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14 Abstract     

15 Background   
16 Bacterial   genomes   follow   a   U-shaped   frequency   distribution   whereby   most   genomic   loci   are   
17 either   rare   (accessory)   or   common   (core);   the   union   of   these   is   the   pan-genome.   The   
18 alignable   fraction   of   two   genomes   from   a   single   species   can   be   low   (e.g.   50-70%),   such   that   
19 no   single   reference   genome   can   access   all   single   nucleotide   polymorphisms   (SNPs).    The   
20 pragmatic   solution   is   to   choose   a   close   reference,   and   analyse   SNPs   only   in   the   core   
21 genome.   Given   much   bacterial   adaptability   hinges   on   the   accessory   genome,   this   is   an   
22 unsatisfactory   limitation.   

  
23 Results   
24 We   present   a   novel   pan-genome   graph   structure   and   algorithms   implemented   in   the   
25 software    pandora ,   which   approximates   a   sequenced   genome   as   a   recombinant   of   reference   
26 genomes,   detects   novel   variation   and   then   pan-genotypes   multiple   samples.   The   method   
27 takes   fastq   as   input   and   outputs   a   multi-sample   VCF   with   respect   to   an   inferred   
28 data-dependent   reference   genome,   and   is   available   at    https://github.com/rmcolq/pandora .   

  
29 Constructing   a   reference   graph   from   578    E.   coli    genomes,   we   analyse   a   diverse   set   of   20    E.   
30 coli    isolates.   We   show    pandora    recovers   at   least   13k   more   rare   SNPs   than   single-reference   
31 based   tools,   achieves   equal   or   better   error   rates   with   Nanopore   as   with   Illumina   data,   6-24x   
32 lower   Nanopore   error   rates   than   other   tools,   and   provides   a   stable   framework   for   analysing   
33 diverse   samples   without   reference   bias.   We   also   show   that   our   inferred   recombinant   VCF   
34 reference   genome   is   significantly   better   than   simply   picking   the   closest   RefSeq   reference.   

  
35 Conclusions   
36 This   is   a   step   towards   comprehensive   cohort   analysis   of   bacterial   pan-genomic   variation,   
37 with   potential   impacts   on   genotype/phenotype   and   epidemiological   studies.   
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3 Background   
  

4 Bacterial   genomes   evolve   by   multiple   mechanisms   including:   mutation   during   replication,   
5 allelic   and   non-allelic   homologous   recombination.   These   processes   result   in   a   population   of   
6 genomes   that   are   mosaics   of   each   other.   Given   multiple   contemporary   genomes,   the   
7 segregating   variation   between   them   allows   inferences   to   be   made   about   their   evolutionary   
8 history.   These   analyses   are   central   to   the   study   of   bacterial   genomics   and   evolution (1–4)   
9 with   different   questions   requiring   focus   on   separate   aspects   of   the   mosaic:   fine-scale   

10 (mutations)   or   coarse   (gene   presence,   synteny).   In   this   paper,   we   provide   a   new   and   
11 accessible   conceptual   model   that   combines   both   fine   and   coarse   bacterial   variation.   Using   
12 this   new   understanding   to   better   represent   variation,   we   can   access   previously   hidden   single   
13 nucleotide   polymorphisms   (SNPs),   insertions   and   deletions   (indels).   

  

14 Genes   cover   85-90%   of   bacterial   genomes (5) ,   and   shared   gene   content   is   commonly   used   
15 as   a   measure   of   whole-genome   similarity.   In   fact,   the   full   set   of   genes   present   in   a   species   -   
16 the    pan-genome    -   is   in   general   much   larger   than   the   number   found   in   any   single   genome.   A   
17 frequency   distribution   plot   of   genes   within   a   set   of   bacterial   genomes   has   a   characteristic   
18 asymmetric   U-shaped   curve    (6–10) ,   as   shown   in   Figure   1a.   As   a   result,   a   collection   of   
19 Escherichia   coli    genomes   might   only   have   50%   of   their   genes   (and   therefore   their   whole   
20 genome) (3)    in   common.   This   highlights   a   limitation   in   the   standard   approach   to   analysing   
21 genetic   variation,   whereby   a   single   genome   is   treated   as   a   reference,   and   all   other   genomes   
22 are   interpreted   as    differences   from   it.   In   bacteria,   a   single   reference   genome   will   inevitably   
23 lack   many   of   the   genes   in   the   pan-genome,   and   completely   miss   genetic   variation   therein   
24 (Figure   1b).   We   call   this    hard   reference   bias,    to   distinguish   from   the   more   common   concern,   
25 that   increased   divergence   of   a   reference   from   the   genome   under   study   leads   to   
26 read-mapping   problems,   which   we   term    soft   reference   bias .   The   standard   workaround   for   
27 these   issues   in   bacterial   genomics   is   to   restrict   analysis   either   to   very   similar   genomes   using   
28 a   closely   related   reference   ( e.g.    in   an   outbreak)   or   to   analyse   SNPs   only   in   the   core   genome   
29 (present   in   most   samples)   and   outside   the   core   to   simply   study   presence/absence   of   
30 genes (11) .   
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2  Figure   1.     Universal   gene   frequency   distribution   in   bacteria   and   the   single-reference   
3 problem .    a)   Frequency   distribution   of   genes   in   10   genomes   of   6   bacterial   species   
4 (Escherischia   coli,   Klebsiella   pneumoniae,   Pseudomonas   aeruginosa,   Staphylococcus   
5 aureus,   Salmonella   enterica   and   Streptococcus   pneumoniae)   showing   the   characteristic   
6 U-shaped   curve   -   most   genes   are   rare   or   common.   b)   Illustrative   depiction   of   the   
7 single-reference   problem,   a   consequence   of   the   U-shaped   distribution.   Each   vertical   column   
8 is   a   bacterial   genome,   and   each   coloured   bar   is   a   gene.   Numbers   are   identifiers   for   SNPs   -   
9 there   are   50   in   total.   Thus   the   dark   blue   gene   has   4   SNPs   numbers   1-4.   This   figure   does   not   

10 detail   which   genome   has   which   allele.   Below   each   column   is   the   proportion   of   SNPs   that   are   
11 discoverable   when   that   genome   is   used   as   a   reference   genome.   Because   no   single   
12 reference   contains   all   the   genes   in   the   population,   it   can   only   access   a   fraction   of   the   SNPs.   

13 In   this   study   we   address   the   variation   deficit   caused   by   a   single-reference   approach.   Given   
14 Illumina   or   Nanopore   sequence   data   from   potentially   divergent   isolates   of   a   bacterial   
15 species,   we   attempt   to   detect   all   of   the   variants   between   them.   Our   approach   is   to   
16 decompose   the   pan-genome   into   atomic   units   (loci)   which   tend   to   be   preserved   over   
17 evolutionary   timescales.   Our   loci   are   genes   and   intergenic   regions   in   this   study,   but   the   
18 method   is   agnostic   to   such   classifications,   and   one   could   add   any   other   grouping   wanted   
19 ( e.g.    operons   or   mobile   genetic   elements).   Instead   of   using   a   single   genome   as   a   reference,   
20 we   collect   a   panel   of   representative   reference   genomes   and   use   them   to   construct   a   set   of   
21 reference   graphs,   one   for   each   locus.   Reads   are   mapped   to   this   set   of   graphs   and   from   this   
22 we   are   able   to   discover   and   genotype   variation.    By   letting   go   of   prior   information   on   locus   
23 ordering   in   the   reference   panel,   we   are   able   to   recognise   and   genotype   variation   in   a   locus   
24 regardless   of   its   wider   context.   Since   Nanopore   reads   are   typically   long   enough   to   
25 encompass   multiple   loci,   it   is   possible   to   subsequently   infer   the   order   of   loci   -   although   that   is   
26 outside   the   scope   of   this   study.   

27 The   use   of   graphs   as   a   generalisation   of   a   linear   reference   is   an   active   and   maturing   
28 field (12–19) .   Much   recent   graph   genome   work   has   gone   into   showing   that   genome   graphs   
29 reduce   the   impact   of   soft   reference   bias   on   mapping (12) ,   and   on   generalising   alignment   to   
30 graphs (16,20) .   However   there   has   not   yet   been   any   study   (to   our   knowledge)   addressing   
31 SNP   analysis   across   a   diverse   cohort,   including   more   variants   that   can   fit   on   any   single   
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1 reference.   In   particular,   all   current   graph   methods   require   a   reference   genome   to   be   
2 provided   in   advance   to   output   genetic   variants   in   the   standard   Variant   Call   Format   (VCF) (21)   
3 -   thus   immediately   inheriting   a   hard   bias   when   applied   to   bacteria   (see   Figure   1b).   

4 We   have   made   a   number   of   technical   innovations.   First,   a   recursive   clustering   algorithm   that   
5 converts   a   multiple   sequence   alignment   (MSA)   of   a   locus   into   a   graph.   This   avoids   the   
6 complexity   “blowups”   that   plague   graph   genome   construction   from   unphased   VCF   
7 files (12,14) .   Second,   a   graph   representation   of   genetic   variation   based   on   
8 (w,k)-minimizers (22) .   Third,   using   this   representation   we   avoid   unnecessary   full   alignment   to   
9 the   graph   and   instead   use   quasi-mapping   to   genotype   on   the   graph.   Fourth,   discovery   of   

10 variation   missing   from   the   reference   graph   using   local   assembly.   Fifth,   use   of   a   canonical   
11 dataset-dependent   reference   genome   designed   to   maximise   clarity   of   description   of   variants   
12 (the   value   of   this   will   be   made   clear   in   the   main   text).     

13 We   describe   these   below,   and   evaluate   our   implementation,    pandora ,   on   a   diverse   set   of    E.   
14 coli    genomes   with   both   Illumina   and   Nanopore   data.   We   show   that,   compared   with   
15 reference-based   approaches,    pandora    recovers   a   significant   proportion   of   the   missing   
16 variation   in   rare   loci,   performs   much   more   stably   across   a   diverse   dataset,   successfully   
17 infers   a   better   reference   genome   for   VCF   output,   and   outperforms   current   tools   for   Nanopore   
18 data.   

19 Results:   

20 Pan-genome   graph   representation   
  

21 We   set   out   to   define   a   generalised   reference   structure   which   allows   detection   of   SNPs   and   
22 other   variants   across   the   whole   pan-genome,   without   attempting   to   record   long-range   
23 structure   or   coordinates.   We   define   a    Pan-genome   Reference   Graph    (PanRG)   as   an   
24 unordered   collection   of   sequence   graphs,   termed    local   graphs ,   each   of   which   represents   a   
25 locus,   such   as   a   gene   or   intergenic   region.   Each   local   graph   is   constructed   from   a   MSA   of   
26 known   alleles   of   this   locus,   using   a   recursive   cluster-and-collapse   (RCC)   algorithm   
27 (Supplementary   Animation   1:   recursive   clustering   construction).   The   output   is   guaranteed   to   
28 be   a   directed   acyclic   sequence   graph   allowing   hierarchical   nesting   of   genetic   variation   while   
29 meeting   a   “balanced   parentheses”   criterion   (see   Figure   2b   and   Methods).   Each   path   through   
30 the   graph   from   source   to   sink   represents   a   possible   recombinant   sequence   for   the   locus.   
31 The   disjoint   nature   of   this   pan-genome   reference   allows   loci   such   as   genes   to   be   compared   
32 regardless   of   their   wider   genomic   context.   We   implement   this   construction   algorithm   in   the   
33 make_prg    tool   which   outputs   the   graph   as   a   file   (see   Figures   2a-c,   Methods).   Subsequent   
34 operations,   based   on   this,   are   implemented   in   the   software   package    pandora .   The   overall   
35 workflow   is   shown   in   Figure   2.   

