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Abstract
The human ability to adaptively implement a wide variety of tasks is thought to emerge from the
dynamic transformation of cognitive information. We hypothesized that these transformations
are implemented via conjunctive activations in conjunction hubs – brain regions that selectively
integrate sensory, cognitive, and motor activations. We used recent advances in using functional
connectivity to map the flow of activity between brain regions to construct a task-performing
neural network model from fMRI data during a cognitive control task. We verified the importance
of conjunction hubs in cognitive computations by simulating neural activity flow over this
empirically-estimated functional connectivity model. These empirically-specified simulations
produced above-chance task performance (motor responses) by integrating sensory and task
rule activations in conjunction hubs. These findings reveal the role of conjunction hubs in
supporting flexible cognitive computations, while demonstrating the feasibility of using
empirically-estimated neural network models to gain insight into cognitive computations in the
human brain.
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Introduction
The human brain exhibits remarkable cognitive flexibility. This cognitive flexibility enables

humans to perform a wide variety of cognitive tasks, ranging from simple visual discrimination
and motor control tasks, to highly complex context-dependent tasks. Key to this cognitive
flexibility is the ability to use cognitive control, which involves goal-directed implementation of
task rules to specify cognitive and motor responses to stimuli1–3. Previous studies have
investigated how task-relevant sensory, motor, and rule features are represented in the brain,
finding that sensory stimulus features are represented in sensory cortices4,5, motor action
features are represented in motor cortices6, while task rule features are represented in
prefrontal and other association cortices3,7–10. However, these studies focused on where
cognitive representations are located in the brain, rather than how the brain uses and
transforms those representations11. For example, during context-dependent tasks, exactly how
the brain converts incoming sensory stimulus activity into motor activity remains unclear12. In
contrast, artificial neural network models (ANNs) can provide computationally rigorous accounts
of how context and stimuli input vectors interact to perform complex tasks13,14. Inspired by the
formalization of ANNs, we show how task rule and sensory stimulus activations are transformed
into motor response activations in the human brain via intrinsic functional connectivity (FC)
weights. We achieve this by constructing an empirically-estimated neural network (ENN) model
from fMRI data to provide insight into the neural transformations in the brain during a cognitive
control task.

The Flexible Hub theory provides a network account of how large-scale cognitive control
networks implement flexible cognition by updating task rule representations15,16. While the
Flexible Hub theory primarily focuses on the importance of flexible rule updating for complex
task performance, it does not specify how rules interact with incoming sensory stimulus activity.
However, the Flexible Hub theory was built upon the Guided Activation Theory of prefrontal
cortex – a seminal theory of the neural correlates underlying cognitive control – which posits
that successful performance of a cognitive control task requires the selective mixing of task
context with sensory stimulus activity3. The selective mixing of task context and sensory
stimulus activations would produce conjunctive activations that implement task rules on sensory
stimuli. Conjunctive activations refer to task-related activations that represent the conjunction
(binding) of multiple different task conditions, such as task rules and sensory stimuli9,12. For
example, an activation representing the conjunction of rule X and stimulus Y could be active
only when stimulus Y is presented with rule X, not when stimulus Y is presented without rule X.
These conjunctive activations are thought to form through inter-area guided activations in brain
areas hidden somewhere in association cortex, which we term conjunction hubs (Fig. 1a). The
outputs of conjunction hubs then generate motor activations to produce task-appropriate
behavior. Thus, by testing the hypothesis put forth in the Guided Activation Theory of interacting
rule- and stimulus-guided neural activations (i.e., conjunctions)3,17, we built upon the Flexible
Hub theory to provide insight into flexible task control.

We recently developed a method – activity flow mapping – that provides a framework for
testing the Guided Activation Theory with empirical brain data18. Activity flow mapping involves
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three steps. First, a network model is derived from empirically-estimated connectivity weights.
Second, empirical task activations (e.g., activity patterns from sensory regions) are used as
inputs to simulate the activity flow (i.e., propagating activity) within the brain network model.
Finally, the predictions generated by simulated activity flow are tested against independent
empirical brain activations for model validation. Here we used activity flow mapping to test
whether empirical task activations and FC could model transformations from sensory stimulus
activations to motor response activations during a context-dependent cognitive paradigm.

We sought a principled approach to identify brain areas that form the conjunctive
activations hypothesized to produce flexible behavior. Recent studies have successfully used
trained ANNs to identify cognitive representations during tasks13,14,19. Importantly, the
representations of ANNs have often converged with representations found in neural data20–22,
suggestive of the utility of ANNs in investigating task representations in the brain. Inspired by
these previous studies, we first constructed a simple ANN to investigate how conjunctive
representations formed from task context and stimulus input activations during a 64-context
cognitive paradigm. Using a simple ANN trained to perform the same task allowed us to identify
putative conjunctive representations within the ANN that integrated rule and stimulus
activations. This provided a blueprint to search for similar representations in our human brain
data. After identifying the representation of task context and stimulus conjunctions in the ANN,
we identified brain regions – conjunction hubs – with similar conjunctive representations in fMRI
data. The identification of brain regions selective for task rules, sensory stimuli, motor
responses, and conjunctions, made it possible to construct an ENN (which is derived from brain
data and distinct from the ANN) and empirically test the Guided Activation Theory with activity
flow mapping over data-derived functional connections. We found that behavioral activations (in
motor cortices) could be predicted through the formation of conjunctive activations through
activity flow guided by task rule and sensory stimulus activations.

To summarize, we provide an empirical demonstration of connectionist-style
computations in fMRI data during a 64-context cognitive paradigm. This was achieved by
constructing a task-performing ENN directly from fMRI data, empirically testing the plausibility of
connectionist-like computations conceptualized by the Guided Activation Theory. Importantly,
the original conceptualization of the Guided Activation Theory did not specify an exact
implementation in neural data. Thus, in this study we identify specific components of an ENN –
a brain-based connectionist model (e.g., brain regions and connectivity weights) – that were
critical for implementing context-dependent representational transformations, while also
revealing corresponding failure modes (e.g., alternative connectionist models that failed to
transform representations). This involved identifying the brain areas selective to different task
components, namely task rules, sensory stimuli, motor responses, and conjunctions. These
areas formed the spatial areas/layers of the ENN, which are conceptually similar to layers in an
ANN. Next, in contrast to ANNs, which typically use supervised learning to estimate connectivity
weights between layers, we show that activations in ENNs can be transformed via activity flow
over FC weights estimated from resting-state fMRI (Fig. 1d). This resulted in a task-performing
ENN model that transforms stimulus and task-rule fMRI activations into response activations in
motor cortex during a flexible cognitive control task. Critically, the transformations implemented
by the ENN were carried out without classic optimization approaches such as gradient learning,
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demonstrating that the intrinsic architecture of the resting brain is suitable for implementing
representational transformations. Together, these findings illustrate the computational relevance
of functional network organization and the importance of conjunctive representations in
supporting flexible cognitive computations in the human brain.

Figure 1. Leveraging the Guided Activation Theory to inspire ENN models of cognitive
computation during task-based fMRI. a) A modified version of the Guided Activation Theory of
prefrontal cortex, highlighting a potential key role for conjunction hubs. The Guided Activation Theory
posits that sensory cortices (left), which contain sensory stimulus-related activations, and prefrontal areas
(top), which contain task context/rule activations, integrate in association cortex to produce conjunctive
activations through patterns of guided activations. Conjunctive activations are then guided to motor areas
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to generate motor response activations for task behavior. b) The Guided Activation Theory can be
reconceptualized in a connectionist framework. This provides a formalization of how flexible sensorimotor
transformations may be implemented computationally. The formalization involves the task context and
sensory stimuli representing the input layer, the association units representing a hidden layer, and the
behavioral (motor) responses as the output layer. c) Testing the Guided Activation Theory using task fMRI
data collected in humans during context-dependent tasks. Using quantitative methods, we empirically test
how different task activations (e.g., sensory stimuli and task context) form conjunctive activations to
produce motor response activations using activity flow mapping18. d) The Guided Activation Theory can
be empirically tested by projecting task activation patterns between brain areas by estimating inter-area
FC weight mappings obtained from resting-state fMRI data. Based on the activity flow principle18, we
estimated inter-vertex mappings using regression (see Methods) on resting-state fMRI data. This
approach identifies a projection that maps across distinct spatial units (i.e., vertices) in empirical data,
similar to how inter-layer weights propagate activity across layers in an ANN.

Results

Identifying brain areas containing task-relevant activations
The Flexible Hub Theory posits that rapid updates to rule representations facilitate

flexible behavior15,16, while the Guided Activation Theory3 states that sensory stimulus and task
rule activations integrate in association cortex to form conjunctive activations (Fig. 1a,c). Thus,
due to its comprehensive assessment of rule-guided sensorimotor behavior across 64 task
contexts, we used the Concrete Permuted Rule Operations (C-PRO) task paradigm5 to test both
theories (Fig. 2a). Briefly, the C-PRO paradigm is a highly context-dependent cognitive control
task, with 12 distinct rules that span three rule domains (four rules per domain; logical gating,
sensory gating, motor selection). These rules were permuted within rule domains to generate 64
unique task contexts, and up to 16384 unique trial possibilities (with various stimulus pairings;
see Methods). We chose this cognitive paradigm largely due to its systematic use of
counterbalancing of task elements (stimuli, contexts, and responses) across trials, which
allowed us to rigorously separate the motor response activations from the sensory and context
cue activations (due to careful counterbalancing and averaging; Supplementary Fig. 9).
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Figure 2. The Concrete Permuted Rule Operations (C-PRO) task paradigm8. For a given trial,
subjects were presented with a task rule set (context), in which they were presented with three rules
sampled from three different rule domains (i.e., logical gating, sensory gating, and motor selection
domains). After a delay period, subjects applied the task rule set to two consecutively presented sensory
stimuli (simultaneous audio-visual stimuli) and responded accordingly with button presses (index and
middle fingers on either hand). We employed a miniblock design, in which for a given task rule set, three
stimulus periods were presented separated by an inter-trial interval (1570ms). See Methods for additional
details.

To test both the Flexible Hub and the Guided Activation theories, we needed to identify
the set of regions responsive to different task components (sensory stimuli, task context, motor
responses, and conjunctions). We first identified the set of cortical areas that contained
decodable sensory stimulus activations (Fig. 3a). Because our stimuli were multimodal
(audiovisual), this involved the identification of surface vertices that contained the relevant visual
(color and orientation) and auditory (pitch and continuity) dimensions. We performed a four-way
classification23 (using a minimum-distance/nearest-neighbor classifier24) to decode stimulus
pairs for each of the four stimulus dimensions (e.g., red-red vs. red-blue vs. blue-red vs.
blue-blue). Decoding analyses were performed within each brain parcel using the Glasser et al.
atlas25, using vertices within each parcel as decoding features. For all decoding analyses,
statistical thresholding was performed using a one-sided binomial test (greater than
chance=25%), and corrected for multiple comparisons using an FDR-corrected p<0.05
threshold. We collectively defined the units in the ENN (i.e., vertices) that contained sensory
stimulus activity to be the set of all vertices within the parcels that contained decodable stimulus
activity (Fig. 3b; Supplementary Tables 1-4).
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Figure 3. Identifying sensory stimulus input units (vertices) of the ENN using an fMRI decoding
analysis. a) We identified the sensory stimulus representations in empirical data using fMRI pattern
decoding of stimulus activations. This corresponded to the sensory input component of the Guided
Activation Theory. To decode visual features (i.e., color and orientation stimulus features) we decoded the
vertices within each parcel in the visual network using a recent functional network atlas26. To decode
auditory features (i.e., pitch and continuity) we decoded the vertices within each parcel in the auditory
network (see Methods). b) The ENN sensory units, which were derived from a mask of the vertices that
could successfully decode stimulus features (panels c-f). c) Decoding of color features using task
activation estimates (from a task GLM) during the stimulus presentation period of the C-PRO task.
Chance was 25%; cortical maps were thresholded using an FDR-corrected threshold of p<0.05. d) 4-way
decoding of orientation features. e) 4-way decoding of auditory pitch features. f) 4-way decoding of
auditory continuity features.

Next, we performed a 12-way decoding analysis – isolated to the fMRI activation during
the task encoding period – across all 12 task rules to identify the set of vertices that contained
task rule activity. Our previous study illustrated that rule representations are widely distributed
across cortex8, such that we tested for rule representations in every parcel in the Glasser et al.
atlas (360 total parcels25). In addition, another study in non-human primates found that sensory
areas also contain high-level task rule information, likely due to top-down feedback from
higher-order areas27. Consistent with these findings, we again found that task rule
representations were widely distributed across cortex (Fig. 4b; FDR-corrected p<0.05 threshold;
Supplementary Table 6). The set of vertices that survived statistical thresholding were included
as “task rule” input units in the ENN (Fig. 1c). Since rule representations were widely distributed
across cortex, we next quantified the contribution of each rule activation in predicting
conjunctive activations. We found that while both sensorimotor and association networks had
similarly high levels of activations during the task rule encoding period (Supplementary Fig.
2a,b), many of these activations were dampened by their FC to conjunctive areas. Activations
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that contributed most to conjunctive activations were primarily from the dorsal attention network
(Supplementary Fig. 2c,d). These results suggest that despite widespread task rule activations,
some regions (e.g., dorsal attention network) played a disproportionate role in task rule
implementation and the selection of conjunctions.

