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Abstract 1 

Large-scale genome-wide association studies have enabled polygenic risk scores (PRS), which estimate the 2 
genetic value of an individual for a given trait. Since PRS accuracy is typically assessed using cohort-level 3 
metrics (e.g., R2), uncertainty in PRS estimates at individual level remains underexplored. Here we show 4 
that Bayesian PRS methods can estimate the variance of an individual’s PRS and can yield well-calibrated 5 
credible intervals for the genetic value of a single individual. For real traits in the UK Biobank (N=291,273 6 
unrelated “white British”) we observe large variance in individual PRS estimates which impacts 7 
interpretation of PRS-based stratification; for example, averaging across 13 traits, only 0.8% (s.d. 1.6%) of 8 
individuals with PRS point estimates in the top decile have their entire 95% credible intervals fully 9 
contained in the top decile. We provide an analytical estimator for individual PRS variance—a function of 10 
SNP-heritability, number of causal SNPs, and sample size—and observe high concordance with individual 11 
variances estimated via posterior sampling. Finally as an example of the utility of individual PRS 12 
uncertainties, we explore a probabilistic approach to PRS-based stratification that estimates the probability 13 
of an individual’s genetic value to be above a prespecified threshold. Our results showcase the importance 14 
of incorporating uncertainty in individual PRS estimates into subsequent analyses.   15 
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Introduction 16 

Polygenic risk scores (PRS) have emerged as the main approach for predicting the genetic component of 17 
an individual’s phenotype and/or common-disease risk (i.e. genetic value, GV) from large-scale genome-18 
wide association studies (GWAS). Several studies have demonstrated the utility of PRS as estimators of 19 
genetic values in genomic research and, when combined with non-genetic risk factors (e.g., age, diet, etc), 20 
in clinical decision-making1–3—for example, in stratifying patients4, delivering personalized treatment5, 21 
predicting disease risk6, forecasting disease trajectories7,8, and studying shared etiology among traits9,10. 22 
Increasingly large GWAS sample sizes have improved the predictive value of PRS for several complex 23 
traits and diseases11,12 including breast cancer6,13, prostate cancer14, lung cancer15, coronary artery disease16, 24 
obesity7, type 1 diabetes17, type 2 diabetes18, and Alzheimer’s disease19, thus paving the way for PRS-25 
informed precision medicine. 26 

Under a linear additive genetic model, an individual’s genetic value (GV; the estimand of interest for PRS) 27 
is the sum of the individual’s dosage genotypes at causal variants (encoded as the number of copies of the 28 
effect allele) weighted by the causal allelic effect sizes (expected change in phenotype per copy of the effect 29 
allele). In practice, the true causal variants and their effect sizes are unknown and must be inferred from 30 
GWAS data. Existing PRS methods generally fall into one of three categories based on their inference 31 
procedure: (1) pruning/clumping and thresholding (P+T) approaches, which account for linkage 32 
disequilibrium (LD) by pruning/clumping variants at a given LD and/or significance threshold and weight 33 
the remaining variants by their marginal association statistics20,21; (2) methods that account for LD through 34 
regularization of effect sizes, including lassosum22 and BLUP prediction23,24; and (3) Bayesian approaches 35 
that explicitly model causal effects and LD to infer the posterior distribution of causal effect sizes25–27.  36 

Both the bias and variability of a PRS estimator are critical to assessing its practical utility. Given that most 37 
PRS methods select variants (predictors) and estimate their effect sizes, there are two main sources of 38 
uncertainty: (1) uncertainty about which variants are causal (i.e. have non-zero effects) and (2) statistical 39 
noise in the causal effect estimates due to the finite sample size of GWAS training data. The impact of 40 
sample size and LD on causal variant identification has been thoroughly investigated in the statistical fine-41 
mapping literature28,29, with uncertainty increasing as the strength of LD in a region increases and as the 42 
sample size of the GWAS training data decreases. As a toy example, consider a region with two variants 43 
with same marginal GWAS statistics that are in near-perfect LD: without additional information, it is 44 
impossible to determine whether one or both of the variants are causal given finite sample size and small 45 
effect sizes28,29. This uncertainty about which variant is causal propagates into uncertainty in the weights 46 
used for PRS, leading to different estimates of genetic value in a target individual. Evaluating how this 47 
uncertainty propagates to individual PRS estimation may improve subsequent analyses such as PRS-based 48 
risk stratification. 49 

Unfortunately, studies that have applied PRS and/or examined PRS accuracy have largely ignored 50 
uncertainty in PRS estimates at the individual level1, focusing instead on cohort-level metrics of accuracy 51 
such as R2. Therefore, the degree to which uncertainty in causal variant identification impacts individual 52 
PRS estimation and subsequent analyses (e.g., stratification) remains unclear. In contrast, in livestock 53 
breeding programs, prediction error variance (PEV) of estimated breeding values has been used for decades 54 
to evaluate the precision of individual estimated breeding values and to generate other genetic evaluation 55 
statistics30–32. PEV can be directly computed by inverting the coefficient matrix of mixed model 56 
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equations30,33 or, if inversion is computationally prohibitive, approximated34–39. The uncertainty in other 57 
biomarkers and non-genetic risk factors have also been well-studied40. For example, smoothing methods 58 
and error-correction methods are performed before biomarkers and non-genetic risk factors are included in 59 
the predictive model41,42. 60 

Motivated by potential clinical applications of PRS in personalized medicine, where one of the main goals 61 
is to estimate risk of a given individual, we focus on evaluating uncertainty in PRS estimates at the level of 62 
a single target individual. Our goal is to quantify the statistical noise in individual PRS estimates (𝑃𝑅𝑆$ !) 63 
conditional on data used to train the PRS. We assess two metrics of individual PRS uncertainty: (1) the 64 
standard deviation of the PRS estimate for individual i, denoted 𝑠𝑑(𝑃𝑅𝑆$ !); and (2) the 𝜌-level credible 65 
interval for the genetic value of individual i, defined as the interval that contains the genetic value of 66 
individual i (GVi) with 𝜌 (e.g., 95%) probability, denoted (𝜌 GVi-CI). We extend the Bayesian framework 67 
of LDpred224, a widely used method for PRS estimation, to sample from the posterior distribution of GVi 68 
to estimate 𝑠𝑑(PRS$ !) and 𝜌 GVi-CI for different values of 𝜌. First, we introduce an analytical form for the 69 
expectation across individuals of 𝑠𝑑(𝑃𝑅𝑆$ !) as function of heritability, number of causals and training data 70 
sample size and show that the analytical form is accurate in simulations and real data. Second, we use 71 
simulations starting from real genotypes in the UK Biobank (N=291,273 individuals, M=459,792 SNPs, 72 
unrelated “white British”) to show that 𝜌 GVi-CI is well-calibrated when the target sample matches the 73 
training data and that 𝑠𝑑(PRS$ !) increases as polygenicity (number of causal variants) increases and as 74 
heritability and GWAS sample size decrease43. Analyzing 13 real traits in the UK Biobank, we observe 75 
large uncertainties in individual PRS estimates that greatly impact the interpretability of PRS-based ranking 76 
of individuals. For example, on average across traits, only 0.2% (s.d. 0.6%) of individuals with PRS point 77 
estimates in the top 1% also have corresponding 95% GVi-CI fully contained in the top 1%. Individuals 78 
with PRS point estimates at the 90th percentile in a testing sample can be ranked anywhere between the 34th 79 
and 99th percentiles in the same testing sample after their 95% credible intervals are taken into account. 80 
Finally, we explore a probabilistic approach to incorporating PRS uncertainty in PRS-based stratification 81 
and demonstrate how such approaches can enable principled risk stratification under different cost scenarios.  82 

Results 83 

Sources of uncertainty in individual PRS estimation  84 

Under a standard linear model relating genotype to phenotype (Methods), the estimand of interest for PRS 85 
is the genetic value of an individual i, defined as GV! = 𝐱!"𝛃, where 𝐱!  is an 𝑀 × 1 vector of observed 86 
genotypes and 𝛃 is the corresponding 𝑀 × 1 vector of unknown causal effect sizes44 (Methods). Different 87 
PRS methods vary in how they estimate causal effects 𝛃8 to construct the estimator PRS$ ! = 	𝐱!"𝛃8. Inferential 88 
variance in 𝛃8 propagates into the variance of PRS$ !. In this work, we focus on quantifying the inferential 89 
uncertainty in PRS$ ! and assessing its impact on PRS-based stratification. 90 

To illustrate the impact of statistical noise in 𝛃8 on PRS$ !, consider a toy example of a trait for which the 91 
observed marginal GWAS effects at three SNPs are equal (Figure 1). The trait was simulated assuming 92 
SNP1 and SNP2 are causal with the same effect whereas SNP3 is not causal but tags SNP2 with high LD 93 
(0.9). The expected marginal effect is higher at SNP2 than at SNP3, thus implying that GWAS with infinite 94 
sample size would correctly identify the true causal variants and their effects. However, finite GWAS 95 
sample sizes induce statistical noise in the observed marginal effects; for example, the marginal effect at 96 
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SNP3 (tag SNP) is higher than at SNP1 (true causal SNP) in 12% to 30% of GWASs simulated with sample 97 
size N=100,000 under the LD structure of Figure 1 (Supplementary Figure 1). Thus, the key challenge is 98 
that, given only GWAS marginal effects and LD, there is more than one plausible causal effect-size 99 
configuration. In Figure 1, the observed marginal effects (the same at all three SNPs) could be driven by 100 
SNPs (1 and 2) or (1 and 3) or (1, 2, and 3); in fact, (1 and 2) and (1 and 3) are equally probable in absence 101 
of other information. In such situations, one can generate different PRS estimates for a given individual 102 
from the same training data. For example, P+T PRS methods and lassosum, which assume sparsity, would 103 
likely select either SNPs (1 and 2) or (1 and 3), while BLUP or Bayesian approaches would likely take an 104 
average over the possible causal configurations, splitting the causal effect of SNP2 between SNPs (2 and 105 
3). Thus, in such cases, an individual with the genotype 𝐱! = (0,1,0)" can be classified as being above or 106 
below a prespecified threshold, depending on the approach/assumptions used to estimate causal effects.  107 

