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Abstract

Understanding the regulatory architecture of phenotypic variation is a fundamental goal
in biology, but connections between gene regulatory network (GRN) activity and individual
differences in behavior are poorly understood. We characterized the molecular basis of
behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage
in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking,
we discovered these colonies contain a continuum of phenotypes, with some individuals
specialized for either egg-laying or foraging and “generalists” that perform both. Brain gene
expression and chromatin accessibility profiles were correlated with behavioral variation, with
generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed

for individuals revealed that transcription factor (TF) activity was highly predictive of behavior,
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and behavior-associated regulatory regions had more TF motifs. These results provide new
insights into the important role played by brain GRN plasticity in the regulation of behavior, with

implications for social evolution.

Introduction

Understanding the genomic regulatory architecture of phenotypic plasticity is necessary
to achieve comprehensive knowledge of the mechanisms and evolution of complex traits. While
a growing body of knowledge exists on specific regulatory mechanisms involved in
developmental plasticity, less is known about the regulation of behavioral plasticity. Behavioral
plasticity is of special interest and presents unique challenges, as behavioral traits derive from
the integrated actions of genetic, transcriptomic, and neuronal networks (Sinha et al., 2020).

Over the past 20 years, a close relationship between behavioral variation and brain gene
expression has been documented across a range of organisms and behaviors (e.g., Zayed and
Robinson, 2012). Still, the regulatory architecture underlying connections between the genome,
brain, environment, and behavior are not well resolved, in part because behavior is itself a
complex phenotype with substantial variation between individuals. To fully understand how
genomic and transcriptomic variation is transduced into behavioral plasticity, we need both high-
dimensional behavioral data at the individual level as well as information on regulatory
genomics for those same individuals.

Modification of gene regulatory networks (GRNs) has emerged as an important driver of
plasticity during the development and evolution of morphological phenotypes. For example,
gains and losses of cis-regulatory elements (e.g., binding sites for transcription factors (TFs))
influence species-specific wing melanization patterns in Heliconius butterflies and Drosophila
flies (Prud’homme et al., 2006; Reed et al., 2011; Werner et al., 2010). Pelvic loss in stickleback
fish convergently evolved through deletion of a tissue-specific enhancer of the TF Pitx/ in
multiple natural populations (Chan et al., 2010). In other cases, similar morphological novelties
arose independently through modification of distinct developmental programs, as observed for
beak size variation across clades of finches (Mallarino et al., 2012). Recruitment of genes
involved in developmental plasticity in the evolution of novel phenotypes is thought to be
facilitated by the fact that TFs and other regulatory genes often have great temporal flexibility,

with extensive variation in expression across developmental time (Dufour et al., 2020).
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Similar to its role in morphological variation, plasticity in GRNs is theorized to influence
behavioral variation, over both organismal and evolutionary time scales (Sinha et al., 2020).
Brain gene expression is often responsive to environmental stimuli (Chandrasekaran et al., 2011;
Cummings et al., 2008; Mukherjee et al., 2018; Rittschof et al., 2014; Whitfield et al., 2003) and
the regulatory activity of many TFs is context-specific with respect to behavioral state
(Chandrasekaran et al., 2011; Hamilton et al., 2019). In addition, modification of hormone
signaling and GRNSs in peripheral tissues has effects on brain GRNs and resulting behavior
(Ament et al., 2012). These results demonstrate that GRNs are plastic not only across
developmental timescales but also influence real-time behavioral variation. Still, the link
between changes in GRNs and behavioral plasticity is weaker than for developmental plasticity
(Sinha et al., 2020), and to our knowledge, no empirical studies have linked brain GRN plasticity
to individual differences in behavior.

Eusocial insects are ideal for studying how GRN activity influences both developmental
and behavioral plasticity at the individual scale. Eusociality is characterized by a reproductive
division of labor between queen and worker castes, representing a developmentally plastic
polyphenism well-studied in many species (e.g., Holldobler and Wilson, 1990; Michener, 1974;
O’Donnell, 1998; Wheeler, 1986). Queens are specialized for reproductive functions, including
mating and egg-laying, and in species with complex eusociality have levels of fecundity orders
of magnitude greater than their solitary ancestors. Workers, on the other hand, typically do not
perform reproductive behaviors and in many cases are sterile or unable to mate, instead
performing many different non-reproductive behaviors in a colony that are essential for colony
growth and development. Species with complex eusociality also often show additional within-
caste behavioral plasticity, with individuals specializing on specific subsets of tasks based on
differences in worker age, morphology, or genetic predisposition. The extensive behavioral
plasticity observed in colonies of eusocial species may be linked to ancestral developmental
plasticity (Kapheim et al., 2020), highlighting the interconnectedness of gene regulation in both
developmental and behavioral phenotypes relevant for social behavior (Sinha et al., 2020).

We studied the relationship between brain GRN activity and behavior at the individual
scale. We focused on a recently discovered, surprising form of behavioral plasticity among
worker honey bees. Honey bee workers do not mate, but they possess functional ovaries and can

produce viable haploid eggs. Laying workers (LW) are rare in queenright colonies (Ratnieks,
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102 1993; Visscher, 1996) but frequent in situations of permanent queenlessness, when colonies lose
103  their queen and then fail to rear a replacement queen. In these cases, up to 50% of workers may
104  activate their ovaries (Sakagami, 1954) and some of these workers lay eggs, producing thousands
105  of drones prior to colony death (Page and Erickson, 1988). Recently, it was discovered that some
106  LWs engage in both reproductive and non-reproductive behaviors (Naeger et al., 2013), a level
107  of behavioral plasticity not previously described in honey bee workers. Studying honey bee

108  workers in LW colonies enables investigation of the molecular architecture of behavioral

109  variation typically only seen when comparing queens and workers, without the confounds of

110  caste-specific developmental and physiological differences.

111 Recent advances in machine learning and automatic behavioral tracking have enabled the
112 study of individual behavior for thousands of members within social insect colonies (Crall et al.,
113 2015; Gernat et al., 2018; Greenwald et al., 2015; Mersch et al., 2013; Wario et al., 2015; Gernat
114 et al. 2020). We used automatic behavioral tracking, genomics, and the extensive behavioral

115  plasticity present in honey bee colonies with LW to test the hypothesis that individual differences
116  in behavior are associated with changes in the activity of brain GRNs (i.e., changes in the

117  expression of TFs and their target genes). Our results provide key insights into the mechanisms
118  underlying the regulation of individual differences in behavior by brain GRNSs.

119

120  Results

121 Extensive variation in behavior across laying workers

122 To define the behavior of individual bees, we deployed a high-resolution, automatic

123 behavior monitoring system on six LW colonies in which each bee (n=800 per colony) was

124  individually barcoded, similar to Gernat et al. (2018). Our extension of this system identifies the
125  location and heading direction of each individual once per second, and uses convolutional neural
126  networks and machine learning to detect behaviors (Gernat et al., 2020). For each individual

127  across seven days of tracking (when bees were 15-21 days old), egg-laying events and foraging
128  trips were detected from images of the hive interior and entrance (Figure 1A). A total of 115,281
129  egg-laying events and 96,086 foraging trips were predicted for the six colonies (Supplementary
130  File 1).

131 Colonies exhibited considerable variation in the proportion of bees engaged in egg-laying

132 and/or foraging. With the exception of colony F, more workers were identified as layers than
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133 foragers (Figure 1B). Across all colonies, a high proportion of bees were observed laying eggs
134 (54% with at least two egg-laying events on at least one day) or foraging (28% with at least two
135  foraging trips on at least one day) during the recording period, while 10.8% of bees performed
136  both egg-laying and foraging on the same day at least once during the seven days of tracking. A
137  small number of these “generalist” bees (1.3%; 45 individuals) were exceptional in their

138  consistent high performance of both measured behaviors, with a minimum of two egg-laying

139  events and two foraging trips on the same day, across at least three days. Three-day ethograms of
140  an egg-layer, generalist, and forager are shown in Figure 1C. Ovary dissection of a subset of

141 individuals revealed that 100% of specialized egg-layers and generalists had active ovaries

142 (ovary scores of 3-5; Hess 1942), compared with only 54% of the specialized foragers (Figure
143 1D; Supplementary File 2). Of the foragers with activated ovaries, 13/14 had five or fewer

144  predicted egg-laying events, compared with generalists and layers, which laid an average of 206
145  eggs (range: 64-774).

146 The daily and lifetime behavior of each bee was summarized using two behavioral

147  scores: the “specialist” score, which describes how specialized an individual was on either egg-
148  laying or foraging, and the “generalist” score, which describes how much an individual

149  performed both egg-laying and foraging. Scores were derived from daily normalized ranks

150  within colonies to allow comparison across days and colonies with differing overall activity

151  levels; bees that performed neither egg-laying nor foraging across the experiment have both

152 specialist and generalist scores of 0. Scores were mapped onto a two-dimensional color space for
153  visualization of behavior over time (Figure 2A; Figure 2- figure supplements 1-2; Supplementary
154  File 1).

155

156  Influence of worker source colony on behavior

157 To study the influence of source colony (including genetics and development) on

158  behavior, experimental colonies were assembled with workers from different source colonies
159  headed by unrelated queens. A subset of source colonies (4/6) was pre-screened for worker egg-
160 laying in queenless laboratory cages and showed variation in the timing and extent of egg-laying
161  (Figure 2- figure supplement 3). Bees in colonies A-C were derived from colonies with naturally
162  mated queens. Queens of Apis mellifera mate multiply with up to ~20 males and produce

163  workers with a mix of paternal genotypes (Adams et al., 1977; Estoup et al., 1994; Lobo and
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Kerr, 1993); workers derived from these colonies were therefore assumed to be a mix of many
patrilines. In contrast, experimental colonies D-F were assembled of workers obtained from two
different source colonies, each of which was headed by a queen artificially inseminated with the
semen of a single different drone (SDI). Workers within each SDI source colony are highly
genetically related compared with workers from a naturally mated queen colony (average
relatedness = 0.75 due to haplodiploidy).