The C-PRO task paradigm required button presses (using index and middle fingers on
either hand) to indicate task responses. We were able to take advantage of well-established
knowledge of the localization of these finger representations in primary motor cortex28, rather
than conducting a large search for representation of the relevant information (e.g., as we did for
task rules). This had the advantage of putting the ENN to a more stringent test; requiring the
ENN to select representations of motor responses in the format known to directly cause the
processes of interest (i.e., increased neural activity in M1 finger representations causing motor
behavior). Thus, to isolate finger representations in empirical fMRI data, we performed a
univariate contrast of the vertex-wise response-evoked activation estimates during index and
middle finger response windows (see Methods). We performed univariate analyses rather than
multivariate decoding analyses for motor response identification since there were only two
conditions – index and middle finger responses – to distinguish and because (unlike the other
functional localizations) we knew the direction of amplitude change (increased activity)
throughout the localized motor representations. For each hand, we performed a two-sided
paired t-test (paired across subjects) for middle versus index finger responses in M1/S1 parcels.
Contrast maps were corrected for multiple comparisons (comparisons across vertices) using an
FDR-corrected threshold of p<0.05 (Fig. 4c). Vertices that survived statistical thresholding were
then selected for use as output units in the ENN (Fig. 1c).

Figure 4. Identifying ENN units (i.e., fMRI vertices) containing relevant task rule (context) and
motor response (behavior) representations. a) We identified the task rule input and motor output
representations in empirical data using MVPA and univariate task activation contrasts. b) A 12-way
decoding of each of the task rules (across the 3 rule domains) using task activations (estimated from a
task GLM) during the encoding period of the C-PRO task. We applied this 12-way decoding to every
parcel, given that task rule activations have been previously shown to be widely distributed across
cortex8. Chance decoding was 8.33%; statistical maps were thresholded using an FDR-corrected p<0.05
threshold. c) To identify the motor/output activations, we performed a univariate contrast, contrasting the
middle versus index finger response activations for each hand separately. Finger response activations
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were estimated during the response period, and univariate contrasts were performed on a vertex-wise
basis using all vertices within the somatomotor network26. Contrast maps were statistically thresholded
using an FDR-corrected p<0.05 threshold. The resulting finger activations matched the placement of
finger representations in the well-established somatomotor homunculus in the human brain.

Identifying conjunction hubs
We next sought to identify conjunctive representations that could plausibly implement the

transformation of input to output activations across the 64 task contexts (Fig. 5a). However, we
were uncertain as to what sorts of activation patterns (i.e., representations) we would expect in
putative conjunction hubs. Thus, we began by building an ANN that formalizes the Guided
Activation Theory (Fig. 1b). We trained the ANN model on an analogous version of the C-PRO
task until the model achieved 99.5% accuracy (see Methods). We were specifically interested in
characterizing the representations in the hidden layers, since these activations necessarily
integrated task rule and sensory stimulus activations (i.e., conjunctions). To identify the task rule
and sensory stimulus conjunctive representations, we performed a representational similarity
analysis (RSA) on the hidden layers of the ANN24. The representational similarity matrix (RSM)
of the hidden layers consisted of 28 task activation features: 12 task rules (which spanned the 3
rule domains), and 16 stimulus pairings (which spanned each sensory dimension). We then
compared the RSM of the ANN’s hidden units (Fig. 5b) to RSMs of each brain region in the
empirical fMRI data (Fig. 5c). This provided a map of brain regions with similar representations
to those of the ANN’s hidden units, which contain the conjunction of task rule and sensory
stimulus activations.

Figure 5. Identifying conjunction hubs: brain areas (vertices) that contain task-relevant
conjunctions of sensory stimulus and task rule activations. a) The Guided Activation Theory states
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that there exist a specific set of association (or hidden) areas that integrate sensory stimulus and task
context activations to select appropriate motor response activations. In an ANN where task rules and
sensory stimulus activations serve as inputs, the ANN’s hidden layers integrate rule and stimulus
activations providing a computational framework that is analogous to the role suggested for association
areas in the Guided Activation Theory. b) We therefore used the representational similarity matrix (RSM)
of the ANN’s hidden layers as a blueprint to identify analogous conjunctive activations in empirical data.
c) We constructed RSMs for each brain parcel (using the vertices within each parcel as features). We
evaluated the correspondence between the representational geometry of the ANN’s hidden layers and
each brain parcel’s representational geometry. Correspondence was assessed by taking the correlation of
the upper triangle of the ANN and empirical RSMs. d) The representational similarity of ANN hidden units
and each brain parcel. e) We showed the top 10 regions with highest similarity to the ANN hidden units. f)
The full ENN architecture for the C-PRO task. We identified the vertices that contained task-relevant rule,
sensory stimulus, conjunctive, and motor output activations.

To evaluate the similarity of the ANN’s hidden representational geometry with each brain
parcel, we computed the similarity (using Spearman’s correlation) of the ANN’s RSM with the
brain parcel’s RSM (Fig. 5c). This resulted in a cortical map, which showed the similarity
between each brain region and the ANN’s hidden representations (Fig. 5d). For our primary
analysis, we selected the top 10 parcels with highest similarity to the ANN’s hidden units to
represent the set of spatial units that contain putative conjunctive activations in the ENN (Fig.
5e). The conjunction hubs were strongly represented by the cingulo-opercular network, a
network previously reported to be involved in task set maintenance and a variety of other
cognitive control functions (Supplementary Fig. 3; Supplementary Table 5)29. However, other
association networks also had strong associations with the ANN’s hidden layer representations
(Supplementary Fig. 3b). We also performed ENN simulations using the top 20, 30, and 40
regions with highest similarity to the ANN hidden units (see text below). To ensure that the RSM
identified from the ANN was critical to perform the task, we further identified a control ANN’s
RSM, where we shuffled all parameters within each layer after training the model (see
Methods). We found that in addition to the model no longer performing the task correctly, the
model contained little representational structure (no representational dissimilarities across
conditions) (Supplementary Fig. 4). The control ANN’s hidden layer also had significantly
weaker similarity to the empirical RSMs at each parcel (Supplementary Fig. 4d).

Task-performing neural network simulations via empirical connectivity
The previous sections provided the groundwork for constructing an ENN model from

empirical data. After estimating the FC weights between the surface vertices between ENN
layers using resting-state fMRI (see Methods), we next sought to evaluate whether we could
use this ENN to produce representational transformations sufficient for performing the C-PRO
paradigm. This would demonstrate that the empirical input activations (task rule and sensory
stimulus activations) and the estimated connectivity patterns between ENN layers are sufficient
to approximate the cognitive computations involved in task performance.

The primary goal was to generate a motor response activation pattern (i.e., behavior)
that we could then compare to correct task performance. The only inputs to the model were a
combination of activation patterns for a specific task context (rule combination) and sensory
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stimulus pair sampled from empirical data (Fig. 6a), which we term “pseudo-trials”.
(“Pseudo-trials” refer to simulated trials using estimated activations rather than the actual
experimental trials subjects performed.) The outputs of the model were the predicted motor
response activation pattern in motor cortex that should correspond to the correct button press
(Fig. 6c). High correspondence between the predicted and actual motor activation patterns
would constitute an empirical identification of representational transformation in the brain, where
task rule and sensory stimulus activity is transformed into task-appropriate response activation
patterns in motor cortex.

Figure 6. Simulating context-dependent sensorimotor transformations with empirically-estimated
task activations and inter-unit FC estimates. We constructed the ENN by identifying the vertices that
contained task rule, sensory stimulus, and motor response activations and by estimating the resting-state
FC weights between them. a) The input layer, consisting of vertices with decodable task rule and sensory
stimulus activations. b) Through activity flow mapping, input activations were mapped onto surface
vertices in conjunction hubs. The activity flow-mapped vertices were passed through a nonlinearity, which
removed any negative values. This threshold was chosen given the difficulty in interpreting predicted
negative BOLD values. c) The predicted conjunctive activations were then activity flow-mapped onto the
motor output vertices, generating a predicted motor activation pattern. d) These predicted motor
activations were then tested against the actual motor response activations of other subjects using a
leave-8-subject out cross validation scheme. A decoder was trained on the predicted motor response
activations and tested on the actual motor response activations of the held-out cohort (see Methods and
Supplementary Fig. 1). e) An equation summarizing the ENN model’s computations.

Simulating activity flow in the ENN involved first extracting the task rule activation
patterns (inputs) for a randomly generated task context (see Methods and Supplementary Fig.
1). Independently, we sampled sensory stimulus activation patterns for each stimulus dimension
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(color, orientation, pitch, continuity) (Fig. 3). Then, using activity flow mapping with resting-state
FC weights, we projected the activation patterns from the input vertices onto the conjunction
hub vertices (Fig. 6b). Supplementary Fig. 2 provides a visualization of the contributing vertices
(via activity flow mapping) from the task rule layer onto the conjunction hubs, finding that despite
widespread task rule activations across most of cortex, the dorsal attention network plays a
disproportionate role in generating conjunctive activations (Supplementary Fig. 2d). The
predicted conjunction hub activation pattern was then passed through a simple rectified linear
function, which removed any negative values (i.e., any values lower than resting-state baseline;
see Methods). Thresholded values were then projected onto the output layer vertices in motor
cortex (Fig. 6c), yielding a predicted response activation pattern. The sequence of computations
performed to generate a predicted motor activation pattern (Fig. 6a-c) is encapsulated by the
equation in Fig. 6e. Thus, predicted motor activation patterns can be generated by randomly
sampling different task context and sensory stimuli activations for each subject.

While the above procedure yielded a predicted activation pattern in the motor output
layer, these predictions may not actually yield meaningful activation patterns. Thus, we
evaluated whether the model-generated motor activation patterns accurately predicted the
actual motor response activation patterns extracted (via GLM) during subjects’ response period.
Activity flow simulations using only input task activations from the task encoding period and
stimulus presentation period (Fig. 6a) generated predicted motor responses for each subject
(Supplementary Fig. 1). Using a leave-8-subjects out cross-validation scheme, we trained a
decoder on the four possible predicted motor responses and decoded the four possible actual
motor responses (Fig. 6c,d). Training a decoder on the predicted activations and decoding the
actual activations (rather than vice versa) made this analysis more in line with a prediction
perspective – we could test if, in the absence of any motor task activation, the ENN could
predict actual motor response activation patterns that correspond to correct behavior. We
averaged motor response patterns across pseudo-trials to yield four predicted motor response
activations per subject. This averaging eliminated the possibility of any remaining rule and
sensory information being present in the model-generated motor response patterns given that
pseudo-trials were perfectly counterbalanced across contexts, stimuli, and response.

We note that this decoding analysis is highly non-trivial, given that the predicted motor
responses (which are generated from task rule and stimulus activations) are tested against the
true motor responses of held-out subjects. By simulating neural network computations from
stimulus and task context activations to predict motor response, we accurately decoded the
correct finger response on each hand separately: decoding accuracy of right hand responses =
62.65%, non-parametric p=0.03; decoding accuracy of left hand responses = 77.58%,
non-parametric p<0.001. These results demonstrate that task rule and sensory stimulus
activations can be transformed into motor output activations by simulating multi-step neural
network computations using activity flow mapping on empirical fMRI data. In the following
sections, we illustrate that multiple control and lesion models severely impair model
performance, suggesting that the constructed model contained 1) no biases towards predicting
motor responses, and 2) provided the sufficient features to implement context-dependent
sensorimotor transformations.
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In addition, a good test of the non-triviality of the predicted motor responses would be to
ensure that motor responses cannot be linearly decoded from the input activations (task rule
and stimulus activations). Here, we establish that linear decoding of motor responses using
input activations fails under the current decoding scheme, given that predicted activations are
averaged across pseudo-trials for each motor response (see Methods). While specific task
context and stimulus combinations produce a motor response at the trial level, averaging across
completely counterbalanced inputs for each response leads to activations that are
mathematically identical. For example, both the left index and left middle finger motor responses
were averaged across red-red, red-blue, blue-red, and blue-blue stimulus events, yielding
identical activity patterns across those two motor responses for all regions representing visual
rather than motor information. (The same logic can be applied for all task rules.) This makes it
impossible for a linear decoder to learn mappings between inputs and responses when
averaging inputs, but possible for a linear decoder to learn mappings on the outputs. This is
because the outputs were generated via a nonlinear function (i.e., the ENN) applied at the trial
level and then averaged across trials for the decoder. We verified this empirically, finding that
the accuracy was at chance, since the decoder could not classify identical inputs.

We observed an overall difference in the ability to decode left versus right hand
sensorimotor transformations. However, this discrepancy was also observed when decoding
actual motor response activations (rather than predicted activations) during the response period,
suggesting this was an intrinsic property of the fMRI data we used (rather than the ENN) and/or
due to differences in the number of identified vertices associated with response on either hand
(Fig. 7h,i).