We explore inferential uncertainty in PRS$ ! through two synergistic approaches. First, we provide a closed-108 
form approximation for the expected 𝑠𝑑(PRS$ !) under simplifying assumptions. Second, we sample from 109 
the posterior distribution of the causal effects under the framework of LDPred2 to estimate 𝑠𝑑(PRS$ !) and 110 
compute credible intervals for GV! 	at prespecified confidence levels (e.g.,	𝜌 = 95%) (Figure 2). As an 111 
example of the utility of such measures of uncertainty, we explore a probabilistic approach to PRS-based 112 
risk stratification that estimates the probability that GV!  is above a given threshold t (Figure 2) and 113 
demonstrate how this probability can be used in conjunction with situation-specific cost functions to 114 
optimize risk stratification decisions.  115 

Analytical derivation of individual PRS uncertainty 116 

We focus on evaluating PRS uncertainty within a general Bayesian framework, where the posterior mean 117 
of the genetic effects conditional on a given GWAS, 𝛃8 ≡ 𝔼(𝛃|𝐃), is used to estimate the genetic value of 118 
a given individual, 𝐱!"𝛃8 ≡ 𝔼(𝐱!"𝛃|𝐃, 𝐱!) (𝐃 = (𝐗, 𝐲) with access to individual data or 𝐃 = (𝛃8#$%&, 	𝐑8) 119 
with access to marginal association statistics and LD, see Methods). We define PRS uncertainty for 120 
individual 𝑖	 as the posterior variance of their genetic value, 𝑣𝑎𝑟(𝐱!"𝛃|𝐃, 𝐱!) . This quantity is an 121 
approximation to prediction error variance (PEV) of estimated breeding values (EBV) in livestock 122 
genetics32,34. EBV is analogous to genetic value in human genetics; derivations relating PRS uncertainty to 123 
PEV of EBV can be found in Methods. 124 

Assuming that every SNP has a nonzero causal effect drawn i.i.d. from 𝛽' ∼ 𝑁 J0,
(!"

)
K, one can derive a 125 

closed-form approximation to the expectation across individuals of the posterior variance of genetic value 126 
(Methods). Given a GWAS discovery dataset of 𝑁 unrelated individuals drawn from a given population, 127 
the expected PRS uncertainty for a test individual i randomly drawn from the same population is 128 

𝔼𝐱#L𝑣𝑎𝑟M𝐱!
+𝛃N𝐃, ℎ,-PQ ≈ S

1
ℎ,-
+
𝑁
𝑀U

./

(1) 129 

Under an infinitesimal model, the analytical form is an approximately unbiased estimator of the expected 130 
posterior variance, even in the presence of LD (Figure 3a). Under non-infinitesimal models, the analytical 131 
form underestimates the expected posterior variance, albeit by a relatively small amount (Supplementary 132 
Figure 2). Notably, across 13 real phenotypes in the UK Biobank, the analytical form provides relatively 133 
accurate estimates of the empirical average sdMPRS$ 0P computed from LDpred2 posterior sampling (𝑅-= 134 
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0.79 across traits, Figure 3b). Thus, the analytical form captures the interplay among SNP-heritability, 135 
sample size, and number of causal variants and provides a useful approximation to individual PRS 136 
uncertainty when posterior samples are unavailable. 137 

Factors impacting individual PRS uncertainty in simulations 138 

Next, we quantified the degree to which different parameters contribute to uncertainty in individual PRS 139 
estimates in simulations starting from real genotypes of unrelated “white British” individuals in the UK 140 
Biobank (N=291,273 individuals and M=459,792 SNPs). To avoid overfitting, we partitioned the 141 
individuals into disjoint training, validation and testing groups (Ntrain=250,000, Nvalidation=20,000, 142 
Ntest=21,273). Training samples were used to estimate PRS weights; validation samples were used to 143 
estimate hyperparameters (e.g., heritability and polygenicity) for LDpred2; and testing samples were used 144 
to evaluate accuracy (Supplementary Figure 3) and uncertainty (Methods).  145 

First, we assess the calibration of the 𝜌 -level credible intervals for GV!  estimated by LDpred2. We 146 
compared the empirical coverage of the 𝜌-level credible intervals (proportion of individuals in a single 147 
simulation replicate whose 𝜌 GVi-CI overlaps their true GV!) to the expected coverage (𝜌) across a range 148 
of values of 𝜌. We find that, overall, the 𝜌 GVi-CI are well-calibrated, albeit slightly mis-calibrated in high-149 
heritability, low-polygenicity simulations (Figure 4a and Supplementary Figure 4). For example, across 10 150 
simulation replicates where ℎ,- = 0.25 and 𝑝123425 = 1%, the 90% GVi-CIs have an average empirical 151 
coverage of 0.92 (s.e.m. 0.005) (Figure 4a). The 𝜌 GVi-CIs estimated by LDpred2 are also robust to training 152 
cohort sample size (Supplementary Figure 5). Since individuals with large PRS estimates might have larger 153 
number of effect alleles and therefore accumulate more inferential variance, we investigate whether 154 
individual PRS uncertainty varies with respect to their true genetic value and find no significant correlation 155 
between an individual’s 𝑠𝑑(PRS$ !) and their true genetic value (Figure 4b).  156 

We next assessed the impact of trait-specific genetic architecture parameters (heritability and polygenicity) 157 
on individual PRS uncertainty, defined as the posterior standard deviation of genetic value. First, we fixed 158 
heritability and varied polygenicity and found that 𝑠𝑑MPRS$ !P  increases from 0.10 to 0.50 when the 159 
proportion of causal variants increases from 0.1% to 100% (Figure 4c, Supplementary Figure 6). Second, 160 
we varied the heritability while keeping polygenicity constant. Since different heritabilities and sample 161 
sizes lead to different variances explained by the PRS in the test sample, we scale the individual standard 162 
deviation (𝑠𝑑MPRS$ !P) by the standard deviation of PRS point estimates across all tested individuals; we 163 
refer to this quantity as “scaled SD” (Methods). We find that the scaled SD decreases with heritability and 164 
sample size (Figure 4d, Supplementary Figure 7). For example, when ℎ,- = 0.05 and 𝑝123425 = 0.1%, a 5-165 
fold increase in training data sample size (50K to 250K) reduces scaled SD by 3-fold (from 1.50 to 0.56); 166 
when ℎ,- = 0.05 and 𝑝123425 = 1%, the same increase in training data sample size reduces the scaled SD 167 
by 4-fold (from 1.10 to 0.39). While the two simulation settings (ℎ,- = 0.5, 𝑝123425 = 1% versus ℎ,- =168 
0.05, 𝑝123425 = 0.1%) yield the same expected variance per causal variant under our simulation framework 169 
(i.e. ℎ,-/(𝑀 × 𝑝123425), see Methods), we observe lower uncertainty across all sample sizes for ℎ,- = 0.5 170 
and 𝑝123425 = 1%, further emphasizing the impact of trait-specific genetic architecture on individual PRS 171 
uncertainty. 172 

Next, we investigated the impact of different types of model misspecification on credible interval 173 
calibration and PRS uncertainty in simulations based on a set of 124,080 SNPs (the union of 36,987 UK 174 
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Biobank (UKBB) array SNPs and 93,767 HapMap3 SNPs) on chromosome 2. First, we assessed the impact 175 
of imperfect tagging of causal variants by simulating phenotypes from the set of HapMap3 + UKBB SNPs 176 
(h6- = 0.02, p123425= 0.01, 0.001) and training the PRS on (i) 124,080 SNPs (HapMap3 + UKBB) and (ii) 177 
36,987 SNPs (UKBB only). The “HapMap3 + UKBB” model contains all causal SNPs whereas the “UKBB 178 
only” model excludes ~70% of the causal SNPs, thus representing imperfect tagging of causal effects. As 179 
expected, the empirical coverage of the credible intervals is biased downward across a range of values of 𝜌 180 
when only the UKBB SNPs are used to train the model (Supplementary Figure 8). This downward bias is 181 
less pronounced when polygenicity is higher (e.g., p123425= 0.01 vs 0.001) since the UKBB SNPs tag a 182 
larger proportion of heritability due to the increased causal SNP density. Second, to assess whether the 183 
coexistence of large and small causal effects impacts PRS uncertainty, we compared three simulation 184 
scenarios: (I) large effects only (𝑝123425= 0.001, ℎ,- = 0.02), (II) small effects only (𝑝123425= 0.01, ℎ,- = 185 
0.02), and (III) a “mixture of normal” model (𝑝123425= 0.0055, ℎ,- = 0.02 in total) composed of large effects 186 
(𝑝123425= 0.0005, ℎ,- = 0.01) and small effects (𝑝123425= 0.005, ℎ,- = 0.01). We find that the presence of a 187 
large number of small effects increases the uncertainty in individual PRS estimates. For example, the 188 
average sd(PRS$ 0) among the 21,273 test individuals is 0.050, 0.087, and 0.11 for simulations I, III and II, 189 
respectively (Supplementary Figure 9). In simulation III, both PRS uncertainty and accuracy (squared 190 
Pearson correlation between GV and PRS: 𝑅#7-  = 0.90, 0.51, 0.68 for I, II, III) are approximate averages of 191 
simulations I and II. Despite the LDpred2 model being mis-specified in the mixture of normal simulation, 192 
the genetic value credible intervals remain well-calibrated (Supplementary Figure 9). Third, we compared 193 
PRS obtained using external reference LD (a subsample of either 1,000 (1K) or 2,000 (2K) individuals held 194 
out from the UKBB training data) to those obtained using in-sample LD (all 250,000 individuals in the 195 
training data) and found similar degrees of PRS uncertainty and credible interval calibration 196 
(Supplementary Figure 10). 197 

