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31  We present a densely-sampled phylogenomic study of the mulberry tribe (Moreae,

32  Moraceae), an economically important clade with a global distribution, revealing multiple
33 losses of inflexed stamens, a character traditionally used to circumscribe Moreae. Inflexed
34  stamens facilitate ballistic pollen release and are associated with wind pollination, and the
35  results presented here suggest that losses of this character state may have evolved

36  repeatedly in Moraceae. Neither Moreae nor several of its major genera (Morus, Streblus,
37  Trophis) were found to be monophyletic. A revised system for a monophyletic Moreae is
38  presented, including the reinstatement of the genera Ampalis, Maillardia, Taxotrophis, and
39  Paratrophis, and the recognition of the new genus Afromorus, based on Morus subgenus
40  Afromorus. Pseudostreblus is reinstated and transferred to the Parartocarpeae, and

41  Sloetiopsis is reinstated and transferred to the Dorstenieae. The tribe Olmediae is reinstated,
42  replacing the Castilleae, owing to the reinstatement of the type genus Olmedia, and its

43  exclusion from Moreae. Streblus s.s. is excluded from Moreae and transferred to the

44  Olmediae, which is characterized primarily by involucrate inflorescences without regard to
45  stamen position. Eight new combinations are made.

46

47  Keywords: Moraceae, mulberry family; Moreae, Olmedieae, Castilleae, Parartocarpeae,
48  Afromorus, Ampalis, Bagassa, Maillardia, Milicia, Morus, Olmedia; Pachytrophe,

49  Paratrophis, Pseudostreblus, Sloetiopsis; Sorocea, Streblus, Taxotrophis, Trophis.

50

51

52  Introduction

53 The preservation of plesiomorphic (ancestral) characters can result in species that
54 are similar in appearance but distantly related, connected only by a remote common

55  ancestor. The mulberry family (Moraceae Gaudich., seven tribes, ca. 39 genera and 1,200
56  species) illustrates this principle well. Inflexed stamens in bud—an adaptation to wind

57  pollination that allows explosive pollen dispersal when flowers open—were traditionally
58  used to define a tribe of the family, the Moreae (mulberries and their allies). Yet

59  phylogenetic analyses have revealed that inflexed stamens, an ancestral feature of both

60  Moraceae and their sister family_Urticaceae (nettles), have been lost repeatedly (Clement &
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61  Weiblen, 2009). Thus, for example, Cecropiaceae C.C. Berg, traditionally distinguished
62  from the nettle family by the absence of inflexed stamens, is in fact embedded within the
63  Urticaceae Juss. (Berg, 1978; Clement & Weiblen, 2009). Likewise, while mulberries

64  (Morus L.), paper mulberries (Broussonetia L’Hér. ex Vent.), and osage oranges (Maclura
65  Nutt.) were once treated as tribe Moreae Gaudich. on account of their inflexed stamens,
66  phylogenetic analyses reveal them to belong to three distinct clades, each containing an
67  assemblage of genera with and without inflexed stamens (Clement & Weiblen, 2009;

68  Zerega & Gardner, 2019).

69 This study focuses on the tribe Moreae, a clade of six genera and an estimated 66
70  species (Clement & Weiblen, 2009). This widespread group of plants contains species of
71  ecological and cultural importance, as well as the economically important white mulberry
72 (Morus alba L.), whose leaves sustain Bombyx mori L. (Bombycidae), the invertebrate

73 proletariat of the silk industry.

74

75  Morphological basis for higher classification in Moraceae

76 By the end of the nineteenth century, Engler (1889) had circumscribed a Moraceae
77  that is quite similar to the modern concept of the family, with two subfamilies: the

78  Moroideae, comprising tribes Dorstenieae Gaudich., Broussonetieae Gaudich., Fatouae

79  Engler, Moreae, and Strebleae Bureau, characterized by stamens inflexed in bud (broadly
80  construed, including Dorstenia where they straighten gradually rather than spring outward
81  suddenly); and the Artocarpoideae, composed of tribes Brosimae Trécul, Euartocarpeae
82  Trécul, Ficeae Dumort., and Olmedieae Trécul and characterized by stamens straight in
83  bud. The two most influential scholars of Moraceae classification in the 20th century were
84 E.J.H. Corner and C.C. Berg. Corner considered inflorescence architecture to be the most
85  important character for higher-rank taxonomy within the family and inflexed stamens

86  consequently of secondary importance(Corner, 1962). Berg by contrast questioned the

87 utility of inflorescence architecture and took into account a variety of characters, especially
88  the presence of inflexed stamens (Berg, 1977b, 2001).

89 The taxonomic history of the family has leaned heavily on this stamen character.

90  Engler’s Moreae (1899), unchanged in substance from Bureau’s (1873), contained six
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91  genera, Ampalis Bojer, Pachytrophe Bureau, Paratrophis Blume, Pseudomorus Bureau,
92  and Morus, all with inflexed stamens that spring out suddenly at anthesis (Table 1).
93  Corner’s expanded Moreae consisted of seven genera with either straight or inflexed
94  stamens, but with pistillate inflorescences never condensed into a head: Fatoua Gaudich,
95  Morus, Sorocea A. St.-Hil. (apparently including Paraclarisia Ducke), Clarisia Ruiz &
96 Pav., Ampalis, Pachytrophe, and Streblus Lour. (including Bleekrodea Blume, Paratrophis,
97  Pseudomorus, Taxotrophis Blume, Sloetiopsis Engl. and Neosloetiopsis Engl.). Corner
98  himself, however, found the diversity of his Moreae unsatisfactory, noting that “[tJoo many
99  genera on insufficient and invalid grounds trouble this small tribe” (Corner, 1962). Perhaps
100  inresponse, Berg’s Moreae comprised all of the genera with inflexed stamens and none
101  without, including Broussonetia and Maclura but excluding Sorocea and Clarisia,
102  providing a simple character with which to delimit the tribe(Berg, 2001; Berg & al., 2006).
103 Recent phylogenetic work has supported a third approach, with the Moreae
104  comprising six genera, including genera with both straight (Sorocea, Bagassa Aubl.) and
105 inflexed (Broussonetia, Maclura) stamens (Clement & Weiblen, 2009). These studies also
106  suggest that the character state of inflexed stamens is plesiomorphic and is the ancestral
107  state for both Moraceae and Urticaceae (Datwyler & Weiblen, 2004; Zerega & al., 2005;
108  Clement & Weiblen, 2009). Inflexed stamens, which are precursors to ballistic pollen
109 release, are associated with wind pollination (Bawa & Crisp, 1980; Berg, 2001), while the
110  loss of inflexed stamens is associated with animal pollination. Although dominant in the
111  Moreae, inflexed stamens also occur in two other tribes: Maclureae W.L. Clement & G.
112 Weiblen and Dorstenieae. Genera lacking inflexed stamens occur in all seven tribes of
113 Moraceae (Clement & Weiblen, 2009; Zerega & Gardner, 2019).
114
115  Taxonomic summary of Moreae
116 Following Clement & Weiblen (2009), the Moreae comprise six genera and an
117  estimated 66 species: Bagassa (1), Milicia Sim (2), Morus (16), Sorocea (16), Streblus
118  (23), and Trophis P. Browne. (8) (Berg, 1977a, 2001; Berg & al., 2006; Clement &
119  Weiblen, 2009; Filho & al., 2009; Machado & al., 2013; Santos & Neto, 2015). Here, we
120  present an overview of these genera.
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Morus L., the true mulberries, is characterized by leaves with crenate margins and
trinerved bases, stamens inflexed in bud, and many-flowered pistillate spikes whose four-
parted perianths become fleshy in fruit, the aggregations superficially resembling a
blackberry. Morus comprises approximately 16 species whose delimitation requires further
research. There are three subgenera: Morus (ca. 14 species) which is found in temperate to
tropical Asia and from North America to Mexico; Gomphomorus Leroy, a single species
restricted to tropical South America; and Afromorus (Bureau ex Leroy), a single species
restricted to tropical Africa. Previous phylogenetic work has suggested that these three
subgenera may not form a monophyletic clade (Nepal, 2012). Milicia (2 spp., Africa) has
inflorescences which somewhat resemble those of Morus, but the leaves of Milicia, with
entire margins and pinnate venation, prevent any confusion of the two genera.

Streblus Lour., with 23 species from India to Southeast Asia and Oceania, is
morphologically heterogeneous, but its species are all characterized by stamens inflexed in
bud and pistillate flowers with more or less free tepals that enclose the fruit loosely or not
at all. Initially described by Loureiro based on the widespread S. asper Lour.—notable for
its discoid-capitate staminate inflorescences with the rudiments of an involucre—Streblus
was broadened by Corner (1962), bringing in as sections Taxotrophis, Phyllochlamys
Bureau, Paratrophis (including Pseudomorus), Pseudostreblus Bureau, Bleekrodea, and
Sloetia Teijsm. & Binn. (apparently including Sloetiopsis but without making any
combinations). None of these have discoid-capitate inflorescences; they mostly have
spicate staminate inflorescences, and the latter two can have bisexual inflorescences.
Corner viewed these sections as fragments of an ancient lineage preserving ancestral
characters (Corner, 1975). Following additional work by Corner (1970, 1975), Berg
included the genera Ampalis and Pachytrophe as section Ampalis (Bojer) C.C. Berg,
subsumed Sloetiopsis and section Taxotrophis into section Streblus, and excluded section
Bleekrodea, reinstating it as a genus (Berg, 1988). Berg later reinstated section Taxotrophis,
whose species are unique in bearing axillary spines (Berg, 2005; Berg & al., 2006). In
2009, Clement and Weiblen reinstated Sloetia at generic rank and transferred it and

Bleekrodea to Dorstenieae based on phylogenetic evidence (Clement & Weiblen, 2009).
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150 Trophis P. Browne is characterized by stamens inflexed in bud, spicate staminate
151 inflorescences, and tubular pistillate perianths, becoming fleshy and enclosing the fruit,
152  except for the monotypic section Olmedia (Ruiz & Pav.) C.C. Berg (T. caucana), which has
153  discoid-capitate staminate inflorescences with an involucre. Trophis (regrettably conserved
154  over Linnaeus’s Bucephalon L.) as recognized by Berg (1988, 2001) had five sections:

155  Trophis, restricted to Latin America; Calpidochlamys (Diels) Corner (previously included
156  in Paratrophis and Uromorus), restricted to Southeast Asia (Corner, 1962); Maillardia
157  (Frapp. ex Duch.) C.C. Berg, restricted to Africa; Malaisia (Blanco) C.C. Berg, restricted to
158  Southeast Asia; and Olmedia, restricted to Latin America. The sinking of Olmedia into
159  Trophis by Berg (1988), requiring the re-typification of the tribe Olmedieae Trécul, which
160  became Castilleae C.C. Berg. Recently, Malaisia Blanco was reinstated as a genus and

161 transferred to Dorstenieae based on phylogenetic evidence (Clement & Weiblen, 2009),
162  reducing the current number of sections to four.

163 Two Neotropical genera included in Moreae by Clement and Weiblen (2009) but
164  not by Berg (2001) have straight stamens. While the monotypic Bagassa Aubl., with its
165 long staminate catkins, is wind pollinated (Bawa & Crisp, 1980), evidence suggests that
166  Sorocea A. St.-Hil. (19 spp.), which produces racemose staminate inflorescences that do
167  not have as many flowers as those of Bagassa, likely contains both wind- and insect-

168  pollinated species (Zapata & Arroyo, 1978; Bawa & al., 1985; Lewis, 1986). The pistillate
169  perianths are subtended by pluricellular hairs, believed to serve as a substrate for a fungus
170  which, in turn attracts pollinators (Berg, 2001). The staminate flowers of Sorocea affinis
171 Helmsl. are apparently fragrant (fide S. Zona 778, 21 Nov. 1997, FTBGZ Q), suggesting
172 insect pollination for that species. If insect pollination is confirmed in Sorocea, it would
173 likely represent another transition from ancestral wind to derived insect pollination in

174  Moraceae.

175 Disagreement between the two principal recent monographers of the Moraceae,
176  Corner (1962) and Berg (2001, 2005, 2006), over the delimitation of the Moreae has been
177  compounded by a series of phylogenies based on the analysis of molecular (DNA

178  sequence) data that have redefined genera and their relationships. This has resulted in a

179  poorly delimited tribe, both with respect to diagnostic morphological characters, the genera
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180 it comprises, and the rank of several taxa (see above). Ensuring that the tribe and its genera
181  are monophyletic will result in a classification that better reflects evolutionary history,

182  providing a framework for answering broader scientific questions. Our aim, therefore, was
183  to generate a comprehensive phylogeny of the Moreae (Fig. 1) and its near allies by

184  sampling all of the potential genera and species in the tribe sensu Berg, and sensu Clement
185 & Weiblen (2009) and use this to redelimit the tribe and its genera. We aimed to do so

186  through increased taxon and genome sampling compared to previous studies, including a
187  nearly comprehensive sample of the taxa in Moreae (56/66 species) and the allied tribes
188  Artocarpeae (76/83 taxa) and Maclureae (12/12). Our data set combines phylogenomic data
189  generated using two largely non-overlapping sets of enrichment baits, one developed

190  specifically for the Moraceae (Gardner et al., 2016), the other for the whole of the

191  Angiosperms (Johnson & al., 2019), allowing us to explore the possibilities and challenges
192  of combining samples based on largely non-overlapping loci. The resulting generic revision
193  lays the groundwork for species-level revisionary work and provides clarity to this

194  economically important clade.

195 We also set out to reconstruct the evolutionary history of inflexed stamens within
196  Moraceae using ancestral state reconstruction. The loss of inflexed stamens in

197  Castilleae+Ficeae and Artocarpeae have been associated with transitions from wind to

198  animal pollination (Momose & al., 1998; Sakai & al., 2000; Datwyler & Weiblen, 2004;
199  Gardner & al., 2018). A more complete picture of evolutionary transitions between inflexed
200 and straight stamens may help focus further research on transitions in pollination biology

201  with Moraceae.