The importance of the conjunctive representations
We next evaluated whether specific components of the ENN model were necessary to

produce accurate stimulus-response transformations. We first sought to evaluate the role of the
conjunction hubs (hidden layer) in ENN performance. This involved re-running the ENN with the
conjunction hubs removed (Fig. 7c), which required resting-state FC weights to be re-estimated
between the input and motor output regions directly. We found that the removal of conjunction
hubs severely impaired task performance to chance accuracy (RH accuracy=48.98%, p=0.54;
LH accuracy=50.14%, p=0.45; Fig. 7h,i). This illustrated the importance of conjunction hub
computations in producing the conjunctive activations required to perform context-dependent
stimulus-response mappings15.
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Figure 7. Systematic alteration of ENN model architecture verifies validity of “full S-R model”
results. a) We first benchmarked the motor response decoding accuracy for each hand separately using
a standard cross-validation scheme on motor activation patterns for each hand (tested across subjects).
This standard motor decoding was done independently of modeling sensorimotor transformations. b) The
full stimulus-response model, taking stimulus and context input activations to predicting motor response
patterns in motor cortex. c) The ENN model after entirely removing the conjunction hubs. d) The ENN
model, where we randomly sampled regions in the hidden layer (conjunction hubs) 1000 times and
estimated task performance. e) The ENN model after removing the nonlinearity (ReLU) function in the
hidden layer. f) The ENN model after lesioning connections from the task context input activations. g) The
ENN model, where we shuffled the connectivity patterns from the stimulus and context layers 1000 times.
h) Benchmarking the performances of all model architectures. Accuracy distributions were obtained by
running 1000 iterations of the same cross-validation scheme (leave-4-out cross-validation scheme and
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randomly sampling within the training set; see Methods for clarification). For each iteration, we calculated
a p-value, and then averaged all p-values. Boxplot whiskers reflect the 95% confidence interval. Grey
distributions indicate the null distribution generated from permutation tests (permuting labels 1000 times).
(*** = p<0.001; ** = p<0.01; * = p<0.01) i) Summary statistics of model performances. Reported accuracy
is the mean across the distribution.

We next replaced conjunction hubs with randomly sampled parcels in empirical data.
This assessed the importance of using the ANN’s hidden layer RSM to identify conjunction hubs
in fMRI data (Fig. 7d). We sampled random parcels 1000 times, recomputing the vertex-wise FC
each time. The distribution of randomly selected conjunction hubs did not yield task
performance accuracies that were statistically different than chance for both hands (RH mean
accuracy=50.89%, p= 0.45; LH mean accuracy 50.85%, p=0.47; Fig. 7h,i). However, the overall
distribution had high variance, indicating that there may be other sets of conjunction hubs that
would yield above-chance (if not better) task performance. However, compared to the
conjunction hubs we identified by matching empirical brain representations with ANN
representations, we found that the ANN-matched conjunction hubs performed better than 83.3%
of all randomly selected conjunction hubs for RH responses, and greater than 96.4% of all
randomly selected conjunction hubs for LH responses.

In addition, we evaluated whether the precise number of hidden regions was critical to
task performance. We ran the full ENN model, but instead of using only the top 10 regions with
highest similarity to the ANN’s hidden layer’s representations, we constructed ENN variants
containing the top 20, 30, and 40 hidden regions. We found that we were able to reproduce
correct task performance using 20 hidden regions (RH accuracy=63.90%, p<0.001; LH
accuracy=76.95%, p<0.001). Using 30 hidden regions yielded reduced yet above-chance
accuracies for RH responses, but not for LH responses (RH accuracy=59.83%, p=0.024; LH
accuracy=43.54%, p=0.917). Inclusion of an additional 10 hidden regions (totaling 40 hidden
regions) did not yield above-chance predictions of motor responses for either hand. Inclusion of
additional intermediate conjunctive regions likely introduced additional noisy (or irrelevant)
activations that in turn degraded the final predicted motor output activations from which we
decoded. These results suggest that conjunction hubs were better identified the greater the
similarity of a region’s representational geometry was to that of the ANN’s hidden layer.

The importance of nonlinearities when combining rule and stimulus
activations

We next tested the impact of removing the rectified linear (ReLU) nonlinear functions in
the conjunction hubs. This is equivalent to removing nonlinearities in an ANN, which is
well-known to eliminate the ability of ANNs to implement conditional logic (e.g., the XOR logic
gate)17,30,31. Conditional logic was essential to all of the C-PRO task sets, since the motor
response must be chosen conditional on both the stimulus information and task rule information.
Consistent with the expected computational role of the ReLU nonlinearity, we found that the
removal of the ReLU function substantially impaired model performance (RH accuracy=50.72%,
p=0.44; LH=45.73%, p=0.75; Fig. 7h and 7i). This is due to the fact that context-dependent
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sensorimotor transformations require nonlinear mappings between stimuli and responses, as
predicted by the biased competition theory and validated by prior computational studies17,31,32. To
more rigorously assess the impact of the ReLU on the activity flow-predicted conjunctive region
representations, we compared the conjunctive representations of the full ENN model (ReLU
included), ReLU removed ENN model, and the actual fMRI activations of the conjunction
regions to the representations found in the ANN’s hidden layer. (Comparison of representations
was measured as the cosine similarity of the representational similarity matrices.) As expected,
we found that compared to the activity flow-predicted representations without the ReLU
(cosine=0.44), the full ENN with the ReLU had higher similarity to the ANN’s hidden layer
(cosine=0.60) (Supplementary Fig. 5). This suggested that the ReLU supports accurate
context-dependent sensorimotor transformations by producing internal conjunctive
representations that are consistent with the conjunctive representations found in the ANN.

Removing task context impairs task performance activity
We next sought to evaluate the importance of including task rule activations in model

performance. To remove context activity, we lesioned all connections from the ENN’s rule input
layer to the hidden layer. This was achieved by setting all resting-state FC connections from the
context input layer to 0 (Fig. 7f). As hypothesized, model performance was at chance without
task context activations (RH accuracy=50.00%, p=0.46; LH=50.00%, p=0.46; Fig. 7h,i). This
demonstrated that the model implemented a representational transformation from task context
and sensory stimulus activations to the correct motor response activations.

The influence of specific functional network topography
We next evaluated whether the empirically-estimated connectivity topography was

critical to successful task performance. This involved shuffling the connectivity weights within
the context and stimulus input layers 1000 times (Fig. 7g). While we hypothesized that the
specific resting-state FC topography would be critical to task performance, we found that
shuffling connectivity patterns yielded a very high variance distribution of task performance (Fig.
7h). As expected, the mean across all connectivity shuffles were approximately at chance for
both hands (RH mean accuracy=51.22%, p=0.44; LH mean accuracy=50.77%, p=0.47).
However, we found that there were some connectivity configurations that would significantly
improve task performance, and other connectivity configurations that would yield significant
below chance task performance. Notably, the FC topography that was estimated from
resting-state fMRI (the full S-R model, without shuffling; Fig. 7b) performed greater than 86.4%
of all connectivity reconfigurations in RH responses, and greater than 97.0% of all connectivity
reconfigurations for LH responses. This indicates that, among all possible connectivity patterns,
the weights derived from resting-state fMRI stood out as especially effective at producing correct
task performance.
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Discussion
Determining how the human brain transforms incoming stimuli into accurate task

behavior would fill a critical gap in understanding how the brain implements cognitive
processes11,33,34. To address this gap, we built a task-performing ENN from empirical data to
identify the brain network mechanisms associated with representational transformations during
a complex cognitive control task. This ENN was based on the conceptual frameworks provided
by the Guided Activation and Flexible Hub theories, yet a lack of specificity regarding the
functional equivalents of hypothesized components (e.g., the context and hidden layers)
required us to perform additional theoretical and empirical work to find those equivalents. First,
we identified brain vertices that were selective for task rules, sensory stimuli, motor responses,
and conjunctions to be included as candidate areas to test the theories. Second, we mapped
resting-state FC weights between these areas using multiple linear regression. Finally, using
activity flow mapping, we found that incoming sensory and task rule activations were
transformed via conjunction hubs to produce above-chance behavioral predictions of outgoing
motor response activations. Thus, we not only identified where in the brain different task-related
activations could be identified, but also how these task activations are transformed into
behaviorally relevant motor activations through network computations supported by the brain’s
intrinsic network organization.

Collectively, these findings suggest that flexible cognitive control is implemented by
guided activations, as originally suggested by the Guided Activation Theory3. However, to more
fully test this theory than prior work we had to substantially expand it, such as identifying the
functional equivalents of hypothesized components in the human brain. Some of these
components were not located where originally hypothesized. For instance, rather than context
representations being confined to lateral prefrontal cortex, we found such representations
distributed throughout the brain, with especially strong representation in the dorsal attention
network (only a portion of which is in lateral prefrontal cortex). Similarly, the theory predicted the
hidden layer (conjunction hubs) to be in non-prefrontal association cortex, yet we found some
conjunction hubs in lateral prefrontal cortex and associated cognitive control networks (CCNs).
Thus, we have empirically confirmed the broader Guided Activation Theory while expanding and
refining it.

The present results build on the Flexible Hub theory and other findings emphasizing the
role of CCNs in highly flexible cognition1,29,35,36. Previous work on the Flexible Hub theory
focused on characterizing rapid updates to task rule representations, finding that CCNs
represent rules compositionally in both activity7,10,36 and FC15,16 patterns. The present results
build on those earlier findings, demonstrating that CCNs and other networks flexibly compose
rule representations, since the ENN rule activation inputs contained three rules whose fMRI
activity patterns were added compositionally to create the full task context. Critically, however,
we found that these compositional codes were not enough to implement flexible task
performance. Rather, conjunctive representations that conjoin rule and stimulus
representations9,12 were required to interact nonlinearly with these compositional
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representations. Interestingly, Kikumoto and Mayr recently demonstrated that conjunctive
representations are critical to controlling motor responses, finding that the strength of
conjunctive representations was associated with the success of motor responses37. Our results
are consistent with those findings, showing that without conjunctive representations producing
conditional interactions (i.e., through conjunction hub lesioning), the task performance of the
ENN was substantially impaired. However, our results also differ from that study, since the
conjunctive representations we identified were not simply multiplicative interactions between
context and stimuli activations. Instead, our conjunctive representations are consistent with the
biased competition theory of attention, where additive computations were passed through a
nonlinearity32. It will be important for future work to distinguish the content of these two types of
stimulus and rule conjunctions, and whether the representational content of conjunctions
simultaneously contain both stimulus and rule content, or if instead rule and stimulus
conjunctions collapse into contingency states for action selection as previously reported in
computational models38. Nevertheless, these findings provide evidence to fill an important gap
within the Flexible Hub framework, suggesting that the flexibility of rule updates are useful
insofar as they can be integrated to form conjunctions with stimulus activity.

The ENN characterized the representational transformations required for task input
activations to generate accurate output activations (in motor cortex) directly from data. Model
parameters, such as unit identification and inter-unit connectivity estimation, were estimated
without optimizing for task performance. This contrasts with mainstream machine learning
techniques that iteratively train ANNs that directly optimize for behavior13,19,20,39,40. Our approach
enabled the construction of functioning ENNs with above-chance task performance without
optimizing for behavior; instead, we were able to derive parameters from empirical neural data
alone. Theoretically, the results presented here are consistent with the goals of the Dynamic
Causal Modeling (DCM) framework, which aim to identify the latent variables underlying
input-output state transformations during tasks41,42. However, in contrast to DCM, the present
study 1) uses intrinsic rest FC to 2) build predictive models of task-evoked activity patterns
coding for motor responses, which are then 3) tested against empirical activity patterns and
task-appropriate behavior to assess model validity. These results suggest that the human
brain’s intrinsic network architecture, as estimated with human fMRI data, is informative
regarding the design of task-performing functioning models of cognitive computation.

We showed that the specific FC topography could predict inter-area transformations of
fMRI activations. In contrast, shuffling these specific inter-area FC topographies yielded ENNs
with highly variable task performances, suggesting the computational utility of the
empirically-estimated FC patterns. Previous work has illustrated that the functional network
architecture of the brain emerges from a structural backbone43–48. Building on this work, we
recently proposed that the functional network architecture of the brain can be used to build
network coding models – models of brain function that describe the encoding and decoding of
task-relevant brain activity constrained by connectivity49. Related proposals have also been put
forward in the electron microscopy connectomics literature, suggesting that structural wiring
diagrams of the brain can inform functional models of biological systems (e.g., the drosophila’s
visual system or the human brain’s intrinsic memory capacity)47,50,51. In addition, work in
mean-field network models have revealed a direct link between connectivity and computations,
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finding that low-dimensional connectivity patterns (which also exist in fMRI data52) are useful for
performing tasks53. Consistent with these proposals, our findings establish the feasibility of
leveraging intrinsic FC to model representational transformations from sensory stimuli to motor
responses during context-dependent tasks.

Despite the present study providing strong evidence that the estimated functional
network model can perform tasks, several theoretical and methodological limitations remain.
First, though we perform numerous control analyses by either lesioning or altering the ENN
architecture (Fig. 7), the space of alternative possible models that can potentially achieve similar
(if not better) task performances is large. For example, here we included only a single hidden
layer (one layer of ‘conjunction hubs’). However, it is possible – if not probable – that such
transformations actually involve a large sequence of transformations, similar to how the ventral
visual stream transforms visual input into object codes, from V1 to inferior temporal cortex20,21.
Furthermore, recent work has suggested that conjunctive representations emerge at very fast
timescales relative to the BOLD signal9,12. However, the present study only focused on
predicting conjunctive representations (using task context and stimulus activations as inputs to
the ENN) in putative conjunction hubs (which did not require explicit estimation of conjunctions,
but instead the representational relations between task context and stimulus activations). It is
therefore likely that the identification of conjunctive representations is dependent on both
specific task demands and the targeted level of analysis (e.g., neuronal circuits versus
large-scale functional networks). Here we opted for the simplest possible network model that
involved conjunction hubs at the level of large-scale functional networks. Starting from this
simple model allowed us to reduce potential extraneous assumptions and model complexity
(such as modeling the extraction of stimulus features from early visual areas and instead
identifying late-stage sensory features, or cortical-subcortical interactions for action
selection54,55), which likely would have been necessary in more complex and detailed models.
However, the current findings provide a strong foundation for future studies to unpack the
mechanisms of finer-grained computations important for adaptive behavior.