  
36 To   index   a   PanRG,   we   generalise   a   type   of   sparse   marker   k-mer   ((w,k)-minimizer),   
37 previously   defined   for   strings,   to   directed   acyclic   graphs   (see   Methods).   Each   local   graph   is   
38 sketched    with   minimizing   k-mers,   and   these   are   then   used   to   construct   a   new   graph   (the   
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1 k-mer   graph)   for   each   local   graph   from   the   PanRG.   Each   minimizing   k-mer   is   a   node,   and   
2 edges   are   added   between   two   nodes   if   they   are   adjacent   minimizers   on   a   path   through   the   
3 original   local   graph.   This   k-mer   graph   is   isomorphic   to   the   original   if     (and   outside   the  ≤kw  
4 first   and   last   w+k-1   bases);   all   subsequent   operations   are   performed   on   this   graph,   which,   to   
5 avoid   unnecessary   new   terminology,   we   also   call   the   local   graph.   

  
6 A   global   index   maps   each   minimizing   k-mer   to   a   list   of   all   local   graphs   containing   that   k-mer   
7 and   the   positions   therein.   Long   or   short   reads   are   approximately   mapped   ( quasi-mapped )   to   
8 the   PanRG   by   determining   the   minimizing   k-mers   in   each   read.   Any   of   these   read   
9 quasi-mappings   found   in   a   local   graph   are   called    hits ,   and   any   local   graph   with   sufficient   

10 clustered   hits   on   a   read   is   considered   present   in   the   sample.   
  

  
  

11 Figure   2.   The    pandora    workflow.     a)   reference   panel   of   genomes;   colour   signifies   locus   
12 (gene   or   intergenic   region)   identifier,   and   blobs   are   SNPs.   b)   multiple   sequence   alignments   
13 (MSAs)   for   each   locus   are   made   and   converted   into   a   directed   acyclic   graph.   c)   local   graphs   
14 constructed   from   the   loci   in   the   reference   panel.   d)   Workflow:   the   collection   of   local   graphs,   
15 termed   the   PanRG,   is   indexed.   Reads   from   each   sample   under   study   are   independently   
16 quasi-mapped   to   the   graph,   and   a   determination   is   made   as   to   which   loci   are   present   in   
17 each   sample.   In   this   process,   for   each   locus,   a   mosaic   approximation   of   the   sequence   for   
18 that   sample   is   inferred,   and   variants   are   genotyped.   e)   regions   of   low   coverage   are   detected,   
19 and   local    de   novo    assembly   is   used   to   generate   candidate   novel   alleles   missing   from   the   
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1 graph.   Returning   to   d),   the   dotted   line   shows   all   the   candidate   alleles   from   all   samples   are   
2 then   gathered   and   added   to   the   MSAs   at   the   start,   and   the   PanRG   is   updated.   Then,   reads   
3 are   quasi-mapped   one   more   time,   to   the   augmented   PanRG,   generating   new   mosaic   
4 approximations   for   all   samples   and   storing   coverages   across   the   graphs;   no    de   novo   
5 assembly   is   done   this   time.   Finally,   all   samples   are   compared,   and   a   VCF   file   is   produced,   
6 with   a   per-locus   reference   that   is   inferred   by   pandora.   

7 Initial   sequence   approximation   as   a   mosaic   of   references   
  

8 For   each   locus   identified   as   present   in   a   sample,   we   initially   approximate   the   sample’s   
9 sequence   as   a   path   through   the   local   graph.   The   result   is   a   mosaic   of   sequences   from   the   

10 reference   panel.   This   path   is   chosen   to   have   maximal   support   by   reads,   using   a   dynamic   
11 programming   algorithm   on   the   graph   induced   by   its   (w,k)-minimizers   (details   in   Methods).     
12 The   result   of   this   process   serves   as   our   initial   approximation   to   the   genome   under   analysis.   

13 Improved   sequence   approximation:   modify   mosaic   by   local   assembly   
14 At   this   point,   we   have   quasi-mapped   reads,   and   approximated   the   genome   by   finding   the   
15 closest   mosaic   in   the   graph;   however,   we   expect   the   genome   under   study   to   contain   variants   
16 that   are   not   present   in   the   PanRG.   Therefore,   to   allow   discovery   of   novel   SNPs   and   small   
17 indels   that   are   not   in   the   graph,   for   each   sample   and   locus   we   identify   regions   of   the   inferred   
18 mosaic   sequence   where   there   is   a   drop   in   read   coverage   (as   shown   in   Figure   2e).   Slices   of   
19 overlapping   reads   are   extracted,   and   a   form   of    de   novo    assembly   is   performed   using   a   de   
20 Bruijn   graph.   Instead   of   trying   to   find   a   single   correct   path,   the   de   Bruijn   graph   is   traversed   
21 (see   Methods   for   details)   to   all   feasible   candidate   novel   alleles   for   the   sample.   These   alleles   
22 are   added   to   the   reference   MSA   for   the   locus,   and   the   local   graph   is   updated.   If   comparing   
23 multiple   samples,   the   graphs   are   augmented   with   all   new   alleles   from   all   samples   at   the   
24 same   time.   

  

25 Optimal   VCF-reference   construction   for   multi-genome   comparison   
  
  

26 In   the    compare    step   of    pandora    (see   Figure   2d),   we   enable   continuity   of   downstream   
27 analysis   by   outputting   genotype   information   in   the   conventional   VCF (21) .   In   this   format,   each   
28 row   (record)   describes   possible   alternative   allele   sequence(s)   at   a   position   in   a   (single)   
29 reference   genome   and   information   about   the   type   of   sequence   variant.   A   column   for   each   
30 sample   details   the   allele   seen   in   that   sample,   often   along   with   details   about   the   support   from   
31 the   data   for   each   allele.     
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1 Figure   3.   The   representation   problem.     a)   a   local   graph.   b)   The   black   allele   is   chosen   as   
2 reference   to   enable   representation   in   VCF.   The   blue/red   SNP   then   requires   flanking   
3 sequence   in   order   to   allow   it   to   have   a   coordinate.   The   SNP   is   thus   represented   as   two   ALT   
4 alleles,   each   3   bases   long,   and   the   user   is   forced   to   notice   they   only   differ   in   one   base.   c)   
5 The   blue   path   is   chosen   as   the   reference,   thus   enabling   a   more   succinct   and   natural   
6 representation   of   the   SNP.   

  
  

7 To   output   graph   variation,   we   first   select   a   path   through   the   graph   to   be   the   reference   
8 sequence   and   describe   any   variation   within   the   graph   with   respect   to   this   path   as   shown   in  
9 Figure   3.   We   use   the   chromosome   field   to   detail   the   local   graph   within   the   PanRG   in   which   a   

10 variant   lies,   and   the   position   field   to   give   the   position   in   the   chosen   reference   path   sequence   
11 for   that   graph.   In   addition,   we   output   the   reference   path   sequences   used   as   a   separate   file.     

  
12 For   a   collection   of   samples,   we   want   small   differences   between   samples   to   be   recorded   as   
13 short   alleles   in   the   VCF   file   rather   than   longer   alleles   with   shared   flanking   sequence   as   
14 shown   in   Figure   3b.   We   therefore   choose   the   reference   path   for   each   local   graph   to   be   
15 maximally   close   to   the   sample   mosaic   paths.   To   do   this,   we   make   a   copy   of   the   k-mer   graph   
16 and   increment   the   coverage   along   each   sample   mosaic   path,   producing   a   graph   with   higher   
17 weights   on   paths   shared   by   more   samples.   We   reuse   the   mosaic   path-finding   algorithm   (see   
18 Methods)   with   a   modified   probability   function   defined   such   that   the   probability   of   a   node   is   
19 proportional   to   the   number   of   samples   covering   it.   This   produces   a   dataset-dependent   VCF   
20 reference   able   to   succinctly   describe   segregating   variation   in   the   cohort   of   genomes   under   
21 analysis.     

  

22 Constructing   a   PanRG   of    E.   coli   
23 We   chose   to   evaluate    pandora    on   the   recombining   bacterial   species,    E.   coli ,   whose   
24 pan-genome   has   been   heavily   studied (7,23–26) .   MSAs   for   gene   clusters   curated   with   
25 PanX (27)    from   350   RefSeq   assemblies   were   downloaded   from    http://pangenome.de    on   3rd   
26 May   2018.   MSAs   for   intergenic   region   clusters   based   on   228    E.   coli    ST131   genome   
27 sequences   were   previously   generated   with   Piggy (28)    for   their   publication.   Whilst   this   panel   
28 of   intergenic   sequences   does   not   reflect   the   full   diversity   within    E.   coli ,   we   included   them   as   
29 an   initial   starting   point.   This   resulted   in   an    E.   coli    PanRG   containing   local   graphs   for   23,054   
30 genes   and   14,374   intergenic   regions.    Pandora    took   24.4h   in   CPU   time   (2.3h   in   runtime   with   
31 16   threads)   and   12.6   GB   of   RAM   to   index   the   PanRG.   As   one   would   expect   from   the   
32 U-shaped   gene   frequency   distribution,   many   of   the   genes   were   rare   in   the   578   (=350+228)   
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1 input   genomes,   and   so   59%/44%   of   the   genic/intergenic   graphs   were   linear,   with   just   a   
2 single   allele.   

3 Constructing   an   evaluation   set   of   diverse   genomes   
  

4 We   first   demonstrate   that   using   a   PanRG   reduces   hard   bias   when   comparing   a   diverse   set   
5 of   20    E.   coli    samples   by   comparison   with   standard   single   reference   variant   callers.   We   
6 selected   samples   from   across   the   phylogeny   (including   phylogroups   A,   B2,   D   and   F (29) )   
7 where   we   were   able   to   obtain   both   long   and   short   read   sequence   data   from   the   same   
8 isolate.   

  
9 Figure   4.     Phylogeny   of   20   diverse    E.   coli    along   with   references   used   for   benchmarking   

10 single-reference   variant   callers .    The   20   E.   coli   under   study   are   labelled   as   samples   in   the   
11 left-hand   of   three   vertical   label-lines.   Phylogroups   (clades)   are   labelled   by   colour   of   branch,   
12 with   the   key   in   the   inset.   References   were   selected   from   RefSeq   as   being   the   closest   to   one   
13 of   the   20   samples   as   measured   by   Mash,   or   manually   selected   from   a   tree   (see   Methods).   
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9   

1 Two   assemblies   from   phylogroup   B1   are   in   the   set   of   references,   despite   there   being   no   
2 sample   in   that   phylogroup.   

  
3 We   used   Illumina-polished   long   read   assemblies   as   truth   data,   masking   positions   where   the   
4 Illumina   data   did   not   support   the   assembly   (see   Methods).   As   comparators,   we   used   
5 SAMtools (30)    (the   “classical”   variant-caller   based   on   pileups)   and   Freebayes (31)    (a   
6 haplotype-based   caller   which   reduces   soft   reference   bias,   wrapped   by   Snippy (32) )   for  
7 Illumina   data,   and   Medaka (33)    and   Nanopolish (34)    for   Nanopore   data.   In   all   cases,   we   ran   
8 the   reference-based   callers   with   24   carefully   selected   reference   genomes   (see   Methods,   and   
9 Figure   4).   We   defined   a   “truth   set”   of   618,305   segregating   variants   by   performing   all   pairwise   

10 whole   genome   alignments   of   the   20   truth   assemblies,   collecting   SNP   variants   between   the   
11 pairs,   and   deduplicating   them   by   clustering   into   equivalence   classes.   Each   class,   or   
12 pan-variant ,   represents   the   same   variant   found   at   different   coordinates   in   different   genomes   
13 (see   Methods).   We   evaluated   error   rate,   pan-variant   recall   (PVR,   proportion   of   truth   set   
14 discovered)   and   average   allelic   recall   (AvgAR,   average   of   the   proportion   of   alleles   of   each   
15 pan-variant   that   are   found).   To   clarify   the   definitions,   consider   a   toy   example.   Suppose   we   
16 have   three   genes,   each   with   one   SNP   between   them.   The   first   gene   is   rare,   present   in   2/20   
17 genomes.   The   second   gene   is   at   an   intermediate   frequency,   in   10/20   genomes.   The   third   is   
18 a   strict   core   gene,   present   in   all   genomes.   The   SNP   in   the   first   gene   has   alleles   A,C   at   50%   
19 frequency   (1   A   and   1   C).   The   SNP   in   the   second   gene   has   alleles   G,T   at   50%   frequency   (5   
20 G   and   5   T).   The   SNP   in   the   third   gene   has   alleles   A,T   with   15   A   and   5   T.   Suppose   a   variant   
21 caller   found   the   SNP   in   the   first   gene,   detecting   the   two   correct   alleles.   For   the   second   
22 gene’s   SNP,   it   detected   only   one   G   and   one   T,   failing   to   detect   either   allele   in   the   other   8   
23 genomes.   For   the   third   gene's   SNP,   it   detected   all   the   5   T’s,   but   no   A.   Here,   the   pan-variant   
24 recall   would   be:   (1   +   1   +   0)   /   3   =   0.66   -    i.e. score   a   1   if   both   alleles   are   found,   irrespective   of   
25 how   often-   and   the   average   allelic   recall   would   be   (2/2   +   2/10   +   5/20)/3=0.48.   

