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Abstract

Despite recent advances in high-throughput combinatorial mutagenesis assays, the number of
labeled sequences available to predict molecular functions has remained small for the vastness of
the sequence space combined with the ruggedness of many fitness functions. Expressive models in
machine learning (ML), such as deep neural networks (DNNs), can model the nonlinearities in
rugged fitness functions, which manifest as high-order epistatic interactions among the mutational
sites. However, in the absence of an inductive bias, DNNs overfit to the small number of labeled
sequences available for training. Herein, we exploit the recent biological evidence that epistatic
interactions in many fitness functions are sparse; this knowledge can be used as an inductive bias
to regularize DNNs. We have developed a method for sparse epistatic regularization of DNNs,
called the epistatic net (EN), which constrains the number of non-zero coefficients in the spectral
representation of DNNs. For larger sequences, where finding the spectral transform becomes
computationally intractable, we have developed a scalable extension of EN, which subsamples the
combinatorial sequence space uniformly inducing a sparse-graph-code structure, and regularizes
DNNs using the resulting greedy optimization method. Results on several biological landscapes,
from bacterial to protein fitness functions, show that EN consistently improves the prediction
accuracy of DNNs and enables them to outperform competing models which assume other forms
of inductive biases. EN estimates all the higher-order epistatic interactions of DNNs trained on
massive sequence spaces—a computational problem that takes years to solve without leveraging
the epistatic sparsity in the fitness functions.
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1 Introduction

Recent advances in next-generation sequencing have enabled the design of high-throughput combinatorial
mutagenesis assays that measure molecular functionality for tens of thousands to millions of sequences
simultaneously. These assays have been applied to many different sequences in biology, including
protein-coding sequences [1–3], RNAs [4–6], bacterial genes [7–10], and the SpCas9 target sites [11–13].
The labeled sequences collected from these assays have been used to train supervised machine learning
(ML) models to predict functions (e.g., fluorescence, binding, repair outcome, etc.) from the sequence—a
key step in the rational design of molecules using ML-assisted directed evolution [14]. However, due to
the limitations in techniques for library preparation, these assays can only uncover a small subset of all
the possible combinatorial sequences. This raises an important question in learning fitness functions:
how can we enable supervised ML models to infer fitness functions using only a small number of labeled
sequences?

Inferring fitness functions is a challenging task since mutational sites interact nonlinearly to form
the function, a phenomenon known as epistasis in genetics [15,16]. As a result, linear regression models
which assume site-independent interactions achieve poor accuracy in predicting nonlinear functions.
Augmenting linear models with pairwise, second-order epistatic interactions improves their prediction
accuracy [3]; however, there is now increasing evidence that a large fraction of the variance in the
fitness functions can be explained only by higher-order epistatic interactions, which contribute to the
‘ruggedness’ of fitness landscapes [17,18]. Modeling rugged fitness landscapes is a hard task since the
total number of possible higher-order interactions grows exponentially with the number of mutational
sites. As a result, the number of parameters to be estimated (i.e., the problem dimension) also grows
with the same exponential rate, which creates statistical challenges in inferring the fitness function since
the number of labeled sequences does not scale with the problem dimension. In response, nonlinear ML
models constrain the problem dimension by introducing various forms of inductive biases to capture
hidden structures in the fitness functions. Random forests, for example, impose a tree structure over
sites which favor ‘tree-like’ hierarchical epistatic interactions. While these inductive biases are effective
in some fitness functions [19], they are too restrictive to capture the underlying higher-order epistatic
interactions in other fitness functions [3]. Overparameterized models in deep learning (DL), such as
deep neural networks (DNNs), are expressive enough to model high-order espistatic interactions given
a large number of labeled training sequences; however, when the number of labeled sequences is small,
they often overfit to the training data and compromise prediction accuracy. It has been observed that
regularizing DNNs to induce domain-specific biases improves their prediction accuracy for various tasks
in computer vision and natural language processing [20]. This opens up the question of whether there
exists an inductive bias for DNNs trained on biological fitness landscapes that can be imposed using a
computationally tractable regularization scheme.

Recent studies in biological landscapes [3, 13, 21] have reported that a large fraction of the variance
in many fitness functions can be explained by only a few number of (high-order) interactions between
the mutational sites. The epistatic interactions in these functions are a mixture of a small number
of (high-order) interactions with large coefficients, and a larger number of interactions with small
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coefficients; in other words, their epistatic interactions are highly sparse. Promoting sparsity among
epistatic interactions is a powerful inductive bias for predictive modeling because it reduces the problem
dimension without biasing the model towards a subset of (low-order) interactions. Despite its benefits,
promoting sparsity among epistatic interactions has not been studied in DNNs as an inductive bias.
The roadblock is in finding a method to promote epistatic sparsity in DNNs. Unfortunately, directly
penalizing all or some of the parameters (weights) of DNNs with sparsity-promoting priors is not
likely to result in sparse epistatic regularization since the epistatic coefficients are a complex nonlinear
function of the weights in DNNs.

Herein, we develop a method for sparse epistatic regularization of DNNs. We call our method
epistatic net (EN) because it resembles a fishing net which catches the epistatic interactions among all
the combinatorially possible interactions in DNNs, without any restriction to a subset of (low-order)
interactions. In order to find the epistatic interaction as a function of the weights in DNN, we find its
spectral representation (also called the Walsh-Hadamard (WH) transform for binary sequences) by
evaluating the DNN on the entire combinatorial space of mutations, and then take the WH spectral
transform of the resulting landscape using the Fast WH Transform (FWHT). The resulting function of
the weights in DNN is penalized to promote epistatic sparsity. For larger sequences this approach for
epistatic regularization becomes computationally intractable due to the need to enumerate all possible
mutations in DNN. Therefore, we leverage the fast sparsity-enabled algorithms in signal processing
and coding theory in order to develop a greedy optimization method to regularize DNNs at scale. Our
scalable regularization method, called EN-S, regularizes DNNs by sampling only a small subset of the
combinatorial sequence space by choosing sequences that induce a specific sparse graph structure. The
uniform sampling scheme allows us to find the WH transform of the combinatorial DNN landscape
efficiently using a fast peeling algorithm over the induced sparse graph [22]. Results on several biological
landscapes, from bacterial to protein fitness functions, shows that EN(-S) enables DNNs to achieve
consistently higher prediction accuracy compared to competing models and estimate all the higher-order
predictive interactions on massive combinatorial sequence space—a computational problem that takes
years to solve without leveraging the epistatic sparsity structure in the fitness landscapes.

2 Results

Regularization using the epistatic net (EN). EN is a novel regularization scheme (Figure 1b)
which evaluates the DNN on all the possible combinatorial mutations of the input sequence; we call
the resulting high-dimensional vector the DNN landscape. EN takes the WH transform of the DNN
landscape and adds the sparsity-promoting `1-norm (i.e., the sum of the absolute values) of the WH
coefficients (or total sum of the magnitude of epistasis) to the log-likelihood loss. The resulting WH
loss is a differentiable function (except at zero) of the weights in DNN and is weighted by a scalar which
strikes a balance between the fidelity of DNN to the labeled sequences and sparsity among epistatic
interactions (see Methods for more detail). We use the stochastic gradient descent (SGD) algorithm to
minimize the aggregate loss and update the weights of DNN in every iteration.
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Figure 1: Schematic illustration of our sparse epistatic regularization method, called
epistatic net (EN). a, Conventional deep neural network (DNN) training is depicted, where the
log-likelihood loss (computed over n labeled training sequences encoded into binary sequences of length
d) is minimized using the stochastic gradient descent (SGD) algorithm. b, In every iteration, EN
queries DNN for all the 2d possible binary input sequences, finds the Walsh Hadamard (WH) spectral
transform of the resulting landscape using the Fast WH Transform (FWHT), and then adds the `1-norm
of the WH transform to the log-likelihood loss from panel a. c, In the scalable version of EN, EN-S
regularizes DNN using only a few number of uniformly subsampled sequences from the combinatorial
input space that casts the sparse WH recovery problem on an induced sparse-graph code. EN-S iterates
between these two subproblems until convergence: 1) finding the sparse WH transform of DNN (using
sublinear samples and in sublinear time) through peeling over the induced sparse-graph codes, and 2)
minimizing the sum of the log-likelihood loss and the WH loss using SGD.

