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Abstract

Despite a rapidly growing body of literature on COVID-19, our understanding of the immune
correlates of disease severity, course and outcome remains poor. Using mass cytometry, we
assessed the immune landscape in longitudinal whole blood specimens from 59 patients
presenting with acute COVID-19, and classified based on maximal disease severity. Hospitalized
patients negative for SARS-CoV-2 were used as controls. We found that the immune landscape
in COVID-19 forms three dominant clusters, which correlate with disease severity. Longitudinal
analysis identified a pattern of productive innate and adaptive immune responses in individuals
who have a moderate disease course, whereas those with severe disease have features suggestive
of a protracted and dysregulated immune response. Further, we identified coordinate immune
alterations accompanying clinical improvement and decline that were also seen in patients who
received IL-6 pathway blockade. The hospitalized COVID-19 negative cohort allowed us to
identify immune alterations that were shared between severe COVID-19 and other critically ill
patients. Collectively, our findings indicate that selection of immune interventions should be
based in part on disease presentation and early disease trajectory due to the profound differences
in the immune response in those with mild to moderate disease and those with the most severe

disease.
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Introduction

The coronavirus-19-disease (COVID-19) pandemic has brought a worldwide focus not only on
the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), but also on how immunity
to this virus both promotes viral clearance and contributes to morbidity and mortality in infected
individuals. There is a wide range of disease severity in SARS-CoV-2 infected individuals,
ranging from asymptomatic infection to severe COVID-19 requiring mechanical ventilation, and
in some cases, to death. Some factors have been identified that are associated with increased
disease severity and poor outcome during COVID-19, including age, race, obesity, hypertension,
and type 2 diabetes (1-11). However, we still do not understand the biologic factors that
contribute to disease severity and outcome. It is becoming clear that not only does the severity of
disease vary amongst SARS-CoV-2 infected individuals, but the immune response can also vary
widely leading to differing immune landscapes between patients. Therefore, it is important to
understand how the immune landscape contributes to COVID-19 severity and outcome. Another
important gap in our knowledge is how the immune landscape in COVID-19 resembles or is
distinct from that seen in critically ill patients hospitalized for other reasons, since the immune
landscape may change in the context of critical illness regardless of its etiology. In particular, it
is important to determine if the early immune landscape can be used to inform which COVID-19
patients will have a severe disease course, and would benefit from early interventions.

Although we can learn about immunity to SARS-CoV-2 by assessing a snapshot of the
immune response at one point in time, the immune response to infection is dynamic and is best
studied over time. Early immune responses to viruses are dominated by the innate immune
system, including neutrophils, monocytes, plasmacytoid dendritic cells (pDCs) and natural Killer

(NK) cells, while adaptive immune responses of T and B cells critical for viral clearance develop
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over days to weeks. Understanding how these populations change over time and relate to disease
trajectory can give insight into the signature of a productive anti-SARS-CoV-2 immune response
associated with clinical improvement, and whether immune dysregulation contributes to severe
COVID-19. Additionally, early in the pandemic hospitalized patients were treated with a variety
of experimental therapeutics, including the antiviral agent remdesivir, cytokine modulating
therapies, and plasma from convalescent patients, all with varying efficacy in clinical studies and
trials. However, how and if these treatments affect the immune landscape before and after
therapeutic exposure has not been described. To address these outstanding and important
questions regarding the immune response during COVID-19, we used mass cytometry integrated
with detailed clinical data to examine how the immune landscape changes over time in severe
and moderate disease through natural progression and recovery, and also in the context of

immune intervention.