202
203  Materials and Methods
204 We used target enrichment sequencing (HybSeq) (Weitemier & al., 2014) to capture

205 333 genes previously developed for phylogenetic work in Moraceae (the “Moraceae333”)
206  (Gardner & al., 2016; Johnson & al., 2016). This method allows for efficient capture of
207  hundreds of loci and is suitable for both fresh material and degraded DNA from herbarium
208  material (Villaverde & al., 2018; Brewer & al., 2019), which comprises much of the

209  material employed in this study.
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210

211  Taxon sampling, library preparation, and sequencing

212 We sampled 56 out of 66 species (and all genera) in Moreae as well as select outgroup
213  taxa from Artocarpeae using DNA from leaf tissue preserved on silica gel or—in most

214 cases—samples from herbarium specimens (Table S1). In either case, DNA was extracted
215  using a modified CTAB method, usually with increased incubation times to maximize yield
216  from herbarium tissue(Doyle & Doyle, 1987; Hale & al., 2020). Samples were quantified
217  using a Qubit fluorometer (Invitrogen, Life Technologies, California, USA), and herbarium
218  samples were run on a gel to test for degradation. For most samples 200 ng of DNA was
219  used for library preparation; for some low-yield samples, as little as 50 ng was used, and for
220  very degraded samples, as much input as possible was used, up to 400 ng. Undegraded

221  DNA was fragmented either using NEB DNA Fragmentase (New England Biolabs,

222 Ipswich, Massachusetts, USA) or on a Covaris M220 (Covaris, Wobum, Massachusetts,
223  USA). DNA samples with an average fragment size less than 500 bp were not fragmented
224 atall, and partially-degraded samples with an average fragment size of over 500 bp were
225  fragmented on the Covaris M220. TruSeq-style library preparation was carried out using
226  either the KAPA Hyper Prep kit (Kapa Biosystems, Wilmington, MA) or the NEB DNA
227  Ultra 2 kit following the manufacturer’s protocols, except that end repair, A-tailing, and
228  adapter ligation were carried out in reduced-volume reactions (0.25x for KAPA and 0.5x
229  for NEB) to reduce costs. Final products were quantified on the Qubit and combined in

230  equal molecular weights into pools of 16—-20 samples. The pools totaled 1,200 pg each if
231  enough library preparation was available. Pools were hybridized for 16—24 hours to custom
232 Moraceae probes (Gardner et al, 2016) using a MY Baits kit (Arbor Biosciences, Ann

233  Arbor, Michigan, USA) following the manufacturer’s protocol, except that the probes were
234 diluted 1:1 with nuclease-free water. Hybridization products were reamplified using KAPA
235 Hot Start PCR reagents following the MY baits protocol, quantified on the Qubit, and

236  quality-checked on an Agilent BioAnalyzer (Agilent Technologies, Palo Alto, California,
237  USA). Samples with adapter dimer peaks were cleaned using 0.7x SPRI beads and re-run
238  onthe Qubit and BioAnalyzer. An initial sequencing run took place on a MiSeq 2 x 300bp
239  run (v3) (lllumina, San Diego, California, USA) at the Field Museum of Natural History,
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240  and then additional samples were sequenced on a HiSeq 4000 2 x 150bp run at the

241  Northwestern University Genomics Core.

242 We also included 47 Moraceae and Urticaceae samples enriched for the

243  Angiosperm353 probes and sequenced as part of the Plant and Fungal Trees of Life project
244  (PAFTOL, RBG Kew; https://www.kew.org/science/our-science/projects/plant-and-fungal-
245  trees-of-life; Table S1). Sample preparation and sequencing followed Johnson et al. (2019).
246  The PAFTOL samples were enriched with a universal probe set developed for angiosperms
247  (the “Angiosperms353”).

248 Finally, we used samples sequenced for previous phylogenetics projects in Artocarpus
249  J.R. Forst. & G. Forst. and Parartocarpeae Zerega & E.M. Gardner to complete our

250  sampling (Johnson & al., 2016; Gardner, 2017; Kates & al., 2018; Zerega & Gardner,

251  2019). The final dataset contained 247 samples.

252
253  Assembly of reads
254 We trimmed reads using Trimmomatic (ILLUMINACLIP: TruSeg3-PE.fa:2:30:10

255 HEADCROP:3 LEADING:30 TRAILING:25 SLIDINGWINDOW:4:25 MINLEN:20)
256  (Bolger & al., 2014) and assembled them with HybPiper, which produces gene-by-gene,
257  reference-guided, de novo assemblies (Johnson & al., 2016). For the samples enriched with
258  the Angiosperms353 baits, we used the reference described by Johnson et al. (2019), and
259  for the samples enriched with the Moraceae333 baits, we used the reference described in
260  Zerega & Gardner (2019). To increase overlap between the two data sets beyond the 5

261  genes they inherently have in common, we used HybPiper to assemble the

262  Angiosperms353-enriched reads using the Moraceae333 targets and vice-versa, in order to
263  capture any additional genes found in off-target reads. The exception was most of the

264  Artocarpus data set, which was previously assembled for another study using only the

265  Moraceae333 targets. We used the HybPiper script “intronerate.py” to build “supercontig”
266  sequences for each gene, consisting of exons as well as any assembled flanking non-coding
267  sequences (intronic or intergenic). To these new assemblies, we added 76 Moraceae333
268  assemblies from Gardner (2017) to complete sampling for the Artocarpeae.

269
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270  Main phylogenetic analyses

271 The full data set was analyzed using the “exon” sequences to ensure good alignment
272  across the entire family. To maximize phylogenetic resolution within Moreae, a smaller
273  data set consisting only of Moreae taxa and a single outgroup taxon (Artocarpus

274 heterophyllus) was analyzed using the “supercontig” sequences but following the same

275  methodology. For each of the 686 genes assembled, we discarded sequences shorter than
276 25% of the average length for the gene and discarded genes containing sequences for less
277  than 30 samples. We aligned each gene with MAFFT (Katoh & Standley, 2013)and used
278  Trimal (Capella-Gutiérrez & al., 2009) to discard sequences with an average pairwise

279  identity of less than 0.5 to all other sequences in the alignment (indicative of poor a poor
280  quality sequence that could not be properly aligned) as well as columns containing more
281  than 75% gaps. We used RAXML 8.2.4 (Stamatakis, 2014) to estimate a maximum-

282  likelihood tree for a partitioned supermatrix of all genes as well as for each gene

283 individually (GTRCAT model, 200 bootstrap replicates). We then used ASTRAL-III

284  (Zhang & al., 2017), a summary-coalescent method, to estimate a species tree from all gene
285 trees, estimating node support using both bootstrap (160 replicates, resampling across and
286  within genes) and local posterior probability (normalized quartet scores, representing gene
287  tree concordance). Finally, we used ASTRAL-III to test whether, for each node, the null
288  hypothesis of a polytomy could be rejected (Sayyari & Mirarab, 2018). Alignment,

289  trimming, and estimation of gene trees were parallelized using GNU Parallel (Tange,

290  2018).

291

292  Whole chloroplast phylogenetic tree

293 We also built a whole-chloroplast phylogenetic tree as follows. Rather than

294 assembling full-length genomes, which can be extremely slow to align, we assembled and
295 aligned the genomes in sections, dramatically speeding up the process. We created

296  HybPiper targets using the chloroplast genome of Morus indica L. (NCBI RefSeq accession
297  no. NC_008359.1) and the associated gene annotations. Each target consisted of a gene
298  feature concatenated with any internal or subsequent non-coding sequence, terminating one

299  base before the next gene feature began. These intervals were generated by manually
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300 editing the NCBI gff3 file in Excel (Microsoft Corp., Redmond, Washington, USA) and
301 then extracted using BedTools (Quinlan & Hall, 2010). Assemblies for all Moraceae

302  samples and Boehmeria nivea (L.) Gaudich. were carried out in HybPiper using a coverage
303  cutoff of 2 and otherwise with default parameters. Within each target, sequencing less than
304  25% of the average length were discarded, and after alignment with MAFFT, sequences
305  with an average pairwise identity of less than 0.7 were discarded (the higher cutoff

306 reflecting the conserved nature of chloroplast DNA). Alignments were then concatenated
307 into a supermatrix, and samples with more than 50% undetermined characters were

308 discarded. Alignments were then rebuilt, filtered, and concatenated, and columns in the
309 final supermatrix with more than 75% missing characters were discarded. A maximum-
310 likelihood tree was generated using RAXML 8.2.4 under the GTRCAT model, with 200
311  rapid bootstrap replicates.

312

313  Phylogenetic network analysis

314  To further investigate relationships within the Paratrophis clade, including the proper

315  placement of Morus insignis and Trophis philippinensis (Bureau) Corner, we constructed
316  phylogenetic networks based on two reduced 8-taxon datasets (“exon” and “supercontig”)
317  consisting of those taxa plus Streblus anthropophagorum (Seem.) Corner, S. glaber (Merr.)
318  Corner, S. glaber subsp. australianus (C.T. White) C.C. Berg, and S. heterophyllus (Blume)
319  Corner, with S. mauritianus (Jacg.) Blume as the outgroup. Alignment preparation followed
320 the workflow outline above except that only genes with sequences for all eight taxa were
321 retained. Rooted gene trees were used to infer the network in PhyloNet using the

322  “InferNetwork MPL” command, allowing a maximum of four hybridization events and
323  collapsing gene tree nodes with less than 30% bootstrap support (Yu & Nakhleh, 2015;
324  Wen & al., 2018) (Wen et al., 2018; Yu and Nakhleh, 2015); AIC was scored for the best
325  five networks from 10 runs, using the number of branch lengths and hybridization events
326  calculated as the number of parameters (Kamneva & al., 2017).

327

328 ITS and rbcL phylogenetic trees

11
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329 While we did not have our own sequences for Streblus tonkinensis (Eberh. & Dubard)
330 Corner, S. ascendens Corner, S. banksii (Cheeseman) C.J. Webb, and S. smithii

331  (Cheeseman) Corner, either ITS or rbcL sequences existed in NCBI GenBank for these taxa
332  (Fig. S2). We were not able to examine the underlying specimens ourselves, but we

333  considered the chances of misidentification low because those species are morphologically
334  and/or geographically distinctive. We constructed ITS and rbcL data sets from our own

335  samples using HybPiper, using Streblus sequences for these loci (obtained from GenBank)
336 as targets and reducing the coverage cutoff at 2 to recover the loci from off-target reads. To
337  these sequences, we added GenBank sequences of Streblus taxa as well as Trophis caucana
338  (Pittier) C.C. Berg. For each locus, we aligned sequences with MAFFT, discarded short
339  sequences (<490 bp), trimmed alignments to remove columns with over 75% gaps, and

340  Dbuilt maximum-likelihood trees using RAXML (GTRGAMMA, 1000 rapid bootstraps).
341

342  Divergence time estimation

343 The supermatrix maximume-likelihood tree was time calibrated using ape v 5.3

344  (Paradis & Schliep, 2019) in R v 3.5.1 (Team, 2019). First, the tree was pruned of duplicate
345 taxa and non-Moraceae outgroup taxa, and edge lengths (in substitutions per site) were

346  multiplied by the number of sites in the alignment (to convert them to substitutions). The
347  following stem nodes were constrained with minimum ages (in million years, Ma) based on
348  fossil data, following(Zhang & al., 2019): Ficus, 56 Ma; Broussonetia, 33.9 Ma; Morus
349  (subg. Morus, based on U.S.S.R. locality of the fossil), 33.9 Ma; and Artocarpus, 64 Ma.
350  The crown node of Moraceae was constrained to a minimum age of 73.2 Ma and a

351  maximum age of 84.7 Ma.(Zhang & al., 2019), which had a more extensive outgroup

352  sampling that we have here. The tree was then time-calibrated using the chronos function
353  under two different models (“relaxed” and “correlated”) (Kim & Sanderson, 2008; Paradis,
354  2013). The smoothing parameter (1) was chosen using the cross-validation method in the
355  chronopl function (testing A = 0 and 0-s through 1015), selecting the value of A that

356  minimized the cross-validation statistic (Sanderson, 2002). The resulting trees were

357  visualized using the densiTree function in phangorn 2.4.0 (Schliep, 2011), and the time
358 calibrated tree representing the central tendency of these analyses was selected for use in all
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359  further analyses, also taking into account the results of past family-wide studies. As the
360 penalized likelihood approach used does not integrate over model uncertainty or

361 uncertainty in calibration placement and timing, confidence intervals on node ages are not
362  provided in this study. A geologic timescale based on the strat2012 dataset added to tree
363  figures using PHYLOCH v 1.5-3 (Heibl, 2008).

364

365  Ancestral state reconstruction for inflexed stamens

366 All taxa were coded for presence (1) or absence (0) of inflexed stamens in bud.

367  Taxasuch as Dorsteniae with stamens that are inflexed in bud but gradually straighten were
368  coded as 0. We reconstructed ancestral character states on the entire phylogeny by

369  stochastic mapping using the make.simmap function in the phytools v 0.6-99 (Revell,

370  2012). We also tested for trait-associated shifts in diversification rates using BAMM v

371  2.5.0 (Rabosky & al., 2013, 2014a; Rabosky, 2014), specifying the amount of missing taxa
372  per clade to account for the high proportion of missing taxa in Ficeae, Castilleae, and

373  Dorstenieae. Parameters were optimized using BAMMtools v 2.1.7 (Rabosky & al.,

374 2014b). We also tested for trait-dependent diversification using diversitree v 0.9-13

375  (FitzJohn, 2012). We evaluated BiSSE and trait-independent models on the entire tree and
376  onapruned tree consisting only of the densely-sampled Maclureae+Moreae+Artocarpeae
377  clade.

378 Reads from have been deposited in Genbank (Non-PAFTOL samples: BioProject
379 PRJINA322184; PAFTOL samples: BioProject PRIEB35285, subprojects PRIEB37667 for
380  Moraceae and PRIJEB37665 for Urticaceae). Tree files and scripts outlining the

381  phylogenetic analyses have been deposited in the Dryad Data Repository (###TBA###).
382

383  Results

384 The final data set contained 247 samples, 47 enriched with the Angiosperms353
385  baits, 196 enriched with the Moraceae333 baits, and 4 extracted from whole genomes) and
386 619 genes (286 Angiosperms353 and all of the Moraceae333) (Table S1). The “exon”

387  supermatrix (all taxa) contained 613,126 characters, and the “supercontig” supermatrix
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388  (Moreae and select outgroup taxa only) contained 799,926 characters. The chloroplast data
389  set contained 113 loci.

