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Abstract 

Influenza is one of the most widespread viral infections worldwide and represents a major public 

health problem. The risk that one of the next pandemics is caused by an influenza strain is very high. 

It is very important to develop broad-spectrum influenza antivirals to be ready for any possible 

vaccine shortcomings.  Anti-influenza drugs are available but they are far from ideal. Arguably, an 

ideal antiviral should target conserved viral domains and be virucidal, i.e. irreversibly inhibit viral 

infectivity. Here, we describe a new class of broad-spectrum anti-influenza macromolecules that 

meets these criteria and displays exceedingly low toxicity. These compounds are based on a 

cyclodextrin core modified on its primary face with long hydrophobic linkers terminated in 6’sialyl-

N-acetyllactosamine (6’SLN) or 3’SLN. SLN enables nanomolar inhibition of the viruses while the 

hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties 

allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 

pandemic influenza strain ex vivo. Importantly, we show that, in mice, the compounds provide 

therapeutic efficacy when administered 24h post-infection allowing 90% survival as opposed to no 

survival for the placebo and oseltamivir.  

.  
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Influenza viruses are among the most infective viruses.[1,2] Every year different influenza strains infect 

a large fraction of both the animal and human population[3] endangering infants, the elderly and 

immunocompromised people, which are at high risk of hospitalization and death, due to influenza-

related complications.[4–8] As a result, seasonal influenza has yearly a remarkable socio-economic 

impact. Respiratory diseases can cost a significant fraction of the total health expenditures in 

developed and mainly in developing countries.[9,10] Because influenza mutates so rapidly, the 

development of a lifelong vaccine is still a major challenge.[11–13] Vaccine development would pose 

even higher challenges when we focus on the occasional pandemics instead of yearly outbreaks. In 

such a case, the development time of a new vaccine would represent a serious risk. Furthermore, even 

in the presence of a vaccine, reaching reasonable vaccination coverage is far from a foregone 

conclusion. As a consequence, the risk of a new pandemic, such as the Spanish-flu, is still present 

and recognised as one of the top threats to global health.[14–16]  

 

Naturally, the second line of defense after vaccines, are antiviral drugs. A number of anti-influenza 

drugs are currently approved: neuraminidase inhibitors such as zanamivir and oseltamivir, ion 

channel inhibitors such as amantadine, fusion inhibitors such as umifenovir (only in Russia and 

China) and polymerase inhibitor such as baloxavir marboxil, that was recently approved in US and 

Japan. Yet, it is recognized that the efficacy of current drugs is far from ideal. Concerns about these 

drugs range from significant side effects to the appearance of drug-resistant viruses after a short 

period of use.[17] Given the importance of this issue, a number of other antivirals are in clinical 

trials.[18–25] The majority of these drugs are monoclonal antibodies[26,27] that inhibit the fusion of the 

virus to the host-cell. Although they are promising, it is likely that they will be considerably costly 

due to their manufacturing processes. Furthermore, monoclonal antibodies are expected to be good 

prophylactic drugs, but their efficacy in therapeutic administration (i.e. post infection) is a matter of 

intense research. 
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An ideal anti-influenza drug should be broad-spectrum, by targeting a highly conserved part of the 

virus and, in order to avoid loss of efficacy due to the dilution in body fluids, have an irreversible 

effect, i.e. be virucidal. Obviously, this drug needs to be truly non-toxic. There are quite a few 

research lines on the development of molecules that target conserved parts of the virus.[28–40] To the 

best of our knowledge, these compounds are all reversible in their action and hence could face major 

hurdles when translating into drugs.  To the best of our knowledge no compound with broad-spectrum 

anti-influenza efficacy has shown convincing post-infection results in vivo of the type that we present 

here. 

 

The search for virucidal (i.e. irreversible) drugs with limited toxicity has been very challenging. 

Polymers bearing hydrophobic groups have previously been reported to show virucidal activity or 

enhanced antiviral activity.[41,42] We have also shown that gold nanoparticles[43] and β-cyclodextrins[44] 

modified with 11-undecane sulfonic acid display a virucidal mechanism against a wide range of 

heparan sulfate proteoglycans (HSPGs) binding viruses, with no cellular toxicity. These compounds 

were capable of exerting forces that ultimately deform the virus particle. The chemical structure of 

the ligand was shown to be essential in order to achieve such irreversible inhibition.  