Results

Patient demographics and clinical characteristics

We collected peripheral blood from 59 patients with COVID-19 (52 hospitalized patients and 7
ambulatory outpatients) at the Virginia Mason Medical Center, Seattle, Washington during the
months of April and May 2020. Notably, we performed deep longitudinal sampling over the
course of disease with an average of 4 time points per subject (Range: 1-18; Figure 1) allowing
for detailed immune trajectories of recovery. Patients were classified based on maximum disease
severity using a 7-point ordinal scale (OS) representing the following outcomes: 1, not
hospitalized with resumption of normal activities; 2, not hospitalized, but unable to resume

normal activities; 3, hospitalized, not requiring supplemental oxygen; 4, hospitalized, requiring
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supplemental oxygen; 5, hospitalized, requiring nasal high-flow oxygen therapy, noninvasive
mechanical ventilation, or both; 6, hospitalized, invasive mechanical ventilation; and 7, death
(12).0f the hospitalized patients, 24 were classified as having severe disease on the basis of
requiring management in a critical care unit (CCU); all required mechanical ventilation (maximal
0S>6), except one who was on high flow oxygen (maximal OS=5). The remaining 28
hospitalized patients were not in the CCU and were classified as having moderate COVID-19,
with all requiring supplemental oxygen at some point in their hospital course (maximal OS=3-5).
The 7 ambulatory patients had mild disease (OS=2) and did not require hospitalization. For a
control group, we also collected blood from 17 hospitalized patients who tested negative for
SARS-CoV-2; four of these patients were admitted to the CCU and the remainder to the floor.
These patients were age and sex-matched to the hospitalized COVID-19 groups, and were
admitted for a variety of conditions including respiratory (n=4), cardiac (n=4), gastrointestinal
(n=3), neurologic (n=3) and miscellaneous conditions (n=3).

The demographic and clinical characteristics of all the patient groups are summarized in
Table 1. There was no significant difference in age or sex composition between severe, moderate
and mild COVID-19 groups. Regarding racial distribution, there was an overrepresentation in the
severe COVID-19 group of African American (16.7%) and Hispanic (37.5%) individuals based
on the Washington state population, which is 78.5% white, 4.4% African American and 13%
Hispanic (13). Duration of symptoms at time of presentation was longer in the severe disease
group (median 9 days, range 3-22) compared to both the moderate (median 4 days, range 0-27)
and mild (median 5 days, range 2-14) groups (p value=0.01). Duration of hospitalization was
also significantly longer in the severe disease group (median 19 days, range 4-65) compared to

the moderate disease group (median 6 days, range 2-28) (p value<0.01), although discharge was
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delayed for some patients due to restrictions placed on transfers to skilled nursing facility
pending viral clearance from nasopharyngeal swabs.

Chronic medical conditions such as diabetes, hypertension and cancer were common in the
hospitalized COVID-19 cohorts. Diabetes was present in 45.8% of the severe group, 28.6% of
the moderate group and 28.6% of the mild group. Hypertension was present in 50% of the severe
group and 67.9% of the moderate group but absent in the mild group. Cancer was present in
4.2% of the severe COVID-19 group, 21.4% of the moderate group and absent in the mild group.
Obesity was also more prevalent in the hospitalized COVID-19 cohort with a median BMI > 29
in both severe and moderate disease groups compared to a median BMI ~25 in the mild COVID-
19 (p value = 0.08) and the hospitalized SARS-CoV-2 negative groups.

Because this cohort was from the early stage of the pandemic in the USA, hospitalized
patients received a variety of experimental treatments, including hydroxychloroquine,
remdesivir, tocilizumab and convalescent plasma (Supplemental Figure 1). Notably many
patients received more than one type of experimental treatment. In the severe COVID-19 group,
7 patients (29.2%) received hydroxychloroquine, 17 (70.8%) received remdesivir, 8 (33.3%)
received tocilizumab and 15 (62.5%) received convalescent plasma. Among the moderately ill, 2
(7.1%) received hydroxychloroquine, 11 (39.3%) received remdesivir, and 4 (14.3%) received

convalescent plasma. The mild disease group did not receive any of these COVID-19 therapies.

