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Highlights

* Chromatin (dis-)association of IncRNAs can be modeled using nascent RNA sequencing from pulse-chase
chromatin fractionation

* Distinct physical and functional characteristics contribute to INcRNA chromatin (dis-)association

* IncRNAs transcribed from enhancers display increased degree of chromatin dissociation

* IncRNAs of distinct degrees of chromatin association display differential binding probabilities for RNA-binding

proteins (RBPs)

Summary

Long non-coding RNAs (IncRNAs) are involved in gene expression regulation in cis and trans. Although
enriched in the chromatin cell fraction, to what degree this defines their broad range of functions remains
unclear. In addition, the factors that contribute to INcRNA chromatin tethering, as well as the molecular basis of
efficient IncRNA chromatin dissociation and its functional impact on enhancer activity and target gene
expression, remain to be resolved. Here, we combine pulse-chase metabolic labeling of nascent RNA with
chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their co-
transcriptional state to their release into the nucleoplasm. By incorporating functional and physical
characteristics in machine learning models, we find that parameters like co-transcriptional splicing contributes to
efficient IncRNA chromatin dissociation. Intriguingly, INcRNAs transcribed from enhancer-like regions display
reduced chromatin retention, suggesting that, in addition to splicing, IncRNA chromatin dissociation may

contribute to enhancer activity and target gene expression.
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Introduction

Bidirectional nascent RNA transcription is a prominent characteristic of active enhancers, leading to the
production of short-lived non-coding RNA transcripts termed eRNAs. eRNAs are short and non-spliced, thus
unstable, potentially terminated by the Integrator complex1 and subjected to rapid exosome degradationz,
thereby contributing to their observed chromatin enrichment and eliminated detection in steady-state whole-cell
RNA data. eRNA production, measured by nascent RNA-sequencing, along with DNase | hypersensitivity and
distinct histone marks (H3K27Ac, H3K4me1) (and CBP/p300 binding) demarcate active enhancers®®.
Intriguingly, a small subset of bidirectionally transcribed enhancers, about ~3 to 5 %, produce a more stable and
spliced long non-coding RNA (IncRNA) elongating in one direction®’ (& Tan and Marques, biorXiv 2020), while
about one third to one fourth of annotated IncRNAs overlap enhancer-like regionse. Those enhancer-associated
IncRNAs (elncRNAs) are associated with stronger enhancer activity (aka. higher nascent RNA transcription,
H3K27Ac histone mark, DNase accessibility) and their expression is associated with changes in putative target
gene expression and local chromatin structure. This suggests that elncRNA production contributes to gene
expression regulation in cis®’. However, to what degree elncRNAs remain chromatin-associated (in a manner
analogous to the observed eRNA chromatin enrichment), and the degree to which their function depends on
their chromatin (dis-)association remains obscure. In addition, the mechanistic basis of their exerted regulation
on target gene expression in cis is not well characterized, and it remains an open question whether all
eIncRNAs would follow the same mechanistic mode in gene expression regulation. For instance, we showed
that the IncRNA A-ROD transcribed from an active enhancer at the anchor point of a chromosomal loop in MCF-
7 cells enhances the expression of its target gene DKK1 upon its post-transcriptional chromatin dissociation and
within a pre-established chromosomal proximity. Enforcing A-ROD chromatin retention, by splicing inhibiting
morpholinos or targeting polyadenylation, suppresses target gene expression, suggesting that chromatin
dissociation is an important feature of IncRNA mediated gene expression regulation in cis®.

A substantial portion of IncRNAs are enriched in the chromatin fraction, presumably tethered at their sites of
transcription through elongating (transcriptionally engaged) Pol I, and are involved in regulation of proximal

10-12

gene expression in cis ~ °. However, intriguingly, INcRNAs transcribed from the anchor points of chromosomal

loops and enhancer-like regions show significantly lower chromatin—to—nucleoplasmic enrichment at steady
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state®. This may indicate that the process of chromatin dissociation, which relies on (co-transcriptional) RNA
maturation steps, could be important for the function of many enhancer-transcribed IncRNAs, acting in cis within
the spatial proximity of pre-established chromosomal loops'®.

A recent study additionally implicated U1 snRNP binding as a means of chromatin tethering for IncRNAs:
IncRNA exonic sequences are enriched in U1 recognition sites, while their gene bodies are depleted from 3’
splice sites (compared to mRNAs). This leads to persistent U1 snRNP binding —due to poor or inefficient
splicing efficiency—, which through additional protein interactions with transcriptionally engaged Pol I,
contributes to co-transcriptional IncRNA tethering (or post-transcriptional retargeting) to chromatin™. Intriguingly,
compared to other IncRNAs that are not enhancer-associated, elncRNAs display conserved splice sites and
significantly higher splicing efficiency, which is associated with local changes in chromatin states and positively
impacts their cognate enhancer activity3’7’13. Yet, a correlation between elncRNA splicing and chromatin-
association/dissociation has not been clarified. Although recent bioinformatics approaches strongly infer an
impact of eIncRNA processing on enhancer activity, the role of elncRNA chromatin (dis-)association has not
been systematically examined.

In this work, we have combined pulse-chase metabolic labeling with chromatin fractionation and transient
transcriptome sequencing to follow nascent RNAs from the point of their transcription to their chromatin release
into the nucleoplasm. We have incorporated several parameters, physical and functional characteristics, in
machine learning models to predict distinct degrees of chromatin (dis-)association, and examined the
relationship between IncRNA chromatin dissociation and enhancer activity. Thus, two important questions are
addressed here: First, what are the parameters that contribute to distinct degrees of IncRNA chromatin
association or chromatin tethering. Second, whether increased chromatin dissociation of certain IncRNAs could

imply a functional potential, for instance by having an impact on— or shaping enhancer activity.

Results

Modeling chromatin (dis-)association of nascent RNA transcripts

To follow nascent RNA transcripts from their synthesis to their post-transcriptional chromatin dissociation we
performed nascent RNA sequencing from the chromatin-associated and nucleoplasmic fraction. We performed
4-thiouridine (4-SU) metabolic labeling of MCF-7 cells for an 8 min pulse, followed by 5, 10, 15 and 20 min
uridine chase (Methods). To additionally capture nascent RNA Pol Il transcription in a high resolution and follow
transcription dynamics, we fragmented RNA prior to isolation of nascent RNA. Thus, our approach is similar to
‘transient transcriptome sequencing’ (TT—seq15) but coupled with chromatin fractionation and pulse-chase

labeling.
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To model chromatin dissociation we extracted read coverage from the last exon, as we did not block new
transcription initiation events during the pulse-chase experiment (in the case of overlapping transcript isoforms
the longest transcript was selected; Methods). This was done to minimize transcriptional input from new
transcription initiation events during the pulse-chase time period and be closer to the transcript 3’ end, thus
better reflecting capturing full-length transcripts. We see chromatin-associated read coverage decrease over
time and nucleoplasmic read coverage increase (Suppl. Figure S1A). We determined chromatin association as
the ratio CHR/(CHR+NP) at each time point and kept only transcripts with a defined ratio 0 to 1 at all time points
(NAs discarded, n = 15,157 transcripts). As expected, we see an overall decrease in the transcript chromatin
association over pulse-chase time (Figure 1A). We therefore fitted these ratios on an exponential decay curve to
extract a ‘chromatin-association halftime’ : [halftime = -(Intercept+In2) / k]. For further analysis, we kept only
entries that fit the exponential decay curve with a p-value < 0.05 (n = 12,391 transcripts, of which 2,077 are
IncRNAs; Methods). We then split the dataset in 3 equal-size quantiles based on the calculated chromatin
association halftime, i.e. fast’, ‘medium’ and ‘slow’ released transcripts (Figure 1B, 1C, Suppl. Figure S1B) (the
latter correspond to chromatin-retained transcripts). Alternatively, transcripts were clustered into 3 groups of
fast, medium and slow released using the CHR/(CHR+NP) ratios from the five time points as an input to k-
means clustering (Suppl. Figure S1C). In general, there is a good agreement between the two methods of
grouping, with the 3 groups of k-means clustering showing corresponding chromatin association halftimes
(Suppl. Fig. S1D). Although significantly shorter and with a smaller number of exons as previously reported"i,
IncRNAs show on average greater chromatin association halftimes compared to mRNAs (Suppl. Figures S1E-
G). Chromatin association halftimes extracted this way reflect the chromatin association ratios at steady state
(Suppl. Figure S1H). We find 872 fast, 499 medium and 706 slow-released IncRNAs (Suppl. Table 1). Two
representative INcRNAs are A-ROD as a fast-released, and PVT1 as a slow-released, chromatin-retained
transcript (Figure 1D).