26 Methylation-aware   basecalling   improves   results   
  

27 In   Figure   5,   we   show   for   4   samples   the   effect   of   methylation-aware   Nanopore   basecalling   on   
28 the   AvgAR/error   rate   curve   for    pandora    with/without   novel   variant   discovery   via   local   
29 assembly.     
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1 Figure   5.     The   effect   of   methylation-aware   basecalling   on   local    de   novo    assembly .    We   
2 show   the   Average   Allelic   Recall   and   Error   Rate   curve   for   pandora   with   normal   (solid   line)   or   
3 methylation-aware   (dashed   line)   Guppy   basecalling   on   4   out   of   the   20   samples.   For   each   of   
4 these   input   data,   we   show   results   for   Pandora’s   first   approximation   to   a   genome   as   a   mosaic   
5 (recombinant)   of   the   input   reference   panel   (mosaic,   light   blue),   and   then   the   improved   
6 approximation   with   added   de   novo   discovery   (mosaic+de   novo,   dark   blue).   

  
7 The   top   right   of   each   curve   corresponds   to   completely   unfiltered   results;   increasing   the   
8 genotype   confidence   threshold   (see   Methods)   moves   each   curve   towards   the   bottom-left,   
9 increasing   precision   at   the   cost   of   recall.   Notably,   with   normal   basecalling,   local    de   novo   

10 assembly   increases   the   error   rate   from   0.53%   to   0.67%,   with   a   negligible   increase   in   recall,   
11 from   88.7%   to   89.3%,   whereas   with   methylation-aware   basecalling   it   increases   the   recall   
12 from   89.1%   to   90%   and   slightly   decreases   the   error   rate   from   0.49%   to   0.48%.   On   the   basis   
13 of   this,   from   here   on   we   work   entirely   with   reads   that   are   basecalled   with   a   
14 methylation-aware   model,   and   move   to   the   full   dataset   of   20   samples.     

  

15 Benchmarking   recall,   error   rate   and   dependence   on   reference   
  

16 We   show   in   Figures   6a,b   the   Illumina   and   Nanopore   AvgAR/recall   plots   for    pandora    and   four   
17 single-reference   tools   with   no   filters   applied.   For   all   of   these,   we   modify   only   the   minimum   
18 genotype   confidence   to   move   up   and   down   the   curves   (see   Methods).     
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1 Figure   6.   Benchmarks   of     recall/error   and   dependence   of   precision   on   reference   
2 genome,   for    pandora    and   other   tools   on   20-way   dataset .    a)   The   average   allelic   recall   
3 and   error   rate   curve   for   pandora,   SAMtools   and   snippy   on   100x   of   Illumina   data.   
4 Snippy/SAMtools   both   run   24   times   with   the   different   reference   genomes   shown   in   figure   4,   
5 resulting   in   multiple   lines   for   each   tool   (one   for   each   reference)   b)   The   average   allelic   recall   
6 and   error   rate   curve   for   pandora,   medaka   and   nanopolish   on   100x   of   Nanopore   data;   
7 multiple   lines   for   medaka/nanopolish,   one   for   each   reference   genome.   Note   panels   a   and   b   
8 have   the   same   y   axis   scale   and   limits,   but   different   x   axes;   c)   The   precision   of   pandora,   
9 SAMtools   and   snippy   on   100x   of   Illumina   data.   The   boxplots   show   the   distribution   of   

10 SAMtools’   and   snippy’s   precision   depending   on   which   of   the   24   references   was   used,   and   
11 the   blue   line   connects   pandora’s   results;   d)   The   precision   of   pandora   (line   plot),   medaka   and   
12 nanopolish   (both   boxplots)   on   100x   of   Nanopore   data.   Note   different   y   axis   scale/limits   in   
13 panels   c,d.   

  
14 We   highlight   three   observations.   Firstly,    pandora    achieves   essentially   the   same   recall   and   
15 error   rate   for   the   Illumina   and   Nanopore   data   (85%   AvgAR   and   0.6%   error   rate   at   the   
16 top-right   of   the   curve,   completely   unfiltered).   Second,   choice   of   reference   has   a   significant   
17 effect   on   both   AvgAR   and   error   rate   for   the   single-reference   callers;   the   reference   which   
18 enables   the   highest   recall   does   not   lead   to   the   best   error   rate   (for    SAMtools    and    medaka    in   
19 particular).   Third,    pandora    achieves   better   AvgAR   (86%)   than   all   other   tools   (all   between   
20 81%   and   84%,   see   Supplementary   Table   2),   and   a   better   error   rate   (0.6%)   than    SAMtools   
21 (1%),    nanopolish    (2.4%)   and    medaka    (14.8%).   However,    snippy    achieves   a   significantly   
22 better   error   rate   than   all   other   tools   (0.01%).   We   confirmed   that   adding   further   filters   slightly   
23 improved   error   rates,   but   did   not   change   the   overall   picture   (Supplementary   Figure   1,   
24 Methods,   Supplementary   Table   2).   The   results   are   also   in   broad   agreement   if   the   PVR   is   
25 plotted   instead   of   AvgAR   (Supplementary   Figure   2).   However,   these   AvgAR   and   PVR   figures   
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1 are   hard   to   interpret   because    pandora    and   the   reference-based   tools   have   recall   that   varies   
2 differently   across   the   locus   frequency   spectrum   -   we   explore   this   further   below.   

  
3 We   ascribe   the   similarity   between   the   Nanopore   and   Illumina   performance   of    pandora    to   
4 three   reasons.   First,   the   PanRG   is   a   strong   prior   -   our   first   approximation   does   not   contain   
5 any   Nanopore   sequence,   but   simply   uses   quasi-mapped   reads   to   find   the   nearest   mosaic   in   
6 the   graph.   Second,   mapping   long   Nanopore   reads   which   completely   cover   entire   genes   is   
7 easier   than   mapping   Illumina   data,   and   allows   us   to   filter   out   erroneous   k-mers   within   reads   
8 after   deciding   when   a   gene   is   present.   Third,   this   performance   is   only   achieved   when   we   use   
9 methylation-aware   basecalling   of   Nanopore   reads,   presumably   removing   most   systematic   

10 bias   (see   Figure   5).     
  

11 In   Figure   6c,d   we   show   for   Illumina   and   Nanopore   data,   the   impact   of   reference   choice   on   
12 the   precision   of   calls   on   each   of   the   20   samples.   While   precision   is   consistent   across   all   
13 samples   for    pandora ,   we   see   a   dramatic   effect   of   reference-choice   on   precision   of    SAMtools ,   
14 medaka    and    nanopolish .    The   effect   is   also   detectable   for    snippy ,   but   to   a   much   lesser   
15 extent.   

  
16  Finally,   we   measured   the   performance   of   locus   presence   detection,   restricting   to   
17 genes/intergenic   regions   in   the   PanRG,   so   that   in   principle   perfect   recall   would   be   possible   
18 (see   Methods).   In   Supplementary   Figure   3   we   show   the   distribution   of   locus   presence   calls   
19 by    pandora ,   split   by   length   of   locus   for   Illumina   and   Nanopore   data.   Overall,   93.8%/94.3%   of   
20 loci   were   correctly   classified   as   present   or   absent   for   Illumina/Nanopore   respectively.   
21 Misclassifications   were   concentrated   on   small   loci   (below   500bp).   While    59.2%/57.4%   of   all   
22 loci   in   the   PanRG   are   small,   75.5% /74.8%   of   false   positive   calls   and   98.7%/98.1%   of   false   
23 negative   calls   are   small   loci   (see   Supplementary   Figure   3).   

  
  
  

24 Pandora    detects   rare   variation   inaccessible   to   single-reference   methods   
25 Next,   we   evaluate   the   key   deliverable   of    pandora    -   the   ability   to   access   genetic   variation   
26 within   the   accessory   genome.   We   plot   this   in   Figure   7,   showing   PVR   of   SNPs   in   the   truth   set   
27 which   overlap   genes   or   intergenic   regions   from   the   PanRG,   broken   down   by   the   number   of   
28 samples   the   locus   is   present   in.   
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1 Figure   7.      Pan-variant   recall   across   the   locus   frequency   spectrum .    Every   SNP   occurs   in   
2 a   locus,   which   is   present   in   some   subset   of   the   full   set   of   20   genomes.   In   all   panels   the   
3 SNPs   in   the   golden   truth   set   are   broken   down   by   the   number   of   samples   the   locus   is   present   
4 in.   Left   panels   (a,   c)   show   results   for   pandora   (dotted   line),   snippy   and   SAMtools   with   
5 Illumina   data.   Right   panels   (b,   d)   show   results   for   pandora,   nanopolish   and   medaka   with   
6 Nanopore   data.   Top   panels   (a,   b)   show   the   absolute   count   of   pan-variants   found;   Bottom   
7 panels   (c,   d)   show   the   proportion   of   pan-variants   found.   

  
8 If   we   restrict   our   attention   to   rare   variants   (present   only   in   2-5   genomes),   we   find    pandora   
9 recovers   at   least   19644/26674/13108/22331   more   SNPs   than   

10 SAMtools/snippy/medaka/nanopolish    respectively.   As   a   proportion   of   rare   SNPs   in   the   truth   
11 set,   this   is   a   lift   in   PVR   of   12/17/8/14%   respectively.   If,   instead   of   pan-variant   recall,   we   look   
12 at   the   variation   of   AvgAR   across   the   locus   frequency   spectrum   (see   Supplementary   Figure   
13 4),   the   gap   between    pandora    and   the   other   tools   on   rare   loci   is   even   larger.   These   
14 observations,   and   Figure   6,   confirm   and   quantify   the   extent   to   which   we   are   able   to   recover   
15 accessory   genetic   variation   that   is   inaccessible   to   single-reference   based   methods.   

16 Pandora    has   consistent   results   across    E.   coli    phylogroups   
  

17 We   measure   the   impact   of   reference   bias   (and   population   structure)   by   quantifying   how   
18 recall   varies   in   phylogroups   A,   B2,   D,   and   F   dependent   on   whether   the   reference   genome   
19 comes   from   the   same   phylogroup.     
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1 Figure   8.   Single   reference   callers   achieve   higher   recall   for   samples   in   the   same   
2 phylogroup   as   the   reference   genome,   but   not   for   rare   loci.    a)   pandora   recall   (black   line)   
3 and   snippy   recall   (coloured   bars)   on   the   20   samples;   each   histogram   corresponds   to   the   use   
4 of   one   of   5   exemplar   references,   one   from   each   phylogroup.   The   background   colour   denotes   
5 the   reference’s   phylogroup   (see   Figure   4   inset);   note   that   phylogroup   B1   (yellow   
6 background)   is   an   outgroup,   containing   no   samples   in   this   dataset;   b)   Same   as   a)   but   
7 restricted   to   SNPs   present   in   precisely   two   samples   (i.e.   where   18   samples   have   neither   
8 allele   because   the   entire   locus   is   missing).   Note   the   differing   y-axis   limits   in   the   two   panels.   