Elevated white blood cell counts in COVID-19 are driven by an increase in neutrophils, with
correlated depletion of plasmacytoid dendritic cells and basophils
We assessed the immune landscape by combining clinical data with mass cytometry (CyTOF)

performed on whole blood samples recovered from the clinical laboratory. The CyTOF panel
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was designed to assess the composition of the innate and lymphocyte compartments and
determine the maturation, lineage and activation status of these cell populations (Supplemental
Table 1, Supplemental Figures 2-4). To better understand the impact of disease, we performed
correlation analysis on the first sample collected for each patient in the COVID-19 cohort (n=59;
Figure 2 and Supplemental Figure 5). The heatmap in Figure 2A shows all significant
correlations between clinical data (disease severity ordinal score, age, BMI and CBC) and
CyTOF immune cell percentages of the total CD45+ (pan-leucocyte marker) cell compartment,
whereas the correlation network in Figure 2B focuses only on correlations among major
leukocyte populations identified by CyTOF. We found correlations consistent with the current
literature. For example, white blood cell (WBC) counts and neutrophil counts were significantly
correlated (Figure 2A), not surprisingly given that neutrophils comprise a large proportion of
WBC, and both are elevated in severe COVID-19 (14, 15). Neutrophils in both the CBC and
CyTOF datasets also inversely correlated with proportions of lymphocytes and T cells (Figures
2A-B) supporting previous reports that the neutrophil-to-lymphocyte ratio is increased in severe
COVID-19 (15-18). In addition, both pDCs and basophils negatively correlated with neutrophils,
positively correlated with T cells and positively correlated with each other (Figures 3A-E).
Together these findings for pDCs and basophils are consistent with recent studies reporting
depletion of these cell types in acute COVID-19 (19, 20). Although our CyTOF panel had
limited ability to distinguish T cell lineage, T follicular helper (Tfh) cells were assessed. Notably,
unlike other T cell populations the percentage of Tth cells in the memory CD4+ compartment
showed a positive correlation with neutrophils, although this did not reach statistical significant

(Figure 3F). Taken together these observations indicate that coordinate and counter-acting
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changes in neutrophils, lymphocytes, pDCs and basophils drive the immune signature of

COVID-19.

The immune landscape differentiates individuals based on disease severity

In order to understand whether the immune signature in COVID-19 differed by disease severity
we determined the correlation between cell frequency and ordinal score at the time of sampling.
Increasing neutrophil frequency was positively correlated with increasing disease severity
(Pearson correlation ~ 0.46, FDR-adjusted p < 0.01), while T cells, NK, pDCs and basophils
were lower in severe disease (all FDR-adjusted p-values < 0.005) (Figure 4). To determine if the
immune landscape early in disease distinguishes severe from mild disease, we next performed a
cross-sectional analysis of our population categorized based on an individual’s highest disease
score during the course of their illness using data from the first sample collected for each patient
(Figure 5, Supplemental Figure 5). The CBC data showed the greatest difference with disease
severity in white blood cell counts with an increase in the absolute neutrophils and monocyte
counts and low absolute lymphocyte counts (Figure 5A). However, these CBC results frequently
fell within the normal range and notably, the hospitalized COVID-19 negative population
showed very similar changes to those seen with severe COVID-19, suggesting that these findings
are not unique to COVID-19 but are instead reflective of critical illness.

In contrast, the cross-sectional analysis of the CyTOF dataset identified two different
patterns of immune alterations in the COVID-19 cohort: those that were also present in the
hospitalized COVID-19 negative cohort, and those that were unigue to severe COVID-19.
Immune cell populations that were similar between severe COVID-19 and hospitalized COVID-

19 negative patients correlated with COVID19 disease score at all time points, as shown in
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Figure 4. Specifically, there was an increase in neutrophils and HLA-DR'® monocytes with a
decrease in T cells, NK, basophils and pDCs in severe disease (Figure 5B). Notably, for each of
these cell types the changes seen in severe COVID-19 subjects were similar to the hospitalized
COVID-19-negative cohort, suggesting that these changes are features of critical illness and not
unique to severe COVID-19. Immune alterations unique to severe COVID-19 in this cross-
sectional analysis included increases in CD38+ CD8 T cells (FDR-adjusted p = 0.02), Tth cells
(FDR-adjusted p = 0.03) and plasmablasts (FDR-adjusted p = 0.00007) (Figure 5C,
Supplemental Figure 5). There were also increases in CD4 central memory T cells and HLA
DR+ CD8 T cells although these were not statistical significant after adjusting for multiple
testing (Figure 5C).