Nascent RNA sequencing from the chromatin associated fraction allows to follow Pol Il transcriptional dynamics
in high resolution: application of a short metabolic pulse and RNA fragmentation prior nascent RNA purification,
as in the original TT-seq protocol15, combined with chromatin fractionation further enriches for nascent RNA
reads'’. By metagene analysis to profile nascent RNA transcription, we obtain Pol Il transcriptional profiles
similar to the original TT—seq15 (Figure 1E). Nascent RNA sequencing from the chromatin-associated fraction
also captures promoter-associated divergent transcription producing short unstable antisense transcripts
(PROMPTs)'®"®. We note here that IncRNA loci produce higher upstream antisense transcription compared to
mRNAs which extends beyond the typical PROMPT length (~200 nt) (Figure 1E, lower right panel). This is most

probably because many IncRNAs arise upstream and antisense to protein coding genes (and the observed
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upstream antisense signal is due to the associated mMRNA transcription). Interestingly, we observe that fast-
released INncRNAs display stronger upstream antisense signal, suggesting that fast-released IncRNAs originate
more often upstream antisense of protein coding genes. Indeed, by plotting the interdistance to closest
antisense protein coding gene TSS, we find that fast-released IncRNAs display on average significantly smaller
values (Supplementary Figure S1 1). Notably, about half of fast-released IncRNAs originate within less than 1 kb
antisense to mRNA TSS (either upstream or internal antisense) (Supplementary Figure S1 J). An example is the
fast-released INcRNA GATA3-AS1 transcribed upstream and antisense of GATA3 (Supplementary Figure S1
M). As expected, ENCODE annotated IncRNAs with the biotype ‘antisense’ are enriched in fast-released
transcripts (odds ratio 1.4657, p-value = 4.217e-06), whereas de novo assembled IncRNA transcripts from the
chromatin-associated data not overlapping ENCODE annotations (Methods) are enriched in the slow

released/chromatin-retained transcripts (odds ratio 2.070958, p-value 1.917e-11).

Nascent RNA sequencing coupled with chromatin fractionation reveals major co-transcriptional nascent
RNA processing and some degree of post-transcriptional splicing

Nascent RNA sequencing from the chromatin-associated and nucleoplasmic fraction at different pulse-chase
time points allows to track the progress of co- and post-transcriptional splicing. To measure splicing we used
high confidence introns (Methods) and extracted splicing efficiency by calculating the ratio of split to non-split
reads at the 3’ splice site as in ref®. By plotting the cumulative fraction of intron splicing efficiencies from all time
points and samples, we observe that most of the introns undergo extensive splicing co-transcriptionally while at
chromatin, within the first 10-15 min of transcription (Figure 1F, Suppl. Figure S1K), and co-transcriptional
splicing efficiency dynamic:s21 (SED; Methods) is significantly higher compared to post-transcriptional
nucleoplasmic SED (Figure 1G). These results are in agreement with recent reports that the majority of splicing
occurs co-transcriptionally (Reimer et al., bioRxiv 2020). We then calculated the extent of post-transcriptional
splicing (after chromatin dissociation) relative to co-transcriptional splicing (while at chromatin) (as the difference
between chromatin and nucleoplasmic splicing efficiency, normalized to chromatin; Methods). This was done at
intron and transcript level (by extracting a mean processing efficiency from a transcript’'s high-confidence
introns; Methods). We observe that introns of fast-released IncRNAs, and respectively fast-released IncRNA
transcripts undergo the least additional post-transcriptional splicing upon chromatin dissociation (Supplementary
Figure S1 L i-ii), suggesting that most of their processing has been concluded co-transcriptionally while at
chromatin. Overall, mMRNAs may undergo some further post-transcriptional processing to a higher degree
compared to INncRNAs (Suppl. Fig. S1 L iii). This is in agreement with recent findings using single molecule RNA

FISH suggesting that some post-transcriptional splicing can occur upon chromatin dissociation, after
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transcription is completed, and potentially while nascent RNA transcripts localize to speckles (Coté et al,,
bioRxiv 2020). That slow-released transcripts show overall more extensive post-transcriptional splicing (Suppl.
Fig. S1 L) is also in agreement with a model where completely synthesized nascent RNA transcripts move
slowly through a transcription site proximal zone (without being tethered to chromatin or the transcription site

anymore), while they can undergo additional post-transcriptional splicing (Coté et al., bioRxiv 2020).

Different degrees of chromatin association correlate with distinct physical (and functional)
characteristics of nascent RNA transcripts

We observe that IncRNAs show on average significantly lower co-transcriptional splicing efficiency compared to
mRNAs (Figure 2A left), which is in agreement with what was previously reported measuring splicing using

2022 1y addition, fast-released mRNAs, but not IncRNAs, show on

either steady-state or nascent RNA data
average higher mean transcript splicing efficiencies compared to slow-released/chromatin-retained transcripts
(Figure 2A right). However, the minimum splicing efficiency per transcript (i.e. splicing efficiency of the worst
spliced intron) is significantly higher for fast-released IncRNAs compared to chromatin-retained transcripts,
suggesting that splicing of a slowly or inefficiently processed intron may act as a kinetic ‘bottleneck’ for nascent
RNA transcript chromatin dissociation (Figure 2B). As expected, IncRNAs show on average significantly higher
alternative splicing compared to mRNAs (intron psi value extracted as in ref21), and chromatin-retained IncRNAs
undergo significantly higher alternative splicing compared to fast-released transcripts (Suppl. Fig. S2A).

By extracting the promoter-associated transcriptional pausing index (Methods) using MCF-7 available Pol Il P-
Ser2 ChlP-seq or GRO-seq data®, we find that mMRNAs show significantly higher pausing index as previously
reportedzo'24 (Suppl. Fig. S2B-D, S2F). Interestingly, fast-released IncRNAs, but not mRNAs, display higher
pausing index compared to chromatin-retained transcripts, suggesting that transcriptional activity per se may
relate to INcRNA chromatin dissociation or tethering (Suppl. Fig. S2C, S2D). In agreement, we find significantly
different levels of transcriptionally engaged Pol Il over the first Kb downstream of TSS for fast versus slow-
released IncRNAs, but not mRNAs which are overall more transcriptionally active (Supplementary Fig. S2E,
S2F). Taken together, these observations are in agreement with a recent report that promoters of IncRNAs
show distinct transcriptional burst kinetics compared to mRNAs (lower burst frequencies; Johnsson et al.,
bioRxiv 2020), and suggest that within IncRNAs, promoters of fast-released transcripts tend to be more
transcriptionally active and display higher degree of Pol Il pausing compared to chromatin-retained IncRNA
transcripts. Interestingly, transcriptional pausing index was previously associated with IncRNA nuclear export24.
We note here that by extracting transcription bi-directionality score (or divergent-transcription score) using GRO-

seq (as antisense/sense signal from 1 Kb around TSS) we reach the same conclusion by using chromatin


https://doi.org/10.1101/2020.12.15.422063
http://creativecommons.org/licenses/by-nc-nd/4.0/

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422063; this version posted December 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

associated nascent RNA sequencing from time point 0 (‘CHRO’, Figure 1E), showing that fast-released IncRNAs
display significantly higher antisense (divergent) transcription (Supplementary Figure S2 G), which is most
probably due to their enrichment in originating near and antisense of protein-coding gene TSS (Suppl. Figures
S1 1-J).