Individual PRS uncertainty in real data in the UK Biobank 198 

We investigate individual PRS uncertainty across 13 traits in the UK Biobank: hair color, height, body mass 199 
index (BMI), bone mass density in the heel (BMD), high-density lipoprotein (HDL), low-density 200 
lipoprotein (LDL), cholesterol, igf1, creatinine, red blood cell count (RBC), white blood cell count (WBC), 201 
hypertension and self-reported cardiovascular disease (CVD). First we focus on PRS-based risk 202 
stratification. Since most traits analyzed here are not disease traits, we use “above-threshold” and “below-203 
threshold” when referring to the results of risk stratification. We classify test individuals as above-threshold 204 
if their PRS point estimate (the posterior mean of their genetic value) exceeds a prespecified threshold t (i.e. 205 
PRS$ ! > 𝑡), where t is set to the 90th PRS percentile obtained from the test-group individuals (Methods). We 206 
note that this threshold was chosen arbitrarily to provide an example of how one can compute and interpret 207 
PRS uncertainty; in practice, choosing a threshold requires careful consideration of various trait-specific 208 
factors such as prevalence and the intended clinical application1. We then partition the above-threshold 209 
individuals into two categories: individuals whose 95%	GVi-CI are fully above the threshold t (“certain 210 
above-threshold”) and individuals whose 95% GVi-CI contain t (“uncertain above-threshold”). Similarly, 211 
we classify individuals as below-threshold if their PRS point estimate lies below a prespecified threshold 212 
(PRS$ ! < 𝑡)  and we partition these individuals into “certain below-threshold” and “uncertain below-213 
threshold” based on their 95% GVi-CI (Figure 5a). At 𝑡 = 90th percentile and 𝜌 = 95%, only 1.8% (s.d. 2.4%) 214 
of above-threshold individuals (averaged across traits) are deemed certain above-threshold individuals; the 215 
remaining above-threshold individuals have 𝜌-level credible intervals that overlap 𝑡 (Figure 5b, Table 1). 216 
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On the other hand, 33.7% (s.d. 15.3%) of below-threshold individuals have 𝜌-level credible intervals that 217 
do not overlap 𝑡 (Figure 5b, Table 1). Consistent with simulations, we find that uncertainty is higher for 218 
traits that are more polygenic45 (Table 1) with the average standard deviation of PRS$ ! ranging between 0.2 219 
to 0.41 across the studied traits (Table S1). We assessed whether the standard practice of quantile 220 
normalization of phenotypes impacts PRS and verify that for phenotypes with mildly skewed distributions, 221 
GWAS marginal association statistics and PRS uncertainty are largely consistent with or without quantile 222 
normalization (Supplementary Figures 11 and 12). 223 

For completeness, we investigated the impact of the threshold 𝑡 , and credible level 𝜌, on PRS-based 224 
stratification uncertainty, defined as the proportion of above-threshold individuals classified as “certain 225 
above-threshold” for a given trait. As expected, the proportion of certain above-threshold classifications 226 
decreases as 𝜌 increases (Figure 4a). For traits with higher average uncertainty (as defined using the scaled 227 
SD) we observe lower rates of certain classifications across all values of 𝜌. For example, at 𝑡 =90th and 228 
𝜌 =95%, the proportion of above-threshold individuals classified with certainty is 0 % for BMI (average 229 
scaled SD = 1.54) and 6.2% for hair color (average scaled SD = 0.62) (Figure 5a). Height and HDL have 230 
similar average levels of uncertainty (average scaled SD of 0.95 for height and 0.96 for HDL) and similar 231 
proportions of above-threshold individuals classified with certainty. For example, at 𝑡 =90th and 𝜌 =95%, 232 
the proportions of certain classifications among above-threshold individuals are 0.9% and 0.8% for both 233 
height and HDL (Figure 5a, Table 1). Using a more stringent threshold 𝑡 amplifies the effect of uncertainty 234 
on PRS-based stratification (Figure 5b). For example, for BMI and hair color, the proportion of certain 235 
classifications among above-threshold individuals drops for all values of 𝜌 when we increase the threshold 236 
from 𝑡=90th percentile to 𝑡=99th percentile (Figure 5b). 237 

We also quantified the impact of inferential variance in PRS$ ! 	on PRS-based ranking of the test-group 238 
individuals. Using two random samples of genetic effects from one MCMC chain after burn-in, we 239 
generated two independent rankings for all individuals in the test data and quantified the correlation in the 240 
rankings (Figure 4c, Methods). We observe large variability in the rankings across the test data, with the 241 
correlation of rankings ranging from 0.25 to 0.78 across the 13 traits. We also estimated 95% credible 242 
intervals for the rank of individuals at a given percentile (e.g., 90th) (Table 2, Methods, Supplementary 243 
Figure 13) to find high variability in the ranking. For example, in the case of HDL an individual at 90th 244 
(99th) percentile based on PRS point estimate can be within 41th to 99th percentiles (72th-99th) with 95% 245 
probability when the inferential variance in PRS estimation is taken into consideration (Table 2).  246 

Integrating individual-PRS uncertainty into PRS-based stratification 247 

In contrast to current PRS-based stratification practices which compare an individual’s PRS point estimate, 248 
PRS$ 0, to a given threshold 𝑡 without incorporating uncertainty, here we explore the use of the posterior 249 
probability that GV for individual i is above the threshold (i.e. Pr(GV! > 𝑡)). We estimate  Pr(GV! > 𝑡) 250 
using Monte Carlo integration within the LDpred2 framework and show in simulations that the probability 251 
is well-calibrated for different causal effect size distributions despite slight miscalibration when 252 
polygenicity is high or causal variants are not present in the training SNP panel (Methods, Supplementary 253 
Figure 14 and 15). As a motivating example, two individuals with similar PRS point estimates that happen 254 
to lie on either side of a prespecified threshold (PRS$ ! < 𝑡 and PRS$ ' > 𝑡) could have similar probabilities 255 
for the genetic value to exceed 𝑡 (e.g., Pr	(GV! > 𝑡) = 0.4 and Pr	(GV' > 𝑡) = 0.6) (Figure 2).  256 
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As expected, for traits with higher PRS uncertainty, we observe a smaller proportion of testing individuals 257 
with deterministic classification (Pr(𝐺𝑉! > 𝑡) = 0	or	1) (Supplementary Figure 16). We also find a tight 258 
correlation between PRS$ ! and Pr(GV0 > 𝑡) across individuals in the test data (Supplementary Figure 16). 259 
This is due to the relatively high polygenicity of the real traits in the analysis; a lower correlation is expected 260 
for traits with lower polygenicity (Supplementary Figure 17). However, Pr(GV0 > 𝑡)  also contains 261 
information about individual-level false positive (FP) and false negative (FN) probabilities which, given a 262 
situation-specific cost function, can be used to calculate the expected cost of an above-threshold versus 263 
below-threshold classification (Methods). The cost functions for FP and FN should be carefully specified 264 
in the context of the clinical application. As an example, consider a scenario in which an individual’s genetic 265 
information is being used to decide whether or not to perform a bone density scan. The cost functions for 266 
FP and FN will depend on, among many other factors, the cost of a bone density scan and whether the 267 
potential benefits outweigh the risks associated with exposure to low-dose x-rays. As an example of utility 268 
of the probabilities, consider three cost functions which relate the relative costs of false positive versus false 269 
negative diagnoses: (a) equal cost for each FP and FN diagnosis (CFP = CFN = 1); (b) 3x higher cost for FP 270 
diagnoses (CFP = 3, CFN = 1); and (c) 3x higher cost for FN diagnoses (CFP = 1, CFN = 3). For an individual 271 
with Pr(GV! > 𝑡) = 0.6, the probability of a FP versus FN diagnosis is 0.4 versus 0.6, respectively. The 272 
expected costs of FP diagnoses (Pr(FP) × C89) under each scenario are (a) 0.4, (b) 1.2, and (c) 0.4; the 273 
expected costs of FN diagnoses (Pr(FN) × C8:) are (a) 0.6, (b) 0.6, and (c) 1.8. Therefore, the classification 274 
for this individual that minimizes the expected cost under each scenario is (a) above-threshold, (b) below-275 
threshold, and (c) above-threshold. Assuming the same three cost functions as above, we find that the 276 
optimal decision threshold on Pr(GV! > 𝑡) that maximizes the utility of the cost/gain models differs under 277 
the three functions. For CFP = CFN = 1, both the estimated cost curve and true cost curve achieve minimum 278 
cost at threshold = 0.5. For CFP =3, CFN = 1, the estimated optimum is 0.25 and the true optimum is 0.3. For 279 
CFP =1, CFN = 3, the estimated optimum is 0.75 and the true optimum is 0.7. More notably, assuming the 280 
probabilities are well-calibrated, we can estimate the expected cost with the individual probability of being 281 
at above-threshold, with the estimated cost curve being very close to the true cost curve despite slight 282 
inflation (Figure 7).  283 
 284 

