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Abstract

Background

Bacterial genomes follow a U-shaped frequency distribution whereby most genomic loci are
either rare (accessory) or common (core); the union of these is the pan-genome. The
alignable fraction of two genomes from a single species can be low (e.g. 50-70%), such that
no single reference genome can access all single nucleotide polymorphisms (SNPs). The
pragmatic solution is to choose a close reference, and analyse SNPs only in the core
genome. Given much bacterial adaptability hinges on the accessory genome, this is an
unsatisfactory limitation.

Results

We present a novel pan-genome graph structure and algorithms implemented in the
software pandora, which approximates a sequenced genome as a recombinant of reference
genomes, detects novel variation and then pan-genotypes multiple samples. The method
takes fastq as input and outputs a multi-sample VCF with respect to an inferred
data-dependent reference genome, and is available at https://github.com/rmcolg/pandora.

Constructing a reference graph from 578 E. coli genomes, we analyse a diverse set of 20 E.
coli isolates. We show pandora recovers at least 13k more rare SNPs than single-reference
based tools, achieves equal or better error rates with Nanopore as with lllumina data, 6-24x
lower Nanopore error rates than other tools, and provides a stable framework for analysing
diverse samples without reference bias. We also show that our inferred recombinant VCF
reference genome is significantly better than simply picking the closest RefSeq reference.

Conclusions
This is a step towards comprehensive cohort analysis of bacterial pan-genomic variation,
with potential impacts on genotype/phenotype and epidemiological studies.
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3 Background

4 Bacterial genomes evolve by multiple mechanisms including: mutation during replication,

5 allelic and non-allelic homologous recombination. These processes result in a population of

6 genomes that are mosaics of each other. Given multiple contemporary genomes, the

7 segregating variation between them allows inferences to be made about their evolutionary

8 history. These analyses are central to the study of bacterial genomics and evolution(1-4)

9 with different questions requiring focus on separate aspects of the mosaic: fine-scale
10 (mutations) or coarse (gene presence, synteny). In this paper, we provide a new and
11 accessible conceptual model that combines both fine and coarse bacterial variation. Using
12 this new understanding to better represent variation, we can access previously hidden single
13 nucleotide polymorphisms (SNPs), insertions and deletions (indels).

14 Genes cover 85-90% of bacterial genomes(5), and shared gene content is commonly used
15 as a measure of whole-genome similarity. In fact, the full set of genes present in a species -
16 the pan-genome - is in general much larger than the number found in any single genome. A
17 frequency distribution plot of genes within a set of bacterial genomes has a characteristic

18 asymmetric U-shaped curve (6—10), as shown in Figure 1a. As a result, a collection of

19 Escherichia coli genomes might only have 50% of their genes (and therefore their whole

20 genome)(3) in common. This highlights a limitation in the standard approach to analysing

21 genetic variation, whereby a single genome is treated as a reference, and all other genomes
22 are interpreted as differences from it. In bacteria, a single reference genome will inevitably
23 lack many of the genes in the pan-genome, and completely miss genetic variation therein

24 (Figure 1b). We call this hard reference bias, to distinguish from the more common concern,
25 that increased divergence of a reference from the genome under study leads to

26 read-mapping problems, which we term soft reference bias. The standard workaround for
27 these issues in bacterial genomics is to restrict analysis either to very similar genomes using
28 a closely related reference (e.g. in an outbreak) or to analyse SNPs only in the core genome
29 (present in most samples) and outside the core to simply study presence/absence of

30 genes(11).
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Figure 1. Universal gene frequency distribution in bacteria and the single-reference
problem. a) Frequency distribution of genes in 10 genomes of 6 bacterial species
(Escherischia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus
aureus, Salmonella enterica and Streptococcus pneumoniae) showing the characteristic
U-shaped curve - most genes are rare or common. b) lllustrative depiction of the
single-reference problem, a consequence of the U-shaped distribution. Each vertical column
is a bacterial genome, and each coloured bar is a gene. Numbers are identifiers for SNPs -
there are 50 in total. Thus the dark blue gene has 4 SNPs numbers 1-4. This figure does not
detail which genome has which allele. Below each column is the proportion of SNPs that are
discoverable when that genome is used as a reference genome. Because no single
reference contains all the genes in the population, it can only access a fraction of the SNPs.

In this study we address the variation deficit caused by a single-reference approach. Given
lllumina or Nanopore sequence data from potentially divergent isolates of a bacterial
species, we attempt to detect all of the variants between them. Our approach is to
decompose the pan-genome into atomic units (loci) which tend to be preserved over
evolutionary timescales. Our loci are genes and intergenic regions in this study, but the
method is agnostic to such classifications, and one could add any other grouping wanted
(e.g. operons or mobile genetic elements). Instead of using a single genome as a reference,
we collect a panel of representative reference genomes and use them to construct a set of
reference graphs, one for each locus. Reads are mapped to this set of graphs and from this
we are able to discover and genotype variation. By letting go of prior information on locus
ordering in the reference panel, we are able to recognise and genotype variation in a locus
regardless of its wider context. Since Nanopore reads are typically long enough to
encompass multiple loci, it is possible to subsequently infer the order of loci - although that is
outside the scope of this study.

The use of graphs as a generalisation of a linear reference is an active and maturing
field(12—19). Much recent graph genome work has gone into showing that genome graphs
reduce the impact of soft reference bias on mapping(12), and on generalising alignment to
graphs(16,20). However there has not yet been any study (to our knowledge) addressing
SNP analysis across a diverse cohort, including more variants that can fit on any single
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1 reference. In particular, all current graph methods require a reference genome to be
2 provided in advance to output genetic variants in the standard Variant Call Format (VCF)(21)
- thus immediately inheriting a hard bias when applied to bacteria (see Figure 1b).

w

We have made a number of technical innovations. First, a recursive clustering algorithm that

converts a multiple sequence alignment (MSA) of a locus into a graph. This avoids the

complexity “blowups” that plague graph genome construction from unphased VCF

files(12,14). Second, a graph representation of genetic variation based on

(w,k)-minimizers(22). Third, using this representation we avoid unnecessary full alignment to
9 the graph and instead use quasi-mapping to genotype on the graph. Fourth, discovery of

10 variation missing from the reference graph using local assembly. Fifth, use of a canonical

11 dataset-dependent reference genome designed to maximise clarity of description of variants

12 (the value of this will be made clear in the main text).

0 N o o b

13 We describe these below, and evaluate our implementation, pandora, on a diverse set of E.
14 coli genomes with both lllumina and Nanopore data. We show that, compared with

15 reference-based approaches, pandora recovers a significant proportion of the missing

16 variation in rare loci, performs much more stably across a diverse dataset, successfully

17 infers a better reference genome for VCF output, and outperforms current tools for Nanopore
18 data.

19 Results:
20 Pan-genome graph representation

21 We set out to define a generalised reference structure which allows detection of SNPs and
22 other variants across the whole pan-genome, without attempting to record long-range

23 structure or coordinates. We define a Pan-genome Reference Graph (PanRG) as an

24 unordered collection of sequence graphs, termed local graphs, each of which represents a
25 locus, such as a gene or intergenic region. Each local graph is constructed from a MSA of
26 known alleles of this locus, using a recursive cluster-and-collapse (RCC) algorithm

27 (Supplementary Animation 1: recursive clustering construction). The output is guaranteed to
28 be a directed acyclic sequence graph allowing hierarchical nesting of genetic variation while
29 meeting a “balanced parentheses” criterion (see Figure 2b and Methods). Each path through
30 the graph from source to sink represents a possible recombinant sequence for the locus.

31 The disjoint nature of this pan-genome reference allows loci such as genes to be compared
32 regardless of their wider genomic context. We implement this construction algorithm in the
33 make_prg tool which outputs the graph as a file (see Figures 2a-c, Methods). Subsequent
34 operations, based on this, are implemented in the software package pandora. The overall
35 workflow is shown in Figure 2.

36 To index a PanRG, we generalise a type of sparse marker k-mer ((w,k)-minimizer),
37 previously defined for strings, to directed acyclic graphs (see Methods). Each local graph is
38 sketched with minimizing k-mers, and these are then used to construct a new graph (the
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k-mer graph) for each local graph from the PanRG. Each minimizing k-mer is a node, and
edges are added between two nodes if they are adjacent minimizers on a path through the
original local graph. This k-mer graph is isomorphic to the original if w<k (and outside the
first and last w+k-1 bases); all subsequent operations are performed on this graph, which, to
avoid unnecessary new terminology, we also call the local graph.