Chromatin dissociation of nascent RNA transcript is coupled to transcription termination and 3’ end formation.
We thus generated transcription metagene profiles around the transcript 3’ end site (TES) using ChIP-seq signal
from transcriptionally engaged Pol Il phosphorylated at Ser2 (P-ser2 Pol Il occupancy) or strand-specific GRO-
seq read coverage. To account for annotation discrepancies, we extracted de novo putative (pA)
polyadenylation sites from ENCODE available MCF-7 nuclear polyA+ RNA-seq data using ContextMapzs.
Although in general there is good agreement between the annotated transcript 3' ends and the de novo
extracted pA sites (Suppl. Fig. S2 H), for increased positional accuracy we used the latter for further analyses
(i.e. assigned a transcript 3’ end to closest and stronger ContextMap predicted pA site, Methods). P-Ser2 Pol Ii
metagene profiles around TES resemble the ones obtained by mNET-squO, revealing polyadenylation
associated Pol Il pausing in a 2 Kb window downstream of TES of mRNAs, but not IncRNAs (Supplementary
Figure S2 I, left). In conjunction, mMRNAs display significantly higher transcription termination index compared to
IncRNAs, as previously reported20 (Supplementary Figure S2 I, right). GRO-seq metagene analysis profiles of
transcriptionally engaged Pol Il verify these results (Figure 2C, Suppl. Figure S2 K). In particular, we find no
significant difference in the transcription termination index (extracted using GRO-seq) between fast and slow
released mMRNA transcripts, indicating no significant differences in polyadenylation-associated TES-downstream
Pol Il pausing (Suppl. Figure S2 K). This could suggest no significant differences in transcription termination
efficiencies per se. Yet, by extracting a Pol Il ‘travel index’ (as the ratio of strand-specific GRO-seq signal from
the region 2.5 to 5 Kb downstream of TES to the first 2.5 Kb downstream of TES where the polyadenylation-
associated pausing resides®’; Methods), we note that Pol Il of slow-released transcripts tends to travel further
beyond the polyadenylation-associated pausing site, which would be in support of chromatin tethering via
ongoing transcription (Suppl. Figure S2 L; S2 J; Figure 2C right panel) (or that ongoing transcription may
contribute to chromatin tethering and slow release of nascent RNA transcript). In the case of IncRNAs, we do
not observe a polyadenylation-associated TES-downstream Pol Il accumulation or pausing, which is in
agreement with mNET-seq data suggesting polyadenylation-independent transcription termination modes®.
Notably, and more evidently observed in normalized metagene transcriptional profiles, Pol 1l tends to transcribe
further beyond the TES of slow-released IncRNA transcripts (Suppl. Figure S2 J, lower panels). In agreement,
by extracting travel (readthrough) ratios using chromatin-associated nascent RNA-seq from time point 0

(‘CHRO’) we find that slow-released chromatin-retained nascent RNA transcripts, either mRNAs or IncRNAs,
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exhibit higher readthrough transcription (Figure 2D). Taken together with the observed inefficient splicing of
slow-released transcripts (Figure 2A-B), these results are in agreement with a crosstalk between splicing,

26,27

transcription and transcription termination”"", and with recent findings that inefficient splicing associates with

readthrough transcription (Reimer et al., biorXiv 2020).

Different degrees of chromatin association demarcated by distinct chromatin states

We then examined whether distinct degrees of nascent RNA transcript chromatin association would relate to
distinct chromatin states. Notably, for all histone marks associated with transcriptional activity (H3K4me3,
H3K4me1, H3K27Ac) we see significant differences in the promoter regions around the TSS of fast, medium
and slow-released IncRNAs, but not for mMRNAs (Figure 2E). By extracting the ratio H3K4me1 to H3K4me3
around the TSS, we observe that the fast-released IncRNAs resemble mRNAs in terms of promoter activity
(Suppl. Fig. S3 A), while slow-released/chromatin-retained IncRNAs display on average higher signals of
repressive histone marks like H3K9me3 and H3K27me3 (Suppl. Fig. S3 B). Profiles of total Pol Il occupancy
(POL2RA ChIP-seq) confirm the differences in the transcriptional activity among distinct degrees of chromatin
association for IncRNAs (Suppl. Figure S3 C). Notably, fast-released INcRNAs are transcribed from regions with
significantly greater chromatin accessibility (measured by DNase-seq, Figure 2F), and display significantly
higher CTCF and YY1 binding (for the latter, Avocado calculated binding probabilityze; Methods) (Suppl. Figure
S3 D-E). This is important, as both factors are associated with chromatin looping, and YY1 in particular
promotes enhancer-promoter chromatin loops by forming protein dimers and facilitating DNA interactions®. The
negative correlation between the extracted chromatin association halftime and looping scores (i.e. promoter-
overlapping ChlA-PET nodes; Methods) is greater for IncRNAs compared to mRNAs (Pearson’s correlation -
0.267 vs. -0.107, respectively). Notably, promoters of fast-released IncRNAs display significantly higher ChIA-
PET scores (Figure 2G, Suppl. Fig. S3 F), indicating that they are/tend to be transcribed from the anchor points

of chromosomal loops.

Enhancer-associated IncRNAs (eIncRNAs) do not remain chromatin-associated

We therefore examined the association of distinct degrees of INcRNA chromatin dissociation with enhancer
activity. For this purpose we used the FANTOM5%® human ‘permissive’ enhancers expanded by transcribed
enhancers defined by NET-CAGE”. We filtered that these enhancers should be transcriptionally active in MCF-7
cells by GRO-seq measurement, ending up with 10,008 high-confidence bidirectionally transcribed enhancers
(Fig. 3A). About 2.5 % of bidirectionally transcribed enhancers have an IncRNA TSS (derived from the analyzed