390 On average, we assembled 39 Moraceae333 genes from the Angiosperms353-

391  enriched samples and 20 Angiosperms353 genes from the Moraceae333-enriched samples,
392  and the average pairwise overlap in assembled loci was 210 (Tables S1, S2). Nineteen taxa
393  were represented in both sets of samples, and 15 of these were always monophyletic (Figs.
394 2, 3). Twelve resolved as sister pairs: Antiaropsis decipiens (31 loci overlapping), Bagassa
395 guianensis Aubl. (38), Batocarpus amazonicus (Ducke) Fosberg (22), Batocarpus

396  orinocensis H. Karst. (34), Brosimum alicastrum Sw. (42), Clarisia racemosa Ruiz & Pav.
397  (59), Maclura africana (Bureau) Corner (213), Milicia excelsa (Welw.) C.C. Berg (45),
398  Streblus asper (Retz.) Lour. (75), Streblus mauritianus (Jacg.) Blume (40), Streblus

399  usambarensis (Engl.) C.C. Berg (43), and Trophis caucana (32). Three more represented
400 by more than two samples always resolved as a clade: Sorocea bonplandii (Baillon) W.C.
401  Burger, Lanj. & de Boer (3 samples; 19-35 loci overlapping), Maclura tinctoria (L.) D.
402  Don ex Steud. (4 samples; 3743 loci overlapping), and Malaisia scandens (Lour.) Planch.
403 (3 samples; 27-43 loci overlapping). Three additional taxa resolved as sister pairs in the
404  ASTRAL analysis but as a grade in the supermatrix analysis: Maclura cochinchinensis
405  (Lour.) Corner (28 loci overlapping), Streblus heterophyllus (Blume) Corner (50), and

406  Trophis montana (Leandri) C.C. Berg (56). Only one species, Utsetela gabonensis Pellegr.
407 (18 loci overlapping) was never monophyletic, always forming a grade with U. neglecta
408  Jongkind.

409 The supermatrix and species trees were broadly concordant except within

410  Artocarpus, where the species tree was much more consistent with previous analyses within
411  that genus (Gardner et al., in review) (Figs. 2, 3). Otherwise, most differences were at

412  shallow phylogenetic depths, such as relationships within Streblus section Paratrophis. For
413  both data sets, the polytomy hypothesis was rejected (P < 0.05) for Moraceae and all tribe
414  and genus-level clades (following the revised classification presented below) (Figs. 2, 3).
415 Of the genera in Moreae sensu Clement & Weiblen, only Milicia and Sorocea were
416  monophyletic; Morus, Streblus, and Trophis were not; Bagassa is monotypic and resolved

417  as sister to Sorocea, with which it shares straight stamens. Four Moreae species resolved
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418  with other tribes: Trophis caucana was nested within Castilleae, Streblus asper (Retz.)

419  Lour. was sister to Castilleae, Streblus indicus (Bureau) Corner was sister to

420  Parartocarpeae, and Streblus usambarensis was nested within Dorstenieae. Moreae was
421  otherwise monophyletic, comprising the following subclades: (1) Streblus section

422  Taxotrophis, sister to all other Moreae; (2) (a) Trophis section Maillardia, (b) Milicia +
423  Morus subgenus Afromorus, (c) Streblus section Ampalis, (d) Streblus section Paratrophis
424 in part + Morus subgenus Gomphomorus, (e) Streblus section Paratrophis in part + Trophis
425  section Calpidochlamys; (3) Bagassa + Sorocea; (4) Trophis sections Trophis and

426  Echinocarpa C.C. Berg + Morus. These are roughly geographic clades: (1) Southeast Asia;
427  (2) (a) Madagascar, (b) Southeast Africa, (c) Madagascar, (d) Pacific + South America, (e)
428  Southeast Asia + Pacific; (3) South America; (4) South America.

429 While Trophis philippinensis was inside the Paratrophis clade in all analyses, the
430  position of Morus insignis was not stable. In the “exon” analyses, it was always in

431  Paratrophis (Fig. 2), although the polotomy hypothesis could not be rejected for its

432  position as sister to S. anthropophagorum+S. heterophyllus. In the “supercontig” and

433  chloroplast analyses, it was sister to Paratrophis, and the polotomy test was rejected for
434  that node (Figs. 3, S1). In the five phylogenetic networks reported (Fig. 4, Table S3), M.
435  insignis was inside Paratrophis in three of them, had a hybrid origin involving Paratrophis
436  inone, and was only unambiguously sister to Paratrophis in one network, although even in
437  that one it was involved in a hybridization involving Paratrophis.

438 The chloroplast phylogenetic tree (Fig. S1) was generally in agreement with the
439  nuclear phylogenetic trees, with three notable differences. Streblus indicus and the

440  Parartocarpeae formed a grade paraphyletic to Dorstenieae, Castilleae, and Ficeae, rather
441  than aclade. Streblus zeylanicus (Thwaites) Kurz was sister to S. taxoides (B. Heyne ex
442  Roth) Kurz (instead of sister to all of section Taxotrophis), although with low support

443  (62%), and S. glaber subsp. australianus was not sister to subsp. glaber, although its

444 placement was not strongly supported (80%). Finally, Morus insignis was sister to

445  Paratrophis, agreeing with the “supercontig” analysis but not the “exon” analysis.

446 The ITS and rbcL phylogenetic trees based on few characters, were not very well

447  resolved, with only few nodes attaining 100% bootstrap support (Fig. S2). Nevertheless,
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with the exception of a few stray taxa (one Dorstenia sample in ITS and one Streblus
indicus samples in rbcL), both phylogenetic trees reconstructed monophyletic tribes with at
least moderate support. In the ITS phylogenetic tree, Streblus smithii and S. banksii were
both in a well-supported clade comprising section Paratrophis, and S. tonkinensis was part
of the Castilleae clade, which also contained S. asper and Trophis caucana. In the rbcL
phylogenetic tree, the two Streblus ascendens samples, the four samples of the
undetermined Streblus from Papua New Guinea, and S. smithii were part of a well-

supported clade comprising section Paratrophis.

Time-calibration and ancestral state reconstruction

The cross-validation criterion was minimized by a smoothing parameter (1) value of
106. The tree calibrated under the correlated model (logLik = -17; p-logLik = -17; ®IC =
1108) was less sensitive to changes in A and generally had younger ages than the tree
calibrated under the relaxed model (logLik = -56.7; p-logLik = -53129706, ®IC =
4209013), the latter of which had perhaps implausibly long terminal branches (Table 2, Fig.
S3). The crown age of Moreae was Paleocene (59.1 Ma) under the correlated model and
late Cretaceous (75.4 Ma) under the relaxed model. Because the correlated tree was more
consistent with past family-wide studies (Zerega & al., 2005; Zhang & al., 2019), we used
that tree for all further analyses (Fig. 5). The BAMM analysis found a single credible rate
shift, not surprisingly at the crown node of Ficus (Fig. S4); that rate shift was—also not
surprisingly—associated with a loss of inflexed stamens, which are never found in Ficus (P
= 0.035); no rate shifts were found within Moreae. Ancestral reconstruction on the entire
tree found that ancestral Moraceae had stamens inflexed in bud; these were lost nine times
(in Ficeae, Olmedieae [=Castilleae], Parartocarpeae, twice in Dorstenieae, Maclura section
Cudrania (Trécul) Corner, Artocarpeae, Bagassa, and Sorocea) and regained once (in
Trophis caucaua) (Fig. 6). Model testing on both the whole tree and on the
Moreae+Artocarpeae+Maclureae subtree indicated that a BiSSE model was not
substantially better than a trait-independent model (Moreae only: AIC for BiSSE = 1110.4;
trait-independent = 1112.8; AAIC = 2.4; whole family: AIC for BiSSE = 1488.3; trait-
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477  independent = 1490.4; AAIC = 2.1). In any event, the reconstructions were identical (Figs.

478  6).

479

480

481  Discussion
482

483  Sequencing and combination of data sets

484 This study was materially improved by our ability to combine samples enriched
485  with two largely non-overlapping bait sets. Despite minimal by-design overlap, we were
486  able to assemble many overlapping loci for samples with moderate to deep coverage (Table
487  S2), adding taxa that would not otherwise have been included in the study and replicating
488  taxa to confirm unexpected phylogenetic placement (e.g, Streblus indicus). Taxa replicated
489  across the two data sets performed well in phylogenetic analyses, with 15 out of 19 always
490 resolving as monophyletic in supermatrix analyses and 18/19 so resolving in ASTRAL

491  analyses, with only Utsetela gabonensis always forming a grade instead (with a difficult-to-
492  distinguish congener). Our results should embolden others to combine and repurpose data
493  sets in similar ways.

494

495  Higher taxonomy in Moraceae and the delimitation of the tribe Moreae

496 Our results support Corner’s overall approach to the classification of Moraceae, if
497  not all of its details, including the primacy of inflorescence architecture and the

498  unreliability of inflexed stamens for higher taxonomy (Corner, 1962). Inflexed stamens are
499  aplesiomorphy that was lost nine times in Moraceae (Fig. 6), a preserved ancestral

500 character whose past taxonomic importance accounts for the rather extreme non-

501  monophyly of the Moreae. Streblus s.I. provides the best illustration of this principle,

502  appearing in four out of seven tribe-level clades within Moraceae. We may justly call its
503  disparate sections, as Corner did, “fragments of an ancestral Streblus.” (Corner, 1975)—or
504  in modern parlance, a paraphyletic remnant preserving plesiomorphic staminate flowers
505  similar to those likely to have occurred in the ancestor of all Moraceae, with four free tepals

506 and four inflexed stamens (Clement & Weiblen, 2009). If one of the goals of modern
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systematics is to establish taxonomic frameworks that reflect as far as possible real
evolutionary relationships, our results may serve as a warning to carefully investigate
whether characters used for taxonomy are derived (synapomorphic) or ancestral
(symplesiomorphic).

Broadly speaking, a tribal delimitation based on inflorescence architecture
(supplemented with other characters in some cases) agrees best with the phylogenetic trees
presented here. Moreae (as revised below) have unisexual spicate or racemose
inflorescences (the pistillate ones sometimes uniflorous), with the globose-capitate pistillate
inflorescences of the monotypic Bagassa as the sole exception. Stamens may be either
inflexed or straight. Elsewhere in the family, racemes and spikes are rare, with the former
found in Maclura (in part) and the latter found in the related genera Broussonetia,
Allaeanthus Thwaites, and Malaisia and arguably in Batocarpus H. Karst. and Clarisia,; all
of these have capitate pistillate inflorescences. The taxa of Streblus s.I. and Trophis s.l. that
must be excluded from Moreae all have inflorescences that do not fit our general rule:
discoid-capitate (Streblus asper and Trophis caucana), cymose (Streblus indicus), or
bisexual (Streblus usambarensis). In these cases, perhaps Corner did not take his emphasis
on inflorescence architecture quite far enough, including too wide of a variety in this one
tribe. In critiquing the utility of inflorescence architecture for classification, Berg (1977b)
noted the similarity in the inflorescence structure of Bleekrodea (then part of Moreae, and
included in Streblus by Corner) to that of Utsetela and Helianthostylis (Dorstenieae), an
observation that proved prescient when Bleekrodea was found to belong to Dorstenieae
(Clement & Weiblen, 2009).

Olmedieae (as revised below, including Castilleae) can be defined entirely based
upon the presence of a discoid inflorescence subtended by an involucre of imbricate bracts.
Two species with such involucres previously classified as Moreae, Streblus asper and
Trophis caucana (=Olmedia aspera) always appeared in the Olmedieae (=Castilleae) clade
in our analyses (Figs. 2-3). Olmedia aspera (=Trophis caucana)—the nomenclatural type
of the tribe Olmedieae—was transferred to Moreae because of its inflexed stamens and lack
of self-pruning branches (Berg, 1977b). In inflorescence morphology, however, T. caucana

closely resembles other Castilleae, always subtended by an involucre of imbricate bracts
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(Berg, 1977b, 2001). The staminate inflorescences of Streblus asper are strikingly similar
to those of T. caucana, and it is remarkable that the affinity between S. asper and the
Olmedieae has not been seriously considered until now. Previous barcoding or phylogenetic
studies have placed Trophis caucana (Kress & al., 2009) and Streblus tonkinensis (Chen &
al., 2016) (closely allied to S. asper) in the Castilleae clade, but those results went
unremarked upon, perhaps because of the broad scale of the studies (respectively, forest
community phylogenetics and the vascular plants of China).

The remaining five tribes can all be broadly defined based on inflorescence
architecture as Corner argued, sometimes supplemented by other characters as Berg
preferred, allowing of course for the exceptions made inevitable by the vicissitudes of
evolution. Ficeae of course is defined by the syconium (essentially an urceolate disc that
has been closed at the top). Maclureae have densely-packed globose infructescences and
can be distinguished from Artocarpeae by their four stamens (inflexed in most sections) and
armature. Artocarpeae also have densely-packed globose infructescences but only one
straight stamen and no armature. Parartocarpeae have a few connate involucral bracts and
(in large part) flowers embedded in fleshy receptacles. Dorstenieae are perhaps the most
heterogenous group, but in large part they have bisexual inflorescences, often capitate or

discoid, and often with ballistically-ejected endocarps.

The role of inflexed stamens in the evolution of Moraceae

The repeated losses of inflexed stamens (Fig. 6), which are associated with wind
pollination (Bawa & Crisp, 1980; Berg, 2001), raise the possibility that transitions from
wind to animal pollination, which have already been documented in Moraceae (Momose &
al., 1998; Sakai & al., 2000; Datwyler & Weiblen, 2004; Gardner & al., 2018), are even
more common within the family. Generally considered rare (Culley & al., 2002), the shift
from wind to animal pollination may be a repeated feature of Moraceae deserving of further
investigation. Further investigation of Sorocea, with its straight stamens and sometimes-
scented inflorescences, may reveal that, like Artocarpus, it contains both wind and animal
pollination. And while little is known about pollination in the Dorstenieae, the presence of

unisexual inflorescences and inflexed stamens (e.g., Broussonetia) as well as bisexual
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567 inflorescences with straight stamens (e.g., Brosimum, Dorstenia) raises the possibility of
568 transitions within that clade as well; taxa with inflexed stamens but bisexual inflorescences
569  such as Bleekrodea and Sloetia (which is visited by bees, EMG pers. obs.) may represent
570  remnants of an intermediate state. Finally, the conclusion that a single transition to insect
571  pollination preceded the split between the Ficeae and Olmedieae (Castilleae) should be
572  reevaluated in light of the position of Streblus asper as sister to the latter (Figs. 2, 3). The
573  only shift in diversification rates our analyses recovered was on the branch leading to the
574  very diverse Ficus, suggesting that the shift away from wind pollination may not by itself
575 lead to increased diversification.