For larger sequences (of size d > 25), EN regularization becomes intractable in time and space
complexity. This is because EN needs to query the DNN p = 2d times to form the DNN landscape
(exponential time complexity in d) and then find the WH transform of the queried DNN landscape
(exponential time and space complexity in d). To overcome this, EN-S leverages the sparsity in the WH
spectral domain to regularize DNN using only a small number of uniformly subsampled sequences from
the combinatorial input space (Figure 1c). EN-S decouples the DNN training, following the alternating
direction method of multipliers (ADMM) framework [23], into two subproblems: 1) finding the k-sparse
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WH spectral transform of DNN in a sample and time efficient manner, and 2) minimizing the sum of the
log-likelihood loss and the WH loss. The WH loss penalizes the distance between DNN and a function
constructed using the top-k WH coefficients recovered in the first subproblem. In order to solve the
first subproblem, we design a careful subsampling of the input sequence space [22] that induces a linear
mixing of the WH coefficients such that a greedy belief propagation algorithm (peeling-decoding) over
a sparse-graph code recovers the noisy DNN landscape in sublinear sample (i.e., O(k log2 p)) and time
(i.e., O(k log3 p)) complexity in p (with high probability) [13,22,24,25]. Briefly, the peeling-decoding
algorithm identifies the nodes on the induced sparse-graph code that are connected to only a single WH
coefficient and peels off the edges connected to those nodes and their contributions on the overall graph.
The algorithm repeats these steps until all the edges are removed. We solve the second subproblem
using the SGD algorithm. EN-S alternates between these two steps until convergence (see Methods for
more detail).

Inferring four canonical functions in bacterial fitness. We collected four canonical bacterial
fitness functions, whose combinatorial landscapes have been measured experimentally in previously
published works (see Table S2 in Supplementary Materials). Figure 2a shows the sparsity level
in epistatic interactions of these bacterial fitness functions. We found the coefficients for epistatic
interactions by taking the WH transform of the measured combinatorial landscape (see Methods section
for various ways to preprocess the landscapes). Figure 2a plots the fraction of variance explained as a
function of the top WH coefficients. Sparsity levels can be assessed by the proximity of the resulting
curve towards the top-left corner of the plot. For comparison, we also plotted synthetic fitness functions
that have all possible epistatic interactions up to a certain order of interaction in Figure 2a. While the
sparsity levels varies across fitness functions, the top-5 WH coefficients consistently explains more than
80% of the variance across all the landscapes.

Figure 2b shows the prediction performance of DNN with EN regularization on the bacterial
landscapes compared to various competing models. All the models are trained on the same randomly
sampled subset (i.e., 31%) of the sequences from the measured combinatorial landscapes and tested on
a subset of unseen sequences (see Supplementary Materials for more details). The prediction accuracy
is reported in terms of the coefficient of determination, R2 (i.e., the fraction of the variance in the test
set explained from the sequence). DNN with EN regularization consistently outperforms the baseline
models in all the landscapes. In particular, DNN with EN regularization performs significantly better
than the EN-unregularized variant consistently across all data sets (∆R2 > 0.21, P < 0.03), even
though DNN is optimized (in terms of architecture) for best validation performance in isolation (i.e.,
without espistatic regularization) and has been subjected to other forms of common sparsity-promoting
regularization techniques applied directly to the weights of the DNN (see Methods for more details).

Figure 2c shows the WH transform of the DNN landscape with and without EN regularization, as
well as the WH transform of the landscapes corresponding to the rest of the competing models trained
on a training set sampled from the E. coli fitness landscape of Khan et al. [9] (see Figure S3 and S4 for
a detailed analysis of the landscapes in spectral domain). In order to find these landscapes, we queried
each model for all the combinatorial mutations. In this plot, the epistatic coefficient indexed by 10100,
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Figure 2: Predicting bacterial fitness and inferring epistatic interactions in four canonical
landscapes. a, Fraction of variance explained by the top WH coefficients revealing the sparsity in
the bacterial fitness functions. b, Prediction accuracy of deep neural network (DNN) with epistatic
net (EN) regularization against competing models in ML. The error bars show the standard error
of the mean (SEM) across 5 independent repeats of the experiments with random split of the data
into training, validation, and test sets. c, Visualization of the epistatic interactions of DNN with and
without EN regularization and the baseline models after training on E. coli fitness landscape of Khan
et al. [9]. R2 values show the correlation of the recovered epistatic interaction with the interactions in
the measured combinatorial E. coli fitness landscape.

as an example, shows an order 2 interaction between the mutational sites 1 and 3. The rest of the
indices can be interpreted similarly. The WH coefficients in the measured E. coli fitness function shows
three first-order interactions with higher magnitude and several higher-order interactions with lower
magnitude. The interactions recovered by DNN with EN regularization closely matches the epistatic
interactions of the measured E. coli fitness function (R2 = 0.67), a considerable improvement over DNN
without EN regularization (R2 = 0.41). EN regularization effectively “denoises” the WH spectrum of
DNN by removing spurious higher-order interactions; nevertheless, given a larger training set, EN would
have accepted a larger number of higher-order interactions. The WH coefficients of gradient boosted
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trees (R2 = 0.51) and random forests (R2 = 0.36) also shows several spurious high-order interactions.
Lasso regression finds two of the three measured interactions with higher magnitude, however, recovers
a spurious third-order interaction which results in a low epistatic correlation coefficient (R2 = 0.18).
When restricted to up to order 2 interactions, performance of Lasso improves; it recovers the two
interactions with higher coefficients, however, misses the third coefficient and the rest of the small
epistatic interactions (R2 = 0.53).

Entacmaea quadricolor fluorescent protein. A comprehensive experimental study has reported all
the combinatorial mutants that link two phenotypically distinct variants of the Entacmaea quadricolor
fluorescent protein [3]. The variants are different in d = 13 mutational sites. The study shows the
existence of several high-order epistatic interactions between the sites, but also reveals extraordinary
sparsity in the interactions. We used this protein landscape to assess EN in regularizing DNN for
predicting protein function. We split the 213 = 8192 labeled proteins randomly into three sets: training,
validation, and test. The size of the test set was fixed to 3000 and the validation set size was set
equal to the training set size.We varied the training set size from a minimum of n = 20 proteins to
a maximum of n = 100 proteins and evaluated the accuracy of the models in 1) predicting fitness
in Figure 3a in terms of R2 and 2) recovering the experimentally measured epistatic interactions in
Figure 3b in terms of normalized mean squared error (NMSE).

DNN with EN regularization significantly outperforms DNN without EN regularization in terms of
prediction accuracy (∆R2 > 0.1, P < 10−5), consistently across all training sizes. Moreover, DNN with
EN regularization recovers the experimentally measured epistatic interactions with significantly lower
error (∆NMSE > 0.07, P < 9× 10−5), consistently across all training sizes. Applying various forms
of `1 and `2-norm regularization on the weights of different layers of the DNN does not change the
performance gap between DNN with and without EN regularization (see Figure S5 in Supplementary
Materials). In particular, in order to achieve the same level of prediction accuracy (R2 = 0.7), DNN
without EN regularization requires up to 3 times more training samples compared to DNN with EN
regularization. Figures 3d,e show the scatter plots of the predicted fluorescence values of DNN and its
EN-regularized variant, respectively, when both models are trained on n = 60 labeled proteins. The
performance gap naturally reduces for larger training sets, however, it stays consistently positive even up
to n = 200 (i.e., 2.5% of the entire combinatorial landscape), which is typically larger than the number
of available labeled sequences in protein function prediction problems (see Figure S6 in Supplementary
Materials). Our analysis also reveals the improved performance of the epistatic interactions recovered
by DNN with EN regularization in predicting the pairwise contacts (residues with smaller than 4.5Å
distance [26]) and triplet contacts (group of three residues with smaller than 4.5Å pairwise distances)
in the 3D structure of the protein—even though the networks are not trained for protein structure
prediction task. DNN with EN regularization predicts contacts with Forder 2

1 = 0.76 and Forder 3
1 = 0.68

compared to DNN without EN regularization with Forder 2
1 = 0.67 and Forder 3

1 = 0.66 (F1 score takes
the harmonic mean of the precision and recall rates).