 

Here, we adopted a similar strategy in order to target human influenza viruses and avian influenza 

viruses. 6’ sialyl-N-acetyllactosamine (6’SLN) and 3’ sialyl-N-acetyllactosamine (3’SLN), that bind 

to hemagglutinin (HA) trimers of influenza strains with high affinity[45], were grafted onto the primary 

face of  b-cyclodextrins through a series of different linkers.  The structure of all modified 

cyclodextrins discussed in this work is shown in Figure 1. Of note, since each HA trimer has three 

sialic acid binding pockets, we aimed to modify the b-CDs with three trisaccharides. Therefore, the 

cyclodextrins are not fully modified but they all bear, on average, a comparable number of 

trisaccharides (Figure S1 and S2), determined using 1H Nuclear Magnetic Resonance Spectroscopy 

(NMR). In vitro dose-response assays against influenza A/Netherlands/602/2009 (H1N1) strain 
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(A/NL/09), were conducted to compare the inhibitory activity of these molecules (Figure 1 and S3). 

The infection was quantified with immunocytochemical assays at 24 hours post-infection (hpi). b-

CDs bearing a sufficiently long, hydrophobic linker and 6’SLN end-group (C6-6’, C11-6’, and C14-

6’) showed strong inhibitory activity against infection with influenza A/NL/09, having EC50 values 

in the nanomolar range. On the other hand, the b-CD with a shorter linker, C1-6’, poorly protected 

from the infection. Introducing a sufficiently long linker clearly enhanced the end-group flexibility; 

hence the inhibitory concentrations decreased. The EC50 was comparable (yet slightly higher) when 

the hydrophobic linker was replaced with a hydrophilic PEG8 linker (P8-6’).  

 

In order to demonstrate viral inhibition is due to trisaccharide group but not due to b-CD or the linker 

bearing carboxylic acid end group, we also tested b-CD solely modified with PEG8 linker (P8). P8 

did not inhibit influenza A/NL/09, even at very high material concentrations.  
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Figure 1: Summary of the modified cyclodextrins. The average number of 6’SLN or 3’SLN per b-CD was calculated 

by 1H NMR. The representative chemical structures of modified cyclodextrins were constructed based on NMR results.  

EC50 represents the half-effective concentrations on MDCK cells at 24 hpi against A/NL/09 with the respective 95% 

confidence interval (CI) (Figure S3). N/A: not assessable.  

 

C11-6’, the molecule that showed the best inhibitory activity against A/NL/09, displayed strong 

antiviral activity against human influenza strains from both the A (H1N1 and H3N2) and the B type 

(Table 1 and Figure S4). Importantly, it inhibited very recent A (H1N1) and B clinical strains (from 

the 2017/2018 influenza season), isolated from patients in the University Hospital of Geneva and 

passaged only once in MDCK cells. C11-6’ did not show any antiviral activity against HSV-2, an 

HSPG-binding virus, indicating specificity of the compound for sialic acid dependent viruses.  
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Table 1: Inhibitory activity of C11-6’ and C11-3’ against different influenza strains.  

 Compound CC50 (µg/mL) EC50 (µg/mL) EC50† (nM) 

A/Netherlands/602/2009 (H1N1) C11-6’    >100 0.18 (0.14 - 0.24)  42 

 C11-3’ >100 6.5 (4.1-10.1) >1000 

A/Switzerland/8337/2018-MDCK1 (H1N1) C11-6’ >100 0.5 (0.4 - 0.67)  125 

A/Singapore/37/2004 (H3N2) C11-6’ >100 0.23 (0.16 – 0.34)  56.5 

B/Wisconsin/01/2010* C11-6’ >100 2.2 (1.49 – 3.42)  500 

B/Switzerland/3849/2018-MDCK1* C11-6’ >100 20 (10.5 – 28.7) >1000 

A/turkey/Turkey/2005 (H5N1) C11-3’ >100 4.1 (2.55-6.7) 931 

 C11-6 >100 N/A N/A 

A/turkey/Italy/1999 (H7N1) C11-3’ >100 8.8 (3.2-26) >1000 

HSV-2 (Control) C11-6’ >100 N/A  N/A 

* B Yamagata lineage 

† Molar concentrations were determined based on the modified cyclodextrins. 

CC50: Half-cytotoxic concentration.   

EC50: Half-effective concentration with 95% CI in brackets 

N/A: not assessable 

 

6’SLN is known to be specific to human influenza strains, whereas 3’SLN is preferred by avian 

influenza strains as a primary attachment point.[46] To prove the generality of our approach, especially 

against influenza strains that are known to have the ability of crossing the species barrier, we 

synthesized and tested C11-3’ (Figure 1) against avian influenza strains. We show that C11-3’ 

inhibits both H5N1 and H7N1 avian strains, at 4.1 and 8.8 µg/ml concentrations respectively (see 

Table 1). De facto, these results confirm the antiviral strategy adopted against human strains. We 

additionally tested whether C11-3’ could inhibit the human strain A/NL/09 and whether C11-6’ 

would also be active against the avian strain, H5N1. C11-3’ displayed a good inhibitory activity 

against A/NL/09 (Figure 1 and table 1), whereas C11-6’ did not show any activity against H5N1 

(table 1 and Figure S5). These results are in line with previous literature comparing the binding 

affinities of avian and human strains to the different types of sialic acids[46,47]. Avian influenza strains 
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(particularly H5N1 strains) preferentially bind to alpha -2,3 linked sialic acid, which has a thin and 

straight trans conformation. On the other hand, the wider sialic acid binding site of human strains can 

accommodate both the bulky cis conformation of alpha -2,6 linked sialic acid and the narrower -2,3 

linked sialic acid[46,47]. 