Discussion 285 

In this work, we demonstrate that uncertainty in PRS estimates at the individual level can have a large impact 286 
on subsequent analyses such as PRS-based risk stratification. We note that this work focuses estimating 287 
genetic value rather than predicting phenotype; uncertainty in predictions of phenotype will be larger than 288 
the results reported here due to the additional uncertainty in unmeasured environmental factors46. We propose 289 
a general procedure for obtaining estimates of individual-PRS uncertainty which can be applied to a wide 290 
range of existing PRS methods. Among 13 real traits in the UK Biobank, we find that even with GWAS 291 
sample sizes on the order of hundreds of thousands of individuals, there is considerable uncertainty in 292 
individual PRS estimates (i.e. large	𝜌-level	credible intervals) that can impair the reliability of PRS-based 293 
stratification. We propose a probabilistic approach to stratification that can be used in conjunction with 294 
situation-specific cost functions to help inform PRS-based decision-making, noting that such an approach is 295 
not necessarily useful for all downstream applications of PRS. Since PRS must be combined with non-genetic 296 
risk factors (e.g., age, lab values) to evaluate an individual’s absolute risk for a given disease—the quantity 297 
of interest in risk prediction—the practical utility of PRS, including measures of uncertainty in PRS, is highly 298 
dependent on disease-specific factors such as heritability, age of onset, and the costs/risks that would be 299 
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incurred by initiating treatment, among many others1,3. Measures of uncertainty for many non-genetic risk 300 
factors are routinely propagated in risk assessment47,48. For example, an individual’s uncertainty-adjusted 301 
non-genetic risk factor could be one of many risk factors within a proportional hazards model3,41,49. We 302 
conjecture that measures of individual-PRS uncertainty will be most useful for characterizing individuals 303 
whose combined risk scores (genetics + non-genetics factors) are at or close to the decision threshold for 304 
medical intervention; we leave an investigation of uncertainty in combined risk scores for future work.  305 

Our work is complementary to methods that aim to improve cohort-level metrics of PRS accuracy such as 306 
R2 or the area under the receiver operating characteristic (AUROC). We show that, for the purpose of genetic 307 
risk stratification, incorporating individual uncertainty is important as it allows us to estimate individual 308 
absolute and relative genetic risks without a validation sample, which is normally required to estimate 309 
absolute risks. As the individualized absolute risk estimates (genetic values) do not depend on a validation 310 
sample, we believe they could be robust leads to our proposed probabilistic genetic risk stratification, which 311 
can be seen as a principled approach for genetic risk stratification in clinical settings. 312 

We conclude with several caveats and future directions. First, we quantify individual PRS uncertainty by 313 
extending LDpred224, which is just one of many existing Bayesian methods that can be adapted for the same 314 
purpose (e.g., SBayesR27, PRS-CS50 and AnnoPred51). Extensions of other methods, including analogous 315 
procedures for P+T (PRSice-252) and regularization-based approaches (lassosum22 and BLUP prediction23 316 
24), could also be investigated. Overall, our methods produce well-calibrated credible intervals in realistic 317 
simulation parameter ranges, albeit slight mis-calibration when polygenicity is low and heritability is high. 318 
We hypothesize that it is due to several approximations employed in LDpred2 for computational efficiency. 319 
We leave investigation of the impact of approximation on calibration and further improvement for future 320 
work.  321 

Second, while we find broad evidence that both trait-specific genetic architecture parameters (e.g., 322 
heritability, polygenicity) and individual-specific genomic features (e.g., cumulative number of effect alleles) 323 
can impact individual PRS uncertainty, both sources of uncertainty merit further exploration. For example, 324 
we perform simulations under a model in which each causal variant explains an equal portion of total SNP-325 
heritability but, in reality, genetic architecture can vary significantly among different traits. Does individual 326 
PRS uncertainty change if both monogenic and polygenic disease risk factors53,54 are used for PRS estimation? 327 
We do not find a correlation between an individual’s cumulative number of effect alleles and their individual 328 
PRS uncertainty. This is primarily due to the high polygenicity of the traits being tested. Consequently, we 329 
observe tight correlation between PRS$ ! and Pr(GV! > 𝑡) in most simulation scenarios except those with low 330 
polygenicity. Extending these analyses to traits with a wider range of genetic architectures will be of interest. 331 
We leave a detailed investigation of the various sources contributing to individual PRS uncertainty for 332 
ongoing work. 333 

Third, we perform all simulations and real data analyses using genotyped SNPs (MAF > 1% on the UK 334 
Biobank Axiom Array). Since the array is designed such that the genotyped SNPs tag most of the signal from 335 
unobserved SNPs, the SNPs (predictors) used in our real data analyses likely capture most of the SNP-336 
heritability for each trait. However, it is unclear whether individual PRS uncertainty would increase or 337 
decrease if imputed data were used instead of genotyped SNPs. Moreover, for many diseases, the largest 338 
GWAS are only available as summary statistics (estimates of marginal effects and their standard errors). It 339 
is important to assess whether there is larger uncertainty in causal effects inferred from summary statistics 340 
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as that would lead to higher variability in estimated PRS. We conjecture that changes in uncertainty will also 341 
vary across traits depending on factors such as the number of SNPs (predictors) included in the PRS; the 342 
resolution of the credible sets generated by sampling causal configurations; and differences in LD tagging 343 
between predictor SNPs and causal SNPs as well as among predictor SNPs. A comparison of individual PRS 344 
uncertainty with respect to array data, imputed data, and summary statistics merits thorough investigation in 345 
future work. 346 

Fourth, although we have shown that our approach is robust to certain types of model misspecification (e.g., 347 
effect sizes drawn from mixture of normal distributions, imperfect tagging of causal effects), we do not 348 
exclude the possibility of nonlinear interaction effects such as GxE, GxG and dominance effects55–58. We 349 
also assume that phenotypes are normally distributed or can be properly quantile normalized. For phenotypes 350 
with skewed distributions, the interpretation of the estimated genetic value and the associated uncertainty is 351 
unclear. For binary traits, the impact of disease prevalence and case/control sample sizes on PRS uncertainty 352 
and the interpretation of PRS uncertainty with respect to liability and odds ratio remain unclear. We leave a 353 
full investigation of these questions for future work. 354 

Lastly, in the present study, we did not investigate individual PRS uncertainty in transethnic or admixed 355 
population settings. Causal variants, causal effect sizes, allele frequencies, and LD patterns can vary 356 
significantly across populations59,60. Moreover, PRS prediction accuracy (measured via cohort-level metrics) 357 
is well known to depend heavily on the ancestry of the individuals in the GWAS training data61,62.We 358 
therefore leave a detailed exploration of individual PRS uncertainty with respect to ancestry as future work. 359 
  360 
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Methods 361 

Individual PRS uncertainty. Let 𝑦0  be a trait measured on the 𝑖-th individual, 𝐱!  an M × 1 vector of 362 
standardized genotypes and 𝛃 an M × 1 vector of corresponding standardized effects for each genetic 363 
variant. Under a standard linear model, the phenotype model is 𝑦! = 𝐱!"𝛃 + ϵ!, where ϵ!~𝑁(0, 𝜎;-). The 364 
goal of polygenic risk scores (PRS) methods is to predict genetic value for individual i (GV! ≔ 𝐱!"𝛃) of the 365 
phenotype. In practice, the genetic effects 𝛃 are unknown and need to be inferred from GWAS data as 𝛃8. 366 
Therefore, the inferential variance in 𝛃8 propagates to the estimated genetic value of individual i PRS$ ! =367 
	𝐱!"𝛃8. In this work we study the inferential variance in PRS$ ! = 	𝐱!"𝛃8 as a noisy estimate of GV! = 𝐱!"𝛃.  368 
 369 
Estimating individual uncertainty in Bayesian models of PRS. Next, we show how Bayesian models for 370 
estimating  PRS$ ! can be extended to evaluate the variance of its estimate. We focus on LDpred2, a widely 371 
used method, although similar approach can be incorporated in most Bayesian approaches. LDpred2 372 
assumes causal effects at SNP j are drawn from a mixture distribution with spike at 0 as follows: 373 

𝛽' ∼ o𝒩(0,
ℎ,-

𝑀𝑝123425
) , with	probability	𝑝123425

0 ,with	probability	1 − 𝑝123425
 374 

Here, 𝑀 is the total number of SNPs in the model, ℎ,-  is the heritability of the trait, and 𝑝123425 is the 375 

proportion of causal variants in the model (i.e., polygenicity). Let 𝛃8#$%& and  𝐑8	represent GWAS marginal 376 
effects and LD matrix computed from GWAS samples. By combining the prior probability 𝑝(𝛃|ℎ,-, 𝑝123425) 377 

and the likelihood of observed data 𝑝(𝛃8#$%&	|𝛃, 𝐑8) , we can compute a posterior distribution as 378 
𝑝(𝛃|𝛃8#$%&, 	𝐑8, ℎ,- , 𝑝123425). The posterior distribution is intractable and therefore LDpred2 uses Markov 379 