  
9 We   plot   the   results   for    snippy    with   5   exemplar   references   in   Figure   8a   (results   for   all   tools   

10 and   for   all   references   are   in   Supplementary   Figures   5-8),   showing   that   single   references   give   
11 5-10%   higher   recall   for   samples   in   their   own   phylogroup   than   other   phylogroups.   By   
12 comparison,    pandora ’s   recall   is   much   more   consistent,   staying   stable   at   ~89%   for   all   
13 samples   regardless   of   phylogroup.   References   in   phylogroups   A   and   B2   achieve   higher   
14 recall   in   their   own   phylogroup,   but   consistently   worse   than    pandora    for   samples   in   the   other   
15 phylogroups   (in   which   the   reference   does   not   lie).   References   in   the   external   phylogroup   B1,   
16 for   which   we   had   no   samples   in   our   dataset,   achieve   higher   recall   for   samples   in   the   nearby   
17 phylogroup   A   (see   inset,   Figure   4),   but   lower   than    pandora    for   all   others.   We   also   see   that   
18 choosing   a   reference   genome   from   phylogroup   F   (red),   which   sits   intermediate   to   the   other   
19 phylogroups,   provides   the   most   uniform   recall   across   other   groups   -   2-5%   higher   than   
20 pandora .     
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1 Figure   9.     Sharing   of   variants   present   in   precisely   2   genomes,   showing   which   pairs   of   
2 genomes   they   lie   in   and   which   phylogroups;    darker   colours   signify   higher   counts   (log   
3 scale).   Genomes   are   coloured   by   their   phylogroup   (see   Figure   4   inset).   

  
4 These   results   will,   however,   be   dominated   by   the   shared,   core   genome.   If   we   replot   Figure   
5 8a,   restricting   to   variants   in   loci   present   in   precisely   2   genomes   (abbreviated   to   2-variants;   
6 Figure   8b),   we   find   that    pandora    achieves   50-84%   recall   for   each   sample   (complete   data   in   
7 Supplementary   Figure   9).   By   contrast,   for   any   choice   of   reference   genome,   the   results   for   
8 single-reference   callers   vary   dramatically   per   sample.   Most   samples   have   recall   under   25%,   
9 and   there   is   no   pattern   of   improved   recall   for   samples   in   the   same   phylogroup   as   the   

10 reference.    Following   up   that   last   observation,   if   we   look   at   which   pairs   of   genomes   share   
11 2-variants   (Figure   9),   we   find   there   is   no   enrichment   within   phylogroups   at   all.   This   simply   
12 confirms   in   our   data   that   presence   of   rare   loci   is   not   correlated   with   the   overall   phylogeny.     

  

13 Pandora    VCF   reference   is   closer   to   samples   than   any   single   reference   
  

14 The   relationship   between   phylogenetic   distance   and   gene   repertoire   similarity   is   not   linear.   In   
15 fact,   2   genomes   in   different   phylogroups   may   have   more   similar   accessory   genes   than   2   in   
16 the   same   phylogroup   -   as   illustrated   in   the   previous   section   (also   see   Figure   3   in   Rocha (3) ).   
17 As   a   result,   it   is   unclear    a   priori    how   to   choose   a   good   reference   genome   for   comparison   of   
18 accessory   loci   between   samples.    Pandora    specifically   aims   to   construct   an   appropriate   
19 reference   for   maximum   clarity   in   VCF   representation.   We   evaluate   how   well    pandora    is   able   
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1 to   find   a   VCF   reference   close   to   the   samples   under   study   as   follows.   We   first   identified   the   
2 location   of   all   loci   in   all   the   20   sample   assemblies   and   the   24   references   (see   Methods).   

  

  
3  Figure   10.     How   often   do   references   closely   approximate   a   sample?     pandora   aims   to   
4 infer   a   reference   for   use   in   its   VCF,   which   is   as   close   as   possible   to   all   samples.   We   evaluate   
5 the   success   of   this   here.   The   x-axis   shows   the   number   of   genomes   in   which   a   locus   occurs.   
6 The   y-axis   shows   the   (log-scaled)   count   of   loci   in   the   20   samples   that   are   within   1%   edit   
7 distance   (scaled   by   locus   length)   of   each   reference   -   box   plots   for   the   reference   genomes,   
8 and   line   plot   for   the   VCF   reference   inferred   by   pandora.   

  
9 We   then   measured   the   edit   distance   between   each   locus   in   each   of   the   references   and   the   

10 corresponding   version   in   the   20   samples.   We   found   that   the    pandora ’s   VCF-reference   lies   
11 within   1%   edit   distance   (scaled   by   locus   length)   of   the   sample   far   more   than   any   of   the   
12 references   for   loci   present   in   <=14   samples   (Figure   10;   note   the   log   scale).   The   
13 improvement   is   much   reduced   in   the   core   genome;   essentially,   in   the   core,   a   
14 phylogenetically   close   reference   provides   a   good   approximation,   but   it   is   hard   to   choose   a   
15 single   reference   that   provides   a   close   approximation   to   all   rare   loci.   By   contrast,    pandora    is   
16 able   to   leverage   its   reference   panel,   and   the   dataset   under   study,   to   find   a   good   
17 approximation.   
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1 Computational   performance   
2 Performance   measurements   for   single-sample   analysis   by    pandora    and   benchmarked   tools   
3 are   shown   in   Supplementary   Table   3.   In   short,    pandora    took   3-4   hours   per   sample   (using   16   
4 cores   and   up   to   10.7   GB   of   RAM),   which   was   slower   than    snippy    (0.1h,   4   cores),    SAMtools   
5 (0.3h,   1   core)   and    medaka    (0.3h,   4   cores),   but   faster   than    nanopolish    (4.6h,   16   cores).     

  
6 Pandora    alone   can   do   joint   analysis   of   multiple   samples   and   this   is   currently   the   most   
7 expensive    pandora    step.   Parallelising   by   gene   on   a   compute   cluster,   it   took   8   hours   to   
8 augment   the   PanRG   with   novel   alleles.   This   was   dominated   by   the   Python   implementation   of   
9 the   RCC   clustering   algorithm   (see   Methods)   and   the   use   of   Clustal   Omega (35)    for   MSA.   

10 90%   of   loci   required   less   than   30   minutes   to   process,   and   the   remainder   took   less   than   2   
11 hours   (see   Methods).   We   discuss   below   how   this   could   be   improved.   Finally,   it   took   28/46   
12 hours   to   compare   the   samples   (produce   the   joint   VCF   file)   for   Illumina/Nanopore.    Mapping   
13 comprised   ~10%   of   the   Illumina   time,   and   ~50%   of   the   Nanopore   time.   Dynamic   
14 programming   and   genotyping   the   VCF   file   took   ~90%   of   the   Illumina   time,   and   ~50%   of   the   
15 Nanopore   time.     

16 Discussion   

17 Bacteria   are   the   most   diverse   and   abundant   cellular   life   form (36) .   Some   species   are   
18 exquisitely   tuned   to   a   particular   niche   (e.g.   obligate   pathogens   of   a   single   host)   while   others   
19 are   able   to   live   in   a   wide   range   of   environments   (e.g.    E.   coli    can   live   on   plants,   in   the   earth,   
20 or   commensally   in   the   gut   of   various   hosts).   Broadly   speaking,   a   wider   range   of   
21 environments   correlates   with   a   larger   pan-genome,   and   some   parts   of   the   gene   repertoire   
22 are   associated   with   specific   niches (37) .   Our   perception   of   a   pan-genome   therefore   depends   
23 on   our   sampling   of   the   unknown   underlying   population   structure,   and   similarly   the   
24 effectiveness   of   a   PanRG   will   depend   on   the   choice   of   reference   panel   from   which   it   is   built.     

25 Many   examples   from   different   species   have   shown   that   bacteria   are   able   to   leverage   this   
26 genomic   flexibility,   adapting   to   circumstance   sometimes   by   using   or   losing   novel   genes   
27 acquired   horizontally,   and   at   other   times   by   mutation.   There   are   many   situations   where   
28 precise   nucleotide-level   variants   matter   in   interpreting   pan-genomes.   Some   examples   
29 include:   compensatory   mutations   in   the   chromosome   reducing   the   fitness   burden   of   new   
30 plasmids (38–40) ;   lineage-specific   accessory   genes   with   SNP   mutations   which   distinguish   
31 carriage   from   infection (41) ;   SNPs   within   accessory   drug   resistance   genes   leading   to   
32 significant   differences   in   antibiograms (42) ;   and   changes   in   CRISPR   spacer   arrays   showing   
33 immediate   response   to   infection (43,44) .   However,   up   until   now   there   has   been   no   automated   
34 way   of   studying   non-core   gene   SNPs   at   all;   still   less   a   way   of   integrating   them   with   gene   
35 presence/absence   information.    Pandora    solves   these   problems,   allowing   detection   and   
36 genotyping   of   core   and   accessory   variants.   It   also   addresses   the   problem   of   what   reference   
37 to   use   as   a   coordinate   system,   inferring   a   mosaic   “VCF   reference”   which   is   as   close   as   
38 possible   to   all   samples   under   study.   We   find   this   gives   more   consistent   SNP-calling   than   any   
39 single   reference   in   our   diverse   dataset.   We   focussed   primarily   on   Nanopore   data   when   
40 designing    pandora ,   and   show   it   is   possible   to   achieve   higher   quality   SNP   calling   with   this   
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1 data   than   with   current   Nanopore   tools.   Together,   these   results   open   the   door   for   empirical   
2 studies   of   the   accessory   genome,   and   for   new   population   genetic   models   of   the   pan-genome   
3 from   the   perspective   of   both   SNPs   and   gene   gain/loss.     

4 Prior   graph   genome   work,   focussing   on   soft   reference   bias   (in   humans),   has   evaluated   
5 different   approaches   for   selecting   alleles   for   addition   to   a   population   graph,   based   on   
6 frequency,   avoiding   creating   new   repeats,   and   avoiding   exponential   blowup   of   haplotypes   in   
7 clusters   of   variants (45) .   This   approach   makes   sense   when   you   have   unphased   diploid   VCF   
8 files   and   are   considering   all   recombinants   of   clustered   SNPs   as   possible.   However,   this   is   
9 effectively   saying   we   consider   the   recombination   rate   to   be   high   enough   that   all   

10 recombinants   are   possible.   Our   approach,   building   from   local   MSAs   and   only   collapsing   
11 haplotypes   when   they   agree   for   a   fixed   number   of   bases,   preserves   more   haplotype   
12 structure   and   avoids   combinatorial   explosion.   Another   alternative   approach   was   recently   
13 taken   by   Norri    et   al. (46) ,   inferring   a   set   of   pseudo   founder   genomes   from   which   to   build   the   
14 graph.   

15 Another   issue   is   how   to   select   the   reference   panel   of   genomes   in   order   to   minimize   hard   
16 reference   bias.   One   cannot   escape   the   U-shaped   frequency   distribution;   whatever   reference   
17 panel   is   chosen,   future   genomes   under   study   will   contain   rare   genes   not   present   in   the   
18 PanRG.   Given   the   known   strong   population   structure   in   bacteria,   and   the   association   of   
19 accessory   repertoires   with   lifestyle   and   environment,   we   would   advocate   sampling   by   
20 geography,   host   species   (if   appropriate),   lifestyle   (e.g.   pathogenic   versus   commensal)   and/or   
21 environment.   In   this   study   we   built   our   PanRG   from   a   biassed   dataset   (RefSeq)   which   does   
22 not   attempt   to   achieve   balance   across   phylogeny   or   ecology,   limiting   our   pan-variant   recall   to   
23 49%   for   rare   variants   (see   Figure   7c,d).   A   larger,   carefully   curated   input   panel,   such   as   that   
24 from   Horesh   et   al (47) ,   would   provide   a   better   foundation   and   potentially   improve   results.   

