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Abstract

Large-scale genome-wide association studies have enabled polygenic risk scores (PRS), which estimate the
genetic value of an individual for a given trait. Since PRS accuracy is typically assessed using cohort-level
metrics (e.g., R?), uncertainty in PRS estimates at individual level remains underexplored. Here we show
that Bayesian PRS methods can estimate the variance of an individual’s PRS and can yield well-calibrated
credible intervals for the genetic value of a single individual. For real traits in the UK Biobank (N=291,273
unrelated “white British”) we observe large variance in individual PRS estimates which impacts
interpretation of PRS-based stratification; for example, averaging across 13 traits, only 0.8% (s.d. 1.6%) of
individuals with PRS point estimates in the top decile have their entire 95% credible intervals fully
contained in the top decile. We provide an analytical estimator for individual PRS variance—a function of
SNP-heritability, number of causal SNPs, and sample size—and observe high concordance with individual
variances estimated via posterior sampling. Finally as an example of the utility of individual PRS
uncertainties, we explore a probabilistic approach to PRS-based stratification that estimates the probability
of an individual’s genetic value to be above a prespecified threshold. Our results showcase the importance
of incorporating uncertainty in individual PRS estimates into subsequent analyses.
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Introduction

Polygenic risk scores (PRS) have emerged as the main approach for predicting the genetic component of
an individual’s phenotype and/or common-disease risk (i.e. genetic value, GV) from large-scale genome-
wide association studies (GWAS). Several studies have demonstrated the utility of PRS as estimators of
genetic values in genomic research and, when combined with non-genetic risk factors (e.g., age, diet, etc),
in clinical decision-making'*—for example, in stratifying patients*, delivering personalized treatment’,
predicting disease risk®, forecasting disease trajectories”®, and studying shared etiology among traits®'°.
Increasingly large GWAS sample sizes have improved the predictive value of PRS for several complex
traits and diseases'""'? including breast cancer®"?, prostate cancer'*, lung cancer'”, coronary artery disease'®,
obesity’, type 1 diabetes'’, type 2 diabetes'®, and Alzheimer’s disease', thus paving the way for PRS-

informed precision medicine.

Under a linear additive genetic model, an individual’s genetic value (GV; the estimand of interest for PRS)
is the sum of the individual’s dosage genotypes at causal variants (encoded as the number of copies of the
effect allele) weighted by the causal allelic effect sizes (expected change in phenotype per copy of the effect
allele). In practice, the true causal variants and their effect sizes are unknown and must be inferred from
GWAS data. Existing PRS methods generally fall into one of three categories based on their inference
procedure: (1) pruning/clumping and thresholding (P+T) approaches, which account for linkage
disequilibrium (LD) by pruning/clumping variants at a given LD and/or significance threshold and weight
the remaining variants by their marginal association statistics?>!; (2) methods that account for LD through
regularization of effect sizes, including lassosum®* and BLUP prediction”***; and (3) Bayesian approaches
that explicitly model causal effects and LD to infer the posterior distribution of causal effect sizes® ',

Both the bias and variability of a PRS estimator are critical to assessing its practical utility. Given that most
PRS methods select variants (predictors) and estimate their effect sizes, there are two main sources of
uncertainty: (1) uncertainty about which variants are causal (i.e. have non-zero effects) and (2) statistical
noise in the causal effect estimates due to the finite sample size of GWAS training data. The impact of
sample size and LD on causal variant identification has been thoroughly investigated in the statistical fine-

mapping literature***’

, with uncertainty increasing as the strength of LD in a region increases and as the
sample size of the GWAS training data decreases. As a toy example, consider a region with two variants
with same marginal GWAS statistics that are in near-perfect LD: without additional information, it is
impossible to determine whether one or both of the variants are causal given finite sample size and small
effect sizes?®*’. This uncertainty about which variant is causal propagates into uncertainty in the weights
used for PRS, leading to different estimates of genetic value in a target individual. Evaluating how this
uncertainty propagates to individual PRS estimation may improve subsequent analyses such as PRS-based

risk stratification.

Unfortunately, studies that have applied PRS and/or examined PRS accuracy have largely ignored
uncertainty in PRS estimates at the individual level', focusing instead on cohort-level metrics of accuracy
such as R%. Therefore, the degree to which uncertainty in causal variant identification impacts individual
PRS estimation and subsequent analyses (e.g., stratification) remains unclear. In contrast, in livestock
breeding programs, prediction error variance (PEV) of estimated breeding values has been used for decades
to evaluate the precision of individual estimated breeding values and to generate other genetic evaluation
statistics® 2. PEV can be directly computed by inverting the coefficient matrix of mixed model
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3033 or, if inversion is computationally prohibitive, approximated®**>°. The uncertainty in other

equations
biomarkers and non-genetic risk factors have also been well-studied*’. For example, smoothing methods
and error-correction methods are performed before biomarkers and non-genetic risk factors are included in
the predictive model*'*.

Motivated by potential clinical applications of PRS in personalized medicine, where one of the main goals
is to estimate risk of a given individual, we focus on evaluating uncertainty in PRS estimates at the level of
a single target individual. Our goal is to quantify the statistical noise in individual PRS estimates (PRS;)
conditional on data used to train the PRS. We assess two metrics of individual PRS uncertainty: (1) the
standard deviation of the PRS estimate for individual i, denoted sd(PRS;); and (2) the p-level credible
interval for the genetic value of individual 7, defined as the interval that contains the genetic value of
individual i (GV;) with p (e.g., 95%) probability, denoted (p GVi-Cl). We extend the Bayesian framework
of LDpred2*, a widely used method for PRS estimation, to sample from the posterior distribution of GV;
to estimate sd (PRS;) and p GV;-CI for different values of p. First, we introduce an analytical form for the
expectation across individuals of sd (PRS;) as function of heritability, number of causals and training data
sample size and show that the analytical form is accurate in simulations and real data. Second, we use
simulations starting from real genotypes in the UK Biobank (N=291,273 individuals, M=459,792 SNPs,
unrelated “white British”) to show that p GV;i-CI is well-calibrated when the target sample matches the
training data and that sd(PRS;) increases as polygenicity (number of causal variants) increases and as
heritability and GWAS sample size decrease®. Analyzing 13 real traits in the UK Biobank, we observe
large uncertainties in individual PRS estimates that greatly impact the interpretability of PRS-based ranking
of individuals. For example, on average across traits, only 0.2% (s.d. 0.6%) of individuals with PRS point
estimates in the top 1% also have corresponding 95% GV;-ClI fully contained in the top 1%. Individuals
with PRS point estimates at the 90™ percentile in a testing sample can be ranked anywhere between the 34™
and 99™ percentiles in the same testing sample after their 95% credible intervals are taken into account.
Finally, we explore a probabilistic approach to incorporating PRS uncertainty in PRS-based stratification
and demonstrate how such approaches can enable principled risk stratification under different cost scenarios.

Results

Sources of uncertainty in individual PRS estimation

Under a standard linear model relating genotype to phenotype (Methods), the estimand of interest for PRS
is the genetic value of an individual i, defined as GV; = x; B, where X; is an M X 1 vector of observed
genotypes and P is the corresponding M X 1 vector of unknown causal effect sizes** (Methods). Different
PRS methods vary in how they estimate causal effects B to construct the estimator PRS; = Xj—ﬁ Inferential
variance in P propagates into the variance of PRS;. In this work, we focus on quantifying the inferential
uncertainty in PRS; and assessing its impact on PRS-based stratification.