The dimension of the fluorescent landscape of Entacmaea quadricolor protein enabled us to use the
data set to compare the performance of DNN under EN regularization with its scalable version, EN-S.
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Figure 3: Inferring the sparse epistatic protein landscape of Poelwijk et al. [3]. a, Deep
neural network (DNN) with epistatic net (EN) regularization outperforms the baselines in terms of
prediction accuracy. To achieve the same prediction accuracy, DNN with EN regularization needs
up to 3 times less number of samples compared to DNN without EN regularization. b, DNN with
EN regularization recovers the experimentally measured (higher-order) epistatic interactions with
significantly lower normalized mean squared error (NMSE). c, The prediction performance of DNN
with EN-S regularization is plotted when EN-S subsamples DNN at progressively smaller fractions of
the combinatorial sequence space of proteins, that is, 100% (no subsampling), 54%, and 20%. DNN
with EN-S regularization outperforms DNN without the regularization despite restricting EN-S to only
sample 20% of the protein sequence space to induce a sparse-graph code. Error bars in all the plots show
the standard error of the mean (SEM) in 20 independent repeats of the experiments with random splits
of the data into training, validation, and test sets. d, Scatter plot of the DNN-predicted fluorescence
values trained on n = 60 labeled proteins. e, Scatter plot of the predicted fluorescence values by the
EN-regularized variant of the same DNN. f, Comparison of the recovered epistatic interactions of the
EN-regularized and unregularized DNNs.
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The prediction performance of DNN with EN-S regularization showed a slight drop in accuracy due
to the approximations made by the ADMM decoupling (Figure 3c, see Methods). EN-S stayed fairly
consistent when we decreased the number of proteins sampled from DNN to induce a sparse-graph code.
Using as low as 1678 samples (out of the total of 8192 combinatorial proteins, i.e., 20% subsampling)
enabled successful regularization of DNN, resulting in a significant performance gap compared to DNN
without EN regularization.

Green fluorescent protein from Aequorea victoria (avGFP). The local fitness landscape of the
green fluorescent protein from Aequorea victoria (avGFP) has been investigated in a comprehensive
study [2]. The authors estimated the fluorescence levels of genotypes obtained by random mutagenesis
of the avGFP protein sequence at 236 amino acid mutational sites. The final data set included 56, 086
unique nucleotide sequences coding for 51, 715 different protein sequences. Considering the absence or
presence of a mutation at a site, created a data set with input sequence size of d = 236. Regularization
in the resulting p = 2236-dimensional space was impossible using EN, illustrating the need for EN-S. We
first analyzed the peeling algorithm by inspecting the WH spectral representation of DNN once trained
on the avGFP landscape. Figure 4a shows the first-order WH coefficients of DNN, recovered using
peeling after sampling DNN at 5, 074, 944 (out of 2236 ≈ 1071) proteins following uniform patterns that
induce a sparse-graph code. We repeated the same procedure with an independent set of uniformly-
subsampled sequences (with random offset) and visualized the recovered first-order WH coefficients
in a scatter plot as a function of the recovered coefficients using the first set of proteins in Figure 4b.
When sampled at two different relatively tiny subsets of this massive p = 2236-dimensional space, the
peeling algorithm recovered similar first-order coefficients (with R2 = 0.99), without assuming any prior
knowledge on the WH coefficients of avGFP being low-order (also see Figure S7). The higher variance
of the scatter plot around the center shows the small number of coefficients (30 out of 236) that are
deferentially recovered under the two subsamplings. The peeling algorithm associated 3.2% and 2.9% of
the variation of DNN to higher-order interactions, respectively for the first and second subsampling. We
compared the second-order interactions recovered under these subsamplings (Figure S8). Despite the
small variation associated with higher-order epistasis, 10% of the recovered second-order interactions
were exactly equal, and the rest of the interactions were locally correlated (R2 = 0.60 block-correlation).

Next, we trained the same DNN architecture with EN-S regularization. Figure 4c shows that the
prediction accuracy of DNN with EN-S regularization is higher than the baseline algorithms. The gap
between DNN with and without EN-S regularization is smaller compared to the previously described
protein landscapes. We speculate that this is due to the nature of the local landscape of avGFP around
the wild-type protein, where most of the variance can be explained by first-order interactions and
the rest can be explained by higher-order interactions that are spread throughout the WH spectrum.
Figure 4d illustrates the histogram of the order of epistatic interactions recovered by invoking the
peeling algorithm in every iteration of the EN-S regularization scheme. Figure 4e depicts the gain
in prediction accuracy after adding the recovered interactions to a purely linear model, suggesting
that the difference in prediction accuracy of DNN with and without regularization can be explained
(approximately) by a collection of large number of WH coefficients with small magnitude—this analysis
further demonstrates the computational power of EN-S in recovering higher-order interactions in such
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Figure 4: Inferring epistatic interactions in two large canonical protein landscapes using the
scalable epistatic net (EN-S) regularizer. a, The first-order Walsh-Hadamard (WH) coefficients
of unregularized DNN trained on the Aequorea victoria (avGFP) landscape of Sarkisyan et al. [2]
recovered by the peeling algorithm using a set of 5, 074, 944 uniformly-subsampled proteins (out of 2236).
b, The scatter plot of the first-order WH recovered by EN-S using two independent sets of 5, 074, 944
uniformly-subsampled proteins. The recovered coefficients are highly consistent (R2 = 0.99). The higher
variance of the scatter plot around the center shows the small number (20 out of 236) of coefficients
that are deferentially recovered. c, DNN with EN-S regularization outperforms the baselines in terms
of prediction accuracy in avGFP. d, Histogram of the order of epistatic interactions recovered while
training the EN-S regularized DNN. e, The prediction accuracy gained by the higher-order epistatic
interactions when added to a purely linear model. f, DNN with EN-S regularization outperforms the
baselines in terms of prediction accuracy in the GB1 landscape of Wu et al. [1]. Error bars show the
standard error of the mean (SEM) in 3 independent repeats of the experiments with random splits of
the data into training, validation, and test sets.

massively large combinatorial space of interactions.

Immunoglobulin-binding domain of protein G (GB1). A recent study investigated the fitness
landscape of all the 204 = 160, 000 variants at four amino acid sites (V39, D40, G41 and V54) in an
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epistatic region of protein G domain B1, an immunoglobulin-binding protein expressed in Streptococcal
bacteria [1]. One-hot binary encoding of the amino acids results in binary sequences of length d = 80.
As EN does not scale to regularize DNNs trained on this landscape, we relied on EN-S. Figure 4f
shows the prediction performance of DNN with EN-S regularization compared to the baseline models
that scaled to such dimension. All the models were trained on a random subset of n = 2000 proteins.
EN-S subsamples DNN at 215, 040 proteins in order to perform the sparse epistatic regularization,
which is about 1018 times smaller than the entire sequence space. Despite such an enormous level of
undersampling, the DNN regularized with EN-S consistently outperforms the competing baselines and
the EN-S unregularized DNN (∆R2 > 0.035, P < 0.05, see Figure S9 for the corresponding scatter
plots). The performance gap between the DNNs with and without EN-S regularization is naturally
smaller compared to the same gap in the Entacmaea quadricolor fluorescent protein landscape. This is
because the protein landscape of Entacmaea quadricolor is defined over 13 mutational sites (with 8192
possible positional interactions and two possible amino acids for each site) while the protein landscape
of GB1 is defined over 4 mutational sites (with 16 possible positional interactions and 20 possible
amino acids for each site); the former benefits more from promoting sparsity among a larger number of
biologically-meaningful positional interactions.

3 Conclusion and Discussion

We showed that several of the functional landscapes in biology have common structures (i.e., inductive
bias) in their epistatic interactions that manifest as sparsity in the spectral Walsh-Hadamard (WH)
domain. Sparse epistatic regularization of deep neural networks (DNNs) is an effective method to
improve their prediction accuracy, especially when the number of available training samples is small
compared to the vastness of sequence space. To this end, our epistatic net (EN) regularization method
combined the advantages offered by the sparsity of biological landscapes with sublinear algorithms in
signal processing and coding theory for epistatic regularization of DNNs in the combinatorial space of
interactions. Analysis of the recovered higher-order epistatic interactions by the DNNs with and without
regularization also revealed the power of EN in finding biologically-relevant epistatic interactions.