25 A   natural   question   is   then   to   ask   if   the   PanRG   should   continually   grow,   absorbing   all   variants   
26 ever   encountered.   From   our   perspective,   the   answer   is   no   -   a   PanRG   with   variants   at   all   
27 non-lethal   positions   would   be   potentially   intractable.   The   goal   is   not   to   have   every   possible   
28 allele   in   the   PanRG   -   no   more   than   a   dictionary   is   required   to   contain   absolutely   every   word   
29 that   has   ever   been   said   in   a   language.   As   with   dictionaries,   there   is   a   trade-off   between   
30 completeness   and   utility,   and   in   the   case   of   bacteria,   the   language   is   far   richer   than   English.   
31 The   perfect   PanRG   contains   the   vast   majority   of   the   genes   and   intergenic   regions   you   are   
32 likely   to   meet,   and   just   enough   breadth   of   allelic   diversity   to   ensure   reads   map   without   too   
33 many   mismatches.   Missing   alleles   should   be   discoverable   by   local   assembly   and   added   to   
34 the   graph,   allowing   multi-sample   comparison   of   the   cohort   under   study.   This   allows   one   to   
35 keep   the   main   PanRG   lightweight   enough   for   rapid   and   easy   use.     

36 We   finish   with   three   potential   applications   of    pandora .   First,   the   PanRG   should   provide   a   
37 more   interpretable   substrate   for   pan-genome-wide   Genome-Wide   Association   Studies,   as   
38 current   methods   are   forced   to   either   ignore   the   accessory   genome   or   reduce   it   to   k-mers   or   
39 unitigs (48–50) .   Second,   if   performing   prospective   surveillance   of   microbial   isolates   taken   in   a   
40 hospital,   the   PanRG   provides   a   consistent   and   unchanging   reference,   which   will   cope   with   
41 the   diversity   of   strains   seen   without   requiring   the   user   to   keep   switching   reference   genome.   
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1 In   a   sense   it   behaves   similarly   to   whole-genome   Multi-Locus   Sequence   Typing   
2 (wgMLST) (51) ,   with   more   flexibility,   support   for   intergenic   regions,   and   without   the   
3 all-or-nothing   behaviour   when   alleles   have   a   novel   SNP.   Third,   if   studying   a   fixed   dataset   
4 very   carefully,   then   one   may   not   want   to   use   a   population   PanRG,   as   it   necessarily   will   miss   
5 some   rare   accessory   genes   in   the   dataset.   In   these   circumstances,   one   could   construct   a   
6 reference   graph   purely   of   the   genes/intergenic   regions   present   in   this   dataset.   

7 There   are   a   number   of   limitations   to   this   study.   Firstly,    pandora    is   not   yet   a   fully-fledged   
8 production   tool.   There   are   two   steps   that   constitute   bottlenecks   in   terms   of   RAM   and   speed.   
9 The   RCC   algorithm   used   for   local   graph   construction    is   currently   implemented   in   Python.   

10 However,   the   underlying   algorithm   is   amenable   to   a   much   higher   performance   
11 implementation,   which   is   now   in   progress.   Also,   we   use   Clustal   Omega (35)    for   the   MSA   
12 stage,   and   there   are   faster   options   which   we   could   use,   including   options   for   augmenting   an   
13 MSA   without   a   complete   rebuild   (e.g.   MAFFT),   which   is   exactly   what   we   need   after   local   
14 assembly   discovers   novel   alleles.   Secondly,   we   do   not   see   any   fundamental   reason   why   the   
15 pandora    error   rate   should   be   worse   than   Snippy   on   Illumina   data   (see   Figure   6C),   and   will   be   
16 working   to   improve   this.    Finally,   by   working   in   terms   of   atomic   loci   instead   of   a   monolithic   
17 genome-wide   graph,    pandora    opens   up   graph-based   approaches   to   structurally   diverse   
18 species   (and   eases   parallelisation)   but   at   the   cost   of   losing   genome-wide   ordering.   At   
19 present,   ordering   can   be   resolved   by   (manually)   mapping    pandora -discovered   genes   onto   
20 whole   genome   assemblies.    However   the   design   of    pandora    also     allows   for   gene-ordering   
21 inference:   when   Nanopore   reads   cover   multiple   genes,   the   linkage   between   them   is   stored   in   
22 a   secondary   de   Bruijn   graph   where   the   alphabet   consists   of   gene   identifiers.   This   results   in   a   
23 huge   alphabet,   but   the   k-mers   are   almost   always   unique,   dramatically   simplifying   “assembly”   
24 compared   with   normal   DNA   de   Bruijn   graphs.   This   work   is   still   in   progress   and   the   subject   of   
25 a   future   study.    In   the   meantime,    pandora    provides   new   ways   to   access   previously   hidden   
26 variation.   

27 Conclusions   

28 The   algorithms   implemented   in    pandora    provide,   to   our   knowledge,   the   first   solution   to   the   
29 problem   of   analysing   core   and   accessory   genetic   variation   across   a   set   of   bacterial   
30 genomes.   This   study   demonstrates   as   good   SNP   genotype   error   rates   with   Nanopore   as   
31 with   Illumina   data   and   improved   recall   of   accessory   variants.   It   also   shows   the   benefit   of   an   
32 inferred   VCF   reference   genome   over   simply   picking   from   RefSeq.   The   main   limitations   were   
33 the   use   of   a   biassed   reference   panel   (RefSeq)   for   building   the   PanRG,   and   the   
34 comparatively   slow   performance   of   one   module,   currently   implemented   in   Python   -   both   of   
35 which   are   addressable,   not   fundamental   limitations.   This   opens   the   door   to   improved   
36 analyses   of   many   existing   and   future   bacterial   genomic   datasets.   
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1 Methods   

2 Local   graph   construction   
3 We   construct   each   local   graph   in   the   PanRG   from   an   MSA   using   an   iterative   partitioning   
4 process.   The   resulting   sequence   graph   contains   nested   bubbles   representing   alternative   
5 alleles.   

  
6 Let     be   an   MSA   of   length   .   For   each   row   of   the   MSA     let  A n a , .., }  a = { 0 .  an­1 ∈ A  
7 be   the   subsequence   of     in   interval     Let be   the   DNA   sequence  a , .., }ai,j = { i .  aj­1 a i, ).[ j s(a)   

8 obtained   by   removing   all   non-AGCT   symbols.   We   can   partition   alignment   either    vertically  A  
9 by   partitioning   the   interval   or    horizontally    by   partitioning   the   set   of   rows   of   .   In   both  0, )[ n A  

10 cases,   the   partition   induces   a   number   of   sub-alignments.     
  

11 For   vertical   partitions,   we   define     We   say   that   interval     is   a  lice (i, ) a }.  s A j = { i,j : a ∈ A i, )[ j  

12 match    interval   if   ,   where   is   the   default   minimum   match   length,   and   there   is   a   j ­ i ≥ m m = 7  

13 single   non-trivial   sequence   in   the   slice,   i.e. .  {s(a) lice (i, ) and s(a) = "} |  
|   : a ∈ s A j / "  |  

|  = 1

14 Otherwise,   we   call   it   a    non-match    interval.     
  

15 For   horizontal   partitions,   we   use   -means   clustering (52)    to   divide   sequences   into   increasing  K  
16 numbers   of   clusters   until   the    inertia ,   a   measure   of   the   within-cluster   diversity,   is  , , .. K = 2 3 .  
17 half   that   of   the   original   full   set   of   sequences.   More   formally,   let   be   the   set   of   all    m -mers  U  
18 (substrings   of   length    m,    the   minimum   match   length)   in   .   For     we  s(a)  a  }  { :   ∈ A  a ∈ A  
19 transform   sequence     into   a   count   vector   where     are   the   counts   of  (a)s x , ..., x }xa = { a

1     a
|U | xai  

20 the   unique    m -mers   in   .   For   clusters   ,   the   inertia   is   defined   as  U K C , ..., C }C = { 1     K  

21    arg minC ∑
K

j=1
∑
 

x ∈Ca j

x |  |   a ­ μj
 |  
|  
2

 

22 where   is   the   mean   of   cluster   .   μj =
1
C| j|

∑
 

x ∈Ca j

xa j  

23 The   recursive   algorithm   first   partitions   an   MSA   vertically   into   match   and   non-match   intervals.   
24 Match   intervals   are    collapsed    down   to   the   single   sequence   they   represent.   Independently   for   
25 each   non-match   interval,   the   alignment   slice   is   partitioned   horizontally   into   clusters.   The   
26 same   process   is   then   applied   to   each   induced   sub-alignment   until   a   maximum   number   of   
27 recursion   levels,   ,   has   been   reached.   For   any   remaining   alignments,   a   node   is   added   to  r = 5  
28 the   local   graph   for   each   unique   sequence.   See   Supplementary   Animation   1   to   see   an   
29 example   of   this   algorithm.   We   name   this   algorithm   Recursive   Cluster   and   Collapse   (RCC),   
30 and   implement   in   the   make_prg   repository   (see   Code   Availability).   

31 (w,k)-minimizers   of   graphs   
32 We   define   (w,k)-minimizers   of   strings   as   in   Li   (2016)    (53) .   Let   be   a   k-mer   hash   φ : Σk→ℜ  
33 function   and   let     be   defined   such   that     and   ,   where   0, }  π : Σ* × { 1 → Σ* (s, )π 0 = s (s, )π 1 = s s
34 is   the   reverse   complement   of   .   Consider   any   integers   .   For   window   start   position  s  k ≥ w > 0  
35 ,   let    0 ≤ j ≤ s| | ­ w ­ k + 1   
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1  π(s , ) , r  0, }}  T j = { p,p+k r : j ≤ p < j + w   ∈ { 1  

2 be   the   set   of   forward   and   reverse-complement   k-mers   of     in   this   window.   We   define   a  s  
3 (w,k)-minimizer   to   be   any   triple     such   that  h, , )( p r   
4  (π(s , )) in{φ(t) }.  h = φ p,p+k r = m : t ∈ T j  

  
5 The   set     of   (w,k)-minimizers   for   ,   is   the   union   of   minimizers   over   such   windows.   (s)W s   

6  (s) {(h, , ) in{φ(t) }}.  W = ∪
 

0≤j≤ s ­w­k+1| |
p r : h = m : t ∈ T j  

7 We   extend   this   definition   intuitively   to   an   acyclic   sequence   graph   G   =   (V,E).   Define     to   be  v| |  
8 the   length   of   the   sequence   associated   with   node     and   let     v ∈ V v, , ), 0  i = ( a b   ≤ a ≤ b ≤ v| |  
9 represent   the   sequence   interval   [a,b)   on   v.   We   define   a    path    in   G   by     

10  (i , .., i ) v , )  and b v | for 1 }.   p = { 1 .   m : ( j vj+1 ∈ E j ≡ | j ≤ j < m  

11 This   matches   the   intuitive   definition   for   a   path   in   a   sequence   graph   except   that   we   allow   the   
12 path   to   overlap   only   part   of   the   sequence   associated   with   the   first   and   last   nodes.   We   will   
13 use     to   refer   to   the   sequence   along   the   path     in   the   graph.  sp p  

  
14 Let     be   a   path   of   length   w+k-1   in   G.   The   string     contains   w   consecutive   k-mers   for   which  p sp  

15 we   can   find   the   (w,k)-minimizer(s)   as   before.   We   therefore   define   the   (w,k)-minimizer(s)   of   
16 the   graph   G   to   be   the   union   of   minimizers   over   all   paths   of   length   w+k-1   in   G:   

17  (G) {(h, , ) in{φ(t) }.  W = ∪
 

p∈G : | p |=w+k­1
p r : h = m : t ∈ T p  

18 Local   graph   indexing   with   (w,k)-minimizers   
19 To   find   minimizers   for   a   graph   we   use   a   streaming   algorithm   as   described   in   Supplementary   
20 Algorithm   1.   For   each   minimizer   found,   it   simply   finds   the   next   minimizer(s)   until   the   end   of   
21 the   graph   has   been   reached.     

  
22 Let     be   a   function   which   returns   all   vectors   of   w   consecutive   k-mers   in   G  alk(v, i, w, )w     k  
23 starting   at   position   i   on   node   v.   Suppose   we   have   a   vector   of   k-mers   x.   Let     be   the  hif t(x)s  
24 function   which   returns   all   possible   vectors   of   k-mers   which   extend   x   by   one   k-mer.   It   does   
25 this   by   considering   possible   ways   to   walk   one   letter   in   G   from   the   end   of   the   final   k-mer   of   x.   
26 For   a   vector   of   k-mers   of   length   w,   the   function     returns   the   minimizing   k-mers   of  inimize(x)m  
27 x.   