To illustrate the impact of statistical noise in B on PRS;, consider a toy example of a trait for which the
observed marginal GWAS effects at three SNPs are equal (Figure 1). The trait was simulated assuming
SNP1 and SNP2 are causal with the same effect whereas SNP3 is not causal but tags SNP2 with high LD
(0.9). The expected marginal effect is higher at SNP2 than at SNP3, thus implying that GWAS with infinite
sample size would correctly identify the true causal variants and their effects. However, finite GWAS
sample sizes induce statistical noise in the observed marginal effects; for example, the marginal effect at
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97  SNP3 (tag SNP) is higher than at SNP1 (true causal SNP) in 12% to 30% of GWASs simulated with sample

98  size N=100,000 under the LD structure of Figure 1 (Supplementary Figure 1). Thus, the key challenge is

99  that, given only GWAS marginal effects and LD, there is more than one plausible causal effect-size
100  configuration. In Figure 1, the observed marginal effects (the same at all three SNPs) could be driven by
101~ SNPs (1 and 2) or (1 and 3) or (1, 2, and 3); in fact, (1 and 2) and (1 and 3) are equally probable in absence
102 of other information. In such situations, one can generate different PRS estimates for a given individual
103 from the same training data. For example, P+T PRS methods and lassosum, which assume sparsity, would
104 likely select either SNPs (1 and 2) or (1 and 3), while BLUP or Bayesian approaches would likely take an
105  average over the possible causal configurations, splitting the causal effect of SNP2 between SNPs (2 and
106 3). Thus, in such cases, an individual with the genotype X; = (0,1,0)T can be classified as being above or
107  below a prespecified threshold, depending on the approach/assumptions used to estimate causal effects.

108  We explore inferential uncertainty in PRS; through two synergistic approaches. First, we provide a closed-
109  form approximation for the expected sd (PRS;) under simplifying assumptions. Second, we sample from
110 the posterior distribution of the causal effects under the framework of LDPred2 to estimate sd (PRS;) and
111 compute credible intervals for GV; at prespecified confidence levels (e.g., p = 95%) (Figure 2). As an
112 example of the utility of such measures of uncertainty, we explore a probabilistic approach to PRS-based
113 risk stratification that estimates the probability that GV; is above a given threshold ¢ (Figure 2) and
114  demonstrate how this probability can be used in conjunction with situation-specific cost functions to
115  optimize risk stratification decisions.

116  Analytical derivation of individual PRS uncertainty

117 We focus on evaluating PRS uncertainty within a general Bayesian framework, where the posterior mean
118  of the genetic effects conditional on a given GWAS, B = E(B|D), is used to estimate the genetic value of
119 a given individual, x] B = E(x; B|D, x;) (D = (X,y) with access to individual data or D = (Bgwas, R)
120  with access to marginal association statistics and LD, see Methods). We define PRS uncertainty for
121  individual i as the posterior variance of their genetic value, var(x; B|D,x;). This quantity is an
122 approximation to prediction error variance (PEV) of estimated breeding values (EBV) in livestock
123 genetics®***. EBV is analogous to genetic value in human genetics; derivations relating PRS uncertainty to
124 PEV of EBV can be found in Methods.

. .. h% .
125 Assuming that every SNP has a nonzero causal effect drawn i.i.d. from §; ~ N (O, ﬁg), one can derive a

126  closed-form approximation to the expectation across individuals of the posterior variance of genetic value
127 (Methods). Given a GWAS discovery dataset of N unrelated individuals drawn from a given population,
128  the expected PRS uncertainty for a test individual 7 randomly drawn from the same population is
1 N\
129 B [rar(TBID. )] ~ 12+ 37) W
hg M
130  Under an infinitesimal model, the analytical form is an approximately unbiased estimator of the expected
131  posterior variance, even in the presence of LD (Figure 3a). Under non-infinitesimal models, the analytical
132 form underestimates the expected posterior variance, albeit by a relatively small amount (Supplementary
133 Figure 2). Notably, across 13 real phenotypes in the UK Biobank, the analytical form provides relatively
134 accurate estimates of the empirical average sd(P/ﬁSi) computed from LDpred2 posterior sampling (R*=
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135 0.79 across traits, Figure 3b). Thus, the analytical form captures the interplay among SNP-heritability,
136  sample size, and number of causal variants and provides a useful approximation to individual PRS
137  uncertainty when posterior samples are unavailable.

138 Factors impacting individual PRS uncertainty in simulations

139  Next, we quantified the degree to which different parameters contribute to uncertainty in individual PRS
140  estimates in simulations starting from real genotypes of unrelated “white British” individuals in the UK
141  Biobank (N=291,273 individuals and M=459,792 SNPs). To avoid overfitting, we partitioned the
142 individuals into disjoint training, validation and testing groups (Nuin=250,000, Nyatigation=20,000,
143 Nws=21,273). Training samples were used to estimate PRS weights; validation samples were used to
144  estimate hyperparameters (e.g., heritability and polygenicity) for LDpred2; and testing samples were used
145 to evaluate accuracy (Supplementary Figure 3) and uncertainty (Methods).

146  First, we assess the calibration of the p-level credible intervals for GV; estimated by LDpred2. We
147  compared the empirical coverage of the p-level credible intervals (proportion of individuals in a single
148  simulation replicate whose p GV;-CI overlaps their true GV;) to the expected coverage (p) across a range
149 ofvalues of p. We find that, overall, the p GV;-CI are well-calibrated, albeit slightly mis-calibrated in high-
150  heritability, low-polygenicity simulations (Figure 4a and Supplementary Figure 4). For example, across 10
151  simulation replicates where h; = 0.25 and pcayusa1 = 1%, the 90% GVi-Cls have an average empirical
152 coverage 0f 0.92 (s.e.m. 0.005) (Figure 4a). The p GV;-ClIs estimated by LDpred?2 are also robust to training
153 cohort sample size (Supplementary Figure 5). Since individuals with large PRS estimates might have larger
154  number of effect alleles and therefore accumulate more inferential variance, we investigate whether
155 individual PRS uncertainty varies with respect to their true genetic value and find no significant correlation
156 between an individual’s sd(PRS;) and their true genetic value (Figure 4b).

157  We next assessed the impact of trait-specific genetic architecture parameters (heritability and polygenicity)
158  onindividual PRS uncertainty, defined as the posterior standard deviation of genetic value. First, we fixed
159  heritability and varied polygenicity and found that sd(P/lTSi) increases from 0.10 to 0.50 when the
160  proportion of causal variants increases from 0.1% to 100% (Figure 4c, Supplementary Figure 6). Second,
161  we varied the heritability while keeping polygenicity constant. Since different heritabilities and sample
162 sizes lead to different variances explained by the PRS in the test sample, we scale the individual standard
163  deviation (sd (P/liSi)) by the standard deviation of PRS point estimates across all tested individuals; we
164  refer to this quantity as “scaled SD” (Methods). We find that the scaled SD decreases with heritability and
165  sample size (Figure 4d, Supplementary Figure 7). For example, when hf, = 0.05 and pcausal = 0.1%, a 5-
166  fold increase in training data sample size (50K to 250K) reduces scaled SD by 3-fold (from 1.50 to 0.56);
167  when héz, = 0.05 and pcausa1 = 1%, the same increase in training data sample size reduces the scaled SD
168 by 4-fold (from 1.10 to 0.39). While the two simulation settings (hé = 0.5, Pcausal = 1% versus hg =
169  0.05,pcausal = 0.1%) yield the same expected variance per causal variant under our simulation framework
170 (i.e. h3 /(M X Pcaysal), see Methods), we observe lower uncertainty across all sample sizes for h = 0.5
171  and Pcausal = 1%, further emphasizing the impact of trait-specific genetic architecture on individual PRS
172 uncertainty.