The superior prediction performance of DNNs with EN regularization comes with the additional
computational cost of finding the WH transform of the DNN landscape, which increases the computa-
tional complexity of the training algorithm by only a linear factor in the product of the length of the
sequence and the epistatic sparsity level. While training can be done offline (e.g., on a server) there
are avenues for making the algorithm even more efficient such as using the prior knowledge on the
maximum order of interaction to constraint the regularization space. In addition, EN regularization
can be extended using generalized Fourier transform to more efficiently encode amino acids compared
to the more conventional one-hot binary encoding strategies. Moreover, while this work laid out the
algorithmic principles of sparse epistatic regularization in supervised models, unsupervised models,
such as Potts model [27], Ising model [28], and Variational Autoencoders (VAEs) [29] can benefit from
such regularization scheme as well; it would be tempting to hypothesize that these energy landscapes
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also have structures that appear as high-order sparse coefficients in WH basis.

Overall, our sparse epistatic regularization method expands the machine learning toolkit for inferring
and understanding fitness functions in biology. It helps us to visualize, analyze, and regularize the
powerful, however less interpretable black-box models in deep learning in terms of their higher-order
interactions in the sequence space. We believe that our work will initiate new research directions
towards developing hybrid methodologies that draws power from statistical learning, signal processing,
coding theory, and physics-inspired deep learning for protein design and engineering.

4 Methods

Notation and background. Suppose we are given n (experimental) samples (xi, yi)
n
i=1, that is,

(sequence, value) pairs from a biological landscape, where xi ∈ {−1,+1}d denotes the binary encoding
of d mutational sites in a variant and yi ∈ R is its associated fitness value. We are interested in learning
a function f(x) that maps all subsets of mutations to fitness values. In other words, we seek to learn a
set function f(x) : Fd → R, where Fd denotes the space of all the binary vectors of length d. A key
theorem [30] in mathematics states that any set function (also known as pseudo-Boolean function)
f(x) = f(x1, x2, . . . , xd) can be represented uniquely by a multi-linear polynomial over the hyper cube
(x1, x2, . . . , xd) ∈ {−1,+1}d:

f(x1, x2, . . . , xd) =
∑
S⊆[d]

αS
∏
i∈S

xi, (1)

where S is a subset of {1, 2, 3, . . . , d} = [d] and αS ∈ R is the WH transform coefficient (or equivalently
the epistatic coefficient) associated with the monomial (interaction)

∏
i∈S xi. For example, the pseudo-

Boolean function

f(x1, x2, x3, x4, x5) = 12x1x4 − 3x3 + 6x1x2x5, (2)

defined over d = 5 mutational sites, has three monomials with orders 2, 1, and 3 and WH coefficients 12,
−3, and 6, respectively. The WH transform of this function is sparse with k = 3 non-zero coefficients
out of a total of 25 = 32 coefficients. Each monomial can be easily explained, for example, the first
monomial in the WH transform, that is 12x1x4, indicates that mutation sites 1 and 4 are interacting
and the interaction enriches fitness because the sign of the coefficient is positive. On the hand, the
second monomial −3x3 shows that a mutation at site 3 depletes fitness. The last monomial 6x1x2x5
shows a third-order interaction between mutational sites 1, 2, and 5 which also enrich fitness.

If the fitness function is measured (known) for all the combinatorial p = 2d inputs xi, then we can
use the Fast WH Transform (FWHT) [31] to find the WH coefficients in O(p log p) time complexity.
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The problem is so-called fully determined in such scenario. However, as discussed in the introduction, in
inferring fitness functions, we typically face problems where the number of observed samples (sequences)
n is much smaller than the total number of possible sequences, that is, n� p = 2d; in other words, we
are in an underdetermined regime. In full generality, we assume that the data is generated according to
a noisy nonlinear model

yi = fθθθ(xi) + εe, (3)

where θθθ are the parameters of the model, εe is a random variable drawn from a Gaussian distribution
with zero mean and variance σ2

e . Under this setting the maximum likelihood estimate is

θθθMLE = arg max
θθθ

n∑
i=1

(yi − fθθθ(xi))2. (4)

We denote a deep neural network (DNN) by gθθθ(x), where θθθ is a vector of all the weights in DNN.
The DNN, gθθθ(x), takes in a binary input vector xi and predicts the output ŷi. Let X ∈ Rp×d denote a
matrix which comprises all the p = 2d enumeration of the binary sequence xi of length d in its rows. We
slightly abuse the notation and let gθ(X) ∈ Rp denote the real-valued vector of DNN outputs over all
these binary sequences. We call this high-dimensional vector the DNN landscape. In order to find the
WH transform of the DNN we can multiply the DNN landscape, gθ(X), by the WH matrix, H ∈ Rp×p.
The WH matrix H can be defined using the recursive equation

H2d = H2 ⊗H2d−1

, (5)

where H2 is the 2 × 2 ‘mother’ WH matrix defined as H2 =

[
1 1
1 −1

]
and ⊗ denotes the Kronecker

product. The WH matrix is a symmetric unitary matrix; in other words, (1/2d)HH = I. Each of the
2d columns of H corresponds to a monomial (

∏
i∈S xi) in the pseudo-Boolean representation of set

functions and equivalently corresponds to one of the terms in WH transform. In biology literature, this
coefficients is known as an epistatic interaction when |S| ≥ 2. The WH transform of the DNN can be
calculated as Hgθθθ(X) ∈ Rp.

Epistatic net (EN). EN regularizes the epistatic interactions in gθ(X) by adding a new WH loss
term to the original log-likelihood loss,

min
θθθ

n∑
i=1

(yi − gθθθ(xi))2 + α‖Hgθθθ(X)‖0, (6)
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where H ∈ Rp×p is the WH matrix, the `0-norm ‖.‖0 counts the number of non-zero values in the
WH transform of the DNN (i.e., Hgθθθ(X)), and α is a scalar which strikes balance between the log-
likelihood loss and the regularization term. The scalar α is set using cross-validation. The `0-norm is a
non-convex and non-differentiable term and is not suitable for optimization using the SGD algorithm
since the gradient is not well-defined for this term; therefore, following the common practice in convex
optimization, we relaxed the `0-norm and approximated it by a convex and differentiable (except at
zero) sparsity promoting `1-norm in EN. We will discuss in the next section that in the scalable version
of EN, it is more efficient to approximately solve the `0-norm minimization problem using the greedy
peeling-decoding algorithm from coding theory, which does not rely on gradient descent optimization.

EN approximately solves the following relaxed optimization problem using the SGD algorithm,

EN

min
θθθ

n∑
i=1

(yi − gθθθ(xi))2 + α‖Hgθθθ(X)‖1. (7)

Note that despite our convex relaxation, this optimization problem is still non-convex since both the
log-likelihood loss and the DNN landscape are non-convex (still differentiable) functions. In general,
convergence to the global minimum can not be guaranteed due to non-convexity of DNN, however,
in practice we observe that SGD converges smoothly to a useful stationary locally optimal point.
To avoid convergence to locally optimal points with poor generalization performance, the DNN can
be trained multiple times with several random initialization, however, as we have elaborated in the
experimental section, for most of the experiments in this paper random Xavier initialization resulted in
good generalization using a single initialization (no need for multiple initializations).

Scalable epistatic net (EN-S). For larger sequences (i.e., d > 25), the optimization algorithm in EN
does not scale well with d. There are two factors that prevents EN from scaling to larger sequences: time
and space complexity. We elaborate on these two factors. 1) In order to find the DNN landscape, we
need to query the DNN p = 2d times. Regardless of how fast DNN inference is, the time complexity of
this task grows exponentially with d. For example, it would take years to query the DNN with simplest
structure on all the binary sequences of length d = 236 in the avGFP protein landscape. Furthermore,
finding the WH transform of the DNN landscape, even using FWHT with O(p log p) computational
cost, will not be possible since the computational cost grows exponentially with d. 2) The WH matrix
H is a p× p matrix and the DNN landscape gθθθ(X) is a p-dimensional vector. Regardless of the time
required to find those matrices, they need exponential memory to store, which again becomes infeasible
for even moderate values of d. We need a method that scales sublinear in p (i.e., O(polylog p)) both in
time and space complexity.