576

577  Explanation of taxonomic revisions

578 We present a generic revision of Moreae (Fig. 7) based on the present phylogenetic
579  study as well as morphological characters. Arranging monophyletic and morphologically
580 coherent genera requires one change of rank and 8 new combinations, but no entirely new
581  names. These revisions provide a framework for within-genus revisionary work, which will
582  require more intensive sampling and review of specimens within the genera circumscribed
583  here. We provide an explanation of the taxonomic changes, followed by a formal

584  presentation of the affected tribes and genera, with complete species lists and synonymy.
585 Trophis and the reinstatement of the Olmedieae — To make Trophis monophyletic,
586  we propose that it be applied strictly to the Neotropical clade that includes the type species
587  Trophis americana L. (=Trophis racemosa (L.) Urb.) . To accomplish this, we reinstate the
588  genus Maillardia and transfer Trophis philippinensis to Paratrophis (discussed below),
589 reinstating its former name Paratrophis philippinensis (Bureau) Fern.-Vill. Because

590  Trophis caucana does not belong in Trophis or Moreae but rather with the members of
591 Castilleae, we reinstate its former name Olmedia aspera Ruiz & Pav. and transfer it to that
592  tribe, whose former name Olmedieae must now be reinstated on account of its priority.
593 Streblus — We restrict the genus Streblus to three species comprising most of

594  section Streblus—Streblus asper, Streblus tonkinensis, and Streblus celebensis C.C. Berg—
595 and transfer the genus to Olmedieae. Although S. celebensis was not included in our

596  phylogeny, the sub-involucrate inflorescences are similar to those of S. asper, with which S.
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597  celebensis differs primarily in vegetative characters, the latter having broadly-toothed

598  margins in the distal half of the leaf. Both occur in Sulawesi, where at least one specimen
599  with intermediate leaf morphology has been collected (Sulawesi, Kendari: Kjellberg 452,
600 24 Feb. 1929, L, det. S. asper by E.J.H. Corner). We therefore retain its taxonomic position
601 in Streblus. The remaining member of section Streblus, S. usambarensis, belongs with

602  Dorstenieae, and we therefore transfer it to that tribe, reinstating its former name

603  Sloetiopsis usambarensis. Streblus indicus is sister to Parartocarpeae, and we therefore
604 reinstate its former name Pseudostreblus indicus and transfer it to Parartocarpeae.

605 The remaining species of Streblus s.l. are properly placed in Moreae but are still
606  paraphyletic. We therefore reinstate the genera Ampalis, Paratrophis, and Taxotrophis,
607 largely corresponding to the former sections but requiring some new combinations.

608  Paratrophis as presented here is united by spicate male inflorescences (usually) with peltate
609  or reniform bracts (except for Paratrophis philippinensis (=Trophis philippinensis), which
610  does not have fleshy tepals in fruit). Within Paratrophis we include Paratrophis ascendens
611  (Corner) E.M. Gardner (=Streblus ascendens Corner) based on its inflorescence

612  morphology and phylogenetic position in the rbcL tree (Fig. S2b). Its previous position
613  within the monotypic section Protostreblus was due to the type specimen’s spiral

614  phyllotaxy, but the latter may be atypical, as a more recent collection Womersley NGF

615 24791 (K, L, BO), has distichous leaves. Berg (1988), recognizing the close affinity

616  between Pachytrophe dimepate Bureau and Ampalis mauritiana, included both in Streblus
617  section Ampalis. Our phylogenetic results support this grouping, which we maintain in the
618 reinstated genus Ampalis, requiring one new combination. We follow Baillon in

619  maintaining Pachytrophe as a section of Ampalis in order to recognize the differences

620  between them in phyllotaxy, stipule amplexicaulity, and embryo characters. Further

621 intensive study of that species complex may of course warrant a different approach,

622  including potentially reducing both to a section of Paratrophis. Our species lists within the
623  former components of Streblus follow Berg’s approach (1988, 2006), with two exceptions.
624  We provisionally recognize Taxotrophis zeylanica (Thwaites) Thwaites as distinct from
625  Taxotrophis taxoides (B. Heyne ex Roth) W.L. Chew ex E.M. Gardner (=Streblus taxoides
626  (B. Heyne ex Roth) Kurz) based on our phylogenetic work and following the Flora of
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627  China, which recognizes Streblus zeylanicus as distinct from S. taxoides based on its

628  clustered pistillate inflorescences. In addition, we provisionally recognize Paratrophis

629 australiana (=S. glaber subsp. australianus) as distinct from Paratrophis glabra based on
630 its geographic and consistent morphological distinctiveness. Taxotrophis and Paratrophis
631  warrant further investigation to refine species limits.

632 Morus — Morus has never been revised, and the species concepts are often based on
633  minor morphological differences (Berg et al., 2006; Berg 2001), and the paraphyly of

634  several species in our analyses suggests that a broad M. alba similar to Bureau’s (1873)
635 may be worth a second look. The monotypic subgenus Afromorus is sister to Milicia, but
636 the leaf morphology is markedly different, instead resembling other Morus species in its
637  trinerved based and crenate margins. We therefore raise Afromorus to genus level, requiring
638  one new combination. Morus insignis, from western Central and South America, bears a
639  remarkable resemblance to Paratrophis, in particular P. pendulina, especially in leaf

640  morphology, which in M. insignis is not consistently trinerved as in other mulberries. The
641 infructescence appears superficially like a mulberry because of its basally fleshy tepals,

642  although with more loosely-packed flowers, but closer inspection places it firmly within
643  Paratrophis, with drupes protruding from the persistent tepals, peltate bracts, and a sterile
644  groove. Because analyses differ as to whether M. insignis is sister to Paratrophis or part of
645 it it seems best to treat them as congeners.

646 These changes result in ten monophyletic genera of Moreae, providing a framework
647  for revisionary work within the genera. Below, we present a complete genus and species list
648  for Moreae with brief descriptions for all genera and synonymies for new combinations and
649 reinstated or recircumscribed taxa. All cited protologues were reviewed, and dates for

650  works published piecemeal were confirmed by reference to Taxonomic Literature 2 online
651  (https://www.sil.si.edu/DigitalCollections/tl-2/index.cfm).

652

653

654  Taxonomic Treatment

655

656  Key to the tribes of Moraceae
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Key to the tribes of Moraceae

This key follows the tribal circumscription of Clement & Weiblen (2009), as subsequently
modified by Zerega & al. (2010), Chung & al. (2017), Zerega & Gardner (2019), and this
study.

1. Inflorescence a syconium (urceolate with the opening entirely closed by ostiolar
bracts, flowers enclosed at all stages of development) — Ficeae (Ficus)
1. Inflorescence not a syconium (capitate, spicate, discoid, or urceolate, but

flowers not entirely enclosed at all developmental stages) — 2

2. Inflorescences (at least staminate) with an involucre of imbricate bracts; often
with self-pruning horizontal branches (except Olmedia, Poulsenia, Streblus) —
Olmedieae (Antiaris, Antiaropsis, Castilla, Helicostylis, Maquira, Mesogyne,
Naucleopsis, Olmedia, Perebea, Poulsenia, Pseudolmedia, Sparattosyce,
Streblus)

2. Inflorescences not involucrate; plants without self-pruning branches — 3

3. Plants woody; dioecious; pistillate inflorescences globose-capitate; spines axillary
or terminating short shoots — Chlorophoreae (Maclura)

3. Plants woody, herbaceous, or succulent; dioecious or monoecious; pistillate
inflorescences various; spines absent or if present, then pistillate inflorescences

not globose capitate — 4

4. Trees or shrubs; monoecious; inflorescences unisexual; staminate flowers with
one stamen (rarely two) — Artocarpeae (Artocarpus, Batocarpus, Clarisia)

4. Trees, shrubs, lianas, herbaceous, or succulent; monoecious or dioecious;
inflorescences unisexual or bisexual; staminate flowers with more than one

stamen (or if one stamen then dioecious) — 5
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686 5. Trees or shrubs; monoecious; inflorescences unisexual; stamens straight in bud or
687 staminate flowers 5-parted and inflexed in bud — Parartocarpeae (Hullettia,

688 Parartocarpus, Pseudostreblus)

689 5. Trees, shrubs, lianas, herbaceous, or succulent; monoecious or dioecious;

690 inflorescences bisexual or unisexual; stamens straight or inflexed in bud but

691 staminate flowers never 5-parted — 6

692

693 6. Trees, shrubs, lianas, herbaceous, or succulent; inflorescences bisexual (or if

694 unisexual then a climber or herbaceous); endocarp body often ballistically ejected
695 from infructescence — Dorstenieae in part (Allaeanthus in part, Bleekrodea,

696 Bosqueiopsis, Brosimum, Broussonetia in part, Dorstenia, Fatoua,

697 Helianthostylis, Malaisia, Scyphosyce, Sloetia, Sloetiopsis, Treculia, Trilepsium,
698 Trymatococcus, Utsetela)

699 6. Trees or shrubs; inflorescences unisexual; endocarp body never ballistically

700 ejected — 7

701

702 7. Trees; stamens inflexed in bud; pistillate inflorescences globose-capitate —

703 Dorstenieae in part (Allaeanthus in part, Broussonetia in part)

704 7. Trees or shrubs; stamens inflexed or straight in bud; pistillate inflorescences

705 various, not globose-capitate if stamens are inflexed in bud — Moreae (Afromorus,
706 Ampalis, Bagassa, Maillardia, Milicia, Morus, Paratrophis, Taxotrophis,

707 Sorocea, Trophis)

708

709

710  Revisions

711

712 Tribe MOREAE

713

714 Moreae Gaudich. in Freyc., Voy. Uranie, Bot. (1830) 509.
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715  Moreae subtribe Soroceae Miq in Martius, Fl. Bras. 4, 1, fasc. 12: 111 (1853), p.t. —

716  Soroceae (Mig.) C.C. Berg, Blumea 50: 537 (2005), p.p.

717  Strebleae Bureau in DC., Prodr. 17: 215 (1873), p.p.

718

719  Tree or shrubs, monoecious or dioecious. Leaves alternate or opposite, distichous or

720  spirally arranged,; stipules lateral to amplexicaul. Inflorescences unisexual, uniflorous or
721  racemose, spicate, capitate, or globose; bracteate; tepals 4, free to connate; staminate
722  flowers with 4 stamens, filaments straight or inflexed in bud, pistillode usually present;
723  pistillate flowers with (mostly) free ovary, 2 stigmas. Fruits drupaceous or achene-like
724 with a fleshy persistent perianth, dehiscent or not. Seeds with or without endosperm, testa
725  usually with a thick vascularized part below the hilum, cotyledons equal or unequal,

726  straight or folded.

727

728  Genera and distribution: ten genera and 63 species with a worldwide distribution.

729

730

731 Afromorus

732

733 Afromorus E.M. Gardner, gen. nov. — based on Morus L. subg. Afromorus [A. Chev.,
734 Rev. Bot. Appl. Agr. Trop. 29 (315-316): 70 (1949), invalidly published]; J.-F. Leroy,
735 Rev. Bot. Appl. Agr. Trop. 29 (323-324): 482 (1949) & Bull. Mus. Hist. Nat. Paris,
736 ser. 2, 21: 732 (1949). TYPE: Afromorus mesozygia (Stapf ex A. Chev.) E.M.

737 Gardner.

738

739  Dioecious trees, shoot apices deciduous. Leaves distichous, triplinerved or at least trinerved
740 at the base. Stipules free, more or less lateral. Inflorescences solitary or paired, bracts
741 of varying shapes. Staminate inflorescences spicate, to 2.5mm long, flower 4-parted,
742 tepals imbricate, ciliolate, pistillode small, apiculate. Pistillate inflorescences

743 subglobose, ca. 5 mm across, flowers 4-parted, tepals ciliolate, stigma bifid, equal or
744 unequal, arms filiform to 5 mm long. Infructescences subglobose or less often slightly
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elongate, ca. 1 mm across, tepals fleshy, yellowish to greenish, drupes ca. 5 x 3-5 mm.
Seeds ca. 4.5 x 2.5-4.5 mm.

Species and distribution: one species, in tropical Africa.

Note: The leaves of Afromorus—with crenate margins and trinerved bases—bear a striking
resemblance to those of Morus, and it is thus not surprising that the former was heretofore
included within the latter. However, leaves of Afromorus are distinct in being usually
completely triplinerved, without an upper pinnately-veined portion as in most species of
Morus. As the genus is monotypic, the type must be its only species, Afromorus mesozygia
(Stapf ex A. Chev.) E.M. Gardner.

The genus name is based on Leroy’s invalidly published Morus subgenus
Afromorus, which was published only in French without a Latin diagnosis or description as

required under the Code.

1. Afromorus mesozygia (Stapf ex A. Chev.) E.M. Gardner, comb. nov. — based on Morus
mesozygia Stapf ex A. Chev. [Végétaux utiles de I’ Afrique tropicale frangaise 5: 263
(1909), nomen solum], J. Bot. (Morot) ser. 2, t. 2: 99 (1909).
Celtis lactea Sim, For. Fl. Port. E. Afr. : 97, t. 96 (1909), probably post-dating Morus
mesozygia (fide Berg. 1977) — Morus lactea (Sim) Mildbr., Notizbl. Bot. Gart.
Berlin 8: 243 (1922) — Morus mesozygia var. lactea (Sim) A. Chev., Rev. Bot.
Appl. Agr. Trop. 29: 72 (1949).
Morus mesozygia var. sanda A. Chev., Rev. Bot. Appl. Agr. Trop. 29: 71 (1949),
invalidly published (under Art. 39.1, Latin description or diagnosis lacking).
Morus mesozygia var. colossea A. Chev., Rev. Bot. Appl. Agr. Trop. 29: 71 (1949),
invalidly published (under Art. 39.1, Latin description or diagnosis lacking).

Ampalis

Ampalis Bojer, Hort. Maurit. 291 (1837)
Streblus Lour. subgen. Parastreblus Blume, Mus. Bot. Ludg.-Bat. 2: 89 (1856)
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775 Streblus Lous. sect. Ampalis (Bojer) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C
776 91(4): 358 (1988).