Chain Monte Carlo (MCMC) to obtain posterior samples from 𝑝(𝛃|𝛃8#$%&, 	𝐑8, ℎ,- , 𝑝123425). For simplicity, 380 

we use 𝛃y	~	𝑝(𝛃|𝛃8#$%&, 	𝐑8, ℎ,- , 𝑝123425) to refer to the samples from the posterior distribution, and use 𝑝M𝛃yP 381 

to refer to 𝑝(𝛃|𝛃8#$%&, 	𝐑8, ℎ,- , 𝑝123425) whenever context is clear. The posterior samples of the causal effects 382 

are summarized using the expectation 𝔼L𝛃yQ = ∫ 𝛃y𝑝M𝛃yP𝑑𝛃y, leading to  PRS$ ! = 	𝐱!"𝔼L𝛃yQ.  383 
Unlike existing methods that summarize the posterior samples of causal effects into the expectation 384 

and then estimate PRS$ !, we sample from the posterior of PRSi to construct a 𝜌 level credible interval of 385 
genetic value (𝜌	GV!-CI) for each individual. Bernstein-von Mises theorem provides the basis that under 386 
certain conditions, such constructed Bayesian credible interval will asymptotically be of coverage probability 387 
𝜌 63. This property of the Bayesian credible interval provides intuitive explanation of the uncertainty. 388 
Concretely, we obtain 𝐵  MCMC samples from the posterior distribution of causal effects 389 
𝑝M𝛃yP:	𝛃y(/), 𝛃y(-), … , 𝛃y(>). Then we compute a PRS estimate for individual i from each sample of 𝑝M𝛃yP: 𝐱-390 

!
"	𝛃y(/), 𝐱!"𝛃y(-), … , 𝐱!"𝛃y(>) to approximate the posterior distribution of PRS0 (𝑝M𝐱!"𝛃yP). From the B samples 391 

of posterior, we obtain empirical /.?
-

 and /.?
-

 quantiles as lower and upper bound estimates of  𝜌	GV!-CI 392 

(Figure 2b). As 𝐵 goes to infinity, such Monte Carlo estimates converge to the L𝑄(/.?)/-M𝐱!"𝛃yP, 𝑄(/A?)/-M𝐱-393 

!
"𝛃yPQ, where 𝑄BM𝐱!"𝛃yP represents the 𝛼-quantile (here, 𝛼 = (1 − 𝜌)/2, (1 + 𝜌)/2) for distribution of 𝑝M𝐱-394 

!
"𝛃yP. Similarly, we summarize the posterior samples using the second moment to estimate 𝑠𝑑(PRS$ !) = 	𝑠𝑑(𝐱-395 

!
"𝛃y) . In practice, we used 𝐵 = 500  as that leads to stable results. We investigated the autocorrelation 396 
statistics and found no evidence of autocorrelation at various lags in our experiment. (Supplementary figure 397 
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18). We recommend checking autocorrelation in practice. The MCMC samplings should be thinned when 398 
there is strong evidence of autocorrelation, which otherwise will lead to underestimation of variance. 399 

Although in this work we focus on LDpred2, the above described procedure is generalizable to a 400 
wide range of Bayesian methods (e.g., SBayesR27, PRS-CS50 and AnnoPred51). Methods that are not based 401 
on Bayesian principle could potentially use Bootstrap to obtain individual uncertainty intervals64. 402 

 403 
Analytical form of individual PRS uncertainty under infinitesimal model. To facilitate understanding 404 
of PRS uncertainty, we derive an analytical estimator of PRS uncertainty under simplified assumptions: (1) 405 
all 𝑀 SNPs are independent and causal; and (2) effect sizes are i.i.d. and drawn from an infinitesimal model, 406 
𝛽' ∼ 𝑁M0, ℎ,-/𝑀P for 𝑗 = 1,… ,𝑀, where ℎ,- is the total heritability and 𝑀 is the number of causal variants. 407 
Without loss of generality, we assume that genotypes are standardized to have mean zero and unit variance 408 
in the population, i.e. 𝔼	M𝑥!'P = 0 and 𝑣𝑎𝑟M𝑥!'P = 1, where 𝑥!' is the genotype at SNP 𝑗 for individual 𝑖. 409 
Under this assumption, following Appendix A in ref.26, the least squares estimate of the GWAS marginal 410 
effect 𝛽�#$%&,' is approximately distributed as  411 

𝛽�#$%&,'|𝛽' ∼ 𝑁�𝛽' ,
1
𝑁
S1 −

ℎ,-

𝑀
U�. 412 

Since the per-SNP heritability in this model, (!
"

)
, is small, the variance /

D
J1 − (!"

)
K can be approximated as 413 

1/N. The posterior distribution of 𝛽'|𝛽�#$%&,' then becomes  414 

𝛽'|𝛽�#$%&,' ∼ N�S1 +	
𝑀
ℎ,-𝑁

U
./

𝛽�#$%&,' 	,
1
𝑁
S1 +	

𝑀
ℎ,-𝑁

U
./

�. 415 

Therefore, the posterior variance of genetic value for an individual with the genotype 𝐱!  can be 416 
approximated as 417 

𝑣𝑎𝑟M𝐱!"𝛃N𝐱! , 𝐗, 𝐲, ℎ,-P ≈�𝑥!'- 𝑣𝑎𝑟M𝛽'N𝛽�#$%&,'P
)

'E/

=
∑ 𝑥!'-)
'E/

𝑁
S1 +	

𝑀
ℎ,-𝑁

U
./

, 418 

where the approximation is based on the fact that 𝛽' and 𝛽F are approximately independent in the posterior 419 
distribution.  420 

Recalling that genotype is standardized so that 𝔼M𝑥!'- P =1, the expected posterior variance of 421 
genetic value in the population can be approximated by: 422 

𝔼𝐱# J𝑣𝑎𝑟M𝐱!
"𝛃N𝐱! , 𝐗, 𝐲, ℎ,-PK ≈

𝑀𝔼M𝑥!'- P
𝑁

S1 +	
𝑀
ℎ,-𝑁

U
./

= S
1
ℎ,-
+
𝑁
𝑀
U
./

 423 

 424 
Connection between PEV and posterior variance. Prediction error variance (PEV), a widely used 425 
concept in the animal breeding literature, is defined as 𝑣𝑎𝑟𝛃,𝐲L	𝐱!"𝛃8 − 𝐱!"𝛃Q, where 𝐱! is the genotype of 426 

individual i and 𝛃8 = 𝔼𝛃|𝐲[𝛃] is the posterior mean of the causal effects. This variance is with respect to the 427 
randomness of both the prior 𝛃 and phenotype 𝐲, holding 𝐗 as fixed. 428 

It follows from the law of total variance that 𝑣𝑎𝑟𝛃,𝐲[𝛃] = 𝔼𝐲 �𝑣𝑎𝑟𝛃|𝐲[𝛃]� + 𝑣𝑎𝑟𝐲 �𝔼𝛃|𝐲[𝛃]�. Using 429 

the fact that 𝑣𝑎𝑟𝛃,𝐲L𝛃8 − 𝛃Q = 𝑣𝑎𝑟𝛃,𝐲[𝛃] − 𝑣𝑎𝑟𝛃,𝐲L𝛃8Q (Section 5.6.4 from ref.31), we have 430 
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𝑣𝑎𝑟𝛃,𝐲L𝛃8 − 𝛃Q = 𝑣𝑎𝑟𝛃,𝐲[𝛃] − 𝑣𝑎𝑟𝛃,𝐲L𝛃8Q	431 

= 𝔼𝐲 �𝑣𝑎𝑟𝛃|𝐲[𝛃]� + 𝑣𝑎𝑟𝐲 �𝔼𝛃|𝐲[𝛃]� − 𝑣𝑎𝑟𝛃,𝐲L𝛃8Q	432 

= 𝔼𝐲 �𝑣𝑎𝑟𝛃|𝐲[𝛃]� 433 

Finally, by multiplying a fixed genotype vector 𝐱! 	to both sides, we have 434 

𝑣𝑎𝑟𝛃,𝐲L𝐱!"𝛃8 − 𝐱!"𝛃Q = 𝔼𝐲 �𝑣𝑎𝑟𝛃|𝐲L𝐱!"𝛃Q� 435 

Therefore, the prediction error variance is equal to the expectation of posterior variance under repeated 436 
sampling of 𝐲. Given large sample sizes, we expect that for each realization of 𝐲, 𝑣𝑎𝑟𝛃|𝐲L𝐱!"𝛃Q will not 437 

deviate much from 𝔼𝐲 �𝑣𝑎𝑟𝛃|𝐲L𝐱!"𝛃Q�. Therefore, PEV and posterior variance will be approximately equal. 438 

We also note that under infinitesimal model setting, the posterior variance of genetic value has the same 439 
matrix form as the inversion of coefficient matrix of mixed model equation for BLUP30,33.  440 

 