Herein, we develop EN-S to approximately solve our optimization problem efficiently. We first
perform a change of variables and define the WH transform of the DNN landscape as u = Hgθ(X)
and set it as an explicit constraint in the optimization problem. Following this change of variable, we
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reformulate the optimization problem in equation (7) as,

min
θθθ,u

n∑
i=1

(yi − gθθθ(xi))2 + α‖u‖1 subject to u = Hgθθθ(X). (8)

This change of variable enables us to use an augmented Lagrangian method to decouple the
optimization problem in equation (7) into two subproblems: 1) updating the weights of DNN using
SGD, and, 2) finding the WH transform of DNN using a fast greedy algorithm based on sparse-graph
codes. The alternating direction method of the multipliers (ADMM) is a variant of the augmented
Lagrangian methods that uses partial updates for the dual variables and provides a principled framework
to decouple the optimization problem above. Following the scaled-dual form of ADMM [23], we decoupled
the optimization problem above into two separate minimization problems and a dual update. At
iteration t, we first fix ut ∈ Rp and solve a θθθ-minimization problem, then fix θθθt ∈ Rp and solve a
u-optimization problem, and finally update the dual variable λλλ ∈ Rp as follows,

• θθθ-minimization θθθt+1 = arg minθθθ
∑n

i=1(yi − gθθθ(xi))2 + ρ
2
‖Hgθθθ(X)− ut + λλλt‖22

• u-minimization ut+1 = arg minu α‖u‖1 + ρ
2
‖Hgθθθt+1(X)− u + λλλt‖22

• dual update λλλt+1 = λλλt + Hgθθθt+1(X)− ut+1,

where ρ ∈ R is a hyperparamter set using cross-validation. Note that the time and space scaling
issues remain here and will be addressed momentary. Assuming an infinite time and space budget, the
θθθ-minimization problem can be tackled using SGD and the u-minimization problem can be solved by
projecting wt+1 := Hgθθθt+1(X) + λλλt onto the `1-norm ball of radius ρ/α. This projection can be solved
using the soft-thresholding operator in Lasso [32]:

ut+1
i =


wt+1
i − ρ/2α if wt+1

i > ρ/2α
0 if ρ/2α ≤ wt+1

i ≤ ρ/2α
wt+1
i + ρ/2α if wt+1

i < ρ/2α.
(9)

Unfortunately, all the three steps above still have exponential time and space scaling with d. In
what follows we will show how to exploit the sparsity of the WH transform of the DNN landscape
u = Hgθθθ(X) to reformulate new minimization steps such that we need to subsample only a logarithmic
factor O(polylog p) of rows in H and approximately solve these steps in sublinear time and space
complexity in p (i.e., at most polynomial in d). We call this regularization scheme EN-S.

The first step to arrive at the EN-S regularization scheme is to reformulate the optimizations
above such that the WH matrix H appears as a multiplicative term behind the dual variable λ and
u. This enables us to convert the u-minimization problem from a `1-norm ball projection to a sparse
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WH recovery problem with H as the basis, for which we have fast solvers from signal processing and
coding theory. Note that ‖Hgθθθ(X)−ut +λλλt‖22 = ‖gθθθ(X)−Hut +Hλλλt‖22 and ‖Hgθθθt+1(X)−u+λλλt‖22 =
‖[gθθθt+1(X) + Hλλλt]−Hu‖22 because H is a unitary matrix. Therefore, we can write the optimization
steps above as,

• θθθ-minimization θθθt+1 = arg minθθθ
∑n

i=1(yi − gθθθ(xi))2 + ρ
2
‖gθθθ(X)−Hut + Hλλλt‖22

• u-minimization ut+1 = arg minu α‖u‖1 + ρ
2
‖[gθθθt+1(X) + Hλλλt]−Hu‖22

• dual update Hλλλt+1 = Hλλλt + gθθθt+1(X)−Hut+1.

Now, the u-minimization problem is to find the WH transform of gθθθt+1(X) + Hλλλt with an `1-norm
sparsity prior. In order to solve this u-minimization problem, we resort to the fast sparsity-enabled
tools in signal processing and coding theory. This class of greedy algorithms solves the original `0-norm
minimization problem and finds the k-WH sparse landscape (for specific value of k) in a time and
space efficient manner (O(k polylog p), i.e., O(k poly d)) using sparse-graph codes (see Supplementary
Materials for an overview of these methods). To this end, we leverage subsampling of input sequences
based on patterns in sparse-graph codes [22]. We denote the rows corresponding to these subsampled
sequences as XT , where |T | ∼ O(k log2 p). The subsampling induces a linear mixing of WH coefficients
such that a belief propagation algorithm (peeling-decoding) over a sparse-graph code recovers a p-
dimensional noisy landscape with k non-zero WH coefficients in sublinear sample (i.e., O(k log2 p)) and
time complexity (i.e., O(k log3 p)) with high probability [13,22,24,25] (see Supplementary Materials
for a full discussion). This fully addresses both the time and space scalability issues in solving the
u-minimization problem.

In order to resolve the time and space scalability issues in the θθθ-minimization problem and the
dual update we introduce a novel approximation. We follow the subsampling patterns dictated by
the sparse-graph codes in solving the u-minimization problem, and restrict both the θθθ-minimization
problem and the dual update to those subsamples as well to arrive at,

• θθθ-minimization θθθt+1 = arg minθθθ
∑n

i=1(yi − gθθθ(xi))2 + ρ
2
‖gθθθ(XT )−HTu

t + γγγt‖22

• u-minimization ut+1 = arg minu α‖u‖0 + ρ
2
‖[gθθθt+1(XT ) + γγγt]−HTu‖22

• dual update γγγt+1 = γγγt + gθθθt+1(XT )−HTu
t+1,

where γγγt := HTλλλ
t+1 ∈ R|T | and HT comprises the rows of H that are in T . Note that the change

of dual variable γγγt = HTλλλ
t+1 is only possible because in all the three steps the dual variable λλλt+1

appears in the WH basis. Note that while the columns of the subsampeld WH matrix HT still live in
a p-dimensional space, this matrix is never instantiated in memory because it only appears as HTu,
where u is a k-sparse vector. Therefore, HTu is computed on the fly by only finding the columns of
the (row-subsampeld) WH matrix HT that corresponds to the non-zero values in u. The final EN-S
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method iterates over these three steps to train the DNN until convergence. We indicate the algorithm
to solve each step in brackets,

EN-S

• θθθ-minimization θθθt+1 = arg minθθθ
∑n

i=1(yi − gθθθ(xi))2 + ρ
2
‖gθθθ(XT )−HTu

t +γγγt‖22 [SGD]

• u-minimization ut+1 = arg minu α‖u‖0 + ρ
2
‖[gθθθt+1(XT ) + γγγt]−HTu‖22 [Peeling]

• dual update γγγt+1 = γγγt + gθθθt+1(XT )−HTu
t+1. [Directly computed]

All the three steps above in the EN-S method scale sublinearly with p (i.e., at most polynomial with d)
both in terms of time and space complexity.

Experimental setup. The architecture of DNN was selected in isolation (i.e., without any WH
regularization). In our architecture search, we considered a four-layer fully-connected DNN with batch
normalization and leaky ReLU as the activation function. The dimension of the layers were set to
d × fd, fd × fd, fd × d, and the dimension of the final layer was d × 1, where f is an expansion
factor. We searched for a value of f that resulted in best generalization accuracy on an independent
data set—a prediction task on DNA repair landscapes [13] which we did not use for evaluation in this
paper. DNN prediction performance was stable around f = 10 with highest validation accuracy on the
independent data set. We selected f = 10 in all our experiments, except for the experiments done on
the avGFP landscape [2], where due to the sheer dimensionality of the problem (i.e., d = 236), we set
f = 1 (on limited independent tests with f = 10 on the same landscape, we observed no considerable
difference in prediction accuracy). The weights of the DNN were always initialized with the Xavier
uniform initialization [33]. We used the exact same initialization (random seed) for the baseline DNN
with and without EN(-S) regularization to ensure that we solely capture the effect of regularization
and not the variations due to initialization of DNN. We used the Adam optimizer in all the steps of
the methods requiring SGD and learning rate of 0.001, which resulted in best validation accuracy. We
always set α = 0.1 in EN. For the DNN with EN(-S) regularization, a learning rate of 0.01 resulted in
the best validation accuracy. In EN-S, the hyperparameters α and ρ have to be jointly set since they
are dependent. We set α = 1 and ρ = 0.01 in EN-S although other value pairs could have resulted in
the same accuracy. The validation accuracy of DNN was monitored and used for early stopping to avoid
over-fitting based on the performance on a hold-out validation set (with a maximum of 1000 epochs).
We used the exact same validation set to perform hyperparamter tuning of the baseline algorithms,
including the Lasso family, random forest, and gradient boosted trees.