Another assumption in the ENN was that activations were guided by additive connectivity
weights. Additive connectivity weights assume inter-area predicted activations are the sum of
source activations weighted by connections. One potential alternative (among others) would
have been multiplicative guided activations; weighted activations that are multiplied (rather than
summed) from incoming areas, which has been previously proposed as a potential alternative to
designing ANNs56. However, several recent studies have suggested that inter-area activations
are predicted via additive connectivity weights in both human fMRI8,18, the primate visual
system22, and the drosophila’s visual system47, suggesting that using additive connectivity
weights is an appropriate model for how the brain implements computations. Nevertheless, it will
be important for future work to directly adjudicate between potential alternatives (like
multiplicative connectivity weights) in neural implementations of cognitive processes.

Finally, another limitation is that we constructed the ENN model without recurrent
interactions, which are known to play a large role in neural computation57,58. However, we still
successfully captured some temporal dynamics, since activations from different task features
(rule encoding and stimuli) were estimated from distinct temporal windows. We also note that
though we estimate task encoding activity from the encoding period only, we modeled the result
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of persistent (potentially recurrent) activity in rule-representing regions by holding encoding
activity in those regions constant across the delay period to the stimulus period. Nevertheless,
though temporal dynamics (with recurrent feedback) likely play a role in shaping cognitive
computations, we illustrate here that simple dynamics (i.e., rules + sensory inputs → conjunction
hubs → motor outputs) involving the interplay of static activation patterns are sufficient to model
representational transformations. We also tested the modeled cognitive transformations at the
group level, limiting our ability to link individual task performance with individualized ENNs.
However, our findings still significantly advance current understanding of how the brain
transforms task context and stimulus activations into motor activations for behavior through
computations implemented by intrinsic FC organization. Nevertheless, it will be important for
future studies to construct individualized task-performing brain models that can simulate
temporal and recurrent dynamics constrained by empirical data, as this can provide a more
detailed computational account of the representational transformations that contribute to
individual behavioral variability.

In conclusion, we constructed an ENN model from brain connectivity data that was
capable of performing a complex cognitive control task. The model’s overall architecture was
consistent with the prominent Guided Activation Theory, effectively validating the general form of
that theory while substantially expanding it by revealing where and how its abstract functional
components are implemented in the human brain. More broadly, this study illustrates an
alternative perspective to the standard approach of using learning algorithms to train neural
networks to perform tasks. Instead, brain data can be converted into generative neural network
models that perform tasks, revealing how the brain generates that task performance. We expect
that these findings will drive new investigations into the neural implementation of cognitive
computations, providing dual insight into how the brain implements cognitive processes and
how such knowledge can inform the design of ANN architectures.

Methods

Participants
Data were collected from 106 human participants across two different sessions (a

behavioral and an imaging session). Participants were recruited from the Rutgers
University-Newark community and neighboring communities. Technical error during MRI
acquisition resulted in removing six participants from the study. Four additional participants were
removed from the study because they did not complete the behavior-only session. fMRI analysis
was performed on the remaining 96 participants (54 females). All participants gave informed
consent according to the protocol approved by the Rutgers University Institutional Review
Board. The average age of the participants that were included for analysis was 22.06, with a
standard deviation of 3.84. Additional details regarding this participant cohort have been
previously reported59.
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C-PRO task paradigm
We used the Concrete Permuted Operations (C-PRO) paradigm (Fig. 2a) during fMRI

acquisition, and used a computationally analogous task when training our ANN model. The
details of this task are described below, and are adapted from a previous study8.

The C-PRO paradigm is a modified version of the original PRO paradigm introduced in
Cole et al., (2010)60. Briefly, the C-PRO cognitive paradigm permutes specific task rules from
three different rule domains (logical decision, sensory semantic, and motor response) to
generate dozens of novel and unique task contexts. This creates a context-rich dataset in the
task configuration domain akin in some ways to movies and other condition-rich datasets used
to investigate visual and auditory domains5. The primary modification of the C-PRO paradigm
from the PRO paradigm was to use concrete, sensory (simultaneously presented visual and
auditory) stimuli, as opposed to the abstract, linguistic stimuli in the original paradigm. Visual
stimuli included either horizontally or vertically oriented bars with either blue or red coloring.
Simultaneously presented auditory stimuli included continuous (constant) or non-continuous
(non-constant, i.e., “beeping”) tones presented at high (3000Hz) or low (300Hz) frequencies.
Fig. 2a demonstrates two example task-rule sets for “Task 1” and “Task 64”. The paradigm was
presented using E-Prime software version 2.0.10.35361.

Each rule domain (logic, sensory, and motor) consisted of four specific rules, while each
task context was a combination of one rule from each rule domain. A total of 64 unique task
contexts (4 logic rules x 4 sensory rules x 4 motor rules) were possible, and each unique task
set was presented twice for a total of 128 task miniblocks. Identical task sets were not
presented in consecutive blocks. Each task miniblock included three trials, each consisting of
two sequentially presented instances of simultaneous audiovisual stimuli. A task block began
with a 3925 ms encoding screen (5 TRs), followed by a jittered delay ranging from 1570 ms to
6280 ms (2 – 8 TRs; randomly selected). Following the jittered delay, three trials were presented
for 2355 ms (3 TRs), each with an inter-trial interval of 1570 ms (2 TRs). A second jittered delay
followed the third trial, lasting 7850 ms to 12560 ms (10-16 TRs; randomly selected). A task
block lasted a total of 28260 ms (36 TRs). Subjects were trained on four of the 64 task contexts
for 30 minutes prior to the fMRI session. The four practiced rule sets were selected such that all
12 rules were equally practiced. There were 16 such groups of four task sets possible, and the
task sets chosen to be practiced were counterbalanced across subjects. Subjects’ mean
performance across all trials performed in the scanner was 84% (median=86%) with a standard
deviation of 9% (min=51%; max=96%). All subjects performed statistically above chance (25%).

fMRI acquisition and preprocessing
The following fMRI acquisition details is taken from a previous study that used the

identical protocol (and a subset of the data)8.
Data were collected at the Rutgers University Brain Imaging Center (RUBIC).

Whole-brain multiband echo-planar imaging (EPI) acquisitions were collected with a 32-channel
head coil on a 3T Siemens Trio MRI scanner with TR=785 ms, TE=34.8 ms, flip angle=55°,
Bandwidth 1924/Hz/Px, in-plane FoV read=208 mm, 72 slices, 2.0 mm isotropic voxels, with a
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multiband acceleration factor of 8. Whole-brain high-resolution T1-weighted and T2-weighted
anatomical scans were also collected with 0.8 mm isotropic voxels. Spin echo field maps were
collected in both the anterior to posterior direction and the posterior to anterior direction in
accordance with the Human Connectome Project preprocessing pipeline62. A resting-state scan
was collected for 14 minutes (1070 TRs), prior to the task scans. Eight task scans were
subsequently collected, each spanning 7 minutes and 36 seconds (581 TRs). Each of the eight
task runs (in addition to all other MRI data) were collected consecutively with short breaks in
between (subjects did not leave the scanner).

fMRI Preprocessing
The following details are adapted from a previous study that used the same

preprocessing scheme on a different data set63.
Resting-state and task-state fMRI data were minimally preprocessed using the publicly

available Human Connectome Project minimal preprocessing pipeline version 3.5.0. This
pipeline included anatomical reconstruction and segmentation, EPI reconstruction,
segmentation, spatial normalization to standard template, intensity normalization, and motion
correction64. After minimal preprocessing, additional custom preprocessing was conducted on
CIFTI 64k grayordinate standard space for vertex-wise analyses using a surface based atlas25.
This included removal of the first five frames of each run, de-meaning and de-trending the time
series, and performing nuisance regression on the minimally preprocessed data64. We removed
motion parameters and physiological noise during nuisance regression. This included six motion
parameters, their derivatives, and the quadratics of those parameters (24 motion regressors in
total). We applied aCompCor on the physiological time series extracted from the white matter
and ventricle voxels (5 components each extracted volumetrically)65. We additionally included
the derivatives of each component time series, and the quadratics of the original and derivative
time series (40 physiological noise regressors in total). This combination of motion and
physiological noise regressors totaled 64 nuisance parameters, and is a variant of previously
benchmarked nuisance regression models64.

fMRI task activation estimation
We performed a standard task GLM analysis on fMRI task data to estimate task-evoked

activations from different conditions. Task GLMs were fit for each subject separately, but using
the fully concatenated task data set (concatenated across 8 runs). We obtained regressors for
each task rule (during the encoding period), each stimulus pair combination (during stimulus
presentation), and each motor response (during button presses). For task rules, we obtained 12
regressors that were fit during the encoding period, which lasted 3925ms (5 TRs). For logic
rules, we obtained regressors for “both”, “not both”, “either”, and “neither” rules. For sensory
rules, we obtained regressors for “red”, “vertical”, “high”, and “constant” rules. For motor rules,
we obtained regressors for “left middle”, “left index”, “right middle”, and “right index” rules. Note
that a given encoding period contained overlapping regressors from each of the logic, sensory,
and motor rule domains. However, the regressors were not collinear since specific rule
instances were counterbalanced across all encoding blocks.
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To obtain activations for sensory stimuli, we fit regressors for each stimulus pair. For
example, for the color dimensions of a stimulus, we fit separate regressors for the presentation
of red-red, red-blue, blue-red, and blue-blue stimulus pairs. This was done (rather than fitting
regressors for just red or blue) due to the inability to temporally separate individual stimuli with
fMRI’s low sampling rate. Thus, there were 16 stimulus regressors (four conditions for each
stimulus dimension: color, orientation, pitch, continuity). Stimulus pairs were presented after a
delay period, and lasted 2355ms (3 TRs). Note that a given stimulus presentation period
contained overlapping regressors from four different conditions, one from each stimulus
dimension. However, the stimulus regressors were not collinear since stimulus pairings were
counterbalanced across all stimulus presentation periods (e.g., red-red stimuli were not
exclusively presented with vertical-vertical stimuli).

Finally, to obtain activations for motor responses (finger button presses), we fit a
regressor for each motor response. There were four regressors for motor responses, one for
each finger (i.e., left middle, left index, right middle, right index fingers). Responses overlapped
with the stimulus period, so we fit regressors for each button press during the 2355ms (3 TR)
window during stimulus presentations. Note, however, that while response regressors
overlapped with stimulus regressors, estimated response activations were independent from
stimulus activations. There were two reasons for this: 1) Motor response and stimulus
regressors were equally independent from each other due to counterbalancing across
conditions (e.g., the same stimulus elicited all other motor responses equally; see
Supplementary Fig. 9); 2) Motor response and stimulus activations were estimated in the same
task GLM model (multiple linear regression, across the counterbalanced conditions), such that
activations associated with each condition contained unique variance. (This is because multiple
linear regression conditions on all other regressors.) A strong validation of this approach was
that the finger activations could be reliably extracted according to the appropriate topographic
organization in somatomotor cortex (Fig. 4c).

For a schematic of how task GLMs were performed, see Supplementary Fig. 8. For the
task design matrix of an example subject, see Supplementary Fig. 9.

fMRI decoding: Identifying sensory stimulus activations
Decoding analyses were performed to identify the brain areas that contained relevant

task context and sensory stimulus activations. To identify the brain areas that contained relevant
sensory stimulus representation, we performed four, four-way decoding analyses on each
stimulus dimension: color (vision), orientation (vision), pitch (audition), constant (audition). For
color stimulus representations, we decoded activation patterns where the stimulus pairs were
red-red, red-blue, blue-red, and blue-blue. For orientation stimulus representations, we decoded
activation patterns where the stimulus pairs were vertical-vertical, vertical-horizontal,
horizontal-vertical, horizontal-horizontal. For pitch stimulus representations, we decoded
activation patterns where the stimulus pairs were high-high, high-low, low-high, and low-low.
Finally, for constant (beeping) stimulus representations, we decoded activation patterns where
the stimulus pairs were constant-constant, constant-beeping, beeping-constant,
beeping-beeping.
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Decoding analyses were performed using the vertices within each parcel as decoding
features. We limited decoding to visual network parcels for decoding visual stimulus features,
and auditory network parcels for decoding auditory stimulus features. Visual parcels were
defined as the VIS1 and VIS2 networks in Ji et al. (2019)26, and auditory networks as the AUD
network. We performed a group-level decoding analysis with a 12-fold cross-validation scheme.
We used a minimum-distance/nearest-neighbor classifier (based on Pearson’s correlation
score), where a test set sample would be classified as the condition whose centroid is closest to
in the activation pattern space24. P-values were calculated using a binomial test. Statistical
significance was assessed using a false discovery rate (FDR) corrected threshold of p<0.05
across all 360 regions. To ensure robustness of all fMRI decoding analyses, we additionally
performed logistic classifications (linear decoding) to compare with minimum-distance-based
classifiers. (See also refs66,67 for comparing distance versus linear-based similarity measures.) In
general, there were no differences between the two decoding schemes, although in one
instance (task-rule decoding), minimum-distance classifiers significantly outperformed logistic
classification (Supplementary Fig. 7)

fMRI decoding: Identifying task rule activations
To identify the brain areas that contained task rule activations, we performed a 12-way

decoding analysis on the activation patterns for each of the 12 task rules. We used the same
decoding and cross-validation scheme as above (for identifying sensory stimulus
representations). However, we ran the decoding analyses on all 360 parcels, given previous
evidence that task rule activity is widely distributed across cortex8. P-values were calculated
using a binomial test. Statistical significance was assessed using an FDR-corrected threshold of
p<0.05 across all 360 regions.

fMRI activation analysis: Identifying motor response activations
To identify the brain areas/vertices that contained motor response activity, we performed

univariate analyses to identify the finger press activations in motor cortex. In contrast to
identifying other task components via decoding analyses (e.g., rules and stimuli), we were able
to use simpler univariate methods (i.e., t-tests) to identify motor response vertices. This was
because the identification of index versus middle finger response vertices did not require a
multi-way decoding analysis (unlike stimulus and rule conditions, which had 4 and 12
conditions, respectively). Instead, motor response identification only required identifying
vertex-wise receptive field activations corresponding to each finger (suitable for a 2-way
univariate test). This provided a more constrained and biologically interpretable receptive field
for each response activation, rather than including the entire primary cortex.