Simulations. We design simulation experiments in various settings and different sample sizes to understand 441 
the properties of uncertainty in PRS estimates. We used simulation starting from genotypes in UK Biobank 442 
65. We excluded SNPs with MAF < 0.01 and genotype missingness > 0.01, and those SNPs that fail the 443 
Hardy-Weinberg test at significance threshold 10-7, which leaves us 459,792 SNPs. We preserve “white 444 
British individual”, with self-reported British white ancestry and filter pairs of individuals with kinship 445 
coefficient < 1/2(9/2)) 65. We further filtered individuals who are outliers for genotype heterozygosity and/or 446 
missingness, and obtained 291,273 individuals for all analyses. 447 

Given the genotype matrix 𝐗, heritability ℎ,-, proportion of causal variants 𝑝123425, standardized 448 
effects and phenotypes are generated as follows 449 

𝛽' ∼ o𝑁S0,
ℎ,-

𝑀𝑝123425
U cJ = 1	, with	probability	𝑝123425

0 cJ = 0,with	probability	1 − 𝑝123425
 450 

(𝑦/, … , 𝑦D)" ∼ 𝑁(𝐗𝛃, M1 − ℎ,-P𝐈D) 451 

Finally, given the phenotypes 𝐲 = (𝑦/, … , 𝑦D)"  and genotypes 𝐗 , we simulate the GWAS marginal 452 

association statistics with  𝛃8#$%& =
/
D
𝐗"𝐲. We simulate the data using a wide range of parameters, ℎ,- ∈453 

{0.05,0.1,0.25,0.5, 0.8}, 𝑝123425 ∈ {0.001,0.01,0.1,1}, a total of 20 simulation settings, with each repeated 454 
10 times. The total population of individuals is randomly assigned to 250,000 individuals as the training 455 
population, 20,000 individuals as the validating population, and the rest of 21,273 individuals as the testing 456 
population, as the usual practice for the PRS model building process. When investigating how sample sizes 457 
in the training cohort change PRS uncertainty, we vary the sample sizes in the training population in 20,000, 458 
50,000, 100,000, 150,000, and 250,000, while holding the validation population and testing population as 459 
intact, to enable a fair comparison between sample sizes.  460 

 461 

Real data analysis. We performed real data analysis with 13 real traits from UK Biobank, including hair 462 
color, height, body mass index (BMI), bone mass density in the heel (BMD), high density lipoprotein 463 
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(HDL), low density lipoprotein (LDL), cholesterol, igf1, creatinine, red blood cell count (RBC) and white 464 
blood cell count (WBC), hypertension and cardiovascular disease. The genotype was processed in the same 465 
way as the simulation study, where we have 459,792 SNPs and 291,273 individuals. We randomly 466 
partitioned the total of 291,273 individuals into 250,000 training, 20,000 validation and 21,273 testing 467 
groups. The random partition was repeated five times to average of the randomness of results due to sample 468 
partition. For each round of random partition of the individuals, we calculated marginal association statistics 469 
between genotype and quantile-normalized phenotype in training group with PLINK, using age, sex, and 470 
the first 20 genetic principal components as the covariates. Then we applied LDpred2 to obtain the 471 
individual posterior distribution of the genetic value, as described above. We regressed out covariates from 472 
the phenotypes to obtain adjusted phenotypes, where the regressing coefficients are first estimated from the 473 
training population, and applied to phenotype from training, validation and testing population respectively. 474 
We evaluate accuracy of PRS estimates in validation and testing groups by Pearson correlation between 475 
PRS estimates and adjusted phenotypes.  476 

 477 

PRS analysis using LDpred2. We run LDpred2 for both simulation and real data analysis with the 478 
following settings. We calculate the in-sample LD with functions provided by the LDpred2 package, using 479 
the window size parameter of 3cM. We estimate the heritability ℎ1KL#

- , 𝑖 = 1,… , 22 for each chromosome 480 
with built-in constrained LD score regression66 function. We run LDpred2-grid per chromosome with a grid 481 
of 17 polygenicity parameters 𝑝123425  from 10-4 to 1 equally spaced in log space, three heritability 482 
parameters {0.7ℎ1KL#

- , 1.0ℎ1KL#
- , 1.4	ℎ1KL#

- } , and with the sparsity option both enabled and disabled, as 483 
recommended by LDpred2. We choose the model with the highest R2 between the predicted posterior mean 484 
and the (adjusted) phenotype on validation set as best model to apply to testing data. We extract 500 485 
posterior samples of causal effects 𝛃y(/), 𝛃y(-), … , 𝛃y(MNN) after 100 burn-in iterations from MCMC sampler 486 
of the model to approximate posterior distribution of causal effects. For each individual with genotype 𝐱!, 487 
we calculate 𝐱!"	𝛃y(/), 𝐱!"𝛃y(-), … , 𝐱!"𝛃y(MNN) to approximate GV posterior distribution for individual 𝑖. We 488 
then calculate summary statistics of GV posterior distribution, including the posterior mean (PRS$ !), 𝜌 level 489 
credible interval (𝜌	GV!-CI) and probability of above threshold t (Pr(GV! > t)). 490 

 491 

Calculating and evaluating the coverage. We evaluate the coverage properties of 𝜌 GVi-CI in simulation: 492 
we check whether ℙM𝐱!"𝛃 ∈ L𝑄(/.?)/-M𝐱!"𝛃yP, 𝑄(/A?)/-M𝐱!"𝛃yPQP = 𝜌. To evaluate this property, for each 493 
simulated dataset, we calculate the frequency of the true genetic risk lies in the predicted interval, i.e., the 494 
frequency of 𝐱!"𝛃 ∈ L𝑄(/.?)/-M𝐱!"𝛃yP, 𝑄(/A?)/-M𝐱!"𝛃yPQ for every individual in the testing population, for 𝜌 ∈495 
{0.1, 0.2, … , 1.0}. This property provides us an intuitive understanding of the predicted interval: for an 496 
individual with a predicted interval L𝑄(/.?)/-M𝐱!"𝛃yP, 𝑄(/A?)/-M𝐱!"𝛃yPQ, its true genetic risk is expected to be 497 
in this interval with a probability 𝜌. 498 

 499 

Definition of scaled standard deviation in individual PRS estimates. To compare the relative order of 500 
standard deviation across different genetic architecture, especially across genetic architecture with different 501 
heritability, we define the quantity, scaled standard deviation in individual PRS estimates (scaled 𝑠𝑑(PRS$ !)) 502 
to enable fair comparison. The quantity is defined for every individual 𝑖, as sd𝛃OL𝐱!

"𝛃yQ/sd𝐱#L𝐱!
"𝛃8Q, where 503 
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the numerator term sd𝛃OL𝐱!
"𝛃yQ  refers to standard deviation due to the posterior sampling of 𝛃y  of 𝑖 -th 504 

individual. Recalling that 𝐱!"𝛃8 = 𝔼L𝐱!"𝛃yQ, the denominator term sd𝐱#L𝐱!
"𝛃8Q refers to the variation of the 505 

point estimate across individuals in the population.  506 

 507 

Posterior individual ranking interval. The relative rank of individual PRS 𝐱!"𝛃y(P)	in the population 508 
𝐱'"𝛃y(P), 𝑗 = 1,… ,𝑁	varies across different MCMC samplings of posterior causal effects. To evaluate the 509 

uncertainty of ranking for individual 𝑖 , we compute 𝑟!
(Q)  as the quantile of 𝐱!"𝛃y(P)	 in the population 510 

𝐱'"𝛃y(P), 𝑗 = 1,… ,𝑁	for each of the 𝑏 = 1,… , 𝐵 posterior samples to approximate posterior distribution of 511 

the relative rank. We can obtain ρ-level credible intervals of ranking as L𝑄(/.?)/-(𝑟!), 𝑄(/A?)/-(𝑟!)Q for 512 
each individual 𝑖. To assess the uncertainty of ranking for individuals at 90 (99) percentile threshold based 513 
on PRS estimates, we select individuals within 1 percentile of thresholds (89.5-90.5%, 98.5-99.5%) and 514 
compute mean and standard deviation for lower and upper bound of ρ=95% posterior ranking interval, 515 
across the selected individuals. 516 

 517 

PRS rank correlation between different MCMC samplings. With the 𝐵 posterior causal effects samples 518 
𝛃y(/), 𝛃y(-), … , 𝛃y(>) after burn-in, and 𝑁 individuals in the testing population 𝐱/, 𝐱-, … , 𝐱D, we compute PRS 519 

for each individual, 𝐱/"𝛃y(Q),… , 𝐱D"𝛃y(Q) and its relative rank in the population 𝑟/
(Q), … , 𝑟D

(Q) for each posterior 520 

sample 𝛃y(Q). Then for each pair of different 𝑏/-th,𝑏--th posterior samples, 𝛃y(Q$), 𝛃y(Q"), we calculate the 521 

spearman correlation between 𝑟/
(Q$), … , 𝑟D

(Q$) and 𝑟/
(Q"), … , 𝑟D

(Q"), representing the variability of the ranks 522 
across MCMC samplings. We compute the rank correlation for 1000 pairs of different MCMC samplings, 523 
and get the distribution of the rank correlation. 524 

 525 

Probabilistic risk stratification. We define the notion of probabilistic framework for risk stratification 526 
based on posterior distribution of GV! . Given a pre-specified threshold 𝑡, for every individual, we can 527 
calculate the posterior probability of the genetic risk larger than the given threshold 𝑡, Pr(GV0	 > 𝑡), with 528 
Monte Carlo integration as 529 