Using SDI colonies allowed us to more easily explore whether the genetic and
environmental differences between source colonies would lead to segregation of reproductive
and non-reproductive behavior when mixed into the same (queenless) environment. In both
colonies D and E, which were replicates of the same two SDI queens’ offspring, the behavior of
workers differed considerably by source: one source colony (SDI 1) comprised the majority of
foragers, while the other (SDI 2) contained the majority of egg-layers (Figure 1B; Figure 2-
figure supplement 2). In colony F the two SDI source colony progeny contributed more equally
to foraging, while the most specialized egg-laying bees were predominantly from just one source
colony (Figure 1B; Figure 2- figure supplement 2, SDIs 3 and 4). However, even in colonies
where SDI source was clearly influential, specialized foragers and layers were identified from
both sources, indicating that colony genetics and development are not the only contributors to
individual variation in the likelihood of performing these behaviors. Similar patterns of
specialization were observed in colonies A-C and D-F (Figure 1B; Figure 2- figure supplement

2), indicating that they were not an artifact of decreased intracolonial genetic diversity.

Specialized behavioral groups are highly transcriptionally and epigenetically distinct

A subset of highly specialized foragers, egg-layers, and generalist individuals were
selected from two experimental colonies (from only one source SDI each, to minimize genetic
variation among individuals) for brain gene expression and chromatin accessibility profiling
(Figure 2A). Sampled individuals were among those with the most extreme specialist and
generalist scores within each colony, and were assigned to behavioral groups based upon their
lifetime behavior. Principal component analysis (PCA) on behavioral data for these individuals
shows these three groups are behaviorally distinct, with generalists intermediate and more

variable than forager and layer groups (Figure 2B).
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194 Consistent with strong behavioral differentiation, foragers and layers exhibited

195  widespread differences in brain gene expression, with differential expression of nearly half

196  (46%) of all genes expressed in the brain (Figure 2C; Supplementary File 3). Differences in brain
197  gene expression were much stronger between foragers and layers (4506 differentially expressed
198  genes, DEGs; FDR<0.05) than for generalists relative to the two specialist groups (648 generalist
199  vs. layer and 374 generalist vs. forager DEGs). Generalists shared transcriptional profiles of both
200 foragers and layers, with nearly all genes differentially expressed between generalists and either
201 specialized group also present on the forager vs. layer DEG list (Figure 2C).

202 Forager vs. layer DEGs were enriched for cytoplasmic translation and transport gene

203  ontology (GO) biological processes, along with many metabolic and biosynthetic processes

204  (Supplementary File 3; FDR<0.05). All enriched GO terms but one (114 of 115) were for genes
205  more highly expressed in foragers relative to layers (forager-biased genes). The only GO term
206  enriched in layer-biased genes relative to foragers, cytoplasmic translation, was also the only

207  enriched GO term for genes overexpressed in generalists relative to foragers. Similarly, GO

208  terms enriched in generalist-biased genes (relative to layers) included many of the transport

209 terms enriched among forager-biased genes (Supplementary File 3).

210 In addition to differences in brain gene expression, layers and foragers showed

211 differences in accessible chromatin in the brain based on the Assay for Transposase-Accessible
212 Chromatin using sequencing (ATAC-seq; Buenrostro et al., 2013). 1794 differentially accessible
213 peaks (DAPs; FDR<0.05) were identified between foragers and layers, proximal to 1207 genes
214 (Figure 2D; Supplementary File 4). Forager-biased DEGs and genes proximal to forager-biased
215  DAPs overlapped significantly, 1.2x more than expected by chance (p=0.01 for hypergeometric
216  test of overlap). Genes proximal to peaks of accessible chromatin (regardless of differential

217  status) were on average more highly expressed than genes without proximal peaks (p<0.0001,
218  Kolmogorov-Smirnov test), supporting a signal of transcriptional activation near ATAC-seq

219  peaks (Figure 2- figure supplement 4). No DAPs were identified for foragers relative to

220  generalists, and there were only 16 DAPs (assigned to 13 genes) for generalists relative to layers
221 (Figure 2D). These 13 genes also had DAPs for foragers relative to layers (Figure 2D). DAPs
222 between foragers and layers were enriched for 148 GO terms (FDR<0.05), including

223  developmental processes, morphogenesis, and metabolism (Supplementary File 4). Similar to

224  differentially expressed genes, GO enrichment signal came from those DAPs with a bias in
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foragers (i.e., more accessible in foragers relative to layers); no significantly enriched GO terms
were identified from layer-biased peaks, despite 44% of differential peaks being more accessible

in layers compared to foragers.

Brain gene expression and chromatin accessibility are correlated with behavioral variation

Our high-resolution behavioral data allowed us to test whether molecular and behavioral
variation were connected not only at the group level, but for individuals as well. Using PCA, we
found that degree of individual behavioral specialization was significantly correlated with
measures of both brain gene expression and chromatin accessibility (Figure 2E-F). Among PCs
for gene expression, PCs 1 and 2, which explained 31.1 and 11.9% of the total variance in gene
expression, respectively, were significantly correlated with individual behavioral specialist score
(Figure 2E). Generalists showed intermediate values of these PCs, consistent with an
intermediate brain transcriptomic profile. Genes with extreme PC loading values (upper and
lower 5% of loadings) for PC1 were enriched for transmembrane and ion transport, functions
related to aerobic and cellular respiration, and energy transport (Supplementary File 5). PC2
extreme loading genes were enriched for processes relating to detection of light,
phototransduction, and sensory perception (Supplementary File 5). Extreme loadings for both
PC1 and PC2 overlapped significantly with DEGs in the pairwise comparison of layers and
foragers (PC1: RF=1.2, p=1.39¢-06, PC2: RF=1.7, p=8.39¢-91).

Similarly, PCA of chromatin accessibility data revealed PCs that were correlated with
behavioral variation. Accessibility PCs 2, 3, and 4 were all significantly correlated with the
individual behavioral specialist score (Figure 2F). Genes with extreme PC loading values for
each correlated PC showed enrichment for multiple GO terms, including biological processes
related to cell-cell adhesion, locomotion, axon guidance, neuron projection guidance, and
synapse organization (Supplementary File 6). Many GO terms (11 of 37) were enriched for
extreme loading genes of both PCs 2 and 3, while synapse organization was the only enriched

term for loadings of PC4.

GRN activity links molecular and behavioral phenotypes
To test the role of transcription factor (TF) and gene regulatory plasticity in the regulation

of LW behavioral phenotypes, we conducted TF motif analyses and brain GRN reconstruction
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256  (Chandrasekaran et al., 2011), individualized for each bee. The activity of many TF modules

257  (TFs and their predicted targets) showed significant correlations with individual variation in

258  several behavioral metrics, including numbers of eggs laid (50 TF modules), number of foraging
259  trips (74 TF modules), and proportion of returning foraging trips with pollen loads (41 TF

260  modules) (Figure 3A; Supplementary File 8). At the individual level, 23 TF modules were

261  correlated with all 9 behavioral and physiological metrics (Figure 3- figure supplement 1;

262 Supplementary File 8). These behaviorally correlated TF modules include TFs involved in JH
263  signaling (usp, Kr-hl, and Blimp-1), histone acetylation (trx), neuronal remodeling (Kr-hl,

264  Hr51, trx), and circadian rhythms (opa and Hr51).

265 In addition to the correlations between TF module activity and behavior, many TF motifs
266  were enriched in peaks of differential accessibility or in the regulatory regions of DEGs between
267  specialized layers and foragers. 77 out of 223 motifs (functionally validated in Drosophila

268  melanogaster, Zhu et al., 2011) were enriched in layer vs. forager DAPs (q-val<0.01,

269  Supplementary File 7), and 14 motifs were specifically enriched in the regulatory regions of

270  forager-upregulated DEGs (q-val<0.2, Supplementary File 7). Nine motifs were common to both
271 sets (Figure 3B-C), including binding sites for TFs involved in regulating nervous system

272 development (hairy, side, sr, and klu), transcription (max/mnt), juvenile hormone (JH) signaling
273 (tai and tai/met), chromatin modification (trl), and circadian rhythms (cwo). These motifs were
274  centrally enriched within DAPs (Figure 3B), and showed two peaks of elevated binding

275  probability in the promoter regions of forager-biased DEGs, one ~3kb upstream of

276  transcriptional start sites (TSSs) and a second overlapping TSSs (Figure 3C). By contrast, only
277  two TF motifs were significantly enriched in the regulatory regions of specialist vs. generalist
278  DEGs (mad and ken, Supplementary File 7), and no motifs were enriched within DAPs between
279  generalists and either specialist group (Supplementary File 7), likely due in part to the small

280  number of DAPs distinguishing generalists and specialists (Figure 2D). Many of the motifs

281  enriched within DAPs or DEG promoters are binding sites for TFs that were themselves

282  differentially expressed, including cwo, tai/met, side, h, and sr (Supplementary File 3).

283 Across individuals, GRN activity was largely consistent within each behavioral group
284  (Figure 4A), with TF module activity most distinct between layers and foragers. The relationship
285  between TF expression and behavior was so strong that it was possible to predict individual

286  behavior based solely upon the expression of TFs in the brain using a machine-learning
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algorithm and leave-one-out cross validation (Figure 4B; Figure 4- figure supplement 1). TF
expression correctly predicted 100% of foragers and 94% of layers. By contrast, it was not

possible to predict generalists based on brain TF expression (only 1 of 8 correctly classified).

