
Title: A GT-seq panel for walleye (Sander vitreus) provides a generalized workflow for efficient 1 

development and implementation of amplicon panels in non-model organisms. 2 

 3 

Running head: Guide to develop and implement GT-seq panels 4 

 5 

Authors: Matthew L. Bootsma1*, Kristen M. Gruenthal2
,
 Garrett J. McKinney3, Levi Simmons1, 6 

Loren Miller4, Greg G. Sass5, Wesley A. Larson6 7 

 8 

Affiliations 9 

1 Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of 10 

Wisconsin-Stevens Point, 800 Reserve St., Stevens Point, WI 54481, USA, 11 

mbootsma@uwsp.edu, lsimm290@uwsp.edu 12 

2 Office of Applied Science, Wisconsin Department of Natural Resources, Wisconsin 13 

Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-14 

Stevens Point, 800 Reserve St., Stevens Point, WI 54481, USA, 15 

kristen.gruenthal@wisconsin.gov 16 

3 NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine 17 

Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, 18 

Seattle, WA 98112, USA, garrett.mckinney@noaa.gov 19 

4 Minnesota Department of Natural Resources, University of Minnesota, 135 Skok Hall, 2003 20 

Upper Buford Circle, St. Paul, MN 55108, USA, loren.miller@state.mn.us 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.13.948331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948331
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

5 Escanaba Lake Research Station, Office of Applied Science, Wisconsin Department of Natural 22 

Resources, 3110 Trout Lake Station Drive, Boulder Junction, WI 54512, USA, 23 

gregory.sass@wisconsin.gov 24 

6 U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural 25 

Resources, University of Wisconsin-Stevens Point, 800 Reserve St., Stevens Point, WI 54481, 26 

USA, wes.larson@uwsp.edu 27 

*Corresponding author 28 

 29 

Keywords: Amplicon sequencing, GT-seq, microhaplotype, parentage analysis, genetic stock 30 

identification, walleye 31 

  32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.13.948331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948331
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Abstract (250 words or less) 33 

Targeted amplicon sequencing methods, such as genotyping-in-thousands by sequencing 34 

(GT-seq), facilitate rapid, accurate, and cost-effective analysis of hundreds of genetic loci in 35 

thousands of individuals, but studies describing detailed workflows of GTseq panel development 36 

are rare. Here, we develop a dual-purpose GT-seq panel for walleye (Sander vitreus) and discuss 37 

trade-offs associated with different development and genotyping approaches. Our GT-seq panel 38 

was developed using restriction site-associated DNA data from 954 individuals sampled from 23 39 

populations in Minnesota and Wisconsin, USA. We then conducted simulations to test the utility 40 

of loci for parentage analysis and genetic stock identification and designed 600 primer pairs to 41 

maximize joint accuracy for these analyses. We conducted three rounds of primer optimization to 42 

remove loci that overamplified and our final panel consisted of 436 loci.  Optimization focused 43 

on reducing variation in amplification rate among loci and minimizing the proportion of off-44 

target sequence, both of which are important considerations for developing large GT-seq panels.  45 

We also explored different approaches for DNA extraction, multiplexed polymerase chain 46 

reaction (PCR) amplification, and cleanup steps during the GT-seq process and discovered the 47 

following: (1) inexpensive Chelex extractions performed well for genotyping, (2) the 48 

exonuclease I and shrimp alkaline phosphatase (ExoSAP) procedure included in some current 49 

protocols did not improve results substantially and was likely unnecessary, and (3) it was 50 

possible to PCR amplify panels separately and combine them prior to adapter ligation. Well-51 

optimized GT-seq panels are valuable resources for conservation genetics and our findings 52 

should aid in their construction in myriad taxa.     53 

 54 

 55 
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 56 

Introduction 57 

  The development of genotyping-by-sequencing (GBS) methods has allowed collection of 58 

data from thousands of markers across a genome, enabling research that was not possible using 59 

traditional genetic approaches (Davey et al., 2011; Narum et al., 2013). For example, studies 60 

using thousands of markers genotyped with restriction site-associated DNA (RAD) sequencing 61 

have shown improved sensitivity for detecting inbreeding depression (Hoffman et al., 2014), 62 

increased resolution for determining complex phylogenies (Wagner et al., 2013), and allowed 63 

researchers to observe selection on introduced alleles (Bay et al., 2019). Many genetic analyses, 64 

however, can be conducted efficiently with genotypes from tens to hundreds of single nucleotide 65 

polymorphisms (SNPs) (Anderson & Garza, 2006), making more expensive approaches such as 66 

RAD-seq unnecessary (Meek & Larson, 2019). Two such analyses that have been widely used in 67 

conservation genetics and molecular ecology for decades, are parentage analysis and genetic 68 

stock identification (GSI). 69 

  Parentage analysis involves assigning offspring to putative parents by comparing 70 

genotypes at multiple loci, while GSI infers the natal origins of individuals by leveraging 71 

baseline allele frequency estimates from populations or reporting groups. These techniques were 72 

first conducted using allozyme markers genotyped with protein electrophoresis. Although these 73 

analyses were groundbreaking, they often lacked statistical power except in cases of highly 74 

diverged stocks or simple pedigrees. The adoption of highly variable microsatellite markers in 75 

the 1990s greatly increased statistical power, allowing these two techniques to become widely 76 

adopted (Luikart & England, 1999). Despite the advances made possible by microsatellites, 77 

problems associated with homoplasy (Garza & Freimer, 1996), locus discovery (Navajas et al., 78 
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1998), and reproducibility among laboratories led researchers to explore the potential of biallelic 79 

SNPs for GSI and parentage analysis (Seeb et al., 2011). 80 

  Although SNPs are less powerful than microsatellites on a per marker basis, SNPs are 81 

more abundant in the genome, generally have low genotyping error rates, and can be genotyped 82 

using SNP panels capable of efficiently screening a large number of samples (Brumfield et al., 83 

2003; Morin et al., 2004).  Early SNP panels were constrained, however, in the availability of 84 

molecular markers suitable for genotyping and genotyping costs associated with 5’ exonuclease 85 

chemistry (Seeb et al., 2011). These constraints were significantly lessened with the proliferation 86 

of next-generation sequencing (NGS) technology. For example, methods such as RADseq 87 

facilitate quick and affordable discovery of thousands of candidate loci, which can then be 88 

selected among for specific purposes.  89 

 As SNP discovery has become less prohibitive, methods of selecting the most 90 

informative SNPs for a given study have advanced (Storer et al., 2012). Previous research has 91 

shown that information content will vary among SNPs depending on the context within which 92 

they are applied and location within the genome (i.e. coding or non-coding regions). For 93 

example, Ackerman et al. (2011) found that SNPs under diversifying selection provide increased 94 

accuracy and precision in GSI of sockeye salmon (Oncorhynchus nerka) from the Copper River, 95 

Alaska. In general, previous studies have shown that GSI accuracy is generally positively 96 

correlated with differentiation (e.g., FST) and, to a lesser extent, diversity (e.g., heterozygosity) 97 

(Ackerman et al., 2011; Bradbury et al., 2011; Storer et al., 2012). Studies of SNP selection 98 

methods for parentage analysis, however, have found that high diversity is the most important 99 

attribute to consider when creating a panel (Baetscher et al., 2018). More recently, analytical 100 

techniques have shifted towards consideration of closely linked SNPs (i.e. microhaplotypes), 101 
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which effectively increases the diversity at a locus and has proven useful for parentage and GSI 102 

tests (Baetscher et al., 2018; McKinney, Seeb, et al., 2017; Reid et al., 2019). While obtaining 103 

microhaplotypes using previous 5’ exonuclease methods would require independent assays for 104 

each SNP at a locus and statistical phasing, NGS technology has enabled the joint genotyping of 105 

multiple SNPs within single reads, making microhaplotype data easily obtainable through a 106 

simple modification in analytical approach. 107 

  One recently developed GBS method that improves upon previous high-throughput 108 

genotyping technologies, such as 5′ exonuclease chemistry, is Genotyping-in-Thousands by 109 

sequencing (GT-seq). This method enables genotyping hundreds of SNPs in thousands of 110 

individuals on a single NGS lane through the use of highly-multiplexed polymerase chain 111 

reaction (PCR) (Campbell et al., 2015). GT-seq does not require an allele-specific probe, can 112 

genotype multiple SNPs within an amplicon using a single primer pair, and is substantially less 113 

expensive than 5′ exonuclease chemistry, especially in the context of genotyping thousands of 114 

individuals.  115 

  Despite its benefits, GT-seq is not yet widely used outside of salmonids. Early 116 

applications to non-model organisms, however, have shown great promise for this method’s 117 

versatility, including the ability to reveal dispersal and mating patterns in a complex environment 118 