Pr(GV! > 𝑡) = 	
1
𝐵
�𝕀(𝐱!"𝛃y(Q) > t)
>

QE/

 530 

We use the previous simulation settings to show that this probability is well calibrated. For each simulation, 531 
we divide the individuals based on their posterior probability of being at above-threshold into 10 bins with 532 
{0, 0.1, … , 1.0} as breaks. For each bin, we calculate the proportion of individuals with true genetic risk 533 
higher than the threshold as the empirical probability and the average posterior probability as theoretical 534 
probability. The empirical probability is expected to be the same as theoretical probability.  535 

 536 

Utility analysis. The individualized posterior distribution of genetic value provides extra information for 537 
patient stratification. We consider a scenario that there is a cost associated for decision that (1) classify an 538 
individual with low genetic risk into a high genetic risk category, 𝐶89, where FP represents false positive. 539 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2020.11.30.403188doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403188
http://creativecommons.org/licenses/by/4.0/


16 

(2) classify an individual with high genetic risk into a low genetic risk category, 𝐶8:, where FN represents 540 
false negative. For an individual with posterior probability  Pr(GV! 	 > 𝑡), we want to decide an action, 541 
whether to classify this individual to be at high genetic risk, and perform further screening. If we classify 542 
this individual as above-threshold, we will have probability 1 − Pr(GV! 	 > 𝑡),  that this individual is in fact 543 
below-threshold, inducing an expected cost 𝐶89M1 − Pr(GV! 	 > 𝑡)P.	 Conversely, if we classify this 544 
individual as below-threshold, we will have probability	Pr(GV! 	 > 𝑡) that this individual will be in the high 545 
genetic risk, inducing an expected cost 𝐶RDPr(GV! 	 > 𝑡) . To minimize the expected cost, we would decide 546 

according to which action leads to the least cost. The critical value in this scenario is 	T%&
T%'AT%&

: if 547 

Pr(GV! 	 > 𝑡) > 	 	T%&
T%'AT%&

, we would choose to classify this individual as above-threshold, otherwise below-548 

threshold. 549 

 550 
Software implementation. Our method is implemented in the LDpred2 package (see URLs). In the 551 
function `snp_ldpred2_grid`, setting the option `return_sampling_betas = TRUE` will output B posterior 552 
samples of the causal genetic effects. Posterior samples of an individual’s GV are obtained by multiplying 553 
the individual’s genotype by the M x B weight matrix. One can subsequently obtain the posterior mean, 554 
posterior variance, and other quantities of interest from the posterior of the GV. We note that the time 555 
required to estimate the causal effects remains the same; the only additional computational costs come from 556 
storing the M x B weight matrix and from multiplying the genotype vector by an M x B matrix rather than 557 
an M x 1 vector. The memory required to store 500 samples of causal effects for 459,792 SNPs is 558 
approximately 2 GB. Given the B posterior samples of causal effects, the runtime for computing the 559 
posterior distribution of genetic value for 10,000 testing individuals is less than five minutes.  560 

 561 

Data availability 562 

The individual-level genotype and phenotype data are available by application from the UKBB 563 
http://www.ukbiobank.ac.uk/. 564 
 565 

URLs 566 

LDpred2 software implementing individual PRS credible intervals: 567 
https://privefl.github.io/bigsnpr/articles/prs_uncertainty.html  568 

Scripts for simulations and real data analyses: 569 
https://github.com/bogdanlab/prs-uncertainty 570 
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Figures and Tables 
 

  
 

Figure 1. LD and finite GWAS sample size introduce uncertainty into PRS estimation. We 578 
simulated a GWAS of 𝐍 individuals across 3 SNPs with LD structure 𝐑 (SNP2 and SNP3 are in LD of 579 
0.9 whereas SNP1 is uncorrelated to other SNPs) where SNP1 and SNP2 are causal with the same 580 
effect size 𝛃𝐜 = (0.016, 0.016, 0) such that the variance explained by this region is var(𝐱"𝛃𝐜) = 0.5/1000 581 
corresponding to a trait with total heritability of 0.5 uniformly distributed across 1,000 causal regions. The 582 
marginal effects observed in a GWAS, 𝛃2#$%& , have an expectation of 𝐑𝛃𝐜  and variance-covariance 583 
(σ'(/N)𝐑, thus showcasing the statistical noise introduced by finite sample size of GWAS (N); for example, 584 
the probability of the marginal GWAS effect at tag SNP3 to exceed the marginal effect of true causal 585 
SNP2, although decreases with N, remains considerably high for realistic sample and effect sizes (12% 586 
at N=100,000 for a trait with h2=0.5 split across 1,000 causal regions, see Supplementary Figure 1). We 587 
consider one such observation for the effects observed in a GWAS: 𝛃2#$%&=(0.016, 0.016, 0.016). Given 588 
such observation, in addition to the true causal effects (𝛃𝐜), other causal configurations are probable 589 
𝛃𝟏=(0.016, 0, 0.016)  or 𝛃𝟐=(0.016, 0.008, 0.008) . An individual with genotype 𝐱𝐢 = (𝟎	𝟏	𝟎),will attain 590 
different PRS estimates under these different causal configurations. Most importantly, in the absence of 591 
other prior information, 𝛃𝟏 and 𝛃𝐜 are equally probable given the data thus leading to different PRS 592 
estimates for individual 𝐱𝐢 = (𝟎	𝟏	𝟎),. 593 
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Figure 2. Framework for extracting uncertainty from Bayesian methods for probabilistic individual 
stratification. (a) Procedure to obtain uncertainty from LDpred2. LDpred2 uses MCMC to sample from the 
posterior causal effect distribution given GWAS marginal effects, LD, and a prior on the causal effects. It 
outputs the posterior mean of the causal effects which is used to estimate the posterior mean genetic value 
(the PRS point estimate). Our framework samples from the posterior of the causal effects to approximate 
the posterior distribution of genetic value. The density plot represents the posterior distribution of GV for an 
individual. The shaded area represents a ρ-level credible interval. The dot represents the posterior mean. 
(b) Probabilistic risk stratification framework. Given a threshold 𝑡, instead of dividing individuals into above-
threshold ( PRS= - > 𝑡)	 and below-threshold ( PRS= - ≤ 𝑡)  groups dichotomously (left), probabilistic risk 
stratification assigns each individual a probability of being above-threshold Pr(GV- > 𝑡) (right).  
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Figure 3. Expected 𝒔𝒅(𝐏𝐑𝐒F𝒊) estimated as a function of heritability, polygenicity and training GWAS 
sample size is highly correlated with average 𝒔𝒅(𝐏𝐑𝐒F𝒊) across testing individuals. (a) The analytical 
form provides approximately unbiased estimates of expected sd(PRS= /) in simulations when p012314 = 1. The 
x-axis is the average sd(PRS= /) in testing individuals. The y-axis is the expected sd(PRS= /)  computed from 
Equation (1). Each dot is an average of 10 simulation replicates for each h5( ∈ {0.05, 0.1, 0.25, 0.5, 0.8}. The 
horizontal whiskers represent ± 1.96 standard deviations of average sd(PRS= /)  across 10 simulation 
replicates. The vertical whiskers represent ±1.96 standard deviations of expected sd(PRS= /) across 10 
simulation replicates. (b) The analytical estimator of expected sd(PRS= /) is highly correlated with estimates 
obtained via posterior sampling for real traits. The x-axis is the average sd(PRS= /) in testing individuals. The 
y-axis is the expected sd(PRS= /) computed from Equation (1), where M is replaced with the estimated 
number of causal variants and heritability is replaced with estimated SNP-heritability.  
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Figure 4. Genetic architecture (polygenicity (𝒑𝐜𝐚𝐮𝐬𝐚𝐥), SNP-heritability (𝒉𝒈𝟐), and GWAS sample sizes) 
impacts uncertainty in PRS estimates in simulations. (a) Individual credible intervals are well-calibrated 
(ℎ;( = 0.25, 𝑝012314 = 1%). Empirical coverage is calculated as the proportion of individuals in a single 
simulation whose 𝜌-level credible intervals contain their true genetic risk. The error bars represent 1.96 
standard errors of the mean calculated from 10 simulations. (b) Correlation between uncertainty and true 
genetic value (ℎ;( = 0.25, 𝑝012314 = 1%). Each dot represents an individual. The x-axis is the true genetic 
value; the y-axis is standard deviation of the individual PRS estimate (𝑠𝑑(PRS= -)). (c) Distribution of individual 
PRS uncertainty estimates with respect to polygenicity (𝑝<=>?=@ ∈ {0.0001, 0.01, 0.1, 1}, ℎ;( = 0.25). Each 
violin plot represents 𝑠𝑑(PRS= - ) for 21,273 testing individuals across 10 simulations. (d) Distribution of 
individual PRS uncertainty estimates with respect to heritability (ℎ;( ∈ {0.05, 0.1, 0.25, 0.5, 0.8}, 𝑝<=>?=@ =
0.01). Each violin plot represents scaled 𝑠𝑑(PRS= - ) for 21,273 testing individuals across 10 simulation 
replicates. Since larger heritability yields larger genetic values in our simulations, we plot 𝑠𝑑(PRS= -) divided 
by the standard deviation of PRS point estimates in the testing group to enable comparison of uncertainty 
across different heritability values (Methods). (e) Distribution of individual uncertainty estimates with respect 
to training GWAS sample size. Each violin plot represents scaled 𝑠𝑑(PRS= -) of individual PRS for 21,273 
testing individuals across 10 simulation replicates.  
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Figure 5. Uncertainty in real data and its influence on genetic risk stratification. (a) Example of 
posterior PRS distributions for individuals with certain below-threshold (dark blue), uncertain below-
threshold (light blue), uncertain above-threshold (light yellow), and certain above-threshold (dark yellow) 
classifications for HDL. Each density plot is a smoothed posterior PRS distribution of an individual randomly 
chosen from that category. The solid vertical lines are posterior means. The shaded areas are 95% credible 
intervals. The red dotted line is the classification threshold. (b) Distribution of classification categories 
across 11 traits (𝑡=90%, 𝜌=95%). Each bar plot represents the frequency of testing individuals who fall into 
each of the four classification categories for one trait. The frequency is averaged across five random 
partitions of the whole dataset. (c) Correlation of PRS rankings of test individuals obtained from two MCMC 
samplings from the posterior of the causal effects. For each trait, we draw two samples from the posterior 
of the causal effects, rank all individuals in the test data twice based on their PRS from each sample, and 
compute the correlation between the two rankings across individuals. Each violin plot contains 5,000 points 
(1,000 pairs of MCMC samples and five random partitions). 
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Figure 6. Impact of threshold 𝒕 and credible set level 𝝆 on stratification uncertainty. (a) Proportion of 
above-threshold classifications that are “certain” for four representative traits. The x-axis shows 𝝆 varying 
from 0 to 1 in increments of 0.05. The stratification threshold 𝑡 is fixed at 90%. (b) Proportion of above-
threshold classifications that are “certain” for two representative traits and two stratification thresholds (𝑡 =
90%, 99%).  
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Figure 7. Flexible cost optimization with probabilistic individual stratification under various cost 
functions. Each color corresponds to one cost function: (a) equal cost for each FP and FN diagnosis (CFP 
= CFN = 1, red); (b) 3x higher cost for FP diagnoses (CFP = 3, CFN = 1, green); and (c) 3x higher cost for FN 
diagnoses (CFP = 1, CFN = 3, blue). The probability threshold for classification is varied along the x-axis. 
Solid lines represent cost calculated using true genetic risk and dotted lines represent cost estimated from 
the probability of an individual being above-threshold. Diamond symbols represent the optimal classification 
threshold for each curve (the minima). Simulation parameters are fixed to ℎ;( = 0.25, 𝑝012314 = 1%. 
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Trait 

