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Abstract (250 words or less)

Targeted amplicon sequencing methods, such as genotyping-in-thousands by sequencing
(GT-seq), facilitate rapid, accurate, and cost-effective analysis of hundreds of genetic loci in
thousands of individuals, but studies describing detailed workflows of GTseq panel development
are rare. Here, we develop a dual-purpose GT-seq panel for walleye (Sander vitreus) and discuss
trade-offs associated with different development and genotyping approaches. Our GT-seq panel
was developed using restriction site-associated DNA data from 954 individuals sampled from 23
populations in Minnesota and Wisconsin, USA. We then conducted simulations to test the utility
of loci for parentage analysis and genetic stock identification and designed 600 primer pairs to
maximize joint accuracy for these analyses. We conducted three rounds of primer optimization to
remove loci that overamplified and our final panel consisted of 436 loci. Optimization focused
on reducing variation in amplification rate among loci and minimizing the proportion of off-
target sequence, both of which are important considerations for developing large GT-seq panels.
We also explored different approaches for DNA extraction, multiplexed polymerase chain
reaction (PCR) amplification, and cleanup steps during the GT-seq process and discovered the
following: (1) inexpensive Chelex extractions performed well for genotyping, (2) the
exonuclease | and shrimp alkaline phosphatase (ExoSAP) procedure included in some current
protocols did not improve results substantially and was likely unnecessary, and (3) it was
possible to PCR amplify panels separately and combine them prior to adapter ligation. Well-
optimized GT-seq panels are valuable resources for conservation genetics and our findings

should aid in their construction in myriad taxa.
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Introduction

The development of genotyping-by-sequencing (GBS) methods has allowed collection of
data from thousands of markers across a genome, enabling research that was not possible using
traditional genetic approaches (Davey et al., 2011; Narum et al., 2013). For example, studies
using thousands of markers genotyped with restriction site-associated DNA (RAD) sequencing
have shown improved sensitivity for detecting inbreeding depression (Hoffman et al., 2014),
increased resolution for determining complex phylogenies (Wagner et al., 2013), and allowed
researchers to observe selection on introduced alleles (Bay et al., 2019). Many genetic analyses,
however, can be conducted efficiently with genotypes from tens to hundreds of single nucleotide
polymorphisms (SNPs) (Anderson & Garza, 2006), making more expensive approaches such as
RAD-seq unnecessary (Meek & Larson, 2019). Two such analyses that have been widely used in
conservation genetics and molecular ecology for decades, are parentage analysis and genetic
stock identification (GSI).

Parentage analysis involves assigning offspring to putative parents by comparing
genotypes at multiple loci, while GSI infers the natal origins of individuals by leveraging
baseline allele frequency estimates from populations or reporting groups. These techniques were
first conducted using allozyme markers genotyped with protein electrophoresis. Although these
analyses were groundbreaking, they often lacked statistical power except in cases of highly
diverged stocks or simple pedigrees. The adoption of highly variable microsatellite markers in
the 1990s greatly increased statistical power, allowing these two techniques to become widely
adopted (Luikart & England, 1999). Despite the advances made possible by microsatellites,

problems associated with homoplasy (Garza & Freimer, 1996), locus discovery (Navajas et al.,
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79  1998), and reproducibility among laboratories led researchers to explore the potential of biallelic

80  SNPs for GSI and parentage analysis (Seeb et al., 2011).

81 Although SNPs are less powerful than microsatellites on a per marker basis, SNPs are

82  more abundant in the genome, generally have low genotyping error rates, and can be genotyped

83  using SNP panels capable of efficiently screening a large number of samples (Brumfield et al.,

84  2003; Morin et al., 2004). Early SNP panels were constrained, however, in the availability of

85  molecular markers suitable for genotyping and genotyping costs associated with 5> exonuclease

86  chemistry (Seeb et al., 2011). These constraints were significantly lessened with the proliferation

87  of next-generation sequencing (NGS) technology. For example, methods such as RADseq

88 facilitate quick and affordable discovery of thousands of candidate loci, which can then be

89  selected among for specific purposes.

90 As SNP discovery has become less prohibitive, methods of selecting the most

91 informative SNPs for a given study have advanced (Storer et al., 2012). Previous research has

92  shown that information content will vary among SNPs depending on the context within which

93  they are applied and location within the genome (i.e. coding or non-coding regions). For

94  example, Ackerman et al. (2011) found that SNPs under diversifying selection provide increased

95 accuracy and precision in GSI of sockeye salmon (Oncorhynchus nerka) from the Copper River,

96  Alaska. In general, previous studies have shown that GSI accuracy is generally positively

97  correlated with differentiation (e.g., Fst) and, to a lesser extent, diversity (e.g., heterozygosity)

98  (Ackermanetal., 2011; Bradbury et al., 2011; Storer et al., 2012). Studies of SNP selection

99  methods for parentage analysis, however, have found that high diversity is the most important
100  attribute to consider when creating a panel (Baetscher et al., 2018). More recently, analytical

101 techniques have shifted towards consideration of closely linked SNPs (i.e. microhaplotypes),
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102 which effectively increases the diversity at a locus and has proven useful for parentage and GSI
103  tests (Baetscher et al., 2018; McKinney, Seeb, et al., 2017; Reid et al., 2019). While obtaining
104  microhaplotypes using previous 5’ exonuclease methods would require independent assays for
105  each SNP at a locus and statistical phasing, NGS technology has enabled the joint genotyping of
106  multiple SNPs within single reads, making microhaplotype data easily obtainable through a

107  simple modification in analytical approach.

108 One recently developed GBS method that improves upon previous high-throughput

109  genotyping technologies, such as 5’ exonuclease chemistry, is Genotyping-in-Thousands by
110  sequencing (GT-seq). This method enables genotyping hundreds of SNPs in thousands of

111  individuals on a single NGS lane through the use of highly-multiplexed polymerase chain

112 reaction (PCR) (Campbell et al., 2015). GT-seq does not require an allele-specific probe, can
113 genotype multiple SNPs within an amplicon using a single primer pair, and is substantially less
114  expensive than 5’ exonuclease chemistry, especially in the context of genotyping thousands of
115  individuals.

116 Despite its benefits, GT-seq is not yet widely used outside of salmonids. Early

117  applications to non-model organisms, however, have shown great promise for this method’s
118  versatility, including the ability to reveal dispersal and mating patterns in a complex environment
119  (Baetscher et al., 2019), provide insight to the ecological and evolutionary dynamics of

120  secondary contact (Reid et al., 2019), and understand population diversity in systems that are
121 heavily influenced by climate change (Pavinato et al., 2019). Pedigree analysis in wild

122 populations is highly dependent upon the ability to genotype large sample sizes to increase the
123 likelihood of detecting kin relationships, toward which GT-seq is ideally suited. Moreover, GT-

124  seq has proven capable of generating high-quality genotypes from low-quality DNA samples
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125  (Natesh et al., 2019; Schmidt et al., 2019), making it a viable approach for monitoring

126 endangered or elusive species.

127 While GT-seq panels have been developed to maximize accuracy for GSI (McKinney et
128 al., 2019) or parentage (Baetscher et al., 2018) analyses, the potential for developing dual-

129  purpose panels is largely unexplored. Moreover, developing GT-seq panels is a relatively

130 involved task and, to this point, there are limited resources providing standardized workflows
131 and guidelines for efficient panel construction (but see Campbell et al., 2015; McKinney et al.,
132 2019). Ata basic level, panel construction involves SNP discovery, SNPs selection, primer

133 design, and panel optimization (see Baetscher et al., 2018; McKinney et al., 2019; Schmidt et al.,
134 2019); however, within this general framework there are many decision points in panel

135  development related to primer selection, multiplexing approaches, laboratory protocols, and

136  analysis parameters that have yet to be addressed. We used walleye (Sander vitreus) from

137  Minnesota and Wisconsin, USA, as a test case to investigate various tradeoffs associated with
138  GT-seq panel development and optimization and leveraged our collective experience to provide
139  guidelines for researchers developing GT-seq panels.