We performed two univariate activation contrasts, identifying index and middle finger
activations on each hand. For each hand, we performed a two-sided group paired (by subject)
t-test contrasting index versus middle finger activations. We constrained our analyses to include
only vertices in the somatomotor network. Statistical significance was assessed using an
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FDR-corrected p<0.05 threshold, resulting in a set of vertices that were selective to button press
representations in motor cortex (see Fig. 4c).

We subsequently performed a cross-validated decoding analysis on vertices within the
motor cortex to establish a baseline noise ceiling of motor response decodability (see Fig. 7a,h).
We decoded finger presses on each hand separately. To identify specific vertices for selective
response conditions, we performed feature selection on each cross-validation loop separately to
avoid circularity. Feature selection criteria (within each cross-validation loop) were vertices that
survived a p<0.05 threshold (using a paired t-test). We performed a 4-fold cross validation
scheme using a minimum-distance classifier, bootstrapping training samples for each fold.
Moreover, because the decoding analysis was limited to a single ROI (as opposed to across
many parcels/ROIs), we were able to compute confidence intervals (by performing multiple
cross-validation folds) and run nonparametric permutation tests since it was computationally
tractable. We ran each cross-validation scheme 1000 times to generate confidence intervals.
Null distributions were computed by randomly permuting labels 1000 times. P-values were
computed by comparing the null distribution against each of the bootstrapped accuracy values,
then averaging across p-values.

Identifying conjunctive representations: ANN construction
We trained a simple feedforward ANN (with layers organized according to the Guided

Activation Theory) on a computationally analogous form of the C-PRO task. This enabled us to
investigate how task rule and stimulus activations conjoin into conjunctive activations in an
ANN’s hidden layer.

To model the task context input layer, we designated an input unit for each task rule
across all rule domains. Thus, we had 12 units in the task context layer. A specific task context
(or rule set) would selectively activate three of the 12 units; one logic rule, one sensory rule, and
one motor rule. Input activations were either 0 or 1, indicating an active or inactive state.

To model the stimulus input layer, we designated an input unit for a stimulus pair for each
sensory dimension. To isolate visual color stimulus pairings, we designated input units for a
red-red pairing, red-blue pairing, blue-red pairing, and blue-blue pairing. (Note that each unit
represented a stimulus pair because the ANN had no temporal dynamics to present consecutive
stimuli.) To isolate visual orientation stimulus pairings, we designated inputs for a
vertical-vertical, vertical-horizontal, horizontal-vertical, and horizontal-horizontal stimulus pairing.
To isolate auditory pitch stimulus pairings, we designated input units for high-high, high-low,
low-high, and low-low frequency combinations. Finally, to isolate auditory continuity stimulus
pairings (i.e., whether an auditory tone was constant or beeping), we designated input units for
constant-constant, constant-beeping, beeping-constant, and beeping-beeping. Altogether,
across the four sensory domains, we obtained 16 different sensory stimulus pair input units. For
a given trial, four units would be activated to simulate a sensory stimulus combination (one unit
per sensory domain). For example, a single trial might observe red-red (color),
vertical-horizontal (orientation), low-high (pitch), constant-beeping (continuity) stimulus
combination. Thus, to simulate an entire trial including both context and sensory stimuli, 7/28
possible input units would be activated.
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We constructed our ANN with two hidden layers containing 1280 units each. This choice
was due to recent counterintuitive evidence suggesting that the learning dynamics of extremely
high-dimensional ANNs (i.e., those with many network parameters to tune) naturally protect
against overfitting, supporting generalized solutions68. Moreover, we found that across many
initializations, the representational geometry identified in the ANN’s hidden layer was highly
replicable. Finally, our output layer contained four units, one for each motor response
(corresponding to left middle, left index, right middle, right index finger presses).

The ANN transformed a 28-element input vector (representing a specific trial instance)
into a 4-element response vector, and obeyed the equation

(1)𝑌 = 𝑓
𝑠
(𝑋

ℎ𝑖𝑑𝑑𝑒𝑛2
𝑊

𝑜𝑢𝑡
+ 𝑏)

where corresponds to the 4-element response vector, is a sigmoid function, corresponds𝑌 𝑓
𝑠

𝑊
𝑜𝑢𝑡

to the connectivity weight matrix between the hidden and output layer, is a bias term, and𝑏
is the activity vector of the 2nd hidden layer. was obtained by the equation𝑋

ℎ𝑖𝑑𝑑𝑒𝑛2
𝑋

ℎ𝑖𝑑𝑑𝑒𝑛2
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ℎ𝑖𝑑𝑑𝑒𝑛2
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𝑟
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ℎ𝑖𝑑𝑑𝑒𝑛
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(3)𝑋
ℎ𝑖𝑑𝑑𝑒𝑛1
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𝑟
((𝑋

𝑖𝑛𝑝𝑢𝑡
)𝑊

𝑖𝑛𝑝𝑢𝑡
+ 𝑏)

Where is a rectified linear function (ReLU), is the connectivity matrix between the𝑓
𝑟

𝑊
ℎ𝑖𝑑𝑑𝑒𝑛

hidden layers, corresponds to the 1st hidden layer activations that contain trial𝑋
ℎ𝑖𝑑𝑑𝑒𝑛1

information, is the input layer, is the connectivity matrix between the input and 1st𝑋
𝑖𝑛𝑝𝑢𝑡

𝑊
𝑖𝑛𝑝𝑢𝑡

hidden layer, and is a noise vector sampled from a normal distribution with 0-mean and𝐼 1
𝑛

-variance, where refers to the number of hidden units.𝑛

Identifying conjunctive representations: ANN training
The ANN was trained by minimizing the mean squared error between the network’s

outputs and the correct target output. The mean squared error was computed using a
mini-batch approach, where each mini-batch consisted of 192 distinct trials. (Each of the 64
unique task contexts were presented three times (with randomly sampled stimuli) in each
mini-batch. Training was optimized using Adam, a variant of stochastic gradient descent69. We
used the default parameters in PyTorch (version 1.0.1), with a learning rate of 0.0001. Training
was stopped when the last 1000 mini-batches achieved over 99.5% average accuracy on the
task. This performance was achieved after roughly 10,000 mini-batches (or 1,920,000 trials).
Weights and biases were initialized with a uniform distribution , where ,𝑈(− 𝑘, 𝑘) 𝑘 = 1

𝑡𝑎𝑟𝑔𝑒𝑡𝑠

where ‘targets’ represents the number of units in the next layer. We note that the
representational geometry we observed in the hidden layer was robust to different initializations
and hyperparameter choices, indicating strong test-retest reliability of learned hidden layer
representations (Supplementary Fig. 6). For example, the ANN’s hidden layer RSM was also
consistent across different ANN instantiations with different hidden layer sizes (Supplementary
Fig. 6). We also ran an additional null model in which we randomly shuffled trial labels during
training, arbitrarily remapping rule- and stimulus-response mappings. We found that with the
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ANN architecture and parameters, the ANN could not learn the task with shuffled labels since
the hierarchical reasoning structure of the C-PRO task was destroyed with shuffling. This
suggested that the unshuffled ANN we used did not learn the C-PRO task with a memorization
strategy.

We note that the ANN is entirely distinct from the ENN, and that only the ANN used
gradient descent for training. The sole purpose of the ANN was to identify conjunctive
representations in the ANN’s hidden layer, which was in turn used to identify conjunctive
representations in empirical data (through matching the representational similarity matrices of
the ANN and empirical data described below).

Identifying conjunctive representations: ANN representational analysis
We extracted the representational geometry of the ANN’s 2nd hidden layer using

representational similarity analysis (RSA)70. This was done to understand how task rule and
stimulus activations were transformed in the hidden layer. To extract the representational
geometry of the hidden layer, we systematically activated a single unit in the input layer (which
corresponded to either a task rule or sensory stimulus pair), and estimated the corresponding
hidden layer activations (using trained connectivity weights). This resulted in a total of 28 (12
task rules and 16 sensory stimuli combinations) activation patterns. The representational
similarity matrix (RSM) was obtained by computing the Pearson correlation between the hidden
layer activation patterns for all 28 conditions.

Identification of the control ANN’s hidden layer RSM (Supplementary Fig. 4b) was
obtained by randomly shuffling all weights and biases (within each layer) after training. This
preserved the distribution of the weights and biases of the trained ANN, while impairing the
ANN’s ability to properly perform the task. Shuffling was performed 10,000 times, and the null
RSM was obtained by averaging the RSMs across permutations.

Identifying conjunctive representations: fMRI analysis
We compared the representational geometry of the ANN’s hidden layer to the

representational geometry of each brain parcel. This was possible because we extracted the
exact same set of activation patterns (e.g., activations for task rules and sensory stimuli) in
empirical data as our ANN model, enabling a direct comparison of representations. The
representational geometry was estimated as the representational similarity matrix (RSM) of all
task rules and sensory stimuli conditions.

We first estimated the empirical RSMs for every brain parcel separately in the Glasser et
al. (2016) atlas. This was done by comparing the activation patterns of each of the 28 task
conditions using the vertices within each parcel (12 task rule activations, 16 sensory stimulus
activations). We then applied a Fisher's z-transform on both the empirical and ANN’s RSMs, and
then estimated the Spearman’s rank correlation between the Fisher’s z-transformed ANN and
empirical RSMs (using the upper triangle values only). This procedure was performed on the
RSM of every brain parcel, providing a similarity score between each brain parcel’s and the
ANN’s representational geometry. For our main analysis, we selected the top 10 parcels with
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highest similarity to the ANN’s hidden layer. However, we also performed additional analyses
using the top 20, 30, and 40 parcels.

FC weight estimation
We estimated resting-state FC to identify weights between layers in our empirical model.

This was similar to our previously published approach that identified FC weights between pairs
of brain regions8. This involved identifying FC weight mappings between the task rule input layer
to the hidden layer, sensory stimulus input layer to the hidden layer, and the hidden layer to the
motor output layer. For each FC mapping, we estimated the vertex-to-vertex FC weights using
principal components linear regression. Consistent with our prior studies8,18, we used principal
components regression because most layers had more vertices (i.e., predictors) than samples in
our resting-state data (resting-state fMRI data contained 1065 TRs). Principal components
regression first identifies a set of principal components from all of the vertex time series of the
source layer (via principal component analysis), then fits those latent components to each target
layer vertex time series using multiple linear regression. For all FC estimations, we used
principal components regression with 500 components, as we have in prior work8,18. Specifically,
FC weights were estimated by fitting principal components to the regression equation

(4)𝑌 = β
0

+
𝑖

500

∑ 𝑋
𝑖
β

𝑖
+ ϵ

where corresponds to the t x n matrix with t time points and n vertices (i.e., the target vertices𝑌
to be predicted), corresponds to a constant term, corresponds to the 1 x n matrix reflectingβ

0
β

𝑖

the mapping from the component time series onto the n target vertices, corresponds to the t x𝑋
𝑖

1 component time series for component i, and corresponds to the error in the regressionϵ
model. Note that corresponds to the t x 500 component matrix obtained from a principal𝑋
component analysis on the resting-state data from the source layer. Also note that these
loadings onto these 500 components are saved for later, when task activation patterns from a
source layer are projected onto a target layer. The loadings project the original vertex-wise task
activation patterns in the source layer onto a lower-dimensional space enabling faster
computations. A similar approach was used in a previous study 71. FC weights were computed
for each individual separately, but then averaged across subjects to obtain group FC weights.

Note that in some cases, it was possible for overlap between the source and target
vertices. (For example, some conjunction hub vertices may have coincided with the same
vertices in the context layer.) In these cases, these overlapping vertices were excluded in the
set of predictors (i.e., removed from the source layer) in the regression model.