PRS < t (“Below threshold”)  PRS > t (“Above threshold”) 

# Certain 
# Certain/ 

(#Certain + # 
Uncertain) 

# Certain 
# Certain/ 

(#Certain + # 
Uncertain) 

 t = 90th 

Hair color  11205.0 (287.0) 58.5 (1.5)%  
131.4 
(18.6) 6.2 (0.9)% 

Height  5961.4 (197.6) 31.1 (1.0)%  18.4 (2.4) 0.9 (0.1)% 
Body mass index (BMI)  935.8 (198.6) 4.9 (1.0)%  0.4 (0.5) 0.0 (0.0)% 
High density lipoprotein (HDL)  5860.8 (681.9) 30.6 (3.6)%  16.2 (8.3) 0.8 (0.4)% 
Low density lipoprotein (LDL)  8236.4 (494.3) 43.0 (2.6)%  29.6 (7.8) 1.4 (0.4)% 
Cholesterol  7026.0 (660.1) 36.7 (3.4)%  20.2 (6.8) 0.9 (0.3)% 
IGF1  3305.2 (371.8) 17.3 (1.9)%  4.0 (1.2) 0.2 (0.1)% 
Creatinine  2052.4 (375.8) 10.7 (2.0)%  1.2 (1.3) 0.1 (0.1)% 
Red blood cell count (RBC)  3745.8 (660.4) 19.6 (3.4)%  6.2 (3.6) 0.3 (0.2)% 
White blood cell count (WBC)  1996.6 (120.5) 10.4 (0.6)%  0.6 (0.5) 0.0 (0.0)% 
Bone mass density in heel 
(BMD)  1654.2 (152.5) 8.6 (0.8)%  2.0 (2.3) 0.1 (0.1)% 
Hypertension  257.4 (78.1) 1.3 (0.4)%  0.0 (0.0) 0.0 (0.0)% 
Cardiovascular (CVD)  125.4 (57.7) 0.7 (0.3)%  0.0 (0.0) 0.0 (0.0)% 
Average (s.d.) 4027.9 (3398.3) 21.0 (17.8) % 17.7 (35.5) 0.8 (1.6) % 
 t= 99th 

Hair color  18398.6 (208.4) 87.4 (1.0)%  4.4 (1.5) 2.1 (0.7)% 
Height  14442.6 (147.6) 68.6 (0.7)%  0.6 (0.9) 0.3 (0.4)% 
Body mass index (BMI)  5254.4 (739.1) 24.9 (3.5)%  0.2 (0.4) 0.1 (0.2)% 
High density lipoprotein (HDL)  14167.6 (691.4) 67.3 (3.3)%  0.2 (0.4) 0.1 (0.2)% 
Low density lipoprotein (LDL)  15615.8 (448.1) 74.1 (2.1)%  0.6 (0.5) 0.3 (0.3)% 
Cholesterol  14793.2 (668.3) 70.2 (3.2)%  0.2 (0.4) 0.1 (0.2)% 
IGF1  11049.2 (597.9) 52.5 (2.8)%  0.2 (0.4) 0.1 (0.2)% 
Creatinine  8337.2 (702.7) 39.6 (3.3)%  0.0 (0.0) 0.0 (0.0)% 

Red blood cell count (RBC)  11532.8 
(1056.9) 54.8 (5.0)%  0.0 (0.0) 0.0 (0.0)% 

White blood cell count (WBC)  8496.6 (370.7) 40.3 (1.8)%  0.0 (0.0) 0.0 (0.0)% 
Bone mass density in heel 
(BMD)  7816.0 (511.1) 37.1 (2.4)%  0.0 (0.0) 0.0 (0.0)% 
Hypertension  2378.8 (390.7) 11.3 (1.9)%  0.0 (0.0) 0.0 (0.0)% 
Cardiovascular (CVD)  1506.6 (512.3) 7.2 (2.4)%  0.0 (0.0) 0.0 (0.0)% 
Average (s.d.) 10291.5 (5220.4) 48.9 (24.8) % 0.49 (1.2) 0.2 (0.6) % 

 
Table 1. PRS-based individual stratification uncertainty across 11 complex traits in UK Biobank. We 
quantified PRS-based stratification uncertainty in testing individuals for eleven complex traits at two 
stratification thresholds (t = 90th and t = 99th percentiles). The numbers of certain versus uncertain 
classifications are determined from the 95% credible intervals (𝜌 = 95%). For each trait, we report averages 
(and standard deviations) from five random partitions of the whole dataset.   
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Trait 
t = 90th t = 99th 

Lower bound Upper bound Lower bound Upper bound 

Hair color 57.9 (1.8) 97.9 (0.22) 88.0 (2.2) 99.8 (0.05) 
Height 43.4 (2.1) 98.6 (0.18) 74.9 (3.4) 99.9 (0.04) 
Body mass index (BMI) 22.9 (2.1) 99.0 (0.17) 45.8 (4.0) 99.8 (0.04) 
High density lipoprotein (HDL) 41.3 (2.8) 98.7 (0.18) 72.3 (4.1) 99.9 (0.04) 
Low density lipoprotein (LDL) 49.1 (2.4) 98.6 (0.19) 77.7 (3.5) 99.9 (0.04) 
Cholesterol 45.1 (2.8) 98.6 (0.19) 74.9 (3.8) 99.9 (0.04) 
IGF1 33.2 (2.4) 98.8 (0.17) 63.0 (4.1) 99.9 (0.04) 
Creatinine 28.0 (2.4) 98.9 (0.17) 54.7 (4.3) 99.9 (0.04) 
Red blood cell count (RBC) 34.5 (2.7) 98.8 (0.17) 64.4 (4.5) 99.9 (0.04) 
White blood cell count (WBC) 28.2 (2.0) 98.9 (0.17) 56.0 (3.9) 99.9 (0.04) 
Bone mass density in heel (BMD) 26.0 (2.2) 98.9 (0.18) 52.5 (4.1) 99.9 (0.04) 
Hypertension 17.7 (1.8) 99.0 (0.17) 36.6 (3.4) 99.8 (0.05) 
Cardiovascular (CVD) 15.5 (1.9) 99.0 (0.18) 32.3 (3.8) 99.8 (0.06) 
Average (s.d.) 34.2 (12.9) 98.8 (.03) 61.0 (16.6) 99.9 (0) 

 
Table 2. Average 95% posterior ranking credible intervals for individuals at two stratification 
thresholds for 11 traits. We estimated the 95% posterior ranking credible intervals for individuals at the 
90th and 99th percentiles of the testing population PRS estimates. Mean and standard deviation are 
calculated from the 95% posterior ranking intervals of individuals whose point estimates lie within 0.5% of 
the stratification threshold (213 individuals between the 89.5th and 90.5th percentiles for t = 90th and between 
the 98.5th and 99.5th percentiles for t = 99th).   
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