140 Walleye are an apex predator and one of the most prized sportfish throughout their native
141 and introduced range. Recently, many walleye populations have declined across the Midwestern
142 United States (Embke et al., 2019; Hansen et al., 2015; Rypel et al., 2018), prompting increases
143 in stocking efforts relative to already large and long-term regional stocking programs that have
144  existed for decades. Genetic studies have been used to guide these efforts by informing

145  broodstock selection and general stocking practices. Genetic variation in walleye from this

146  region was first characterized by Fields et al. (1997), who found geographic-based patterns of

147  genetic structure, but limitations related to sample size and molecular marker choice resulted in
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148  the use of contemporary watershed boundaries as genetic management units. This research was
149 later expanded upon by Hammen and Sloss (2019), who attempted to further define genetic

150  structure in the Ceded Territory of Wisconsin, approximately the northern third of the state, and
151  test whether significant genetic structure existed between distinct hydrological basins within this
152  region. Once again, constraints associated with available molecular markers used in a system
153  with not only low differentiation, but also extensive stocking precluded definition of fine-scale
154  structure. This system provides an excellent model for applying genomic techniques to

155  discriminate populations and evaluate hatchery programs using parentage analysis.

156 Like many intricacies of genomics research, GT-seq panel development is a process that
157 is at once broadly generalizable to non-model organisms and highly specific to the taxa it is

158  applied to. While the overarching steps (Fig. 1) will remain constant, there are many decision
159  points within that will require informed thought and decision. Using walleye, a species with few
160  well-established genomic resources, as a model, we examined the methods inherent to GT-seq
161  panel development in a manner that identifies critical decision points in the process and

162 illuminates the nuances associated with them. Our overarching goal was to design a dual-purpose
163  GT-seq panel optimized for parentage analysis and GSI in walleye. The creation of this panel
164  allowed us to address the following specific objectives: (1) investigate the tradeoffs between

165  choosing markers for parentage analysis versus GSl, (2) explore the most efficient way to design
166  an optimized panel, and (3) evaluate various laboratory approaches to maximizing the efficiency
167  of GT-seq genotyping. We provide an in-depth discussion of our experiences designing the panel
168  and outline important topics that should aid researchers in designing future GT-seq panels.

169  Materials and Methods

170  Sample collection
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171 Tissue samples were collected from adult walleye from 23 inland lakes across Wisconsin,
172 Minnesota, and the St. Louis River (border water) (Fig. 2a, Table 1) and stored in 95% ethanol
173 until DNA extraction. We obtained samples from as many major drainages as possible across the
174  two states, with an emphasis on the Wisconsin and Chippewa River drainages in Wisconsin,

175  which were difficult to differentiate using microsatellites (Hammen & Sloss, 2019); in

176 Minnesota, sampling focused primarily on major sources of wild broodstock for stocking

177 programs. Samples were collected by the Wisconsin and Minnesota Departments of Natural

178  Resources using fyke nets or electrofishing. Sampling took place during the spring spawning
179  runs of April 2015 and 2017 and fall surveys in August and September of 2015 and 2017.

180  Stocked individuals may be tagged, or fin clipped; we inspected all sampled individuals for tags
181  or fin clips to avoid as many individuals as possible that were of stocked origin as possible.

182  Preparation of RAD sequencing libraries

183 Genomic DNA was extracted in a 96-well format with Qiagen DNeasy Blood and Tissue
184  Kits. Extracted DNA was quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
185  Waltham, MA) and normalized to 20ng/ul. DNA was then prepared for RADseq library

186  preparation following the BestRAD protocol (Ali et al., 2016). Briefly, DNA was digested in a 2
187  pl reaction with the restriction enzyme Sbfl, and biotinylated barcode adaptors were ligated to
188  the 5’ cut ends. DNA shearing was conducted using a 12.5 pl fragmentase reaction. Library

189  preparation was conducted using an NEBNext Ultra DNA Library Prep Kit for Illumina (NEB,
190  Ipswich, MA), with a 12-cycle PCR enrichment. RAD library quality was inspected on a 2%
191  agarose gel before undergoing a final AMPure XP (Beckman Coulter, Indianapolis, IN)

192  purification and quantification on a Qubit 2.0 Fluorometer (ThermoFisher Scientific, Waltham,

193  MA). Libraries were sequenced using paired-end (PE) 150 technology on a HiSeq 4000
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194  (lllumina, San Diego, CA) at the Michigan State University Genomics Core Facility or

195  Novogene Corporation, Inc. (Davis, CA). Sequencing was conducted to achieve a target of over
196  one million retained reads per individual.

197  Analysis of RAD data to discover SNPs

198 Loci were identified and genotyped in STACKS v.2.2 (Rochette et al., 2019) without
199  using gapped alignments. Raw reads were demultiplexed and barcodes were trimmed in

200  process_radtags (parameter flags: -e Sbfl, -c, -q, -filter_illumina, -r, --bestrad). RAD-tags were
201  assembled into putative RAD loci with ustacks using the bounded model (bound_high = 0.05, --
202  disable-gapped) and allowing for a maximum of three nucleotide mismatches (-M = 3) and four
203  stacks per locus (-max_locus_stacks = 4), as well as a minimum depth of three (-m = 3). The
204  calling of haplotypes from secondary reads was disabled (-H). A catalog of consensus loci was
205  assembled in cstacks using the two individuals with the highest number of retained reads from
206  each population, allowing a maximum of three mismatches between sample loci (n =3, --

207  disable-gapped). After matching all samples against the catalog in sstacks (--disable-gapped),
208  data were oriented by locus with tsv2bam, and individual genotypes were called in gstacks, with
209  paired-end reads incorporated. Genotypes were exported in variant call format (vcf) using

210  populations, with loose filtering parameters (SNPs present at > 5% of individuals, minimum

211 minor allele frequency of > 0.005).

212 Comprehensive filtering of individuals and genotypes was conducted in vcftools v0.1.15
213 (Danecek et al., 2011) by: 1) removing individuals missing > 20% of SNP calls, 2) removing
214 SNPs that were missing in > 20% of individuals, and 3) removing SNPs that were not in the first
215 140 base pairs of the RAD-tag, effectively reducing the dataset to include SNPs detectable using

216  single-read (SR) 150 sequencing to simplify downstream amplicon design; to control for

10
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217  genotyping error, SNPs with a minor allele count < 3 were also removed. Putative duplicated loci
218  were identified in HDplot (McKinney, Waples, et al., 2017) (H > 0.5, -7 < D < 7) and removed
219  with vcftools. Retained individuals and SNPs were used to form whitelists for input into

220  populations that output a filtered vcf of multi-SNP haplotypes, which was then filtered to remove
221 loci with more than 10 alleles and used in simulations for locus selection. We also estimated

222 single-SNP Fis across all populations using diveRsity v1.9.90 (Keenan et al., 2013) and excluded
223 any SNPs with Fis values > 0.2 or < -0.2 from locus selection. Additionally, loci with a SNP in
224  the first 10 base pairs of the RAD-tag were excluded to allow room for forward primer design.
225  Analysis of population structure, locus selection, and panel assessment

226 To understand population structure in our system and ensure that selected loci could

227  facilitate accurate parentage assignment and GSI, we evaluated patterns of genetic divergence
228  using pairwise Fst (Table S1) estimated in Arlequin v3.5.2 (Excoffier & Lischer, 2010) and

229  constructed a dendrogram (Fig. 2b) using Nei’s distance in poppr v2.8.2 (Kamvar, Tabim, &

230  Griinwald, 2014). These analyses facilitated identification of population pairs that would be

231  challenging to discriminate and supported historical data suggesting several populations were
232 founded from hatchery sources located outside of their drainage basin (Escanaba Lake, Sanford
233 Lake, and Lake Millicent in Wisconsin); these populations were removed from simulations of
234  panel accuracy to ensure that selected loci would best represent the natural genetic patterns of the
235  region.