 

The synthesis of similar compounds sharing the b-cyclodextrin core and the 6’SLN moiety but 

different linkers allowed us to highlight a structural feature conferring irreversible inhibitory activity 

i.e. virucidal action (Figure 2 and S6). This feature differs from the one described in our previous 

work where only the length of the linkers was compared[43]. Here, we hypothesized that one of the 

key components of an irreversible viral inhibition is that the binding moiety (here 6’SLN) is borne 

by a sufficiently long hydrophobic linker. A hydrophilic linker such as PEG should not be capable of 

generating forces that permanently inactivate the virus. To test this hypothesis, we compared C11-6’ 

and P8-6’. These two compounds differ solely in the hydrophobicity of the linker and show 

comparable inhibitory activity against A/NL/09, as shown on the left in figure 2a and 2b. Virucidal 

assays were conducted as previously described[43] to compare the mechanism of inhibition of these 

compounds, i.e., virucidal (irreversible) or virustatic (reversible). Briefly, amounts of the compounds 

that provide complete protection (10 μg of C11-6’ and 50 μg of P8-6’) were incubated with the virus 

for 1h. Serial dilutions of the inocula were conducted followed by evaluation of the infectivity. In the 

case of P8-6’, the right graph in 2a shows that while at the initial concentration complete protection 

was present, upon dilution the difference with the infectivity of the control sample (virus alone) was 

lost, i.e. the inhibitory effect was found to be reversible (virustatic). In the case of C11-6’ the right 

graph in 2b shows that complete protection was kept upon dilution and the graphs in 2c show that 

this property was conserved against a number of different strains.  
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Figure 2: Antiviral activity comparison of C11-6’ and P8-6’ in vitro. Panels (a) and (b) show on the graphs on the 

left the inhibitory activity of each compound against A/NL/09, superimposed with the results of the cell viability assays. 

Both of the compounds inhibit the virus in the dose-response assay. In the virucidal assays on the right, C11-6’ reduced 

the virus titer by 1000 times, whereas the infection was fully recovered in the case of P8-6’. Hence C11-6’ has an 

irreversible inhibitory effect on the virus while the effect of P8-6’ is reversible.  Virucidal activity of C11-6’ against other 

influenza strains was further investigated confirming its irreversible activity independently of the strain (c). 

 Note that in the figure’s axes ffu stands for focus forming units and NT for non-treated.  In (c) the following viral strains 

were tested: A/Singapore/37/2004 (H3N2), B/Wisconsin/01/2010 and A/Switzerland/8337/2018-MDCK1 (H1N1) (c). 

Results are mean and SEM of 2 independent experiments performed in duplicate.  
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To further compare C11-6’ and P8-6’, we performed ex vivo experiments in MucilAir®, a 3D model 

of human airway reconstituted epithelia. These air-liquid interface cultures perfectly mimic both the 

pseudostratified architecture (basal, ciliated and goblet cells) and the barrier defence mechanism (i.e. 

the mucociliary clearance and epithelial cell immunity) of the human upper respiratory epithelium, 

the main site of influenza virus replication in humans. Ex vivo experiments were conducted with 

clinical H1N1 pandemic 09 strain (A/Switzerland/3076/16) that has not been passaged in cells to 

exclude any adaptation bias. C11-6’ or P8-6’ (50 µg/tissue) and the virus (104 RNA copies/tissue) 

were first added simultaneously on the apical surface of the tissues, without prior incubation. After 

four hours, the inocula were removed, the tissues were washed and the progress of the infection was 

monitored on a daily basis with qPCR performed on viruses isolated from the apical washes of the 

tissue, without any re-addition of the molecule. C11-6’ completely prevented virus replication 

throughout the entire course of the experiment, while P8-6’ slightly reduced viral replication the first 

two days post-infection (dpi) but not thereafter (Figure 3a).  

 

Moreover, in the tissues treated with C11-6’, the inhibition of viral replication was also reflected by 

the absence of infected cells and the undisturbed morphology of the treated tissues, strikingly 

different from the untreated or P8-6’-treated tissues (Figure 3b). Immunofluorescence images and the 

lack of lactate dehydrogenase (LDH) release in the apical washes demonstrated that the ciliated cell 

layer as well as the physiological cilia beating and tissue integrity were preserved (Figure 3b and S7). 