173 Next, we investigated the impact of different types of model misspecification on credible interval
174  calibration and PRS uncertainty in simulations based on a set of 124,080 SNPs (the union of 36,987 UK
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175  Biobank (UKBB) array SNPs and 93,767 HapMap3 SNPs) on chromosome 2. First, we assessed the impact
176  of imperfect tagging of causal variants by simulating phenotypes from the set of HapMap3 + UKBB SNPs
177 (hé =0.02, pcausa= 0.01, 0.001) and training the PRS on (i) 124,080 SNPs (HapMap3 + UKBB) and (ii)
178 36,987 SNPs (UKBB only). The “HapMap3 + UKBB” model contains all causal SNPs whereas the “UKBB
179  only” model excludes ~70% of the causal SNPs, thus representing imperfect tagging of causal effects. As
180  expected, the empirical coverage of the credible intervals is biased downward across a range of values of p
181  when only the UKBB SNPs are used to train the model (Supplementary Figure 8). This downward bias is
182 less pronounced when polygenicity is higher (e.g., pcausai= 0.01 vs 0.001) since the UKBB SNPs tag a
183  larger proportion of heritability due to the increased causal SNP density. Second, to assess whether the
184  coexistence of large and small causal effects impacts PRS uncertainty, we compared three simulation
185  scenarios: (I) large effects only (pcausai= 0.001, h; = 0.02), (I) small effects only (pcausa= 0.01, héz, =
186  0.02), and (III) a “mixture of normal” model (Pcaysai= 0.0055, h; =0.02 in total) composed of large effects
187 (Pcausar= 0.0005, h = 0.01) and small effects (Pcaysar= 0.005, hZ = 0.01). We find that the presence of a
188  large number of small effects increases the uncertainty in individual PRS estimates. For example, the
189  average sd(PRS;) among the 21,273 test individuals is 0.050, 0.087, and 0.11 for simulations I, IIT and II,
190  respectively (Supplementary Figure 9). In simulation III, both PRS uncertainty and accuracy (squared
191 Pearson correlation between GV and PRS: Rév =0.90, 0.51, 0.68 for I, 11, III) are approximate averages of
192 simulations I and II. Despite the LDpred2 model being mis-specified in the mixture of normal simulation,
193 the genetic value credible intervals remain well-calibrated (Supplementary Figure 9). Third, we compared
194  PRS obtained using external reference LD (a subsample of either 1,000 (1K) or 2,000 (2K) individuals held
195  out from the UKBB training data) to those obtained using in-sample LD (all 250,000 individuals in the
196  training data) and found similar degrees of PRS uncertainty and credible interval calibration
197  (Supplementary Figure 10).

198  Individual PRS uncertainty in real data in the UK Biobank

199  Weinvestigate individual PRS uncertainty across 13 traits in the UK Biobank: hair color, height, body mass
200 index (BMI), bone mass density in the heel (BMD), high-density lipoprotein (HDL), low-density
201  lipoprotein (LDL), cholesterol, igfl, creatinine, red blood cell count (RBC), white blood cell count (WBC),
202  hypertension and self-reported cardiovascular disease (CVD). First we focus on PRS-based risk
203 stratification. Since most traits analyzed here are not disease traits, we use “above-threshold” and “below-
204  threshold” when referring to the results of risk stratification. We classify test individuals as above-threshold
205  iftheir PRS point estimate (the posterior mean of their genetic value) exceeds a prespecified threshold 7 (i.e.
206  PRS; > t), where ¢ is set to the 90™ PRS percentile obtained from the test-group individuals (Methods). We
207  note that this threshold was chosen arbitrarily to provide an example of how one can compute and interpret
208  PRS uncertainty; in practice, choosing a threshold requires careful consideration of various trait-specific
209  factors such as prevalence and the intended clinical application'. We then partition the above-threshold
210  individuals into two categories: individuals whose 95% GV;-CI are fully above the threshold ¢ (“certain
211  above-threshold”) and individuals whose 95% GV;-CI contain ¢ (“uncertain above-threshold”). Similarly,
212 we classify individuals as below-threshold if their PRS point estimate lies below a prespecified threshold
213 (PRS; <t) and we partition these individuals into “certain below-threshold” and “uncertain below-
214  threshold” based on their 95% GV;-CI (Figure 5a). At t = 90™ percentile and p = 95%, only 1.8% (s.d. 2.4%)
215  of above-threshold individuals (averaged across traits) are deemed certain above-threshold individuals; the
216  remaining above-threshold individuals have p-level credible intervals that overlap t (Figure 5b, Table 1).
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217 On the other hand, 33.7% (s.d. 15.3%) of below-threshold individuals have p-level credible intervals that
218  do not overlap t (Figure 5b, Table 1). Consistent with simulations, we find that uncertainty is higher for
219 traits that are more polygenic* (Table 1) with the average standard deviation of PRS; ranging between 0.2
220  to 0.41 across the studied traits (Table S1). We assessed whether the standard practice of quantile
221  normalization of phenotypes impacts PRS and verify that for phenotypes with mildly skewed distributions,
222 GWAS marginal association statistics and PRS uncertainty are largely consistent with or without quantile
223 normalization (Supplementary Figures 11 and 12).

224 For completeness, we investigated the impact of the threshold ¢, and credible level p, on PRS-based
225  stratification uncertainty, defined as the proportion of above-threshold individuals classified as “certain
226  above-threshold” for a given trait. As expected, the proportion of certain above-threshold classifications
227  decreases as p increases (Figure 4a). For traits with higher average uncertainty (as defined using the scaled
228  SD) we observe lower rates of certain classifications across all values of p. For example, at t =90™ and
229  p =95%, the proportion of above-threshold individuals classified with certainty is 0 % for BMI (average
230  scaled SD = 1.54) and 6.2% for hair color (average scaled SD = 0.62) (Figure 5a). Height and HDL have
231  similar average levels of uncertainty (average scaled SD of 0.95 for height and 0.96 for HDL) and similar
232 proportions of above-threshold individuals classified with certainty. For example, at t =90" and p =95%,
233 the proportions of certain classifications among above-threshold individuals are 0.9% and 0.8% for both
234 height and HDL (Figure 5a, Table 1). Using a more stringent threshold t amplifies the effect of uncertainty
235  on PRS-based stratification (Figure 5b). For example, for BMI and hair color, the proportion of certain
236  classifications among above-threshold individuals drops for all values of p when we increase the threshold
237 from t=90™ percentile to t=99" percentile (Figure 5b).

238 We also quantified the impact of inferential variance in PRS; on PRS-based ranking of the test-group
239  individuals. Using two random samples of genetic effects from one MCMC chain after burn-in, we
240  generated two independent rankings for all individuals in the test data and quantified the correlation in the
241  rankings (Figure 4c, Methods). We observe large variability in the rankings across the test data, with the
242 correlation of rankings ranging from 0.25 to 0.78 across the 13 traits. We also estimated 95% credible
243 intervals for the rank of individuals at a given percentile (e.g., 90™) (Table 2, Methods, Supplementary
244 Figure 13) to find high variability in the ranking. For example, in the case of HDL an individual at 90"
245  (99™) percentile based on PRS point estimate can be within 41™ to 99™ percentiles (72"-99™) with 95%
246  probability when the inferential variance in PRS estimation is taken into consideration (Table 2).