Simulating sensorimotor transformations with multi-step activity flow
mapping

We generated predictions of motor response activations (in motor cortex) by assessing
the correct motor response given a specific task context and sensory stimulus activation pattern
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(for additional details see Supplementary Fig. 1). For each subject, we simulated 960
pseudo-trials. (“Pseudo-trials” refer to simulated trials using estimated activations rather than the
actual experimental trials subjects performed.) This consisted of the 64 unique task contexts
each paired with 15 randomly sampled stimulus combinations for a total of 960 pseudo-trials.
For a pseudo-trial, the task context input activation pattern was obtained by extracting the
activation vector for the logic, sensory, and motor rule, and computing the mean rule vector (i.e.,
additive compositionality). The sensory stimulus input activation pattern was obtained by
extracting the relevant sensory stimulus activation pattern. (Note that for a given pseudo-trials,
we only extracted the activation pattern for the sensory feature of interest. For example, if the
rule was “Red”, only color activation patterns would be extracted, and all other stimulus
activations would be set to 0.) Thus, the context and sensory stimulus activation patterns could
be defined as

(5)𝑋
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

= (𝑅
𝑙𝑜𝑔𝑖𝑐

+ 𝑅
𝑠𝑒𝑛𝑠𝑜𝑟𝑦

+ 𝑅
𝑚𝑜𝑡𝑜𝑟

)/3

(6)𝑋
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠

= 𝑋
𝑠𝑒𝑛𝑠𝑜𝑟𝑦

where corresponds to the input activation pattern for task context, corresponds to𝑋
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑅
𝑙𝑜𝑔𝑖𝑐

extracted logic rule activation pattern (e.g., “Both”, “Not Both”, “Either”, or “Neither”) obtained
from the task GLM, corresponds to the extracted sensory rule activation pattern from the𝑅

𝑠𝑒𝑛𝑠𝑜𝑟𝑦

task GLM, corresponds to the extracted motor rule activation pattern from the task GLM,𝑅
𝑚𝑜𝑡𝑜𝑟

and corresponds to the extracted sensory stimulus activation pattern that is indicated by𝑋
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠

the task context.
and reflect the input activation patterns that were used to𝑋

𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑋

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠

generate/predict motor response conditions. Importantly, these input activation patterns
contained no information about the motor response, as illustrated by alternative null models
(Fig. 7).

We used the FC weight maps to project and onto the hidden/conjunction𝑋
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑋
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠

layer vertices. The projections (or predicted activation patterns on the hidden layer) were then
thresholded to remove any negative BOLD predictions (i.e., values below the
between-task-block resting baseline). This thresholding was used because it is equivalent to a
rectified linear unit (ReLU), a commonly used nonlinear function in artificial neural networks40.
Thus, the hidden layer was defined by

(7)𝑋
ℎ𝑖𝑑𝑑𝑒𝑛

= 𝑓
𝑟
(𝑋

𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑊

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2ℎ𝑖𝑑𝑑𝑒𝑛
+ 𝑋

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠
𝑊

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠2ℎ𝑖𝑑𝑑𝑒𝑛
)

where corresponds to the predicted hidden layer activation pattern, is a ReLU function𝑋
ℎ𝑖𝑑𝑑𝑒𝑛

𝑓
𝑟

(i.e., ), corresponds to the resting-state FC weights between𝑓
𝑟
(𝑥) =  𝑚𝑎𝑥(𝑥, 0) 𝑊

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2ℎ𝑖𝑑𝑑𝑒𝑛

the context and hidden layer, and corresponds to the resting-state FC weights𝑊
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠2ℎ𝑖𝑑𝑑𝑒𝑛

between the stimulus and hidden layer. Note that all FC weights ( ) were computed using a𝑊
𝑥

principal component regression with 500 components. This requires that the vertex-wise
activation space (e.g., ) be projected onto component space such that we define𝑋

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

(8)𝑊
𝑥

= 𝑈𝑊
^

𝑝𝑐
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where corresponds a m x 500 matrix which maps the source layer’s m vertices into𝑈

component space, and is a 500 x n matrix that maps the components onto the target layer’s𝑊
^

𝑝𝑐

n vertices. (Note that corresponds to the regression coefficients from equation 4., and that𝑊
^

𝑝𝑐

both and are estimated from resting-state data.) Thus, is an m x n transformation from𝑈 𝑊
^

𝑝𝑐
𝑊

𝑥

a source layer’s spatial pattern to a target layer’s spatial pattern that is achieved through
principal component regression on resting-state fMRI data.

Finally, we generated a predicted motor output response by computing
(9)𝑋

𝑜𝑢𝑡𝑝𝑢𝑡
= 𝑋

ℎ𝑖𝑑𝑑𝑒𝑛
𝑊

ℎ𝑖𝑑𝑑𝑒𝑛2𝑜𝑢𝑡𝑝𝑢𝑡

where corresponds to the predicted motor response (in motor cortex), and𝑋
𝑜𝑢𝑡𝑝𝑢𝑡

𝑊
ℎ𝑖𝑑𝑑𝑒𝑛2𝑜𝑢𝑡𝑝𝑢𝑡

corresponds to the resting-state FC weights between the hidden and output layer. The full
model computation can thus be formalized as

(10)𝑋
𝑜𝑢𝑡𝑝𝑢𝑡

= 𝑓
𝑟
(𝑋

𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑊

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2ℎ𝑖𝑑𝑑𝑒𝑛
+ 𝑋

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠
𝑊

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠2ℎ𝑖𝑑𝑑𝑒𝑛
) 𝑊

ℎ𝑖𝑑𝑑𝑒𝑛2𝑜𝑢𝑡𝑝𝑢𝑡

only yields a predicted activation pattern for the motor cortex for a given context𝑋
𝑜𝑢𝑡𝑝𝑢𝑡

and stimulus input activation pattern. To evaluate whether could successfully predict the𝑋
𝑜𝑢𝑡𝑝𝑢𝑡

correct motor response for a given pseudo-trials, we constructed an ideal ‘task solver’ that
would indicate the correct motor response on a given pseudo-trial (Supplementary Fig. 1). This
solver would then be used to identify the correct motor response activation pattern such that we
could compare the predicted motor cortex activation with the actual motor cortex activation
pattern.

We simulated 960 pseudo-trials per subject, randomly sampling context and stimulus
input activation patterns. Because we sampled across the 64 task contexts equally (15
pseudo-trials per context), the correct motor responses were equally counterbalanced across
960 pseudo-trials. Thus, of the 960 simulated pseudo-trials for each subject, 240 pseudo-trials
yielded a left middle, left index, right middle, and right index response each. For each of the 240
predicted motor response patterns we subsequently averaged across pseudo-trials such that we
obtained 4 predicted motor response patterns for each subject. This choice was made for
computational tractability (and boosting of signal-to-noise ratio), enabling us to downsample the
large number of simulated pseudo-trials into predicted prototypical response activations for
individual subjects. This reduced the number of samples the classifier had to train on 240-fold.
Statistical evaluation of the 4 predicted (averaged) motor responses per subject was performed
at the group level using a cross-validation scheme described below. See Supplementary Fig. 1b
for a description of subject- versus group-level contributions to the ENN model.

Statistical and permutation testing of predicted motor response activations
The simulated empirical model generated predicted activations of motor activations in

motor cortex. However, the predictions would only be interesting if they resembled actual motor
response activations directly estimated from the response period via task GLM. In other words,
without a ground truth reference to the actual motor response activation patterns, the predicted
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activation patterns would hold little meaning. The simulated empirical model generated four
predicted activation patterns corresponding to predicted motor responses for each subject. We
also had four actual activation patterns corresponding to motor responses that were extracted
from the motor response period using a standard task GLM for each subject. To test whether the
predicted activation patterns conformed to the actual motor response activation patterns, we
trained a decoder on the predicted motor response activations and tested on the actual motor
response activations of held-out subjects. We used a 4-fold cross-validation decoding scheme
(with a minimum-distance/Pearson correlation classifier), where training was performed on
predicted motor activation patterns of 72 subjects, while testing was performed on the actual
motor activation patterns of 24 held-out subjects. Training samples were randomly sampled with
replacement. Training a decoder on the predicted activations and decoding the actual
activations made this analysis consistent with a prediction perspective – we could test if, in the
absence of any motor task activation, the ENN could predict actual motor response activation
patterns that correspond to behavior.

Statistical significance was assessed using permutation tests. We permuted the labels of
the predicted motor responses while testing on the actual motor responses. Null distributions
are visualized in gray (Fig. 7h). For each model, we repeated the 4-fold cross-validation analysis
1000 times with correct labels to evaluate the robustness of the decoding accuracies. Statistical
significance was assessed by generating a non-parametric p-value estimated from the null
distribution for each iteration’s accuracy. Reported p-values were the average across all
p-values for each model. Statistical significance was defined by a p<0.05 threshold.

Data availability
All data related to this study are publicly available on OpenNeuro

(https://openneuro.org/datasets/ds003701).

Code availability
All code related to this study is publicly available on GitHub

(https://github.com/ito-takuya/sr_enn).
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Supplementary Figures