777 Pachytrophe Bureau, Prodr. [A.P. de Candolle] 17: 234 (1873). — Ampalis Boj. sect.
778 Pachytrophe (Bur.) Baillon, Hist. PI. 6: 191 (1875-76)

779

780  Dioecious trees or shrubs. Leaves distichous to spirally arranged, pinnately veined. Stipules
781  free, nearly lateral. Inflorescences solitary or paired in the leaf axils, spicate, with an

782  abaxial sterile groove, flowers in longitudinal rows, bracts basalt attached to subpeltate.
783  Staminate inflorescences to 9 cm long, flowers 4-parted, decussate-imbricate, stamens 4,
784  inflexed in bud, pistillode present. Pistillate inflorescences to 12 cm long, tepals 4, separate,
785  decussate-imbricate, ovary free, stigmas 2, equal. Infructescences with enlarged fleshy

786  perianths ca. 6-8 mm long, surrounding drupaceous fruits, the latter ca. 5-6 mm long.

787  Seeds ca. 4 x 4 mm, testa thickened and not distinctly vascularized, cotyledons equal.

788

789  Species and distribution: Two species, native to Madagascar and Comoros.

790

791  Note: The two sections differ in their phyllotaxy (usually spiral in Ampalis and ditichous in

792 Pachytrophe) and stipules (free in Ampalis, connate in Pachytrophe). Sect. Ampalis
793 usually has somewhat larger inflorescences.

794

795  Ampalis sect. Ampalis

796

797 1. Ampalis mauritiana (Jacq.) Urb., Symb. Antill. 8: 165 (1920) — Morus mauritiana Jacq.,
798 Collect. 3: 206 (17897, 1791) — Streblus mauritianus (Jacq.) Blume, Mus. Bot.
799 Lugd.-Bat. 2: 80 (1856).

800 Streblus maritimus Palaky, Catal. Pl. Madag. 2: 31 (1907)

801 Morus nitida Willem. In Useri, Ann. Bot. 18: 56 (1796)

802 M. ampalis Poir. In Lam., Encycl. Bot. 4: 380 (1797)

803 Trophis cylindrica Roxb., Fl. Indica 3: 599 (1832), pro syn. M. mauritianae.

804 Ampalis madagascariensis, Bojer, Hort. Maurit. 291 (1837) nom. illeg., pro syn.
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Ampalis madagascariensis var. occidentalis Léandri, Mém. Inst. Sci. Madag., ser. B,
1:12, pl. (1948).
Morus rigida Hassk., Cat. Hort. Bog. 74 (1844).

Ampalis Boj. sect. Pachytrophe (Bureau) Baillon, Hist. PI. 6: 191 (1875-76) =
Pachytrophe Bureau in A.DC, Prodr. 17: 234 (1873). — Type: Pachytrophe dimepate

Bureau.

2. Ampalis dimepate (Bureau) E.M.Gardner, comb. nov., based on Pachytrophe dimepate
Bureau in A.DC Prodr. 17: 234 (1873) — Streblus dimepate (Bureau) C.C.Berg, Proc.
Kon. Ned. Akad. Wetensch. C 91(4): 358 (1988).

Pachytrophe obovata Bureau, Prodr. [A.P. de Candolle] 17: 235 (1873).

Plecospermum bureaui A.G. Richt., Term. Flizetek 18: 296 (1895), nomen nudum et
superfl., pro. syn. nom. ined. “Plecospermum obovatum Bureau” (Boivin 1717, P).

Plecospermum (?) laurifolium Baill. in Grandidier, Hist. Madag. Vol. 35, Hist. Nat.
Pl., Tome 5, Atlas 3, 2e partie: pl. 294a (1895) — Pachytrophe obovata var.
laurifolia (Baill.) Léandri, Mém. Inst. Sci. Madag., ser. B, 1: 16 (1948).

Pachytrophe obovata var. montana Léandri, Mém. Inst. Sci. Madag., ser. B, 1: 16
(1948).

Bagassa

Bagassa Aubl., PI. Guiane. Suppl. 15 (1775).

Dioecious trees. Leaves opposite and decussate, lamina triplinerved, 3-lobed to entire.
Stipules free, lateral. Inflorescences solitary or paired in the leaf axils, bracteate. Staminate
inflorescences spicate with an abaxial sterile groove, to 12 cm long, flowers in longitudinal
rows with, tepals 4, stamens 2, straight in bud, pistillode present. Pistillate inflorescences
globose-capitate, ca. 1-1.5 cm across, flowers 4-lobed to 4-parted, stigmas 2, filiform.

Infructescences globose, ca. 2.5-3.5 cm across, green, tepals fleshy, yellowish to greenish,
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835  drupes ca. 7-8 mm long. Seeds ca. 3 x 2 mm, testa thin and not vascularized, cotyledons
836  equal.

837

838  Species and distribution: One, in tropical South America.

839

840 1. Bagassa guianensis Aubl., Pl. Guiane. Supple. 15 (1775)

841

842

843 Maillardia

844

845  Maillardia Frapp. ex Duch. in Maillard, Notes sur I’ile de la Réunion, Annex P. 3 (1862)
846 Trophis P. Br. sect. Maillardia (Duch.) Corner, Gard. Bull. Singapore 19: 230 (1962).
847

848  Dioecious trees or shrubs. Leaves distichous, pinnately veined. Stipules free, semi-

849  amplexicaul. Inflorescences solitary or paired in the leaf axils, bracts subpeltate. Staminate
850 inflorescences spicate with an abaxial sterile groove, flowers 4-parted, decussate-imbricate,
851  stamens 4, inflexed in bud, pistillode present. Pistillate inflorescences up to three together,
852  uni- or bi-florous, perianth tubular 4-lobed, ovary adnate to the perianth, stigmas 2, equal.
853 Infructescences with enlarged fleshy perianths surrounding drupaceous fruits, the latter to
854 18 mm long. Seeds to 13 mm long, testa thin, with a thickened vascularized part below the
855  hilum, cotyledons unequal.

856

857  Species and distribution: Two species, in Madagascar, Comoros, and the Seychelles.

858

859 1. Maillardia borbonica Duch., Ann. Notes Réunion, Bot. 1: 148 (1862) — Trophis

860  borbonica (Duch.) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch. C 91(4): 355 (1988)

861 Maillardia lancifolia Frapp. ex Duch., Ann. Notes Reéunion, Bot. 1: 148 (1862).
862 Trophis borbonica (Duch.) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 91: 355
863  (1988).

864
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865 2. Maillardia montana Leandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. VVég. 1: 25

866 (1948) — Trophis montana (Leandri) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch. C
867 91(4): 355 (1988).

868 Maillardia occidentalis Leandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 26
869 (1948)

870 Maillardia orientalis Léandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 27
871 (1948)

872 Maillardia mandrarensis Léandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1:
873 28 (1948).

874 Maillardia pendula Fosberg, Kew Bull. 29: 266, t. 2 (1974).

875

876

877 Milicia

878  Milicia Sim, For. Fl. Port. E. Afr. 97 (1909).

879

880  Dioecious trees. Leaves distichous, lamina pinnately veined. Stipules free, not fully

881 amplexicaul. Inflorescences spicate, usually solitary in the leaf axils or on leafless nodes,
882  spicate, flowers in longitudinal rows alternating with rows of bracts, bracts mostly basally
883  attached, abaxial sterile groove present. Staminate inflorescences to 20 cm long, flowers 4-
884  parted, imbricate, stamens 4, inflexed in bud, pistillode present. Pistillate inflorescences to
885 4.5 cm long, flowers 4-parted, decussate-imbricate, ovary free, stigmas 2, unequal.

886  Infructescences with enlarged fleshy perianths, surrounding slightly flattened drupaceous
887  fruits, the latter to ca. 3 mm long. Seeds ca. 2 mm long, testa thin with a slightly thickened

888  vascularized part below the hilum, cotyledons equal.

889

890  Species and distribution: Two species in tropical Africa.

891

892 1. Milicia excelsa (Welw.) C.C. Berg, Bull. Jard. Bot. Natl. Belg. 52(1-2): 227 (1982) —
893 Morus excelsa Welw., Trans. Linn. Soc. Lond. (Bot.) 27: 69, t. 23 (1869) — Maclura
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894 excelsa (Welw.) Bur. In DC., Prodr. 17: 231 (1873) — Chlorophora excelsa (Welw.)
895 Benth. & Hook., Gen. PI. 3(1): 363 (1880).

896 Chlorophora tenuifolia Engl., Bot. Jahrb. 20: 139 (1894).

897 Milicia africana Sim, For. Fl. Port. E. Afr. 97, t. 122 (1909).

898 Chlorophora alba A. Chev., Bull. Soc. Bot. Fr. 58 (Mém. 8d): 209 (1912).

899

900 2. Milicia regia (A. Chev.) C.C. Berg, Bull. Jard. Bot. Natl. Belg. 52(1-2): 227 (1982) —
901 Chlorophora regia A. Chev., Bull. Soc. Bot. Fr. 58 (Mém. 8d): 209 (1912) — Maclura
902 regia (A. Chev.) Corner, Gard. Bull. Singapore 19: 237 (1962).

903

904

905 Morus

906  Morus L., Sp. PI. 986 (1753).

907

908  Dioecious trees or shrubs. Leaves trinerved (to five-nerved) at the base. Stipules free,

909 nearly lateral. Inflorescences solitary or paired in the leaf axils, without an obvious sterile
910 groove, interfloral bracts absent. Staminate inflorescences spicate or racemose, to 8 cm
911  long, flowers 4-parted, imbricate, stamens 4, inflexed in bud, pistillode present. Pistillate
912 inflorescences subcapitate to spicate, up to 16 cm long, flowers tepals 4, separate,

913  decussate-imbricate, ovary free, stigmas 2, equal. Infructescences with enlarged fleshy
914  perianths enclosing achene-like fruits, the latter ca. 1 mm long. Seeds less than 1 mm long,
915  cotyledons equal.

916

917  Species and distribution: Sixteen species, Asia and North to Central America; introduced
918  worldwide.

919

920 1. Morus alba L., Sp. PI. 2: 986 (1753).

921 var. alba

922 var. multicaulis (Perrottet) Loudon, Arbor. Frutic. Brit. 3: 1348 (1838).

923 2. Morus australis Poir. in Desrousseaux et al., Encycl. 4: 380 (1797).
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3. Morus boninensis Koidz., Bot. Mag. (Tokyo) 31: 38 (1917)

10.
11.
12.
13.

14.
15.
16.

. Morus cathayana Hemsl., J. Linn. Soc., Bot. 26: 456 (1894)

var. cathayana
var. gongshanensis (Z. Y. Cao) Z. Y. Cao, Acta Bot. Yunnan. 17: 154 (1995).

. Morus celtidifolia Kunth, Nov. Gen. Sp. [H.B.K.] 2: 33 (1817).
. Morus liboensis S. S. Chang, Acta Phytotax. Sin. 22: 66 (1984).
. Morus macroura Mig., PI. Jungh. 1: 42 (1851).

var. macroura
var. laxiflora G.K.Upadhyay & A.A.Ansari, Rheedea 20: 44 (2010).

. Morus koordersiana J.-F.Leroy, Bull. Mus. Natl. Hist. Nat. sér. 2, 21: 729 (1949)

(endemic to Sumatra and possibly synonymous with M. macroura. However, it was

not cited by Berg et al. (2006) either as a good species or as a synonym of the latter).

. Morus microphylla Buckley, Acad. Nat. Sci. Philadelphia 1862: 8 (1863) (recognized in

the Flora of North America (Flora of North America Editorial Committee, 1993) but
likely conspecific with M. celtidifolia and considered so by Berg (2001)).
Morus mongolica (Bureau) C. K. Schneid. in Sargent, PI. Wilson. 3: 296 (1916).
Morus nigra L. Sp. PI. 2: 986 (1753).
Morus notabilis C. K. Schneid. in Sargent, Pl. Wilson. 3: 293 (1916).
Morus rubra L., Sp. PI. 986 (1753).
var. rubra
var. murrayana (Saar & Galla) Saar, Phytologia 91: 106 (2009).
Morus serrata Roxb., Fl. Ind., ed. 1832, 3: 596 (1832).
Morus trilobata (S. S. Chang) Z. Y. Cao, Acta Phytotax. Sin. 29: 265 (1991).
Morus wittiorum Hand.-Mazz., Anz. Akad. Wiss. Wien, Math.-Naturwiss. KI. 58: 88
(1921)

Paratrophis

Paratrophis Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 81.
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954 Pseudomorus Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 371 (1869).

955 Uromorus Bureau in A.DC., Prodr. 17: 236 (1873).

956 Calpidochlamys Diels, Bot. Jahrb. Syst. 67: 172 (1935); — Trophis sect.

957 Calpidochlamys Corner, Gard. Bull. Singapore 19: 230 (1962).

958 Chevalierodendron J.-F. Leroy, Compt. Rend. Hebd. Séances Acad. Sci. 227: 146
959 (1948) .

960 Streblus Lour. sect. Paratrophis (Blume) Corner, Gard. Bull. Singapore 19: 216
961 (1962).

962 Streblus Lour. sect. Protostreblus Corner, Blumea 18: 393 (1970).

963 Morus L. subg. Gomphomorus J.-F. Leroy, Bull. Mus. Hist. Nat. (Paris), Sér. 2, 21:
964 732 (1949)

965

966  Dioecious trees or shrubs. Leaves distichous (or spiral in P. ascendens), pinnately veined,
967  sometimes trinerved at the base. Stipules free, lateral. Inflorescences axillary, solitary or up
968  to 5 together, spicate, with an abaxial sterile groove, interfloral bracts mostly peltate,

969 flowers sessile in longitudinal rows, tepals 4, valvate, ciliolate. Staminate inflorescences up
970 toat least 20 cm. long, flowers with filaments inflexed in bud, pistillode present. Pistillate
971 inflorescences up to at least 10 cm long, flowers usually at least 2 (to many), tepals free
972  (except in P. philippinensis), stigma bifid, arms equal. Fruits drupaceous, red to black, with
973  tepals persistent but usually not enlarged or fleshy (except in P. philippinensis and P.

974  insignis), up to ca. 1 cm long. Seeds up to ca. 8 x 6 mm, cotyledons equal.

975

976  Species and distribution: Twelve species from the Malesian region to Australia, New

977  Zealand, and Oceania, Central and western South America.

978

979 1. Paratrophis anthropophagorum (Seem.) Benth. & Hook. f. ex Drake, Ill. Fl. Ins. Pacif.
980 296 1892

981 Trophis anthropophagorum Seem. [Bonplandia 9 (17-18): 259 (1861), nomen nudum]
982 FI. Vit. 258, t. 68 (1868); — Uromorus anthropophagorum (Seem.) Bureau in de
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983 Candolle, Prodr. 17 (1873) 236; — Streblus anthropophagorum (Seem.) Corner,
984 Gard. Bull. Sing.19 (1962) 221.