247  Integrating individual-PRS uncertainty into PRS-based stratification

248  In contrast to current PRS-based stratification practices which compare an individual’s PRS point estimate,
249 PRS;, to a given threshold t without incorporating uncertainty, here we explore the use of the posterior
250  probability that GV for individual i is above the threshold (i.e. Pr(GV; > t)). We estimate Pr(GV; > t)
251  using Monte Carlo integration within the LDpred2 framework and show in simulations that the probability
252 is well-calibrated for different causal effect size distributions despite slight miscalibration when
253 polygenicity is high or causal variants are not present in the training SNP panel (Methods, Supplementary
254 Figure 14 and 15). As a motivating example, two individuals with similar PRS point estimates that happen
255 to lie on either side of a prespecified threshold (PRS; < t and P/liSj > t) could have similar probabilities
256 for the genetic value to exceed t (e.g., Pr (GV; > t) = 0.4 and Pr (GV; > t) = 0.6) (Figure 2).
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257  As expected, for traits with higher PRS uncertainty, we observe a smaller proportion of testing individuals
258  with deterministic classification (Pr(GV; > t) = 0 or 1) (Supplementary Figure 16). We also find a tight
259  correlation between PRS; and Pr(GV; > t) across individuals in the test data (Supplementary Figure 16).
260  This is due to the relatively high polygenicity of the real traits in the analysis; a lower correlation is expected
261  for traits with lower polygenicity (Supplementary Figure 17). However, Pr(GV; > t) also contains
262  information about individual-level false positive (FP) and false negative (FN) probabilities which, given a
263  situation-specific cost function, can be used to calculate the expected cost of an above-threshold versus
264  below-threshold classification (Methods). The cost functions for FP and FN should be carefully specified
265  inthe context of the clinical application. As an example, consider a scenario in which an individual’s genetic
266  information is being used to decide whether or not to perform a bone density scan. The cost functions for
267  FP and FN will depend on, among many other factors, the cost of a bone density scan and whether the
268  potential benefits outweigh the risks associated with exposure to low-dose x-rays. As an example of utility
269  of'the probabilities, consider three cost functions which relate the relative costs of false positive versus false
270  negative diagnoses: (a) equal cost for each FP and FN diagnosis (Crp = Crn= 1); (b) 3x higher cost for FP
271 diagnoses (Crp= 3, Cex = 1); and (c) 3x higher cost for FN diagnoses (Crp = 1, Cen = 3). For an individual
272 with Pr(GV; > t) = 0.6, the probability of a FP versus FN diagnosis is 0.4 versus 0.6, respectively. The
273 expected costs of FP diagnoses (Pr(FP) X Cgp) under each scenario are (a) 0.4, (b) 1.2, and (c) 0.4; the
274  expected costs of FN diagnoses (Pr(FN) X Cgy) are (a) 0.6, (b) 0.6, and (c) 1.8. Therefore, the classification
275  for this individual that minimizes the expected cost under each scenario is (a) above-threshold, (b) below-
276  threshold, and (c) above-threshold. Assuming the same three cost functions as above, we find that the
277  optimal decision threshold on Pr(GV; > t) that maximizes the utility of the cost/gain models differs under
278  the three functions. For Crp = Cpn= 1, both the estimated cost curve and true cost curve achieve minimum
279  cost at threshold = 0.5. For Cgp =3, Cen = 1, the estimated optimum is 0.25 and the true optimum is 0.3. For
280  Cpp =1, Cpx = 3, the estimated optimum is 0.75 and the true optimum is 0.7. More notably, assuming the
281  probabilities are well-calibrated, we can estimate the expected cost with the individual probability of being
282  at above-threshold, with the estimated cost curve being very close to the true cost curve despite slight
283  inflation (Figure 7).

284

285  Discussion

286  Inthis work, we demonstrate that uncertainty in PRS estimates at the individual level can have a large impact
287  on subsequent analyses such as PRS-based risk stratification. We note that this work focuses estimating
288  genetic value rather than predicting phenotype; uncertainty in predictions of phenotype will be larger than
289 the results reported here due to the additional uncertainty in unmeasured environmental factors*®. We propose
290  a general procedure for obtaining estimates of individual-PRS uncertainty which can be applied to a wide
291  range of existing PRS methods. Among 13 real traits in the UK Biobank, we find that even with GWAS
292  sample sizes on the order of hundreds of thousands of individuals, there is considerable uncertainty in
293  individual PRS estimates (i.e. large p-level credible intervals) that can impair the reliability of PRS-based
294  stratification. We propose a probabilistic approach to stratification that can be used in conjunction with
295  situation-specific cost functions to help inform PRS-based decision-making, noting that such an approach is
296  notnecessarily useful for all downstream applications of PRS. Since PRS must be combined with non-genetic
297  risk factors (e.g., age, lab values) to evaluate an individual’s absolute risk for a given disease—the quantity
298  ofinterest in risk prediction—the practical utility of PRS, including measures of uncertainty in PRS, is highly
299  dependent on disease-specific factors such as heritability, age of onset, and the costs/risks that would be
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300  incurred by initiating treatment, among many others'~. Measures of uncertainty for many non-genetic risk
301  factors are routinely propagated in risk assessment'”**. For example, an individual’s uncertainty-adjusted
302  non-genetic risk factor could be one of many risk factors within a proportional hazards model**'*. We
303  conjecture that measures of individual-PRS uncertainty will be most useful for characterizing individuals
304  whose combined risk scores (genetics + non-genetics factors) are at or close to the decision threshold for
305  medical intervention; we leave an investigation of uncertainty in combined risk scores for future work.

306  Our work is complementary to methods that aim to improve cohort-level metrics of PRS accuracy such as
307  R?or the area under the receiver operating characteristic (AUROC). We show that, for the purpose of genetic
308  risk stratification, incorporating individual uncertainty is important as it allows us to estimate individual
309  absolute and relative genetic risks without a validation sample, which is normally required to estimate
310  absolute risks. As the individualized absolute risk estimates (genetic values) do not depend on a validation
311  sample, we believe they could be robust leads to our proposed probabilistic genetic risk stratification, which
312 can be seen as a principled approach for genetic risk stratification in clinical settings.

313  We conclude with several caveats and future directions. First, we quantify individual PRS uncertainty by
314  extending LDpred2**, which is just one of many existing Bayesian methods that can be adapted for the same
315  purpose (e.g., SBayesR?’, PRS-CS* and AnnoPred’"). Extensions of other methods, including analogous
316  procedures for P+T (PRSice-2%%) and regularization-based approaches (lassosum® and BLUP prediction®
317 %), could also be investigated. Overall, our methods produce well-calibrated credible intervals in realistic
318  simulation parameter ranges, albeit slight mis-calibration when polygenicity is low and heritability is high.
319  We hypothesize that it is due to several approximations employed in LDpred2 for computational efficiency.
320  We leave investigation of the impact of approximation on calibration and further improvement for future
321  work.

322 Second, while we find broad evidence that both trait-specific genetic architecture parameters (e.g.,
323 heritability, polygenicity) and individual-specific genomic features (e.g., cumulative number of effect alleles)
324  can impact individual PRS uncertainty, both sources of uncertainty merit further exploration. For example,
325  we perform simulations under a model in which each causal variant explains an equal portion of total SNP-
326  heritability but, in reality, genetic architecture can vary significantly among different traits. Does individual
327  PRS uncertainty change if both monogenic and polygenic disease risk factors®*>* are used for PRS estimation?
328  We do not find a correlation between an individual’s cumulative number of effect alleles and their individual
329  PRS uncertainty. This is primarily due to the high polygenicity of the traits being tested. Consequently, we
330  observe tight correlation between PRS; and Pr(GV; > t) in most simulation scenarios except those with low
331  polygenicity. Extending these analyses to traits with a wider range of genetic architectures will be of interest.
332 We leave a detailed investigation of the various sources contributing to individual PRS uncertainty for
333  ongoing work.

334 Third, we perform all simulations and real data analyses using genotyped SNPs (MAF > 1% on the UK
335  Biobank Axiom Array). Since the array is designed such that the genotyped SNPs tag most of the signal from
336 unobserved SNPs, the SNPs (predictors) used in our real data analyses likely capture most of the SNP-
337  heritability for each trait. However, it is unclear whether individual PRS uncertainty would increase or
338  decrease if imputed data were used instead of genotyped SNPs. Moreover, for many diseases, the largest
339  GWAS are only available as summary statistics (estimates of marginal effects and their standard errors). It
340  is important to assess whether there is larger uncertainty in causal effects inferred from summary statistics
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341  asthat would lead to higher variability in estimated PRS. We conjecture that changes in uncertainty will also
342  vary across traits depending on factors such as the number of SNPs (predictors) included in the PRS; the
343  resolution of the credible sets generated by sampling causal configurations; and differences in LD tagging
344  between predictor SNPs and causal SNPs as well as among predictor SNPs. A comparison of individual PRS
345  uncertainty with respect to array data, imputed data, and summary statistics merits thorough investigation in
346  future work.

347  Fourth, although we have shown that our approach is robust to certain types of model misspecification (e.g.,
348  effect sizes drawn from mixture of normal distributions, imperfect tagging of causal effects), we do not
349 exclude the possibility of nonlinear interaction effects such as GXE, GxG and dominance effects® %, We
350  also assume that phenotypes are normally distributed or can be properly quantile normalized. For phenotypes
351  with skewed distributions, the interpretation of the estimated genetic value and the associated uncertainty is
352 unclear. For binary traits, the impact of disease prevalence and case/control sample sizes on PRS uncertainty
353  and the interpretation of PRS uncertainty with respect to liability and odds ratio remain unclear. We leave a
354  full investigation of these questions for future work.