For the family of Lasso regression, we performed an extra step to improve the prediction performance.
We selected the top most recovered coefficients and performed ordinary least squares (OLS) on the
reduced problem. This step improves the robustness and the prediction accuracy of Lasso [34]. Therefore,
in addition to the standard λ regularization parameter, which strikes a balance between sparsity and
the fidelity term (i.e., the mean squared error), we also did hyperparameter tuning for the number of
top coefficients in the OLS (note that the regular Lasso is included in our hyperparameter search and
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appears when all the non-zero coefficients is selected to perform OLS). We did a grid search over the
hyperparameter λ and the number of top coefficients in Lasso. For λ we considered 50 values spanning
the range [10−7, 1]. Overall, this comprised of an exhaustive hyperparameter search to make sure the
best performance of Lasso is being captured.

For training gradient boosted trees and random forests baselines, we used packages from sklearn
in python. We did hyperparameter tuning for max depth and the number of estimators, using the
default values for all other parameters. For max depth, we considered parameters ranging from 1 to
the maximum number of mutations in the fitness function (i.e., d), for the number of estimators we
considered values in {10, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000}, and chose the pair that resulted
in best validation accuracy. As a general trend, we observed that larger numbers of estimators result in
higher validation accuracies before they saturate.

Herein, we report the hyperparameters that resulted in highest validation accuracy, that is, the ones
we selected in our experiments. For the avGFP landscape, we set the number of estimators to 300 and
max depth to 11 for gradient boosted trees and set the number of estimators to 100 and max depth to
55 for random forests. We set λ = 1 × 10−4 for Lasso regression when considering up to first-order
interactions and λ = 1× 8−4 when considering up to second-order interactions. For the GB1 landscape,
we set the number of estimator to 100 and max depth to 2 for both gradient boosted trees and random
forests. We set λ = 7× 10−3 for Lasso regression when considering up to first-order interactions and
λ = 2.5× 10−2 when considering up to second-order interactions. For the protein landscape in Figure!3,
we set the number of estimators to 3000 and the max depth varied between the values in the sets
{1, 2, 3, 4} and {1, 2, . . . , 15} across the random repeats of the experiments with different train, test,
and validation set, respectively for gradient boosted trees and random forest; the value with the best
validation performance was selected for each repeat. For the bacterial landscapes in Figure 2, we set
the number of estimators to 300 and the max depth varied between the values in the set {1, 2, 3} across
the random repeats of the experiments with different train, test, and validation set; the value with the
best validation performance was selected for each repeat.

In all the relevant protein and biological data sets, we performed two-sided T-test for the null
hypothesis that the independent prediction from DNN with and without EN regularization (across
random Xavier initialization) have identical average (expected) values and reported the p-values.

Prepossessing the fitness landscapes. For the landscapes tested in this paper, we followed the
Box-Cox power transform method as described in ref. [18] to remove possible global nonlinearities
from the landscape. Although the effect of removing such nonlinearities was small in our analysis,
global nonlinearities in general can produce high-order epistatic interactions that are not truly needed.
Removing these nonlinearlities can reduce noise and increase epsitatic sparsity. Nevertheless, one can
completely ignore this preprocessing step and rely on DNN with EN regularisation to capture the global
nonlinearites and infer the fitness landscape for prediction purposes.
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5 Code Availability

A software for the EN and EN-S regularization algorithms has been developed in Python and is publicly
available in our github repository at https://github.com/amirmohan/epistatic-net. All the data sets
used in the paper are publicly available in the references cited in this manuscript.
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7 Supplementary Materials

7.1 Sparse recovery using sparse-graph codes

The problem we are interested in this section is recovering the WH transform (WHT) coefficients
(equivalently, the pseudo-Boolean function) when there is sparsity in the WHT domain. Methods
proposed in compressed sensing literature can be used to recover a sparse signal (i.e., landscape) in a
sample efficient way [35]. However, the algorithms proposed in the literature like Orthogonal Matching
Pursuit (OMP) [36] or Lasso [37] requires operations that scale at least linearly with the ambient
dimension p. On the other hand, our method requires sublinear computational complexity whenever
the degrees of freedom k scales sub-linearly with the ambient dimension p [24]. The key properties of
our algorithm are presented in the following theorem.

Theorem 7.1 ( [24]). Let α ∈ (0, 1) be a fixed number. Suppose p = 2d and assume k = pα. Let y ∈ Rp

be a vector and Y ∈ Rp be its WHT. Assume that Y is k-sparse and its support is selected uniformly at
random among all possible

(
d
k

)
subsets of [d] of size k. Then, there is an algorithm with the following

properties:

1. Sample complexity: Algorithm uses O(k log2 p) samples of y.

2. Computational complexity: Total number of operations to successfully decode all nonzero WHT
coefficients or declare a decoding failure is O(k log3 p).

3. Success probability: Probability of recovering Y completely approaches 1 as p grows, where the
probability is taken over randomness of selecting the support of Y.

This speedup is achieved by employing a divide-and-conquer strategy where we break the problem
of recovering a k-sparse signal into k smaller problems of recovering 1-sparse signal, solve each 1-sparse
problem efficiently, and then combine the solutions to each of them to recover the original signal. The
recovery algorithm is closely tied to decoding a sparse-graph code through peeling using techniques
from the literature on Low Density Parity Check (LDPC) codes [38] and product codes [39].

Note that under the assumptions of the theorem, theoretically, order of k log(p) samples are required
for learning the correct model by information theoretic arguments [24]. The algorithm described here,
which requires k log2(p) samples is off from order optimality by only a logarithmic factor. As a matter
of fact, the algorithm can be tweaked to be order optimal [24]. However, that version of the algorithm
is not described in this paper as it requires a complex additional step.

The first step of the algorithm is to generate linear mixing of transform domain coefficients based
on the following property.
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Property 1. Let y be a p = 2d length vector. Given a shift vector q ∈ Fd2 and a full-rank subsampling
matrix H ∈ Fb×d2 , let z be the vector of length B = 2b where zx = yxH+q for all x ∈ Fb2. Then, the
WHT coefficients of z satisfy

Zk =

√
B

p

∑
j∈Fp

2:jH
>=k

(−1)〈q,j〉Yj, (10)

where Yj is the jth WHT coefficient of y.

The above property states that the WHT coefficients Yk are modulated by (−1)〈q,k〉 when a shift
of q is applied to the indices of y, and that subsampling of the input signal creates a linear mixing of
WHT coefficients.

Using Property 1 we create linear mixing of coefficients by choosing C many subsampling matrices
H1, · · · ,HC where each matrix is b × d dimensional. Furthermore, we choose for each subsampling
P1, · · · ,PC shift matrices where each of them is O(log2 p) × d dimensional. The choice of C, the
matrices Hi and the delays Pi for i = 1, · · · , C are going to be described in the following sections.
Then WHT coefficients are calculated for the shifted-and-subsampled sequences. We give an example
below for the linear mixing resulting from subsampling.

Example 1. Let y be a vector of length 16, and let us define z
(1)
x = 2yH1x and z

(2)
x = 2yH2x where

H1 =


0 0
0 0
1 0
0 1

 ,H2 =


1 0
0 1
0 0
0 0

 .

From property 1, we see that all the WHT coefficients of y whose binary index have the same last
two digits is hashed to the same bin (underlined in the following equations) for z(1), that is, we have

Z
(1)
00 = Y0000 + Y0100 + Y1000 + Y1100,

Z
(1)
01 = Y0001 + Y0101 + Y1001 + Y1101,

Z
(1)
10 = Y0010 + Y0110 + Y1010 + Y1110,

Z
(1)
11 = Y0011 + Y0111 + Y1011 + Y1111.

Similarly, for z(2) we get
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Z
(2)
00 = Y0000 + Y0001 + Y0010 + Y0011,

Z
(2)
01 = Y0100 + Y0101 + Y0110 + Y0111,

Z
(2)
10 = Y1000 + Y1001 + Y1010 + Y1011,

Z
(2)
11 = Y1100 + Y1101 + Y1110 + Y1111.

Under the assumptions of Theorem 7.1 on sparsity and the support of the non-zero WHT coefficients
of the signal, the linear mixing of coefficients take a form where they can be solved for through peeling.
The following provides an example of such linear mixing.

Example 2. Let y ∈ R16 have WHT coefficients equal to

Yk =



Y0001 if k = 0001,

Y0100 if k = 0100,

Y0101 if k = 0101,

Y1010 if k = 1010,

0 otherwise.