A global index maps each minimizing k-mer to a list of all local graphs containing that k-mer
and the positions therein. Long or short reads are approximately mapped (quasi-mapped) to
the PanRG by determining the minimizing k-mers in each read. Any of these read
quasi-mappings found in a local graph are called hits, and any local graph with sufficient
clustered hits on a read is considered present in the sample.
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Figure 2. The pandora workflow. a) reference panel of genomes; colour signifies locus
(gene or intergenic region) identifier, and blobs are SNPs. b) multiple sequence alignments
(MSAs) for each locus are made and converted into a directed acyclic graph. c) local graphs
constructed from the loci in the reference panel. d) Workflow: the collection of local graphs,
termed the PanRG, is indexed. Reads from each sample under study are independently
quasi-mapped to the graph, and a determination is made as to which loci are present in
each sample. In this process, for each locus, a mosaic approximation of the sequence for
that sample is inferred, and variants are genotyped. e) regions of low coverage are detected,
and local de novo assembly is used to generate candidate novel alleles missing from the
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graph. Returning to d), the dotted line shows all the candidate alleles from all samples are
then gathered and added to the MSAs at the start, and the PanRG is updated. Then, reads
are quasi-mapped one more time, to the augmented PanRG, generating new mosaic
approximations for all samples and storing coverages across the graphs; no de novo
assembly is done this time. Finally, all samples are compared, and a VCF file is produced,
with a per-locus reference that is inferred by pandora.

SO oA WN =

7 Initial sequence approximation as a mosaic of references

8 For each locus identified as present in a sample, we initially approximate the sample’s

9 sequence as a path through the local graph. The result is a mosaic of sequences from the
10 reference panel. This path is chosen to have maximal support by reads, using a dynamic
11 programming algorithm on the graph induced by its (w,k)-minimizers (details in Methods).
12 The result of this process serves as our initial approximation to the genome under analysis.

13 Improved sequence approximation: modify mosaic by local assembly

14 At this point, we have quasi-mapped reads, and approximated the genome by finding the

15 closest mosaic in the graph; however, we expect the genome under study to contain variants
16 that are not present in the PanRG. Therefore, to allow discovery of novel SNPs and small

17 indels that are not in the graph, for each sample and locus we identify regions of the inferred
18 mosaic sequence where there is a drop in read coverage (as shown in Figure 2e). Slices of
19 overlapping reads are extracted, and a form of de novo assembly is performed using a de
20 Bruijn graph. Instead of trying to find a single correct path, the de Bruijn graph is traversed
21 (see Methods for details) to all feasible candidate novel alleles for the sample. These alleles
22 are added to the reference MSA for the locus, and the local graph is updated. If comparing
23 multiple samples, the graphs are augmented with all new alleles from all samples at the

24 same time.

25 Optimal VCF-reference construction for multi-genome comparison

26 In the compare step of pandora (see Figure 2d), we enable continuity of downstream

27 analysis by outputting genotype information in the conventional VCF(21). In this format, each
28 row (record) describes possible alternative allele sequence(s) at a position in a (single)

29 reference genome and information about the type of sequence variant. A column for each

30 sample details the allele seen in that sample, often along with details about the support from
31 the data for each allele.
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POS REF ALT FORMAT SAMPLE1 SAMPLE2 POS REF ALT FORMAT SAMPLE1 SAMPLE2
6 TGCTA GCA,GAA GT 1 2 6 GAA  TGCTA GT . 0
7 A C GT 1 Cl

Figure 3. The representation problem. a) a local graph. b) The black allele is chosen as
reference to enable representation in VCF. The blue/red SNP then requires flanking
sequence in order to allow it to have a coordinate. The SNP is thus represented as two ALT
alleles, each 3 bases long, and the user is forced to notice they only differ in one base. c¢)
The blue path is chosen as the reference, thus enabling a more succinct and natural
representation of the SNP.

SO oA WN =

7 To output graph variation, we first select a path through the graph to be the reference

8 sequence and describe any variation within the graph with respect to this path as shown in

9 Figure 3. We use the chromosome field to detail the local graph within the PanRG in which a
10 variant lies, and the position field to give the position in the chosen reference path sequence
11 for that graph. In addition, we output the reference path sequences used as a separate file.

12 For a collection of samples, we want small differences between samples to be recorded as
13 short alleles in the VCF file rather than longer alleles with shared flanking sequence as

14 shown in Figure 3b. We therefore choose the reference path for each local graph to be

15 maximally close to the sample mosaic paths. To do this, we make a copy of the k-mer graph
16 and increment the coverage along each sample mosaic path, producing a graph with higher
17 weights on paths shared by more samples. We reuse the mosaic path-finding algorithm (see
18 Methods) with a modified probability function defined such that the probability of a node is
19 proportional to the number of samples covering it. This produces a dataset-dependent VCF
20 reference able to succinctly describe segregating variation in the cohort of genomes under
21 analysis.

22 Constructing a PanRG of E. coli

23 We chose to evaluate pandora on the recombining bacterial species, E. coli, whose

24 pan-genome has been heavily studied(7,23—-26). MSAs for gene clusters curated with

25 PanX(27) from 350 RefSeq assemblies were downloaded from http://pangenome.de on 3rd
26 May 2018. MSAs for intergenic region clusters based on 228 E. coli ST131 genome

27 sequences were previously generated with Piggy(28) for their publication. Whilst this panel
28 of intergenic sequences does not reflect the full diversity within E. coli, we included them as
29 an initial starting point. This resulted in an E. coli PanRG containing local graphs for 23,054
30 genes and 14,374 intergenic regions. Pandora took 24.4h in CPU time (2.3h in runtime with
31 16 threads) and 12.6 GB of RAM to index the PanRG. As one would expect from the

32 U-shaped gene frequency distribution, many of the genes were rare in the 578 (=350+228)
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input genomes, and so 59%/44% of the genic/intergenic graphs were linear, with just a
single allele.

Constructing an evaluation set of diverse genomes

We first demonstrate that using a PanRG reduces hard bias when comparing a diverse set
of 20 E. coli samples by comparison with standard single reference variant callers. We
selected samples from across the phylogeny (including phylogroups A, B2, D and F(29))
where we were able to obtain both long and short read sequence data from the same
isolate.
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Figure 4. Phylogeny of 20 diverse E. coli along with references used for benchmarking
single-reference variant callers. The 20 E. coli under study are labelled as samples in the
left-hand of three vertical label-lines. Phylogroups (clades) are labelled by colour of branch,
with the key in the inset. References were selected from RefSeq as being the closest to one
of the 20 samples as measured by Mash, or manually selected from a tree (see Methods).
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Two assemblies from phylogroup B1 are in the set of references, despite there being no
sample in that phylogroup.

We used lllumina-polished long read assemblies as truth data, masking positions where the
lllumina data did not support the assembly (see Methods). As comparators, we used
SAMtools(30) (the “classical” variant-caller based on pileups) and Freebayes(31) (a
haplotype-based caller which reduces soft reference bias, wrapped by Snippy(32)) for
lllumina data, and Medaka(33) and Nanopolish(34) for Nanopore data. In all cases, we ran
the reference-based callers with 24 carefully selected reference genomes (see Methods, and
Figure 4). We defined a “truth set” of 618,305 segregating variants by performing all pairwise
whole genome alignments of the 20 truth assembilies, collecting SNP variants between the
pairs, and deduplicating them by clustering into equivalence classes. Each class, or
pan-variant, represents the same variant found at different coordinates in different genomes
(see Methods). We evaluated error rate, pan-variant recall (PVR, proportion of truth set
discovered) and average allelic recall (AvgAR, average of the proportion of alleles of each
pan-variant that are found). To clarify the definitions, consider a toy example. Suppose we
have three genes, each with one SNP between them. The first gene is rare, present in 2/20
genomes. The second gene is at an intermediate frequency, in 10/20 genomes. The third is
a strict core gene, present in all genomes. The SNP in the first gene has alleles A,C at 50%
frequency (1 Aand 1 C). The SNP in the second gene has alleles G, T at 50% frequency (5
G and 5 T). The SNP in the third gene has alleles A, T with 15 A and 5 T. Suppose a variant
caller found the SNP in the first gene, detecting the two correct alleles. For the second
gene’s SNP, it detected only one G and one T, failing to detect either allele in the other 8
genomes. For the third gene's SNP, it detected all the 5 T's, but no A. Here, the pan-variant
recall would be: (1 +1+0)/3 =0.66 - i.e.score a 1 if both alleles are found, irrespective of
how often- and the average allelic recall would be (2/2 + 2/10 + 5/20)/3=0.48.