In stark contrast, the untreated tissue or the P8-6’-treated controls, presented reduced thickness due 

to alteration of the ciliated cell layer, and presence of infected cells (Figure 3b). To exclude that the 

residual viral level detected by qPCR in the treated tissues was related to active replication, we kept 

the tissues in culture for 23 days but never observed an increase in viral titer over time, while the 

untreated tissues were persistently shedding virus as previously reported[48] (Figure S8). Importantly, 

ex vivo experiments were conducted also in more stringent post-treatment conditions in which C11-

6’ (30 µg/tissue) was administrated every 24 h and for 4 days, starting at 1 dpi to mimic a therapeutic 
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administration. Also in these conditions, the compound showed a remarkable inhibitory activity, 

proving its potential as a therapeutic agent (Figure 3c). In the same ex vivo model we also evaluated 

the biocompatibility of high doses of C11-6’, administered daily. C11-6’ did neither show any 

cytotoxic nor pro-inflammatory activity in the above described conditions (Figure S9).  

 

Figure 3: Ex vivo (a to c) and in vivo (d to f) inhibitory activity of C11-6’. Ex vivo, C11-6’ provided a full protection 

against clinical H1N1 pandemic 09 strain in co-treatment condition, whereas P8-6’ only provided a minor protection in 

the beginning of the infection (a) Immunofluorescence at 7 days post-infection (co-treatment condition) confirms the 

protection provided by C11-6’. Red: monoclonal antibody influenza A, blue: DAPI, green: β-IV-tubulin (marker of 

ciliated cells). The thickness of each tissue is shown at the bottom of the corresponding image (b). C11-6’ also showed 

high efficacy in post-treatment condition (c). Results of (a) and (c) are mean and SEM of 2 to 4 independent experiments 

with intra-experimental duplicates. Images of (b) are representative of 10 images taken for each condition. In vivo, mice 

(12/group) were intra-nasally treated with PBS or C11-6’ or by oral gavage with oseltamivir and infected with 

A/California/09. Subsequent treatments were administered daily for the following 5 days, image shows the survival curve 
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(d).  Mice were infected and treated with C11-6’ or oseltamivir at 24 hpi and daily for the 4 following days, images show 

the survival curves (e) ***p<0.001, **p<0.01 

 
Lastly, in vivo experiments were conducted with BALB/c mice administered first with C11-6’ (1.25 

or 3.75 mg/kg) and immediately after with A/California/09 via the intranasal route and 

subsequently treated daily for 5 days. The weights of the mice were measured daily in order to 

estimate the impact of C11-6’ administration on the infected-animal’s physiological condition 

(weight loss variation is shown in Figure S10). Significant increase in survival was observed in 

presence of C11-6’ 3.75 mg/kg (9/12 mice) and the oseltamivir 30 mg/kg/day (10/10 mice) if 

compared to placebo control (3/12 mice). Additional experiments were carried out with 

administration of 1.25 mg/kg of C11-6’ at the time of infection by measuring the viral load in the 

lungs and the viral titer in the broncho-alveolar lavages at 2dpi (Figure S11). The significative 

reduction in presence of 1.25 mg/kg of C11-6’ demonstrates that a single administration before 

infection is able to significantly decrease the infectious titer of the virus. Subsequently we 

performed post-treatment experiment, in which mice were treated at 8 (Figure S12) or 24 hpi 

(Figure 3d) with C11-6’ (3.75 mg/kg or 7.5 mg/kg) or oseltamivir (30 mg/kg/day). In presence of 

C11-6’ with the start of treatment at 24hpi 9 out of 10 mice survived to the viral challenge in the 7.5 

mg/kg group and 4 in the 3.75 mg/kg group, in contrast with oseltamivir in which group 0 out of 10 

survived. Collectively, these results suggest a potent prophylactic and therapeutic capacity of the 

C11-6’ compound in vivo. 

 

In summary, we present here a new design rule to produce effective, non-toxic, virucidal compounds 

against influenza virus. To dissect the relationship between the antiviral mechanism of action and the 

structure of our newly designed virucidal we compare, for the first time, its efficacy with that of a 

highly similar compound displaying a virustatic activity. We show that if the inhibitory effect is 

reversible, i.e. virustatic, the antiviral efficacy is lost when moving from in vitro to ex vivo. On the 

other hand, the virucidal counterpart of the same molecule keeps its efficacy is maintained from in 
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vitro all the way to in vivo. Importantly, we show in vivo results with remarkable effect on mice 

survival for a pandemic strain of H1N1 with the compound given intranasally 24h post-infection. 

Therefore, we believe that our approach to design non-toxic virucidal macromolecules has an 

outstanding potential for the prevention and the treatment of not only human, but also avian influenza 

infections. 

 

Experimental Section 

Detailed information on the experimental procedures can be found in the Supporting Information. 
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