  
28 We   define   K   to   be   a    k-mer   graph    with   nodes   corresponding   to   minimizers   .   We   add  h, , )( p r  
29 edge   (u,v)   to   K   if   there   exists   a   path   in   G   for   which   u   and   v   are   both   minimizers   and   v   is   the   
30 first   minimizer   after   u   along   the   path.   Let   denote   the   addition   of   nodes   s   and   t   to  dd(s, )  K← a t  
31 K   and   the   directed   edge   (s,t).   Let   denote   the   addition   of   nodes   and   to  dd(s, )   K← a T s  t ∈ T  
32 K   as   well   as   directed   edges   (s,t)   for   ,   and   define   similarly.   t ∈ T dd(S, )   K← a t  

  
33 The   resulting   PanRG   index   stores   a   map   from   each   minimizing   k-mer   hash   value   to   the   
34 positions   in   all   local   graphs   where   that   (w,k)-minimizer   occurred.   In   addition,   we   store   the   
35 induced   k-mer   graph   for   each   local   graph.   

21   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.12.380378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380378
http://creativecommons.org/licenses/by/4.0/


22   

  
  

1 Quasi-mapping   reads   
2 We   infer   the   presence   of   PanRG   loci   in   reads   by   quasi-mapping.   For   each   read,   a   sketch   of   
3 (w,k)-minimizers   is   made,   and   these   are   queried   in   the   index.   For   every   (w,k)-minimizer   
4 shared   between   the   read   and   a   local   graph   in   the   PanRG   index,   we   define   a    hit    to   be   the   
5 coordinates   of   the   minimizer   in   the   read   and   local   graph   and   whether   it   was   found   in   the   
6 same   or   reverse   orientation.   We   define   clusters   of   hits   from   the   same   read,   local   graph   and   
7 orientation   if   consecutive   read   coordinates   are   within   a   certain   distance.   If   this   cluster   is   of   
8 sufficient   size,   the   locus   is   deemed   to   be   present   and   we   keep   the   hits   for   further   analysis.   
9 Otherwise,   they   are   discarded   as   noise.   The   default   for   this   “sufficient   size”   is   at   least   10   hits   

10 and   at   least   1/5th   the   length   of   the   shortest   path   through   the   k-mer   graph   (Nanopore)   or   the   
11 number   of   k-mers   in   a   read   sketch   (Illumina).   Note   that   there   is   no   requirement   for   all   these   
12 hits   to   lie   on   a   single   path   through   the   local   graph.   A   further   filtering   step   is   therefore   applied   
13 after   the   sequence   at   a   locus   is   inferred   to   remove   false   positive   loci,   as   indicated   by   low   
14 mean   or   median   coverage   along   the   inferred   sequence   by   comparison   with   the   global   
15 average   coverage.   This   quasi-mapping   procedure   is   described   in   pseudocode   in   
16 Supplementary   Algorithm   2.     

  

17 Initial   sequence   approximation   as   a   mosaic   of   references   
18 For   each   locus   identified   as   present   in   the   set   of   reads,   quasi-mapping   provides   (filtered)   
19 coverage   information   for   nodes   of   the   directed   acyclic   k-mer   graph.   We   use   these   to   
20 approximate   the   sequence   as   a   mosaic   of   references   as   follows.   We   model   k-mer   coverage  
21 with   a   negative   binomial   distribution   and   use   the   simplifying   assumption   that   k-mers   are   read   
22 independently.   Let     be   the   set   of   possible   paths   through   the   k-mer   graph,   which   could  Θ  
23 correspond   to   the   true   genomic   sequence   from   which   reads   were   generated.    Let   r   +   s   be   the   
24 number   of   times   the   underlying   DNA   was   read   by   the   machine,   generating   a   k-mer   coverage   
25 of   s,   and   r   instances   where   the   k-mer   was   sequenced   with   errors.   Let   1   −   p   be   the   probability   
26 that   a   given   k-mer   was   sequenced   correctly.    For   any   path let     be  ,  θ ∈ Θ   X , ..., X }{ 1     M  
27 independent   and   identically   distributed   random   variables   with   probability   distribution  
28 ,   representing   the   k-mer   coverages   along   this   path.   Since   the   mean  (x , , ) p (1 )  f i r p = Γ(r)s!

Γ(r+s) r ­ p s  

29 and   variance   are     and     we   solve   for    r   and   p   using   the   observed   k-mer   coverage  p
(1­p)r

p  2   
 

(1­p)r  

30 mean   and   variance   across   all   k-mers   in   all   graphs   for   the   sample.   Let     be   the   k-mer  D  
31 coverage   data   seen   in   the   read   dataset.   We   maximise   the   log-likelihood-inspired   score   

32 where   ,   where     is   the   observed  arg max l(θ|D)} θ
︿
= { θ∈Θ  (θ|D) og f (s , , )l = 1

M ∑
M

i=1
l i r p si  

33 coverage   of   the   -th   k-mer   in   .   By   construction,   the   k-mer   graph   is   directed   and   acyclic   so  i θ  
34 this   maximisation   problem   can   be   solved   with   a   dynamic   programming   algorithm   (for   
35 pseudocode,   see   Supplementary   Algorithm   3).     
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1 For   choices   of    w k   there   is   a   unique   sequence   along   the   discovered   path   through   the   ≤  
2 k-mer   graph   (except   in   rare   cases   within   the   first   or   last   w-1   bases).   We   use   this   closest   
3 mosaic   of   reference   sequences   as   an   initial   approximation   of   the   sample   sequence.     

  

4 De   novo    variant   discovery   
5 The   first   step   in   our   implementation   of   local    de   novo    variant   discovery   in   genome   graphs   is   
6 finding   the   candidate   regions   of   the   graph   that   show   evidence   of   dissimilarity   from   the   
7 sample's   reads.   

  

8 Finding   candidate   regions   
  

9 The   input   required   for   finding   candidate   regions   is   a   local   graph,    n ,   within   the   PanRG,   the   
10 maximum   likelihood   path   of   both   sequence   and   k-mers   in    n ,     and   respectively,   and  mpl n mpk n  
11 a   padding   size    w    for   the   number   of   positions   surrounding   the   candidate   region   to   retrieve.     

  
12 We   define   a   candidate   region,    r ,   as   an   interval   within    n    where   coverage   on     is   less   than  mpl n  
13 a   given   threshold,    c ,   for   more   than    l    and   less   than    m    consecutive   positions.    m    acts   to   restrict   
14 the   size   of   variants   we   are   able   to   detect.   If   set   too   large,   the   following   steps   become   much   
15 slower   due   to   the   combinatorial   expansion   of   possible   paths.     
16 For   a   given   read,    s ,   that   has   a   mapping   to    r    we   define     to   be   the   subsequence   of    s    that  sr  
17 maps   to    r ,   including   an   extra    w    positions   either   side   of   the   mapping.   We   define   the   pileup    P r  
18 as   the   set   of   all   .   sr ∈ r  

  

19 Enumerating   paths   through   candidate   regions   
  

20 For   ,   where    R    is   the   set   of   all   candidate   regions,   we   construct   a   de   Bruijn   graph     r ∈ R Gr  
21 from   the   pileup     using   the   GATB   library (54) .     and     are   defined   as   sets   of   k-mers   to  P r AL AR  
22 the   left   and   right   of    r    in   the   local   graph.   They   are   anchors   to   allow   re-insertion   of   new   
23 sequences   found   by    de   novo    discovery   into   the   local   graph.   If   we   cannot   find   an   anchor   on   
24 both   sides,   then   we   abandon    de   novo    discovery   for    r .   We   use   sets   of   k-mers   for     and   ,  AL AR  
25 rather   than   a   single   anchor   k-mer,   to   provide   redundancy   in   the   case   where   sequencing   
26 errors   cause    the   absence   of   some   k-mers   in   .   Once     is   built,   we   define   the   start  Gr Gr  

27 anchor   k-mer,   ,   as   the   first   .   Likewise,   we   define   the   end  aL  

28 anchor   k-mer,   ,   as   the   first    .  aR  
  

29   is   the   spanning   tree   obtained   by   performing   depth-first   search   (DFS)   on   ,   beginning  T r Gr  
30 from   node   .   We   define     as   a   path,   from   the   root   node     of     and   ending   at   node   ,  aL pr aL T r aR  
31 which   fulfils   the   two   conditions:   1)     is   shorter   than   the   maximum   allowed   path   length.   2)  pr  
32 No   more   than    k    nodes   along     have   coverage   ,   where     is   the   expected   k-mer  pr    < f × er er  
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24   

1 coverage   for    r    and    f    is     ,   where     is   the   number   of   iterations   of   path   enumeration   for    r   nr  × s nr  
2 and    s    is   a   step   size   (0.1   by   default).   

  
3   is   the   set   of   all   .   If     is   greater   than   a   predefined   threshold,   then   we   have   too   many  V r pr V || r  
4 candidate   paths,   and   we   decide   to   filter   more   aggressively:    f    is   incremented   by    s   -    effectively   
5 requiring   more   coverage   for   each     -   and     is   repopulated.   If     then    de   novo  pr V r   1.0f >    
6 discovery   is   abandoned   for    r .   

  

7 Pruning   the   path-space   in   a   candidate   region   

  
8 As   we   operate   on   both   accurate   and   error-prone   sequencing   reads,   the   number   of   valid   
9 paths   in     can   be   very   large.   Primarily,   this   is   due   to   cycles   that   can   occur   in     and  Gr Gr  

10 exploring   paths   that   will   never   reach   our   required   end   anchor   .   In   order   to   reduce   the  aR  
11 path-space   within     we   prune   paths   based   on   multiple   criteria.   Critically,   this   pruning  Gr  
12 happens   at   each   step   of   the   graph   walk   (path-building).   
13 We   used   a   distance-based   optimisation   based   on   Rizzi   et   al    (55) .   In   addition   to   ,   obtained  T r  
14 by   performing   DFS   on   ,   we   produce   a   distance   map     that   results   from   running  Gr Dr  
15 reversed   breadth-first   search   (BFS)   on   ,   beginning   from   node   .   We   say   reversed   BFS  Gr aR  
16 as   we   explore   the   predecessors   of   each   node,   rather   than   the   successors.     is  Dr  
17 implemented   as   a   binary   search   tree   where   each   node   in   the   tree   represents   a   k-mer   in    Gr  
18 that   is   reachable   from     via   reversed   BFS.   Each   node   additionally   has   an   integer   attached  aR  
19 to   it   that   describes   the   distance   from   that   node   to   .  aR  
20 We   can   use     to   prune   the   path-space   by   1)   for   each   node   ,   we   require     and  Dr    n ∈ pr  n ∈ Dr  
21 2)   requiring     be   reached   from    n    in,   at   most,    i    nodes,   where    i    is   defined   as   the   maximum  aR  
22 allowed   path   length   minus   the   number   of   nodes   walked   to   reach    n .     
23 If   one   of   these   conditions   is   not   met,   we   abandon   .   The   advantage   of   this   pruning   process  pr  
24 is   that   we   never   explore   paths   that   will   not   reach   our   required   endpoint   within   the   maximum   
25 allowed   path   length   and   when   caught   in   a   cycle,   we   abandon   the   path   once   we   have   made   
26 too   many   iterations   around   the   cycle.   