Unsupervised hierarchical clustering of the CyTOF data for each subject’s initial sample
identified three major clusters of patients (Figure 6): a T cell predominant cluster with a relative
decrease in neutrophils (cluster A), a cluster with mixed features including a predominance of
monocyte, DC and NK cells (cluster B), and a third cluster (cluster C) whose patients had high
levels of neutrophils and a relative paucity of other cell types. These clusters generally
differentiated individuals based on their disease severity, with more moderate disease courses
and good outcome associated with clusters A and B, while those with the most severe disease
and death were associated with cluster C. These findings indicate that there is not one single
immune signature in COVID-19, but that the immune response differs in individuals based on

the ultimate disease severity.

Immune trajectories discriminate moderate and severe COVID-19
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To better understand the kinetics and coordinated changes in immune signatures, we tracked
immune cell types in the blood over time based on date of admittance to the hospital. We focused
on exploring differences in longitudinal analysis of moderate and severe patients based on
distinct clustering between these groups as shown in Figure 6. The time course was limited to 15
days post admittance for sufficient and comparable sampling in both the moderate and severe
cohorts (Supplemental Figure 6).

Key to understanding features that distinguish moderate from severe COVID-19 is an
appreciation of the evolution of the immune response over time, as shown in a UMAP
visualization of immune changes with disease severity within cell types of an individual patient
(Figure 7). Using gated data from Figures 2 and 3, we focused on specific cell types and markers
of innate and adaptive immunity. Figures 5B-D show Loess-smoothed trajectories whereas
Supplemental Figures 7-9 show individual and averaged plots. We found that patients with
moderate COVID-19 had a dynamic immune response that resolved over time typical of a
productive anti-viral response whereas patients with severe COVID-19 had an aberrant immune
response, diverging early from that seen in moderate COVID-19 subjects and continuing to
diverge beyond the first fifteen days of hospitalization. Specifically in the moderate COVID-19
cohort, there was an early reduction in circulating neutrophils with a concomitant increase in
circulating monocytes, total DCs and basophils, with maximal change at 4-5 days post
hospitalization (Figure 8A, Supplemental Figures 7-9). In addition, NK cell increases followed
these early myeloid cell changes, peaking at 5-6 days post hospitalization (Figure 8A,
Supplemental Figures 8-9). In contrast in the severe COVID-19 cohort, these innate cell
populations were less dynamic with little variation during the first fifteen days of hospitalization

(Figure 8A, Supplemental Figures 8-9). However, it should be noted that this was not the case
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for all innate cells examined. For example, HLA-DR' monocytes, which we and others found to
be increased in severe COVID-19 (Figure 5B) (21) and are known to be increased in severe
inflammatory syndromes such as sepsis (22-24), were more dynamic in the severe COVID-19
cohort than the moderate COVID-19 cohort. HLA-DR'® monocytes in severe COVID-19 subjects
increased with time peaking at 5-6 days of hospitalization and then resolved to levels similar to
those seen in patients with moderate COVID-19 by day 15 post hospitalization (Figure 8A,
Supplemental Figures 8-9). Thus overall, patients with moderate COVID-19 showed a signature
of a productive innate immune response in their blood, peaking early after hospitalization,
whereas patients with severe disease showed a blunted and delayed innate response.

Adaptive responses also differed between moderate and severe COVID-19 over time
(Figures 8B, Supplemental Figures 8-9). In patients with moderate COVID-19, total T cells
expanded and contracted consistent with an expected anti-viral T cell response, with a later
enrichment of memory CD4 T cells (Figure 8B). Memory B cells increased more robustly over
time in the moderate COVID-19 cohort throughout hospitalization, suggestive of sustained
interaction with memory CD4 T cells and antibody production. In contrast, patients with severe
COVID-19 consistently had lower levels of both T cells and memory B cells over the course of
hospitalization suggesting a diminished or delayed adaptive immune response to the virus. The
Tfh response in the severe COVID-19 cohort was greater than that of moderate COVID-19
cohort at all time points perhaps indicating unresolved T cell help or Tfh sustained by high IL-6
in critically ill patients. In addition, in the severe COVID-19 cohort, Treg cells as a percentage of
total CD4 T cells were increased over time as compared to the moderate COVID-19 cohort
(Figure 8B), likely in response to ongoing inflammation due to viral persistence. Consistent with