Comparative analyses of LW colony behavioral phenotypes and other social insect phenotypes

The performance of both egg laying and foraging by individuals in LW colonies,
previously reported in Naeger et al. (2013), is unusual for honey bees; these behaviors are
otherwise confined to separate castes (queens and workers). This raises the question of whether
the mechanisms underlying LW behavior reflect caste-related molecular differences. We
compared our gene expression results to previous studies of queens, workers, and worker
subcastes in various species of social insects to ask whether the molecular architecture of LW
phenotypes may be useful in the context of understanding additional social phenotypes.

In comparison with honey bee subcastes, forager-biased genes in LW colonies showed
significant overlap with forager-biased genes in two studies of queenright colonies (when
compared with nurses) (RF=1.7 p=1.707e-09; Alaux et al., 2009; RF=1.9 p=1.740e-07; Whitfield
et al., 2003; Supplementary File 9). Layer-biased genes in this study overlapped with genes
upregulated in nurses relative to foragers in these queenright colonies (RF=1.7, p=3.656¢-10;
Alaux et al., 2009; RF=2.0, p=1.116e-13; Whitfield et al., 2003; Supplementary File 9).

In addition, differences in brain gene expression between egg-layers and foragers
mirrored caste-related differences across species. Genes differentially expressed between
foragers and egg-layers in this study were enriched for previously identified queen vs. worker
brain DEGs in Megalopta genalis bees, which facultatively engage in both reproductive and non-
reproductive behaviors (RF:1.3, p=0.009; Jones et al., 2017; Supplementary File 9). Overlap was
in the expected direction, with queen-biased genes in M. genalis overlapping layer-biased genes
(RF:2.5, p=0.003) and worker-biased genes overlapping forager-biased genes (RF:1.6, p=0.01).
Further, worker-upregulated DEGs in the primitively eusocial wasp, Polistes metricus
overlapped significantly with forager-upregulated genes in this study (RF:2.6, p<0.0001; Toth et
al., 2010). In comparison with honey bee unmated queens and workers, overlap was significant

but in an unexpected direction: queen- and worker-biased genes overlapped with forager- and

10
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317  layer- upregulated genes, respectively (RF:1.4, p=5.495e-08 and RF:1.2, p=0.008; Grozinger et
318 al., 2007; Supplementary File 9).

319 Additionally, forager vs. layer DEGs in this study were enriched for genes identified as
320 under selection in two studies of social evolution. Forager vs. layer DEGs overlapped

321  significantly with genes undergoing positive selection in honey bees (RF=1.1, p=0.015; Harpur
322 etal., 2014; Supplementary File 9) and across highly eusocial species relative to solitary or

323  primitively eusocial species (Woodard et al., 2011; Supplementary File 9). Genes under selection
324  in highly eusocial lineages were enriched specifically for genes identified here as upregulated in
325  foragers relative to layers (RF=1.4, p=0.009), but not for layer-biased DEGs (p=0.106)

326  (Supplementary File 9). Forager vs. layer DEGs were not significantly enriched for genes that
327  were identified in a third study as under selection in social lineages of bees (p=0.262; Kapheim
328 etal., 2015; Supplementary File 9). Many of the forager vs. layer DEGs also found to be

329  undergoing positive selection were related to metabolism (Supplemental File 9).

330

331 TFs involved in LW plasticity previously implicated in social evolution

332 Given that differences in brain gene expression between egg-layers and foragers reflect
333  caste-related differences, we also tested whether there is overlap between TFs involved in LW
334  plasticity and those previously implicated in social evolution. Indeed, many of the TFs we

335 identified above as related to behavioral plasticity based on motif enrichment, group predictive
336  analysis, or brain GRN activity were previously known to be associated with social behavior on
337 an evolutionary timescale. A comparative analysis of the genomes of ten bee species (Kapheim
338 etal., 2015) identified 13 TF motifs with associations between binding strength and social

339  complexity. Nine of those 13 motifs were also detected above as enriched within specialist DAPs
340  or DEG regulatory regions (p=0.015, hypergeometric test of overlap), and 6 of those 9 are

341  binding sites for TFs included in the above individualized GRNs. Along with TF module

342  correlation and behaviorally-predictive TF expression, these results highlight a set of 15 TFs as
343  compelling candidates in social plasticity and evolution, with significant associations in at least 3
344  of'the 5 analyses (Figure 5; Table 1). The 15 TFs have functions related to known mechanisms
345  associated with social behavior, including brain development (Hamilton et al., 2016), JH

346  signaling (Woodard et al., 2011), and chromatin changes via histone acetylation (Simola et al.,

347 2015).
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Discussion

Uncovering the regulatory mechanisms involved in behavioral plasticity is important to
fully understand how behavioral phenotypes develop and evolve. We used automatic behavioral
tracking and genomics to uncover the role of brain GRN activity in the extensive behavioral
variation observed in colonies of laying worker honey bees. We discovered that continuous
phenotypic variation is associated with continuous variation in both brain gene expression and
brain chromatin accessibility, and that TF activity is predictive of behavioral phenotype at the
individual level. These results provide new mechanistic insights into the important role played by
brain GRNSs in the regulation of behavioral variation, with implications for understanding the
mechanisms and evolution of complex traits.

Our high-dimensional behavioral data revealed a near continuous distribution of
phenotypes along an axis of egg-laying and foraging, two behaviors that are typically expressed
separately in the queen and worker castes of honey bee colonies. Consistent with previous
reports of ovary activation in queenless colonies (Page and Erickson, 1988; Sakagami, 1954),
over half of workers tracked laid eggs. Some of these workers also engaged in foraging,
consistent with the observations of Naeger et al. (2013), which supports the suggestion that some
laying workers are not “selfish” reproducers but engage in activities that may benefit the colony
as a whole. We also showed a decoupling between ovary status and behavior for some
individuals, unlike what has been observed in many other social insect species (Barth et al.,
1975; Michener, 1974; Wilson, 1971). Two-thirds (14/21) of the foragers had activated ovaries,
but most laid eggs infrequently or not at all, demonstrating that ovary activation alone is not a
strong predictor of exactly which individuals will lay eggs. This decoupling of reproductive
physiology from reproductive behavior is consistent with the evolutionary co-option of
reproductive signaling pathways for non-reproductive behaviors, a phenomenon well
documented in honey bees (Tsuruda et al., 2008; Graham et al., 2011; Page et al., 2012). Given
previous demonstrations of cross-talk between peripheral tissues and brain gene networks in the
honey bee (Ament et al., 2012; Wheeler et al., 2013), our results further suggest that behavioral
variation in queenless workers likely involves the coordinated actions of multiple tissue types,

including the ovary.
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378 Like the task specialization observed in typical, queenright colonies of honey bees and
379  many other social insects (Oster and Wilson, 1979), the majority of individuals in LW colonies
380 showed consistency in performance of either egg-laying or foraging, but not both. It is important
381  to note that genetic variation may contribute to individual differences in behavior (Page and

382  Robinson, 1991; Page and Robinson, 1994). However, the induction of egg-laying behavior in
383  queenless colonies is itself a plastic response, suggesting that at least for egg-laying and

384  generalist individuals, a combination of hereditary and environmental factors likely influence the
385  development of these behavioral phenotypes. Task specialization can contribute to increased

386 efficiency in social insects, either through learning or reduction of task switching costs

387  (Holldobler and Wilson, 1990; Jeanson et al., 2008; Trumbo and Robinson, 1997; c.f. Dornhaus,
388  2008). In queenless colonies of honey bees, specialization along a reproductive/non-reproductive
389  axis may lead to increased production of haploid males prior to the death of workers, with

390  specialized foragers collecting food for these developing drones while specialized egg-layers

391  work to produce thousands of drones synchronously in these terminal colonies (Page and

392  Erickson, 1988). These findings suggest that LW honey bees may display a form of colony

393  organization that is adaptive, as opposed to one of chaos and competition, which has long been
394  thought to characterize LW colonies (Morse, 1990; Ratnieks et al., 2006; Ratnieks and

395  Wenseleers, 2008; Dadant & Sons, 1975; Wenseleers and Ratnieks, 2006). Worker derived

396  drones have viable sperm (Genger and Kahya, 2011) and therefore may provide a permanently
397  queenless honey bee colony with a final fitness opportunity if the males can successfully mate
398  with queens. It is difficult to evaluate this hypothesis because the incidence of permanently

399  queenless colonies is not known in natural populations of honey bees. However, production of
400  drones by workers in LW colonies is similar to that observed in bumble bees, where worker

401  competition over male production is a normal part of the colony cycle after queen death (Cnaani
402  etal., 2002; Free, 1955), or even prior to queen death in some species (Velthuis and Duchateau,
403  2011).

404 Consistent with many other studies of behavior and brain gene expression across animal
405  species (e.g., Bukhari et al., 2019; Mello et al., 1992; Whitfield et al., 2003), we identified robust
406  brain transcriptional signatures associated with specific behavioral states. Beyond these group
407 level differences, we also discovered that large components of this molecular variation were

408  correlated with behavior, and both behavior and brain gene regulatory activity were continuous
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409  across bees. Our finding that both brain gene expression and chromatin accessibility vary

410  continuously with behavioral phenotype suggests that behavioral plasticity is subserved by

411  continuously varying molecular programs, rather than threshold-based or quantized changes.
412 At the individual bee level, changes in the expression of TFs, accessibility of TF motifs
413  in enhancers and promoters, and activity of TF module target genes were all strongly associated
414  with behavioral state. This is highlighted by the results of our predictive analysis, where 97% of
415  specialists were accurately predicted to phenotype based on TF expression alone, despite the
416  small number of TFs relative to all differentially expressed genes. Spatial and temporal

417  integration of discrete events such as TF binding, aggregated at the whole brain level and across
418  TFs and genes, may lead to the continuous variation we observed in gene expression and

419  chromatin accessibility (e.g., Araya et al., 2014).