27 Graph-based   genotyping   and   optimal   reference   construction   for  
28 multi-genome   comparison   
29 We   use   graph-based   genotyping   to   output   a   comparison   of   samples   in   a   VCF.   A   path   
30 through   the   graph   is   selected   to   be   the   reference   sequence,   and   graph   variation   is   described   
31 with   respect   to   this   reference.   The   chromosome   field   then   details   the   local   graph   and   the   
32 position   field   gives   the   position   within   the   chosen   reference   sequence   for   possible   variant   
33 alleles.   The   reference   path   for   each   local   graph   is   chosen   to   be   maximally   close   to   the   set   of   
34 sample   mosaic   paths.   This   is   achieved   by   reusing   the   mosaic   path   finding   algorithm   detailed   
35 in   Supplementary   Algorithm   3   on   a   copy   of   the   k-mer   graph   with   coverages   incremented   
36 along   each   sample   mosaic   path,   and   a   modified   probability   function   defined   such   that   the   
37 probability   of   a   node   is   proportional   to   the   number   of   samples   covering   it.   This   results   in   an   
38 optimal   path,   which   is   used   as   the   VCF   reference   for   the   multi-sample   VCF   file.     
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1 For   each   sample   and   site   in   the   VCF   file,   the   mean   forward   and   reverse   coverage   on   k-mers   
2 tiling   alleles   is   calculated.   A   likelihood   is   then   independently   calculated   for   each   allele   based   
3 on   a   Poisson   model.   An   allele     in   a   site   is   called   if:   1)   is   on   the   sample   mosaic   path   (i.e.  A A  
4 it   is   on   the   maximum   likelihood   path   for   that   sample);   2)   is   the   most   likely   allele   to   be  A  
5 called   based   on   the   previous   Poisson   model.    Every   allele   not   in   the   sample   mosaic   path   will   
6 not   satisfy   1)   and   will   thus   not   be   called.   In   the   uncommon   event   where   an   allele   satisfies   1),   
7 but   not   2),   we   have   an   incompatibility   between   the   global   and   the   local   choices,   and   then   the   
8 site   is   genotyped   as   null.   

  

9 Comparison   of   variant-callers   on   a   diverse   set   of    E.   coli   

10 Sample   selection   
11 We   used   a   set   of   20   diverse    E.   coli    samples   for   which   matched   Nanopore   and   Illumina   data   
12 and   a   high-quality   assembly   were   available.   These   are   distributed   across   4   major   
13 phylogroups   of    E.   coli    as   shown   in   Figure   4.   Of   these,   16   were   isolated   from   clinical   
14 infections   and   rectal   screening   swabs   in   ICU   patients   in   an   Australian   hospital (56) .   One   is   
15 the   reference   strain   CFT073   that   was   resequenced   and   assembled   by   the   REHAB  
16 consortium (57) .   One   is   from   an   ST216   cardiac   ward   outbreak   (identifier:   H131800734);   the   
17 Illumina   data   was   previously   obtained (58)    and   we   did   the   Nanopore   sequencing   (see   below).   
18 The   two   final   samples   were   obtained   from   Public   Health   England:   one   is   a   Shiga-toxin   
19 encoding    E.   coli    (we   used   the   identifier   O63) (59) ,   and   the   other   an   enteroaggregative    E.   coli   
20 (we   used   the   identifier   ST38) (60) .   Coverage   data   for   these   samples   can   be   found   in   
21 Supplementary   Table   1.   

  

22 PanRG   construction   
23 MSAs   for   gene   clusters   curated   with   PanX (27)    from   350   RefSeq   assemblies   were   
24 downloaded   from    http://pangenome.de    on   3rd   May   2018.   MSAs   for   intergenic   region   clusters   
25 based   on   228    E.   coli    ST131   genome   sequences   were   previously   generated   with   Piggy (28)   
26 for   their   publication.   The   PanRG   was   built   using    make_prg .   Two   loci   (GC00000027_2   and   
27 GC00004221)   out   of   37,428   were   excluded   because   the   combination   of   Clustal   Omega   and   
28 make_prg    did   not   complete   in   reasonable   time   (~24   hours)   once    de   novo    variants   were   
29 added.   

  

30 Nanopore   sequencing   of   sample   H131800734   
31 DNA   was   extracted   using   a   Blood   &   Cell   Culture   DNA   Midi   Kit   (Qiagen,   Germany)   and   
32 prepared   for   Nanopore   sequencing   using   kits   EXP-NBD103   and   SQK-LSK108.   Sequencing   
33 was   performed   on   a   MinION   Mk1   Shield   device   using   a   FLO-MIN106   R9.4   Spoton   flowcell   
34 and   MinKNOW   version   1.7.3,   for   48   hours.   
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1 Nanopore   basecalling   
2 Recent   improvements   to   the   accuracy   of   Nanopore   reads   have   been   largely   driven   by   
3 improvements   in   basecalling   algorithms (61) .   All   Nanopore   data   was   basecalled   with   the   
4 methylation-aware,   high-accuracy   model   provided   with   the   proprietary   guppy   basecaller   
5 (version   3.4.5).   In   addition,   4   samples   were   basecalled   with   the   default   (methylation   
6 unaware)   model   for   comparison   (see   Figure   5).   Demultiplexing   of   the   subsequent   basecalled   
7 data   was   performed   using   the   same   version   of   the   guppy   software   suite   with   barcode   kits  
8 EXP-NBD104   and   EXP-NBD114   and   an   option   to   trim   the   barcodes   from   the   output.   

  

9 Phylogenetic   tree   construction   
10 Chromosomes   were   aligned   using    MAFFT (62)    v7.467   as   implemented   in    Parsnp (63)    v1.5.3.   
11 Gubbins    v2.4.1   was   used   to   filter   for   recombination   (default   settings)   and   phylogenetic   
12 construction   was   carried   out   using    RAxML (64)    v8.2.12   (GTR   +   GAMMA   substitution   model,   
13 as   implemented   in    Gubbins (65) ).   

14 Reference   selection   for   mapping-based   callers   
15 A   set   of   references   was   chosen   for   testing   single-reference   variant   callers   using   two   
16 standard   approaches,   as   follows.   First,   a   phylogeny   was   built   containing   our   20   samples   and   
17 243   reference   genomes   from   RefSeq.   Then,   for   each   of   our   20   samples,   the   nearest   RefSeq   
18 E.   coli    reference   was   found   using   Mash (66) .   Second,   for   each   of   the   20   samples,   the   
19 nearest   RefSeq   reference   in   the   phylogeny   was   manually   selected;   sometimes   one   RefSeq   
20 assembly   was   the   closest   to   more   than   one   of   the   20.   At   an   earlier   stage   of   the   project   there   
21 had   been   another   sample   (making   a   total   of   21)   in   phylogroup   B1;   this   was   discarded   when   
22 it   failed   quality   filters   (data   not   shown).   Despite   this,   the    Mash /manual   selected   reference   
23 genomes   were   left   in   the   set   of   mapping   references,   to   evaluate   the   impact   of   mapping   to   a   
24 reference   in   a   different   phylogroup   to   all   20   of   our   samples.   

25 Construction   of   truth   assemblies   
26 16/20   samples   were   obtained   with   matched   Illumina   and   Nanopore   data   and   a   hybrid   
27 assembly.   Sample   H131800734   was   assembled   using   the   hybrid   assembler    Unicycler (67)   
28 with   PacBio   and   Illumina   reads   followed   by   polishing   with   the   PacBio   reads   using    Racon (68) ,   
29 and   finally   with   Illumina   reads   using    Pilon (69) .   A   small   1kb   artifactual   contig   was   removed   
30 from   the   H131800734   assembly   due   to   low   quality   and   coverage.  

  
31 In   all   cases   we   mapped   the   Illumina   data   to   the   assembly,   and   masked   all   positions   where   
32 the   pileup   of   Illumina   reads   did   not   support   the   assembly.   

33
 

Construction   of   a   comprehensive   and   filtered   truth   set   of   pairwise   SNPs   
34 All   pairwise   comparisons   of   the   20   truth   assemblies   were   performed   with    varifier   
35 ( https://github.com/iqbal-lab-org/varifier ),   using   subcommand    make_truth_vcf .   In   summary,   
36 varifier    compares   two   given   genomes   ( referenced   as   G1   and   G2 )   twice    -   first   using   
37 dnadiff (70)    and   then   using    minimap2/paftools (53) .   The   two   output   sets   of   pairwise   SNPs   are   
38 then   joined   and   filtered.   We   create   one   sequence   probe   for   each   allele   (a   sequence   
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1 composed   of   the   allele   and   50   bases   of   flank   on   either   side   taken   from   G1)   and   then   map   
2 both   to   G2   using    minimap2 .   We   then   evaluate   these   mappings   to   verify   if   the   variant   found   is   
3 indeed   correct   (TP)   or   not   (FP)   as   follows.   If   the   mapping   quality   is   zero,   the   variant   is   
4 discarded   to   avoid   paralogs/duplicates/repeats   that   are   inherently   hard   to   assess.   We   then   
5 check   for   mismatches   in   the   allele   after   mapping   and   confirm   that   the   called   allele   is   the   
6 better   match.     

  

7 Constructing   a   set   of   ground   truth   pan-genome   variants   
8 When   seeking   to   construct   a   truth   set   of   all   variants   within   a   set   of   bacterial   genomes,   there   
9 is   no   universal   coordinate   system.   We   start   by   taking   all   pairs   of   genomes   and   finding   the   

10 variants   between   them,   and   then   need   to   deduplicate   them   -   e.g.   when   a   variant   between   
11 genomes   1   and   2   is   the   same   as   a   variant   between   genomes   3   and   4,   they   should   be   
12 identified;   we   define   “the   same”   in   terms   of   genome,   coordinate   and   allele.   An   allele     in   a  A  
13 position     of   a   chromosome     in   a   genome     is   defined   as   a   triple   .  P A CA GA G , C , P )A = ( A   A   A  
14 A   pairwise   variant     is   defined   as   a   pair   of   alleles   that   describes   a   variant  wV A , A }P = { 1   2  
15 between   two   genomes,   and   a   pan-genome   variant   is   defined   as   a   set  gV A , A , ..., A }P = { 1   2     n  
16 of   two   or   more   alleles   that   describes   the   same   variant   between   two   or   more   genomes.   A   
17 pan-genome   variant   can   also   be   defined   as   a   set   of   pairwise   variants  gVP  
18 ,   as   we   can   infer   the   set   of   alleles   of   from   the   pairs  gV PwV , PwV , ..., PwV }P = { 1   2     n gVP  
19 of   alleles   in   all   these   pairwise   variants.   Note   that   pan-genome   variants   are   thus   able   to   
20 represent   rare   and   core   variants.   Given   a   set   of   pairwise   variants,   we   seek   a   set   of   
21 pan-genome   variants   satisfying   the   following   properties:   
22 1. [Surjection]:     
23 a. each   pairwise   variant   is   in   exactly   one   pan-genome   variant;     
24 b. a   pan-genome   variant   contains   at   least   one   pairwise   variant;   
25 2. [Transitivity]:   if   two   pairwise   variants     and     share   an   allele,   then    wVP 1 wVP 2 wVP 1  
26 and     are   in   the   same   pan-genome   variant   ;  wVP 2 gVP  

  
27 We   model   the   above   problem   as   a   graph   problem.   We   represent   each   pairwise   variant   as   a   
28 node   in   an   undirected   graph   .   There   is   an   edge   between   two   nodes     and   if     and  G n1 n2 n1  
29   share   an   allele.   Each   component   (maximal   connected   subgraph)   of     then   defines   a  n2 G  
30 pan-genome   variant,   built   from   the   set   of   pairwise   variants   in   the   component,   satisfying   all   
31 the   properties   previously   described.   Therefore,   the   set   of   components   of     defines   the   set  G  
32 of   pan-genome   variants   .   However,   a   pan-genome   variant   in   could:   i)   have   more   than  P P  
33 one   allele   stemming   from   a   single   genome,   due   to   a   duplication/repeat;   ii)   represent   biallelic   
34 ,   triallelic   or   tetrallelic   SNPs/indels.   For   this   evaluation,   we   chose   to   have   a   smaller,   but   more   
35 reliable   set   of   pan-genome   variants,   and   thus   we   filtered   by   restricting   it   to   the   set   of  P  
36 pan-genome   variants     defined   by   the   variants     such   that:   i)     has   at   most  P ′ gV    P ∈ P gVP  
37 one   allele   stemming   from   each   genome;   ii)   is   a   biallelic   SNP.     is   the   set   of   618,305  gVP P ′  
38 ground   truth   filtered   pan-genome   variants   that   we   extracted   by   comparing   and   deduplicating   
39 the   pairwise   variants   present   in   our   20   samples,   and   that   we   use   to   evaluate   the   recall   of   all   
40 the   tools   in   this   paper.   Supplementary   Figure   11   shows   an   example   summarising   the   
41 described   process   of   building   pan-genome   variants   from   a   set   of   pairwise   variants.   
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1 Subsampling   read   data   and   running   all   tools   
2 All   read   data   was   randomly   subsampled   to   100x   coverage   using    rasusa    -   the   pipeline   is   
3 available   at    https://github.com/iqbal-lab-org/subsampler .   A    snakemake (71)    pipeline   to   run   
4 the    pandora    workflow   with   and   without    de   novo    discovery   (see   Figure   2d)   is   available   at   
5 https://github.com/iqbal-lab-org/pandora_workflow .   A    snakemake    pipeline   to   run    snippy ,  
6 SAMtools ,    nanopolish    and    medaka    on   all   pairwise   combinations   of   20   samples   and   24   
7 references   is   available   at    https://github.com/iqbal-lab-org/variant_callers_pipeline .   