(Baetscher et al., 2019), provide insight to the ecological and evolutionary dynamics of 119 

secondary contact (Reid et al., 2019), and understand population diversity in systems that are 120 

heavily influenced by climate change (Pavinato et al., 2019). Pedigree analysis in wild 121 

populations is highly dependent upon the ability to genotype large sample sizes to increase the 122 

likelihood of detecting kin relationships, toward which GT-seq is ideally suited. Moreover, GT-123 

seq has proven capable of generating high-quality genotypes from low-quality DNA samples 124 
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(Natesh et al., 2019; Schmidt et al., 2019), making it a viable approach for monitoring 125 

endangered or elusive species.  126 

  While GT-seq panels have been developed to maximize accuracy for GSI (McKinney et 127 

al., 2019) or parentage (Baetscher et al., 2018) analyses, the potential for developing dual-128 

purpose panels is largely unexplored. Moreover, developing GT-seq panels is a relatively 129 

involved task and, to this point, there are limited resources providing standardized workflows 130 

and guidelines for efficient panel construction (but see Campbell et al., 2015; McKinney et al., 131 

2019).  At a basic level, panel construction involves SNP discovery, SNPs selection, primer 132 

design, and panel optimization (see Baetscher et al., 2018; McKinney et al., 2019; Schmidt et al., 133 

2019); however, within this general framework there are many decision points in panel 134 

development related to primer selection, multiplexing approaches, laboratory protocols, and 135 

analysis parameters that have yet to be addressed. We used walleye (Sander vitreus) from 136 

Minnesota and Wisconsin, USA, as a test case to investigate various tradeoffs associated with 137 

GT-seq panel development and optimization and leveraged our collective experience to provide 138 

guidelines for researchers developing GT-seq panels.  139 

  Walleye are an apex predator and one of the most prized sportfish throughout their native 140 

and introduced range. Recently, many walleye populations have declined across the Midwestern 141 

United States (Embke et al., 2019; Hansen et al., 2015; Rypel et al., 2018), prompting increases 142 

in stocking efforts relative to already large and long-term regional stocking programs that have 143 

existed for decades. Genetic studies have been used to guide these efforts by informing 144 

broodstock selection and general stocking practices. Genetic variation in walleye from this 145 

region was first characterized by Fields et al. (1997), who found geographic-based patterns of 146 

genetic structure, but limitations related to sample size and molecular marker choice resulted in 147 
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the use of contemporary watershed boundaries as genetic management units. This research was 148 

later expanded upon by Hammen and Sloss (2019), who attempted to further define genetic 149 

structure in the Ceded Territory of Wisconsin, approximately the northern third of the state, and 150 

test whether significant genetic structure existed between distinct hydrological basins within this 151 

region. Once again, constraints associated with available molecular markers used in a system 152 

with not only low differentiation, but also extensive stocking precluded definition of fine-scale 153 

structure. This system provides an excellent model for applying genomic techniques to 154 

discriminate populations and evaluate hatchery programs using parentage analysis.  155 

  Like many intricacies of genomics research, GT-seq panel development is a process that 156 

is at once broadly generalizable to non-model organisms and highly specific to the taxa it is 157 

applied to. While the overarching steps (Fig. 1) will remain constant, there are many decision 158 

points within that will require informed thought and decision. Using walleye, a species with few 159 

well-established genomic resources, as a model, we examined the methods inherent to GT-seq 160 

panel development in a manner that identifies critical decision points in the process and 161 

illuminates the nuances associated with them. Our overarching goal was to design a dual-purpose 162 

GT-seq panel optimized for parentage analysis and GSI in walleye. The creation of this panel 163 

allowed us to address the following specific objectives: (1) investigate the tradeoffs between 164 

choosing markers for parentage analysis versus GSI, (2) explore the most efficient way to design 165 

an optimized panel, and (3) evaluate various laboratory approaches to maximizing the efficiency 166 

of GT-seq genotyping. We provide an in-depth discussion of our experiences designing the panel 167 

and outline important topics that should aid researchers in designing future GT-seq panels.  168 

Materials and Methods 169 

Sample collection 170 
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  Tissue samples were collected from adult walleye from 23 inland lakes across Wisconsin, 171 

Minnesota, and the St. Louis River (border water) (Fig. 2a, Table 1) and stored in 95% ethanol 172 

until DNA extraction. We obtained samples from as many major drainages as possible across the 173 

two states, with an emphasis on the Wisconsin and Chippewa River drainages in Wisconsin, 174 

which were difficult to differentiate using microsatellites (Hammen & Sloss, 2019); in 175 

Minnesota, sampling focused primarily on major sources of wild broodstock for stocking 176 

programs. Samples were collected by the Wisconsin and Minnesota Departments of Natural 177 

Resources using fyke nets or electrofishing. Sampling took place during the spring spawning 178 

runs of April 2015 and 2017 and fall surveys in August and September of 2015 and 2017. 179 

Stocked individuals may be tagged, or fin clipped; we inspected all sampled individuals for tags 180 

or fin clips to avoid as many individuals as possible that were of stocked origin as possible.  181 

Preparation of RAD sequencing libraries 182 

  Genomic DNA was extracted in a 96-well format with Qiagen DNeasy Blood and Tissue 183 

Kits. Extracted DNA was quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, 184 

Waltham, MA) and normalized to 20ng/µl. DNA was then prepared for RADseq library 185 

preparation following the BestRAD protocol (Ali et al., 2016). Briefly, DNA was digested in a 2 186 

µl reaction with the restriction enzyme SbfI, and biotinylated barcode adaptors were ligated to 187 

the 5’ cut ends. DNA shearing was conducted using a 12.5 µl fragmentase reaction. Library 188 

preparation was conducted using an NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, 189 

Ipswich, MA), with a 12-cycle PCR enrichment. RAD library quality was inspected on a 2% 190 

agarose gel before undergoing a final AMPure XP (Beckman Coulter, Indianapolis, IN) 191 

purification and quantification on a Qubit 2.0 Fluorometer (ThermoFisher Scientific, Waltham, 192 

MA). Libraries were sequenced using paired-end (PE) 150 technology on a HiSeq 4000 193 
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(Illumina, San Diego, CA) at the Michigan State University Genomics Core Facility or 194 

Novogene Corporation, Inc. (Davis, CA). Sequencing was conducted to achieve a target of over 195 

one million retained reads per individual. 196 

Analysis of RAD data to discover SNPs 197 

  Loci were identified and genotyped in STACKS v.2.2 (Rochette et al., 2019) without 198 

using gapped alignments. Raw reads were demultiplexed and barcodes were trimmed in 199 

process_radtags (parameter flags: -e SbfI, -c, -q, -filter_illumina, -r, --bestrad). RAD-tags were 200 

assembled into putative RAD loci with ustacks using the bounded model (bound_high =  0.05, --201 

disable-gapped) and allowing for a maximum of three nucleotide mismatches (-M = 3) and four 202 

stacks per locus (-max_locus_stacks = 4), as well as a minimum depth of three (-m = 3). The 203 

calling of haplotypes from secondary reads was disabled (-H). A catalog of consensus loci was 204 

assembled in cstacks using the two individuals with the highest number of retained reads from 205 

each population, allowing a maximum of three mismatches between sample loci (n = 3, --206 

disable-gapped). After matching all samples against the catalog in sstacks (--disable-gapped), 207 

data were oriented by locus with tsv2bam, and individual genotypes were called in gstacks, with 208 

paired-end reads incorporated. Genotypes were exported in variant call format (vcf) using 209 

populations, with loose filtering parameters (SNPs present at > 5% of individuals, minimum 210 

minor allele frequency of > 0.005).  211 

  Comprehensive filtering of individuals and genotypes was conducted in vcftools v0.1.15 212 

(Danecek et al., 2011) by: 1) removing individuals missing > 20% of SNP calls, 2) removing 213 

SNPs that were missing in > 20% of individuals, and 3) removing SNPs that were not in the first 214 

140 base pairs of the RAD-tag, effectively reducing the dataset to include SNPs detectable using 215 

single-read (SR) 150 sequencing to simplify downstream amplicon design; to control for 216 
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genotyping error, SNPs with a minor allele count ≤ 3 were also removed. Putative duplicated loci 217 

were identified in HDplot (McKinney, Waples, et al., 2017) (H > 0.5, -7 < D < 7) and removed 218 

with vcftools. Retained individuals and SNPs were used to form whitelists for input into 219 

populations that output a filtered vcf of multi-SNP haplotypes, which was then filtered to remove 220 

loci with more than 10 alleles and used in simulations for locus selection. We also estimated 221 

single-SNP FIS across all populations using diveRsity v1.9.90 (Keenan et al., 2013) and excluded 222 

any SNPs with FIS values > 0.2 or < -0.2 from locus selection. Additionally, loci with a SNP in 223 

the first 10 base pairs of the RAD-tag were excluded to allow room for forward primer design. 224 