355  Lastly, in the present study, we did not investigate individual PRS uncertainty in transethnic or admixed
356  population settings. Causal variants, causal effect sizes, allele frequencies, and LD patterns can vary
357  significantly across populations®*°. Moreover, PRS prediction accuracy (measured via cohort-level metrics)
358 is well known to depend heavily on the ancestry of the individuals in the GWAS training data® > We
359  therefore leave a detailed exploration of individual PRS uncertainty with respect to ancestry as future work.
360
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361  Methods

362  Individual PRS uncertainty. Let y; be a trait measured on the i-th individual, X; an M X 1 vector of
363  standardized genotypes and 8 an M X 1 vector of corresponding standardized effects for each genetic
364  variant. Under a standard linear model, the phenotype model is y; = x; B + €;, where €;~N (0, 5?). The
365  goal of polygenic risk scores (PRS) methods is to predict genetic value for individual i (GV; := x/ B) of the
366  phenotype. In practice, the genetic effects B are unknown and need to be inferred from GWAS data as .
367  Therefore, the inferential variance in B propagates to the estimated genetic value of individual i PRS; =
368 x; B. In this work we study the inferential variance in PRS; = x] B as a noisy estimate of GV; = x; B.

369

370  Estimating individual uncertainty in Bayesian models of PRS. Next, we show how Bayesian models for
371  estimating PRS; can be extended to evaluate the variance of its estimate. We focus on LDpred2, a widely
372 used method, although similar approach can be incorporated in most Bayesian approaches. LDpred2
373  assumes causal effects at SNP j are drawn from a mixture distribution with spike at 0 as follows:

2

N(O, —‘g) ) Wlth probablllty pcausa]
M Pcausal

0 , with probability 1 — pcausal

374 B; ~

375  Here, M is the total number of SNPs in the model, hé is the heritability of the trait, and p¢ausa) i the

376  proportion of causal variants in the model (i.e., polygenicity). Let Bgwas and R represent GWAS marginal
377  effects and LD matrix computed from GWAS samples. By combining the prior probability p(B|h2, Pcausal)
378 and the likelihood of observed data p(Bgwas |B,R), we can compute a posterior distribution as
379 p(B|§GWAS, R, hf,, Pcausal)- The posterior distribution is intractable and therefore LDpred2 uses Markov
380  Chain Monte Carlo (MCMC) to obtain posterior samples from p(B|Bgwas, R, hf], Pcausal)- For simplicity,
381  weuse B ~p(BlBcwas R, hf,, Pcausal) to refer to the samples from the posterior distribution, and use p(ﬁ)
382 toreferto p(B|Bewas, R, hé, Pcausal) Whenever context is clear. The posterior samples of the causal effects
383  are summarized using the expectation IE[B] = ﬁp(ﬁ)dﬁ, leading to PRS; = XIIE[B]

384 Unlike existing methods that summarize the posterior samples of causal effects into the expectation
385  and then estimate PRS;, we sample from the posterior of PRS; to construct a p level credible interval of
386  genetic value (p GV;-CI) for each individual. Bernstein-von Mises theorem provides the basis that under
387  certain conditions, such constructed Bayesian credible interval will asymptotically be of coverage probability
388  p%. This property of the Bayesian credible interval provides intuitive explanation of the uncertainty.
389  Concretely, we obtain B MCMC samples from the posterior distribution of causal -effects
390 p(ﬁ): BW,B@, ...,B®). Then we compute a PRS estimate for individual i from each sample of p(ﬁ): X-
391 ] 3(1),XI§(2), ...,x?ﬁ(B) to approximate the posterior distribution of PRS; (p(x}rﬁ)). From the B samples
392 of posterior, we obtain empirical I_Tp and 1_Tp quantiles as lower and upper bound estimates of p GV;-CI
393 (Figure 2b). As B goes to infinity, such Monte Carlo estimates converge to the [Q(l_ 0)/2 (xfﬁ), Q1+p)/2 (x-
394 ;'Tf)], where Q, (X;'Tf) represents the a-quantile (here, @ = (1 — p)/2, (1 + p)/2) for distribution of p(x-
395 Iﬁ) Similarly, we summarize the posterior samples using the second moment to estimate sd (PRS;) = sd (x-

396 | B). In practice, we used B = 500 as that leads to stable results. We investigated the autocorrelation
397  statistics and found no evidence of autocorrelation at various lags in our experiment. (Supplementary figure
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398  18). We recommend checking autocorrelation in practice. The MCMC samplings should be thinned when
399 there is strong evidence of autocorrelation, which otherwise will lead to underestimation of variance.

400 Although in this work we focus on LDpred2, the above described procedure is generalizable to a
401  wide range of Bayesian methods (e.g., SBayesR?’, PRS-CS™ and AnnoPred’'). Methods that are not based
402 on Bayesian principle could potentially use Bootstrap to obtain individual uncertainty intervals®*.

403

404  Analytical form of individual PRS uncertainty under infinitesimal model. To facilitate understanding
405  of PRS uncertainty, we derive an analytical estimator of PRS uncertainty under simplified assumptions: (1)
406  all M SNPs are independent and causal; and (2) effect sizes are i.i.d. and drawn from an infinitesimal model,
407  Bj~N (0, hé /M ) forj =1, .., M, where hf, is the total heritability and M is the number of causal variants.
408  Without loss of generality, we assume that genotypes are standardized to have mean zero and unit variance
409  in the population, i.e. E (xi j) = (0 and var(xi j) = 1, where x;; is the genotype at SNP j for individual i.
410 Under this assumption, following Appendix A in ref.*, the least squares estimate of the GWAS marginal
411 effect fgw As,j 18 approximately distributed as

~ 1 h2
412 Bewas,jlBj ~ N ﬂj:ﬁ 1_M .

2
413 Since the per-SNP heritability in this model , 1s small, the variance = (1 - };4—9) can be approximated as

414 1/N. The posterior distribution of f;| BGWAS, j then becomes

M\t 1 M\t
415 leﬁGWAS,j~N<<1+ RZN ) Bowas,j »— <1+—h2 ) )

416  Therefore, the posterior variance of genetic value for an individual with the genotype X; can be
417  approximated as

je1 X5 M\
418 var(x ﬁ|xl,X Y, g) Exuvar(ﬁj|ﬂGWAS]) —<1+ m) ,
g

419  where the approximation is based on the fact that B; and B are approximately independent in the posterior
420  distribution.

421 Recalling that genotype is standardized so that ]E(xlzj) =1, the expected posterior variance of
422 genetic value in the population can be approximated by:
1 -1
T (xl]) _ 1 N
423 Ex; (vaT(Xi Blxi. Xy, hf;)) < + 2N ) - <h_§+ﬁ
424

425  Connection between PEV and posterior variance. Prediction error variance (PEV), a widely used
426  concept in the animal breeding literature, is defined as varﬁly[ x| B - X?—B], where X; is the genotype of
427 individual i and B = Egy[B] is the posterior mean of the causal effects. This variance is with respect to the
428  randomness of both the prior f and phenotype y, holding X as fixed.

429 It follows from the law of total variance that vargy[B] = E, [varmy[[}]] + vary []E|3|Y[B]]. Using

430  the fact that var&y[/ﬁ - B] = vargy[B] — vargy [B] (Section 5.6.4 from ref.*"), we have
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431 varﬁ,y[ﬁ - B] = varﬁ,y[B] - varﬁ,y[ﬁ]
432 =E, [var|3|y[B]] + vary []Emy [B]] —vargy [ﬁ]
433 =E, [var,;|y[B]]

434  Finally, by multiplying a fixed genotype vector X; to both sides, we have

435 Uarﬁ,y[XiTE —-x; B] = Ey [Uarﬁly[xiTﬁ]]

436  Therefore, the prediction error variance is equal to the expectation of posterior variance under repeated
437  sampling of'y. Given large sample sizes, we expect that for each realization of y, varmy[x;r B] will not

438  deviate much from Ey, [varmy[x;r B]] Therefore, PEV and posterior variance will be approximately equal.