420 In addition to predicting the collective behavioral phenotypes of individual bees, our
421  analysis of GRNs allowed us to probe the influence of TF module activity on single behaviors.
422  We identified a set of 23 TF modules that were associated with all aspects of behavior and

423  physiology we measured. These TFs appear to coordinate sets of behaviors that are not overtly
424 linked (e.g., proportion of nectar foraging trips and number of eggs laid) but may be influenced
425 by the same regulatory machinery. Three of these modules are activated by TFs downstream of
426  JH, a hormone with numerous well-studied roles in social insect behavior, including the

427  regulation of oogenesis in queens and age-related division of labor in workers (Amdam et al.,
428  2008; Hamilton et al., 2017; Page et al., 2012). Our results are consistent with a role of JH

429  signaling in queenless colonies of worker honey bees, regulating a behavioral division of labor
430  between specialized egg-layers and foragers. These findings match previous work describing
431  differences in JH titers between egg-laying workers and foragers in queenless colonies

432 (Robinson et al., 1992), and suggest that mechanisms underlying variation in egg-laying

433  behavior may be similar to nurse/forager differences in queenright colonies. Overlap in brain
434  gene expression profiles between nurses and egg-layers further supports this conclusion.

435 By combining our analysis of GRNSs in individual bees with motif enrichment in gene
436  regulatory regions across individuals, we identified a set of 15 TFs which appear to play a key
437  role in regulating specialist behavioral phenotypes (Figure 5). Intriguingly, many of these TFs
438  were also identified as relevant for social evolution, with increases in TF motif presence in gene

439  promoters of social compared with solitary species of bees (Kapheim et al., 2015). We observed
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440  especially strong overlap of these evolutionarily-implicated TFs and those with motif enrichment
441  within differentially expressed genes or differentially accessible chromatin of specialist

442  phenotypes. This suggests that regulatory regions that arise during evolutionary transitions to
443  eusociality may be maintained and even further refined for the regulation of specialized

444  subcastes in social species. In contrast, comparatively little overlap was seen when comparing
445  evolutionarily-implicated TFs with TFs whose expression was most predictive of specialist

446  behavioral phenotypes. This mismatch between TF expression and motif presence may reflect
447  the complexity of GRNs, where genetic and epigenetic landscapes modulate the effects of TF
448  activity. Alternatively, these results may reflect differences in the mechanisms underlying intra-
449  vs. interspecific variation in social behavior. Further research exploring the role of these TFs and
450  their activity in a range of contexts is needed to provide clarity on these results.

451 While behavioral specialization appears to be common among members of queenless

452  honey bee colonies, the finding of even a small number of generalist bees who perform both egg-
453  laying and foraging has intriguing implications. The presence of these generalists suggests that
454  despite the long divergence from a solitary ancestor (~85 my, Branstetter et al., 2017), honey

455  bees retain great flexibility for performance of multiple behaviors that are typically confined to
456 either the queen or worker caste. Latent plasticity in social insects that is inducible under extreme
457  conditions is also seen in morphologically and temporally defined worker subcastes under

458  queenright conditions (Robinson, 1992; Simola et al., 2015; Wilson, 1980). Generalists showed
459  high variation in behavior, and similarly were difficult to predict phenotypically based on TF

460  activity, unlike specialists. Further, brain GRN activity in these individuals was less defined,

461  with fewer TF modules showing significant up- or down-regulation in generalist individuals

462  compared with specialists. Combined with PCA on brain gene expression and chromatin

463  accessibility, these findings suggest that generalists are molecularly intermediate between

464  specialized groups.

465 Our discovery of intermediate generalist phenotypes in laying worker colonies, along

466  with their molecular signatures, provides support for one of the leading theories of eusocial

467  evolution, the Ovarian Ground Plan Hypothesis (OGPH). The OGPH posits that the emergence
468  of queen and worker castes from solitary ancestors involved the genetic decoupling of

469  reproductive and non-reproductive behavioral programs through changes in gene regulation

470  acting on ancestral plasticity (Gadagkar, 1997; Turillazzi and West-Eberhard, 1996; West-
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471  Eberhard, 1987). The phenotypic continuum we observed in laying worker colonies, with both
472  reproductive and non-reproductive specialists as well as generalists, suggests that this decoupling
473  process is at least partially reversible and/or incomplete in honey bees, unlike in eusocial species
474  where workers lack reproductive anatomy and corresponding behaviors entirely (e.g., ants and
475  higher termites). Additionally, molecular characterization of this behavioral variation, especially
476  our TF analyses, supports the hypothesis that incremental changes in gene regulatory network
477  activity led to the decoupling of solitary behavioral programs into distinct queen and worker

478  castes. This hypothesis is consistent with previous research linking changes in TF activity with
479  social evolution (Kapheim et al., 2015, 2020). If correct, this hypothesis provides a framework
480  for understanding the evolution of eusociality at the molecular level.

481

482  Materials and Methods

483  Bees and colony setup

484 Source colonies

485 Honey bee colonies were maintained according to standard beekeeping practices at the
486  University of Illinois Bee Research Facility in Urbana, Illinois. One-day-old adult worker bees
487  were obtained by removing sealed honeycomb frames of late-stage pupae from source colonies
488 in the field and housing them in an incubator inside emergence cages at 34 °C and 50% relative
489  humidity. Bees were removed from frames daily to collect adults less than 24 hours old.

490 Prior to establishing the colonies of barcoded bees, 16 source colonies were screened for
491  worker egg-laying (“laying worker”, LW) potential by stocking Plexiglas cages with 50-100 one-
492  day-old workers and holding them in queenless, broodless conditions. Cages contained small

493  pieces of 3D-printed honeycomb (similar to Fine et al., 2018) to provide a standardized location
494  for workers to lay eggs, as well as 50% sucrose solution and pollen paste (45:45:10 ratio by

495  weight of pollen, honey, and water) provided ad libitum and refreshed daily. Cages were

496  monitored daily to count eggs. We found, as in other studies, variation in the timing and extent of
497 LW development among different source colonies (Fig. 2 — figure supplement 3), reflecting the
498  effect of genotypic and/or environmental differences on laying worker potential (Miller III and
499  Ratnieks, 2001; Page and Robinson, 1994; Robinson et al., 1990; Velthuis, 1970). When

500 possible, source colonies were chosen from among those screened that displayed high levels of

501  worker egg-laying in cages within 14 days.
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502 To reduce genetic variation among bees used for sequencing, experimental colonies D-F
503  were established from a mix of two source colonies each headed by a queen of either Apis

504  mellifera ligustica or Apis mellifera carnica origin who had been artificially inseminated with
505 semen from a single drone (SDI) (queen rearing and inseminations performed by Sue Cobey,
506 Honey Bee Insemination Service; Washington State University; US stocks of bees are primarily,
507  but not completely ligustica or carnica). Experimental colonies A-C were established from

508 naturally mated, Apis mellifera ligustica source colonies. Honeycomb frames of late-stage pupae
509  were removed from source colonies and maintained in an indoor incubator. Worker bees were
510 collected from these frames each day to obtain 0-24 hr old individuals for barcoding. A total of
511 800 bees were used for each experimental colony, collected and barcoded over 1-2 days upon
512  eclosion (Supplementary File 10).

513 Barcoding bees
514 Bees were tagged with “bCode” barcodes as in Gernat et al. (2018). Unique sets of

515 bCodes were used to differentiate bees barcoded on different days, as well as to differentiate bees
516 from different source colonies in colonies D-F. To attach bCodes to bees, workers were

517  anesthetized on ice and then positioned using soft forceps (BioQuip, Compton, CA). A small

518 drop of Loctite Super Glue Gel Control (Henkel, Diisseldorf, Germany) was applied to the center
519  of'the thorax of each bee, followed by a bCode positioned with its left and right edge parallel to
520 the anteroposterior axis of the bee. Bees were carefully placed in plastic dishes until they

521  recovered from cold anesthetization, at which point the glue was dry. After waking, all bees were
522 placed in a large container with Fluon®-coated walls (Insect-a-Slip, BioQuip) where honey was
523  provided ad libitum until placement into a custom observation hive, described below. At the end
524  of each barcoding day, bees were carefully transferred into the observation hive.

525

526  Behavioral tracking

527 Hive monitoring

528 Barcoded bees were housed in a glass-walled observation hive with a one-sided plastic
529  honeycomb frame, as in Gernat et al. (2018). Bees were unable to access the back side of the

530 honeycomb, and could exit the hive through a plastic tube to the outside. Colonies were

531 maintained in a dark room with a heater and humidifier that kept the room at approximately 32°C

532  and 50% relative humidity.

17


https://doi.org/10.1101/2020.09.09.289272
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.289272; this version posted December 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

533 Infrared light (not visible to bees) was used to illuminate the hive from both the front and
534  back while capturing hive images. Images were acquired at one-second resolution with a
535  monochrome Prosilica GX6600 machine vision camera (Allied Vision, Stadtroda, Germany) fitted
536  with a Nikkor AF 135 mm /2 D DC prime lens (Nikon, Minato City, Japan). Additional details
537  about image acquisition can be found in Gernat et al. (2018). Images were saved to a redundant
538 array of independent disks, then copied onto a computing cluster (Biocluster, UIUC) for analysis
539  after the end of each experimental recording period.