Methylation-aware basecalling improves results

In Figure 5, we show for 4 samples the effect of methylation-aware Nanopore basecalling on
the AvgAR/error rate curve for pandora with/without novel variant discovery via local
assembly.
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Figure 5. The effect of methylation-aware basecalling on local de novo assembly. We
show the Average Allelic Recall and Error Rate curve for pandora with normal (solid line) or
methylation-aware (dashed line) Guppy basecalling on 4 out of the 20 samples. For each of
these input data, we show results for Pandora’s first approximation to a genome as a mosaic
(recombinant) of the input reference panel (mosaic, light blue), and then the improved
approximation with added de novo discovery (mosaic+de novo, dark blue).

The top right of each curve corresponds to completely unfiltered results; increasing the
genotype confidence threshold (see Methods) moves each curve towards the bottom-left,
increasing precision at the cost of recall. Notably, with normal basecalling, local de novo
assembly increases the error rate from 0.53% to 0.67%, with a negligible increase in recall,
from 88.7% to 89.3%, whereas with methylation-aware basecalling it increases the recall
from 89.1% to 90% and slightly decreases the error rate from 0.49% to 0.48%. On the basis
of this, from here on we work entirely with reads that are basecalled with a
methylation-aware model, and move to the full dataset of 20 samples.

Benchmarking recall, error rate and dependence on reference

We show in Figures 6a,b the lllumina and Nanopore AvgAR/recall plots for pandora and four
single-reference tools with no filters applied. For all of these, we modify only the minimum
genotype confidence to move up and down the curves (see Methods).

10
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Figure 6. Benchmarks of recall/error and dependence of precision on reference
genome, for pandora and other tools on 20-way dataset. a) The average allelic recall
and error rate curve for pandora, SAMtools and snippy on 100x of lllumina data.
Snippy/SAMtools both run 24 times with the different reference genomes shown in figure 4,
resulting in multiple lines for each tool (one for each reference) b) The average allelic recall
and error rate curve for pandora, medaka and nanopolish on 100x of Nanopore data;
multiple lines for medaka/nanopolish, one for each reference genome. Note panels a and b
have the same y axis scale and limits, but different x axes; c¢) The precision of pandora,
SAMtools and snippy on 100x of lllumina data. The boxplots show the distribution of
SAMtools’ and snippy’s precision depending on which of the 24 references was used, and
the blue line connects pandora’s results; d) The precision of pandora (line plot), medaka and
nanopolish (both boxplots) on 100x of Nanopore data. Note different y axis scale/limits in
panels c,d.

We highlight three observations. Firstly, pandora achieves essentially the same recall and
error rate for the lllumina and Nanopore data (85% AvgAR and 0.6% error rate at the
top-right of the curve, completely unfiltered). Second, choice of reference has a significant
effect on both AvgAR and error rate for the single-reference callers; the reference which
enables the highest recall does not lead to the best error rate (for SAMtools and medaka in
particular). Third, pandora achieves better AvgAR (86%) than all other tools (all between
81% and 84%, see Supplementary Table 2), and a better error rate (0.6%) than SAMtools
(1%), nanopolish (2.4%) and medaka (14.8%). However, snippy achieves a significantly
better error rate than all other tools (0.01%). We confirmed that adding further filters slightly
improved error rates, but did not change the overall picture (Supplementary Figure 1,
Methods, Supplementary Table 2). The results are also in broad agreement if the PVR is
plotted instead of AvgAR (Supplementary Figure 2). However, these AvgAR and PVR figures
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1 are hard to interpret because pandora and the reference-based tools have recall that varies
differently across the locus frequency spectrum - we explore this further below.

N

We ascribe the similarity between the Nanopore and lllumina performance of pandora to
three reasons. First, the PanRG is a strong prior - our first approximation does not contain
any Nanopore sequence, but simply uses quasi-mapped reads to find the nearest mosaic in
the graph. Second, mapping long Nanopore reads which completely cover entire genes is
easier than mapping lllumina data, and allows us to filter out erroneous k-mers within reads
after deciding when a gene is present. Third, this performance is only achieved when we use
methylation-aware basecalling of Nanopore reads, presumably removing most systematic
bias (see Figure 5).

O O 0O N o o W

Y

11 In Figure 6¢,d we show for lllumina and Nanopore data, the impact of reference choice on

12 the precision of calls on each of the 20 samples. While precision is consistent across all

13 samples for pandora, we see a dramatic effect of reference-choice on precision of SAMtools,
14 medaka and nanopolish. The effect is also detectable for snippy, but to a much lesser

15 extent.

16 Finally, we measured the performance of locus presence detection, restricting to

17 genes/intergenic regions in the PanRG, so that in principle perfect recall would be possible
18 (see Methods). In Supplementary Figure 3 we show the distribution of locus presence calls
19 by pandora, split by length of locus for lllumina and Nanopore data. Overall, 93.8%/94.3% of
20 loci were correctly classified as present or absent for lllumina/Nanopore respectively.

21 Misclassifications were concentrated on small loci (below 500bp). While 59.2%/57.4% of all
22 loci in the PanRG are small, 75.5%/74.8% of false positive calls and 98.7%/98.1% of false

23 negative calls are small loci (see Supplementary Figure 3).

24 Pandora detects rare variation inaccessible to single-reference methods

25 Next, we evaluate the key deliverable of pandora - the ability to access genetic variation

26 within the accessory genome. We plot this in Figure 7, showing PVR of SNPs in the truth set
27 which overlap genes or intergenic regions from the PanRG, broken down by the number of
28 samples the locus is present in.

12
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Figure 7. Pan-variant recall across the locus frequency spectrum. Every SNP occurs in
a locus, which is present in some subset of the full set of 20 genomes. In all panels the
SNPs in the golden truth set are broken down by the number of samples the locus is present
in. Left panels (a, c) show results for pandora (dotted line), snippy and SAMtools with
llumina data. Right panels (b, d) show results for pandora, nanopolish and medaka with
Nanopore data. Top panels (a, b) show the absolute count of pan-variants found; Bottom
panels (c, d) show the proportion of pan-variants found.

If we restrict our attention to rare variants (present only in 2-5 genomes), we find pandora
recovers at least 19644/26674/13108/22331 more SNPs than
SAMtools/snippy/medaka/nanopolish respectively. As a proportion of rare SNPs in the truth
set, this is a lift in PVR of 12/17/8/14% respectively. If, instead of pan-variant recall, we look
at the variation of AvgAR across the locus frequency spectrum (see Supplementary Figure
4), the gap between pandora and the other tools on rare loci is even larger. These
observations, and Figure 6, confirm and quantify the extent to which we are able to recover
accessory genetic variation that is inaccessible to single-reference based methods.

Pandora has consistent results across E. coli phylogroups

We measure the impact of reference bias (and population structure) by quantifying how
recall varies in phylogroups A, B2, D, and F dependent on whether the reference genome
comes from the same phylogroup.
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Figure 8. Single reference callers achieve higher recall for samples in the same
phylogroup as the reference genome, but not for rare loci. a) pandora recall (black line)
and snippy recall (coloured bars) on the 20 samples; each histogram corresponds to the use
of one of 5 exemplar references, one from each phylogroup. The background colour denotes
the reference’s phylogroup (see Figure 4 inset); note that phylogroup B1 (yellow
background) is an outgroup, containing no samples in this dataset; b) Same as a) but
restricted to SNPs present in precisely two samples (i.e. where 18 samples have neither
allele because the entire locus is missing). Note the differing y-axis limits in the two panels.
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We plot the results for snippy with 5 exemplar references in Figure 8a (results for all tools
and for all references are in Supplementary Figures 5-8), showing that single references give
5-10% higher recall for samples in their own phylogroup than other phylogroups. By
comparison, pandora’s recall is much more consistent, staying stable at ~89% for all
samples regardless of phylogroup. References in phylogroups A and B2 achieve higher
recall in their own phylogroup, but consistently worse than pandora for samples in the other
phylogroups (in which the reference does not lie). References in the external phylogroup B1,
for which we had no samples in our dataset, achieve higher recall for samples in the nearby
phylogroup A (see inset, Figure 4), but lower than pandora for all others. We also see that
choosing a reference genome from phylogroup F (red), which sits intermediate to the other
phylogroups, provides the most uniform recall across other groups - 2-5% higher than
pandora.
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Figure 9. Sharing of variants present in precisely 2 genomes, showing which pairs of
genomes they lie in and which phylogroups; darker colours signify higher counts (log
scale). Genomes are coloured by their phylogroup (see Figure 4 inset).