this idea, the percentage of CD8 T cells expressing HLA-DR, a marker of activation, also
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increased over time in the severe COVID-19 cohort (Figure 8B), as did CD8 T cells expressing
CD38 and PD-1 (Supplemental Figure 7B) while total memory CD8 T cells increases were
similar between moderate and severe patients (Figure 8B). Overall, our longitudinal analysis
revealed that the immune trajectory differs between moderate and severe patients during the first
two weeks after initial hospitalization. Patients with moderate disease showed signatures of a
productive anti-viral response that resolved within the 2 weeks of the study time, whereas
patients with severe disease showed signs of an aberrant response after hospital admittance that

persisted for at least the first two weeks in hospital.

Immune signatures of clinical improvement in patients with COVID-19

To identify key immune cell populations that are associated with either clinical improvement or
decline, we focused our analysis on samples taken from individuals before and after a change in
ordinal score, reflective of disease severity. We assessed changes in the absolute abundance of
immune cell populations by CBC or in the frequency of immune cell subsets in our CyTOF
analyses across these key clinical times. We identified subjects that had samples drawn across a
score improvement of > 2, or a score decline of > 1 (Figure 9A). This analysis identified several
populations whose abundance or frequency was significantly altered upon changes in ordinal
score (Figure 9B). Consistent with the lymphopenia observed in severe COVID-19, we found
that absolute lymphocytes decreased with clinical decline whereas an increase in the absolute
number of lymphocytes was associated with clinical improvement. The increase in lymphocytes
was mediated by a general increase in the frequency of naive and memory CD4+ and CD8+ T
cells as well as NK cells, but not B cells. The frequency of pDCs also increased in subjects

around the time of clinical improvement, whereas the frequency of neutrophils decreased in
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improving patients. Longitudinal analysis of individual subjects further demonstrated that
changes in the frequency of neutrophils, T cells, NK cells and pDCs could be observed during
recovery from severe COVID-19 (Figure 9C). This analysis demonstrates that the immune
landscape is dynamic in COVID-19, and that resolution of key features of severe disease resolve

co-incident with improvement in clinical status.

Early immune signatures of tocilizumab, but not convalescent plasma, treatment in severe
COVID-19 patients
To determine if there were immune signatures of tocilizumab or convalescent plasma treatment,
we identified 7 patients treated with tocilizumab and 7 patients treated with convalescent plasma
in our cohort who had CyTOF samples both before and after treatment (Supplemental Tables 2
and 3). Notably, these patients all had severe disease and there were stringent criteria for the use
of tocilizumab including rapidly escalating oxygen needs combined with an IL-6 level > 20x
upper limit of normal (ULN); and CRP >125 mg/dl (ULN, 7). Marked elevations in ferritin,
LDH and D-dimer were also weighted in the decision making process. All patients were also
treated with remdesivir, with the exception of one patient in the convalescent plasma group.
Additionally, 6/7 patients in the tocilizumab group analyzed were treated with convalescent
plasma prior to tocilizumab treatment (1-6 days pre tocilizumab). None of the 7 patients in the
convalescent plasma group were treated with tocilizumab during the time points analyzed. Also
important, patient care was similar between the two groups as the use of tocilizumab in our
hospital does not result in alterations to patient care.

We first assessed serum C-reactive protein (CRP) levels in these two groups as a measure of

the effectiveness of tocilizumab treatment, which should reduce this marker of systemic
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inflammation. Indeed, treatment with tocilizumab swiftly reduced serum CRP in all patients
(Figure 6A). Serum ferritin was also reduced mainly in those patients with very high
concentrations pre-treatment (Supplemental Figure 10A). In contrast, convalescent plasma
treatment had no consistent effect on CRP levels (Figure 10A). Therefore, tocilizumab treatment
showed an acute clinical signature of reduced inflammation in patients with severe COVID-19,
whereas convalescent plasma did not consistently affect these measures.