Under the subsampling used in example 1 the WHT coefficients of the sub-sampled vectors satisfy

Z
(1)
00 = Y0100,

Z
(1)
01 = Y0001 + Y0101,

Z
(1)
10 = Y1010,

Z
(1)
11 = 0,

Z
(2)
00 = Y0001,

Z
(2)
01 = Y0100 + Y0101,

Z
(2)
10 = Y1010,

Z
(2)
11 = 0.

We give the details of peeling algorithm in reference to this example in the following section.

7.2 Recovery Through Peeling with an Oracle

The relationship between the measurements and the unknown coefficients can be shown as a bipartite
graph. The graph related to the linear mixing in Example 2 and the recovery of the non-zero coefficients
are illustrated in Figure S1. The unknown coefficients are shown on the left and referred to as variable
nodes, and the measurements are shown on the right and referred to as check nodes. An edge is drawn
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group 1

group 2

0000
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0111

1000
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1100

1101

1110

1111

a

1010

0101

0001

0100
Y[0100]

Y[0001] + Y[0101]

Y[1010]

Y[0001]

Y[0100] + Y[0101]

Y[1010]

b

Y[0101]

Y[0101]
1010

0101

0001

0100

c

1010

0101

0001

0100

zero-ton single-ton multi-ton recovered node non-recovered node

Figure S1: (Left) The connections between the variable nodes (WHT coefficients) and the check nodes
(measurements) in Example 1. (Right) Recovering the unknown coefficients in Example 2. The graph
induced by the non-zero coefficients is shown in a. In the first round of peeling we recover coefficients at
indices 0100, 001 and 1010, and get the graph in b. In two rounds of peeling, all the non-zero elements
of the signal are recovered as shown in c.

between a variable node and a check node if the unknown coefficient related to that variable node
contributes to the measurement related to that check node. Each check node can be categorized into
the following three types:

1. Zero-ton: a check node is a zero-ton if it has no non-zero coefficients (shaded in white in Figure S1).

2. Single-ton: a check node is a single-ton if it involves only one non-zero coefficient (shaded in blue
in Figure S1). Specifically, we refer to the index k and its associated value Yk as the index-value
pair (k,Yk).

3. Multi-ton: a check node is a multi-ton if it contains more than one non-zero coefficient (shaded
in orange in Figure S1).

To illustrate the peeling algorithm for recovery, we assume that there exists an “oracle” that informs
the decoder exactly which check nodes are single-tons, and provides the index-value pair for that
single-ton. In Example 2, in the first round of peeling (shown in Panel (A) in Figure S1), the oracle
informs the decoder that the check nodes corresponding to Z

(1)
00 , Z

(1)
10 , Z

(2)
00 , and Z

(2)
10 are single-tons with

index-value pairs (0100,Y0100), (1010,Y1010), (0001,Y0001) and (1010,Y1010) respectively. Then the
decoder can subtract their contributions from other check nodes, forming new single-tons. Therefore,
with the oracle information, the peeling decoder repeats the following steps:

1. select all the edges in the bipartite graph with right degree 1 (identify single-ton bins);
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2. remove (peel off) these edges as well as the corresponding pair of variable and check nodes
connected to these edges;

3. remove (peel off) all other edges connected to the variable nodes that have been removed in Step
2.

4. subtract the contributions of the variable nodes from the check nodes whose edges have been
removed in Step 3.

Decoding is successful if all the edges are removed from the graph.

In this work we choose the subsampling matrices uniformly at random over Fb×d. Other constructions
alongside with their theoretical guarantees can be found at [24,40]. We chose the random design as it
is observed to have superior practical performance in some regimes of interest [40,41].

Since the proof of the algorithm follows the same steps as in [24], we just provide a sketch here and
refer the interested readers to that paper. Since the sparsity is uniformly distributed, each non-zero
entry of Y is connected to a check node chosen uniformly at random in each subsampling group. This
results in a left-regular LDPC code construction, and the proof for recovering the support Y follows
the same steps in [24].
Table S1: Thresholds for recovery [24]. M : number of check nodes, k : number of variable nodes
(sparsity).

groups 3 4 5 6

M/k 1.2218 1.2949 1.4250 1.5697

In peeling, we recover a variable node (non-zero coefficient of Y) if it is connected to a check node
with degree 1, and remove the outgoing edges from that variable node. The density evolution is a
powerful tool in modern coding theory that tracks the average density of remaining edges in the graph
after ` rounds of peeling [38]. The density evolution equations for our setting is given by the recursive
equation

p` =
(
1− e−vp`−1/(M/k)

)v−1
, (11)

where p0 = 1, and M is the total number of parity check nodes. This assumes that the depth `
neighborhood of the chosen edge is a tree. We can show similarly to [24] that the depth ` neighborhood
of a randomly chosen edge is a tree with high probability for any fixed `. On average, an arbitrarily
large fraction of edges are removed if p` goes to zero as ` → ∞. For p` to go to zero, M/k needs to
be greater than a threshold for a fixed v. These thresholds are shown in Table S1. Then, one can
use the standard Doob’s martingale argument to show that the fraction of non-recovered components
concentrates around it’s mean [42]. This guarantees recovery of arbitrarily-large fraction of significant
components. Then, an expander-graph argument is used to show that peeling continues until all of the
coefficients are recovered [24].
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7.3 Replacing the oracle

We now show how to replace the oracle in the peeling algorithm with a realizable mechanism. This is
done by employing O(log2 p) shifts for each subsampling matrix where log(p) shifts are to recover each
digit of the location k, and we take O(log p) samples for each location for noise averaging. Let UH,q(k)
be the kth WHT coefficient of the signal obtained by shifting indices of y by q and then subsampling
by H. From Property 1 we have

UH,q(k) :=

√
B

p

∑
j:jH>=k

(−1)〈j,q〉Yj. (12)

Furthermore, let us define the ratio of a WHT coefficient obtained by using the same subsampling
matrix but using two different shifts

rA,p,q(k) :=
UA,p+q(k)

UA,p(k)
. (13)

Assume that for a WHT index k in equation (12), there is only one index j such that A>j = k
and Yj 6= 0 (that is, the check node corresponding to it is a single-ton). Then, it follows that
UA,p(k) =

√
B
p

(−1)〈j,p〉Yj . Using q = ei ∈ Fd (the vector with all indices equal to 0 except for the ith
index which is equal to 1) in equation (13) yields

rA,p,ei(k) =
(−1)〈j,p+ei〉Yj

(−1)〈j,pYj〉
= (−1)〈j,ei〉. (14)

Note that this value is in {−1,+1} for all p if there is no noise. As the value of 〈j, ei〉 is equal
to the ith index of the location j ∈ Fd2, by using shifts {ei}d−1i=0 going through all indices of j we can
recover it. When there is noise, it can be shown that by taking O(log p) random shifts, the probability
of detecting the location wrongly can be made polynomially small [24].

7.4 Related works

Fourier attribution priors. Sparse epistatic regularization in Epistatic Net (EN) is conceptually
related to a recent work describing Fourier-transform-based attribution priors in deep neural networks
(DNNs) [43]. It has been observed that, in the context of mapping DNA sequence to transcription
factors (TF) binding and chromatin accessibility profiles, penalizing high-frequency components of the
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Fourier spectrum, can improve the stability, interpretability, and performance of DNNs. The focus
of this work is, however, on the regularization of DNN to promote sparsity in Fourier basis. In fact,
our results show that other forms of regularization in the spectral domain (e.g., `2-norm instead of
the `1-norm) are not beneficial for protein function prediction. Also distinct from these works, our
regularization has a semisupervised flavor in imposing the `1-norm loss over the WH transform of the
entire DNN landscape, that is, the combinatorial space of proteins which includes the ones that have
not been observed in the training set.

Theoretical aspects of sparse WH recovery. From a theory perspective, our regularization scheme
relates to sparse recovery algorithms and compressed sensing. One distinction is that the fitness function
in proteins do not exactly follow the exact sparse signal model in compressed sensing with added
Gaussian noise. Therefore, the classical compressed sensing bounds would not directly apply to the
problem in practice. Approximate guarantees for sparse recovery would be an interesting theoretical
direction especially in light of the improvements that we have observed over Lasso in terms of sample
complexity with EN regularization. We speculate that DNN has an internal inductive bias in favor of
natural fitness functions in biology that enable us to reduce the effective dimensioanlity of the problem
and thus improve the sample complexity bounds over Lasso. More theoretical studies in this regard is
deferred to future works.