These results will, however, be dominated by the shared, core genome. If we replot Figure
8a, restricting to variants in loci present in precisely 2 genomes (abbreviated to 2-variants;
Figure 8b), we find that pandora achieves 50-84% recall for each sample (complete data in
Supplementary Figure 9). By contrast, for any choice of reference genome, the results for
single-reference callers vary dramatically per sample. Most samples have recall under 25%,
and there is no pattern of improved recall for samples in the same phylogroup as the
reference. Following up that last observation, if we look at which pairs of genomes share
2-variants (Figure 9), we find there is no enrichment within phylogroups at all. This simply
confirms in our data that presence of rare loci is not correlated with the overall phylogeny.

Pandora VCF reference is closer to samples than any single reference

The relationship between phylogenetic distance and gene repertoire similarity is not linear. In
fact, 2 genomes in different phylogroups may have more similar accessory genes than 2 in
the same phylogroup - as illustrated in the previous section (also see Figure 3 in Rocha(3)).
As a result, it is unclear a priori how to choose a good reference genome for comparison of
accessory loci between samples. Pandora specifically aims to construct an appropriate
reference for maximum clarity in VCF representation. We evaluate how well pandora is able
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to find a VCF reference close to the samples under study as follows. We first identified the
location of all loci in all the 20 sample assemblies and the 24 references (see Methods).

105_

~19%)
r

10*

i s!a
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Number of genes (edit distance <

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of samples

Figure 10. How often do references closely approximate a sample? pandora aims to
infer a reference for use in its VCF, which is as close as possible to all samples. We evaluate
the success of this here. The x-axis shows the number of genomes in which a locus occurs.
The y-axis shows the (log-scaled) count of loci in the 20 samples that are within 1% edit
distance (scaled by locus length) of each reference - box plots for the reference genomes,
and line plot for the VCF reference inferred by pandora.

We then measured the edit distance between each locus in each of the references and the
corresponding version in the 20 samples. We found that the pandora’s VCF-reference lies
within 1% edit distance (scaled by locus length) of the sample far more than any of the
references for loci present in <=14 samples (Figure 10; note the log scale). The
improvement is much reduced in the core genome; essentially, in the core, a
phylogenetically close reference provides a good approximation, but it is hard to choose a
single reference that provides a close approximation to all rare loci. By contrast, pandora is
able to leverage its reference panel, and the dataset under study, to find a good
approximation.
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Computational performance

Performance measurements for single-sample analysis by pandora and benchmarked tools
are shown in Supplementary Table 3. In short, pandora took 3-4 hours per sample (using 16
cores and up to 10.7 GB of RAM), which was slower than snippy (0.1h, 4 cores), SAMtools

(0.3h, 1 core) and medaka (0.3h, 4 cores), but faster than nanopolish (4.6h, 16 cores).

aa b~ WN

Pandora alone can do joint analysis of multiple samples and this is currently the most

expensive pandora step. Parallelising by gene on a compute cluster, it took 8 hours to

augment the PanRG with novel alleles. This was dominated by the Python implementation of
9 the RCC clustering algorithm (see Methods) and the use of Clustal Omega(35) for MSA.

10 90% of loci required less than 30 minutes to process, and the remainder took less than 2

11 hours (see Methods). We discuss below how this could be improved. Finally, it took 28/46

12 hours to compare the samples (produce the joint VCF file) for lllumina/Nanopore. Mapping

13 comprised ~10% of the lllumina time, and ~50% of the Nanopore time. Dynamic

14 programming and genotyping the VCF file took ~90% of the lllumina time, and ~50% of the

15 Nanopore time.

0 N o

16 Discussion

17 Bacteria are the most diverse and abundant cellular life form(36). Some species are

18 exquisitely tuned to a particular niche (e.g. obligate pathogens of a single host) while others
19 are able to live in a wide range of environments (e.g. E. coli can live on plants, in the earth,
20 or commensally in the gut of various hosts). Broadly speaking, a wider range of

21 environments correlates with a larger pan-genome, and some parts of the gene repertoire
22 are associated with specific niches(37). Our perception of a pan-genome therefore depends
23 on our sampling of the unknown underlying population structure, and similarly the

24 effectiveness of a PanRG will depend on the choice of reference panel from which it is built.

25 Many examples from different species have shown that bacteria are able to leverage this

26 genomic flexibility, adapting to circumstance sometimes by using or losing novel genes

27 acquired horizontally, and at other times by mutation. There are many situations where

28 precise nucleotide-level variants matter in interpreting pan-genomes. Some examples

29 include: compensatory mutations in the chromosome reducing the fitness burden of new

30 plasmids(38—40); lineage-specific accessory genes with SNP mutations which distinguish

31 carriage from infection(41); SNPs within accessory drug resistance genes leading to

32 significant differences in antibiograms(42); and changes in CRISPR spacer arrays showing
33 immediate response to infection(43,44). However, up until now there has been no automated
34 way of studying non-core gene SNPs at all; still less a way of integrating them with gene

35 presence/absence information. Pandora solves these problems, allowing detection and

36 genotyping of core and accessory variants. It also addresses the problem of what reference
37 to use as a coordinate system, inferring a mosaic “VCF reference” which is as close as

38 possible to all samples under study. We find this gives more consistent SNP-calling than any
39 single reference in our diverse dataset. We focussed primarily on Nanopore data when

40 designing pandora, and show it is possible to achieve higher quality SNP calling with this
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1 data than with current Nanopore tools. Together, these results open the door for empirical
2 studies of the accessory genome, and for new population genetic models of the pan-genome
from the perspective of both SNPs and gene gain/loss.

w

Prior graph genome work, focussing on soft reference bias (in humans), has evaluated
different approaches for selecting alleles for addition to a population graph, based on
frequency, avoiding creating new repeats, and avoiding exponential blowup of haplotypes in
clusters of variants(45). This approach makes sense when you have unphased diploid VCF
files and are considering all recombinants of clustered SNPs as possible. However, this is

9 effectively saying we consider the recombination rate to be high enough that all
10 recombinants are possible. Our approach, building from local MSAs and only collapsing
11 haplotypes when they agree for a fixed number of bases, preserves more haplotype
12 structure and avoids combinatorial explosion. Another alternative approach was recently
13 taken by Norri et al.(46), inferring a set of pseudo founder genomes from which to build the
14 graph.

0 N o o b

15 Another issue is how to select the reference panel of genomes in order to minimize hard

16 reference bias. One cannot escape the U-shaped frequency distribution; whatever reference
17 panel is chosen, future genomes under study will contain rare genes not present in the

18 PanRG. Given the known strong population structure in bacteria, and the association of

19 accessory repertoires with lifestyle and environment, we would advocate sampling by

20 geography, host species (if appropriate), lifestyle (e.g. pathogenic versus commensal) and/or
21 environment. In this study we built our PanRG from a biassed dataset (RefSeq) which does
22 not attempt to achieve balance across phylogeny or ecology, limiting our pan-variant recall to
23 49% for rare variants (see Figure 7c,d). A larger, carefully curated input panel, such as that
24 from Horesh et al(47), would provide a better foundation and potentially improve results.

25 A natural question is then to ask if the PanRG should continually grow, absorbing all variants
26 ever encountered. From our perspective, the answer is no - a PanRG with variants at all

27 non-lethal positions would be potentially intractable. The goal is not to have every possible
28 allele in the PanRG - no more than a dictionary is required to contain absolutely every word
29 that has ever been said in a language. As with dictionaries, there is a trade-off between

30 completeness and utility, and in the case of bacteria, the language is far richer than English.
31 The perfect PanRG contains the vast majority of the genes and intergenic regions you are
32 likely to meet, and just enough breadth of allelic diversity to ensure reads map without too
33 many mismatches. Missing alleles should be discoverable by local assembly and added to
34 the graph, allowing multi-sample comparison of the cohort under study. This allows one to
35 keep the main PanRG lightweight enough for rapid and easy use.