We then compared acute changes in immune populations in the blood before and after
tocilizumab or convalescent plasma treatment by assessing the closest CyTOF sample before day
of treatment (Range: day -4 to day 0) with the first CyTOF sample available after treatment
(Range: day 2 to 9 post-treatment). The specific time points used for each individual are shown
in Supplemental Table 3. Dividing the post-treatment time point cell frequency by the pre-
treatment time point for each patient allowed us to assess the fold change in response to
treatment for each patient. In the tocilizumab group there were several populations of immune
cells that differed significantly before and after treatment (Figure 10B). In contrast, there were no
significant changes after convalescent plasma treatment in the immune cell populations analyzed
by CyTOF (Figure 10C, Supplemental Figures 10B-C). The significant changes in response to
tocilizumab treatment included a reduction in the percent of neutrophils and an increase in the
percent total T cells, eosinophils, basophils, and DCs among CD45+ cells (Figures 10B, 10D,
10E). There were also increases in several CD4 and CD8 T cell subpopulations, and no changes
in any B cell populations after tocilizumab (Figure 7B). Moreover, our findings for T cells, B
cells, neutrophils and basophils were consistent with our signature of clinical improvement
shown in Figure 9. However, there was not complete overlap between the tocilizumab signature

and the clinical improvement signature as NK cells and pDCs were not significantly changed by
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tocilizumab (Figure 10B, data not shown) but were increased in improving patients (Figure 10B).
In the tocilizumab group, we also identified increased populations associated with T cell
activation, including HLA-DR+ and CD38+ CD4 and CD8 T cells (Figures 10B, 10D, 10E). In
summary, we observed a clear acute signature of tocilizumab treatment that shares some but not
all features of the immunologic changes seen with clinical improvement, whereas there is no
acute change in the immune landscape with convalescent plasma treatment, in patients with

severe COVID-19.
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Discussion

A growing literature indicates that the immune landscape is profoundly altered by COVID-19
and differs between individuals dependent on disease severity (18, 20, 25, 26). Whether the
immune landscape is a reflection of disease severity, a source of severe disease or a combination
of the two is still not fully understood. Here, we utilized recovered samples from the clinical
laboratory to rapidly assess peripheral blood cell populations by CyTOF and this data was
analyzed in conjunction with clinical laboratories and disease severity scores. Importantly, we
were able to collect samples longitudinally among the hospitalized individuals, allowing us to
examine the evolution of immune responses through natural progression and recovery, and in the
context of immune intervention. Novel aspects of our study included: 1) deep longitudinal
sampling allowing for detailed immune trajectories of recovery, 2) a control cohort of moderate
and severely ill hospitalized COVID-19 negative patients, and 3) analysis of immune signatures
associated with tocilizumab and convalescent plasma treatments.

Notably, we found that at the time of initial sampling the immune landscape in COVID-19
forms three dominant clusters that relate to disease severity. When we examined individual cell
populations based on disease severity, we found, as others have, that the neutrophil to
lymphocyte ratio is increased in individuals with severe COVID-19 (15-18). Furthermore, this
inverse relationship with neutrophils applies to basophils, DC, NK and monocytes, and only
modestly with B cells, and is most pronounced among T lymphocytes with the exception of Tfh,
which are positively correlated to neutrophil numbers, a finding also consistent with the current
literature (18). Interestingly, many changes seen in severe COVID-19 compared to mild and
moderate disease were also seen in our hospitalized COVID-19 negative control cohort.
Including this unique control group allowed us to identify differences between critically ill

patients in general and those infected with SARS-CoV-2. Features shared between the
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hospitalized severe COVID-19 patients and the COVID-19 negative cohort included increased
neutrophils, and decreased T cells, NK cells, pDCs and basophils, and likely reflect active
inflammation during critical illness. In contrast, increased Tfh, plasmablasts and evidence of T
cell activation were unique to the severe COVID-19 patients and may reflect the anti-viral
response in these individuals or unique aspects of the pathology of SARS-CoV-2 infection.