236 After initial population genetic analyses, loci were selected for primer development by
237  constructing several test panels from the RAD data and simulating assignment accuracy for

238  parentage and GSI. Previous research suggested that choosing loci with greater genetic

239  differentiation (e.g., Fst) should maximize accuracy for GSI (Ackerman et al., 2011; Storer et

11
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240 al., 2012), while choosing loci with higher diversity (e.g., heterozygosity and number of alleles)
241  maximizes accuracy for parentage (Baetscher et al., 2018). We therefore constructed the test
242  panels using single-SNP Fst estimated in diveRsity v1.9.90 (Keenan et al., 2013) as well as

243  expected heterozygosity at a multi-SNP haplotype (He_mhap ) and the number of alleles at a locus
244  estimated in adegenet v2.1.1 (Jombart & Ahmed, 2011). All simulations were conducted with
245  genotypes coded as multi-SNP haplotypes.

246 GSl accuracy for each panel was assessed via 100% simulations implemented in rubias
247  (Moran & Anderson, 2018) using the assess_reference_loo function (mixsize = 200, reps =

248  1000). Populations were aggregated into reporting units based on hydrological basins (Table 1).
249  Collections within a simulation were drawn from a Dirichlet distribution with all parameters
250  equal to 10 (i.e., each simulation’s prior contained approximately equal proportions of each

251  population for the given reporting unit). Individuals were assigned to reporting groups if they
252  had a cumulative probability of > 70%. Unfortunately, limited sample sizes in some reporting
253 units prevented creation of separate training and holdout datasets as suggested by Anderson

254  (2010), thus assignment accuracies presented here may be upwardly biased and would need to be
255  reassessed more thoroughly for populations involved in an applied study.

256 Parentage simulations were run in CKMRsim (Anderson,

257  https://zenodo.org/record/820162), which employs a variant of the importance-sampling

258  algorithm of Anderson and Garza (2006) that allows for more accurate estimates of very small
259  false-positive rate (FPR: per-pair rate of truly unrelated individuals being inferred as related)
260 relative to those obtained using standard Monte Carlo methods (Baetscher et al., 2018).

261  Parentage analyses were conducted following the methods of Baetscher et al. (2018), whereby

262  log-likelihood ratios between a tested relationship and the hypothesis of no relationship are

12
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263  computed from the calculated probabilities of genotype pairs for related individuals simulated
264  from allele frequency estimates. Distributions of simulated log-likelihood ratios are then used to
265  compute FPRs. Using this approach, we estimated FPRs for parent-offspring (PO), full-sibling
266  (FS), and half-sibling (HS) relationships at false-negative rates (FNR: per-pair rate of truly

267  related individuals being inferred as unrelated) ranging from 0.01 to 0.1.

268 Panels of 600 unique loci were iteratively selected, choosing loci based first on rank
269  Fst then rank He_mhap, and their utility was tested by conducting GSI tests and parentage

270  simulations. We ultimately defined three panels of 600 loci that best described the tradeoffs

271 between markers selected based on Fst and heterozygosity. Loci in these panels were chosen by
272 selecting 1) the top 600 loci based on Fsr, 2) the top 300 loci based on Fst and 300 based on
273 He_mnap, and 3) the top 600 loci based on He_mnap. These panels are hereafter referred to as

274 Fst_s00, Composite_so0, and Diversity soo, respectively. Through further testing, we determined
275  that a variation of the Composite 00 panel, with 250 loci based on He_mhap and 350 loci based on
276  Fst, delivered optimal performance for GSI and parentage analyses and proceeded to design
277  primers for the selected loci.

278  Primer Design

279 To design PCR primers for the selected loci, their consensus sequences were subset
280  from the STACKS catalog into a FASTA file for import into Geneious Prime® 2019.1.1

281  (https://www.geneious.com). The vcf file produced in the vcftools step containing all SNPs and
282  alleles within a consensus sequence was included to ensure primers were properly designed (i.e.,
283  should a SNP fall within a primer binding region, a degenerate nucleotide could be inserted or
284  the primer re-designed). Primer pairs were iteratively designed, with optimal target parameters

285  defined as a primer length of 20 bp, product size of 140 bp to facilitate genotyping with SR

13
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286  chemistry, Tm of 60° C, GC content of 50%, and no more than four of the same base repeated
287  consecutively (i.e., poly-X repeats). Primers identified as matching one or more off-target sites,
288  which could lead to amplification of multiple products, were redesigned. Given that not all 600
289  candidate loci initially identified were suitable candidates for primer development, we continued
290 to iteratively select loci and design associated primers until we reached our target of 600 loci.
291 Unfortunately, the loci selected for primer design were based on data containing a subset of
292 individuals with discordant encoded and true identities as a result of transposition of barcodes
293 during demultiplexing. Despite these discrepancies, the effect was likely minor as only 8% of
294  individuals were incorrectly assigned to reporting units prior to simulation. Simulation results
295  shown here were conducted using corrected data.

296  GT-seq optimization

297 GT-seq was conducted following the methods of Campbell et al. (2015), with

298  modification to the multiplex thermal cycling conditions (95 °C hold for 15 min; five cycles of
299 95 °C for 30 s, 5% ramp to 57 °C for 2 min, 72 °C 30 s; and 10 cycles of 95 °C for 30 s, 65 °C
300 for30s,and 72 °C 30 s) and post-normalization dual-sided SPRI size-selection and purification
301 (0.6X plus 0.4X) to further restrict the product size range (e.g., primarily toward removal of
302  primer inter-hybridization). Final library quality control consisted of confirmation of

303  amplification and barcoding by SYBR Green-based RT-qPCR (Stratagene Mx3005P QPCR
304  System, Agilent, Santa Clara, CA), visualization on a 2% agarose E-Gel (Invitrogen, Carlsbad,
305 CA), and quantification using picogreen. Libraries were then sequenced at the University of
306  Wisconsin-Madison Biotechnology Center (UWBC) DNA Sequencing Facility on a MiSeq

307  (Illumina) using 2 x 150 bp flowcells.
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308 Demultiplexed amplicon sequencing data were processed using GTscore v1.3

309 (McKinney et al., 2019). GTscore generates in-silico primer-probe sequences from a catalog of
310 loci generated in STACKS, that are then matched to amplicon sequences and call genotypes for
311 individual SNPs as well as multi-SNP haplotypes. GTscore also enables separation of on-target
312 sequence reads (i.e., reads containing both an in-silico primer and associated probe) from reads
313  produced as a result of primer cross-hybridization. Primer-probe file development was

314  accomplished with sumstatslUBconvert.pl by obtaining the 1UB code information for each SNP
315  from the sumstats.tsv file produced in the STACKS pipeline, converting catalog sequences

316  produced in the STACKS pipeline to FASTA sequences using catalog2fasta.pl, and merging
317  1UB code information with the catalog.fasta using fasta2lUB.pl. This primer-probe file was then
318  input for AmpliconReadCounter.pl, along with an individual’s fastq file, to produce read count
319  summaries of primers and probes.

320 Overall, we conducted three rounds of panel optimization to identify and remove loci
321 that had disproportionately high amplification rates (i.e., “overamplifiers”) and ensure that our
322  panel was capable of delivering a high proportion of on-target reads for each locus as well as
323 homogeneous amplification rates among loci. The first round of optimization used DNA from a
324  single walleye from Sanford Lake, WI, while the second and third rounds were conducted on
325  subsets of 24 individuals from each of four populations (96 individuals total) originally included
326  inthe RADseq study: Delavan Lake, Medicine Lake, and the Wolf River in Wisconsin and the
327  Pine River in Minnesota. Upon completing the final optimization, the characteristics of retained
328  loci were compared to those of loci culled from the panel. This was done by performing a

329  Welch’s two sample t-test (o = 0.05) between the GC:AC ratio of primers that were retained and
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330 those culled and between the GC:AC ratio of DNA templates retained and culled, based on the
331  first 140 bp of the template as this was the region in which SNPs were targeted.

332 GT-seq libraries from each round were collectively analyzed for PCR accuracy
333 and uniformity. Accuracy was measured by calculating the proportion of reads containing in-
334  silico primer sequences (total reads) relative to those that also contained in-silico probes.