Peeling algorithm. Our work also suggests a new method to generalize the use-case of recent
peeling-decoding algorithms [22, 25, 44, 45] for sparse-Fourier (WH) recovery problems to settings
where we do not have the luxury to select (i.e., design) the sampling patterns based on codes. In
such physically-constrained sampling scenarios, DNN can be trained on the data at hand and serve
as a “jump-start” that interpolates the data so that it can be queried at any binary patterns. The
SGD algorithm converges to a point in DNN that will induce some aliasing effect over the signal that
would be interesting to be studied theoretically. Transfer learning has recently emerged as a powerful
technique in training deep neural notworks in low-sample regime. In protein design, it has been shown
that [46] one can use the wealth of unsuperivised protein data to find a new representation for proteins.
Such representation enables training a neural network using handful of proteins for design purposes.
In our paper we do consider any external unsupervised data. However it is an interesting question to
investigate how much of the power gained in the new representation could have been explained by the
sparsity assumption in WH basis.

7.5 Experiment on four canonical bacterial fitness

The fitness landscapes of E. coli, A. niger, and β-lactam resistance [7,9,47] capture the effect of the
absence/presence of d = 5 mutations which creates fitness landscapes of size p = 2d=5 = 32. We
sampled n = 10 random data points from each landscape and used them to train the models. The
fitness landscape of S. cerevisiae growth [8] captures the effects of d = 6 mutations which creates a
fitness landscapes of size p = 2d=6 = 64. We sampled n = 20 random data points from the landscape
and used them to train the models.
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7.6 Synthetic sparse fitness landscapes

We assessed the performance of our `1-norm WH (EN)-regularized DNN algorithm on three sets of easy,
medium, and hard data sets, each comprising 12 synthetic fitness landscapes with n = 13 mutations. In
terms of dimensions, we followed the real-world protein landscape of [3], however, we changed the order
and type of interactions and their weightings. We considered sparse protein landscapes with k = 8
non-zero WH coefficients. We sampled the interactions randomly (with a uniform distribution) from a
subset of WH coefficients with up to 2nd-order interactions for the “easy” data set. We selected one of
the interactions randomly and replaced it by a random high-order interaction to make the “medium”
data set and selected an additional three random interactions and replaced them by three random
high-order interactions to make the “hard” data set. In all cases we set the weights of coefficient to
be equal. We split the landscape (of size 8192) into training, validation, and test sets of sizes n = 40,
1000, and 1000, respectively. Fig. S2 shows the average accuracy of the algorithms in predicting fitness
over 5 repeats of the experiments with random splits of the data into training/validation/test sets. Our
`1-norm WH-regularized DNN consistently outperforms the DNN without WH regularization and the
Lasso algorithm. The gap becomes even more distinct in presence of higher-order interactions.
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Table S2: Description of the biological landscapes used in this paper is tabulated in terms of genotype,
phenotype, number of mutations, input sequence size (d), and the reference to the publication.

Genotype Phenotype # sites (d) Reference

D1 Scattered genomic mutations E. coli fitness 5 (5) Khan et al. (2011) [9]
D2 Chromosomes in asexual fungi Aspergillus niger fitness I 5 (5) de Visser et al. (2009) [47]
D3 Protein point mutations Resistance to β-lactam antibiotic 5 (5) Weinreich et al. (2006) [7]
D4 Alleles in biosynthetic network S. cerevisiae haploid growth rate 6 (6) Hall et al. (2010) [8]
D5 Protein mutations Entacmaea quadricolor fluorescence 13 (13) Poelwijk et al. (2019) [3]
D6 Protein mutations I-binding domain of protein G (GB1) 4 (80) Wu et al. (2014) [1]
D7 Protein mutations Aequorea victoria green fluorescence 236 (236) Sarkisyan et al. (2016) [2]
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Figure S2: Function prediction on synthetic landscapes with progressively more complex
interactions. a, Twelve landscapes with 8 interactions of up to order 2 are generated in WH basis and
split randomly into training, validation, and test sets. Figure shows the prediction accuracy over the
test set in 8 landscapes. Deep neural network (DNN) with epistatic net (EN) regularization outperforms
DNN without regularization and Lasso regression. b, One of the interactions is selected from the
landscapes in panel a at random and replaced with a high-order interactions. The experiments are
repeated over the new more rugged landscapes. The prediction accuracy drops in all the algorithms
due to ruggedness, however, DNN with EN regularization outperforms the competing baselines. c, An
additional three interactions are selected at random and replaced with high-order interactions. DNN
with WH-regularization has a consistently better or comparable prediction performance compared
to DNN with no WH regularization and the Lasso algorithm in WH basis. All the experiments are
repeated 5 times with random splits of the data into training, validation, and test sets. The error bars
show the standard error of the mean (SEM).
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Figure S3: Epistatic regularization in bacterial functions. Analyzing the effect of the EN
regularization on the WH transform and prediction accuracy of DNN trained on the fitness landscapes
of a, Khan et al. [9], b and c, de Visser et al. [10,47], d, Weinreich et al. [7] with d = 5 mutational sites.
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Figure S4: Epistatic regularization in bacterial functions. Analyzing the effect of EN regulariza-
tion on the WH transform and prediction accuracy of DNN trained on the fitness landscapes of Hall et
al. [8] with d = 6 mutational sites: a, Haploid growth, b, Diploid growth, c, Mating efficiency, and d,
Sporulation.
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Figure S5: Comparison of the prediction performance and epistatic recovery of DNN with
the epistatic net (EN) regularization and DNNs with other forms of sparsity promot-
ing regularizes in the Entacmaea quadricolor fluorescense landscape, over a wider range
training set sizes. a, The prediction accuracy of DNN with EN regularization is compared with
the accuracy of DNNs with other forms of regularizations including `1 and `2-norm on the weights of
DNN directly (Elastic Net regularization), and `1-norm on the last layer of DNN. b, The epistatic
recovery performance of DNN with EN regularization is compared to the same competing algorithms.
Both plots demonstrates that DNN with EN regularization maintains a consistent performance gap
compared to all the baseline algorithms for a wide range of training sizes.
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Figure S6: Comparison of the DNN with and without the epistatic net (EN) regularization
in recovering the 3D structure of the Entacmaea quadricolor fluorescence protein. a, The
contact map of the protein with residues within 4.5Å neighborhood of each other is visualized [26]. b,
The second-order epistatic interactions recovered from the DNN trained on n = 60 labeled proteins
shows several false interactions compared to the contact map (F1 = 0.68). c, The second-order epistatic
interactions recovered from the EN-regularized variant of DNN limits the false positive rate and
improves the precision and recall rates (F1 = 0.76). d, The third-order epistatic interactions of DNN
with EN regularization predicts groups of three resides in contact (i.e., with smaller than 4.5Å pairwise
distances) with higher F1 score as well.
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Figure S7: Finding the epistatic interactions of deep neural networks (DNNs) using our
epistatic net (EN) method under two independent subsamplings. The coefficients of first-
order interactions of DNN trained on the avGFP protein landscape recovered by EN-S is plotted under
two independent subsamplings. The recovered coefficients are highly correlated (R2 = 0.99) despite the
enormous level of undersampling, that is, 5, 074, 944 out of a total of 1071 sequences.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2020.11.24.396994doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.396994
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
96
99

102
105
108
111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156
159
162
165
168
171
174
177
180
183
186
189
192
195
198
201
204
207
210
213
216
219
222
225
228
231
234

0.02 0.015 0.01 0.005 0 -0.005 -0.01

DNN epistatis level

Subsampling 2

Subsampling 1

Amino acid index

Am
in

o 
ac

id
 in

de
x

Figure S8: Finding the epistatic interactions of deep neural networks (DNNs) using our
epistatic net (EN) method under two independent subsamplings. The coefficients of second-
order interactions of DNN trained on the avGFP protein landscape recovered by EN-S is plotted
under two independent subsamplings. The recovered coefficients are (locally-)correlated (R2 = 0.60)
despite the enormous level of undersampling, that is, 5, 074, 944 out of a total of 1071 sequences. Local
block-correlation is found by evaluating the correlation between 3 × 3 sub-blocks of the interaction
matrices.
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Figure S9: The scatter plots of the measured and predicted protein functions. a, DNN
trained on the GB1 landscape. b, DNN with EN-S regularization trained on the GB1 landscape.
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