540 Entrance monitoring

541 Colonies of barcoded bees were given access to the outside via a tube connected through
542 an exterior wall of the Bee Research Facility to an entrance equipped with an automated flight
543  activity monitor as in Geffre et al. (2020). This monitor included a maze to slow down incoming
544  and outgoing bees, and a Raspberry Pi camera (5 megapixel v1.3, Adafruit, New York, NY) that
545  imaged the maze twice per second from 07:00 until 19:00 daily. The camera was controlled by a
546  Raspberry Pi 2B computer running the Raspian 8 operating system. Images were acquired using
547  the raspistill program and the following options: -n -ISO 400 -w 2593 -h 1400 -cfx 128:128 -x
548  none -¢ jpg -q 90 -tl 500 -t 595000 -bm.

549  Barcode detection

550 Barcodes were detected in hive images as in Gernat et al. (2018) and filtered to facilitate
551  subsequent behavioral analyses. Filtering involved removal of potential tracking errors, including
552  removal of barcodes that did not pass read error correction. In addition, records for barcodes that
553  were read twice in the same image were removed, as were hive image records of the same barcode
554  identified more than 5 cm/second between successive detections, which are likely to be
555  misidentifications. An average of 94.51% of detections remained after these filtering steps (range
556  across colonies: 91.94-97.11%). Finally, the time of death of each bee was estimated using the last
557  time she was observed for at least 4 minutes during a 5-minute window above the third row of
558  honeycomb cells from the bottom of the hive; dead bees tend to accumulate below this level prior
559  to being removed by other bees (Gernat et al., 2018). Records for bees following their time of
560 death were filtered out so behavioral scores (below) were calculated only over times in which bees
561  were alive.

562 In entrance monitor images, barcodes were similarly detected as in hive images, but with

563  parameters adjusted for images produced by the Raspberry Pi camera. Fast-moving bees were not
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564 filtered out in entrance images, because bees do move quickly through the entrance monitor and
565  due to the relatively small number of bees that fit into the maze, spurious fast movement due to

566  bCode decoding errors is unlikely.

567  Egg-laying detector
568 Annotated image library

569 Hive images from three experimental colonies and across 12 different days were used for
570  manual annotation of egg-laying events. The software Fiji (Schindelin et al., 2012) was used to
571  mark the bCode positions of all workers laying eggs in an initial set of 1500 hive images, followed
572 by an additional set of 782 images, each annotated by three independent observers. After the initial
573 identification of egg-laying bees in these images, the two seconds before and after each egg-laying
574  event were also annotated for those bees. Bees not marked as laying eggs with visible bCodes were
575  considered non-egg-laying for training of the CNN, below.

576 CNN training and performance estimation

577 Two convolutional neural networks (CNNs) were trained on the annotated egg-laying
578  images, using TensorFlow™ (Abadi et al., 2016). Methods are described fully in Gernat et al.
579  (2020) and are presented briefly here. The first CNN used images cropped to include just a small
580 rectangular region behind the barcode of each bee. For egg-laying bees, these images show the
581  honeycomb, because their abdomen is backed into the comb and thus not visible. For non-layers,
582  these images show the abdomen. The CNN was trained to differentiate between these two cases.
583  The second CNN was applied to images of bees that were identified as potential egg-layers by the
584  first CNN. It used slightly larger images that showed the entire bee and was trained to use
585 information about the bee’s posture and her immediate surroundings to identify false positives,
586  which were subsequently filtered out.

587 Application of a CNN to an image results in a score between 0 and 1 that reflects the
588 likelihood of that image showing the event of interest. Deciding whether a score is sufficiently
589  high for assuming that the event took place involves thresholding that score. To choose thresholds
590 for each CNN score and a minimum egg-laying duration, a calibration set of images, which were
591 not used for training the CNNs, was used to estimate the performance of the egg-laying detector
592 for different threshold combinations. Thresholds were chosen from this calibration set to maximize
593 the detector’s positive predictive value, then were applied to an independent test set of images that

594  had also never been seen by the detector to obtain unbiased performance values. Based on the
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595 performance estimation on the test set of images, the egg-laying detector had the following
596  performance: 99.71% accuracy, 35.39% sensitivity, 100% specificity, 100% positive predictive
597  value, and 99.71% negative predictive value. Minimizing false positives came at a cost to
598  sensitivity, but bees who lay eggs will likely do so more than once over the course of the
599  experiment and can thus still be identified as egg-layers (honey bees possess multiple ovarioles,
600  each of which can develop eggs simultaneously (Hess, 1942)). Egg-laying detections were further
601  aggregated into events: subsequent detections that occurred within 10 seconds and 11.2 mm (the
602  width of two honeycomb cells) of one another were assumed to belong to the same egg-laying

603  event and were merged.

604  Filtering and annotation of entrance data

605 Raw detections of bees in the entrance were filtered as in Geffre et al. (2020). Briefly, a
606 bee must traverse at least one-third the distance of the entrance monitor to be counted, and
607 traversals that occurred within 10 seconds of each other were merged into a single event. These
608  traversal events were then determined to be incoming or outgoing based on the positional
609  coordinates of the bee at the start and end times of each event. Numbers of foraging trips
610  (Supplementary File 1) was inferred from series of outgoing and incoming events.

611 Incoming foraging trips were additionally annotated with trophallaxis data to determine
612  whether a forager likely returned with nectar. CNNs trained to identify pairs of bees engaged in
613  trophallaxis as well as the direction of trophallaxis (i.e., which bee was donor and which was
614  recipient; Gernat et al., 2020) were used to annotate incoming trips for all bees. Parameters used
615  for the detector resulted in the following performance metrics based on test images: 88.7%
616  sensitivity, 99.6% specificity, 90.4% positive predictive value, 99.6% negative predictive value,
617  and 88.9% accuracy in determining trophallactic role (donor or receiver) of each bee. If a bee was
618 a trophallaxis donor within 5 minutes after returning from a trip (Seeley, 2009), with no
619  trophallaxis reception prior to the donation, that foraging trip was annotated as a nectar trip.
620  Additionally, incoming trips were manually annotated for pollen on the hindlegs of returning bees
621  for colonies D-F. Combining these nectar and pollen data for each trip, the proportion of foraging
622  trips with nectar (“p.nectar”), pollen (“p.pollen”) or both (“p.both”) were calculated per bee in

623  these colonies.
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624  Specialist and generalist scores

625 In order to characterize the activity of egg-laying and foraging for each bee, two behavioral
626  scores were created. The “specialist” score describes how specialized an individual was on either
627  egg-laying (scores near -1) or foraging (scores near +1) relative to other bees in the colony; bees
628  that consistently performed both egg-laying and foraging, or that performed neither behavior, have
629  specialist scores near 0. The generalist score ranges from 0 to 1 and describes the degree to which
630 an individual performed both egg-laying and foraging behaviors, differentiating bees with
631  specialist scores near 0 based on the performance (or not) of egg-laying and foraging. Scores were
632  created by first counting the number of egg-laying and foraging events per day. Bees were then
633  ranked for each behavior relative to other bees in the colony on the same day, with tying ranks
634  being assigned the minimal rank (e.g., if three bees were tied between the 4™ and 8" ranked bees,
635 they all received a rank of 5). Ranks were then normalized by dividing by the maximum rank, so
636 that all ranks were in the range [0,1]. The normalized rank space for each bee (i.e., normalized
637 egg-laying rank and normalized foraging rank) was then mapped to behavioral scores (and
638  corresponding color space) using the following formulae in polar coordinates (p,©) on the two-
639  dimensional rank space: generalist score = (1/2)p?sin*20, specialist score= sin(©-m/4)p*cos*20.
640  Note that the numerical value of the scores has no biological meaning, but is simply a mapping

641  from rank space to the space of colors as shown in Figure 2- figure supplement 1.

642  Selection of bees for sequencing

643 The median of specialist and generalist scores was weighted to emphasize the latter part of
644  the experiment; days 15-21 received a weight of 1-7, respectively, and each day’s score was
645  multiplied by this weight. These scores were used to characterize the overall behavior of each bee
646 in the colony. The rank approach allowed for normalization across days with different overall
647  levels of activity in the colony, and the median score across days provides an overall assessment
648  of'the lifetime behavior of each bee. These weighted median scores were used to rank all bees, and
649  the top ranking specialists and generalists from two colonies were selected for brain RNA
650 sequencing (RNAseq) and Assay for Transposase-Accessible Chromatin using sequencing
651  (ATACseq). Scores for each sequenced bee (n=45, 25 from colony E, 20 from colony F), as well
652 as total numbers of detected egg-laying and foraging events per bee, are provided in

653  Supplementary File 2.
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654 To examine variation in behavior within and among groups, principal component analysis
655 (PCA) was performed on the following set of behavioral traits (see also Supplementary File 2):
656 number of eggs laid, number of foraging events, proportion of trips with evidence of nectar
657  collection, proportion of trips with evidence of pollen collection, and proportion of trips with
658  evidence of both nectar and pollen. PCA was performed in R using the prcomp function and plotted

659  using the ggplot2 package.

660  Tissue dissection and homogenization

661 At the end of behavioral tracking, bees were collected from each colony and stored at -
662  80°C. All colonies were collected between 21:00-23:00 to ensure foragers were inside the hive.
663  For bees selected for sequencing, abdomens of each bee were carefully removed on dry ice and
664  incubated for 16 hours at -20°C in RNA-later ICE (Life Technologies, Carlsbad, CA). Ovaries
665  were imaged and assessed for ovary development using a 1-5 scale adapted from (Hess, 1942) to
666  assign an ovary score; a score of 3-5 indicates ovary activation. These dissections confirmed that
667  egg-layers and generalists had activated ovaries, while many foragers did not. Ovary scores, as
668  well as number of ovarioles as determined from dissections, are given in Supplementary File 2.
669 The head of each bee was freeze-dried at 300 milliTorr for 55 minutes, and whole brains
670  were removed from the head capsule in a dry ice ethanol bath (Schulz and Robinson, 1999).
671  Dissected brains were stored individually in 1.5 mL microcentrifuge tubes at -80°C until
672  extractions.