335  Uniformity of amplification among loci was determined by calculating the proportion of total
336  reads that were allocated to the top 10% of loci, based on locus read counts (prop_reads_T10); if
337  amplification was perfectly uniform across loci, we would expect prop_reads_T10 to account for
338  exactly 10% of total reads. Given that amplification rates vary substantially within a panel, we
339  compared among locus performance by plotting the relative logio abundance of total and on-
340 target reads at each locus in descending order, which facilitated visual identification of

341  overamplifiers. As among-locus amplification rates evened out after the first optimization, the
342  on-target proportion of reads at each locus became a factor in retaining or excluding loci during
343  the second optimization.

344  Testing methodological modifications and performance analysis

345 During panel optimization, we compared the quality of GT-seq libraries prepared
346 from DNA extracted with Qiagen DNeasy and a more cost-effective chelating resin-based

347  procedure. Performance of libraries was compared using Bonferroni corrected (o = 0.016)

348  Tukey’s HSD for the number of on-target reads and the proportion of total reads that were on-
349  target, after determining whether significant differences existed among libraries via a one-way
350 ANOVA (a.=0.05). DNA was extracted from the 96 test individuals twice, first using Qiagen
351  DNeasy and again with a 10% Chelex 100 (200-400 mesh; Bio-Rad, Hercules, CA) solution

352  containing 1% each of Nonidet P-40 and Tween 20 (Millipore Sigma, St. Louis, MO).
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353  Additionally, we aimed to further reduce the cost per sample by evaluating the need for certain
354 library preparation steps. Specifically, we compared results with and without the exonuclease |
355 and shrimp alkaline phosphatase (ExoSAP) procedure included in Campbell et al. (2015) to

356 remove PCR inhibitors and free nucleotides. GT-seq was therefore conducted on all individuals
357 intriplicate: 1) Qiagen with EXoSAP, 2) Chelex with ExoSAP, and 3) Chelex without EXoSAP,
358 and all tests were sequenced on the same MiSeq lane. Finally, we tested whether the number of
359 loci that could be genotyped simultaneously could be increased by conducting multiple PCRs.
360 We accomplished this by dividing our optimized primer panel into two non-overlapping primer
361  pools before multiplex PCR amplification. We then merged PCR products from the separate
362  pools prior to the barcoding PCR. The sequencing performance of this joint panel was then

363  compared to the single multiplex containing the full panel using a Welch’s two sample t-test (o0 =
364  0.05).

365 We examined genotype concordance between RADseq and GT-seq across GT-seq
366  read depths using the fully optimized panel in the third round. Genotypes were called using

367 PolyGen (McKinney et al., 2018), an extension of the GTscore pipeline that uses the same

368  maximum-likelihood algorithm as STACKS v1 for diploid, bi-allelic loci. Because low read
369  depths can lead to high estimates of genotyping error, thereby increasing rates of allelic dropout
370  (Catchen et al., 2013), genotypes were only compared if they had greater than 60x coverage in
371 RADseg. We then modeled the relationship between GT-seq read depth and genotype

372 concordance using only read depths with more than 30 genotypes to ensure that estimates of
373  genotype concordance at a given depth had adequate sample sizes.

374 As a final proof of concept, we tested the optimized panel on a sample of 570 walleye

375  obtained from Escanaba Lake, WI, using the methods described above to estimate the variance in
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376  read depth among loci within a pool. We retained only loci present in more than 70% of

377 individuals and individuals genotyped at more than 70% of loci.

378  Results

379  Analysis of ascertainment dataset

380 A total of 954 individuals from 23 populations were RAD sequenced, with an average of
381 42 individuals per population (Table 1). Sequencing yielded 1,313,358 retained reads on average
382  per individual (range = 8,941 - 8,176,163). Initial sequence data were used to identify 682,223
383  putative SNPs. After passing sequence data through quality filters, 839 individuals and 20,597
384  SNPs were retained (Table S2).

385 Population estimates of Ho (0.144 - 0.179), allelic richness (1.498 - 1.674), and Fis (-

386 0.050 - 0.017) were relatively similar across locations (Table 1). Populations from Minnesota
387  had slightly lower diversity, which may be due to ascertainment bias as 14 of the 23 populations
388  were from Wisconsin. The highest genetic differentiation was observed between populations

389  from Minnesota and Wisconsin, with further structuring by drainage basin within each state (Fig.
390 2b, Table S1). Structuring was higher in Minnesota, with most populations showing a relatively
391  high degree of isolation (average Fst = 0.07, Table 2). Structure in Wisconsin was shallower

392  (average Fst = 0.03, Table 2) and only loosely correlated with drainage basins. From these

393  results, we constructed 13 reporting groups to facilitate GSI to identifiable genetic units (Table
394 1). All the reporting groups from Minnesota contained single populations, whereas in Wisconsin,
395  while the Rock-Fox and Wolf River groups contained single populations, the Wisconsin and

396  Chippewa River groups each contained five populations. Some single populations in the

397  Wisconsin and Chippewa Rivers were distinctly identifiable (e.g., Eau Claire River, Medicine
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398  Lake), but we grouped these populations within their drainage basin of origin as the panel will
399 likely be used this way for management purposes.

400  Locus selection and panel assessment

401 GSI accuracy was similar among the three panels, with < 1% difference in average

402  accuracy between the panel with loci chosen based solely on differentiation (Fst_600) and the
403  panel based solely on diversity (Diversity 600) (Fig. 3, Table 3). Average assignment accuracy
404  was > 90% for nine of the 13 reporting units in all panels (Fig. 3a). The remaining four reporting
405 units had average assignment accuracies ranging from 78% to 86%. Three of these units (upper
406  Chippewa River, WI; St. Louis River, MN/WI; and Red Lake, MN) are known to have admixed
407  stocking histories, while the fourth, North Fork Crow River, MN, included Lake Koronis, which
408  had the fewest individuals retained after filtering (n = 15). Misassigned individuals from the St.
409  Louis River, MN, and Red Lake, MN groups primarily assigned to the Pike River, MN, an

410 unsurprising result given that fish from the Pike River contributed to the recovery of the

411  collapsed walleye fishery in Red Lake (Logsdon et al., 2016) and fish in the St. Louis River

412 watershed. Misassignments from the Upper Chippewa basin primarily assigned to the Upper
413 Wisconsin basin due to the lower differentiation described previously.

414 The populations with the lowest assignment accuracies were found in the Chippewa

415  River and Wisconsin River reporting groups (Table S3, S4, S5), particularly in northern

416  Wisconsin near the headwaters of the Chippewa and Wisconsin River drainages, and included
417  Big Arbor Vitae Lake (Fst_so0 accuracy = 74%), Manitowish Lake (Fst_so0 accuracy = 58%), and
418  Turtle Flambeau Flowage (Fst_so0 accuracy = 63%). A large portion (> 10%) of the simulated
419 individuals from these populations could not be assigned to any population, providing further

420  support for the genetic similarity of these two reporting groups. A high proportion of individuals
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421  from Big Arbor Vitae Lake were assigned to Manitowish Lake (12%) and vice versa, from

422  Manitowish Lake to Big Arbor Vitae Lake (20%). Most misassignments in the Turtle Flambeau
423  Flowage were to Kawaguesaga Lake (16%). Populations with high misassignment rates also
424  tended to have short branch lengths in the dendrogram and were often located near the root of a
425  clade (Fig. 2b). Furthermore, the two populations from the upper Chippewa basin (Manitowish
426  Lake and Turtle Flambeau Flowage) had lower pairwise Fsrt values, on average, relative to

427  populations from the upper Wisconsin basin than they did with other populations from the upper
428  Chippewa basin.

429 The Diversity so0 panel had the highest accuracy for assigning kin relationships, the

430  Composite s00 panel showed intermediate performance and the Fst_s00 panel had the lowest

431 accuracy rate (Fig. 3b, Table 3). For all panels, FPRs were < 10°° for PO and FS relationships,
432  indicating all panels would perform adequately for reconstructing most relationships in most
433 study systems. Inter-panel performance did, however, range widely, from an FPR of 4.68 x 103
434  for Fst_600 to 2.74 x 10°% for Diversity s00 panel at an FNR of 0.01. Within panels, FPR was
435 inversely related to FNR.