Supplementary Figure 1. Additional details describing the ENN model and simulations. a) Flow
chart describing neural network simulations with empirical data via activity flow mapping. We generate a
subject’s predicted motor response activations using only task rule and sensory stimulus activation
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patterns as inputs. We then test these predictions against the actual motor response activations of other
subjects. b) Detailing subject-specific versus group-level contributions of the ENN. The ENN produced
group-level inferences on transforming rule and stimulus activations into motor response activations.
Group-level inferences were assessed by between-subject decoding, training a model on predicted motor
responses and predicted the actual motor response activations of other subjects in a cross-validated
fashion. The core network parameters (e.g., resting-state FC weights) were estimated at the group-level.
Input activations were estimated at the subject level to ensure that group-level predictions could be
performed on predictions.
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Supplementary Figure 2. Comparison of task rule activations (in task rule regions) and their
activity flow contributions (activation multiplied by FC weights) onto conjunction hubs. a) The task
rule activations for every vertex in the rule regions, averaged across all rule sets. This map illustrates the
activations that are fed in as inputs into the ENN. Units are in task GLM beta coefficients. b) The
distribution of task rule activations, summed across all vertices within each functional network. Both
sensorimotor and association networks appear to have strong rule-related activations. c) The activity flow
contributions (task rule activations weighted by their FC weights with conjunction hubs) of each vertex in
the task rule regions. The activity flow map is noticeably different from a), given that this visualization
takes into consideration both the task rule activity and their FC with conjunction hubs. This map is
obtained by averaging across the activity flow contributions to all vertices in conjunction hubs. d) The
distribution of task rule activity flow contributions to conjunction regions, summed across all vertices within
each functional network. Despite having large activations in sensorimotor regions in the original task rule
activation map, the activity flow contributions from these networks are dampened by their FC to
conjunction hubs. The DAN contributes the most activity flow to conjunction hubs. Network abbreviations:
Primary visual (VIS1), Secondary visual (VIS2), Somatomotor (SMN), Cingulo-opercular (CON), Dorsal
attention (DAN), Language (LAN), Frontoparietal (FPN), Auditory (AUD), Default Mode (DMN), Posterior
multi-modal (PMM), Ventral multi-modal (VMM).
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Supplementary Figure 3. Distribution and network associations of conjunction hubs and the task
rule input layer using a previously defined multimodal atlas and network partition25,26. a) Histogram
of the similarity (rank correlation) of the representational similarity matrix of the ANN’s hidden layer and
each cortical parcel (Mean of distribution=0.43). b) Distribution of similarity scores for each functional
network (each point reflects a different parcel belonging to the functional network). Boxplots reflect the
interquartiles of the distribution, black dotted line the mean, and solid line the median. Strip plots reflect
the entire distribution. c) The network affiliations of the 10 conjunction hub brain areas. d) Network
affiliations of the 228 brain regions that contained decodable task rule activations. Network abbreviations:
Primary visual (VIS1), Secondary visual (VIS2), Somatomotor (SMN), Cingulo-opercular (CON), Dorsal
attention (DAN), Language (LAN), Frontoparietal (FPN), Auditory (AUD), Default Mode (DMN), Posterior
multi-modal (PMM), Ventral multi-modal (VMM), Orbito-affective (ORN).
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Supplementary Figure 4. Evaluating the representational similarity of each brain parcel with a
control ANN with shuffled parameters (e.g., weights). a) We generated 10,000 control ANNs, where
after training, we randomly shuffled the parameters (i.e., weights and biases) within each layer. This was
an appropriate control since this impaired the ANN’s ability to perform the task (at chance), while
preserving the distribution of parameters within each layer. b) Using the control ANNs, we computed the
averaged representational similarity matrix of the hidden layer. We found that the control ANN effectively
obliterated any representational structure (dissimilarities) that were present in the unshuffled ANN (see
Fig. 5b). c) As in Figure 5, we measured the similarity of the control ANN’s RSM with the RSMs of each
brain parcel. d) Histogram of the similarity (rank correlation) of the RSM of the control ANN’s hidden layer
and the RSMs of each cortical parcel (Mean of distribution=0.02). In contrast to the non-shuffled ANN’s
hidden layer (see Supplementary Fig. 3a), the mean similarity (across all parcels) was near 0, suggesting
that the correspondence between the ANN’s true hidden layer and the empirical data were highly
non-trivial.
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Supplementary Figure 5. Inclusion of the ReLU in the hidden layer increased the similarity of
activity flow-predicted hidden representations with the conjunctive hidden representations in the
ANN. We calculated the ANN’s hidden layer representations with the a) empirical representations in the
true conjunctive “hidden” layers of the fMRI data, b) the activity flow-predicted hidden representations in
those same parcels after the ReLU was applied, and c) the activity flow-predicted hidden representations
in those same parcels before the ReLU was applied. For the actual and predicted activations in a-c, we
then constructed a representational similarity matrix (RSM) that contained the same exact conditions as
the RSM we measured in the ANN. d,e) The hidden layer of the ANN with its corresponding RSM. Note
that the RSM of the activity flow-predicted hidden layers was computed in the same way as the ANN – by
projecting the input activations of a single condition onto the hidden layer, while fixing all other weights to
0. f) The similarity of the actual and activity flow-predicted RSMs with that of the ANN’s RSM. Activations
were averaged across subjects first, and then the RSM was constructed using the group-averaged
activations for every condition. g) Same analysis as in f, but computing RSMs for each subject first, and
then measuring the similarity of each subject’s RSM with the ANN’s RSM. The similarity of the ANN’s
RSM with the activity flow-predicted representations after the ReLU was always greater than the
predictions without the ReLU.
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Supplementary Figure 6. Evaluating the representational similarities of the ANN’s hidden layer
across different ANN architectures and controls. a) The similarity of the RSMs across different ANNs
with different hidden units and the control ANN (i.e., shuffled parameters). We found that ANNs with
different numbers of hidden units generally had highly similar representational geometries. However,
ANNs with greater hidden units tended to have greater similarity, likely due to improved generalization68.
b) The RSM of the control ANN (shuffled parameters within each layer). c-h) The RSMs of ANNs with
1280, 1024, 768, 512, 256, and 128 hidden units. We trained a single instance of each model (trained
until accuracy>99.5%) prior to visualizing its RSMs. RSMs with fewer hidden units tended to have more
variable (noisier) RSMs across initializationss.
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Supplementary Figure 7. Comparing a linear versus distance-based decoder for identifying
regions containing stimulus and task rule features. a-e) Surface visualizations for decoding
accuracies of each parcel (using vertices within each parcel) for a) color (visual), b) orientation (visual), c)
pitch (auditory), d) continuity/constant (auditory), and e) task rule (12-way decoding). Top surface plots
employ the distance-based classifier. Bottom plots employ a logistic classifier. f) Comparing overall
decoding accuracies for all regions of interests for stimulus features. Plot includes unthresholded
classification accuracies. Since stimulus decoding involved a 4-way classification, chance was 25%.
Overall, there were no statistically different decoding accuracies for distance-based versus linear logistic
decoders. g) For task rule classifications, distance-based decoders outperformed logistic classifiers
(average accuracy difference +1.26%, p<10e-25 using a Wilcoxon signed-rank test). Overall,
distance-based decoders perform similarly or better than logistic decoders for our data set.
(Distance-based decoders were also computationally cheaper.)
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Supplementary Figure 8. Example of task GLM approach to obtain task activation estimates. a) An
example miniblock containing one encoding block (task rule set) and three trials. Note that while stimulus
presentation and response periods overlap, they are properly counterbalanced across trials. b) The
regressors for the relevant task conditions in the example miniblock. We obtain regressors (estimated
across all 128 miniblocks) for all task rule, sensory stimuli, and motor response conditions. Altogether
there are 32 different task conditions (12 task rules, 16 sensory stimuli pairs, and four motor response
periods). Note that task rule regressors (logic, sensory, and motor rule examples) appear collinear in this
example, but that across all 128 miniblocks task rule conditions are properly counterbalanced to avoid
biasing towards any specific rule combination. Regressors shown here are illustrated without convolution
with SPM’s canonical HRF.
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Supplementary Figure 9. Counterbalancing (and averaging) across conditions ensures statistical
independence of activation measures between stimulus and response conditions. a) A task GLM
design matrix for an example subject. For task GLMs, all conditions (rules, stimuli, responses) were
modeled simultaneously using multiple linear regression, increasing the statistical independence of
estimates (in addition to counterbalancing). b) Group-averaged cosine similarity matrix of task regressors.
For each subject, we estimated the cosine similarity of task regressors, then averaged across subjects.
Naturally, the diagonal has a cosine similarity of 1. There is no interdependence between task rules and
stimulus/motor responses, since the relevant task timing intervals do not overlap. However, for motor and
stimulus conditions, there are some weak dependencies (by necessity), since the response intervals
overlap with stimulus presentations. However, due to the counterbalancing of stimulus and response
types, regressors/conditions will remain independent when modeled together in a task GLM. Therefore,
simultaneous modeling of all stimulus and response conditions in a task GLM will ensure unique variance
is assigned to each condition. This is because multiple linear regression conditions on all other
regressors/conditions. c) No main effect of stimulus-response similarity across subjects, demonstrating
that averaging across these counterbalanced stimuli eliminates any biases toward particular motor
responses. For every stimulus-response pairing, we performed a one-way ANOVA to test the null
hypothesis that across response conditions, the distributions had different means (subjects as a random

48

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2021. ; https://doi.org/10.1101/2020.12.24.424353doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424353
http://creativecommons.org/licenses/by-nd/4.0/


effect). For every stimulus condition, we could not reject the null, indicating no bias towards any given
stimulus-response pairing (all p>0.05, FDR-corrected).
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Supplementary Figure 10. Using classification of response activations to identify motor output
parcels reduces spatial specificity of digit representations and reduces stimulus-response
decodability for left hand responses. a) Left and b) right hand response decoding accuracy on the true
fMRI response activations. Classifications were limited to the somatomotor network (SMN) on the
appropriate hemisphere (e.g., right hemisphere for left hand responses). c) S-R model decoding accuracy
on the output parcels using the full ENN model (on the left, as presented in the main manuscript; Fig 7b.
On the right, the classification accuracy using the SMN parcels identified in a and b. Right hand
classification accuracies remain the same, while left-hand accuracies are degraded. d) Number of
decoding features that feed the decoder on the output layer. Inclusion of all SMN parcels significantly
increases the number of features the decoder is required to distinguish, exacerbating the well-known
problem with having substantially more features than observations for classification. e) Table of
classification accuracies for each model. Cross-validation details are exactly the same as reported in Fig.
7.
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Supplementary Table 1. Regions containing decodable color (red/blue) stimulus activations.
Label GlasserID Network Affiliation Hemisphere

Visual2-54_L-Ctx L_VVC Visual2 L

Visual2-05_R-Ctx R_V4 Visual2 R

Visual1-03_R-Ctx R_DVT Visual1 R

Visual2-22_R-Ctx R_V4t Visual2 R
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Supplementary Table 2. Regions containing decodable orientation (vertical/horizontal) stimulus
activations.

Label GlasserID Network Affiliation Hemisphere

Visual1-04_L-Ctx L_V1 Visual1 L

Visual2-28_L-Ctx L_MST Visual2 L

Visual2-30_L-Ctx L_V2 Visual2 L

Visual2-31_L-Ctx L_V3 Visual2 L

Visual2-32_L-Ctx L_V4 Visual2 L

Visual2-33_L-Ctx L_V8 Visual2 L

Visual2-35_L-Ctx L_V7 Visual2 L

Visual2-40_L-Ctx L_LO2 Visual2 L

Visual2-41_L-Ctx L_PIT Visual2 L

Visual2-42_L-Ctx L_MT Visual2 L

Visual2-51_L-Ctx L_V3CD Visual2 L

Visual1-01_R-Ctx R_V1 Visual1 R

Visual2-03_R-Ctx R_V2 Visual2 R

Visual2-04_R-Ctx R_V3 Visual2 R

Visual2-05_R-Ctx R_V4 Visual2 R

Visual2-06_R-Ctx R_V8 Visual2 R

Visual2-09_R-Ctx R_IPS1 Visual2 R

Visual2-12_R-Ctx R_LO1 Visual2 R
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Supplementary Table 3. Regions containing decodable pitch (high/low) stimulus activations.

Label GlasserID Network Affiliation Hemisphere

Auditory-08_L-Ctx L_A1 Auditory L

Auditory-09_L-Ctx L_52 Auditory L

Auditory-10_L-Ctx L_RI Auditory L

Auditory-11_L-Ctx L_TA2 Auditory L

Auditory-12_L-Ctx L_PBelt Auditory L

Auditory-13_L-Ctx L_MBelt Auditory L

Auditory-14_L-Ctx L_LBelt Auditory L

Auditory-15_L-Ctx L_A4 Auditory L

Auditory-01_R-Ctx R_A1 Auditory R

Auditory-02_R-Ctx R_52 Auditory R

Auditory-03_R-Ctx R_TA2 Auditory R

Auditory-04_R-Ctx R_PBelt Auditory R

Auditory-05_R-Ctx R_MBelt Auditory R

Auditory-06_R-Ctx R_LBelt Auditory R

Auditory-07_R-Ctx R_A4 Auditory R
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Supplementary Table 4. Regions containing decodable constant/beeping stimulus activations.

Label GlasserID Network Affiliation Hemisphere

Auditory-08_L-Ctx L_A1 Auditory L

Auditory-09_L-Ctx L_52 Auditory L

Auditory-10_L-Ctx L_RI Auditory L

Auditory-11_L-Ctx L_TA2 Auditory L

Auditory-12_L-Ctx L_PBelt Auditory L

Auditory-13_L-Ctx L_MBelt Auditory L

Auditory-14_L-Ctx L_LBelt Auditory L

Auditory-15_L-Ctx L_A4 Auditory L

Auditory-01_R-Ctx R_A1 Auditory R

Auditory-02_R-Ctx R_52 Auditory R

Auditory-03_R-Ctx R_TA2 Auditory R

Auditory-04_R-Ctx R_PBelt Auditory R

Auditory-05_R-Ctx R_MBelt Auditory R

Auditory-06_R-Ctx R_LBelt Auditory R

Auditory-07_R-Ctx R_A4 Auditory R
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Supplementary Table 5. Conjunction hubs.
Label GlasserID Network Affiliation Hemisphere

Cingulo-Opercular-49_L-Ctx L_FOP3 Cingulo-Opercular L

Somatomotor-15_R-Ctx R_OP4 Somatomotor R

Dorsal-Attention-18_L-Ctx L_AIP Dorsal-Attention L

Cingulo-Opercular-04_R-Ctx R_5mv Cingulo-Opercular R

Cingulo-Opercular-22_R-Ctx R_FOP3 Cingulo-Opercular R

Somatomotor-08_R-Ctx R_7PC Somatomotor R

Cingulo-Opercular-44_L-Ctx L_PFcm Cingulo-Opercular L

Frontoparietal-34_L-Ctx L_a47r Frontoparietal L

Frontoparietal-03_R-Ctx R_7Pm Frontoparietal R

Somatomotor-07_R-Ctx R_7AL Somatomotor R
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Supplementary Table 6. Task rule (input) regions.
Label GlasserID Network Affiliation Hemisphere

Visual1-04_L-Ctx L_V1 Visual1 L

Visual2-30_L-Ctx L_V2 Visual2 L

Visual2-31_L-Ctx L_V3 Visual2 L

Visual2-32_L-Ctx L_V4 Visual2 L

Somatomotor-21_L-Ctx L_4 Somatomotor L

Somatomotor-22_L-Ctx L_3b Somatomotor L

Cingulo-Opercular-30_L-Ctx L_FEF Cingulo-Opercular L

Dorsal-Attention-12_L-Ctx L_PEF Dorsal-Attention L

Language-10_L-Ctx L_55b Language L

Frontoparietal-29_L-Ctx L_RSC Frontoparietal L

Frontoparietal-30_L-Ctx L_POS2 Frontoparietal L

Visual2-35_L-Ctx L_V7 Visual2 L

Visual2-36_L-Ctx L_IPS1 Visual2 L

Visual2-38_L-Ctx L_V3B Visual2 L

Visual2-42_L-Ctx L_MT Visual2 L

Auditory-08_L-Ctx L_A1 Auditory L

Language-11_L-Ctx L_PSL Language L

Language-12_L-Ctx L_SFL Language L

Posterior-Multimodal-05_L-Ctx L_PCV Posterior-Multimodal L

Default-38_L-Ctx L_7m Default L

Default-39_L-Ctx L_POS1 Default L

Default-40_L-Ctx L_23d Default L

Default-41_L-Ctx L_v23ab Default L

Default-42_L-Ctx L_d23ab Default L

Cingulo-Opercular-32_L-Ctx L_23c Cingulo-Opercular L

Somatomotor-25_L-Ctx L_24dd Somatomotor L

Somatomotor-26_L-Ctx L_24dv Somatomotor L

Somatomotor-27_L-Ctx L_7AL Somatomotor L

Cingulo-Opercular-33_L-Ctx L_SCEF Cingulo-Opercular L

Cingulo-Opercular-34_L-Ctx L_6ma Cingulo-Opercular L

Cingulo-Opercular-35_L-Ctx L_7Am Cingulo-Opercular L

Somatomotor-28_L-Ctx L_7PC Somatomotor L

Visual2-43_L-Ctx L_LIPv Visual2 L

Visual2-44_L-Ctx L_VIP Visual2 L

Somatomotor-29_L-Ctx L_1 Somatomotor L

Somatomotor-30_L-Ctx L_2 Somatomotor L

Somatomotor-31_L-Ctx L_3a Somatomotor L

Somatomotor-32_L-Ctx L_6d Somatomotor L

Somatomotor-33_L-Ctx L_6mp Somatomotor L

Somatomotor-34_L-Ctx L_6v Somatomotor L

Cingulo-Opercular-36_L-Ctx L_p24pr Cingulo-Opercular L
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Cingulo-Opercular-37_L-Ctx L_33pr Cingulo-Opercular L