673 Brains were individually homogenized in 150 pL phosphate buffered saline (1X PBS,
674  Corning, Corning, NY, cat. #21-040-CV) with protein inhibitor complex (PIC, Complete Tablets,
675  EDTA-free Protease Inhibitor Cocktail from Roche, Basel, Switzerland, cat. #04693132001) using
676  a motorized pestle for 20 seconds. 50 pL of this homogenate was then pipetted into 450 pL cold
677  PBS+PIC and placed on ice for ATAC-seq library preparation (see below). The remaining 100 pL
678  homogenate was mixed with 500 pL RLT buffer (Qiagen, Hilden, Germany) with 1% pB-
679  mercaptoethanol for use in the Qiagen RNeasy Mini Kit RNA extraction protocol (see below).

680  RNAseq library preparation and sequencing
681 Whole brain RNA was extracted from the 600 pL homogenate in RLT buffer after an
682  additional 30 second homogenization following the Qiagen RNeasy Mini Kit protocol, including

683  a DNase (Qiagen) treatment to remove genomic DNA. RNA quantities were determined for each
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684  sample using a Qubit RNA HS Assay Kit (Invitrogen, Carlsbad, CA). High RNA integrity for all
685  samples was confirmed with Bioanalyzer 2100 RNA Pico chips (Agilent, Santa Clara, CA) prior
686  to library preparation.

687 RNAseq libraries were constructed and sequenced by the W.M. Keck Center for
688  Comparative and Functional Genomics at the Roy J. Carver Biotechnology Center (University of
689  Illinois at Urbana-Champaign). Libraries were constructed from 500 ng RNA per sample using the
690 TruSeq Stranded mRNA HT kit (Illumina, San Diego, CA) on an ePMotion 5075 robot
691  (Eppendorf, Hamburg, Germany). Libraries were uniquely barcoded, quantified, and pooled for

692  sequencing across 6 lanes with 100 nt single-end sequencing on the Illumina HiSeq 4000.

693  ATACseq library preparation and sequencing

694 The 500 pL tissue homogenate was additionally homogenized by aspirating through a 20
695  gauge needle followed by a 23 gauge needle 5 times each. Samples were centrifuged at 500g for
696 5 minutes at 4°C. Supernatant was removed, and cells were resuspended in 50 uL cold PBS+PIC.
697 15 pL of this cell suspension (approximately 1/10™ of the total brain, ~100k cells) was placed into
698  anew microcentrifuge tube, and this was centrifuged at 500g for 5 minutes at 4°C as an additional
699  cell washing step. Supernatant was removed, and cells were gently resuspended in 50 pL cold lysis
700  buffer prepared as in Buenrostro et al. (2015). The remainder of the ATACseq library protocol
701  followed Buenrostro et al. (2015), with the exception of the final purification step, where a 0.8:1
702 ratio of Ampure XP beads (Beckman Coulter, Brea, CA) to sample was used to purify each library.
703  In addition to sample libraries, input libraries were constructed from thoracic genomic DNA from
704 arandom bee from each colony per sequencing batch using 50 ng of genomic DNA (extracted
705 using the Gentra Puregene Tissue Kit from Qiagen, cat. #158667, following manufacturer’s
706  protocol for DNA purification from 25 mg tissue but with 6 pL proteinase K and 4 uL RNase A
707  at the appropriate steps). Genomic DNA was transposed with Nextera Tn5 Transposase (Nextera
708  Kit, Illumina) following the ATACseq protocol immediately following the cell lysis step
709  (Buenrostro et al., 2015), again using an 0.8:1 Ampure XP bead clean-up at the end of the protocol.
710 A Qubit dsDNA HS Assay Kit (Invitrogen) was used to quantify each library, and library size and
711 quality was assessed using a Bioanalyzer High-Sensitivity DNA Analysis kit (Agilent).

712 ATACseq libraries, including input libraries, were pooled at equal nM concentrations and
713  a bead clean-up (0.8:1 ratio of Ampure XP beads to sample) was performed on the pool prior to

714  submission for sequencing. QC on the final pool was performed using qPCR and an AATI
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715  Fragment Analyzer by the Keck Center. Libraries were sequenced across three lanes with 100 nt

716  paired-end sequencing on the Illumina HiSeq 4000 by the Keck Center.

717  Data processing and analysis

718 RNAseq
719 Sequencing of RNAseq libraries (n=45, 25 from colony E, 20 from colony F) produced

720  1,487,641,973 reads which survived quality and adapter trimming using Trimmomatic (version
721 0.36, parameters used: ILLUMINACLIP: 2:35:30 LEADING:20 TRAILING:20 MINLEN:30).
722 Trimmed reads were aligned to the Apis mellifera HAv3.1 genome (NCBI accession
723  GCA _003254395.2) using STAR (version 2.5.3) and default parameters, resulting in an average
724 0f96.7% reads mapping uniquely. The program featureCounts from the Subread package (version
725  1.5.2) was used to assign mapped reads to gene features from the GFF file from NCBI associated
726  with the A. mellifera HAv3.1 genome. On average, 84.8% of uniquely mapped reads were assigned
727  to gene features using featureCounts.

728 Gene counts were imported into R for differential expression analysis using edgeR. Genes
729  with less than 1 CPM in at least 2 samples were removed, and remaining count values were
730  normalized using the TMM method. Gene-wise variances were calculated by estimating tagwise
731 dispersions in edgeR on filtered gene count matrices for each group separately and plotted using
732 ggplot2. Tagwise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise
733 comparison of groups, with FDR correction for multiple testing. Differentially expressed genes

734  (DEGs, FDR<0.05) for each pairwise comparison are given in Supplementary File 3.

735 ATACseq
736 ATACseq libraries (n=48, 25 from colony E, 20 from colony F, 3 input libraries) produced

737  1,110,401,018 paired-end reads which survived quality and adapter trimming using Trimmomatic
738  (version 0.38, parameters used: ILLUMINACLIP: 2:15:10 HEADCROP:10 LEADING:20
739  TRAILING 20 SLIDINGWINDOW:4:15 MINLEN:30). An average of 98.1% of reads mapped to
740  the Apis mellifera HAv3.1 genome using bwa mem (version 0.7.17, default parameters).
741 Duplicates were marked and removed prior to further processing using picard (version 2.10.1,
742 average duplication level 30.2%).

743 Peaks were called from deduplicated BAM files using MACS2 (version 2.1.1, command:
744 callpeak, with parameters: --nomodel -g 2.5e8 --nolambda --keep-dup all --slocal 10000) using the

745  appropriate colony and sequencing batch input as control. Peaks were called on each colony and
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746  behavioral group separately, then merged and sorted using BEDTools (version 2.26.0, sort and
747  merge commands). This resulted in a total of 11,614 merged peaks with an average width of 721
748  bp. Mapped reads were counted to each peak per individual using featureCounts from the Subread
749  package (version 1.5.2). An average of 51.0% of reads were mapped to called peaks.

750 Peak counts were imported into R for differential accessibility analysis using edgeR. Peaks
751  with less than 1 CPM in at least 2 samples were removed, and remaining count values were
752  normalized using the TMM method. Gene-wise variances were calculated by estimating tagwise
753  dispersions in edgeR on filtered gene count matrices for each group separately and plotted using
754  ggplot2. Tagwise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise
755  comparison of groups, with FDR correction for multiple testing. Differentially accessible peak

756  (DAP, FDR<0.05) results for each pairwise comparison are given in Supplementary File 4.

757  Functional annotation of differential expression and chromatin accessibility

758 Differential expression

759 Differentially expressed gene (DEG) lists were functionally annotated using Gene
760  Ontology (GO) by first mapping putative orthologs between Apis mellifera and Drosophila
761  melanogaster using reciprocal best BLASTP hits (e-value cutoff = 1e-5). Only DEGs with putative
762  D. melanogaster orthologs were included for GO enrichment, and the background list used was all
763  tested genes (those which passed the minimum expression threshold) with putative D.
764  melanogaster orthologs. Enrichment tests for biological processes were conducted using GOrilla
765  (Eden et al., 2009) with all significant DEGs (FDR<0.05) against the background list. GO
766  enrichment results for all DEG lists are given in Supplementary File 3.

767 Differential accessibility

768 To functionally annotate DAPs, the midpoint coordinate of the 11,614 peaks identified with
769  MACS2 were assigned to genes based on proximity to honey bee gene features (Apis mellifera
770  HAv3.1 genome). The following features were considered per gene: promoters (1 kb upstream),
771  introns, exons, 5° UTR, 3 UTR, upstream (10 kb upstream), and downstream (10 kb). Peaks not
772 associated with any gene feature were classified as intergenic. When peaks were associated with
773 multiple genes (e.g., the intron of one gene and the promoter of another), they were assigned to
774  individual genes based on the following priority: promoter (highest priority), exon, 5° UTR, 3’
775  UTR, intron, upstream, downstream (lowest priority). If a peak was present in the same highest

776  priority class for multiple genes, it was randomly assigned to one gene. In this way, each peak was
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777  assigned to either a single gene or considered intergenic. Of the 11,614 peaks, 1822 were assigned
778  to the promoter region of a gene, 776 to exons, 1326 to 5° UTRs, 273 to 3° UTRs, 4666 to introns,
779 1155 to upstream regions, 773 to downstream regions, and 823 peaks were located in intergenic
780  regions.

781 As before with GO enrichment for DEGs, differentially accessible peaks (DAPs) were
782  functionally annotated by mapping peak-associated genes to putative orthologs in D. melanogaster
783  using BLASTP. The background list for enrichment analyses was the list of peaks which met the
784  minimum accessibility count threshold for analysis and which had putative orthologs in D.
785  melanogaster. GOrilla (Eden et al., 2009) was used for enrichment tests. GO enrichment results

786  for all DAP lists are given in Supplementary File 4.

