals. Edges indicate known interactions based on MIST database for Drosophila 1385 
melanogaster. First-order PPI indicates one intermediate protein between linked nodes, while 1386 
second-order PPI indicates two intermediate proteins. PPI = protein-protein interaction. 1387 
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 1394 

Figure 4- figure supplement 1.  Normalized expression (logCPM, scaled to a maximum of 1 to 1395 
allow for comparison across TFs) of the top 20 most informative TFs for class prediction 1396 
analysis plotted against individual specialist score. Points are colored by behavioral group 1397 
(Layer: purple, Generalist: orange, Forager: green). Although some of the top predictors 1398 
individually show weak correlation with specialist score, the random forest machine learning 1399 
algorithm combined multiple weak predictors together in a single model to accurately classify 1400 
the three behavioral groups, suggesting the TFs act combinatorially to influence behavior. 1401 
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