439  We also note that under infinitesimal model setting, the posterior variance of genetic value has the same
440  matrix form as the inversion of coefficient matrix of mixed model equation for BLUP***,

441  Simulations. We design simulation experiments in various settings and different sample sizes to understand
442  the properties of uncertainty in PRS estimates. We used simulation starting from genotypes in UK Biobank
443 % We excluded SNPs with MAF < 0.01 and genotype missingness > 0.01, and those SNPs that fail the
444  Hardy-Weinberg test at significance threshold 107, which leaves us 459,792 SNPs. We preserve “white
445  British individual”, with self-reported British white ancestry and filter pairs of individuals with kinship
446  coefficient < 1/2®?) % We further filtered individuals who are outliers for genotype heterozygosity and/or
447  missingness, and obtained 291,273 individuals for all analyses.

448 Given the genotype matrix X, heritability hZ, proportion of causal variants peausal, Standardized
449  effects and phenotypes are generated as follows

2
8 N <0 —g> ¢; = 1, with probability pcaysal
)~

450 ' Mpcausal
0 ¢; = 0, with probability 1 — pcaysal
451 V1, o yn) T ~ NXB, (1 — h3)1y)

452 Finally, given the phenotypes y = (y4,...,¥y)" and genotypes X, we simulate the GWAS marginal
453 association statistics with Bgwas = %XTy. We simulate the data using a wide range of parameters, héz, €
454  {0.05,0.1,0.25,0.5, 0.8}, Pcausal € {0.001,0.01,0.1,1}, a total of 20 simulation settings, with each repeated
455 10 times. The total population of individuals is randomly assigned to 250,000 individuals as the training
456  population, 20,000 individuals as the validating population, and the rest of 21,273 individuals as the testing
457  population, as the usual practice for the PRS model building process. When investigating how sample sizes
458  inthe training cohort change PRS uncertainty, we vary the sample sizes in the training population in 20,000,
459 50,000, 100,000, 150,000, and 250,000, while holding the validation population and testing population as
460  intact, to enable a fair comparison between sample sizes.

461

462  Real data analysis. We performed real data analysis with 13 real traits from UK Biobank, including hair
463  color, height, body mass index (BMI), bone mass density in the heel (BMD), high density lipoprotein
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464  (HDL), low density lipoprotein (LDL), cholesterol, igfl, creatinine, red blood cell count (RBC) and white
465  blood cell count (WBC), hypertension and cardiovascular disease. The genotype was processed in the same
466  way as the simulation study, where we have 459,792 SNPs and 291,273 individuals. We randomly
467  partitioned the total of 291,273 individuals into 250,000 training, 20,000 validation and 21,273 testing
468  groups. The random partition was repeated five times to average of the randomness of results due to sample
469  partition. For each round of random partition of the individuals, we calculated marginal association statistics
470  between genotype and quantile-normalized phenotype in training group with PLINK, using age, sex, and
471  the first 20 genetic principal components as the covariates. Then we applied LDpred2 to obtain the
472 individual posterior distribution of the genetic value, as described above. We regressed out covariates from
473 the phenotypes to obtain adjusted phenotypes, where the regressing coefficients are first estimated from the
474  training population, and applied to phenotype from training, validation and testing population respectively.
475  We evaluate accuracy of PRS estimates in validation and testing groups by Pearson correlation between
476  PRS estimates and adjusted phenotypes.

477

478  PRS analysis using LDpred2. We run LDpred2 for both simulation and real data analysis with the
479  following settings. We calculate the in-sample LD with functions provided by the LDpred2 package, using
480 the window size parameter of 3cM. We estimate the heritability hghri, i=1,..,22 for each chromosome
481  with built-in constrained LD score regression® function. We run LDpred2-grid per chromosome with a grid
482 of 17 polygenicity parameters pcausal from 10 to 1 equally spaced in log space, three heritability
483  parameters {0.7h§hri, 1.0h(2:hri,1.4 h(z:hri}, and with the sparsity option both enabled and disabled, as
484  recommended by LDpred2. We choose the model with the highest R? between the predicted posterior mean
485  and the (adjusted) phenotype on validation set as best model to apply to testing data. We extract 500
486  posterior samples of causal effects B, B@, ..., B9 after 100 burn-in iterations from MCMC sampler
487  of the model to approximate posterior distribution of causal effects. For each individual with genotype x;,
488  we calculate x; B, x]B@, ..., x] BGD to approximate GV posterior distribution for individual i. We

489  then calculate summary statistics of GV posterior distribution, including the posterior mean (PRS;), p level
490  credible interval (p GV;-CI) and probability of above threshold t (Pr(GV; > t)).

491

492  Calculating and evaluating the coverage. We evaluate the coverage properties of p GV;-CI in simulation:
493  we check whether IP)(X-{B € [Q(l_p) /2 (x;rff), Qu+p)/2 (x;rff)]) = p. To evaluate this property, for each
494  simulated dataset, we calculate the frequency of the true genetic risk lies in the predicted interval, i.e., the
495  frequency of X, B € [Q(l_ 0)/2 (X;'Tf), Qui+p)/2 (x;rﬁ)] for every individual in the testing population, for p €
496  {0.1,0.2,...,1.0}. This property provides us an intuitive understanding of the predicted interval: for an
497  individual with a predicted interval [Q(l_ 0)/2 (x;rﬁ), Qu+p)/2 (x;rﬁ)], its true genetic risk is expected to be
498 in this interval with a probability p.

499

500  Definition of scaled standard deviation in individual PRS estimates. To compare the relative order of
501  standard deviation across different genetic architecture, especially across genetic architecture with different
502 heritability, we define the quantity, scaled standard deviation in individual PRS estimates (scaled sd (PRS;))
503 to enable fair comparison. The quantity is defined for every individual i, as sd [XIB]/ sdy; [X;rﬁ], where
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504  the numerator term sdg [X;rﬁ] refers to standard deviation due to the posterior sampling of B of i-th

505  individual. Recalling that x; p = E[x] B|, the denominator term sdy, [x] B] refers to the variation of the
g i i il

506  point estimate across individuals in the population.
507

508  Posterior individual ranking interval. The relative rank of individual PRS xiTﬁ(b) in the population
509 x}rﬁ(b), j =1,...,N varies across different MCMC samplings of posterior causal effects. To evaluate the

(p)

510  uncertainty of ranking for individual i, we compute 7;~ as the quantile of x; B®) in the population

511 x}rﬁ(b), j=1,..., N for each of the b = 1, ..., B posterior samples to approximate posterior distribution of
512 the relative rank. We can obtain p-level credible intervals of ranking as [Q(l_ 017211, Q14p)/2 (Ti)] for
513  each individual i. To assess the uncertainty of ranking for individuals at 90 (99) percentile threshold based
514  on PRS estimates, we select individuals within 1 percentile of thresholds (89.5-90.5%, 98.5-99.5%) and

515  compute mean and standard deviation for lower and upper bound of p=95% posterior ranking interval,
516  across the selected individuals.

517

518  PRS rank correlation between different MCMC samplings. With the B posterior causal effects samples
519  BW,B@, ..., B®) after burn-in, and N individuals in the testing population Xy, X», ..., Xy, we compute PRS

520  for each individual, x] B®,..., x, B® and its relative rank in the population rl(b), s rA(,b) for each posterior

521  sample ). Then for each pair of different b;-th,b,-th posterior samples, 1), BP2) we calculate the
p p p

522 spearman correlation between rl(bl), o) rj\(,bl) and rl(DZ), ) rI\(,DZ)

, representing the variability of the ranks
523 across MCMC samplings. We compute the rank correlation for 1000 pairs of different MCMC samplings,

524  and get the distribution of the rank correlation.
525

526  Probabilistic risk stratification. We define the notion of probabilistic framework for risk stratification
527  based on posterior distribution of GV;. Given a pre-specified threshold ¢, for every individual, we can
528  calculate the posterior probability of the genetic risk larger than the given threshold t, Pr(GV; > t), with
529  Monte Carlo integration as

B
1 ~
530 Pr(GV; > t) = EZ I(x; B® > t)
b=1

531  We use the previous simulation settings to show that this probability is well calibrated. For each simulation,
532 we divide the individuals based on their posterior probability of being at above-threshold into 10 bins with
533 {0,0.1, ..., 1.0} as breaks. For each bin, we calculate the proportion of individuals with true genetic risk
534 higher than the threshold as the empirical probability and the average posterior probability as theoretical
535  probability. The empirical probability is expected to be the same as theoretical probability.