787  Motif enrichment of DAPs and DEG regulatory regions

788 Transcription factor (TF) motif enrichment analysis in this study was performed similarly
789  to the methods described in Whitney et al. (2014). The overall approach is as follows, with details
790  below. For each TF motif, 1) genomic windows were scored for the presence of the motif, 2)
791  window scores were combined into scores for genomic segments of interest, representing either
792  gene regulatory regions or accessibility peaks, 3) a set of motif targets was created using a fixed
793  cutoff on the segment scores, and 4) a statistical test for enrichment was performed between
794  segments that were motif targets and those that were significant in differential analysis.

795 Motif scores for genomic windows

796 First, we divided the honey bee genome (version HAv3.1, NCBI accession
797  GCA _003254395.2) into 500 bp windows with 250 bp shifts. We gathered a collection of 223
798 representative TFs (Kapheim et al., 2015) and downloaded their DNA binding specificities
799  (motifs) characterized as position weight matrices (PWMs) from FlyFactorSurvey (Zhu et al.,
800  2011). Separately for each TF motif, we ran the Stubb algorithm (Sinha et al., 2003) on all genomic
801  windows to score them for the presence of that TF’s binding sites. Tandem repeats in the windows
802  were masked using the Tandem Repeat Finder (Benson, 1999) before calculating the Stubb scores
803  to avoid scoring the repeats as weak binding sites. Since the honey bee genome has significant
804  local G/C heterogeneity (Sinha et al., 2006), we converted the raw Stubb scores for each window
805 into G/C content-normalized empirical p-values. This was done by determining the rank of each

806  window among all genomic windows of similar G/C content (when grouped into 20 G/C bins).
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807 Scores for genomic segments

808 We defined two different collections of genomic segments (accessibility peaks and gene
809 regulatory regions) to analyze with motif enrichment in this study. Since the genomic segments
810  may overlap with a variable number of our genomic windows, we defined a length-adjusted motif
811  score for each segment. This score was calculated using the score of the best scoring window in

812  that segment for the given motif and the number of windows overlapping the segment, as follows:
813 SCseg = 11— (] -pvalbest)N

814  where scseg = length-adjusted motif score for the segment, N = number of windows that overlap
815  with the scoring window, and pvalpest = best G/C normalized empirical p-value among the N

816  overlapping windows.

817 Statistical test for TF enrichment

818 TF enrichment was analyzed for two sets of regions: DAPs (Differentially Accessible
819  Peaks) and DEGs (Differentially Expressed Genes) (Supplementary File 7).

820 For analysis of DAPs, the collection of genomic segments was defined as the combination
821  of all DAPs and randomly selected non-accessible parts of genome that had the same distribution
822  oflengths as those DAPs. The number of randomly selected genomic segments was set to 10 times
823  the number of DAP segments. For each motif, the top 200 scoring segments from the collection
824  were defined as the TF motif target set. Hypergeometric p-values were calculated for each motif-
825  DAP set pair (Supplementary File 7) to quantify the significance of the overlap between the
826  corresponding TF motif target set and DAP set.

827 For DEGs, the collection of genomic segments was the regulatory regions of all genes in
828  the honey bee annotation. Each regulatory region was defined as Skb upstream to 2kb downstream
829  of the transcriptional start site of its gene (http://veda.cs.uiuc.edu/beeMotifScores/). The top 500
830  scoring segments from the gene universe were selected as the TF motif target set for each motif.
831  Finally, the significance of the overlap for each motif-DEG set pair (Supplementary File 7) was
832  calculated with the Hypergeometric p-value.

833 All p-values were then converted to g-values using the “qvalue” function in the R software
834  package qvalue (Storey et al., 2019) to control the false discovery rate from multiple hypothesis
835  testing.
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836 For motifs enriched both within DAPs and DEG upstream regions, CentriMo (Bailey and
837  Machanick, 2012) from MEME Suite was used to calculate and plot the probability of motif
838  binding across 2 kb windows centered on the peak summit for DAPs and 7 kb windows (5kb
839  upstream and 2kb downstream of the transcriptional start site (TSS)) for DEGs. These probabilities
840  are shown in Fig. 3B-C.

841  Individualized Gene Regulatory Network (GRN) analysis

842 To understand how TFs orchestrate transcriptional changes in the brain, we reconstructed
843  a gene regulatory network (GRN) model using the ASTRIX approach (Chandrasekaran, 2014;
844  Chandrasekaran et al., 2011). ASTRIX uses gene expression data to identify interactions between
845  TFs and their target genes. The ASTRIX algorithm has been previously used to infer brain GRN
846  models for various organisms including the honey bee (Bukhari et al., 2017; Saul et al., 2017,
847  Shpigler et al., 2017). These models showed significantly high accuracy in predicting gene
848  expression changes in the brain and identified TFs that regulate social behaviors.

849 Here we applied ASTRIX using the gene expression data of the 45 individual bees along
850 with a list of honey bee TFs as input to identify regulatory interactions. We normalized the
851 transcriptomics data prior to GRN construction using the ComBat algorithm (Johnson et al., 2007)
852  to minimize batch and colony effects in the data. The effectiveness of the normalization was
853  checked using PCA. Any TF predicted to interact with a given target gene by ASTRIX had to pass
854  through two criteria: 1) share a significant degree of mutual information with the target gene (p-
855  value < 10), and 2) explain at least 10% of the variance of the target gene, quantified by Least
856  angle regression algorithm. Similarly, each target gene included in the GRN must be predicted
857  with a correlation of at least 0.8 by the ASTRIX model using expression levels of TFs.

858 The GRN model built by ASTRIX predicted 2,190 genes with a Pearson’s correlation of
859 0.8 or higher using expression levels of TFs. Overall, the GRN inferred by ASTRIX contains 4,500
860 interactions between 190 TFs and the 2,190 target genes. The full GRN is in Supplementary File
861 8.

862 To determine TFs correlated with specific behaviors, we first identified genes that were
863  strongly correlated with specific behavior scores across all individuals (FDR p-value of correlation
864  <0.001). TFs whose targets were over-represented among the behavior-correlated genes were then
865 determined. Significance of the overlap between the list of behavior-correlated genes with targets

866  of each TF (“TF module”) was estimated using the hypergeometric test.

28


https://doi.org/10.1101/2020.09.09.289272
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.289272; this version posted December 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

867 Finally, to identify TF modules associated with expression changes in each individual
868  (“Individualized TF modules™), genes that were upregulated or downregulated in each individual
869  were identified using z-transformation. Genes in each individual with z-scores above 2 (i.e., 2
870  standard deviations above mean) or below -2 were considered to be differentially expressed in an
871 individual. This list of genes was then overlapped with TF modules to identify modules
872  significantly associated with each individual using the hypergeometric test of overlap.

873 We used a Random Forests classification algorithm for predicting individual behavioral
874  group from TF expression levels. A leave-one-out cross validation analysis was performed wherein
875 the algorithm was trained using data from the remaining 44 individuals and then used to predict
876  the behavior of the 45™ individual using its TF levels. The model achieved an accuracy of 82% in
877  predicting behavior. Performance of the model was evaluated by comparison with random
878  shuffling of the behavior labels. We made predictions 100 times with a different set of shuffled
879 labels and compared the accuracy of predictions (i.e., total individuals for which behavioral group
880  was correctly predicted) between the random model and the Random Forest algorithm using a t-
881 test (p=1 x 10®*). This suggests that TF expression levels can accurately forecast the behavior of
882 the individual, especially for specialists. The relative importance of each TF in predicting behavior
883  was determined using Out-of-bag predictor importance estimation, wherein each predictor’s value
884 is permuted and the corresponding impact on model accuracy is determined (importance scores
885 given in Supplementary File 8). The random forest classification algorithm was implemented in
886 MATLAB with default parameters for the number of predictors sampled (square root of the
887  number of predictors, in this case 258 TFs) and default values for the tree depth (n - 1, where n is

888 the training data size).

889  Selection of candidate TFs involved in specialized phenotypes

890 Candidate TFs displayed in Fig. 5 were drawn from multiple analyses presented in this
891  paper and in Kapheim et al. (2015). “Enriched within DAPs” indicates enrichment of the TF motif
892  within forager vs. layer DAPs from the analysis of ATACseq data within this manuscript (see
893  Motif enrichment of DAPs and DEG promoters and Supplementary File 7). Similarly, “Enriched
894  near DEGs” indicates enrichment of the TF motif among putative regulatory regions of forager vs.
895 layer DEGs (see Motif enrichment of DAPs and DEG promoters and Supplementary File 7).
896  “Module correlated with behavior” indicates that TF module activity is significantly correlated

897  with at least one behavioral metric across individuals (see Individualized Gene Regulatory
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898  Network (GRN) analysis and Supplementary File 8). “Group Predictive TF” indicates the TF is
899 among the 20 most informative for predicting individual group membership based on TF
900 expression (see Individualized Gene Regulatory Network (GRN) analysis and Supplementary File
901  8). “Implicated in eusocial evolution” indicates that the TF motif was previously found to be
902  associated with social evolution in Kapheim et al. (2015).
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Table 1. Description of 15 candidate TFs regulating specialist behavioral phenotypes in Fig. 5.

Names given are for Drosophila melanogaster motifs (Zhu et al. 2011), with homology to honey

bee genes as in Kapheim et al. (2015). Function summaries are adapted from D. melanogaster

gene annotations from FlyBase (release FB2020 05; FlyBase Consortium et al., 2019). Note that
terms related to “regulation of transcription” apply to most TFs but were omitted for brevity.