985 Caturus oblongatus Seem., Fl. Vit. 254 (1868).

986 Paratrophis ostermeyri Rech., Fedd. Rep. 5: 130 (1908).

987 Paratrophis viridissima Rech., Fedd. Rep. 5: 130 (1908).

988 Paratrophis zahlbruckneri Rech., Fedd. Rep. 5: 130 (1908).

989 Pseudomorus brunoniana (Endl.) Bureau var. tahitensis J. Nadeaud, Enum. PI. Tahiti
990 43 (1873) — Uromorus tahitensis (J. Nadeaud) Bureau in de Candolle, Prodr. 17: 237
991 (1873) — Paratrophis tahitensis (Bureau) Benth. & Hook.f. ex Drake, Ill. Ins. Mar.
992 Pacif. Fasc. 7: 296 (1892); et FIl. Polyn. Franc. 193 (1892). — Streblus tahitensis (J.
993 Nadeaud) E.J.H. Corner, Gard. Bull. Singapore 19: 225 (1962).

994

995 2. Paratrophis ascendens (Corner) E.M. Gardner comb. nov. — based on Streblus
996  ascendens Corner, Blumea 18: 395, t.1 (1970).

997

998 3. Paratrophis australiana C.T. White, Contr. Arnold Arbor. 4: 15 (1933) — Streblus

999 glaber (Merr.) Corner var. australianus (C.T. White) Corner, Gard. Bull. Singapore
1000 19: 221 (1962) — Streblus glaber (Merr.) Corner subsp. australianus (C.T. White)
1001 C.C. Berg, Blumea 50: 548 (2005).
1002

1003 4. Paratrophis banksii Cheeseman, Man. N.Z. Fl. 633 (1906) — Streblus banksii
1004  (Cheeseman) C.J. Webb, in Connor & Edgar, New Zealand J. of Bot. 25 136 (1987).

1005 Paratrophis heterophylla var. elliptica Kirk T.N.Z.L 29: 500, t. 46 (1897); — Streblus
1006 heterophyllus var. ellipticus (Kirk) Corner, Gard. Bull. Singapore 19: 222 (1962).
1007 Note:— Morphologically very close to and not always distinguishable from P.

1008 microphylla.

1009

1010 5. Paratrophis glabra (Merr.) Steenis, J. Bot. 72: 8 (1934) — Gironniera glabra Merr.,
1011  Philipp. J. Sci., 1, Suppl. 42 (1906); Enum. Philipp. Flow. PI. 2: 35 (1923) —
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1012  Chevalierodendron glabrum (Merr.) J.-F. Leroy, Compt. Rend. Hebd. Séances Acad. Sci.
1013  227: 146 (1948) — Streblus glaber (Merr.) Corner, Gard. Bull. Singapore 19: 221 (1962).
1014  Aphananthe negrosensis Elmer, Leafl. Philipp. Bot. 2: 575 (1909).

1015  Pseudostreblus caudatus Ridl., J. Fed. Malay States Mus. 6: 54 (1915).

1016  Streblus laevifolius Diels, Bot. Jahrb. Syst. 67: 171 (1935).

1017  Streblus urophyllus Diels, Bot. Jahrb. Syst. 67: 172 (1935) — Streblus glaber (Merr.)
1018  Corner subsp. urophyllus (Diels) C.C. Berg, Blumea 50: 548 (2005);

1019  Streblus urophyllus Diels var. salicifolius Corner, Gard. Bull. Singapore. 19: 225 (1962).
1020

1021  Note: Berg et al. (2006) treated P. australiana and Streblus urophyllus as subspecies of
1022  Streblus glaber. Paratrophis australiana, endemic to Australia, has crenate leaf margins
1023  and somewhat larger staminate inflorescences with more interfloral bracts than P. glabra;
1024  these morphological differences are consistent and geographically confined, and we

1025  therefore reinstate P. australiana. This stands in contrast to Streblus urophyllus, which we
1026  provisionally maintain in synonomy under P. glabra. Although collections from Mt.

1027  Wilhelm in New Guinea are remarkable for their thick coriaceous leaves and spinose

1028  margins, similar toothed margins can be found at higher elevations in Borneo and Sulawesi,
1029  suggesting that the striking leaf morphology of S. urophyllus is an alpine effect not

1030 indicative of speciation. We reserve judgment on the status of Streblus urophyllus var.
1031  salicifolius Corner, applied by Corner (1962) to specimens with linear leaves, provisionally

1032  maintaining it in synonomy following Berg et al. (2006).

1033

1034 6. Paratrophis insignis (Bureau) E.M. Gardner comb. nov. — based on Morus insignis
1035 Bureau, in De Candolle, Prodr. 17: 247 (1873).

1036 Morus peruviana Planch. ex Koidz., FI. Symb. Orient.-Asiat. 88 (1930).

1037 Morus trianae J.-F.Leroy, Bull. Mus. Hist. Nat. (Paris) Sér. 2, 21: 731 (1949).

1038 Morus marmolii Legname, Lilloa 33: 334 (1973)

1039  Note: The infructescences differ from most other Paratrophis in their fleshy free tepals and
1040  denser aggregation of flowers, but the staminate inflorescences are typical of the genus.
1041
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1042 7. Paratrophis microphylla (Raoul) Cockayne, Bot. Notes Kennedy's Bush & Scenic Res.

1043 Port Hills, Lyttelton (Rep. Scenery Preserv.) 3 (1915) — Epicarpurus microphyllus
1044 Raoul, Choix Pl. Nouv.-Zel. 14. (1846) — Taxotrophis microphylla (Raoul) F. Muell.,
1045 Fragm. (Mueller) 6(47): 193 (1868).

1046 Paratrophis heterophylla Blume, Mus. Bot. 2(1-8): 81. (1856).

1047

1048 8. Paratrophis pendulina (Endl.) E.M. Gardner, comb. nov. — based on Morus
1049 pendulina Endl., Prodromus Florae Norfolkicae 40 (1833) — Pseudomorus pendulina
1050 (Endl.) Stearn, J. Arnold Arbor. 28: 427 (1947) — Pseudomorus brunoniana var.
1051 pendulina (Endl.) Bureau, Ann. Sci. Nat. Bot. sér. 5, 11: 372 (1869) — Streblus

1052 pendulinus (Endl.) F. Muell., Fragmenta Phytographiae Australiae (1868).

1053 Morus brunoniana Endl., Atakta Bot. t. 32 (1835) — Streblus brunonianus (Endl.) F.
1054 Muell., Fragm. Phyt. Australiae 6: 192 (1868) — Pseudomorus brunoniana (Endl.)
1055 Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 372 (1869)

1056 Pseudomorus brunoniana var. australiana Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 373
1057 (1869) — Pseudomorus pendulina var. australiana (Bureau) Stearn, J. Arnold Arbor.
1058 28: 427 (1947).

1059 Pseudomorus brunoniana var. australiana subvar. castaneaefolia Bureau, Ann. Sci.
1060 Nat., Bot. sér. 5, 11: 372 (1869).

1061 Pseudomorus brunoniana var. obtusa Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 373
1062 (1869) — Pseudomorus pendulina var. obtusa (Bureau) Stearn, J. Arnold Arbor. 28:
1063 428 (1947), as var. obtusata.

1064 Pseudomorus sandwicensis O. Deg., FI. Hawaiiensis fam. 38 (1938) — Pseudomorus
1065 brunoniana var. sandwicensis (O. Deg.) Skottsh., Acta Horti Gothob. 15: 347

1066 (1944) — Pseuomorus pendulina var. sandwicensis (O. Degener) Stearn, J. Arnold
1067 Arbor. 28: 428 (1947) — Streblus sandwicensis (O. Deg.) H. St. John, Pacific Trop.
1068 Bot. Gard. Mem. 1: 374. 1973.

1069  Note: This complex requires further investigation. Although the types of Morus pendulina,
1070  Morus brunoniana, Pseudomorus sandwicensis, and Pseudomorus brunoniana var. obtusa

1071  differ from one another, it is difficult to discern clear geographic patterns that warrant
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maintaining separate species, and we therefore provisionally treat them all as one

widespread and variable species.

9. Paratrophis philippinensis (Bureau) Fern.-Vill., Nov. App. 98 (1880) — Uromorus
philippinensis Bureau in A.DC., Prodr. 17: 237 (1873) — Trophis philippinensis (Bureau)
Corner, Gard. Bull. Singapore 19: 231 (1962).

Sloetia minahassae Koord., Versl. Minahasa 645 (1898).

Paratrophis grandifolia Elmer, Leafl. Philipp. Bot. 5: 1814 (1913).

Calpidochlamys branderhorstii Diels, Bot. Jahrb. Syst. 67: 173 (1935) — Trophis
branderhorstii (Diels) Corner, Gard. Bull. Singapore 19: 231 (1962).

Calpidochlamys drupacea Diels, Bot. Jahrb. Syst. 67: 173 (1935) — Trophis drupacea
(Diels) Corner, Gard. Bull. Singapore 19: 231 (1962).

Note: This species is the only Paratrophis with fused tepals and one of only two whose
tepals develop into a fleshy accessory fruit. The staminate inflorescences, however, are
typical of the genus.

10. Paratrophis sclerophylla (Corner) E.M. Gardner, comb. nov. — based on Streblus
sclerophyllus Corner, Blumea 18: 399 (1970).

11. Paratrophis smithii Cheeseman T.N.Z.L 20:148 (1888) — Streblus smithii (Cheeseman)
Corner Gard. Bull. Singapore 19: 224 (1962).

Note: Morphologically very close to P. anthropophagorum.

12. Paratrophis solomonensis (Corner) E.M. Gardner, comb. nov. — based on Streblus

solomonensis Corner, Gard. Bull. Singapore 19: 224 (1962).
Note:— Morphologically very close to P. anthropophagorum.

Sorocea
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1102  Sorocea A. St-Hil., Mém. Mus. Hist. Nat. 7: 473 (1821).

1103 Balanostreblus Kurz, J. Asiat. Soc. Bengal., Pt. 2, Nat. Hist., 42: 247 (1873), p.p.
1104 Pseudosorocea Baill., Hist. PI. 6: 210 (1875).

1105 Trophisomia Rojas Acosta, Bull. Acad. Inst. Geogr. Bot. 24: 211 (1914).

1106 Paraclarisia Ducke, Arq. Serv. Florest. 1(1): 2 (1939).

1107

1108 Dioecious trees. Leaves alternate, distichous, lamina pinnately veined, 3-lobed to entire.
1109  Stipules free, lateral. Inflorescences solitary or paired in the leaf axils or below the leaves,
1110  racemose to spicate to subcapitate or uniflorous, bracts basally attached to peltate.

1111  Staminate flowers 4-lobed to 4-parted, tepals decussate-imbricate, stamens (3-)4, straight
1112  in bud, pistillode usually absent. Pistillate flowers tubular, 4-lobed to sub-entire, ovary
1113  basally adnate to the perianth, stigmas 2, short, usually tongue-shaped. Infructescences
1114  with drupaceous fruits enclosed by fleshy enlarged perianths, the latter red to orange,

1115 turning black at maturity. Seeds large, testa thin, embryo green, cotyledons very unequal,

1116  the smaller one minute and enclosed by the larger.

1117

1118  Species and distribution: 19 species in Central and South America from Mexico to
1119 Argentina.

1120

1121  Note: This species list follows the Flora Neotropica monograph (Berg 2001) with the
1122  addition of four new species and one status change published later. Names synonymized by
1123  Berg (2001) but recognized by Burger et al. (1962) are noted in parentheses. Complete

1124 synonymies can be found in those treatments.

1125

1126  Sorocea subg. Sorocea

1127 Sorocea affinis Hemsl., Biol. Cent.-Amer., Bot. 3: 150 (1883).

1128 Sorocea angustifolia Al.Santos & Romaniuc, Novon 24: 199 (2015).

1129 Sorocea bonplandii (Baill.) W.C. Burger, Lanj. & de Boer, Acta Bot. Neerl. 11: 465
1130 (1962).
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1131 Sorocea briquetii J.F.Macbr., Publ. Field Columb. Mus., Bot. Ser. 11: 16 (1931) (incl.
1132 S. pileate W.C. Burger).

1133 Sorocea carautana M.D.M.Vianna, Carrijo & Romaniuc, Novon 19: 549 (2009).
1134 Sorocea ganevii R.M.Castro, Neodiversity 1: 18 (2006).

1135 Sorocea guilleminiana Gaudich., Voy. Bonite, Bot. 3: t. 74 (1843) (incl. S.

1136 klotzschiana Baill. and S. macrogyna Lanj. & Wess. Boer).

1137 Sorocea hilarii Gaudich., Voy. Bonite, Bot. 3: t. 71 (1843) (incl. S. racemosa

1138 Gaudich.).

1139 Sorocea jaramilloi C.C.Berg, Novon 6: 241 (1996).

1140 Sorocea longipedicellata A.F.P. Machado, M.D.M. Vianna & Romaniuc, Syst. Bot.
1141 38: 687 (2013).

1142 Sorocea muriculata Mig., C.F.P. von Martius & auct. suc. (eds.), Fl. Bras. 4(1): 113
1143 (1853).

1144 subsp. muriculata (incl. S. amazonica Miq.)

1145 subsp. uaupensis (Baill.) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 88: 387
1146 (1985) (incl. S. guayanensis W.C. Burger).

1147 Sorocea pubivena Hemsl., Biol. Cent.-Amer., Bot. 3: 150 (1883).

1148 subsp. pubivena (incl. S. cufodontii W.C. Burger)

1149 subsp. hirtella (Mildbr.) C.C. Berg, Novon 6: 243 (1996) (incl. S. opima J.F.
1150 Macbr.)

1151 subsp. oligotricha (Akkermans & C.C. Berg) C.C. Berg, Novon 6: 243 (1996).
1152 Sorocea ruminata C.C.Berg, Novon 6: 244 (1996).

1153 Sorocea sarcocarpa Lanj. & Wess. Boer, Acta Bot. Neerl. 11: 452 (1962).

1154 Sorocea steinbachii C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 88: 385 (1985).
1155 Sorocea trophoides W.C. Burger, Acta Bot. Neerl. 11: 450 (1962).

1156

1157  Sorocea subg. Paraclarisia (Ducke) W.C. Burger, Lanj. & Wess. Boer, Acta Bot. Neerl.
1158 11: 468 (1962).

1159 Sorocea duckei W.C.Burger, Acta Bot. Neerl. 11: 473 (1962).

39


https://doi.org/10.1101/2020.04.08.030452
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1160 Sorocea sprucei (Baill.) J.F.Macbr., Publ. Field Mus. Nat. Hist., Bot. Ser. 11: 16
1161 (1931).