536

537  Utility analysis. The individualized posterior distribution of genetic value provides extra information for
538  patient stratification. We consider a scenario that there is a cost associated for decision that (1) classify an
539  individual with low genetic risk into a high genetic risk category, Cgp, where FP represents false positive.
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540  (2) classify an individual with high genetic risk into a low genetic risk category, Cry, where FN represents
541  false negative. For an individual with posterior probability Pr(GV; > t), we want to decide an action,
542 whether to classify this individual to be at high genetic risk, and perform further screening. If we classify
543 this individual as above-threshold, we will have probability 1 — Pr(GV; > t), that this individual is in fact
544  below-threshold, inducing an expected cost CFp(l — Pr(GV; > t)). Conversely, if we classify this
545  individual as below-threshold, we will have probability Pr(GV; > t) that this individual will be in the high

546  genetic risk, inducing an expected cost CgyPr(GV; > t) . To minimize the expected cost, we would decide

547  according to which action leads to the least cost. The critical value in this scenario is ﬁ: if
FP FN

FN

548  Pr(GV; >t) > —EN
Crp+CEN

we would choose to classify this individual as above-threshold, otherwise below-
549  threshold.

550

551  Software implementation. Our method is implemented in the LDpred2 package (see URLs). In the
552 function ‘snp_ldpred2 grid’, setting the option ‘return_sampling betas = TRUE" will output B posterior
553  samples of the causal genetic effects. Posterior samples of an individual’s GV are obtained by multiplying
554 the individual’s genotype by the M x B weight matrix. One can subsequently obtain the posterior mean,
555  posterior variance, and other quantities of interest from the posterior of the GV. We note that the time
556  required to estimate the causal effects remains the same; the only additional computational costs come from
557  storing the M x B weight matrix and from multiplying the genotype vector by an M x B matrix rather than
558 an M x 1 vector. The memory required to store 500 samples of causal effects for 459,792 SNPs is
559  approximately 2 GB. Given the B posterior samples of causal effects, the runtime for computing the
560  posterior distribution of genetic value for 10,000 testing individuals is less than five minutes.

561
562 Data availability
563  The individual-level genotype and phenotype data are available by application from the UKBB

564  http://www.ukbiobank.ac.uk/.
565

566 URLS

567  LDpred2 software implementing individual PRS credible intervals:
568  https://privefl.github.io/bigsnpr/articles/prs_uncertainty.html

569  Scripts for simulations and real data analyses:
570  https://github.com/bogdanlab/prs-uncertainty
571
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578 Figure 1. LD and finite GWAS sample size introduce uncertainty into PRS estimation. We
579 simulated a GWAS of N individuals across 3 SNPs with LD structure R (SNP2 and SNP3 are in LD of
580 0.9 whereas SNP1 is uncorrelated to other SNPs) where SNP1 and SNP2 are causal with the same
581 effect size B, = (0.016,0.016, 0) such that the variance explained by this region is var(x™g.) = 0.5/1000
582 corresponding to a trait with total heritability of 0.5 uniformly distributed across 1,000 causal regions. The
583 marginal effects observed in a GWAS, Bswas, have an expectation of RB, and variance-covariance
584 (02/N)R, thus showcasing the statistical noise introduced by finite sample size of GWAS (N); for example,
585 the probability of the marginal GWAS effect at tag SNP3 to exceed the marginal effect of true causal
586 SNP2, although decreases with N, remains considerably high for realistic sample and effect sizes (12%
587 at N=100,000 for a trait with h2=0.5 split across 1,000 causal regions, see Supplementary Figure 1). We
588 consider one such observation for the effects observed in a GWAS: Bgwas=(0.016,0.016,0.016). Given
589 such observation, in addition to the true causal effects (B.), other causal configurations are probable
590 B1=(0.016,0,0.016) or B,=(0.016,0.008,0.008). An individual with genotype x; = (0 1 0)" will attain
591 different PRS estimates under these different causal configurations. Most importantly, in the absence of
592 other prior information, ; and B, are equally probable given the data thus leading to different PRS

593 estimates for individual x; = (01 0)".
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Figure 2. Framework for extracting uncertainty from Bayesian methods for probabilistic individual
stratification. (a) Procedure to obtain uncertainty from LDpred2. LDpred2 uses MCMC to sample from the
posterior causal effect distribution given GWAS marginal effects, LD, and a prior on the causal effects. It
outputs the posterior mean of the causal effects which is used to estimate the posterior mean genetic value
(the PRS point estimate). Our framework samples from the posterior of the causal effects to approximate
the posterior distribution of genetic value. The density plot represents the posterior distribution of GV for an
individual. The shaded area represents a p-level credible interval. The dot represents the posterior mean.
(b) Probabilistic risk stratification framework. Given a threshold t, instead of dividing individuals into above-
threshold ( PRS; > t) and below-threshold ( PRS; <t) groups dichotomously (left), probabilistic risk
stratification assigns each individual a probability of being above-threshold Pr(GV; > t) (right).
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Figure 3. Expected sd(PRS,) estimated as a function of heritability, polygenicity and training GWAS
sample size is highly correlated with average sd(PRS;) across testing individuals. (a) The analytical
form provides approximately unbiased estimates of expected sd(PRS;) in simulations when p.ausa = 1. The
x-axis is the average sd(PRS;) in testing individuals. The y-axis is the expected sd(PRS;) computed from
Equation (1). Each dot is an average of 10 simulation replicates for each h; € {0.05,0.1,0.25,0.5,0.8}. The

horizontal whiskers represent +1.96 standard deviations of average sd(PRS;) across 10 simulation
replicates. The vertical whiskers represent +1.96 standard deviations of expected sd(PRS;) across 10
simulation replicates. (b) The analytical estimator of expected sd(PRS;) is highly correlated with estimates
obtained via posterior sampling for real traits. The x-axis is the average sd(PRS;) in testing individuals. The
y-axis is the expected sd(PRS;) computed from Equation (1), where M is replaced with the estimated
number of causal variants and heritability is replaced with estimated SNP-heritability.
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Figure 4. Genetic architecture (polygenicity (pcausal), SNP-heritability (h2), and GWAS sample sizes)
impacts uncertainty in PRS estimates in simulations. (a) Individual credible intervals are well-calibrated
(hg = 0.25, peausal = 1%). Empirical coverage is calculated as the proportion of individuals in a single
simulation whose p-level credible intervals contain their true genetic risk. The error bars represent 1.96
standard errors of the mean calculated from 10 simulations. (b) Correlation between uncertainty and true
genetic value (hj = 0.25, peausal = 1%). Each dot represents an individual. The x-axis is the true genetic
value; the y-axis is standard deviation of the individual PRS estimate (sd (PRS;)). (c) Distribution of individual
PRS uncertainty estimates with respect to polygenicity (p.qyusq: € {0.0001,0.01,0.1,1}, h7 = 0.25). Each
violin plot represents sd(PRS;) for 21,273 testing individuals across 10 simulations. (d) Distribution of
individual PRS uncertainty estimates with respect to heritability (hZ € {0.05,0.1,0.25,0.5,0.8}, Pequsar =
0.01). Each violin plot represents scaled sd(PRS;) for 21,273 testing individuals across 10 simulation
replicates. Since larger heritability yields larger genetic values in our simulations, we plot sd(PRS;) divided
by the standard deviation of PRS point estimates in the testing group to enable comparison of uncertainty
across different heritability values (Methods). (e) Distribution of individual uncertainty estimates with respect