Analysis of population structure, locus selection, and panel assessment 225 

  To understand population structure in our system and ensure that selected loci could 226 

facilitate accurate parentage assignment and GSI, we evaluated patterns of genetic divergence 227 

using pairwise FST (Table S1) estimated in Arlequin v3.5.2 (Excoffier & Lischer, 2010) and 228 

constructed a dendrogram (Fig. 2b) using Nei’s distance in poppr v2.8.2 (Kamvar, Tabim, & 229 

Grünwald, 2014). These analyses facilitated identification of population pairs that would be 230 

challenging to discriminate and supported historical data suggesting several populations were 231 

founded from hatchery sources located outside of their drainage basin (Escanaba Lake, Sanford 232 

Lake, and Lake Millicent in Wisconsin); these populations were removed from simulations of 233 

panel accuracy to ensure that selected loci would best represent the natural genetic patterns of the 234 

region.  235 

  After initial population genetic analyses, loci were selected for primer development by 236 

constructing several test panels from the RAD data and simulating assignment accuracy for 237 

parentage and GSI. Previous research suggested that choosing loci with greater genetic 238 

differentiation (e.g., FST) should maximize accuracy for GSI (Ackerman et al., 2011; Storer et 239 
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al., 2012), while choosing loci with higher diversity (e.g., heterozygosity and number of alleles) 240 

maximizes accuracy for parentage (Baetscher et al., 2018). We therefore constructed the test 241 

panels using single-SNP FST estimated in diveRsity v1.9.90 (Keenan et al., 2013) as well as 242 

expected heterozygosity at a multi-SNP haplotype (HE_mhap ) and the number of alleles at a locus 243 

estimated in adegenet v2.1.1 (Jombart & Ahmed, 2011). All simulations were conducted with 244 

genotypes coded as multi-SNP haplotypes. 245 

  GSI accuracy for each panel was assessed via 100% simulations implemented in rubias 246 

(Moran & Anderson, 2018) using the assess_reference_loo function (mixsize = 200, reps = 247 

1000). Populations were aggregated into reporting units based on hydrological basins (Table 1). 248 

Collections within a simulation were drawn from a Dirichlet distribution with all parameters 249 

equal to 10 (i.e., each simulation’s prior contained approximately equal proportions of each 250 

population for the given reporting unit). Individuals were assigned to reporting groups if they 251 

had a cumulative probability of > 70%. Unfortunately, limited sample sizes in some reporting 252 

units prevented creation of separate training and holdout datasets as suggested by Anderson 253 

(2010), thus assignment accuracies presented here may be upwardly biased and would need to be 254 

reassessed more thoroughly for populations involved in an applied study.  255 

  Parentage simulations were run in CKMRsim (Anderson, 256 

https://zenodo.org/record/820162), which employs a variant of the importance-sampling 257 

algorithm of Anderson and Garza (2006) that allows for more accurate estimates of very small 258 

false-positive rate (FPR: per-pair rate of truly unrelated individuals being inferred as related) 259 

relative to those obtained using standard Monte Carlo methods (Baetscher et al., 2018). 260 

Parentage analyses were conducted following the methods of Baetscher et al. (2018), whereby 261 

log-likelihood ratios between a tested relationship and the hypothesis of no relationship are 262 
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computed from the calculated probabilities of genotype pairs for related individuals simulated 263 

from allele frequency estimates. Distributions of simulated log-likelihood ratios are then used to 264 

compute FPRs. Using this approach, we estimated FPRs for parent-offspring (PO), full-sibling 265 

(FS), and half-sibling (HS) relationships at false-negative rates (FNR: per-pair rate of truly 266 

related individuals being inferred as unrelated) ranging from 0.01 to 0.1. 267 

  Panels of 600 unique loci were iteratively selected, choosing loci based first on rank 268 

FST then rank HE_mhap, and their utility was tested by conducting GSI tests and parentage 269 

simulations. We ultimately defined three panels of 600 loci that best described the tradeoffs 270 

between markers selected based on FST and heterozygosity. Loci in these panels were chosen by 271 

selecting 1) the top 600 loci based on FST, 2) the top 300 loci based on FST and 300 based on 272 

HE_mhap, and 3) the top 600 loci based on HE_mhap. These panels are hereafter referred to as 273 

FST_600, Composite_600, and Diversity_600, respectively. Through further testing, we determined 274 

that a variation of the Composite_600 panel, with 250 loci based on HE_mhap and 350 loci based on 275 

FST, delivered optimal performance for GSI and parentage analyses and proceeded to design 276 

primers for the selected loci. 277 

Primer Design   278 

  To design PCR primers for the selected loci, their consensus sequences were subset 279 

from the STACKS catalog into a FASTA file for import into Geneious Prime® 2019.1.1 280 

(https://www.geneious.com). The vcf file produced in the vcftools step containing all SNPs and 281 

alleles within a consensus sequence was included to ensure primers were properly designed (i.e., 282 

should a SNP fall within a primer binding region, a degenerate nucleotide could be inserted or 283 

the primer re-designed). Primer pairs were iteratively designed, with optimal target parameters 284 

defined as a primer length of 20 bp, product size of 140 bp to facilitate genotyping with SR 285 
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chemistry, Tm of 60° C, GC content of 50%, and no more than four of the same base repeated 286 

consecutively (i.e., poly-X repeats). Primers identified as matching one or more off-target sites, 287 

which could lead to amplification of multiple products, were redesigned. Given that not all 600 288 

candidate loci initially identified were suitable candidates for primer development, we continued 289 

to iteratively select loci and design associated primers until we reached our target of 600 loci. 290 

Unfortunately, the loci selected for primer design were based on data containing a subset of 291 

individuals with discordant encoded and true identities as a result of transposition of barcodes 292 

during demultiplexing. Despite these discrepancies, the effect was likely minor as only 8% of 293 

individuals were incorrectly assigned to reporting units prior to simulation. Simulation results 294 

shown here were conducted using corrected data. 295 

GT-seq optimization  296 

  GT-seq was conducted following the methods of Campbell et al. (2015), with 297 

modification to the multiplex thermal cycling conditions (95 °C hold for 15 min; five cycles of 298 

95 °C for 30 s, 5% ramp to 57 °C for 2 min, 72 °C 30 s; and 10 cycles of 95 °C for 30 s, 65 °C 299 

for 30 s, and 72 °C 30 s) and post-normalization dual-sided SPRI size-selection and purification 300 

(0.6X plus 0.4X) to further restrict the product size range (e.g., primarily  toward removal of 301 

primer inter-hybridization). Final library quality control consisted of confirmation of 302 

amplification and barcoding by SYBR Green-based RT-qPCR (Stratagene Mx3005P QPCR 303 

System, Agilent, Santa Clara, CA), visualization on a 2% agarose E-Gel (Invitrogen, Carlsbad, 304 

CA), and quantification using picogreen. Libraries were then sequenced at the University of 305 

Wisconsin-Madison Biotechnology Center (UWBC) DNA Sequencing Facility on a MiSeq 306 

(Illumina) using 2 × 150 bp flowcells.  307 
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  Demultiplexed amplicon sequencing data were processed using GTscore v1.3 308 

(McKinney et al., 2019). GTscore generates in-silico primer-probe sequences from a catalog of 309 

loci generated in STACKS, that are then matched to amplicon sequences and call genotypes for 310 

individual SNPs as well as multi-SNP haplotypes. GTscore also enables separation of on-target 311 

sequence reads (i.e., reads containing both an in-silico primer and associated probe) from reads 312 

produced as a result of primer cross-hybridization. Primer-probe file development was 313 

accomplished with sumstatsIUBconvert.pl by obtaining the IUB code information for each SNP 314 

from the sumstats.tsv file produced in the STACKS pipeline, converting catalog sequences 315 

produced in the STACKS pipeline to FASTA sequences using catalog2fasta.pl, and merging 316 

IUB code information with the catalog.fasta using fasta2IUB.pl. This primer-probe file was then 317 

input for AmpliconReadCounter.pl, along with an individual’s fastq file, to produce read count 318 

summaries of primers and probes. 319 

  Overall, we conducted three rounds of panel optimization to identify and remove loci 320 

that had disproportionately high amplification rates (i.e., “overamplifiers”) and ensure that our 321 

panel was capable of delivering a high proportion of on-target reads for each locus as well as 322 

homogeneous amplification rates among loci. The first round of optimization used DNA from a 323 

single walleye from Sanford Lake, WI, while the second and third rounds were conducted on 324 

subsets of 24 individuals from each of four populations (96 individuals total) originally included 325 

in the RADseq study: Delavan Lake, Medicine Lake, and the Wolf River in Wisconsin and the 326 