436 Primers were designed using a modified Composite_600 panel, with 250 loci chosen

437  based on He_mnap and 350 chosen based on Fsr, as this panel delivered the best joint accuracy for
438  GSI and kinship analyses (Fig. 3, Table 3). Of the initial 600 loci initially selected for primer
439  design, 100 were not suitable for primer design, and thus, iterative selection of loci meeting

440  primer design requirements was continued until the targeted number of Fstand diversity markers
441  was met.

442  GT-seq optimization
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443 Initial amplification and MiSeq sequencing of all 600 loci yielded 4,655,071 reads

444  containing intact i7 barcode sequences, with 4,150,910 reads (89%) matching in-silico primer
445  sequences. Locus specificity was considered via the proportion of total reads that were on-target,
446  which was 1,031,707 (24.9%) (Table 4). In terms of amplification uniformity among loci,

447  prop_reads_T10 accounted for 3,526,201 (85.0%) of the 4,150,910 total reads. A cutoff of 3,000
448  reads per locus was then visually identified (Fig. 4a); loci producing more than 3,000 reads (n =
449  123) were deemed overamplifiers and discarded prior to further optimization.

450 For the second round of optimization, the remaining 477 primers pairs produced

451 12,653,262 reads containing intact i7 barcode sequences, and 9,347,591 (74%) matched in-silico
452  primer sequences. Locus specificity improved, with 3,268,293 (35.0%) of the total reads

453  successfully aligning to in-silico probe sequences (Table 4). Improvement was also observed in
454  the uniformity of amplification across loci, with prop_reads_T10 equating to 72.5% (6,776,302)
455  of total reads. Because locus performance was less variable in this round of testing, the

456  individual on-target proportion of reads at a locus was also considered while culling undesirable
457  loci. As such, loci visually identified as overamplifiers were again discarded if they did not

458  display high on-target read proportions (n = 41, Fig. 4b).

459 The third GT-seq test was used to determine the functional performance of the panel and
460  aimed to target 858 SNPs across 436 loci (Fig. 4c). This test produced 7,282,101 reads with

461  intacti7 barcodes, and 6,827,424 (94%) matched to in-silico primers. Locus specificity of primer
462  pairs improved greatly in this test, as 6,262,523 (91.7%) of the total reads were also on-target
463  (Table 4). Likewise, the variation in amplification rates across loci decreased as evidenced by

464  prop_reads_T10 decreasing to 36.6% (2,148,932) of the total reads.
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465 Upon completion of panel optimization, a small but significant difference was observed
466  between the GC content of primers that were retained (mean = 49.2%) and primers that were
467  removed (mean = 51.4%, df =602, t = 5.4, p < 0.001). Similar differences were found when
468  comparing the GC content of the DNA template; significantly higher GC proportions were

469  present in templates that were culled from the panel (mean = 47.8%) than templates that were
470  retained (mean = 45.5%, df = 359, t = 3.8, p < 0.001). Additionally, a total of 88 primer pairs in
471  the original panel contained at least one degenerate nucleotide, 72 (81%) of which were in the
472  forward primer. After optimization, 56 of the initial 88 (64%) were retained. In comparison, of
473  the 512 initial primer pairs that did not have degenerate primers, 380 (74%) were retained. The
474  average Fsrfor the most informative SNP at a locus and the average He mhap did not change

475  appreciably between the initial and fully optimized panels (Table 4).

476  Methodological modifications and performance analysis

477 Significant differences for on-target read counts and the proportion of total reads that
478  were on-target were detected among genomic DNA extraction and purification method

479  combinations. Subsequent analysis using Tukey’s HSD revealed that Chelex-extracted DNAs
480  produced the highest on-target read count, and Qiagen-extracted DNAs with EXoSAP-

481  purification produced the lowest (Fig. 5, p < 0.001). While the proportion of on-target reads did
482  not differ between Chelex with ExoSAP and Qiagen with ExoSAP, both methods produced a
483  significantly lower proportion of on-target reads than the Chelex-only library (Fig. 5, p < 0.001).
484  Additionally, when comparing results from the full panel of 436 primer pairs to those obtained
485  using the same panel divided into two unique multiplexes of 209 and 227 primer pairs (n = 436)

486  and repooled prior to barcoding, no significant differences were found in total primer reads (df =
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487 860, t=0.10, p=0.92), on-target reads (df = 858, t = 0.16, p = 0.87), or the proportion of total
488  reads that were on target (df = 806, t = 0.66, p = 0.51).

489 A total of 4,063 genotypes across 406 loci (820 SNPs) could be used in comparisons
490  between GT-seq data and those obtained from the original RAD study. Of these genotypes,
491  96.6% of calls were identical between methods, and modeled expectations of genotype

492  concordance (residual sum of squares = 0.02) indicated that a concordance rate of 99.0% could
493  be expected at a GT-seq read depth of 31 (Fig. 6).

494 For a final proof of concept, a new sample of 570 walleye was sequenced using the

495  current panel of 436 loci. After filtering, 551 individuals and 303 loci were retained with an
496  average of 32.9 (SD = 29.1) reads per locus; 116 of the 303 loci exhibited an average coverage
497  greater than the 31x target identified for 99.0% genotyping concordance (Fig. 7). The average
498  percent of missing data was 6.4% (SD = 13.0%) across individuals and 30.0% (SD = 38.0%)
499  across loci.

500 Discussion

501 GT-seq and other amplicon sequencing methods have tremendous potential for

502 facilitating high-throughput genotyping in non-model organisms (Meek & Larson, 2019). The
503  general steps for GT-seq panel development: SNP ascertainment, SNP selection, primer design,
504  and panel optimization have been previously detailed (Baetscher et al., 2018; McKinney et al.,
505  2019; Schmidt et al., 2019); however, the process of GT-seq panel development is not static.
506  Here, we leverage our experiences developing a GT-seq panel for walleye with testing various
507  aspects of the GT-seq methodological process to provide additional guidelines usable by other
508  researchers to simplify panel construction and validation, particularly in non-model species. Our

509  walleye panel has the necessary power to conduct GSI in a study system with highly variable
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510  degrees of genetic differentiation and perturbation by historical stocking, while also being

511  capable of identifying PO and FS relationships within large populations. The robust performance
512  of our panel was facilitated by exploring the upper limits of how many loci a GT-seq panel can
513  target and the trade-offs between choosing loci for GSI versus parentage analysis. The

514  information presented here will aid in the efficient creation of multipurpose GT-seq panels in
515  organisms with little to no available genomic resources.

516  Patterns of population structure: historical stocking influences GSI accuracy

517 The largest genetic differentiation in our data was observed between populations from
518  Wisconsin and Minnesota; this structure was likely the result of recolonization from different
519 refugia following the Wisconsin glaciation, which ended ~10,000 years ago. A range-wide

520 analysis of walleye genetic structure using microsatellite loci produced similar patterns, with the
521  most genetically independent populations found in northern Minnesota and Canada (Stepien et
522 al.,, 2009). Additionally, we found that while populations in Minnesota displayed strong isolation
523  on relatively small spatial scales, broad-scale patterns of isolation were less evident in

524  Wisconsin. In particular, the Ceded Territory of Wisconsin, which included our Chippewa River
525  and Wisconsin River reporting groups, displayed patchy and low genetic structure overall. It is
526 likely that structure in this region has been compromised by stocking. Hammen and Sloss (2019),
527  for instance, observed that several populations of walleye in the upper Chippewa were more

528  genetically similar to populations in the upper Wisconsin than to other populations in the upper
529  Chippewa, while nongame species in the Ceded Territory of Wisconsin displayed patterns of
530  genetic divergence strictly associated with drainage basin boundaries (Westbrook, 2012). We
531  also observed that four proximate populations spanning the Chippewa and Wisconsin River

532  boundaries were nearly indistinguishable (Turtle Flambeau Flowage, Manitowish Lake,
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533  Kawaguesaga Lake, Big Arbor Vitae Lake). These populations are within 50 km of each other
534  and are located near a state walleye hatchery in Woodruff, Wisconsin, that has historically used
535  broodstock solely from the Wisconsin River drainage basin. It is therefore highly likely that the
536  genetic similarity of these four populations is due to stocking. Several of the sampled

537  populations from Minnesota also had poorly documented stocking histories yet they remained
538 highly distinct. Genetic structure in Minnesota may have been less eroded if local, genetically
539  similar sources were used, stocking was into larger, healthier resident populations, or stocking
540  was less intense or ended a longer time ago.