Our longitudinal assessment further allowed us to identify patterns that distinguished severe
and moderate disease. Individuals with a moderate disease course showed a pattern consistent
with productive innate and adaptive immune response characterized by early and transient
increases in monocytes and NK cells with later sustained increases in memory T and B cells.
Those with severe disease have features suggestive of a dysregulated immune response
characterized by delayed and prolonged increases in Tfh, HLA-DR' monocytes and activated
CD8 T cells. Although the time from first symptom and first sample was delayed in severe
patients as compared to moderate, this was not reflected in a simple shift of the immune
trajectory. Instead, changes in multiple cell types of moderate subjects were transitory while
evidence of persistent activation in different immune cells were progressive and unresolved in
severe patients. This suggests that the degree of inflammation or persistence of virus markedly
changed the immune landscape over time in severe as compared to moderate disease.
Importantly, the persistent features of severe disease are reversed with improvements in clinical
score and can be modulated in part with immune interventions, such as IL-6 pathway blockade.

Our findings for the tocilizumab study were intriguing, especially in the light of the recent
disappointing results from the first randomized double blind phase 3 trial (27). Our data suggests
that changes in the immune landscape after tocilizumab treatment, with the exception of NK and

pDC recovery, are consistent with the immune signature of clinical improvement that we
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identified. Of note, only 4 out of 7 of these tocilizumab-treated patients improved clinically in
the acute timeframe of our analysis (within 9 days of treatment) with the remaining 3 patients
only showing clinical improvement at later times. This suggests that although tocilizumab
treatment induces an acute signature of clinical improvement in both serum CRP and specific
immune cell populations, this signature is disconnected from immediate clinical change
indicating that the immune changes with tocilizumab may be inadequate to support full recovery.
Caveats for our tocilizumab analysis include the small cohort size, and that all but one of these
patients were treated with convalescent plasma prior to tocilizumab treatment. Therefore, it is
possible that convalescent plasma acts synergistically with tocilizumab to cause the immune
signature we identified. Interestingly and in contrast to tocilizumab, we saw no clear immune
signature of convalescent plasma within 7 days, suggesting either our cohort was too small to see
changes, the immune populations change after the times we analyzed, or convalescent plasma
does not act at the level of blood leukocyte populations. It is clear that further investigation is
needed to determine if tocilizumab has a therapeutic role in COVID-19, and in what patient
population it would be useful and this may be determined in part by the character and trajectory
of the immune landscape of the patient.

The demographics of our COVID-19 patients were consistent with published case reports.
African Americans and Hispanics were overrepresented in the severe COVID-19 group to the
population of Washington State, which is consistent with reports from other states in the USA
(10, 11). We also found that type 2 diabetes was more common in those with severe disease
compared to moderate or mild disease. Notably, all groups have higher diabetes prevalence than
the US or Washington rates (28); the highest prevalence in Washington state is among 65-74

year olds at 21.5%, which is more than doubled in the cohort with severe disease described here.
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Diabetes and obesity have consistently been identified risk factors for COVID severity (4-9);
reduced T-cell function and chronic inflammation have been postulated as potential mechanisms
driving this increased risk (29). In addition, some glucose-lowering agents used in diabetes are
known to impact the immune system (reviewed in (30). Full analysis of the differential impact of
diabetes and its treatment on our immune signatures is beyond the scope of this work but merits
further analysis.

There are limitations to this study. Due to the urgency of the pandemic, we chose to use
recovered clinical samples for our study and thus the collection schedule and sample availability
was dictated by the treatment needs of the patient. This meant that we did not have the same time
points for every patient, and that we could not match between groups the medications that
individuals were already taking due to pre-existing comorbidities, some of which may impact the
immune responses seen here. In addition, the differences between the mild, moderate and severe
COVID-19 groups may reflect the time from disease onset, which significantly varied between
these groups, and/or differences in viral burden, which we could not assess. The subjects in our
hospitalized control group were not matched to the SARS-CoV-2 positive groups by race,
although they are well matched by age.