36 We finish with three potential applications of pandora. First, the PanRG should provide a

37 more interpretable substrate for pan-genome-wide Genome-Wide Association Studies, as

38 current methods are forced to either ignore the accessory genome or reduce it to k-mers or
39 unitigs(48-50). Second, if performing prospective surveillance of microbial isolates taken in a
40 hospital, the PanRG provides a consistent and unchanging reference, which will cope with

41 the diversity of strains seen without requiring the user to keep switching reference genome.
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In a sense it behaves similarly to whole-genome Multi-Locus Sequence Typing
(wgMLST)(51), with more flexibility, support for intergenic regions, and without the
all-or-nothing behaviour when alleles have a novel SNP. Third, if studying a fixed dataset
very carefully, then one may not want to use a population PanRG, as it necessarily will miss
some rare accessory genes in the dataset. In these circumstances, one could construct a
reference graph purely of the genes/intergenic regions present in this dataset.

SO oA WN =

7 There are a number of limitations to this study. Firstly, pandora is not yet a fully-fledged
8 production tool. There are two steps that constitute bottlenecks in terms of RAM and speed.
9 The RCC algorithm used for local graph construction is currently implemented in Python.
10 However, the underlying algorithm is amenable to a much higher performance
11 implementation, which is now in progress. Also, we use Clustal Omega(35) for the MSA
12 stage, and there are faster options which we could use, including options for augmenting an
13 MSA without a complete rebuild (e.g. MAFFT), which is exactly what we need after local
14 assembly discovers novel alleles. Secondly, we do not see any fundamental reason why the
15 pandora error rate should be worse than Snippy on Illumina data (see Figure 6C), and will be
16 working to improve this. Finally, by working in terms of atomic loci instead of a monolithic
17 genome-wide graph, pandora opens up graph-based approaches to structurally diverse
18 species (and eases parallelisation) but at the cost of losing genome-wide ordering. At
19 present, ordering can be resolved by (manually) mapping pandora-discovered genes onto
20 whole genome assemblies. However the design of pandora also allows for gene-ordering
21 inference: when Nanopore reads cover multiple genes, the linkage between them is stored in
22 a secondary de Bruijn graph where the alphabet consists of gene identifiers. This results in a
23 huge alphabet, but the k-mers are almost always unique, dramatically simplifying “assembly”
24 compared with normal DNA de Bruijn graphs. This work is still in progress and the subject of
25 a future study. In the meantime, pandora provides new ways to access previously hidden
26 variation.

27 Conclusions

28 The algorithms implemented in pandora provide, to our knowledge, the first solution to the
29 problem of analysing core and accessory genetic variation across a set of bacterial

30 genomes. This study demonstrates as good SNP genotype error rates with Nanopore as

31 with lllumina data and improved recall of accessory variants. It also shows the benefit of an
32 inferred VCF reference genome over simply picking from RefSeq. The main limitations were
33 the use of a biassed reference panel (RefSeq) for building the PanRG, and the

34 comparatively slow performance of one module, currently implemented in Python - both of
35 which are addressable, not fundamental limitations. This opens the door to improved

36 analyses of many existing and future bacterial genomic datasets.
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1 Methods

2 Local graph construction

3 We construct each local graph in the PanRG from an MSA using an iterative partitioning
4 process. The resulting sequence graph contains nested bubbles representing alternative
alleles.

(&)

Let A be an MSA of length n. For each row of the MSA a = {q,..., a, |} €A let

a;;={a; ..., a;_i} be the subsequence of «a ininterval [i,j). Let s(a) be the DNA sequence
obtained by removing all non-AGCT symbols. We can partition alignment A either vertically
by partitioning the interval [0,r)or horizontally by partitioning the set of rows of A. In both

cases, the partition induces a number of sub-alignments.

O OV 0 N o

11 For vertical partitions, we define slice,(i,j) = {a;; :a € A}. We say that interval [i,j) is a
12 match interval if j —i = m, where m = 7is the default minimum match length, and there is a
13 single non-trivial sequence in the slice, i.e. i{s(a) s a € slice,(i,]) and s(a) # ""}| = 1.

14 Otherwise, we call it a non-match interval.

15 For horizontal partitions, we use K -means clustering(52) to divide sequences into increasing
16 numbers of clusters K = 2,3, ... until the inertia, a measure of the within-cluster diversity, is
17 half that of the original full set of sequences. More formally, let U be the set of all m-mers

18 (substrings of length m, the minimum match length) in {s(a) : « € A}.For a € A we

19 transform sequence s(a) into a count vector x, = {x,', ..., x,/UI} where x,’ are the counts of

20 the unique m-mers in U . For K clusters E: {C,, ..., Cg}, theinertia is defined as
21 X W, |

j 1x,eC;
22 Where y, = Z X, is the mean of cluster ;.

IIX

23 The recursive algorithm first partitions an MSA vertically into match and non-match intervals.
24 Match intervals are collapsed down to the single sequence they represent. Independently for
25 each non-match interval, the alignment slice is partitioned horizontally into clusters. The

26 same process is then applied to each induced sub-alignment until a maximum number of

27 recursion levels, r =5, has been reached. For any remaining alignments, a node is added to
28 the local graph for each unique sequence. See Supplementary Animation 1 to see an

29 example of this algorithm. We name this algorithm Recursive Cluster and Collapse (RCC),
30 and implement in the make_prg repository (see Code Availability).

31 (w,k)-minimizers of graphs

32 We define (w,k)-minimizers of strings as in Li (2016) (53). Let ¢ : =° — % be a k-mer hash
33 function and let m: X" x {0,1} - =" be defined such that n(s,0) =s and n(s,1) =5, where 5
34 is the reverse complement of s. Consider any integers k£ =w > 0. For window start position
35 O<j<|s|—-w—k+1,let
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T. = {n(s
J p
be the set of forward and reverse-complement k-mers of s in this window. We define a
(w,k)-minimizer to be any triple (4,p,r) such that
h= ¢(ﬁ(spp+k,r)) =min{}(t) : t € Tj}.

p+k,r):j5p<j+w, r € {0,1}}

The set W(s) of (w,k)-minimizers for s, is the union of minimizers over such windows.
W)= U AGup.r):h=min{¢p@) 11 € T;}}.
Osj<|s|-w—k+1
We extend this definition intuitively to an acyclic sequence graph G = (V,E). Define |v| to be
the length of the sequence associated with node v € V and let i = (v,a,b), 0<a<b<|v|
represent the sequence interval [a,b) on v. We define a path in G by
D=AGsemes im): (v;»vj1) € Eand b; = |vj|f0r 1 <j<m}.
This matches the intuitive definition for a path in a sequence graph except that we allow the
path to overlap only part of the sequence associated with the first and last nodes. We will
use s; to refer to the sequence along the path p in the graph.

Let p be a path of length w+k-1 in G. The string s; contains w consecutive k-mers for which
we can find the (w,k)-minimizer(s) as before. We therefore define the (w,k)-minimizer(s) of
the graph G to be the union of minimizers over all paths of length w+k-1 in G:

W(G) = U {tp.r) s h=min{p@) : 1€ T;}.

peG 1| p |mw+k—1

Local graph indexing with (w,k)-minimizers
To find minimizers for a graph we use a streaming algorithm as described in Supplementary

Algorithm 1. For each minimizer found, it simply finds the next minimizer(s) until the end of
the graph has been reached.

Let walk(v, i, w,k) be a function which returns all vectors of w consecutive k-mers in G
starting at position i on node v. Suppose we have a vector of k-mers x. Let shift(x) be the
function which returns all possible vectors of k-mers which extend x by one k-mer. It does
this by considering possible ways to walk one letter in G from the end of the final k-mer of x.
For a vector of k-mers of length w, the function minimize(x) returns the minimizing k-mers of
X.

We define K to be a k-mer graph with nodes corresponding to minimizers (h,p,r). We add
edge (u,v) to K if there exists a path in G for which u and v are both minimizers and v is the
first minimizer after u along the path. Let K < add(s, ) denote the addition of nodes s and t to
K and the directed edge (s,t). Let K < add(s,T) denote the addition of nodes sand ¢ € T to
K as well as directed edges (s,t) for r € T, and define K < add(S,t) similarly.