Pine River in Minnesota. Upon completing the final optimization, the characteristics of retained 327 

loci were compared to those of loci culled from the panel. This was done by performing a 328 

Welch’s two sample t-test (α = 0.05) between the GC:AC ratio of primers that were retained and 329 
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those culled and between the GC:AC ratio of DNA templates retained and culled, based on the 330 

first 140 bp of the template as this was the region in which SNPs were targeted. 331 

 GT-seq libraries from each round were collectively analyzed for PCR accuracy 332 

and uniformity. Accuracy was measured by calculating the proportion of reads containing in-333 

silico primer sequences (total reads) relative to those that also contained in-silico probes. 334 

Uniformity of amplification among loci was determined by calculating the proportion of total 335 

reads that were allocated to the top 10% of loci, based on locus read counts (prop_reads_T10); if 336 

amplification was perfectly uniform across loci, we would expect prop_reads_T10 to account for 337 

exactly 10% of total reads. Given that amplification rates vary substantially within a panel, we 338 

compared among locus performance by plotting the relative log10 abundance of total and on-339 

target reads at each locus in descending order, which facilitated visual identification of 340 

overamplifiers. As among-locus amplification rates evened out after the first optimization, the 341 

on-target proportion of reads at each locus became a factor in retaining or excluding loci during 342 

the second optimization.  343 

Testing methodological modifications and performance analysis   344 

  During panel optimization, we compared the quality of GT-seq libraries prepared 345 

from DNA extracted with Qiagen DNeasy and a more cost-effective chelating resin-based 346 

procedure. Performance of libraries was compared using Bonferroni corrected (α = 0.016) 347 

Tukey’s HSD for the number of on-target reads and the proportion of total reads that were on-348 

target, after determining whether significant differences existed among libraries via a one-way 349 

ANOVA (α = 0.05). DNA was extracted from the 96 test individuals twice, first using Qiagen 350 

DNeasy and again with a 10% Chelex 100 (200-400 mesh; Bio-Rad, Hercules, CA) solution 351 

containing 1% each of Nonidet P-40 and Tween 20 (Millipore Sigma, St. Louis, MO). 352 
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Additionally, we aimed to further reduce the cost per sample by evaluating the need for certain 353 

library preparation steps. Specifically, we compared results with and without the exonuclease I 354 

and shrimp alkaline phosphatase (ExoSAP) procedure included in Campbell et al. (2015) to 355 

remove PCR inhibitors and free nucleotides. GT-seq was therefore conducted on all individuals 356 

in triplicate: 1) Qiagen with ExoSAP, 2) Chelex with ExoSAP, and 3) Chelex without ExoSAP, 357 

and all tests were sequenced on the same MiSeq lane. Finally, we tested whether the number of 358 

loci that could be genotyped simultaneously could be increased by conducting multiple PCRs. 359 

We accomplished this by dividing our optimized primer panel into two non-overlapping primer 360 

pools before multiplex PCR amplification. We then merged PCR products from the separate 361 

pools prior to the barcoding PCR. The sequencing performance of this joint panel was then 362 

compared to the single multiplex containing the full panel using a Welch’s two sample t-test (α = 363 

0.05). 364 

  We examined genotype concordance between RADseq and GT-seq across GT-seq 365 

read depths using the fully optimized panel in the third round. Genotypes were called using 366 

PolyGen (McKinney et al., 2018), an extension of the GTscore pipeline that uses the same 367 

maximum-likelihood algorithm as STACKS v1 for diploid, bi-allelic loci. Because low read 368 

depths can lead to high estimates of genotyping error, thereby increasing rates of allelic dropout 369 

(Catchen et al., 2013), genotypes were only compared if they had greater than 60× coverage in 370 

RADseq. We then modeled the relationship between GT-seq read depth and genotype 371 

concordance using only read depths with more than 30 genotypes to ensure that estimates of 372 

genotype concordance at a given depth had adequate sample sizes.  373 

  As a final proof of concept, we tested the optimized panel on a sample of 570 walleye 374 

obtained from Escanaba Lake, WI, using the methods described above to estimate the variance in 375 
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read depth among loci within a pool. We retained only loci present in more than 70% of 376 

individuals and individuals genotyped at more than 70% of loci. 377 

Results 378 

Analysis of ascertainment dataset 379 

   A total of 954 individuals from 23 populations were RAD sequenced, with an average of 380 

42 individuals per population (Table 1). Sequencing yielded 1,313,358 retained reads on average 381 

per individual (range = 8,941 - 8,176,163). Initial sequence data were used to identify 682,223 382 

putative SNPs. After passing sequence data through quality filters, 839 individuals and 20,597 383 

SNPs were retained (Table S2).  384 

  Population estimates of HO (0.144 - 0.179), allelic richness (1.498 - 1.674), and FIS (-385 

0.050 - 0.017) were relatively similar across locations (Table 1). Populations from Minnesota 386 

had slightly lower diversity, which may be due to ascertainment bias as 14 of the 23 populations 387 

were from Wisconsin. The highest genetic differentiation was observed between populations 388 

from Minnesota and Wisconsin, with further structuring by drainage basin within each state (Fig. 389 

2b, Table S1). Structuring was higher in Minnesota, with most populations showing a relatively 390 

high degree of isolation (average FST = 0.07, Table 2). Structure in Wisconsin was shallower 391 

(average FST = 0.03, Table 2) and only loosely correlated with drainage basins. From these 392 

results, we constructed 13 reporting groups to facilitate GSI to identifiable genetic units (Table 393 

1). All the reporting groups from Minnesota contained single populations, whereas in Wisconsin, 394 

while the Rock-Fox and Wolf River groups contained single populations, the Wisconsin and 395 

Chippewa River groups each contained five populations. Some single populations in the 396 

Wisconsin and Chippewa Rivers were distinctly identifiable (e.g., Eau Claire River, Medicine 397 
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Lake), but we grouped these populations within their drainage basin of origin as the panel will 398 

likely be used this way for management purposes. 399 

Locus selection and panel assessment 400 

  GSI accuracy was similar among the three panels, with < 1% difference in average 401 

accuracy between the panel with loci chosen based solely on differentiation (FST_600) and the 402 

panel based solely on diversity (Diversity_600) (Fig. 3, Table 3). Average assignment accuracy 403 

was > 90% for nine of the 13 reporting units in all panels (Fig. 3a). The remaining four reporting 404 

units had average assignment accuracies ranging from 78% to 86%. Three of these units (upper 405 

Chippewa River, WI; St. Louis River, MN/WI; and Red Lake, MN) are known to have admixed 406 

stocking histories, while the fourth, North Fork Crow River, MN, included Lake Koronis, which 407 

had the fewest individuals retained after filtering (n = 15). Misassigned individuals from the St. 408 

Louis River, MN, and Red Lake, MN groups primarily assigned to the Pike River, MN, an 409 

unsurprising result given that fish from the Pike River contributed to the recovery of the 410 

collapsed walleye fishery in Red Lake (Logsdon et al., 2016) and fish in the St. Louis River 411 

watershed. Misassignments from the Upper Chippewa basin primarily assigned to the Upper 412 

Wisconsin basin due to the lower differentiation described previously. 413 

  The populations with the lowest assignment accuracies were found in the Chippewa 414 

River and Wisconsin River reporting groups (Table S3, S4, S5), particularly in northern 415 

Wisconsin near the headwaters of the Chippewa and Wisconsin River drainages, and included 416 

Big Arbor Vitae Lake (FST_600 accuracy = 74%), Manitowish Lake (FST_600 accuracy = 58%), and 417 

Turtle Flambeau Flowage (FST_600 accuracy = 63%). A large portion (> 10%) of the simulated 418 

individuals from these populations could not be assigned to any population, providing further 419 

support for the genetic similarity of these two reporting groups. A high proportion of individuals 420 
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from Big Arbor Vitae Lake were assigned to Manitowish Lake (12%) and vice versa, from 421 

Manitowish Lake to Big Arbor Vitae Lake (20%). Most misassignments in the Turtle Flambeau 422 

Flowage were to Kawaguesaga Lake (16%).  Populations with high misassignment rates also 423 

tended to have short branch lengths in the dendrogram and were often located near the root of a 424 

clade (Fig. 2b). Furthermore, the two populations from the upper Chippewa basin (Manitowish 425 