dataset 2,077 IncRNAs) within an interdistance < 2 kb which is reminiscent to what was previously reported3’7.
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Thus, those INcRNAs can be regarded as enhancer-associated elncRNAs’ and their cognate enhancers as la-
EPCs®. Notably, fast-released IncRNAs are significantly enriched in elncRNAs (odds ratio 1.68, p-value
0.0001398). On the other hand, ~7.6 % of the bidirectionally transcribed enhancers have an mRNA TSS (from
the 10,314 analyzed) within less than 2 Kb interdistance, however fast-released mRNAs are not enriched in this
subset (odds ratio 0.97). This suggests that transcribed enhancers are more likely to be associated with a fast-
released IncRNA. In other words, when bidirectionally transcribed enhancers are associated with an IncRNA (at
~3-5 %), then this is more likely to be a fast-released IncRNA transcript. Analogously, we find that elncRNAs
(defined at an interdistance < 2 kb to closest enhancer midpoint; Fig. 3C) are enriched in fast-released IncRNAs
(odds ratio ~1.8, p-value 0.002586), whereas mRNAs with an interdistance < 2 kb to closest enhancer midpoint
are not enriched in fast-released mRNAs (Fig 3B). Notably, elncRNAs show significantly higher association to
anchor points of chromatin loops (measured by score of overlapping ChlA-PET nodes; Fig. 3D), and display on
average significantly lower chromatin-association halftimes (p-value = 5.116e-06; Fig. 3E), (while, as a control,
fast-released mMRNAs are not enriched in interdistances less than 2 kb to enhancer midpoint: odds ratio
0.8409119, p-value 0.03862). This is similar to what was previously published, that IncRNAs transcribed from
enhancer-like regions display on average higher ChIA-PET scores on their overlapping promoter regionsg.
Notably, although IncRNAs as a class display higher chromatin association halftimes compared to mRNAs,
eIncRNAs escape this rule by showing significantly lower chromatin association halftimes (Fig. 3E), which is in
agreement with elncRNAs being enriched in fast-released transcripts. In conclusion, we show here that
enhancer-associated or rather, enhancer-transcribed IncRNAs (eIncRNAs, equivalent to Ia-EPCs3), in addition

to increased splicing efficiencies®’, also show increased degrees of chromatin dissociation.

Prediction of IncRNA chromatin dissociation in machine learning models

We then incorporated several of the functional and physical characteristics in machine learning to predict
chromatin dissociation of IncRNAs. We applied logistic regression with a ten-times cross-validation to predict
fast versus slow-released transcripts (Figure 4A IncRNA, 4B mRNA). In agreement with the distribution of the
individual parameters (Figure 2, Suppl. Fig. S2, S3) we find that the transcript exon density (previously used as
a proxy for splicing activity3), splicing efficiency of the transcript's worst processed intron and chromatin states
associated with promoter transcriptional activity (H3K4me3 and H3K4me1) have significant coefficients in
predicting fast-released IncRNAs, whereas SNRP70 enrichment across the locus (mean of fold-enrichment from
ChiIP-seq peaks; Methods) define slow-released, chromatin-retained IncRNAs. The latter is in agreement with
Yin et al. (2020) suggesting U1-mediated chromatin retention of inefficiently processed transcripts”. That P-

Ser2 Pol Il coverage over gene body is significant in predicting slow-released IncRNAs could confirm that slow-
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released INcRNAs are tethered to chromatin through transcriptionally engaged Pol 11" and that transcriptional
activity could contribute to U1 snRNP-mediated tethering of inefficiently processed transcripts”. In contrast to
the exon density (which reflects overall splicing activity) and the splicing efficiency of the worst spliced intron,
potentially acting as a kinetic bottleneck in nascent RNA transcript chromatin release, and while those two
parameters confidently predict IncRNA chromatin dissociation, we (paradoxically) find the transcript's mean
splicing efficiency as an important predictive parameter of chromatin association. This could be explained if
some (or one, or few) easy to process introns achieve high splicing efficiency during their prolonged stay on
chromatin, thereby contributing to increasing the mean splicing efficiency of the host transcript. On the other
hand, and in agreement with the analyzed distributions (Figure 2; Suppl. Fig. S2, S3), chromatin states of
mRNA loci do not contribute to defining chromatin association of nascent mRNAs (Figure 4B). Similarly to
IncRNAs, exon density and splicing efficiency of the worst spliced intron predict mMRNA chromatin dissociation,
while high SNRP70 enrichment over the transcription unit predicts slow-released mRNAs as well, suggesting
that chromatin association of slow-released mRNAs could be at least partially achieved through persistent U1
snRNP binding to inefficiently processed transcripts.

Apart from logistic regression, we also applied linear regression to predict the chromatin association halftime
(continuous value) as a multivariate function of several parameters (Supplementary Figure S4 A), as well as 2-
class random forest (Supplementary Figure S4 B), reaching similar results regarding the weight of parameters in

predicting fast versus slow-released transcripts.

Distinct RNA binding proteins are predicted to bind transcripts of different degrees of chromatin
association

We then asked whether IncRNAs of different degrees of chromatin association would interact with distinct RNA
binding protein (RBP) activities. For this, we used the ENCODE-available eCLIP data® from HepG2 cells as a
proxy dataset. As most IncRNAs are expressed in a cell-type specific manner, we trained the pysster algorithm31
on mRNA or IncRNA sequences with overlapping RBP binding sites to acquire full-length transcript binding
probabilities (by extracting the median score from positions that score above a pre-defined cutoff; Methods). We
then incorporated these in random forest machine learning models to predict fast versus slow-released IncRNA
or mRNA transcripts in 10 times cross-validation, with a mean accuracy of ~0.81 and ~0.8 respectively (Suppl.
Figure S4C). Interestingly, we find RBPs with high binding probabilities which are commonly important in
specifying chromatin association of both IncRNAs and mRNAs. These include factors with additional DNA
binding activity (localizing to chromatin) like the KH-domain containing factors KHSRP and KHDRBS1, FUBP3

and SUGP2 which display increased binding probabilities for chromatin-retained/slow-released transcripts,
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either INcRNAs or mRNAs (Suppl. Figure S4 C lower panels). Interestingly, CSTF2 involved in 3’ end
formation® is also enriched in slow-released transcripts, perhaps reflecting persistent binding and unresolved
RNA-protein complexes in the case of inefficient transcription termination and 3’ end formation. The exosome
component EXOSCS5 is also enriched in slow-released transcripts, implying chromatin-associated clearance of
inefficiently processed nascent RNA transcripts. Among type-specific RBPs, DROSHA is an interesting
candidate significantly enriched in fast-released IncRNAs, but not mRNAs, perhaps suggesting some
involvement in promoting INcCRNA chromatin dissociation in a causal manner (Suppl. Figure S4 C upper panels).
Intriguingly, DROSHA was found important for pA-signal-independent transcription termination and 3’ end
formation of IncRNAs serving as miRNA hosts®. Yet, the observed DROSHA enrichment (increased RNA
binding probability) specifically in fast-released IncRNAs could also suggest post-transcriptional processing of
nucleoplasmic-enriched IncRNAs. Although we do not find any significant enrichment of IncRNA miRNA hosts in
the fast-released INcRNA category (since the numbers are quite small to infer statistical significance; only 34 of
the 2,077 analyzed, expressed in MCF-7 IncRNAs host miRNAs), a more careful and closer examination would
be required to conclude about microprocessor involvement in INcRNA transcription termination (and 3’ end
formation) as an applying mechanism. Additional IncRNA-specific factors with increased RNA binding
probabilities predictive for fast-released INcRNAs are NONO (involved in splicing), and XRN2 and CSTF2T,
involved in transcription termination and 3’ end formation®*. Since all three of them have DNA binding activity
and localize to chromatin, this suggests that their predicted binding could be co-transcriptional and their activity
may contribute to promoting chromatin dissociation of nascent IncRNA transcripts. Experimental examination by
assessing the chromatin (dis-)association of nascent RNA transcripts in differential conditions upon RBP factor
knock-down would validate these predictions and substantiate a specific candidate involvement in promoting

efficient chromatin release or tethering.