The resulting PanRG index stores a map from each minimizing k-mer hash value to the

positions in all local graphs where that (w,k)-minimizer occurred. In addition, we store the
induced k-mer graph for each local graph.
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Quasi-mapping reads

We infer the presence of PanRG loci in reads by quasi-mapping. For each read, a sketch of
(w,k)-minimizers is made, and these are queried in the index. For every (w,k)-minimizer
shared between the read and a local graph in the PanRG index, we define a hit to be the
coordinates of the minimizer in the read and local graph and whether it was found in the
same or reverse orientation. We define clusters of hits from the same read, local graph and
orientation if consecutive read coordinates are within a certain distance. If this cluster is of
sufficient size, the locus is deemed to be present and we keep the hits for further analysis.
Otherwise, they are discarded as noise. The default for this “sufficient size” is at least 10 hits
and at least 1/5th the length of the shortest path through the k-mer graph (Nanopore) or the
number of k-mers in a read sketch (lllumina). Note that there is no requirement for all these
hits to lie on a single path through the local graph. A further filtering step is therefore applied
after the sequence at a locus is inferred to remove false positive loci, as indicated by low
mean or median coverage along the inferred sequence by comparison with the global
average coverage. This quasi-mapping procedure is described in pseudocode in
Supplementary Algorithm 2.

Initial sequence approximation as a mosaic of references

For each locus identified as present in the set of reads, quasi-mapping provides (filtered)
coverage information for nodes of the directed acyclic k-mer graph. We use these to
approximate the sequence as a mosaic of references as follows. We model k-mer coverage
with a negative binomial distribution and use the simplifying assumption that k-mers are read
independently. Let ® be the set of possible paths through the k-mer graph, which could
correspond to the true genomic sequence from which reads were generated. Let r + s be the
number of times the underlying DNA was read by the machine, generating a k-mer coverage
of s, and r instances where the k-mer was sequenced with errors. Let 1 — p be the probability

that a given k-mer was sequenced correctly. For any path0 € ©, let {X,, ..., X,,} be
independent and identically distributed random variables with probability distribution
T(r+s)

fGx,r.p) = Tom P (1 —p)’, representing the k-mer coverages along this path. Since the mean

(—pr (pr
-— and =

and variance are we solve for r and p using the observed k-mer coverage

mean and variance across all k-mers in all graphs for the sample. Let D be the k-mer
coverage data seen in the read dataset. We maximise the log-likelihood-inspired score

N M
0 = {arg max 1(0|D)} ,.o Where [(0|D) = 7‘5 Y. log f(s;,r,p) , where s, is the observed
i=1

coverage of the i-th k-mer in 0. By construction, the k-mer graph is directed and acyclic so
this maximisation problem can be solved with a dynamic programming algorithm (for
pseudocode, see Supplementary Algorithm 3).
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1 For choices of w=<k there is a unique sequence along the discovered path through the
2 k-mer graph (except in rare cases within the first or last w-1 bases). We use this closest
3 mosaic of reference sequences as an initial approximation of the sample sequence.

4 De novo variant discovery

5 The first step in our implementation of local de novo variant discovery in genome graphs is
6 finding the candidate regions of the graph that show evidence of dissimilarity from the
7 sample's reads.

8 Finding candidate regions

9 The input required for finding candidate regions is a local graph, n, within the PanRG, the
10 maximum likelihood path of both sequence and k-mers in n, Imp, and kmp, respectively, and
11 a padding size w for the number of positions surrounding the candidate region to retrieve.

12 We define a candidate region, r, as an interval within n where coverage on Imp, is less than
13 a given threshold, ¢, for more than / and less than m consecutive positions. m acts to restrict
14 the size of variants we are able to detect. If set too large, the following steps become much
15 slower due to the combinatorial expansion of possible paths.

16 For a given read, s, that has a mapping to r we define s, to be the subsequence of s that

17 maps to r, including an extra w positions either side of the mapping. We define the pileup P,
18 asthesetofall s, er.

19 Enumerating paths through candidate regions

20 For r € R, where R is the set of all candidate regions, we construct a de Bruijn graph G,

21 from the pileup P, using the GATB library(54). A, and A, are defined as sets of k-mers to
22 the left and right of rin the local graph. They are anchors to allow re-insertion of new

23 sequences found by de novo discovery into the local graph. If we cannot find an anchor on
24 both sides, then we abandon de novo discovery for r. We use sets of k-mers for A; and A,

25 rather than a single anchor k-mer, to provide redundancy in the case where sequencing
26 errors cause the absence of some k-mers in G, . Once G, is built, we define the start

27 anchor k-mer, q, , as the first A L S AL Nap € Gy . Likewise, we define the end
28 anchor k-mer, ay, as the first AR S AR NapRr € Gr.

29 T, is the spanning tree obtained by performing depth-first search (DFS) on G, , beginning
30 from node q, . We define p, as a path, from the root node g, of T, and ending at node ay,
31 which fulfils the two conditions: 1) p, is shorter than the maximum allowed path length. 2)
32 No more than k nodes along p, have coverage <f xe,, where e, is the expected k-mer
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coverage for rand fis n, x s , where n, is the number of iterations of path enumeration for r
and s is a step size (0.1 by default).

V, isthe setofall p, . If |V,| is greater than a predefined threshold, then we have too many
candidate paths, and we decide to filter more aggressively: fis incremented by s - effectively
requiring more coverage for each p,-and V, is repopulated. If f > 1.0 then de novo
discovery is abandoned for r.

Pruning the path-space in a candidate region

As we operate on both accurate and error-prone sequencing reads, the number of valid
paths in G, can be very large. Primarily, this is due to cycles that can occur in G, and
exploring paths that will never reach our required end anchor a,, . In order to reduce the
path-space within G, we prune paths based on multiple criteria. Critically, this pruning
happens at each step of the graph walk (path-building).

We used a distance-based optimisation based on Rizzi et al (565). In addition to T, , obtained
by performing DFS on G, , we produce a distance map D, that results from running
reversed breadth-first search (BFS) on G, , beginning from node a, . We say reversed BFS
as we explore the predecessors of each node, rather than the successors. D, is
implemented as a binary search tree where each node in the tree represents a k-mer in G,
that is reachable from a, via reversed BFS. Each node additionally has an integer attached
to it that describes the distance from that node to a .

We can use D, to prune the path-space by 1) for each node n € p,, we require n € D, and
2) requiring a, be reached from n in, at most, i nodes, where i is defined as the maximum
allowed path length minus the number of nodes walked to reach n.

If one of these conditions is not met, we abandon p, . The advantage of this pruning process
is that we never explore paths that will not reach our required endpoint within the maximum
allowed path length and when caught in a cycle, we abandon the path once we have made
too many iterations around the cycle.

Graph-based genotyping and optimal reference construction for
multi-genome comparison

We use graph-based genotyping to output a comparison of samples in a VCF. A path
through the graph is selected to be the reference sequence, and graph variation is described
with respect to this reference. The chromosome field then details the local graph and the
position field gives the position within the chosen reference sequence for possible variant
alleles. The reference path for each local graph is chosen to be maximally close to the set of
sample mosaic paths. This is achieved by reusing the mosaic path finding algorithm detailed
in Supplementary Algorithm 3 on a copy of the k-mer graph with coverages incremented
along each sample mosaic path, and a modified probability function defined such that the
probability of a node is proportional to the number of samples covering it. This results in an
optimal path, which is used as the VCF reference for the multi-sample VCF file.
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For each sample and site in the VCF file, the mean forward and reverse coverage on k-mers
tiling alleles is calculated. A likelihood is then independently calculated for each allele based
on a Poisson model. An allele A in a site is called if: 1) Ais on the sample mosaic path (i.e.
it is on the maximum likelihood path for that sample); 2) Ais the most likely allele to be
called based on the previous Poisson model. Every allele not in the sample mosaic path will
not satisfy 1) and will thus not be called. In the uncommon event where an allele satisfies 1),
but not 2), we have an incompatibility between the global and the local choices, and then the
site is genotyped as null.