Lake and Turtle Flambeau Flowage) had lower pairwise FST values, on average, relative to 426 

populations from the upper Wisconsin basin than they did with other populations from the upper 427 

Chippewa basin.  428 

  The Diversity_600 panel had the highest accuracy for assigning kin relationships, the 429 

Composite_600 panel showed intermediate performance and the FST_600 panel had the lowest 430 

accuracy rate (Fig. 3b, Table 3). For all panels, FPRs were < 10-20 for PO and FS relationships, 431 

indicating all panels would perform adequately for reconstructing most relationships in most 432 

study systems. Inter-panel performance did, however, range widely, from an FPR of 4.68 × 10-34 433 

for FST_600 to 2.74 × 10-80 for Diversity_600 panel at an FNR of 0.01. Within panels, FPR was 434 

inversely related to FNR.  435 

  Primers were designed using a modified Composite_600 panel, with 250 loci chosen 436 

based on HE_mhap and 350 chosen based on FST, as this panel delivered the best joint accuracy for 437 

GSI and kinship analyses (Fig. 3, Table 3). Of the initial 600 loci initially selected for primer 438 

design, 100 were not suitable for primer design, and thus, iterative selection of loci meeting 439 

primer design requirements was continued until the targeted number of FST and diversity markers 440 

was met. 441 

GT-seq optimization 442 
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  Initial amplification and MiSeq sequencing of all 600 loci yielded 4,655,071 reads 443 

containing intact i7 barcode sequences, with 4,150,910 reads (89%) matching in-silico primer 444 

sequences. Locus specificity was considered via the proportion of total reads that were on-target, 445 

which was 1,031,707 (24.9%) (Table 4). In terms of amplification uniformity among loci, 446 

prop_reads_T10 accounted for 3,526,201 (85.0%) of the 4,150,910 total reads. A cutoff of 3,000 447 

reads per locus was then visually identified (Fig. 4a); loci producing more than 3,000 reads (n = 448 

123) were deemed overamplifiers and discarded prior to further optimization.  449 

  For the second round of optimization, the remaining 477 primers pairs produced 450 

12,653,262 reads containing intact i7 barcode sequences, and 9,347,591 (74%) matched in-silico 451 

primer sequences. Locus specificity improved, with 3,268,293 (35.0%) of the total reads 452 

successfully aligning to in-silico probe sequences (Table 4). Improvement was also observed in 453 

the uniformity of amplification across loci, with prop_reads_T10 equating to 72.5% (6,776,302) 454 

of total reads. Because locus performance was less variable in this round of testing, the 455 

individual on-target proportion of reads at a locus was also considered while culling undesirable 456 

loci. As such, loci visually identified as overamplifiers were again discarded if they did not 457 

display high on-target read proportions (n = 41, Fig. 4b). 458 

  The third GT-seq test was used to determine the functional performance of the panel and 459 

aimed to target 858 SNPs across 436 loci (Fig. 4c). This test produced 7,282,101 reads with 460 

intact i7 barcodes, and 6,827,424 (94%) matched to in-silico primers. Locus specificity of primer 461 

pairs improved greatly in this test, as 6,262,523 (91.7%) of the total reads were also on-target 462 

(Table 4). Likewise, the variation in amplification rates across loci decreased as evidenced by 463 

prop_reads_T10 decreasing to 36.6% (2,148,932) of the total reads.  464 
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  Upon completion of panel optimization, a small but significant difference was observed 465 

between the GC content of primers that were retained (mean = 49.2%) and primers that were 466 

removed (mean = 51.4%, df = 602, t = 5.4, p < 0.001). Similar differences were found when 467 

comparing the GC content of the DNA template; significantly higher GC proportions were 468 

present in templates that were culled from the panel (mean = 47.8%) than templates that were 469 

retained (mean = 45.5%, df = 359, t = 3.8, p < 0.001). Additionally, a total of 88 primer pairs in 470 

the original panel contained at least one degenerate nucleotide, 72 (81%) of which were in the 471 

forward primer. After optimization, 56 of the initial 88 (64%) were retained. In comparison, of 472 

the 512 initial primer pairs that did not have degenerate primers, 380 (74%) were retained. The 473 

average FST for the most informative SNP at a locus and the average HE_mhap did not change 474 

appreciably between the initial and fully optimized panels (Table 4). 475 

Methodological modifications and performance analysis 476 

  Significant differences for on-target read counts and the proportion of total reads that 477 

were on-target were detected among genomic DNA extraction and purification method 478 

combinations. Subsequent analysis using Tukey’s HSD revealed that Chelex-extracted DNAs 479 

produced the highest on-target read count, and Qiagen-extracted DNAs with ExoSAP-480 

purification produced the lowest (Fig. 5, p < 0.001).  While the proportion of on-target reads did 481 

not differ between Chelex with ExoSAP and Qiagen with ExoSAP, both methods produced a 482 

significantly lower proportion of on-target reads than the Chelex-only library (Fig. 5, p < 0.001). 483 

Additionally, when comparing results from the full panel of 436 primer pairs to those obtained 484 

using the same panel divided into two unique multiplexes of 209 and 227 primer pairs (n = 436) 485 

and repooled prior to barcoding, no significant differences were found in total primer reads (df = 486 
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860, t = 0.10, p = 0.92), on-target reads (df = 858, t = 0.16, p = 0.87), or the proportion of total 487 

reads that were on target (df = 806, t = 0.66, p = 0.51).  488 

  A total of 4,063 genotypes across 406 loci (820 SNPs) could be used in comparisons 489 

between GT-seq data and those obtained from the original RAD study. Of these genotypes, 490 

96.6% of calls were identical between methods, and modeled expectations of genotype 491 

concordance (residual sum of squares = 0.02) indicated that a concordance rate of 99.0% could 492 

be expected at a GT-seq read depth of 31 (Fig. 6).  493 

  For a final proof of concept, a new sample of 570 walleye was sequenced using the 494 

current panel of 436 loci. After filtering, 551 individuals and 303 loci were retained with an 495 

average of 32.9 (SD = 29.1) reads per locus; 116 of the 303 loci exhibited an average coverage 496 

greater than the 31× target identified for 99.0% genotyping concordance (Fig. 7). The average 497 

percent of missing data was 6.4% (SD = 13.0%) across individuals and 30.0% (SD = 38.0%) 498 

across loci.     499 

Discussion 500 

GT-seq and other amplicon sequencing methods have tremendous potential for 501 

facilitating high-throughput genotyping in non-model organisms (Meek & Larson, 2019). The 502 

general steps for GT-seq panel development: SNP ascertainment, SNP selection, primer design, 503 

and panel optimization have been previously detailed (Baetscher et al., 2018; McKinney et al., 504 

2019; Schmidt et al., 2019); however, the process of GT-seq panel development is not static. 505 

Here, we leverage our experiences developing a GT-seq panel for walleye with testing various 506 

aspects of the GT-seq methodological process to provide additional guidelines usable by other 507 

researchers to simplify panel construction and validation, particularly in non-model species. Our 508 

walleye panel has the necessary power to conduct GSI in a study system with highly variable 509 
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degrees of genetic differentiation and perturbation by historical stocking, while also being 510 

capable of identifying PO and FS relationships within large populations. The robust performance 511 

of our panel was facilitated by exploring the upper limits of how many loci a GT-seq panel can 512 

target and the trade-offs between choosing loci for GSI versus parentage analysis. The 513 

information presented here will aid in the efficient creation of multipurpose GT-seq panels in 514 

organisms with little to no available genomic resources.  515 

Patterns of population structure: historical stocking influences GSI accuracy 516 

The largest genetic differentiation in our data was observed between populations from 517 

Wisconsin and Minnesota; this structure was likely the result of recolonization from different 518 

refugia following the Wisconsin glaciation, which ended ~10,000 years ago. A range-wide 519 

analysis of walleye genetic structure using microsatellite loci produced similar patterns, with the 520 

most genetically independent populations found in northern Minnesota and Canada (Stepien et 521 

al., 2009). Additionally, we found that while populations in Minnesota displayed strong isolation 522 

on relatively small spatial scales, broad-scale patterns of isolation were less evident in 523 

Wisconsin. In particular, the Ceded Territory of Wisconsin, which included our Chippewa River 524 

and Wisconsin River reporting groups, displayed patchy and low genetic structure overall. It is 525 

likely that structure in this region has been compromised by stocking. Hammen and Sloss (2019), 526 

for instance, observed that several populations of walleye in the upper Chippewa were more 527 

genetically similar to populations in the upper Wisconsin than to other populations in the upper 528 