Cingulo-Opercular-38_L-Ctx L_a24pr Cingulo-Opercular L

Cingulo-Opercular-39_L-Ctx L_p32pr Cingulo-Opercular L

Default-44_L-Ctx L_a24 Default L

Default-45_L-Ctx L_d32 Default L

Frontoparietal-32_L-Ctx L_8BM Frontoparietal L

Default-47_L-Ctx L_10r Default L

Default-49_L-Ctx L_8Av Default L

Default-51_L-Ctx L_9m Default L

Default-52_L-Ctx L_8BL Default L

Default-54_L-Ctx L_10d Default L

Frontoparietal-33_L-Ctx L_8C Frontoparietal L

Language-14_L-Ctx L_44 Language L

Language-15_L-Ctx L_45 Language L

Default-55_L-Ctx L_47l Default L

Frontoparietal-34_L-Ctx L_a47r Frontoparietal L

Cingulo-Opercular-40_L-Ctx L_6r Cingulo-Opercular L

Language-16_L-Ctx L_IFJa Language L

Frontoparietal-35_L-Ctx L_IFJp Frontoparietal L

Language-17_L-Ctx L_IFSp Language L

Frontoparietal-36_L-Ctx L_IFSa Frontoparietal L

Frontoparietal-37_L-Ctx L_p9-46v Frontoparietal L

Cingulo-Opercular-42_L-Ctx L_9-46d Cingulo-Opercular L

Default-56_L-Ctx L_9a Default L

Frontoparietal-39_L-Ctx L_a10p Frontoparietal L

Frontoparietal-40_L-Ctx L_11l Frontoparietal L

Dorsal-Attention-15_L-Ctx L_LIPd Dorsal-Attention L

Dorsal-Attention-16_L-Ctx L_6a Dorsal-Attention L

Frontoparietal-42_L-Ctx L_i6-8 Frontoparietal L

Cingulo-Opercular-43_L-Ctx L_43 Cingulo-Opercular L

Somatomotor-35_L-Ctx L_OP4 Somatomotor L

Somatomotor-36_L-Ctx L_OP1 Somatomotor L

Somatomotor-37_L-Ctx L_OP2-3 Somatomotor L

Auditory-09_L-Ctx L_52 Auditory L

Auditory-10_L-Ctx L_RI Auditory L

Cingulo-Opercular-44_L-Ctx L_PFcm Cingulo-Opercular L

Cingulo-Opercular-45_L-Ctx L_PoI2 Cingulo-Opercular L

Auditory-11_L-Ctx L_TA2 Auditory L

Cingulo-Opercular-46_L-Ctx L_FOP4 Cingulo-Opercular L

Cingulo-Opercular-47_L-Ctx L_MI Cingulo-Opercular L

Frontoparietal-44_L-Ctx L_AVI Frontoparietal L

Orbito-Affective-05_L-Ctx L_AAIC Orbito-Affective L

Cingulo-Opercular-48_L-Ctx L_FOP1 Cingulo-Opercular L
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Cingulo-Opercular-49_L-Ctx L_FOP3 Cingulo-Opercular L

Somatomotor-38_L-Ctx L_FOP2 Somatomotor L

Dorsal-Attention-17_L-Ctx L_PFt Dorsal-Attention L

Dorsal-Attention-18_L-Ctx L_AIP Dorsal-Attention L

Default-62_L-Ctx L_PreS Default L

Language-18_L-Ctx L_STGa Language L

Language-19_L-Ctx L_A5 Language L

Dorsal-Attention-19_L-Ctx L_PHA3 Dorsal-Attention L

Language-21_L-Ctx L_STSdp Language L

Default-65_L-Ctx L_STSvp Default L

Frontoparietal-45_L-Ctx L_TE1p Frontoparietal L

Dorsal-Attention-20_L-Ctx L_TE2p Dorsal-Attention L

Dorsal-Attention-21_L-Ctx L_PHT Dorsal-Attention L

Visual2-45_L-Ctx L_PH Visual2 L

Language-22_L-Ctx L_TPOJ1 Language L

Posterior-Multimodal-06_L-Ctx L_TPOJ2 Posterior-Multimodal L

Visual1-06_L-Ctx L_DVT Visual1 L

Dorsal-Attention-22_L-Ctx L_PGp Dorsal-Attention L

Frontoparietal-47_L-Ctx L_IP1 Frontoparietal L

Dorsal-Attention-23_L-Ctx L_IP0 Dorsal-Attention L

Cingulo-Opercular-50_L-Ctx L_PFop Cingulo-Opercular L

Cingulo-Opercular-51_L-Ctx L_PF Cingulo-Opercular L

Frontoparietal-48_L-Ctx L_PFm Frontoparietal L

Default-69_L-Ctx L_PGi Default L

Default-70_L-Ctx L_PGs Default L

Visual2-46_L-Ctx L_V6A Visual2 L

Default-71_L-Ctx L_PHA2 Default L

Default-73_L-Ctx L_31a Default L

Visual2-54_L-Ctx L_VVC Visual2 L

Cingulo-Opercular-52_L-Ctx L_PoI1 Cingulo-Opercular L

Somatomotor-39_L-Ctx L_Ig Somatomotor L

Cingulo-Opercular-53_L-Ctx L_FOP5 Cingulo-Opercular L

Frontoparietal-50_L-Ctx L_p47r Frontoparietal L

Auditory-14_L-Ctx L_LBelt Auditory L

Auditory-15_L-Ctx L_A4 Auditory L

Default-77_L-Ctx L_TE1m Default L

Cingulo-Opercular-55_L-Ctx L_a32pr Cingulo-Opercular L

Cingulo-Opercular-56_L-Ctx L_p24 Cingulo-Opercular L

Visual1-01_R-Ctx R_V1 Visual1 R

Visual2-02_R-Ctx R_V6 Visual2 R

Visual2-03_R-Ctx R_V2 Visual2 R

Visual2-04_R-Ctx R_V3 Visual2 R

Visual2-05_R-Ctx R_V4 Visual2 R
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Somatomotor-01_R-Ctx R_4 Somatomotor R

Somatomotor-02_R-Ctx R_3b Somatomotor R

Cingulo-Opercular-01_R-Ctx R_FEF Cingulo-Opercular R

Cingulo-Opercular-02_R-Ctx R_PEF Cingulo-Opercular R

Frontoparietal-01_R-Ctx R_RSC Frontoparietal R

Frontoparietal-02_R-Ctx R_POS2 Frontoparietal R

Visual2-08_R-Ctx R_V7 Visual2 R

Visual2-09_R-Ctx R_IPS1 Visual2 R

Visual2-11_R-Ctx R_V3B Visual2 R

Visual2-12_R-Ctx R_LO1 Visual2 R

Cingulo-Opercular-03_R-Ctx R_PSL Cingulo-Opercular R

Posterior-Multimodal-01_R-Ctx R_PCV Posterior-Multimodal R

Default-01_R-Ctx R_7m Default R

Default-02_R-Ctx R_POS1 Default R

Default-03_R-Ctx R_23d Default R

Default-04_R-Ctx R_v23ab Default R

Default-05_R-Ctx R_d23ab Default R

Somatomotor-03_R-Ctx R_5m Somatomotor R

Cingulo-Opercular-04_R-Ctx R_5mv Cingulo-Opercular R

Cingulo-Opercular-05_R-Ctx R_23c Cingulo-Opercular R

Somatomotor-04_R-Ctx R_5L Somatomotor R

Somatomotor-05_R-Ctx R_24dd Somatomotor R

Somatomotor-06_R-Ctx R_24dv Somatomotor R

Somatomotor-07_R-Ctx R_7AL Somatomotor R

Cingulo-Opercular-06_R-Ctx R_SCEF Cingulo-Opercular R

Cingulo-Opercular-07_R-Ctx R_6ma Cingulo-Opercular R

Cingulo-Opercular-08_R-Ctx R_7Am Cingulo-Opercular R

Somatomotor-08_R-Ctx R_7PC Somatomotor R

Visual2-16_R-Ctx R_LIPv Visual2 R

Visual2-17_R-Ctx R_VIP Visual2 R

Dorsal-Attention-02_R-Ctx R_MIP Dorsal-Attention R

Somatomotor-09_R-Ctx R_1 Somatomotor R

Somatomotor-10_R-Ctx R_2 Somatomotor R

Somatomotor-11_R-Ctx R_3a Somatomotor R

Somatomotor-12_R-Ctx R_6d Somatomotor R

Somatomotor-13_R-Ctx R_6mp Somatomotor R

Somatomotor-14_R-Ctx R_6v Somatomotor R

Cingulo-Opercular-09_R-Ctx R_p24pr Cingulo-Opercular R

Cingulo-Opercular-10_R-Ctx R_a24pr Cingulo-Opercular R

Cingulo-Opercular-11_R-Ctx R_p32pr Cingulo-Opercular R

Frontoparietal-05_R-Ctx R_d32 Frontoparietal R

Frontoparietal-06_R-Ctx R_8BM Frontoparietal R

Default-11_R-Ctx R_8Av Default R
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Default-12_R-Ctx R_8Ad Default R

Default-13_R-Ctx R_9m Default R

Default-14_R-Ctx R_8BL Default R

Frontoparietal-07_R-Ctx R_8C Frontoparietal R

Frontoparietal-08_R-Ctx R_44 Frontoparietal R

Default-17_R-Ctx R_47l Default R

Cingulo-Opercular-12_R-Ctx R_6r Cingulo-Opercular R

Language-04_R-Ctx R_IFJa Language R

Frontoparietal-11_R-Ctx R_IFSp Frontoparietal R

Cingulo-Opercular-13_R-Ctx R_IFSa Cingulo-Opercular R

Frontoparietal-12_R-Ctx R_p9-46v Frontoparietal R

Cingulo-Opercular-15_R-Ctx R_9-46d Cingulo-Opercular R

Dorsal-Attention-04_R-Ctx R_6a Dorsal-Attention R

Cingulo-Opercular-16_R-Ctx R_43 Cingulo-Opercular R

Somatomotor-15_R-Ctx R_OP4 Somatomotor R

Somatomotor-16_R-Ctx R_OP1 Somatomotor R

Auditory-02_R-Ctx R_52 Auditory R

Cingulo-Opercular-17_R-Ctx R_PFcm Cingulo-Opercular R

Cingulo-Opercular-18_R-Ctx R_PoI2 Cingulo-Opercular R

Cingulo-Opercular-19_R-Ctx R_FOP4 Cingulo-Opercular R

Cingulo-Opercular-20_R-Ctx R_MI Cingulo-Opercular R

Frontoparietal-20_R-Ctx R_AVI Frontoparietal R

Orbito-Affective-02_R-Ctx R_AAIC Orbito-Affective R

Cingulo-Opercular-21_R-Ctx R_FOP1 Cingulo-Opercular R

Cingulo-Opercular-22_R-Ctx R_FOP3 Cingulo-Opercular R

Somatomotor-19_R-Ctx R_FOP2 Somatomotor R

Dorsal-Attention-05_R-Ctx R_PFt Dorsal-Attention R

Dorsal-Attention-06_R-Ctx R_AIP Dorsal-Attention R

Default-23_R-Ctx R_PreS Default R

Default-24_R-Ctx R_H Default R

Language-06_R-Ctx R_A5 Language R

Language-07_R-Ctx R_STSdp Language R

Default-27_R-Ctx R_STSvp Default R

Frontoparietal-21_R-Ctx R_TE1p Frontoparietal R

Dorsal-Attention-09_R-Ctx R_PHT Dorsal-Attention R

Visual2-18_R-Ctx R_PH Visual2 R

Language-08_R-Ctx R_TPOJ1 Language R

Posterior-Multimodal-03_R-Ctx R_TPOJ2 Posterior-Multimodal R

Posterior-Multimodal-04_R-Ctx R_TPOJ3 Posterior-Multimodal R

Visual1-03_R-Ctx R_DVT Visual1 R

Dorsal-Attention-10_R-Ctx R_PGp Dorsal-Attention R

Frontoparietal-23_R-Ctx R_IP1 Frontoparietal R

Dorsal-Attention-11_R-Ctx R_IP0 Dorsal-Attention R
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Cingulo-Opercular-23_R-Ctx R_PFop Cingulo-Opercular R

Cingulo-Opercular-24_R-Ctx R_PF Cingulo-Opercular R

Frontoparietal-24_R-Ctx R_PFm Frontoparietal R

Default-31_R-Ctx R_PGi Default R

Default-32_R-Ctx R_PGs Default R

Visual2-23_R-Ctx R_FST Visual2 R

Visual2-26_R-Ctx R_VMV2 Visual2 R

Default-34_R-Ctx R_31pd Default R

Cingulo-Opercular-25_R-Ctx R_PoI1 Cingulo-Opercular R

Somatomotor-20_R-Ctx R_Ig Somatomotor R

Cingulo-Opercular-26_R-Ctx R_FOP5 Cingulo-Opercular R

Frontoparietal-27_R-Ctx R_p47r Frontoparietal R

Auditory-07_R-Ctx R_A4 Auditory R

Frontoparietal-28_R-Ctx R_TE1m Frontoparietal R

Cingulo-Opercular-28_R-Ctx R_a32pr Cingulo-Opercular R

Cingulo-Opercular-29_R-Ctx R_p24 Cingulo-Opercular R
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