0O N ool WON =

9 Comparison of variant-callers on a diverse set of E. coli

10 Sample selection

11 We used a set of 20 diverse E. coli samples for which matched Nanopore and lllumina data
12 and a high-quality assembly were available. These are distributed across 4 major

13 phylogroups of E. coli as shown in Figure 4. Of these, 16 were isolated from clinical

14 infections and rectal screening swabs in ICU patients in an Australian hospital(56). One is
15 the reference strain CFT073 that was resequenced and assembled by the REHAB

16 consortium(57). One is from an ST216 cardiac ward outbreak (identifier: H131800734); the
17 lllumina data was previously obtained(58) and we did the Nanopore sequencing (see below).
18 The two final samples were obtained from Public Health England: one is a Shiga-toxin

19 encoding E. coli (we used the identifier O63)(59), and the other an enteroaggregative E. coli
20 (we used the identifier ST38)(60). Coverage data for these samples can be found in

21 Supplementary Table 1.

22 PanRG construction

23 MSAs for gene clusters curated with PanX(27) from 350 RefSeq assemblies were

24 downloaded from http://pangenome.de on 3rd May 2018. MSAs for intergenic region clusters
25 based on 228 E. coli ST131 genome sequences were previously generated with Piggy(28)
26 for their publication. The PanRG was built using make_prg. Two loci (GC00000027_2 and

27 GCO00004221) out of 37,428 were excluded because the combination of Clustal Omega and
28 make_prg did not complete in reasonable time (~24 hours) once de novo variants were

29 added.

30 Nanopore sequencing of sample H131800734

31 DNA was extracted using a Blood & Cell Culture DNA Midi Kit (Qiagen, Germany) and

32 prepared for Nanopore sequencing using kits EXP-NBD103 and SQK-LSK108. Sequencing
33 was performed on a MinlON Mk1 Shield device using a FLO-MIN106 R9.4 Spoton flowcell
34 and MinKNOW version 1.7.3, for 48 hours.

25


https://www.zotero.org/google-docs/?d9DL7C
https://www.zotero.org/google-docs/?LrvOUc
https://www.zotero.org/google-docs/?WEDJiy
https://www.zotero.org/google-docs/?zl2ZMw
https://www.zotero.org/google-docs/?3tt48L
https://www.zotero.org/google-docs/?lo22E8
http://pangenome.de/
https://www.zotero.org/google-docs/?kpLND3
https://doi.org/10.1101/2020.11.12.380378
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.380378; this version posted November 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

26

=y

Nanopore basecalling

Recent improvements to the accuracy of Nanopore reads have been largely driven by
improvements in basecalling algorithms(61). All Nanopore data was basecalled with the
methylation-aware, high-accuracy model provided with the proprietary guppy basecaller
(version 3.4.5). In addition, 4 samples were basecalled with the default (methylation
unaware) model for comparison (see Figure 5). Demultiplexing of the subsequent basecalled
data was performed using the same version of the guppy software suite with barcode kits
EXP-NBD104 and EXP-NBD114 and an option to trim the barcodes from the output.

0O N o ok WN

9 Phylogenetic tree construction

10 Chromosomes were aligned using MAFFT(62) v7.467 as implemented in Parsnp(63) v1.5.3.
11 Gubbins v2.4.1 was used to filter for recombination (default settings) and phylogenetic

12 construction was carried out using RAXML(64) v8.2.12 (GTR + GAMMA substitution model,
13 as implemented in Gubbins(65)).

14 Reference selection for mapping-based callers

15 A set of references was chosen for testing single-reference variant callers using two

16 standard approaches, as follows. First, a phylogeny was built containing our 20 samples and
17 243 reference genomes from RefSeq. Then, for each of our 20 samples, the nearest RefSeq
18 E. coli reference was found using Mash(66). Second, for each of the 20 samples, the

19 nearest RefSeq reference in the phylogeny was manually selected; sometimes one RefSeq
20 assembly was the closest to more than one of the 20. At an earlier stage of the project there
21 had been another sample (making a total of 21) in phylogroup B1; this was discarded when
22 it failed quality filters (data not shown). Despite this, the Mash/manual selected reference

23 genomes were left in the set of mapping references, to evaluate the impact of mapping to a
24 reference in a different phylogroup to all 20 of our samples.

25 Construction of truth assemblies

26 16/20 samples were obtained with matched Illlumina and Nanopore data and a hybrid

27 assembly. Sample H131800734 was assembled using the hybrid assembler Unicycler(67)
28 with PacBio and lllumina reads followed by polishing with the PacBio reads using Racon(68),
29 and finally with Illumina reads using Pilon(69). A small 1kb artifactual contig was removed

30 from the H131800734 assembly due to low quality and coverage.

31 In all cases we mapped the lllumina data to the assembly, and masked all positions where
32 the pileup of lllumina reads did not support the assembly.

33 Construction of a comprehensive and filtered truth set of pairwise SNPs

34 All pairwise comparisons of the 20 truth assemblies were performed with varifier

35 (https://github.com/igbal-lab-org/varifier), using subcommand make_truth_vcf. In summary,
36 varifier compares two given genomes (referenced as G1 and G2) twice - first using

37 dnadiff(70) and then using minimap2/paftools(53). The two output sets of pairwise SNPs are
38 then joined and filtered. We create one sequence probe for each allele (a sequence
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composed of the allele and 50 bases of flank on either side taken from G1) and then map
both to G2 using minimap2. We then evaluate these mappings to verify if the variant found is
indeed correct (TP) or not (FP) as follows. If the mapping quality is zero, the variant is
discarded to avoid paralogs/duplicates/repeats that are inherently hard to assess. We then
check for mismatches in the allele after mapping and confirm that the called allele is the
better match.

SO oA WN -

7 Constructing a set of ground truth pan-genome variants

8 When seeking to construct a truth set of all variants within a set of bacterial genomes, there
9 is no universal coordinate system. We start by taking all pairs of genomes and finding the
10 variants between them, and then need to deduplicate them - e.g. when a variant between
11 genomes 1 and 2 is the same as a variant between genomes 3 and 4, they should be
12 identified; we define “the same” in terms of genome, coordinate and allele. An allele A ina
13 position P, of a chromosome C, in a genome G, is defined as a triple A =(G,, C,, P,).
14 A pairwise variant PwV = {A,, A,} is defined as a pair of alleles that describes a variant
15 between two genomes, and a pan-genome variant PgV = {A,, A,, ..., A,} is defined as a set
16 of two or more alleles that describes the same variant between two or more genomes. A
17 pan-genome variant P gV can also be defined as a set of pairwise variants
18 PgV ={PwV,, PwV,, .., PwV,}, as we can infer the set of alleles of PgV from the pairs
19 of alleles in all these pairwise variants. Note that pan-genome variants are thus able to
20 represent rare and core variants. Given a set of pairwise variants, we seek a set of
21 pan-genome variants satisfying the following properties:
22 1. [Surjection]:

23 a. each pairwise variant is in exactly one pan-genome variant;

24 b. a pan-genome variant contains at least one pairwise variant;

25 2. [Transitivity]: if two pairwise variants PwV, and PwV, share an allele, then PwV ,
26 and PwV, are in the same pan-genome variant PgV ;

27 We model the above problem as a graph problem. We represent each pairwise variant as a
28 node in an undirected graph G. There is an edge between two nodes n, and n,if n, and
29 n, share an allele. Each component (maximal connected subgraph) of G then defines a

30 pan-genome variant, built from the set of pairwise variants in the component, satisfying all
31 the properties previously described. Therefore, the set of components of G defines the set
32 of pan-genome variants P . However, a pan-genome variant in P could: i) have more than
33 one allele stemming from a single genome, due to a duplication/repeat; ii) represent biallelic
34 , triallelic or tetrallelic SNPs/indels. For this evaluation, we chose to have a smaller, but more
35 reliable set of pan-genome variants, and thus we filtered P by restricting it to the set of

36 pan-genome variants P’ defined by the variants PgV € P such that: i) PgV has at most
37 one allele stemming from each genome; ii) PgV is a biallelic SNP. P’ is the set of 618,305
38 ground truth filtered pan-genome variants that we extracted by comparing and deduplicating
39 the pairwise variants present in our 20 samples, and that we use to evaluate the recall of all
40 the tools in this paper. Supplementary Figure 11 shows an example summarising the

41 described process of building pan-genome variants from a set of pairwise variants.
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Subsampling read data and running all tools

All read data was randomly subsampled to 100x coverage using rasusa - the pipeline is
available at https://github.com/igbal-lab-org/subsampler. A snakemake(71) pipeline to run
the pandora workflow with and without de novo discovery (see Figure 2d) is available at
https://github.com/igbal-lab-org/pandora_workflow. A snakemake pipeline to run snippy,
SAMtools, nanopolish and medaka on all pairwise combinations of 20 samples and 24
references is available at https://github.com/igbal-lab-org/variant_callers_pipeline.