1162 subsp. sprucei (incl. S. arnoldoi Lanj. & Wess. Boer).

1163 subsp. saxicola (Hassl.) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch., Ser. C.,
1164 Biol. Med. Sci. 88: 391 (1985).

1165 Sorocea subumbellata (C.C. Berg) Cornejo, Novon 19: 297 (2009).

1166

1167

1168 Taxotrophis

1169  Taxotrophis Blume, Ann. Mus. Bot. Lugduno-Batavi 2 77 (1856); Hutch., Bull. Misc.
1170 Inform. Kew 147 (1918).

1171  Streblus Lour. sect. Taxotrophis (Blume) Corner, Gard. Bull. Singapore 19: 218 (1962);
1172 Berg et al., Fl. Males. Ser. 1, Vol. 17, Pt. 2 (2006).

1173

1174  Monoecious or dioecious trees or shrubs, usually with lateral or terminal thorns. Leaves
1175  distichous, pinnately veined, petioles adaxially pubescent. Stipules free, lateral.

1176  Inflorescences axillary, solitary or paired, with an abaxial sterile groove, interfloral bracts
1177  basally attached, flowers with 4 free tepals, valvate. Staminate inflorescences spicate to
1178  sub-capitate, flowers with filaments inflexed in bud, pistillode present. Pistillate

1179 inflorescences uniflorous or sub-spicate, flowers usually pedicellate, stigma bifid, arms
1180  equal. Fruits drupaceous, up to ca. 1 cm long, usually loosely enclosed by the enlarged
1181  persistent tepals. Seeds up to ca. 8 x 6 mm, cotyledons subequal to unequal.

1182

1183  Species and distribution: Six species, ranging from Sri Lanka to New Guinea.

1184

1185 1. Taxotrophis ilicifolia (Kurz) S.Vidal, Revis. Pl. Vasc. Filip. 249 (1886) —

1186 Balanostreblus ilicifolia Kurz, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 42(4): 248
1187 (1874) — Streblus ilicifolius (Kurz) Corner, Gard. Bull. Singapore 19: 227 (1962).
1188 Pseudotrophis laxiflora Warb., Bot. Jahrb. Syst. 13 294 (1891).

1189 Taxotrophis obtusa Elmer, Leafl. Philipp. Bot. 5 1813 (1913).
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1190 Taxotrophis laxiflora Hutch., Bull. Misc. Inform. Kew 151 (1918). — Streblus

1191 laxiflorus (Hutch.) Corner, Gard. Bull. Singapore 19 229 (1962).

1192 Taxotrophis triapiculata Gamble, Bull. Misc. Inform. Kew 188 (1913).

1193 Taxotrophis eberhardtii Gagnep., Fl. Indo-Chine 5 700 (1928).

1194 Taxotrophis macrophylla auct. non Boerl.: Burkill, Dict. Econ. Prod. Malay Penins.
1195 2126 (1935).

1196

1197 2. Taxotrophis macrophylla (Blume) Boerl., Handl. FI. Ned. Ind. 3: 359 (1900).

1198 Streblus macrophyllus Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 80 (1856) —
1199 Diplocos ? macrophyllus (Blume) Bureau in A.DC., Prodr. 17: 216 (1873).
1200 Pseudotrophis mindanaensis Warb. in Perkins, Fragm. Fl. Philipp. 1: 165 (1905);
1201 Elmer, Leafl. Philipp. Bot. 5: 1815 (1913), ‘Taxatrophis mindanaensis’ in nota.
1202 Paratrophis caudata Merr., Philipp. J. Sci., 1, Suppl. 183 (1906).

1203 Taxotrophis balansae Hutch., Bull. Misc. Inform. Kew 151 (1918).

1204 Dimerocarpus brenieri Gagnep., Bull. Mus. Hist. Nat. (Paris) 27: 441 (1921).

1205

1206 3. Taxotrophis perakensis (Corner) E.M. Gardner, comb. nov., based on Streblus
1207 perakensis Corner, Gard. Bull. Singapore 19: 223 (1962).

1208

1209  Note: Although Corner (1962) considered S. perakensis species part of section Paratrophis,
1210 albeit with some hesitation, Berg et al. (2006), whom we follow, placed it in Taxotrophis
1211  based on the spines that appear on some specimens. This is a rather variable species that
1212  requires further investigation to properly elucidate its limits and affinities.

1213

1214 4. Taxotrophis spinosa Steenis in Backer & Bakh.f., Fl. Java 2 (1965) 16.

1215 Urtica spinosa Blume, Bijdr. (1825) 507. — Streblus spinosus (Blume) Corner, Gard.
1216 Bull. Singapore 19: 229 (1962).

1217 Taxotrophis javanica Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 77, t. 26 (1856).
1218

1219 5. Taxotrophis taxoides (B. Heyne ex Roth) W.L. Chew ex E.M. Gardner, comb. nov.
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1220 Trophis taxoides B. Heyne ex Roth, Nov. Pl. Sp. 368 (1821). — Trophis taxiformis
1221 Spreng., Syst. Veg. 3 902 (1826), nom. nov. illeg. — Streblus taxoides (B. Heyne
1222 ex Roth) Kurz, Forest Fl. Burma 2: 465 (1877) — Phyllochlamys taxoides (B.
1223 Heyne ex Roth) Koord., Exkurs.-FI. Java 2: 89 (1912).

1224 Trophis spinosa Roxb., Fl. Ind., ed. Carey 3: 762 (1832), non Willd. 1806, nec Blume
1225 1826. — Epicarpurus spinosus (Roxb.) Wight, Icon. PI. Ind. Orient. 6: 7, t. 1962
1226 (1853), p.p. — Phyllochlamys spinosa (Roxb.) Bureau in A.DC., Prodr. 17: 218
1227 (1873);

1228 Epicarpurus timorensis Decne., Nouv. Ann. Mus. Hist. Nat. 3: 499, t. 21 (1834).
1229 Taxotrophis roxburghii Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 78 (1856)

1230 Streblus microphyllus Kurz, Prelim. Rep. Forest Pegu App. A, cxviii; App. B, 84
1231 (1875); — Streblus taxoides (B. Heyne ex Roth) Kurz var. microphylla (Kurz)
1232 Kurz, Forest FI. Burma 2: 465 (1877).

1233 Phyllochlamys wallichii King ex Hook.f., Fl. Brit. India 5: 489 (1888);

1234 Phyllochlamys taxoides (B. Heyne ex Roth) Koord. var. parvifolia Merr., Enum.
1235 Philipp. Flow. PI. 2: 38 (1923).

1236 Taxotrophis poilanei Gagnep., Fl. Indo-Chine 5: 701 (1928).

1237 Taxotrophis crenata Gagnep., Fl. Indo-chine 5: 702, t. 82 (1928). — Streblus crenatus
1238 (Gagnep.) Corner, Gard. Bull. Singapore 19: 226 (1962).

1239 Phyllochlamys tridentata Gagnep., Fl. Indo-Chine 5: 714 (1928).

1240

1241  Note: In the 1950s, Dr. Chew Wee Lek annotated quite a lot of specimens at K and SING
1242  with the new combination Taxotrophis taxoides. However, the combination was never
1243  published, probably because the need for the combination was obviated in 1962 when
1244 Corner, his doctoral supervisor, reduced Taxotrophis to a section of Streblus.

1245

1246 6. Taxotrophis zeylanica (Thwaites) Thwaites, Enum. PIl. Zeyl. [Thwaites] 264 (1861).

1247 Epicarpurus zeylanicus Thwaites, Hooker’s J. Bot. Kew Gard. Misc. 4: 1 (1852) —
1248 Diplocos zeylanica (Thwaites) Bureau, Prodr. [A. P. de Candolle] 17: 215 (1873)
1249 — Streblus zeylanicus (Thwaites) Kurz, Forest Fl. Burma 2: 464 (1877).
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1250 Taxotrophis caudata Hutchinson, Bull. Misc. Inform. Kew 1918(4): 149 (1918).
1251

1252

1253 Trophis

1254

1255  Trophis Lour., P. Browne, Civ. Nat. Hist. Jamaica 357 (1756), nom. cons.

1256 Bucephalon L. Sp. PI. 1190 (1753), nom. rejic.

1257 Skutchia Pax & K. Hoffm. ex C.V. Morton, J. Wash. Acad. Sci. 27: 306 (1937).
1258

1259  Dioecious trees or shrubs. Leaves distichous, pinnately veined. Stipules free, lateral.

1260 Inflorescences axillary or just below the leaves, solitary or paired, interfloral bracts basally
1261  attached. Staminate inflorescences spicate to racemose with an abaxial sterile groove, tepals
1262 4, basally connate, stamens 4, filaments inflexed in bud, pistillode present. Pistillate

1263 inflorescences spicate to racemose or subcapitate, tepals 4, connate, forming a tubular

1264  perianth, ovary adnate to the perianth or not, stigma bifid, arms equal. Fruits drupaceous,
1265 upto ca. 1.5 cm long, adnate to the perianth or not, the perianth enlarged and fleshy or not.

1266  Seeds up to ca. 1 cm long, cotyledons equal.

1267

1268  Species and distribution: Five species in the neotropics.
1269

1270  Trophis P. Browne sect. Trophis

1271

1272 1. Trophis cuspidata Lundell, Amer. Midl. Naturalist 19: 427 (1938).

1273 2. Trophis mexicana (Liebm.) Bureau, Prodr. [A. P. de Candolle] 17: 253 (1873).

1274 3. Trophis noraminervae Cuevas & Carvajal, Acta Bot. Mex. 47: 2 (1-7, fig.) (1999).

1275 4. Trophis racemosa Urb., Symb. Antill. (Urban). 4(2): 195 (1905).

1276

1277  Trophis P. Browne sect. Echinocarpa C.C. Berg, Proc. Kon. Ned. Akad. Wetensch., Ser. C,
1278  Biol. Med. Sci. 91: 353 (1988).

1279
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5. Trophis involucrata W.C. Burger, Phytologia 26: 432 (1973).

Tribe OLMEDIEAE

Olmedieae Trécul, Ann. Sci. Nat., Bot. sér. 3, 8 (1847) 126
Castilleae C.C. Berg, Acta Bot. Neerl. 26 (1977) 78
Strebleae Bureau in DC., Prodr. 17: 215 (1873), p.p.

Tree or shrubs, monoecious or dioecious (or androdioecious), mostly with self-pruning
branches. Leaves alternate or opposite, distichous or spirally arranged; stipules lateral to
amplexicaul. Inflorescences mostly unisexual, capitate, mostly discoid to urceolate,
involucrate, tepals mostly 4, connate or not. Staminate inflorescences usually many-
flowered; stamens 4 or fewer, with filaments straight or less often inflexed in bud, pistillode
mostly absent. Pistillate inflorescences one to many-flowered, ovary free or not, stigmas 2,
filiform. Fruits mostly drupaceous, mostly enclosed by a fleshy perianth or embedded in a
fleshy receptacle. Seeds with or without endosperm, testa thin, vascularized, cotyledons

mostly equal.

Genera and distribution: 13 genera with 63 species. Eight neotropical genera: Castilla (3
spp.), Helicostylis (7), Maquira (4), Naucleopsis (22), Olmedia (1), Perebea (9),
Poulsenia (1), and Pseudolmedia (9); and five Paleotropical genera: the widespread
Antiaris (1); Antiaropsis (2) in New Guinea; Mesogyne (1) in Africa; Sparattosyce (1)
in New Caledonia; and Streblus (3) in South to Southeast Asia.

Olmedia

Olmedia Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil.1:257.1798. Type — Olmedia aspera Ruiz
& Pav.
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1309 Trophis section Olmedia (Ruiz & Pav.) Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91:
1310 354. 1988.
1311

1312  Dioecious trees or shrubs. Leaves distichous, lamina pinnately veined. Stipules free, not
1313  fully amplexicaul. Inflorescences unisexual, with a well-developed involucre. Staminate
1314  inflorescences discoid, multiflorous; tepals 4, valvate, stamens 4, inflexed in bud, pistillode
1315 absent. Pistillate inflorescences usually uniflorous, perianth tubular, 4-dentate, ovary free,
1316  stigmas 2, equal. Fruits drupaceous, surrounded by fleshy persistent perianth and

1317  subtended by spreading, fleshy involucral bracts. Seeds ca. 5 mm long, cotyledons equal.
1318

1319  Species and distribution: One species, in the Neotropics.

1320

1321 1. Olmedia aspera Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil.1:257.1798

1322 Olmedia caucana Pittier, Contr. U.S. Natl. Herb. 13:434. 1912. — Trophis caucana
1323 (Pitttier) C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 354. 1988

1324 Olmedia poeppigiana Klotzsch, Linnaea 20: 525. 1847, as a synonym of O. aspera

1325 Poeppig & Endlicher, Nov. Gen. 2: 31. 1838, based on Poeppig s.n. or 1267, non

1326 O.poeppigiana Martius Flora (or Bot. Zeit) 24 (Beibl. 2): 93. 1841 (= Helicostylis
1327 tomentosa (Poeppig & Endlicher) Rusby).

1328 Olmedia falcifolia Pittier, Contr. U.S. Natl. Herb. 13: 435. 1912.

1329 Trophis aurantiaca Herzog, Repert. Spec. Nov. 7: 51. 1909

1330

1331

1332 Streblus

1333

1334  Streblus Lour., Fl. Cochinch. (1790) 615.

1335  Achymus Juss., Dict. Sci. Nat. 1, Suppl. 31 (1816) .

1336  Epicarpurus Blume, Bijdr. 488 (1825).

1337  Albrandia Gaudich. in Freyc., Voy. Uranie, Bot. 509 (1830).
1338  Calius Blanco, Fl. Filip. 698 (1837).
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Teonongia Stapf, Hooker’s Icon. PI. 30: t. 2947 (1911).
Diplothorax Gagnep., Bull. Soc. Bot. France 75 98 (1928).

Trees or shrubs, dioecious or monoecious. Leaves distichous, lamina pinnately veined.
Stipules free, lateral. Inflorescences bisexual or unisexual, capitate, with a rudimentary
involucre, bracts basally attached. Staminate inflorescences discoid capitate, multiflorous;
tepals 4, imbricate, stamens 4, inflexed in bud, pistillode present but small. Pistillate
inflorescences usually uniflorous, tepals 4, ovary free, stigmas 2, equal. Fruits drupaceous,
up to ca. 8 mm long, initially enclosed by enlarged but not fleshy tepals, which may open

later. Seeds ca. 5 mm long, cotyledons equal or very unequal.