Discussion

IncRNAs constitute a large heterogeneous class with a broad range of functions in regulation of gene

expression (regulation of transcription in cis and in trans), RNA processing and chromatin states'*®

, while a
common feature that distinguishes INcRNAs from mRNAs is reduced splicing efficiencyzz. The exerted functions
of IncRNAs largely depend on their subcellular localization where they can differentially interact with distinct
RNA-binding proteins and posit local target specificity. Previous computational efforts aimed to generate
predictive models of IncRNA subcellular localization (nuclear versus cytoplasmic enrichment) using steady-state

RNA-sequencing, and showed that inefficient splicing and intron retention is a major predictor of nuclear

localization®®. It is however an outstanding question what underlies the observed IncRNA chromatin enrichment
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(usually referred to as chromatin retention or chromatin tethering). IncRNAs may remain tethered to chromatin
via ongoing Pol Il transcription10 (since inhibiting Pol Il transcription elongation abolished IncRNA chromatin
tetheringm), while the function of chromatin bound cis acting IncRNAs in regulation of proximal gene expression

11,36,37. DNA elements in the cis-

and local chromatin structure is mostly coupled to their ongoing transcription
acting, chromatin-tethered IncRNAs may be key: for instance, loop interactions between the promoter of the
chromatin-tethered INcRNA PVT1 and its intragenic enhancers antagonize interactions with the neighboring
MYC gene promoter38.

Yin et al. (2020)14 implicate persistent U1 snRNP binding as a means of IncRNA chromatin tethering, which
relies on U1 site enrichment in INcCRNA exons, depletion of 3’ splice sites and/or inefficient splicing, and U1
snRNP70 protein interactions with transcriptionally engaged Pol Il. Interestingly, a previous study indicated that
the overall lower splicing efficiency of IncRNAs (compared to mRNAs) is not due to defects in the U1-PAS axis
which is very similar to mRNAs?. In agreement, we also find here SNRNP70 recruitment as a major predictive
factor of INcRNA chromatin retention. In Yin et al. (2020), U1 inhibition dampened the chromatin association of
both well and poorly spliced IncRNAs, suggesting that a kinetic effect due to delayed release of unspliced (or
inefficiently/poorly spliced) nascent RNA cannot be the major determinant for IncRNA chromatin retention. In
agreement, the transcript's mean co-transcriptional splicing efficiency is a major predictor of chromatin
dissociation for mRNAs but not IncRNAs. However, the splicing efficiency of the worst spliced intron per
transcript has a significantly high coefficient in predicting chromatin dissociation, suggesting that it might
function as a “bottleneck” for IncRNA chromatin release. Thus, nascent RNA splicing kinetics may at least
partially contribute to IncRNA chromatin dissociation. Future experimental examination by point-mutating
specific splice sites to enhance (or abolish) splicing will help to definitely validate the impact of co-transcriptional
splicing kinetics on IncRNA chromatin release.

An important finding is that IncRNAs transcribed from active enhancers display increased degree of chromatin
dissociation. This implies that the commonly termed “enhancer-associated” IncRNAs (or elncRNAs’, equivalent
to Ia—EPCs3) do not remain chromatin associated. Instead, chromatin dissociation is an important feature which
might underlie their function and impact enhancer activity. Again, it is noteworthy that single locus experimental
validation aiming to alter the degree of IncRNA chromatin association will allow to examine the effect on cognate
enhancer activity and target gene expression. So far, decrease in IncRNA chromatin tethering was achieved
transcriptome-wide by inhibiting U1 snRNP™ (without examining the associated effects on putative cis targets),
but it remains to be experimentally analyzed what is the effect of enforced eIncRNA chromatin retention on
cognate enhancer activity and target gene expression. This can be achieved either in modified cell lines by

CRISPR gene editing or by targeting functional transcription termination and polyadenylation sites with blocking
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oligonucleotides for a short period of time to avoid secondary dampening effects on transcriptional activity.
Modifying donor and acceptor splice sites of individual INncRNA loci by inserting point mutations should allow to
experimentally validate the correlation between splicing efficiency and chromatin dissociation. It would also be
highly relevant under such experimental conditions to examine alterations in local chromatin states and loop
conformation, so as to characterize chromatin structure associated effects caused by enforced IncRNA
chromatin tethering on enhancer functionality. Of great interest will be to draw conclusions on cognate enhancer
activity after locus manipulation leading to altered locus-specific INcRNA chromatin-tethering without affecting
splicing activity. This can be achieved for instance by interfering with 3’ end formation leading to increased
transcriptional readthrough and suppressing nascent RNA transcript release®.

We note here that our approach to couple nascent RNA sequencing with chromatin fractionation at different
pulse-chase time points would benefit by additionally applying long RNA sequencing of chromatin-associated
and released nascent transcripts. The 3’ ends of long reads represent the position of Pol Il at full-length (non-
fragmented) synthesized nascent RNA transcripts, and this technique was recently employed to corroborate that
co-transcriptional splicing greatly enhances mammalian gene expression (Reimer et al., biorxiv 2020). Previous
experimental and computational studies focused at understanding nuclear retention of IncRNAs***°. In these
predictive models, inefficient splicing was a major factor contributing to InNcRNA nuclear retention®. Here, by
combining chromatin fractionation with sequencing of nascent RNA from the chromatin-associated and
nucleoplasmic fraction at different pulse-chase time points and by employing machine learning we show that
splicing of the least efficiently processed intron per transcript may act as a ‘bottleneck’ for efficient nascent RNA
transcript chromatin release. Other factors like U1 snRNP (SNRNP70) binding, coupled with inefficient splicing,
contribute to INcRNA chromatin retention as it was recently demonstrated in mESC™. We additionally show that
IncRNAs transcribed from active enhancers do not remain chromatin tethered but rather display increased
chromatin dissociation efficiency. Essentially eIncRNAs are enriched in fast-released IncRNA transcripts, thus
increased chromatin dissociation efficiency in addition to splicing?"7 may contribute to shaping enhancer activity
and regulation of target gene expression. The latter may be accomplished upon chromatin dissociation of the
nascent INcRNA transcript forming or affecting regulatory protein interactions targeting gene expression in cis

within the spatial proximity of pre-established chromosomal loops.
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Figure legends

Figure 1. Measuring chromatin association of nascent RNA transcripts

Distribution of chromatin association ratios at different pulse-chase time points.

Same as in (A) but split for fast, medium and slow-released transcripts.

Loess curve of chromatin association drawn based on the raw ratios (upper panel) and after fit on an
exponential decay (lower panel).

Exponential decay fit of the chromatin association over time for two representative IncRNAs, A-ROD (fast-
[efficiently released) and PVT1 (slow-released/chromatin retained).

Metagene analysis of ‘CHRO’ strand-specific read coverage (chromatin-associated nascent RNA
sequencing from time point zero) in a +3 Kb window around TSS.

Cumulative distribution function (CDF) curves of intron splicing efficiencies measured in all analyzed
samples.

Distribution boxplots of intron splicing efficiency dynamics (SED) measured in the chromatin-associated
(CHR20-CHRO0) and nucleoplasmic fraction (NP20-NPO0). Co-transcriptional SED is significantly higher

compared to post-transcriptional SED (p-value < 2.2e-16).

Figure 2. Different degrees of chromatin association correlate with distinct physical and functional

characteristics of nascent RNA transcripts

(A)

(B)

Transcript mean splicing efficiency. P-value < 2.2e-16 for fast- vs. slow-released mRNAs; non-significant
(NS) for IncRNAs.

Transcript minimum splicing efficiency (i.e. splicing efficiency of worst spliced intron). P-value < 2.2e-16
fast- vs. slow-released mRNAs, p-value 0.0408 fast- vs. slow-released IncRNAs.

Metagene analysis of GRO-seq read coverage (only sense strand plotted) in a window -500 bp to +5 Kb
around transcript end site (TES) (ContextMap extracted pA site).