Chippewa, while nongame species in the Ceded Territory of Wisconsin displayed patterns of 529 

genetic divergence strictly associated with drainage basin boundaries (Westbrook, 2012). We 530 

also observed that four proximate populations spanning the Chippewa and Wisconsin River 531 

boundaries were nearly indistinguishable (Turtle Flambeau Flowage, Manitowish Lake, 532 
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Kawaguesaga Lake, Big Arbor Vitae Lake). These populations are within 50 km of each other 533 

and are located near a state walleye hatchery in Woodruff, Wisconsin, that has historically used 534 

broodstock solely from the Wisconsin River drainage basin. It is therefore highly likely that the 535 

genetic similarity of these four populations is due to stocking. Several of the sampled 536 

populations from Minnesota also had poorly documented stocking histories yet they remained 537 

highly distinct. Genetic structure in Minnesota may have been less eroded if local, genetically 538 

similar sources were used, stocking was into larger, healthier resident populations, or stocking 539 

was less intense or ended a longer time ago.  540 

Despite the challenges posed by low FST and evidence of supplemental stocking altering 541 

genetic structure in some populations, the SNPs discovered here provide greatly increased 542 

resolution for defining reporting units across the Midwestern, USA. Additionally, simulations 543 

suggested that a panel of several hundred loci would be highly capable of conducting individual-544 

based GSI for most genetic units in the region. Given the regional complexity, however, 545 

improvements to accuracy could be made by further sampling areas that have shown 546 

heterogeneous signals of genetic structure (e.g., due to stocking). For example, increased 547 

sampling effort directed at the Chippewa and Wisconsin Rivers’ drainage basins could prove 548 

especially beneficial as analyzing populations in the lower reaches of each basin may provide a 549 

better understanding of signals of historical recolonization, while populations in the upper 550 

reaches (e.g., Ceded Territory of Wisconsin) could better define the effects stocking may have 551 

had. Additional samples could also serve as a holdout dataset, as suggested by Anderson (2010), 552 

to test the assignment accuracy of our panel.  553 

Tradeoffs associated with choosing loci based on differentiation versus diversity 554 
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We evaluated the tradeoffs associated with selecting SNPs based on differentiation or 555 

diversity and found that there was relatively little variation in GSI accuracies across panels. 556 

Markers selected based on differentiation have been shown to provide increased resolution for 557 

defining reporting groups in systems with low levels of genetic structure (Larson et al., 2014; 558 

McKinney et al., 2019). This approach has not, however, been applied to systems where stocking 559 

may be a major factor for reduced levels of population structure, such as in upper Midwestern, 560 

USA, walleye. Interestingly, we found that assignment accuracies with our smaller panels was 561 

relatively similar to accuracies obtained using ~30,000 SNPs discovered with RAD-seq (data not 562 

shown). This suggests that assignment accuracy in our system may be limited more by biological 563 

realities associated with human-mediated gene flow than by the power of our genetic markers. 564 

Further increases in assignment accuracy are therefore likely to be realized through sampling of 565 

additional populations and a more refined understanding of population history as opposed to 566 

genotyping additional markers.   567 

Conversely, we found that FPRs for assigning kin relationships were highly variable 568 

among panels, with the microhaplotype diversity-based panel displaying the lowest FPRs by 569 

several orders of magnitude for each kin relationship (Table 3). This contrast in inter-panel 570 

variation between GSI and kinship simulations is reflective of the variation in information 571 

content of each panel (Fig. S1), and supports previous findings that while microhaplotype 572 

information provided added benefit to both applications, the greatest increase in assignment 573 

accuracy will likely be for kinship analysis (Baetscher et al., 2018; McKinney, Seeb, et al., 574 

2017). When attempting to target microhaplotype loci via GT-seq, attention should be given to 575 

the number of SNPs one aims to genotype within a locus, as attempting to include loci with too 576 

many SNPs may result in targeting repetitive regions that fail to amplify properly in a multiplex. 577 
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The expected maximum number of alleles per locus and the degree to which loci with large 578 

numbers of alleles perturbs primer design will likely vary among taxa. We chose a cutoff of 10 579 

alleles per locus as this appeared to be a natural break point in the allele distribution for walleye; 580 

we suggest that researchers investigate this in their system and come up with a logical cutoff 581 

prior to selecting loci. Finally, while our results suggested this panel could facilitate HS 582 

identification in small systems, performing this task in large systems would likely require more 583 

loci. Our tests of panel implementation suggest this could be achievable by combining PCR 584 

products from several panels within individuals prior to barcoding. 585 

Optimizing primer design and removing overamplifying loci 586 

The main objective of GT-seq primer development is to produce a single pool of primer 587 

pairs that will amplify uniformly, while retaining as many loci as possible. To achieve this, it is 588 

important to minimize heterogeneity of primer and product characteristics (e.g., primer size, 589 

product size) and to understand that the highly multiplexed PCR required by GT-seq can be 590 

complicated by hairpin- and inter-primer hybridization artifacts. To best control PCR artifacts, it 591 

is important to avoid developing primers with complimentary regions (e.g., complimentary 3’ 592 

regions and self-complementarity) and apply conservative thresholds to the upper Tm of primer 593 

design parameters (Rychlik, 1993). Incorporating loci with multiple SNPs can lead to further 594 

difficulties when the ideal priming region also contains a SNP. We found that, while degenerate 595 

primers could be successfully amplified in a multiplex, they were culled during optimization at a 596 

higher rate than non-degenerate primers. Further performance benefits could be gained from 597 

examining DNA template quality beyond just the availability of priming regions, as shown by 598 

Benita et al. (2003) who found regionalized GC content of template DNA to be a predictor of 599 

PCR success. This was supported by our data, as loci removed from the panel during 600 
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optimization displayed significantly higher GC content in the amplicon and primer. Finally, 601 

while GT-seq primers can theoretically be designed for a range of amplicon sizes, we suggest 602 

that researchers design panels targeting similarly sized products that can be sequenced using 603 

PE150 technology. Panels containing similarly sized and relatively short amplicons should 604 

reduce variation in amplification rates (Baetscher et al., 2018) and ensure that genotyping is 605 

robust to variation in sample quality. Moreover, PE150 sequencing is common to benchtop and 606 

core facility sequencing platforms, such as Illumina® MiSeq and HiSeq.  607 

In exploring the upper limits of how many loci a GT-seq panel can target, we found that 608 

the number of amplicons reliably genotyped in a single pool is highly dependent on variable 609 

rates of amplification among primer pairs during PCR and, to a lesser extent, the degree of 610 

primer specificity. Despite efforts to limit primer inter-hybridization through diligent primer 611 

design, the presence of overamplifying loci is likely inevitable during early phases of panel 612 

development (see also McKinney et al. 2019). We found it best to focus primarily on the 613 

uniformity of amplification within the primer pool in early optimization steps, by removing 614 

primer pairs found to overamplify. Although achieving perfect uniformity is challenging, 615 

application of strict cutoffs during initial optimization steps likely results in a final panel that is 616 

less influenced by overamplification, thereby increasing the upper limit of GT-seq performance. 617 

The importance of this was illustrated by prop_reads_T10 reducing from 85.0% of all primer 618 

reads to 36.6% after optimization. Likewise, on-target rates were greatly improved by addressing 619 

overamplification, as demonstrated by the on-target proportion of reads increasing from 24.9% to 620 

91.7% by the third test. 621 

Further optimization of the GT-seq protocol 622 
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Although there may be an upper as-yet-unidentified limit in the number of primers that 623 

can be included in a single primer pool, we found that the total number of loci targeted can be 624 

increased by PCR amplifying multiple primer pools separately on a sample and pooling PCR 625 

products within individuals prior to barcoding. This approach could be used to genotype multiple 626 

complementary or even independent GT-seq panels using the same primer tail systems at a small 627 

cost increase compared to genotyping a single panel, as the most expensive steps in the GT-seq 628 

protocol (e.g., DNA normalization) are only conducted once (Campbell et al., 2015). Combining 629 

multiple panels could facilitate genotyping of > 1,000 loci rather than a few hundred, providing 630 

greatly increased power for kinship analysis and GSI (Baetscher et al., 2018; McKinney, Seeb, et 631 

al., 2017). Additionally, further optimization of individual panels could be conducted by 632 

manipulating the initial concentrations of primer pairs based on observed panel performance, 633 

reducing the concentration of loci that appear to overamplify. While this process would be 634 

cumbersome to perform by hand, a liquid handling robot could enable a researcher to fine-tune 635 

the performance of existing and new panels alike, thereby enhancing efficiency.  636 

 DNA extraction can comprise a large portion of the total cost of genetic analysis, 637 

especially for relatively affordable approaches such as GT-seq, in terms of finances and time. 638 