541 Despite the challenges posed by low Fstand evidence of supplemental stocking altering
542  genetic structure in some populations, the SNPs discovered here provide greatly increased

543  resolution for defining reporting units across the Midwestern, USA. Additionally, simulations
544  suggested that a panel of several hundred loci would be highly capable of conducting individual-
545  based GSI for most genetic units in the region. Given the regional complexity, however,

546  improvements to accuracy could be made by further sampling areas that have shown

547  heterogeneous signals of genetic structure (e.g., due to stocking). For example, increased

548  sampling effort directed at the Chippewa and Wisconsin Rivers’ drainage basins could prove
549  especially beneficial as analyzing populations in the lower reaches of each basin may provide a
550  better understanding of signals of historical recolonization, while populations in the upper

551  reaches (e.g., Ceded Territory of Wisconsin) could better define the effects stocking may have
552  had. Additional samples could also serve as a holdout dataset, as suggested by Anderson (2010),
553  to test the assignment accuracy of our panel.

554  Tradeoffs associated with choosing loci based on differentiation versus diversity
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555 We evaluated the tradeoffs associated with selecting SNPs based on differentiation or
556  diversity and found that there was relatively little variation in GSI accuracies across panels.

557  Markers selected based on differentiation have been shown to provide increased resolution for
558  defining reporting groups in systems with low levels of genetic structure (Larson et al., 2014;
559  McKinney et al., 2019). This approach has not, however, been applied to systems where stocking
560 may be a major factor for reduced levels of population structure, such as in upper Midwestern,
561  USA, walleye. Interestingly, we found that assignment accuracies with our smaller panels was
562  relatively similar to accuracies obtained using ~30,000 SNPs discovered with RAD-seq (data not
563  shown). This suggests that assignment accuracy in our system may be limited more by biological
564  realities associated with human-mediated gene flow than by the power of our genetic markers.
565  Further increases in assignment accuracy are therefore likely to be realized through sampling of
566  additional populations and a more refined understanding of population history as opposed to

567  genotyping additional markers.

568 Conversely, we found that FPRs for assigning Kin relationships were highly variable

569  among panels, with the microhaplotype diversity-based panel displaying the lowest FPRs by

570  several orders of magnitude for each kin relationship (Table 3). This contrast in inter-panel

571  variation between GSI and kinship simulations is reflective of the variation in information

572  content of each panel (Fig. S1), and supports previous findings that while microhaplotype

573  information provided added benefit to both applications, the greatest increase in assignment

574  accuracy will likely be for kinship analysis (Baetscher et al., 2018; McKinney, Seeb, et al.,

575  2017). When attempting to target microhaplotype loci via GT-seq, attention should be given to
576  the number of SNPs one aims to genotype within a locus, as attempting to include loci with too

577  many SNPs may result in targeting repetitive regions that fail to amplify properly in a multiplex.
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578  The expected maximum number of alleles per locus and the degree to which loci with large

579  numbers of alleles perturbs primer design will likely vary among taxa. We chose a cutoff of 10
580 alleles per locus as this appeared to be a natural break point in the allele distribution for walleye;
581  we suggest that researchers investigate this in their system and come up with a logical cutoff
582  prior to selecting loci. Finally, while our results suggested this panel could facilitate HS

583 identification in small systems, performing this task in large systems would likely require more
584  loci. Our tests of panel implementation suggest this could be achievable by combining PCR

585  products from several panels within individuals prior to barcoding.

586  Optimizing primer design and removing overamplifying loci

587 The main objective of GT-seq primer development is to produce a single pool of primer
588  pairs that will amplify uniformly, while retaining as many loci as possible. To achieve this, it is
589  important to minimize heterogeneity of primer and product characteristics (e.g., primer size,

590 product size) and to understand that the highly multiplexed PCR required by GT-seq can be

591  complicated by hairpin- and inter-primer hybridization artifacts. To best control PCR artifacts, it
592 is important to avoid developing primers with complimentary regions (e.g., complimentary 3’
593  regions and self-complementarity) and apply conservative thresholds to the upper Tm of primer
594  design parameters (Rychlik, 1993). Incorporating loci with multiple SNPs can lead to further
595 difficulties when the ideal priming region also contains a SNP. We found that, while degenerate
596  primers could be successfully amplified in a multiplex, they were culled during optimization at a
597 higher rate than non-degenerate primers. Further performance benefits could be gained from

598  examining DNA template quality beyond just the availability of priming regions, as shown by
599  Benita et al. (2003) who found regionalized GC content of template DNA to be a predictor of

600 PCR success. This was supported by our data, as loci removed from the panel during
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601  optimization displayed significantly higher GC content in the amplicon and primer. Finally,

602  while GT-seq primers can theoretically be designed for a range of amplicon sizes, we suggest
603  that researchers design panels targeting similarly sized products that can be sequenced using
604  PE150 technology. Panels containing similarly sized and relatively short amplicons should

605  reduce variation in amplification rates (Baetscher et al., 2018) and ensure that genotyping is
606  robust to variation in sample quality. Moreover, PE150 sequencing is common to benchtop and
607  core facility sequencing platforms, such as IHlumina® MiSeq and HiSeq.

608 In exploring the upper limits of how many loci a GT-seq panel can target, we found that
609  the number of amplicons reliably genotyped in a single pool is highly dependent on variable
610 rates of amplification among primer pairs during PCR and, to a lesser extent, the degree of

611  primer specificity. Despite efforts to limit primer inter-hybridization through diligent primer
612  design, the presence of overamplifying loci is likely inevitable during early phases of panel

613  development (see also McKinney et al. 2019). We found it best to focus primarily on the

614  uniformity of amplification within the primer pool in early optimization steps, by removing

615  primer pairs found to overamplify. Although achieving perfect uniformity is challenging,

616  application of strict cutoffs during initial optimization steps likely results in a final panel that is
617 less influenced by overamplification, thereby increasing the upper limit of GT-seq performance.
618  The importance of this was illustrated by prop_reads_T210 reducing from 85.0% of all primer
619  reads to 36.6% after optimization. Likewise, on-target rates were greatly improved by addressing
620  overamplification, as demonstrated by the on-target proportion of reads increasing from 24.9% to
621  91.7% by the third test.

622  Further optimization of the GT-seq protocol
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623 Although there may be an upper as-yet-unidentified limit in the number of primers that
624  can be included in a single primer pool, we found that the total number of loci targeted can be
625 increased by PCR amplifying multiple primer pools separately on a sample and pooling PCR

626  products within individuals prior to barcoding. This approach could be used to genotype multiple
627  complementary or even independent GT-seq panels using the same primer tail systems at a small
628  cost increase compared to genotyping a single panel, as the most expensive steps in the GT-seq
629  protocol (e.g., DNA normalization) are only conducted once (Campbell et al., 2015). Combining
630  multiple panels could facilitate genotyping of > 1,000 loci rather than a few hundred, providing
631  greatly increased power for kinship analysis and GSI (Baetscher et al., 2018; McKinney, Seeb, et
632 al.,, 2017). Additionally, further optimization of individual panels could be conducted by

633  manipulating the initial concentrations of primer pairs based on observed panel performance,

634  reducing the concentration of loci that appear to overamplify. While this process would be

635  cumbersome to perform by hand, a liquid handling robot could enable a researcher to fine-tune
636  the performance of existing and new panels alike, thereby enhancing efficiency.