Metagene analysis of ‘CHRO’ sense strand-specific read coverage (chromatin-associated nascent RNA
sequencing from time-point zero) in the window -1 Kb to +5 Kb around TES. The average read coverage
per nucleotide position is normalized to the position with the maximum read coverage within each group,
and plotted separately for IncRNAs (left panel) and mRNAs (middle panel). Right panel: Boxplot distribution
(plotted in log scale) of transcriptional readthrough for the different groups, measured as the ratio of ‘CHRO’
sense strand-specific read coverage 5 Kb downstream to 1 Kb upstream of TES (p-value = 3.108e-12 fast

vs. slow released INcRNAs and p-value < 2.2e-16 fast vs. slow released mRNAs).
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449 (E) Metagene analysis of histone marks average profiles around the TSS of different groups of nascent RNA

450 transcripts (left panels: split IncRNAs vs. mRNAs, middle panels: split distinct degrees of chromatin
451 association i.e. fast/medium/slow-released IncRNAs and mRNAs). Right panels: Boxplot distribution of
452 promoter-associated histone mark signal around TSS (p-value < 2.2e-16 fast vs. slow-released IncRNAs;
453 NS for mRNAs).

454  (F) Metagene analysis of DNase-seq signal around TSS (left, middle panels) and the respective boxplot
455 distribution (right panel, p-value < 2.2e-16 fast vs. slow-released INcRNAs; NS for mRNAs).

456 (G) Promoter-overlapping ChIA-PET maximum scores (fast vs. slow released INcRNAs p-value 4.489e-10).

457

458 Figure 3. Enhancer-associated eIncRNAs are enriched in fast-released transcripts

459 (A) Profile of nascent RNA transcription (GRO-seq) over bidirectionally transcribed enhancers in MCF-7.

460 (B) Cumulative plots of interdistances of transcript TSS to closest enhancer midpoint.

461 (C) Distribution of TSS interdistances (log10 bp) to closest enhancer midpoint for elncRNAs, mRNAs and
462 IncRNAs not associated to active enhancers.

463 (D) eIncRNAs show significantly higher ChlA-PET interaction scores compared to mRNAs (p-value 0.0004281)
464 and to IncRNAs not associated with active enhancers (p-value 0.0002974).

465 (E) eIncRNAs show significantly lower chromatin association halftimes (p-value 0.02329 to mRNAs and
466 5.116e-06 to rest INcRNAs; p-value 7.236e-05 rest INcRNAs to mRNAs).

467

468 Figure 4. Contribution of distinct features to modeling chromatin (dis-)association of nascent RNA
469 transcripts

470 (A) Logistic regression to predict fast vs. slow-released (chromatin-retained) INcRNAs. A 10x cross-validation
471 was applied (best AUC 0.9275, average 0.8891). Coefficients bigger than 0.3 or smaller than -0.3 and with
472 a p-value < 0.001 are marked red.

473 (B) Same as in (A) but for mRNAs (best AUC 0.84, average 0.81).

474

475 Supplementary Figure 1.

476 (A) Nascent RNA sequencing read coverage over the last exon from all pulse-chase time points.

477 (B) Same as in (A) but after splitting in the 3 groups of fast, medium and slow-released transcripts.

478 (C) K-means clustering of all analyzed transcripts (n = 18,837) using the chromatin association ratios with k = 3

479 defines 3 clusters corresponding (from top to bottom) to ‘slow’, ‘fast’, and ‘medium’-released transcripts.
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(D) Boxplot distribution of chromatin-association halftimes (calculated by fitting the exponential decay curve)

for the k-means clustering-derived groups.

(E) Distribution of transcript length (fast vs. slow mRNAs p-value < 2.2e-16, fast vs. slow IncRNAs p-value

2.387e-12).

(F) Left panel: Distribution of number of exons per transcript (p-value 0.003545 fast vs. slow mRNAs, NS for

IncRNAs). Right panel: Distribution of exon density (nr of exons per Kb) (p-value = 0.0009458 fast vs. slow

IncRNAs, p-value < 2.2e-16 fast vs. slow mRNAs).

(G) Chromatin association halftime (extracted by fitting the chromatin association ratios on an exponential

decay curve at p-value <0.05; Methods) for the three groups of fast, medium and slow released.

(H) Chromatin association ratios at steady state (log2 CHR/NP) for the 3 groups.

(I) Distribution of distances to closest antisense PCG TSS for the 3 groups of fast, medium and slow-released

IncRNA transcripts.

(J) Cumulative distribution function curves of IncRNA interdistances to closest antisense PCG TSS for the 3

groups of fast, medium and slow-released IncRNA transcripts.

(K) Cumulative distribution function plots of intron splicing efficiencies from all time points and samples, at

chromatin (left panel) and nucleoplasm (middle panel), and the respective boxplot distributions (right

panel).

(L) Boxplot distribution of normalized post-transcriptional splicing efficiency at intron (left panel) and transcript

level (middle and right panels; extracted as the mean normalized post-transcriptional splicing efficiency per

transcript).

(M) UCSC screenshot from the GATA3- GATA3-AS1 locus.

Supplementary Figure 2.

(A) Transcript mean psi value (left) and median (right).

(B) Pausing index for IncRNAs and mRNAs (p-value < 2.2e-16) measured by extracting the ratio of P-Ser2 Pol

Il coverage 500 nt downstream of TSS to gene body.

(C) Same as in (B) but split for fast, medium and slow-released transcripts (fast vs. slow IncRNAs p-value

2.384e-08, NS for mRNAs).

(D) Pausing index using strand-specific GRO-seq read coverage (fast vs. slow released IncRNAs p-value

1.117e-15, NS for mRNAs).

(E) Strand-specific GRO-seq read coverage 1 Kb downstream of TSS (fast vs. slow INcRNA p-value = 6.185e-

13, NS for mRNAs).
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(F) Metagene analysis of GRO-seq strand-specific read coverage for the different groups of RNA transcripts,
+3 Kb around TSS.

(G) Transcription bidirectionality score extracted using GRO-seq (log2 antisense/sense read coverage 1 Kb
around TSS; fast vs. slow INcCRNA p-value < 2.2e-16, NS for mRNA).

(H) Distribution of interdistances of ContextMap extracted pA site to annotated transcript 3’ ends.

() Metagene analysis of average P-Ser2 Pol Il density -500 bp to +5 Kb around TES of IncRNAs and mRNAs
(left panel), and boxplot distribution of the corresponding transcription termination indices (extracted as the
density ratio of 2.5 Kb downstream of TES to gene body (Methods); right panel).

(J) Metagene analysis of average GRO-seq read coverage profile (only the sense strand plotted) around the
TES of grouped RNA transcripts; raw (upper panels), and after normalization of the average profile to value
at nucleotide position zero (TES).

(K) Transcription termination index (NS)

(L) Travel index (fast vs. slow mMRNAs p-value < 2.2e-16; fast vs. slow INCRNAs p-value 0.01248).

Supplementary Figure 3.

(A) Metagene profiles for different groups of transcripts (Id* label under panel C) of the average H3K4me1 to
H3K4me3 ratio in a window +3 Kb around TSS (left panel), and boxplot distribution of the overall H3K4me1

to H3K4me3 ratio 2 Kb downstream of TSS (right panel, p-value < 2.2e-16 fast vs. slow-released IncRNAs,
p-value = 0.002769 fast vs. slow-released mRNAs).

(B) Average H3K9me3 (left) and H3K27me3 profiles around TSS of different groups of transcripts (Id* label
under panel C).

(C) Average POL2RA profiles around TSS of different groups of transcripts.