Evaluating VCF files

Calculating precision

Given a variant/VCF call made by any of the evaluated tools, where the input were reads
from a sample (or several samples, in the case of pandora) and a reference sequence (or a
PanRG, in the case of pandora), we perform the following steps to assess how correct a call
is:

1. Construct a probe for the called allele, consisting of the sequence of the allele
flanked by 150bp on both sides from the reference sequence. This reference
sequence is one of the 24 chosen references for snippy, SAMtools, nanopolish and
medaka; or the multi-sample inferred VCF reference for pandora;

2. Map the probe to the sample sequence using BWA-MEM(72);

3. Remove multi-mappings by looking at the Mapping Quality (MAPQ) measure(30) of
the SAM records. If the probe is mapped uniquely, then its mapping passes the filter.
If there are multiple mappings for the probe, we select the mapping m, with the
highest MAPQ if the difference between its MAPQ and the second highest MAPQ
exceeds 10. If m, does not exist, then there are at least two mappings with the same
MAPQ, and it is ambiguous to choose which one to evaluate. In this case, we prefer
to be conservative and filter this call (and all its related mappings) out of the
evaluation;

4. We further remove calls mapping to masked regions of the sample sequence, in
order to not evaluate calls lying on potentially misassembled regions;

5. Now we evaluate the mapping, giving the call a continuous precision score between
0 and 1. If the mapping does not cover the whole called allele, we give a score of 0.
Otherwise, we look only at the alignment of the called allele (i.e. we ignore the
flanking sequences alignment), and give a score of: number of matches / alignment
length.

Finally, we compute the precision for the tool by summing the score of all evaluated calls and

dividing by the number of evaluated calls. Note that here we evaluate all types of variants,
including SNPs and indels.

Calculating recall

We perform the following steps to calculate the recall of a tool:
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1 1. Apply the VCF calls to the associated reference using the VCF consensus builder
2 (https://github.com/leoisl/vcf _consensus_builder), creating a mutated reference with
3 the variants identified by the tool;
4 2. Build probes for each allele of each pan-genome variant previously computed (see
5 Section “Constructing a set of ground truth pan-genome variants”);
6 3. Map all pan-genome variants’ probes to the mutated reference using BWA-MEM,
7 4. Evaluate each probe mapping, which is classified as a TP only if all bases of the
8 allele were correctly mapped to the mutated reference. In the uncommon case where
9 a probe multimaps, it is enough that one of the mappings are classified as TP;
10 5. Finally, as we now know for each pan-genome variant which of its alleles were found,
11 we calculate both the pan-variant recall and the average allelic recall as per Section
12 “Pandora detects rare variation inaccessible to single-reference methods”.
13 Filters

14 Given a VCF file with likelihoods for each genotype, the genotype confidence is defined as
15 the log likelihood of the maximum likelihood genotype, minus the log likelihood of the next
16 best genotype. Thus a confidence of zero means all alleles are equally likely, and high

17 quality calls have higher confidences. In the recall/error rate plots of Figure 5 and Figures
18 6a,b, each point corresponds to the error rate and recall computed as previously described,
19 on a genotype confidence (gt-conf) filtered VCF file with a specific threshold for minimum
20 confidence.

21 We also show the same plot with further filters applied in Supplementary Figure 1. The filters
22 were as follows. For lllumina data: for pandora, a minimum coverage filter of 5x, a strand

23 bias filter of 0.05 (minimum 5% of reads on each strand), and a gaps filter of 0.8 were

24 applied. The gaps filter means at least 20% the minimizer k-mers on the called allele must
25 have coverage above 10% of the expected depth. As snippy has its own internal filtering, no
26 filters were applied. For SAMtools, a minimum coverage filter of 5x was used. For Nanopore
27 data: for pandora, a minimum coverage filter of 10x, a strand bias filter of 0.05, and a gaps
28 filter of 0.6 were used. For nanopolish, we applied a coverage filter of 10x. We were unable
29 to apply a minimum coverage filter to a medaka due to a software bug that prevents

30 annotating the VCF file with coverage information.

31 Locus presence and distance evaluation

32 For all loci detected as present in at least one sample by pandora, we mapped the

33 multi-sample inferred reference to all 20 sample assemblies and 24 references, to identify
34 their true locations. To be confident of these locations, we employed a strict mapping using
35 bowtie2(73) and requiring end-to-end alignments. From the mapping of all loci to all

36 samples, we computed a truth locus presence-absence matrix, and compared it with

37 pandora’s locus presence-absence matrix, classifying each pandora locus call as true/false
38 positive/negative. Supplementary Figure 3 shows these classifications split by locus length.
39 Having the location of all loci in all the 20 sample assemblies and the 24 references, we then
40 computed the edit distance between them.
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Availability of data and materials

Reproducibility

All input data for our analyses, including PanX’s and Piggy’s MSAs, PanRG, reference
sequences, and sample data are publicly available (see Section “Data availability”).
Pandora’s code, as well as all code needed to reproduce this analysis are also publicly
available (see Section “Code availability’). Software environment reproducibility is achieved
using Python virtual environments if all dependencies and source code are in Python, and
using Docker(74) containers run with Singularity(75) otherwise. The exact commit/version of
all repositories used to obtain the results in this paper can be retrieved with the git branch or
tag pandora_paper_tag1.

Data availability

Gene MSAs from PanX, and intergenic MSAs from Piggy:
doi.org/10.6084/m9.figshare.13204163;

E. Coli PanRG: doi.org/10.6084/m9.figshare.13204172;

Accession identifiers or Figshare links for the sample and reference assemblies, and
lllumina and Nanopore reads are listed in Section D of the Supplementary file;

Input packages containing all data to reproduce both the 4- and 20-way analyses
described in the Results section are also available in Section D of the Supplementary
file.

Code availability

make_prg (RCC graph construction algorithm): https://github.com/rmcolg/make_prg
pandora: https://github.com/rmcolg/pandora

varifier. https://github.com/igbal-lab-org/varifier

Pangenome variations pipeline taking a set of assemblies and returning a set of
filtered pan-genome variants: https://github.com/igbal-lab-org/pangenome_variations
pandora workflow: https://github.com/igbal-lab-org/pandora_workflow

Run snippy, samtools, nanopolish and medaka pipeline:
https://github.com/igbal-lab-org/variant_callers_pipeline

4- and 20-way evaluation pipeline (recall/error rate curves etc):
https://github.com/igbal-lab-org/pandora_paper_roc

30


https://www.zotero.org/google-docs/?FYohxU
https://www.zotero.org/google-docs/?cfOY5g
http://doi.org/10.6084/m9.figshare.13204163
http://doi.org/10.6084/m9.figshare.13204172
https://github.com/rmcolq/make_prg
https://github.com/rmcolq/pandora
https://github.com/iqbal-lab-org/varifier
https://github.com/iqbal-lab-org/pangenome_variations
https://github.com/iqbal-lab-org/pandora_workflow
https://github.com/iqbal-lab-org/variant_callers_pipeline
https://github.com/iqbal-lab-org/pandora_paper_roc
https://doi.org/10.1101/2020.11.12.380378
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.380378; this version posted November 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

31

e Locus presence and distance from reference pipeline:
https://github.com/igbal-lab-org/pandora_gene_distance

A master repository to reproduce everything in this paper, marshalling all of the
above: https://github.com/igbal-lab-org/paper_pandora2020_analyses

A WON =
[ J

Although all containers are hosted on https://hub.docker.com/ (for details, see
https://github.com/igbal-lab-org/paper_pandora2020_analyses/blob/master/scripts/pull_conta
iners/pull_containers.sh), and are downloaded automatically during the pipelines’ execution,
we also provide Singularity(75) containers (converted from Docker containers) at
doi.org/10.6084/m9.figshare.13204169.

O 00 N o0 U

10 Frozen packages with all the code repositories for pandora and the analysis framework can
11 be found at doi.org/10.6084/m9.figshare.13204214.
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