637 DNA extraction can comprise a large portion of the total cost of genetic analysis,

638  especially for relatively affordable approaches such as GT-seq, in terms of finances and time.
639  Extractions using chelating beads provided a cost-effective alternative to more expensive salting-
640  out approaches, such as Qiagen DNeasy kits. Chelating extractions, however, can also produce
641  lower quality DNA and may include suspended impurities (Singh et al., 2018). Campbell et al.
642  (2015) did show that GT-seq can be conducted using DNA from chelating extractions but did not
643  directly compare results using multiple extraction protocols. Here, we directly showed that cost-
644  effective chelating extractions can produce equally high quality, if not superior, sequence data

645  compared to more expensive methods. Although consideration should be given to the quality of
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646  tissue samples, the chelating approach appears to be a viable approach for reducing per-sample
647  costs with GT-seq. It is important to be aware that proper laboratory technique is essential when
648 using this method, however, as chelating beads will inhibit PCR and greatly reduce library

649  product yields. This may be especially problematic when using a liquid handling robot that is
650 unable to visually detect chelating beads. Therefore, we suggest researchers carefully pipette the
651  DNA-containing supernatant from chelating resin extractions by hand into a secondary container
652  (e.g., 96-well PCR plate) before aliquoting DNA with a robot. Finally, we found that the

653  EX0SAP procedure included in the original GT-seq protocol did not produce higher quality data
654  and was not necessary for our purposes; removing this step from the protocol will further reduce
655  GT-seq costs and time commitment.

656  Suggestions for designing GT-seq studies and conclusions

657 A major consideration when designing a GT-seq panel is deciding how large of an

658  ascertainment dataset is necessary. We constructed a comprehensive ascertainment set with

659  RAD-seq, which was expensive and resource intensive. Despite this, we found that the panel
660  chosen based on diversity produced similar results to the panel chosen based on differentiation.
661  Inour case, we believe that a smaller ascertainment set of ~96 individuals sampled from across
662  the same geographic range may have resulted in a panel of relatively similar quality. Smaller
663  ascertainment datasets are likely sufficient when the main applications of a given GT-seq panel
664  are kinship analysis and GSI of highly diverged populations; however, when designing GT-seq
665  panels to differentiate closely related populations (e.g. Chinook salmon Oncorhynchus

666  tshawytscha in western Alaska), accurate characterization of ascertainment populations is vital

667  (Larson et al., 2014; McKinney et al., 2019).
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668 Another major consideration when conducting GT-seq analysis is deciding how deep to
669  sequence individuals. We found that a read depth of 31x could be expected to produce genotypes
670  that were 99% concordant with those derived from RADseq. Read depths were, however, highly
671  variable across loci; we only retained 303 of the 436 loci in our panel when we genotyped 536
672  individuals at an average depth of 33x. We also found that a large and variable proportion of

673  reads can be discarded prior to genotyping. Therefore, we suggest that researchers target an

674  average depth of at least 100x to ensure that most loci in the panel can be genotyped and that all
675  acquired genotypes are highly reliable. At this level of coverage, researchers could genotype

676  ~500 individuals with a panel of 500 loci on a single MiSeq lane (~25 million reads) and ~8,000
677  individuals on a HiSeq lane (~400 million reads). It is possible this level of coverage is not

678  necessary for some applications, such as GSI, but we strongly suggest obtaining high coverage
679  for more sensitive applications that require high genotyping accuracy, such as kinship analysis.
680 Finally, researchers conducting GT-seq must consider trade-offs associated with different
681  genotyping approaches. The two main approaches we are aware of are: (1) in-silico probe-based
682  methods that use pattern matching to genotype specific alleles (Campbell et al., 2015; McKinney
683  etal., 2019) and (2) alignment-based methods that call all polymorphisms in a given amplicon
684  (Baetscher et al., 2019). A major advantage of probe-based methods is that databases of probes
685  can be shared among laboratories, facilitating standardization. It is difficult, however, to discover
686  new variation with these methods, whereas alignment-based methods discover new variation by
687  default. We suggest a hybrid approach, where researchers periodically use alignment-based

688  approaches to discover new variation and add this variation to a probe database that forms the

689  basis of genotyping and standardizing genotyping among laboratories.
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690 GT-seq is a powerful addition to the molecular ecologist’s toolkit that facilitates rapid,
691  accurate, and cost-effective genetic analysis. Yet, creating a GT-seq panel is non-trivial, and
692  there are many considerations for maximizing the utility of this approach. We found that the
693  greatest challenge when designing our GT-seq panel was locus-specific overamplification, and
694  we suggest that researchers remove these loci liberally. We also found that chelating extractions
695  without an EXoSAP step produce high-quality results, providing a lower-cost alternative to

696  salting-out extractions. Additionally, we showed that combining multiplex PCR products from
697  multiple panels prior to barcoding can ensure additional, potentially important, loci can be

698  genotyped with only a moderate cost increase. Finally, we found that a relatively substantial
699  proportion of sequencing reads are lost before genotyping, and we suggest researchers target
700 higher sequencing coverage (100x) than may apparently be necessary to ensure that GT-seq
701  datasets are robust across loci. The GT-seq approach promises to be a mainstay of population
702  genetics for the foreseeable future, and the guidelines and suggestions outlined here may help
703 increase the effective use of this powerful method.
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883  Tables

884  Table 1. Information on walleye Sander vitreus collections from 23 sites in Wisconsin and

885  Minnesota. Reporting units are aggregations of genetically similar populations grouped for GSI
886  analysis, n past filters is the number of individuals missing genotypes at < 20% of SNPs and
887  retained after quality filtering. Diversity statistics calculated using 20,579 SNPs. The Fst_soo,
888  Composite_soo, and Diversity so0 columns are the percent correct assignment to reporting group
889  for each population with 100% simulations conducted using the corresponding panel.

1 Rock-Fox Delavan Lake 42.58 -88.63 48 48 0.169 0.168 0.008 1.607 1.00 1.00 1.00
2 Wolf River Lake Winnebago 44.36 -88.69 47 41 0.173 0.186 -0.05 1.645 1.00 1.00 1.00
3 Upper Wisconsin Lake Wisconsin 43.38 -89.58 48 45 0.179 0.175 0.017 1.674 1.00 1.00 1.00
Medicine Lake
4 Upper Wisconsin Chain 45.81 -89.13 47 47 0.166 0.166 0.004 1.604 0.96 0.98 0.98
5 Upper Wisconsin Willow Flowage 45.71 -89.87 48 48 0.176 0.174 0.013 1.657 1.00 1.00 0.99
6 Upper Wisconsin Kawaguesaga Lake 45.86 -89.74 48 42 0.17 0.167 0.013 1.638 0.96 0.94 0.94
Big Arbor Vitae
7 Upper Wisconsin Lake 45.93 -89.65 48 44 0.174 0.174 0.005 1.654 0.74 0.96 0.99
8 Upper Chippewa Escanaba Lake 46.06 -89.59 48 44 0.168 0.173 -0.018 1.623 NA NA NA
9 Upper Chippewa Sanford Lake 46.18 -89.69 48 44 0.157 0.164 -0.033 1.528 NA NA NA
10 Upper Chippewa Manitowish Lake 46.11 -89.85 47 35 0.172 0.175 -0.006 1.647 0.58 0.57 0.51
Turtle Flambeau
11 Upper Chippewa Flowage 46.06 -90.13 47 38 0.173 0.172 0.005 1.661 0.63 0.55 0.76
12 Upper Chippewa Chippewa Flowage 45.90 -91.09 47 43 0.173 0.175 -0.006 1.658 0.88 0.89 0.93
13 Upper Chippewa Eau Claire River 44.80 -91.50 47 47 0.161 0.162 -0.001 1.583 0.98 0.98 0.98
14 Upper Chippewa Lake Millicent 46.53 -91.37 48 32 0.167 0.176 -0.034 1.623 NA NA NA
15 Lake Superior St. Louis River 46.65 -92.21 32 30 0.17 0.168 0.006 1.621 0.77 0.77 0.77
16 Vermilion River Pike River 47.59 -92.39 32 28 0.144 0.142 0.005 1.498 1.00 1.00 1.00
17 Des Moines River Lake Sarah 44.15 -95.77 32 30 0.164 0.166 -0.006 1.597 1.00 1.00 1.00
18 North Fork Crow River Lake Koronis 45.33 -94.70 32 17 0.155 0.155 -0.011 1579 0.82 0.82 0.75
19 Rum River Mille Lacs Lake 46.25 -93.67 32 29 0.148 0.151 -0.018 1511 1.00 1.00 1.00
20 Pine River Pine River 46.70 -94.39 32 30 0.156 0.162 -0.028 1.547 0.97 0.97 0.97
Mississippi  River
21 Headwaters Cutfoot Sioux Lake 47.50 -94.09 32 25 0.147 0.148 -0.011 1517 1.00 1.00 1.00
22 Otter Tail River Ottertail Lake 46.41 -95.66 32 23 0.158 0.16 -0.016 1.568 1.00 1.00 0.97
23 Red Lake Red Lake 47.91 -95.04 32 29 0.149 0.153 -0.025 1514 0.90 0.86 0.83
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893

894  Table 2. Summary of pairwise Fst comparisons between walleye Sander vitreus populations
895  grouped by state of origin. Abbreviations are Wisconsin (WI) and Minnesota (MN).