8 Evaluating   VCF   files   

9 Calculating   precision   

10 Given   a   variant/VCF   call   made   by   any   of   the   evaluated   tools,   where   the   input   were   reads   
11 from   a   sample   (or   several   samples,   in   the   case   of    pandora )   and   a   reference   sequence   (or   a   
12 PanRG,   in   the   case   of    pandora ),   we   perform   the   following   steps   to   assess   how   correct   a   call   
13 is:   
14 1. Construct   a   probe   for   the   called   allele,   consisting   of   the   sequence   of   the   allele   
15 flanked   by   150bp   on   both   sides   from   the   reference   sequence.   This   reference   
16 sequence   is   one   of   the   24   chosen   references   for    snippy ,    SAMtools ,    nanopolish    and   
17 medaka ;   or   the   multi-sample   inferred   VCF   reference   for    pandora ;   
18 2. Map   the   probe   to   the   sample   sequence   using    BWA-MEM (72) ;   
19 3. Remove   multi-mappings   by   looking   at   the   Mapping   Quality   (MAPQ)   measure (30)    of   
20 the   SAM   records.   If   the   probe   is   mapped   uniquely,   then   its   mapping   passes   the   filter.   
21 If   there   are   multiple   mappings   for   the   probe,   we   select   the   mapping     with   the  m1  
22 highest   MAPQ   if   the   difference   between   its   MAPQ   and   the   second   highest   MAPQ   
23 exceeds   10.   If     does   not   exist,   then   there   are   at   least   two   mappings   with   the   same  m1  
24 MAPQ,   and   it   is   ambiguous   to   choose   which   one   to   evaluate.   In   this   case,   we   prefer   
25 to   be   conservative   and   filter   this   call   (and   all   its   related   mappings)   out   of   the   
26 evaluation;   
27 4. We   further   remove   calls   mapping   to   masked   regions   of   the   sample   sequence,   in   
28 order   to   not   evaluate   calls   lying   on   potentially   misassembled   regions;   
29 5. Now   we   evaluate   the   mapping,   giving   the   call   a   continuous   precision   score   between   
30 0   and   1.   If   the   mapping   does   not   cover   the   whole   called   allele,   we   give   a   score   of   0.   
31 Otherwise,   we   look   only   at   the   alignment   of   the   called   allele   (i.e.   we   ignore   the   
32 flanking   sequences   alignment),   and   give   a   score   of:   number   of   matches   /   alignment   
33 length.   

  
34 Finally,   we   compute   the   precision   for   the   tool   by   summing   the   score   of   all   evaluated   calls   and   
35 dividing   by   the   number   of   evaluated   calls.   Note   that   here   we   evaluate   all   types   of   variants,   
36 including   SNPs   and   indels.   

  

37 Calculating   recall   

38 We   perform   the   following   steps   to   calculate   the   recall   of   a   tool:   

28   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.12.380378doi: bioRxiv preprint 

https://github.com/iqbal-lab-org/subsampler
https://www.zotero.org/google-docs/?LjjsBm
https://github.com/iqbal-lab-org/pandora_workflow
https://github.com/iqbal-lab-org/variant_callers_pipeline
https://www.zotero.org/google-docs/?Vz7N54
https://www.zotero.org/google-docs/?9D1Fwo
https://doi.org/10.1101/2020.11.12.380378
http://creativecommons.org/licenses/by/4.0/


29   

1 1. Apply   the   VCF   calls   to   the   associated   reference   using   the   VCF   consensus   builder   
2 ( https://github.com/leoisl/vcf_consensus_builder ),   creating   a   mutated   reference   with   
3 the   variants   identified   by   the   tool;   
4 2. Build   probes   for   each   allele   of   each   pan-genome   variant   previously   computed   (see   
5 Section   “Constructing   a   set   of   ground   truth   pan-genome   variants”);   
6 3. Map   all   pan-genome   variants’   probes   to   the   mutated   reference   using    BWA-MEM ;   
7 4. Evaluate   each   probe   mapping,   which   is   classified   as   a   TP   only   if   all   bases   of   the   
8 allele   were   correctly   mapped   to   the   mutated   reference.   In   the   uncommon   case   where   
9 a   probe   multimaps,   it   is   enough   that   one   of   the   mappings   are   classified   as   TP;   

10 5. Finally,   as   we   now   know   for   each   pan-genome   variant   which   of   its   alleles   were   found,   
11 we   calculate   both   the   pan-variant   recall   and   the   average   allelic   recall   as   per   Section   
12 “ Pandora   detects   rare   variation   inaccessible   to   single-reference   methods ”.   

13
 
Filters   

14 Given   a   VCF   file   with   likelihoods   for   each   genotype,   the   genotype   confidence   is   defined   as   
15 the   log   likelihood   of   the   maximum   likelihood   genotype,   minus   the   log   likelihood   of   the   next   
16 best   genotype.   Thus   a   confidence   of   zero   means   all   alleles   are   equally   likely,   and   high   
17 quality   calls   have   higher   confidences.   In   the   recall/error   rate   plots   of   Figure   5   and   Figures   
18 6a,b,   each   point   corresponds   to   the   error   rate   and   recall   computed   as   previously   described,   
19 on   a   genotype   confidence   (gt-conf)   filtered   VCF   file   with   a   specific   threshold   for   minimum   
20 confidence.   

  
21 We   also   show   the   same   plot   with   further   filters   applied   in   Supplementary   Figure   1.    The   filters   
22 were   as   follows.   For   Illumina   data:   for    pandora ,   a   minimum   coverage   filter   of   5x,   a   strand   
23 bias   filter   of   0.05   (minimum   5%   of   reads   on   each   strand),   and   a   gaps   filter   of   0.8   were   
24 applied.   The   gaps   filter   means   at   least   20%   the   minimizer   k-mers   on   the   called   allele   must   
25 have   coverage   above   10%   of   the   expected   depth.   As    snippy    has   its   own   internal   filtering,   no   
26 filters   were   applied.   For    SAMtools ,   a   minimum   coverage   filter   of   5x   was   used.   For   Nanopore   
27 data:   for    pandora ,   a   minimum   coverage   filter   of   10x,   a   strand   bias   filter   of   0.05,   and   a   gaps   
28 filter   of   0.6   were   used.   For    nanopolish ,   we   applied   a   coverage   filter   of   10x.   We   were   unable   
29 to   apply   a   minimum   coverage   filter   to   a    medaka    due   to   a   software   bug   that   prevents   
30 annotating   the   VCF   file   with   coverage   information.   

  

31 Locus   presence   and   distance   evaluation   
32 For   all   loci   detected   as   present   in   at   least   one   sample   by    pandora ,   we   mapped   the   
33 multi-sample   inferred   reference   to   all   20   sample   assemblies   and   24   references,   to   identify   
34 their   true   locations.   To   be   confident   of   these   locations,   we   employed   a   strict   mapping   using   
35 bowtie2 (73)    and   requiring   end-to-end   alignments.   From   the   mapping   of   all   loci   to   all   
36 samples,   we   computed   a   truth   locus   presence-absence   matrix,   and   compared   it   with   
37 pandora ’s   locus   presence-absence   matrix,   classifying   each    pandora    locus   call   as   true/false   
38 positive/negative.   Supplementary   Figure   3   shows   these   classifications   split   by   locus   length.   
39 Having   the   location   of   all   loci   in   all   the   20   sample   assemblies   and   the   24   references,   we   then   
40 computed   the   edit   distance   between   them.     
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1 Declarations  

2 Ethics   approval   and   consent   to   participate   
3 Not   applicable   

4 Consent   for   publication   
5 Not   applicable   

6 Availability   of   data   and   materials   

7 Reproducibility   
8 All   input   data   for   our   analyses,   including   PanX’s   and   Piggy’s   MSAs,   PanRG,   reference   
9 sequences,   and   sample   data   are   publicly   available   (see   Section   “ Data   availability ”).   

10 Pandora ’s   code,   as   well   as   all   code   needed   to   reproduce   this   analysis   are   also   publicly   
11 available   (see   Section   “ Code   availability ”).   Software   environment   reproducibility   is   achieved   
12 using   Python   virtual   environments   if   all   dependencies   and   source   code   are   in   Python,   and   
13 using   Docker (74)    containers   run   with   Singularity (75)    otherwise.   The   exact   commit/version   of   
14 all   repositories   used   to   obtain   the   results   in   this   paper   can   be   retrieved   with   the   git   branch   or   
15 tag    pandora_paper_tag1 .     

16 Data   availability   

17 ● Gene   MSAs   from   PanX,   and   intergenic   MSAs   from   Piggy:   
18 doi.org/10.6084/m9.figshare.13204163 ;   
19 ● E.   Coli    PanRG:    doi.org/10.6084/m9.figshare.13204172 ;   
20 ● Accession   identifiers   or   Figshare   links   for   the   sample   and   reference   assemblies,   and   
21 Illumina   and   Nanopore   reads   are   listed   in   Section   D   of   the   Supplementary   file;   
22 ● Input   packages   containing   all   data   to   reproduce   both   the   4-   and   20-way   analyses   
23 described   in   the   Results   section   are   also   available   in   Section   D   of   the   Supplementary   
24 file.   

25 Code   availability   

26 ● make_prg    (RCC   graph   construction   algorithm):    https://github.com/rmcolq/make_prg   
27 ● pandora :    https://github.com/rmcolq/pandora   
28 ● varifier :    https://github.com/iqbal-lab-org/varifier   
29 ● Pangenome   variations   pipeline   taking   a   set   of   assemblies   and   returning   a   set   of   
30 filtered   pan-genome   variants:    https://github.com/iqbal-lab-org/pangenome_variations   
31 ● pandora    workflow:    https://github.com/iqbal-lab-org/pandora_workflow   
32 ● Run    snippy ,    samtools ,    nanopolish    and    medaka    pipeline:   
33 https://github.com/iqbal-lab-org/variant_callers_pipeline   
34 ● 4-   and   20-way   evaluation   pipeline   (recall/error   rate   curves   etc):   
35 https://github.com/iqbal-lab-org/pandora_paper_roc   
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1 ● Locus   presence   and   distance   from   reference   pipeline:   
2 https://github.com/iqbal-lab-org/pandora_gene_distance   
3 ● A   master   repository   to   reproduce   everything   in   this   paper,   marshalling   all   of   the   
4 above:    https://github.com/iqbal-lab-org/paper_pandora2020_analyses   

  
5 Although   all   containers   are   hosted   on    https://hub.docker.com/    (for   details,   see   
6 https://github.com/iqbal-lab-org/paper_pandora2020_analyses/blob/master/scripts/pull_conta 
7 iners/pull_containers.sh ),   and   are   downloaded   automatically   during   the   pipelines’   execution,   
8 we   also   provide   Singularity (75)    containers   (converted   from   Docker   containers)   at   
9 doi.org/10.6084/m9.figshare.13204169 .     

  
10 Frozen   packages   with   all   the   code   repositories   for    pandora    and   the   analysis   framework   can   
11 be   found   at    doi.org/10.6084/m9.figshare.13204214 .   
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