Motif | TF name Function(s)

CwWo clockwork orange circadian regulation of gene expression; dendrite morphogenesis

tai/met | taiman, Mondo ecdysone receptor co-activator; lipid and carbohydrate metabolism

side sidestep, E(spl)mgamma-HLH pattern specification; neurogenesis; neuronal stem cell maintenance

h hairy cell morphogenesis; tracheal system development; cellular metabolism

sr stripe central nervous system development

max Max cell and organismal growth

dpn deadpan adult locomotory behavior; neuroblast development

usf Usf [unknown]
dorsal-ventral patterning; activin receptor signaling; eye

med Medea morphogenesis; germ-line stem cell division and maintenance; neuron
development

opa odd paired embryogenesis; midgut devellop.ment_; adult head morphogenesis;
neural stem cell development; circadian rhythm

bab1 bric a brac 1 pattern formation; ovary morphqgengss; abdominal pigmentation;
olfactory receptor neuron fate diversity

deaf1 Deformed epidermal autoregulatory factor-1 | embryo development; regulation of immune response

crebA Cyc//c_:-AMP response element binding salivary gland development; cuticle development

protein A

sug sugarbabe regulates expression of |n§uI|n-I|ke peptides and genes involved in lipid

and carbohydrate metabolism
. cell migration; response to ecdysone; germ cell development;

usp ultraspiracle - . .

metamorphosis; mushroom body development; neuron remodeling
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1222 Figure 1. Automated monitoring of behavior in queenless colonies of laying worker honey bees.
1223 (A) Automatic behavior monitoring was performed inside the hive and at the hive entrance to
1224  predict egg-laying and foraging events in six colonies (N=800 bees per colony at the start of each
1225  trial). Hive images were captured 1/s for 24 h/day, and entrance images 2/s for 12 h/day

1226  beginning when adult bees were 15 days old. (B) Proportion of bees alive each day categorized
1227  as layers (purple), foragers (green), generalists (orange), or others (gray). For colonies A-C,

1228  individuals were from single source colonies headed by a naturally mated queen. For colonies D-
1229  F, individuals from two source colonies headed by queens each inseminated by semen from a
1230  single different drone (single drone inseminated, SDI) were mixed. Different source colonies are
1231  indicated by pattern and hue. (C) Ethograms for three individuals selected for sequencing

1232 (bCodes shown below group labels) across three days of tracking. (D) Distribution of ovary

1233 scores for individuals selected for sequencing. Insets are images from bees with ovary scores of
1234 1,3, and 5. L: layer, G: generalist, F: forager.
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Figure 2. Patterns of brain gene expression and chromatin accessibility are associated with
behavior. (A) Daily rank-normalized behavior of individuals (rows) selected for brain RNAseq
and ATACseq analysis converted to 2D colorspace from specialist and generalist scores. (B)
Principal Component Analysis (PCA) of behavioral variation for individuals chosen for brain
RNAseq and ATACseq analysis. Metrics included number of eggs laid, number of foraging
events, proportion of foraging trips with evidence of nectar collection, proportion of trips with
evidence of pollen collection, and proportion of trips with evidence of both nectar and pollen
collection. (C) Euler diagram for overlaps of pairwise differentially expressed genes (DEGs)
between behavioral groups. Note that one gene was overlapping between F vs. G and G vs. L
(but not F vs. L) and is not represented in the diagram due to graphical constraints. (D) Euler
diagram for overlaps of genes proximal to pairwise differentially accessible chromatin peaks
(DAPs) between behavioral groups. (E) PCs from PCA of brain transcriptomic profiles regressed
against specialist score (PC1: R?=0.947, p<0.0001; PC2: R?>=0.838, p<0.001). (F) PCs from PCA
of brain chromatin accessibility regressed against specialist score (PC2: R?=0.584, p<0.001;
PC3: R?=0.543, p<0.0001; PC4: R>=0.187, p<0.0045; PC1: p>0.05). L: layer, G: generalist, F:
forager.
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1256  Figure 3. Differences in TF activity and TF motif occurrence are associated with specific

1257  behavioral phenotypes. (A) Circos plot representing a subset of significant correlations between
1258  behaviors (top) and expression of TF modules (bottom). Lines connecting behaviors with TF
1259  modules indicate significant associations. TF modules included are those mentioned in the main
1260  text or in other figures, and five of nine traits are included for simplicity. All significant

1261  correlations between behaviors and TF modules are given in Table S8. For behaviors, p indicates
1262  proportion (e.g., p(pollen) is the proportion of returning foraging trips where the bee carried
1263  pollen). (B) Motifs enriched within DAPs show maximum binding probabilities near peak

1264  summits. (C) Motifs enriched in promoter regions of forager>layer DEGs show elevated binding
1265  probabilities ~3kb upstream of and overlapping TSSs. Motif names and sequences are from

1266  FlyFactor (Zhu et al. 2011) for Drosophila melanogaster.
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Figure 4. TF module activity and TF expression predict individual variation in behavior. (A) TF
modules (rows) with significant up/downregulation in at least 10 individuals, sorted by
hierarchical clustering. Individuals (columns) are ordered by specialist score, with darkly colored
blocks indicating correctly classified individuals based on TF expression prediction analysis and
lightly colored blocks indicating incorrect classification. TF modules showed patterns of
differentiation between L and F, while G were more variable in module activity. Labeled
modules are those with TFs shown in panel (B) or discussed in text. (B) Class prediction analysis
based on brain TF expression correctly classified all but one specialist (L: layer, F: forager) but
only one generalist (G). Normalized expression (logCPM) of 4 of the top 20 informative TFs for
class prediction analysis are shown (others in Fig. 4 — figure supplement 1). Median of points is
represented by bold horizontal line within shaded 95% confidence interval, with length of shape
and smoothed curve showing range and density of data, respectively.
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Figure 5. Fifteen candidate TFs predicted to regulate egg-laying and foraging behavior based on
evidence across analyses (descriptions of categories in Materials and methods). Names given are
for Drosophila melanogaster motifs (Zhu et al. 2011), with homology to honey bee genes as in
Kapheim et al. (2015). Color of bar in first two columns indicates whether there was stronger
enrichment among forager-biased (green) or layer-biased (purple) peaks or genes.
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1315  Figure 2- figure supplement 1. Formulae and color-space mapping for specialist (left) and
1316  generalist (right) behavioral scores.
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1334

1335  Figure 2- figure supplement 2. Daily behaviors of individual bees (rows) across time in each
1336  colony. Colored rectangles indicate specialist and generalist scores represented in 2D color space
1337  as shown in legend. Individuals are sorted by median lifetime specialist score. Single-drone

1338 inseminated (SDI) queen source is shown to the right of each row for colonies D-F, where

1339  workers were known offspring of two SDI queens per colony. In colonies A-C workers were
1340  offspring of naturally mated queens.
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1343  Figure 2- figure supplement 3. Smoothed average egg counts for laying workers in laboratory
1344  cages. Solid lines indicate bees from source colonies headed by a naturally-mated queen, while
1345  dashed lines indicate bees from source colonies headed by queens instrumentally inseminated
1346  with semen from a single drone (SDI). Colonies used as sources for behavioral tracking included
1347 W28, W2, R25, and R45.
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1359  Figure 2- figure supplement 4. Histogram (bars) and density (lines) of normalized (logCPM)
1360  gene expression for genes with (dark gray) and without (light gray) nearby peaks of chromatin
1361  accessibility. Distributions are significantly different (p<0.0001, Kolmogorov-Smirnov test).
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1383  Figure 3- figure supplement 1. Network of 23 TFs with module expression significantly
1384  correlated with 9 behavioral and physiological metrics (see Supplementary File 2) measured
1385 across individuals. Edges indicate known interactions based on MIST database for Drosophila
1386  melanogaster. First-order PPI indicates one intermediate protein between linked nodes, while
1387  second-order PPI indicates two intermediate proteins. PPI = protein-protein interaction.
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1394

1395  Figure 4- figure supplement 1. Normalized expression (logCPM, scaled to a maximum of 1 to
1396  allow for comparison across TFs) of the top 20 most informative TFs for class prediction

1397  analysis plotted against individual specialist score. Points are colored by behavioral group

1398  (Layer: purple, Generalist: orange, Forager: green). Although some of the top predictors

1399  individually show weak correlation with specialist score, the random forest machine learning
1400  algorithm combined multiple weak predictors together in a single model to accurately classify

1401 the three behavioral groups, suggesting the TFs act combinatorially to influence behavior.
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1409  Supplemental Files
1410  Supplementary File 1: Daily egg-laying counts, foraging counts, specialist scores, and

1411  generalist scores for individual bees
1412 Supplementary File 2: Detailed behavioral and physiological information for sequenced bees

1413 Supplementary File 3: Differentially expressed genes (DEGs) and Gene Ontology (GO)

1414  enrichment of DEGs for each pairwise comparison of specialists and generalists

1415  Supplementary File 4: Differentially accessible peaks (DAPs) and Gene Ontology (GO)

1416  enrichment of DAPs for each pairwise comparison of specialists and generalists

1417  Supplementary File 5: Lists of genes with upper and lower 5% of PC loadings for gene

1418  expression and Gene Ontology (GO) enrichment results

1419  Supplementary File 6: Lists of genes with upper and lower 5% of PC loadings for chromatin
1420  accessibility and Gene Ontology (GO) enrichment results

1421  Supplementary File 7: TF motif enrichment of DAPs and DEGs

1422  Supplementary File 8: Predicted gene regulatory network (GRN), GRN module correlations
1423  with behavior and physiological measurements, and importance scores of TFs from class

1424  prediction analysis
1425  Supplementary File 9: Overlaps and statistics for comparative gene expression datasets

1426  Supplementary File 10: Details of experimental setup for recorded colonies
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