Max 0.106  0.142 0.142
Mean  0.032 0.068  0.072
Min 0.001 0.019 0.026

896

897
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898  Table 3. Summary statistics by SNP panel tested for walleye Sander vitreus in Wisconsin and
899  Minnesota, USA, including: average Fsr, heterozygosity (He_mnap), assignment accuracy to
900 population and reporting unit of origin in 100% simulations, and estimated false-positive rates
901 (FPR) for a given kin relationship at a false-negative rate (FNR) of 0.01.

902
Fst 600 Composite g0  Diversity eoo

Average Fst 0.117 0.076 0.047
Average He_mhap 0.389 0.569 0.633
Average accuracy by reporting unit 0.937 0.937 0.929
Average accuracy by population 0.864 0.861 0.862
Parent-offspring FPR (FNR =0.01)  4.68x10%  7.92x10°% 2.74x10°%
Full-sibling FPR (FNR = 0.01) 3.42x102%°  5.34x10™ 1.16x10°%
Half-sibling FPR (FNR = 0.01) 6.44x10°%  2.56x100 2.06x1012

903

904
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905 Table 4. Summary of GT-seq optimization runs for walleye Sander vitreus in Wisconsin and
906  Minnesota, USA. Rows report number of primer pairs targeted, number of reads with intact i-7
907 barcodes (retained reads), number of retained reads with in-silico primer sequences (total reads),
908  number of total reads with in-silico probe sequences (on-target reads), percent of total reads on-
909 target, percent of total reads allocated to the 10% of loci tested with highest rank total read
910  counts, average number of SNPs per locus, and average GC content in the forward and reverse
911  primers.
Test 1 Test 2 Test 3

Total primer pairs 600 477 436

i7 reads 4,655,071 12,653,262 7,282,101

I7 reads w/ primers (total reads) 4,150,910 9,347,591 6,827,424

i7 reads w/ primers & probes (on- target) 1,031,707 3,268,293 6,262,523

On-target percent of total reads 24.9% 35.0% 91.7%

Percent reads in top 10% of loci 85.0% 72.5% 36.6%

mean SNPs per locus 2.06 2.00 1.97

mean GC percent forward primer 51.0% 50.4% 50.3%

mean GC percent reverse primer 49.0% 48.3% 48.2%

mean Fst 0.133 0.133 0.133

mean He_mhap 0.425 0.415 0.416
912
913
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914  Figures

SNP quality control + population genetics
(~20,000 SNPs)

Iterative panel optimization
Eliminate overamplification

915

916  Figure 1. Generalized workflow describing major steps inherent to de novo construction of a
917  high-density SNP panel for walleye Sander vitreus in Wisconsin and Minnesota, USA. Numbers
918  of SNPs or loci present in each phase for this panel shown in parentheses.
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920 Figure 2. (a) Map of walleye Sander vitreus in Wisconsin (populations 1-14), the St. Louis River
921  (population 15), and Minnesota (populations 16-23), USA, collection locations and (b)

922  dendrogram of sampled populations with bootstrap support (n = 1000) estimates above nodes.
923  Branch lengths correspond to genetic distances estimated using Nei’s Da. Figures color coded
924  according to major drainage of origin (Hudson Bay: yellow, Mississippi: green, Great Lakes:

925  blue) and numbered with respect to order in Table 1.
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927  Figure 3. (a) Violin plots showing densitity distributions of accuracy estimates from 100%
928  simulations of 23 populations of walleye Sander vitreus in Wisconsin and Minnesota, USA,
929  performed using 1,000 iterations for each test panel by reporting unit and (b) simulated false-
930 positive rate (FPR) estimates across a range of false-negative rates (FNR). Figures color coded
931  according to SNP panel tested: Fst 600 (red, 600 rank Fstloci), Composite soo (black, 300 rank
932  Fsrtand 300 rank He mnap loci), and Diversity soo (purple, 600 rank He_ mnap loCi).
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934  Figure 4. Relative logio total read counts per locus (black) and relative logio on-target read
935  counts per locus (green) of the GT-seq panel for walleye Sander vitreus in Wisconsin and
936  Minnesota, USA, prior to optimization (a, 600 loci), after first optimization (b, 477 loci), and
937  after second optimization (c, 436 loci). Loci identified for culling during optimization steps
938  shown in orange. Raw read counts annotated in boxes.

939
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942  Figure 5. Number of on-target reads (green) and proportion of total reads on-target obtained
943  from GT-seq libraries produced using DNAs extracted via Chelex, Chelex with Exo-SAP, and
944  Qiagen with Exo-SAP. Significantly different groups denoted by letters on box.
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945 GT-seq read depth

946  Figure 6. Modeled relationship between GT-seq read depth and genotype concordance between
947  GT-seq and RADseq shown in gray (1.00-0.34/GT-seq read depth, rss = 0.02) with 95%

948  confidence intervals in red. GT-seq read depth at which estimated genotype concordance equals
949  99% (96.2%-100%) represented by blue line. Black points display proportion of genotypes found
950 identical between GT-seq and RADseq for GT-seq read depth bins with > 30 genotypes.
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Figure 7. Variation in read depth among individuals at loci successfully genotyped after quality
filtering (303 loci with < 30% missing data). Average read depth at each locus shown with black
points, while gray points denote first and third quartile for each locus. Dotted blue line denotes
target read depth of 30x. Data from 551 walleye sequenced using fully optimized panel. Average
read depth among all loci is 33x.
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957
958  Supplementary materials

959  Table S1. Pairwise Fst estimates for all sampled walleye Sander vitreus populations (sites
960 numbered according to Table 1 and Fig. 1 A). Estimates produced in arlequin v3.5.2.

961  Table S2. Summary statistics for 20,597 SNPs retained through initial filtering based on

962  maximum missingness rates of < 20% and HDplot cutoffs of H > 0.5 and -7 < D < 7. Columns
963 include a locus tag (CHROM), position of SNP within locus (Reid et al.), a unique SNP value
964 (ID), reference (REF) and alternate (Keenan et al.) SNP alleles, global Fis (Willi et al.), single
965  SNP Fst (Smith et al.), expected microhaplotype heterozygosity (mhap_He), and number of

966 alleles per locus tag (n_alleles). Diversity statistics estimated in diveRsity v1.9.90 (global Fis and
967  single SNP Fsr) and adegenet v2.1.1 (single locus He, number of alleles).

968  Table S3. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled
969  population retained through filtering, performed using the Fst s00 panel. Each row represents a
970  simulation for the listed population name. Each column within a row represents the proportion of
971 individuals assigned to the population denoted at the top of the column. Unassigned individuals
972 (< 70% probability of origin from a given population) accounted for in last column.

973  Table S4. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled
974  population retained through filtering steps, performed using the Composite s00 panel. Each row
975  represents a simulation for the listed population name. Each column within a row represents the
976  proportion of individuals assigned to the population denoted at the top of the column.

977  Unassigned individuals (< 70% probability of origin from a given population) are accounted for
978 in the last column.

979  Table S5. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled
980  population retained through filtering steps, performed using the Diversity so0 panel. Each row
981  represents a simulation for the listed population name. Each column within a row represents the
982  proportion of individuals assigned to the population denoted at the top of the column.

983  Unassigned individuals (< 70% probability of origin from a given population) are accounted for
984 in the last column.
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986  Figure S1. Frequency distribution of number of alleles among 600 loci tested in each panel.
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