to training GWAS sample size. Each violin plot represents scaled sd(PRS;) of individual PRS for 21,273
testing individuals across 10 simulation replicates.
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Figure 5. Uncertainty in real data and its influence on genetic risk stratification. (a) Example of
posterior PRS distributions for individuals with certain below-threshold (dark blue), uncertain below-
threshold (light blue), uncertain above-threshold (light yellow), and certain above-threshold (dark yellow)
classifications for HDL. Each density plot is a smoothed posterior PRS distribution of an individual randomly
chosen from that category. The solid vertical lines are posterior means. The shaded areas are 95% credible
intervals. The red dotted line is the classification threshold. (b) Distribution of classification categories
across 11 traits (t=90%, p=95%). Each bar plot represents the frequency of testing individuals who fall into
each of the four classification categories for one trait. The frequency is averaged across five random
partitions of the whole dataset. (c) Correlation of PRS rankings of test individuals obtained from two MCMC
samplings from the posterior of the causal effects. For each trait, we draw two samples from the posterior
of the causal effects, rank all individuals in the test data twice based on their PRS from each sample, and
compute the correlation between the two rankings across individuals. Each violin plot contains 5,000 points
(1,000 pairs of MCMC samples and five random partitions).
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Figure 6. Impact of threshold t and credible set level p on stratification uncertainty. (a) Proportion of
above-threshold classifications that are “certain” for four representative traits. The x-axis shows p varying
from 0 to 1 in increments of 0.05. The stratification threshold t is fixed at 90%. (b) Proportion of above-
threshold classifications that are “certain” for two representative traits and two stratification thresholds (t =
90%, 99%).
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Figure 7. Flexible cost optimization with probabilistic individual stratification under various cost
functions. Each color corresponds to one cost function: (a) equal cost for each FP and FN diagnosis (Crp
= Crn =1, red); (b) 3x higher cost for FP diagnoses (Crp = 3, Cen = 1, green); and (c) 3x higher cost for FN
diagnoses (Crp = 1, Cen = 3, blue). The probability threshold for classification is varied along the x-axis.
Solid lines represent cost calculated using true genetic risk and dotted lines represent cost estimated from
the probability of an individual being above-threshold. Diamond symbols represent the optimal classification
threshold for each curve (the minima). Simulation parameters are fixed to h = 0.25, peaysal = 1%.
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PRS < t (“Below threshold”) PRS >t (“Above threshold”)

Trait # Certain/ # Certain/
# Certain (#Certain + # # Certain (#Certain + #
Uncertain) Uncertain)
t=90"

Hair color 1314

11205.0 (287.0) 58.5 (1.5)% (18.6) 6.2 (0.9)%
Height 5961.4 (197.6) 31.1(1.0)% 18.4 (2.4) 0.9 (0.1)%
Body mass index (BMI) 935.8 (198.6) 4.9 (1.0)% 0.4 (0.5) 0.0 (0.0)%
High density lipoprotein (HDL) 5860.8 (681.9) 30.6 (3.6)% 16.2 (8.3) 0.8 (0.4)%
Low density lipoprotein (LDL) 8236.4 (494.3) 43.0 (2.6)% 29.6 (7.8) 1.4 (0.4)%
Cholesterol 7026.0 (660.1) 36.7 (3.4)% 20.2 (6.8) 0.9 (0.3)%
IGF1 3305.2 (371.8) 17.3 (1.9)% 4.0(12) 0.2 (0.1)%
Creatinine 2052.4 (375.8) 10.7 (2.0)% 1.2(1.3) 0.1 (0.1)%
Red blood cell count (RBC) 3745.8 (660.4) 19.6 (3.4)% 6.2 (3.6) 0.3 (0.2)%
White blood cell count (WBC) 1996.6 (120.5) 10.4 (0.6)% 0.6 (0.5) 0.0 (0.0)%
Bone mass density in heel
(BMD) 1654.2 (152.5) 8.6 (0.8)% 2.0(23) 0.1 (0.1)%
Hypertension 257.4(78.1) 1.3 (0.4)% 0.0 (0.0) 0.0 (0.0)%
Cardiovascular (CVD) 125.4 (57.7) 0.7 (0.3)% 0.0 (0.0) 0.0 (0.0)%
Average (s.d.) 4027.9 (3398.3) 21.0 (17.8) % 17.7 (35.5) 0.8 (1.6) %

t=99th

Hair color 18398.6 (208.4) 87.4 (1.0)% 4.4 (1.5) 2.1(0.7)%
Height 14442.6 (147.6) 68.6 (0.7)% 0.6 (0.9) 0.3 (0.4)%
Body mass index (BMI) 5254.4 (739.1) 24.9 (3.5)% 0.2 (0.4) 0.1 (0.2)%
High density lipoprotein (HDL) 14167.6 (691.4) 67.3 (3.3)% 0.2 (0.4) 0.1 (0.2)%
Low density lipoprotein (LDL) 15615.8 (448.1) 74.1 2.1)% 0.6 (0.5) 0.3 (0.3)%
Cholesterol 14793.2 (668.3) 702 (3.2)% 0.2 (0.4) 0.1 (0.2)%
IGF1 11049.2 (597.9) 52.5(2.8)% 0.2 (0.4) 0.1 (0.2)%
Creatinine 8337.2 (702.7) 39.6 (3.3)% 0.0 (0.0) 0.0 (0.0)%
Red blood cell count (RBC) (111)5536%;; 54.8 (5.0)% 0.0 (0.0) 0.0 (0.0)%
White blood cell count (WBC) 8496.6 (370.7) 40.3 (1.8)% 0.0 (0.0) 0.0 (0.0)%
Bone mass density in heel
(BMD) 7816.0 (511.1) 37.1 2.4)% 0.0 (0.0) 0.0 (0.0)%
Hypertension 2378.8 (390.7) 11.3 (1.9)% 0.0 (0.0) 0.0 (0.0)%
Cardiovascular (CVD) 1506.6 (512.3) 72 2.4% 0.0 (0.0) 0.0 (0.0)%
Average (s.d.) 10291.5 (5220.4) 48.9 (24.8) % 0.49 (1.2) 0.2 (0.6) %

Table 1. PRS-based individual stratification uncertainty across 11 complex traits in UK Biobank. We
quantified PRS-based stratification uncertainty in testing individuals for eleven complex traits at two
stratification thresholds (t = 90 and t = 99" percentiles). The numbers of certain versus uncertain
classifications are determined from the 95% credible intervals (p = 95%). For each trait, we report averages
(and standard deviations) from five random partitions of the whole dataset.
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t=90" t =99t
Trait
Lower bound Upper bound | Lower bound Upper bound

Hair color 57.9(1.8) 97.9 (0.22) 88.0 (2.2) 99.8 (0.05)
Height 434 (2.1) 98.6 (0.18) 74.9 (3.4) 99.9 (0.04)
Body mass index (BMI) 22.9(2.1) 99.0 (0.17) 45.8 (4.0 99.8 (0.04)
High density lipoprotein (HDL) 41.3 (2.8) 98.7 (0.18) 72.3 (4.1) 99.9 (0.04)
Low density lipoprotein (LDL) 49.1 (2.4) 98.6 (0.19) 77.7 (3.5) 99.9 (0.04)
Cholesterol 45.1 (2.8) 98.6 (0.19) 74.9 (3.8) 99.9 (0.04)
IGF1 332 (2.4) 98.8 (0.17) 63.0 (4.1) 99.9 (0.04)
Creatinine 28.0 (2.4) 98.9 (0.17) 54.7 (4.3) 99.9 (0.04)
Red blood cell count (RBC) 34.5(2.7) 98.8 (0.17) 64.4 (4.5) 99.9 (0.04)
White blood cell count (WBC) 28.2 (2.0 98.9 (0.17) 56.0 (3.9) 99.9 (0.04)
Bone mass density in heel (BMD) 26,0 (2.2) 98.9 (0.18) 52,5 (4.1) 99.9 (0.04)
Hypertension 17.7 (1.8) 99.0 (0.17) 36.6 (3.4) 99.8 (0.05)
Cardiovascular (CVD) 15.5(1.9) 99.0 (0.18) 32.3(3.8) 99.8 (0.06)
Average (s.d.) 34.2 (12.9) 98.8 (.03) 61.0 (16.6) 99.9 (0)

Table 2. Average 95% posterior ranking credible intervals for individuals at two stratification
thresholds for 11 traits. We estimated the 95% posterior ranking credible intervals for individuals at the
90" and 99" percentiles of the testing population PRS estimates. Mean and standard deviation are
calculated from the 95% posterior ranking intervals of individuals whose point estimates lie within 0.5% of
the stratification threshold (213 individuals between the 89.5" and 90.5™ percentiles for t = 90" and between
the 98.5" and 99.5™ percentiles for t = 99™).
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