(D) Average CTCF profiles around TSS of different groups of transcripts (first three panels), and boxplot
distribution of CTCF enrichment +1 Kb around TSS (fourth panel, p-value < 2.2e-16 fast vs. slow-released
IncRNAs, p-value 6.032e-08 fast vs. slow released mRNAs).

(E) Average profiles of YY1 binding probability +1 Kb around the TSS of different groups of transcripts (left
panel, color Id* label under panel C), and the respective boxplot distributions of YY1 binding probability
+1 Kb around TSS (right panel, p-value < 2.2e-16 fast vs. slow-released IncRNAs, NS for mRNAs).

(F) Boxplot distributions of promoter ChlA-PET score, extracted as the sum of scores of the ChlA-PET nodes
overlapping the promoter (2 Kb TSS) (p-value 2.375e-09 fast vs. slow released mRNAs and 3.039e-11

fast vs. slow-released INcCRNAs).
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545 Supplementary Figure 4.

546 (A) Linear regression models (Im) run with 10 x cross-validation to predict chromatin association halftime (as a
547 continuous value) of IncRNAs (left panels) and mRNAs (right panels) by incorporating several parameters
548 (significant parameters with a coefficient p-value < 0.001 are red-marked).

549 (B) Two-class random forest run with 10 x cross-validation to predict fast vs. slow released IncRNAs (upper
550 panels, best model accuracy 0.91, mean accuracy 0.86) and mRNAs (lower panels, best model accuracy
551 0.81, mean accuracy 0.77).

552 (C) Two-class random forest run with 10 x cross-validation to predict fast vs. slow released IncRNAs (upper

553 panels, best model accuracy 0.808, mean accuracy 0.769) and mRNAs (lower panels, best model
554 accuracy 0.795, mean accuracy 0.776) by incorporating 100 RBP whole transcript binding probabilities
555 (pysster predictions). Mean Decrease Accuracy and Mean Decrease Gini values of the top best 30 factors
556 are shown.

557 (D) Boxplot distribution of whole transcript binding probabilities (pysster predictions) for factors important either

558 for predicting fast vs. slow-released IncRNAs (upper panels), fast vs. slow-released mRNAs (middle
559 panels) or both types (lower panels). Student’s t.test p-values are noted (red for fast vs. slow IncRNAs and
560 blue for fast vs. slow-released mRNAs).
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Methods

KEY RESOURCES TABLE

Reagent or Resource Source Identifier

MCF-7 Pser2 Pol Il ChlP-seq (Menafra et al., Plos One 2014) GEO: GSM1388130

MCF-7 GRO-seq (Franco et al., Genome Res 2018) GEO: GSM2545179, GSM2545180,
GSM2545181

MCF-7 Pol2RA ChIP-seq https://www.encodeproject.org/ ENCFF663QKE

MCEF-7 nuclear polyA+ RNA-seq https://www.encodeproject.org/ ENCSRO00CTO

H3K4me3 https://www.encodeproject.org/ ENCSR985MIB (GEO: GSM945269,

ENCFF7971UA.bigWig)

H3K4me1 https://www.encodeproject.org/ ENCSR493NBY (GEO: GSE86714,

ENCFF275KBS.bigWig)

H3K27Ac https://www.encodeproject.org/ ENCSROO0EWR (GEO: GSM945854 ,

ENCFF515VXR.bigWig

H3K9me3 https://www.encodeproject.org/ ENCSR999WHE (GEO: GSE96517,

ENCFF191LDZ.bigWig)

H3K27me3 https://www.encodeproject.org/ ENCSRO00EWP (GEO: GSM970218,

ENCFF081UQC.bigWig)

MCF-7 CTCF ChlP-seq https://www.encodeproject.org/ ENCSRO00AHD (GEO: GSM1010734,

ENCFF991NDB.bigWig)

YY1 Avocado imputation (signal p-value) https://www.encodeproject.org/ ENCSR6782GZ

(ENCFF065FZS.bigWig)

MCF-7 ChlA-PET https://www.encodeproject.org/ GEO:GSM970209

FANTOMS/NET-CAGE enhancers Hirabayashi et al., 2019
https://fantom.gsc.riken.jp/5/suppl/Hirabayashi_et_al_2019/

SNRNP70 ChIP-seq https://www.encodeproject.org/ ENCFF346UDN

eCLIP https://www.encodeproject.org/ ENCSR456FVU

Software and Algorithms Source Identifier
ContextMap Bonfert et al., 2017 https://www.bio.ifi.Imu.de/software/contextmap

Bedtools Quinlan and Hall, Bioinformatics 2010 https://bedtools.readthedocs.io/en/latest/
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Pysster Budach and Marsico, Bioinformatics 2018 https://github.com/budach/pysster
STAR Dobin et a., Bioinformatics 2013 https://github.com/alexdobin/STAR/releases

UCSC tools (bigWigAverageOverBed)

METHOD DETAILS

Extraction of transcript 3’ end site (TES)

We ran ContextMap v2.7.9 on paired-end MCF-7 nuclear polyA+ data (ENCODE) using Bowtie2 aligner and
Bowtie2-build-I indexer, with parameters -mismatches 3 -seed 30 -maxhits 10 --polyA -t 8 -Xms4000M -
Xmx30000M. This generated 39,991 ContextMap scored polyA sites. Nearby polyA sites were clustered with
bedtools cluster —s —d 10, keeping the one with maximum score. Annotated transcript 3’ ends were assigned a

ContextMap polyA site by fetching the closest with bedtools closest —s.

Enhancer-associated IncRNAs in MCF-7

From the FANTOMS/NET-CAGE enhancers (n = 85,786) we extracted the ones that show evident bidirectional
transcription in MCF-7 using GRO-seq (GSE96859) (bigWigCoverageOverBed mean0 coverage > 0.1 for both
strands), resulting in 10,008 bidirectional actively transcribed enhancers. We then fetched closest transcript start
site (TSS) to enhancer midpoints using bedtools closest —s and defined IncRNAs with an interdistance <

2000 bp as elncRNAs (n = 248 out of the 2077 analyzed).

SNRNP70 occupancy over transcription units
As a proxy we used SNRNP70 ChlP-seq from HepG2 and by intersecting the intervals corresponding to full-
length transcripts with ChlP-seq narrow peaks (ENCFF346UDN) we extracted a mean binding score per

transcription unit.

Nascent RNA sequencing combined with pulse-chase and chromatin fractionation

MCF-7 cells were seeded in P10 (6 plates per time point) and grown to ~80% confluency in 5% FCS, then
labeled for 8 min with 1mM 4-thio-Uridine (4-SU). Cells were either immediately harvested (lifted intact in ice-
cold PBS) or washed twice in PBS and chase was applied for 5, 10, 15, 20 min in 10 mM uridine diluted in
growth medium. Chromatin fractionation was performed as in ref®. Briefly cells were lysed in 400 ul lysis buffer
0.15% NP-40 and lysate was loaded on 800 ul sucrose buffer for brief centrifugation. Pelleted nuclei were
washed in ice-cold PBS, resuspended in 200 ul glycerol buffer and lysed in 0.6 M urea to fractionate chromatin

from the nucleoplasmic fraction. RNA from the chromatin and nucleoplasmic fraction was extracted with acidic
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phenol (pH 4.5) and acidic phenol/chloroform. 3 ug of RNA were fragmented with 0.15 M NaOH final
concentration for 25 min on ice. Prior the RNA fragmentation, 0.15 ng of the 4-SU-labeled and unlabeled spike-
ins mix (as in the TT-seq protocol15) had been added to the 3 ug of RNA. The fragmentation reaction was
stopped in 10 mM Tris pH 7.4, purified with RNeasy MinElute Spin columns and eluted in 45 ul TE buffer (Tris
10 mM pH 7.4, 1mM EDTA). 5 ul Biotin-HPDP/DMF 1 mg/ml were added (i.e. final concentration 0.1 mg/ml) and
incubated for 2 hours at room temperature. Further steps of RNA purification, binding to T1 Dynabeads,
washing and elution were done according to the A. Regev protocol”’ (using 5 ug T1 Dynabeads for 2 ug 4-SU-

biotinylated RNA), leading to library construction for lllumina sequencing.