Extractions using chelating beads provided a cost-effective alternative to more expensive salting-639 

out approaches, such as Qiagen DNeasy kits. Chelating extractions, however, can also produce 640 

lower quality DNA and may include suspended impurities (Singh et al., 2018). Campbell et al. 641 

(2015) did show that GT-seq can be conducted using DNA from chelating extractions but did not 642 

directly compare results using multiple extraction protocols. Here, we directly showed that cost-643 

effective chelating extractions can produce equally high quality, if not superior, sequence data 644 

compared to more expensive methods. Although consideration should be given to the quality of 645 
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tissue samples, the chelating approach appears to be a viable approach for reducing per-sample 646 

costs with GT-seq. It is important to be aware that proper laboratory technique is essential when 647 

using this method, however, as chelating beads will inhibit PCR and greatly reduce library 648 

product yields. This may be especially problematic when using a liquid handling robot that is 649 

unable to visually detect chelating beads. Therefore, we suggest researchers carefully pipette the 650 

DNA-containing supernatant from chelating resin extractions by hand into a secondary container 651 

(e.g., 96-well PCR plate) before aliquoting DNA with a robot. Finally, we found that the 652 

ExoSAP procedure included in the original GT-seq protocol did not produce higher quality data 653 

and was not necessary for our purposes; removing this step from the protocol will further reduce 654 

GT-seq costs and time commitment. 655 

Suggestions for designing GT-seq studies and conclusions 656 

A major consideration when designing a GT-seq panel is deciding how large of an 657 

ascertainment dataset is necessary. We constructed a comprehensive ascertainment set with 658 

RAD-seq, which was expensive and resource intensive. Despite this, we found that the panel 659 

chosen based on diversity produced similar results to the panel chosen based on differentiation. 660 

In our case, we believe that a smaller ascertainment set of ~96 individuals sampled from across 661 

the same geographic range may have resulted in a panel of relatively similar quality. Smaller 662 

ascertainment datasets are likely sufficient when the main applications of a given GT-seq panel 663 

are kinship analysis and GSI of highly diverged populations; however, when designing GT-seq 664 

panels to differentiate closely related populations (e.g. Chinook salmon Oncorhynchus 665 

tshawytscha in western Alaska), accurate characterization of ascertainment populations is vital 666 

(Larson et al., 2014; McKinney et al., 2019).   667 
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Another major consideration when conducting GT-seq analysis is deciding how deep to 668 

sequence individuals. We found that a read depth of 31× could be expected to produce genotypes 669 

that were 99% concordant with those derived from RADseq. Read depths were, however, highly 670 

variable across loci; we only retained 303 of the 436 loci in our panel when we genotyped 536 671 

individuals at an average depth of 33×. We also found that a large and variable proportion of 672 

reads can be discarded prior to genotyping. Therefore, we suggest that researchers target an 673 

average depth of at least 100× to ensure that most loci in the panel can be genotyped and that all 674 

acquired genotypes are highly reliable. At this level of coverage, researchers could genotype 675 

~500 individuals with a panel of 500 loci on a single MiSeq lane (~25 million reads) and ~8,000 676 

individuals on a HiSeq lane (~400 million reads). It is possible this level of coverage is not 677 

necessary for some applications, such as GSI, but we strongly suggest obtaining high coverage 678 

for more sensitive applications that require high genotyping accuracy, such as kinship analysis. 679 

 Finally, researchers conducting GT-seq must consider trade-offs associated with different 680 

genotyping approaches. The two main approaches we are aware of are: (1) in-silico probe-based 681 

methods that use pattern matching to genotype specific alleles (Campbell et al., 2015; McKinney 682 

et al., 2019) and (2) alignment-based methods that call all polymorphisms in a given amplicon 683 

(Baetscher et al., 2019). A major advantage of probe-based methods is that databases of probes 684 

can be shared among laboratories, facilitating standardization. It is difficult, however, to discover 685 

new variation with these methods, whereas alignment-based methods discover new variation by 686 

default. We suggest a hybrid approach, where researchers periodically use alignment-based 687 

approaches to discover new variation and add this variation to a probe database that forms the 688 

basis of genotyping and standardizing genotyping among laboratories.  689 
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 GT-seq is a powerful addition to the molecular ecologist’s toolkit that facilitates rapid, 690 

accurate, and cost-effective genetic analysis. Yet, creating a GT-seq panel is non-trivial, and 691 

there are many considerations for maximizing the utility of this approach. We found that the 692 

greatest challenge when designing our GT-seq panel was locus-specific overamplification, and 693 

we suggest that researchers remove these loci liberally. We also found that chelating extractions 694 

without an ExoSAP step produce high-quality results, providing a lower-cost alternative to 695 

salting-out extractions. Additionally, we showed that combining multiplex PCR products from 696 

multiple panels prior to barcoding can ensure additional, potentially important, loci can be 697 

genotyped with only a moderate cost increase. Finally, we found that a relatively substantial 698 

proportion of sequencing reads are lost before genotyping, and we suggest researchers target 699 

higher sequencing coverage (100×) than may apparently be necessary to ensure that GT-seq 700 

datasets are robust across loci. The GT-seq approach promises to be a mainstay of population 701 

genetics for the foreseeable future, and the guidelines and suggestions outlined here may help 702 

increase the effective use of this powerful method. 703 
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Tables 883 

Table 1. Information on walleye Sander vitreus collections from 23 sites in Wisconsin and 884 

Minnesota. Reporting units are aggregations of genetically similar populations grouped for GSI 885 

analysis, n past filters is the number of individuals missing genotypes at < 20% of SNPs and 886 

retained after quality filtering. Diversity statistics calculated using 20,579 SNPs. The FST_600, 887 

Composite_600, and Diversity_600 columns are the percent correct assignment to reporting group 888 

for each population with 100% simulations conducted using the corresponding panel. 889 

 890 

Population 

ID 
Reporting Unit Population Latitude Longitude 

n 

sampled 

n past 

filters 
HE HO FIS AR FST_600 Composite_600 Diversity_600 

1 Rock-Fox Delavan Lake 42.58 -88.63 48 48 0.169 0.168 0.008 1.607 1.00 1.00 1.00 

2 Wolf River Lake Winnebago 44.36 -88.69 47 41 0.173 0.186 -0.05 1.645 1.00 1.00 1.00 

3 Upper Wisconsin Lake Wisconsin 43.38 -89.58 48 45 0.179 0.175 0.017 1.674 1.00 1.00 1.00 

4 Upper Wisconsin 

Medicine Lake 

Chain 45.81 -89.13 47 47 0.166 0.166 0.004 1.604 0.96 0.98 0.98 

5 Upper Wisconsin Willow Flowage 45.71 -89.87 48 48 0.176 0.174 0.013 1.657 1.00 1.00 0.99 

6 Upper Wisconsin Kawaguesaga Lake 45.86 -89.74 48 42 0.17 0.167 0.013 1.638 0.96 0.94 0.94 

7 Upper Wisconsin 

Big Arbor Vitae 

Lake 45.93 -89.65 48 44 0.174 0.174 0.005 1.654 0.74 0.96 0.99 

8 Upper Chippewa Escanaba Lake 46.06 -89.59 48 44 0.168 0.173 -0.018 1.623 NA NA NA 

9 Upper Chippewa Sanford Lake 46.18 -89.69 48 44 0.157 0.164 -0.033 1.528 NA NA NA 

10 Upper Chippewa Manitowish Lake 46.11 -89.85 47 35 0.172 0.175 -0.006 1.647 0.58 0.57 0.51 

11 Upper Chippewa 

Turtle Flambeau 

Flowage 46.06 -90.13 47 38 0.173 0.172 0.005 1.661 0.63 0.55 0.76 

12 Upper Chippewa Chippewa Flowage 45.90 -91.09 47 43 0.173 0.175 -0.006 1.658 0.88 0.89 0.93 

13 Upper Chippewa Eau Claire River 44.80 -91.50 47 47 0.161 0.162 -0.001 1.583 0.98 0.98 0.98 

14 Upper Chippewa Lake Millicent 46.53 -91.37 48 32 0.167 0.176 -0.034 1.623 NA NA NA 

15 Lake Superior St. Louis River 46.65 -92.21 32 30 0.17 0.168 0.006 1.621 0.77 0.77 0.77 

16 Vermilion River Pike River 47.59 -92.39 32 28 0.144 0.142 0.005 1.498 1.00 1.00 1.00 

17 Des Moines River Lake Sarah 44.15 -95.77 32 30 0.164 0.166 -0.006 1.597 1.00 1.00 1.00 

18 North Fork Crow River Lake Koronis 45.33 -94.70 32 17 0.155 0.155 -0.011 1.579 0.82 0.82 0.75 

19 Rum River Mille Lacs Lake 46.25 -93.67 32 29 0.148 0.151 -0.018 1.511 1.00 1.00 1.00 

20 Pine River Pine River 46.70 -94.39 32 30 0.156 0.162 -0.028 1.547 0.97 0.97 0.97 

21 

Mississippi River - 

Headwaters Cutfoot Sioux Lake 47.50 -94.09 32 25 0.147 0.148 -0.011 1.517 1.00 1.00 1.00 