Species and distribution: three species from India to South China and from mainland

Southeast Asia to the Philippines and the Moluccas.

1. Streblus asper (Retz.) Lour., Fl. Cochinch. 2: 615 (1790).

Trophis aspera Retz., Observ. Bot. 5 (1788) — Epicarpurus asper (Retz.) Steud.
Nomencl. Bot. ed. 2, 1: 556 (1840).

Trophis cochinchinensis Poir., Encycl. 8 (1808) 123.

Epicarpurus orientalis Blume, Bijdr. (1825) 488

Calius lactescens Blanco, Fl. Filip. (1837) 698; ed. 3, 3 (1879) 1103, t. 171. —
Streblus lactescens (Blanco) Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 80.

Achymus pallens Sol. ex Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 79.

Cudrania crenata C.H. Wright, J. Linn. Soc., Bot. 26 (1899) 469. — Vanieria crenata
(C.H. Wright) Chun, J. Arnold Arbor. 8 (1927) 21.

Diplothorax tonkinensis Gagnep., Bull. Soc. Bot. France 75 (1928) 98.

Note: Retzius’s Trophis aspera predated Loureiro’s Streblus asper by two years, making
the latter an implied new combination under Article 41.1 of the Code (cf. Ex. 10).
Synonymies of the S. asper have sometimes erroneously included Trophis aculeata Roth,

which is actually Maclura spinosa (Roxb. ex Willd.) C.C. Berg.
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1369

1370 2. Streblus celebensis C.C. Berg, Blumea 50 547 (2005).

1371

1372 3. Streblus tonkinensis (Eberh. & Dubard) Corner, Gard. Bull. Singapore 19 (1962): 228.
1373 Bleeokrodea tonkinensis Eberh. & Dubard, Compt. Rend. Hebd. SEances Acad. Sci.
1374 145 (1907): 632. — Teonongia tonkinensis (Eberh. & Dubard) Stapf.

1375

1376

1377 Tribe DORSTENIEAE

1378

1379  Dorstenieae Gaudich. in Freyc., Voy. Uranie, Bot. (1830).

1380 Broussonetieae Gaudich. in Freyc., Voy. Uranie, Bot. 508 (1830).

1381  Brosimeae Trécul, Ann. Sci. Nat., Bot. sér. 3, 8: 146 (1847).

1382  Fatoueae Engl., Nat. Pflanzenfam. 3, 1: 71 (1888).

1383

1384  Tree, shrubs, lianas, and herbs, monoecious or less often dioecious. Leaves alternate or less
1385 commonly (sub)opposite, distichous or spirally arranged; stipules lateral to fully

1386  amplexicaul. Inflorescences unisexual or bisexual, cymose, spicate, globose, or discoid to
1387 turbinate or cup-shaped, multiflorous or uniflorous (the latter in pistillate inflorescences
1388  only), bracteate or not, interfloral bracts mostly peltate. Staminate flowers with tepals (1
1389  )2-4 or absent, stamens 1-4 with filaments straight or inflexed in bud, pistillode present or
1390  (more often) absent. Pistillate flowers free or connate or embedded in the receptacle, tepals
1391  2-4, ovary free or not, stigmas 1 or 1, equal or unequal. Fruits drupaceous or drupe-like
1392  due to a persistent fleshy perianth and/or receptacle, the whole endocarp unit often

1393 ballistically ejected from the infructescence. Seeds with or without endosperm, large or
1394  small; cotyledons equal or unequal.

1395

1396  Genera and distribution: eleven genera and 63 species with a worldwide distribution:

1397  Bleekrodea (Africa and Southeast Asia), Bosqueiopsis (Africa), Brosimum (Neotropics),
1398  Broussonetia (Asia to Oceania; introduced worldwide), Dorstenia (Africa and South
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1399  America, with one species in India), Fatoua (Madagascar and Japan to New Caledonia;
1400 introduced worldwide), Helianthostylis (Neotropics), Malaisia (Southeast Asia to New
1401  Caledonia), Scyphosyce (Africa), Sloetia (Southeast Asia), Sloetiopsis (Africa), Trilepisium
1402  (Africa), Trymatococcus (Neotropics), Utsetela (Africa).

1403

1404

1405 Sloetiopsis

1406

1407  Sloetiopsis Engl., Bot. Jahrb. 39: 573 (1907).

1408 Neosloetiopsis Engl., Bot. Jahrb. 51: 426 (1914)

1409 Streblus auct. non Lour., C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 357.
1410 1988.

1411

1412  Tree or shrubs, dioecious (or monoecious). Leaves distichous, pinnately veined, cystoliths
1413  present; stipules free, nearly amplexicaul. Inflorescences unisexual (or bisexual); staminate
1414  inflorescences spicate with an abaxial sterile groove, bracts mostly peltate, tepals 4, free or
1415 basally connate filaments inflexed in bud, pistillode small; pistillate inflorescences

1416  uniflorous, bracts mostly basally attached, tepals 4, free, imbricate, 2 stigmas. Fruits

1417  drupaceous, fleshy endocarp dehiscent, tepals enlarged and persistent but not fleshy. Seeds
1418  globose, ca. 4 mm, endocarp coriaceous with a hard disc against the hilum, testa

1419  vascularized with a thick apical cap, cotyledons equal.

1420

1421 1. Sloetiopsis usambarensis Engl., Bot. Jahrb. 39: 573 (1907) — Streblus usambarensis
1422 (Engl.) C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 357. 1988.

1423 Neosloetiopsis kamerunensis Engl., Bot. Jahrb. 51: 426 (1914).

1424

1425  Note. The nearly amplexicaul stipules and occasional bisexual inflorescences reflect an
1426  affinity with the Southeast Asian Sloetia, also a member of the Dorstenieae.

1427

1428
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1429 Tribe PARARTOCARPEAE

1430

1431  Parartocarpeae N.J.C. Zerega & E.M. Gardner Zerega, Phytotaxa 388, 253-265 (2019).
1432  Shrubs to large trees, monoecious or dioecious; abundant white exudate. Leaves distichous
1433  or spirally arranged; simple; entire; pinnately veined; thin to thick coriaceous; glabrous,
1434  pubescent, scabrid, or hispid pubescent. Stipules axillary, simple or paired, lateral.

1435 Inflorescences solitary or paired in leaf axils, unisexual (or bisexual with a single apical
1436  pistillate flower), uniflorous, cymose, or capitate with stamens or ovaries sunken into the
1437  receptacle; pedunculate; involucre of 3-8 triangular bracts, basally connate. Staminate
1438 inflorescences with numerous flowers, tepals 4-5, stamens 5 and normally positioned or 1
1439  3in cavities in the receptacle with the anthers exerted through perforations in the upper
1440  surface of the receptacle, filaments free or united. Pistillate inflorescences uniflorous or
1441  (sub)globose with ovaries solitary in each cavity, unilocular, the style apical with a short
1442  exerted stigma. Fruits drupaceous, enclosed by persistant tepals, or aggregated into

1443  syncarps formed by the enlargement of the entire inflorescence.

1444

1445  Genera and distribution: Three genera and five species, from Southern China to the

1446  Solomon Islands: Hullettia, Parartocarpus, and Pseudostreblus.

1447

1448

1449 Pseudostreblus

1450

1451  Pseudostreblus Bureau, in A.P. de Candolle, Prodr. 17: 220 (1873).

1452  Streblus Lour. sect. Pseudostreblus (Bureau) Corner, Gard. Bull. Singapore 19: 217 (1962).
1453

1454 Monoecious trees. Leaves distichous, pinnately veined. Stipules free, lateral.

1455  Inflorescences axillary. Staminate inflorescences cymose, tepals 5, imbricate, filaments
1456  inflexed in bud but apparently straightening gradually upon anthesis, pistillode minute,
1457  conical, pubescent, interfloral bracts few, basally attached. Pistillate inflorescences

1458 uniflorous, pedunculate, involucral bracts 3, £connate, tepals 4, imbricate, stigma bifid,
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arms equal. Fruits drupaceous, ca. 1 cm long, with tepals enlarged and loosely enclosing

the fruit. Seeds ellipsoid, ca. 6 x 8 mm, cotyledons unequal.

Species and distribution: One, in South to Southeast Asia and Southern China.

Note: Pseudostreblus is remarkable for its five-parted staminate flowers.

1. Pseudostreblus indicus Bureau, in A.P. de Candolle, Prodr. 17: 220 (1873).
Streblus indicus (Bureau) Corner, Gard. Bull. Singapore 19: 226 (1962).

Conclusion

The revisions presented here, based on the best phylogenetic evidence available to date,
provide for seven monophyletic tribes of Moraceae and ten monophyletic genera within
Moreae. We hope that the resulting taxonomic and phylogenetic framework will provide a

solid foundation for further research into the systematics and evolution of Moraceae.
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1713  Tables
1714
1715  Table 1. Overview of the taxonomic history of Moreae.
Engler (1899) Corner (1962) Berg (2001) Clement & Gardner et al.
Weiblen (2009)
Afromorusc
Ampalis Ampalis (Ampalis)a (Ampalis)a Ampalis
Bagassa Bagassa
(Bleekrodea)a Bleekrodea
Broussonetia
Clarisia
Fatoua Fatoua
Maclura
(Maillardia)o (Maillardia)o (Maillardia)o Maillardia
(Malaisia)n
Milicia Milicia Milicia
Morus Morus Morus Morus Morus
Pachytrophe Pachytrophe (Pachytrophe)a (Pachytrophe)a (Pachytrophe)d
Paratrophis (Paratrophis)a (Paratrophis)a (Paratrophis)a Paratrophis
Pseudomorus (Pseudomorus)a (Pseudomorus)a (Pseudomorus)a (Pseudomorus)e
(Pseudostreblus)a | (Pseudostreblus)a | (Pseudostreblus)a
(Sloetia) (Sloetia)a
(Sloetiopsis)a (Sloetiopsis)a (Sloetiopsis)a
Sorocea Sorocea Sorocea
Streblus Streblus Streblus
(Taxotrophis)a (Taxotrophis)a (Taxotrophis)a Taxotrophis
Trophis Trophis Trophis Trophis Trophis
1716  alncluded in Streblus.
1717  vlincluded in Trophis.
1718  <Newly separated from Morus.
1719  dIncluded in Ampalis
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1720  elIncluded in Paratrophis.

1721

1722

1723  Table 2. Divergence times (in Ma) estimated using penalized likelihood under correlated

1724 and relaxed models. Nomenclature follows the revisions proposed in this study.

Clade Correlated Relaxed
Moraceae 84.7 84.7
Parartocarpeae 75.3 74.7
Ficeae 24 345
Olmedieae 36.4 43.4
Dorstenieae 72.5 76.9
Maclureae 449 52.1
Artocarpeae 64 64
Moreae 59.1 75.4

1725

1726

1727

1728

1729

1730
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1731  Figures

1732

1733  Figure 1. Representatives of Moreae: Paratrophis pendulina (=Streblus pendulinus) (a)
1734  infructescences and (b) staminate inflorescences, the latter showing the characteristic sterile
1735  groove; Sorocea racemosa (c) infructescences and (d) staminate inflorescence; Morus nigra
1736  (e) pistillate inflorescences with elaborate stigmas and (f) staminate inflorescences with
1737  stamens that, having been inflexed in bud, are substantially longer than the perianth itself;
1738 and a newly-placed member of Olmedieae (=Castilleae), Streblus asper: (g) infructescences
1739 and (h) discoid-capitate staminate inflorescences with the rudiments of an involucre visible

1740  below the unopened flowers. Photo credits: (a) F. & Kim Starr, under a CC-BY-3.0-US licence

1741  (https://commons.wikimedia.org/wiki/File:Starr-051029-5102-Streblus_pendulinus-fruit-Auwahi-

1742  Maui_(24481336159).jpg); (b) M. Marathon, CC-BY-SA-4.0

1743 (https://commons.wikimedia.org/wiki/File:Streblus_brunonianus_flowers.jpg); (c)-(d) A. Popovkin, CC-BY-
1744 2.0 (https://commons.wikimedia.org/wiki/File:Sorocea_racemosa_Gaudich._-_Flickr_-

1745  _Alex_Popovkin, Bahia,_Brazil_(3).jpg and

1746  https://commons.wikimedia.org/wiki/File:Sorocea_racemosa_Gaudich. - Flickr_-

1747 _Alex_Popovkin, Bahia, Brazil (9).jpg); (e) E. Gardner; (f) Schurdl, CC-BY-SA-4.0

1748  (https://commons.wikimedia.org/wiki/File:Morus_nigra_100525_02.jpg); (g) D. Valke, CC-BY-SA-2.0

1749  (https://commons.wikimedia.org/wiki/File:Bekar_(Konkani-_sehY)_(4533519363).jpg); (h) Vinayaraj, CC

1750 BY-SA 4.0 (https://commons.wikimedia.org/wiki/File:Streblus_asper_at_Panamaram_(5).jpg)
1751

1752
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Figure 2. Phylogenetic trees from the "exon" dataset. Maximum-likelihood based on a
supermatrix of all loci, with bootstrap support and previous nomenclature (left), and a
species tree based on gene trees from all loci with bootstrap/LPP support and revised
nomenclature (right). Discordant branches are colored in red, and tribal classifications are

shaded without (left) and with (right) the revised classifications presented here.
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Figure 3. Phylogenetic trees of the Moreae clade from the "supercontig" dataset.
Maximum-likelihood based on a supermatrix of all loci, with bootstrap support and
previous nomenclature (left), and a species tree based on gene trees from all loci with
bootstrap/LPP support and revised nomenclature (right). Discordant branches are colored in

red.
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1782  Figure 4. The best five maximum-pseudo-likelihood phylogenetic networks for the
1783  Paratrophis clade.
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1786  Figure 5. Time-calibrated phylogenetic tree, with revised nomenclature.
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1789  Figure 6. Ancestral reconstruction of stamen position, with revised nomenclature. The
1790 reconstruction was identical under a trait-dependent (BiSSE) or a trait-independent model.
1791  Blue = inflexed in bud; yellow = straight in bud.
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1794  Figure 7. Revised classification of Moreae on a maximume-likelihood phylogenetic tree of
1795  Moreae based on "supercontig" sequences.
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1779  Figure 7. Revised classification of Moreae on a strict consensus tree of all four main
1780  phylogenomic analyses.
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