Mapping and spike-ins normalization

Reads were mapped to GRCh38 (gencode.v23.primary_assembly.annotation) and to ERCC92 sequences using
STAR 2.5.4a with standard parameters. Only reads mapped to a single genomic location were kept (score 255).
Three labeled (ERCC00043, ERCCO00092, ERCCO00136) and three unlabeled spike-ins (ERCC00002,
ERCCO00145, ERCCO00170) had been added to each RNA sample. For each sample a ‘sizeFactor was
extracted for spike-ins normalization as follows: each of the three labeled spike-ins read counts were normalized
to the sum of the respective spike-in counts across the ten labeled samples (CHR 0, 5, 10, 15, 20 min and NP
0, 5, 10, 15, 20 min), and then the median value from the three normalized labeled spike-ins was extracted per
sample (‘smoothened median’ = sizeFactor). For each labeled sample the cross-contamination value ‘epsilon’
was calculated as the sum of unlabeled spike-in read counts (U) to the sum of U plus the sum of labeled spike-
in read counts (L): epsilon = cross-contamination = U/ (L+U). Strand-specific read counts over features were
normalized to sizeFactor and feature length and multiplied by (1-epsilon). Fitted_counts = measured_counts/
sizeFactor(labeled_sample)/ feature length * (1-epsilon), or Fitted counts = measured_counts/

sizeFactor(labeled_sample)/ feature_length * L/ (L+U).

Transcript dataset

We used GENCODE V29 IncRNA annotation (n = 8,992) supplemented with novel (non-overlapping GENCODE
V29 IncRNAs annotation) IncRNA transcripts from de novo transcript assembly (n = 10,606) on chromatin-
associated RNA-seq in MCF-7 (described in ref’; those are lacking protein-coding potential, are not overlapping
protein coding genes, and have at least 1 splice junction). From this initial set we kept 3,671 IncRNAs with non-
zero read coverage in all 12 sequenced samples. We also used 15,166 mRNA transcripts with non-zero read

coverage in all 12 samples.
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Modeling chromatin dissociation

Strand-specific read counts over the last exon of the 18,837 transcripts were normalized to spike-ins and feature
length (as described in the Methods section ‘Mapping and spike-ins normalization’). For each pulse-chase time
point we extracted a ratio of chromatin (CHR) to chromatin plus nucleoplasmic (NP) normalized read coverage
(CHR/ (CHR+NP)). We fit those ratios on an exponential decay using R function Im (log (x) ~ time), for
timepoints [0, 8, 13, 18, 23, 28] (ratio set to 1 at timepoint 0), which returns intercept, k and p-value of
exponential decay fit. We kept 12,391 entries that fit the curve with a p-value <0.05 (of which 2077 IncRNAs,
and 10,314 mRNAs). We defined a ‘chromatin association halftime’ as -(intercept + log (2)) / k. Based on the
halftime values, we split the dataset in three equal-size quantiles corresponding to ‘fast’, ‘medium’ and ‘slow’

released nascent RNA transcripts.

Splicing efficiency, SED and degree of post-transcriptional splicing

We measured intron splicing efficiency (SE or thita value) as in ref

by extracting the ratio of split to split plus
non-split reads overlapping 3’ splice sites of introns with at least one split and one non-spit read at the 3’ splice
site (n = 154,467 high-confidence introns). We measured alternative splicing as in ref”! by extracting the ratio
(psi value) of alternative split to constitutive split reads covering the high-confidence introns. We extracted co-
and post-transcriptional splicing efficiency dynamics (SED) as in ref”’, by subtracting the difference of splicing
efficiency at 20 min pulse-chase from the splicing efficiency at 0 min and normalizing this to the splicing
efficiency at 0 min [SED = (SE_20min + 0.001 — SE_Omin) / (SE_Omin + 0.001)]. We extracted the extent of
post-transcriptional splicing relative to co-transcriptional as the difference of chromatin-associated splicing

efficiency from the nucleoplasmic splicing efficiency, normalized to chromatin. This was done at intron and

transcript level (mean value of the transcript’s high-confidence introns).

Transcriptional indices (TSS-proximal pausing index and termination index)

We assessed transcriptional pausing index by extracting the ratio of strand-specific GRO-seq read coverage or
P-Ser2 Pol Il ChlP-seq density in the window 500 nt downstream of TSS to the gene body. Gene body was
defined as the middle 50% of the interval TSS+500 to TES, as in ref’. Transcription termination index was
measured as in in ref* by extracting the length-normalized ratio of strand-specific GRO-seq read coverage (or
Pol Il ChiP-seq read density) in the window 2.5 Kb downstream of TES to gene body. Travel index was
extracted as the ratio of read coverage in the interval [2.5 to 5 Kb] downstream of TES to the first 2.5 Kb

downstream of TES.
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Machine learning models

Logistic regression to predict fast versus slow-released nascent RNA transcripts was ran on standardized
parameters (R function stdize() of the package ‘pls’) using the R function gim() and ten-times cross-validation.
Linear regression to model chromatin-association halftime as a continuous value was ran on standardized
parameters using R function Im() and ten-times cross-validation. Random forest to predict fast versus slow-
released nascent RNA transcripts was ran with R function randomForest() and ten-times cross-validation,
setting number of trees 1000 (ntree = 1000) and dataset-specific best mtry parameter. Best mtry was found

using the function train() of the package ‘caret’ with a grid-search and ten-times cross-validation.

RBP predictions (build pysster models and prediction scan summary)

To train pysster models we used ENCODE available eCLIP data from HepG2 cell line for 100 RNA-binding
proteins (2 biological replicates). eCLIP peaks found in both biological replicates and with a log-fold enrichment
> 2 over the input control were selected (5' end of peaks are used as binding sites from now on). Pysster was
used to train a multi-class convolutional neural network (CNN) classifier. We trained one model for each RBP,
and each model was trained on 3 classes:

- class 1: sequences of length 400 centered at a binding site of the protein of interest

- class 2: randomly sampled sequences of length 400 from IncRNAs (IncRNA models) or mRNAs (mRNA
models) that contain at least one binding site of the protein of interest (sequences were sampled such that they
don't overlap with class 1 though)

- class 3: sequences of length 400 centered at randomly selected binding sites of all other proteins to reduce
the impact of eCLIP bias signal (no overlap with class 1 again)

In addition to the sequences itself, the CNNs also use the following additional data as input: (1) is sequence
position 200 located in an exon or intron? (zero/one encoded), (2) distance of sequence position 200 to the
TSS/TTS (normalized to the transcript length such that zero indicates overlap with the TTS and one overlap with
the TSS). For each model a hyperparameter grid search was performed: 3 convolutional layers, kernels of
length 12, 18 or 24 and 150 or 300 kernels per layer (all other pysster parameters were left at their defaults). A
trained RBP model could then be applied to a transcript of interest as follows: using a sliding window approach
(window size 400, step size 1) the score of belonging to class 1 was predicted for all bases of a transcript. All

predictions > 0.66 were selected and their median was computed.
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