22 Otter Tail River Ottertail Lake 46.41 -95.66 32 23 0.158 0.16 -0.016 1.568 1.00 1.00 0.97 

23 Red Lake Red Lake 47.91 -95.04 32 29 0.149 0.153 -0.025 1.514 0.90 0.86 0.83 

 891 

  892 
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 893 

Table 2. Summary of pairwise FST comparisons between walleye Sander vitreus populations 894 

grouped by state of origin. Abbreviations are Wisconsin (WI) and Minnesota (MN).  895 

  

WI-

WI 

MN-

MN 

WI-

MN 

Max 0.106 0.142 0.142 

Mean 0.032 0.068 0.072 

Min 0.001 0.019 0.026 
 896 
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Table 3. Summary statistics by SNP panel tested for walleye Sander vitreus in Wisconsin and 898 

Minnesota, USA, including: average FST, heterozygosity  (HE_mhap), assignment accuracy to 899 

population and reporting unit of origin in 100% simulations, and estimated false-positive rates 900 

(FPR) for a given kin relationship at a false-negative rate (FNR) of 0.01. 901 

  902 

  FST_600 Composite_600 Diversity_600 

Average FST 0.117 0.076 0.047 

Average HE_mhap 0.389 0.569 0.633 

Average accuracy by reporting unit 0.937 0.937 0.929 

Average accuracy by population 0.864 0.861 0.862 

Parent-offspring FPR (FNR = 0.01) 4.68×10-34 7.92×10-62 2.74×10-80 

Full-sibling FPR (FNR = 0.01) 3.42×10-29 5.34×10-50 1.16×10-64 

Half-sibling FPR (FNR = 0.01) 6.44×10-6 2.56×10-10 2.06×10-13 
 903 
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Table 4. Summary of GT-seq optimization runs for walleye Sander vitreus in Wisconsin and 905 

Minnesota, USA. Rows report number of primer pairs targeted, number of reads with intact i-7 906 

barcodes (retained reads), number of retained reads with in-silico primer sequences (total reads), 907 

number of total reads with in-silico probe sequences (on-target reads), percent of total reads on-908 

target, percent of total reads allocated to the 10% of loci tested with highest rank total read 909 

counts, average number of SNPs per locus, and average GC content in the forward and reverse 910 

primers.  911 

  Test 1 Test 2 Test 3 

Total primer pairs 600 477 436 

i7 reads 4,655,071 12,653,262 7,282,101 

i7 reads w/ primers (total reads) 4,150,910 9,347,591 6,827,424 

i7 reads w/ primers & probes (on- target) 1,031,707 3,268,293 6,262,523 

On-target percent of total reads 24.9% 35.0% 91.7% 

Percent reads in top 10% of loci 85.0% 72.5% 36.6% 

mean SNPs per locus 2.06 2.00 1.97 

mean GC percent forward primer 51.0% 50.4% 50.3% 

mean GC percent reverse primer 49.0% 48.3% 48.2% 

mean FST 0.133 0.133 0.133 

mean HE_mhap 0.425 0.415 0.416 
 912 
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Figures 914 

 915 

Figure 1. Generalized workflow describing major steps inherent to de novo construction of a 916 

high-density SNP panel for walleye Sander vitreus in Wisconsin and Minnesota, USA. Numbers 917 

of SNPs or loci present in each phase for this panel shown in parentheses. 918 
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 919 

Figure 2. (a) Map of walleye Sander vitreus in Wisconsin (populations 1-14), the St. Louis River 920 

(population 15), and Minnesota (populations 16-23), USA, collection locations and (b) 921 

dendrogram of sampled populations with bootstrap support (n = 1000) estimates above nodes. 922 

Branch lengths correspond to genetic distances estimated using Nei’s DA. Figures color coded 923 

according to major drainage of origin (Hudson Bay: yellow, Mississippi: green, Great Lakes: 924 

blue) and numbered with respect to order in Table 1.  925 
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 926 

Figure 3. (a) Violin plots showing densitity distributions of accuracy estimates from 100% 927 

simulations of 23 populations of walleye Sander vitreus in Wisconsin and Minnesota, USA, 928 

performed using 1,000 iterations for each test panel by reporting unit and (b) simulated false-929 

positive rate (FPR) estimates across a range of false-negative rates (FNR). Figures color coded 930 

according to SNP panel tested: FST_600 (red, 600 rank FST loci), Composite_600 (black, 300 rank 931 

FST and 300 rank HE_mhap loci), and Diversity_600 (purple, 600 rank HE__mhap loci). 932 
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 933 

Figure 4. Relative log10 total read counts per locus (black) and relative log10 on-target read 934 

counts per locus (green) of the GT-seq panel for walleye Sander vitreus in Wisconsin and 935 

Minnesota, USA,  prior to optimization (a, 600 loci), after first optimization (b, 477 loci), and 936 

after second optimization (c, 436 loci). Loci identified for culling during optimization steps 937 

shown in orange. Raw read counts annotated in boxes. 938 

  939 
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 940 

 941 

Figure 5. Number of on-target reads (green) and proportion of total reads on-target obtained 942 

from GT-seq libraries produced using DNAs extracted via Chelex, Chelex with Exo-SAP, and 943 

Qiagen with Exo-SAP. Significantly different groups denoted by letters on box. 944 
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 945 

Figure 6. Modeled relationship between GT-seq read depth and genotype concordance between 946 

GT-seq and RADseq shown in gray (1.00-0.34/GT-seq read depth, rss = 0.02) with 95% 947 

confidence intervals in red. GT-seq read depth at which estimated genotype concordance equals 948 

99% (96.2%-100%) represented by blue line. Black points display proportion of genotypes found 949 

identical between GT-seq and RADseq for GT-seq read depth bins with > 30 genotypes. 950 
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 951 

Figure 7. Variation in read depth among individuals at loci successfully genotyped after quality 952 

filtering (303 loci with < 30% missing data). Average read depth at each locus shown with black 953 

points, while gray points denote first and third quartile for each locus. Dotted blue line denotes 954 

target read depth of 30×. Data from 551 walleye sequenced using fully optimized panel. Average 955 

read depth among all loci is 33×.  956 
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 957 

Supplementary materials 958 

Table S1. Pairwise FST estimates for all sampled walleye Sander vitreus populations (sites 959 

numbered according to Table 1 and Fig. 1 A). Estimates produced in arlequin v3.5.2. 960 

Table S2. Summary statistics for 20,597 SNPs retained through initial filtering based on 961 

maximum missingness rates of < 20% and HDplot cutoffs of H > 0.5 and -7 < D < 7. Columns 962 

include a locus tag (CHROM), position of SNP within locus (Reid et al.), a unique SNP value 963 

(ID), reference (REF) and alternate (Keenan et al.) SNP alleles, global FIS (Willi et al.), single 964 

SNP FST (Smith et al.), expected microhaplotype heterozygosity (mhap_HE), and number of 965 

alleles per locus tag (n_alleles). Diversity statistics estimated in diveRsity v1.9.90 (global FIS and 966 

single SNP FST) and adegenet v2.1.1 (single locus HE, number of alleles).  967 

Table S3. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 968 

population retained through filtering, performed using the FST_600 panel. Each row represents a 969 

simulation for the listed population name. Each column within a row represents the proportion of 970 

individuals assigned to the population denoted at the top of the column. Unassigned individuals 971 

(< 70% probability of origin from a given population) accounted for in last column.   972 

Table S4. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 973 

population retained through filtering steps, performed using the Composite_600 panel. Each row 974 

represents a simulation for the listed population name. Each column within a row represents the 975 

proportion of individuals assigned to the population denoted at the top of the column. 976 

Unassigned individuals (< 70% probability of origin from a given population) are accounted for 977 

in the last column.   978 

Table S5. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 979 

population retained through filtering steps, performed using the Diversity_600 panel. Each row 980 

represents a simulation for the listed population name. Each column within a row represents the 981 

proportion of individuals assigned to the population denoted at the top of the column. 982 

Unassigned individuals (< 70% probability of origin from a given population) are accounted for 983 

in the last column.   984 
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 985 

Figure S1. Frequency distribution of number of alleles among 600 loci tested in each panel. 986 
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