In summary, we have identified unique features of the immune landscape in moderate versus
severe COVID-19 along with features that are common to moderate and severe non-COVID
illness. Importantly, our findings indicate that selection of immune interventions should be
based in part on disease presentation and early disease trajectory due to the profound differences
in the immune response in those with mild to moderate disease and those with the most severe

disease. Finally, our characterization of the variety of immune signatures in COVID-19 provides
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insight into the types of immune interventions that may be beneficial in the treatment of severe

disease.
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Methods

Study design

Using our newly developed 33-parameter CyTOF panel, we characterized the immune response
longitudinally in 59 adults with acute COVID-19 including 24 hospitalized patients with severe
disease, 28 hospitalized patients with moderate disease and 7 ambulatory patients with mild
disease not requiring hospitalization. All COVID-19 subjects were positive for SARS-CoV-2 and
our control cohort of 17 hospitalized patients tested negative for SARS-CoV-2. Healthy control
subjects were age and sex matched to the hospitalized COVID-19 subjects. Importantly the
samples used were collected prior to the start of the COVID-19 pandemic in December 2019. For
the hospitalized COVID-19 cohort, longitudinal samples were collected starting as soon as
possible after hospital admission, then if feasible, daily for the first week, and then at 3-4 day
intervals subsequently (Figure 1). A single sample was obtained at time of first outpatient visit
for the ambulatory COVID-19 subjects. A maximum of two samples were obtained from the
hospitalized COVID-19 negative control subjects. All assays were run and analyzed in a blinded

manner.

Study approval

Samples from COVID-19 subjects and from hospitalized COVID-19 negative control subjects
were recovered from the Virginia Mason Medical Center Central Processing Lab after all tests
required for clinical care were complete, under approval by the Benaroya Research Institute
(BRI) -approved protocol IRB20-036. All healthy control samples were from healthy subjects in

the BRI Immune-Mediated Disease Registry and Repository who had given written informed
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consent in accordance with the Declaration of Helsinki and according to the BRI Institutional

Review Board-approved protocol IRB071009.

CyTOF staining, acquisition, and subset identification

Peripheral blood was collected from each donor into sterile vacutainer tubes containing the
anticoagulant EDTA. Blood cells were washed twice with phosphate-buffered saline (PBS) and
stained for viability exclusion with a 100 uM cisplatin solution (Enzo Life Sciences,
Farmingdale, New York) for one minute at room temperature. Cisplatin was quenched with five
volumes MaxPar Cell Staining Buffer (CSB; Fluidigm, South San Francisco, CA), and the cells
then stained with a titered, aliquoted, and frozen cocktail of monoclonal antibodies conjugated to
metal isotopes for 20 minutes at 4 °C. Red blood cell lysis was performed using RBC Lysis/
Fixation solution (BioLegend) for five minutes at room temperature followed by a wash with
CSB. The resulting leucocytes were fixed overnight at 4°C with MaxPar Fix and Perm Solution
(Fluidigm, South San Francisco, CA) containing 125 nM Cell-ID Intercalator-Ir (Fluidigm,
South San Francisco, CA). Following fixation, cells were washed with CBS, resuspended in
milli-Q water and stored at 4°C until acquisition. All antibodies from Biolegend and BD
Biosciences were conjugated to their respective metal isotopes using the Maxpar® X8
Multimetal Labeling Kit (Fluidigm, South San Francisco, CA). Samples were stained within 48
hours of blood draw. Sample stability with the CyTOF assay was established with three COVID-
19 samples assayed on the day of collection (baseline, Day 0), one day after collection (Day 1) or
two days after collection (Day 2). Populations and markers on populations were standard and
based on Staser et.al. (31). All populations and markers with a frequency >5% of live CD45+

cells had a CV<40% between baseline and each time point. This variation was less than that of


https://doi.org/10.1101/2020.09.18.303420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303420; this version posted November 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

biological comparisons. MaxPar Four Element Calibration Beads (Fluidigm, South San
Francisco, CA) were added to each sample immediately before acquisition. All samples were
acquired on a Helios CyTOF3 mass spectrometer (Fluidigm, South San Francisco, CA) with a
target cell acquisition of 100,000 live events at a rate of 500 events/second to capture >50 cells
per gated population or marker. The CyTOF panel is shown in Supplemental Table 1 and gating
strategies are shown in Supplemental Figures 2-4. To determine gates for activation markers
such as CD25, CD69 and CD38 on T cells and PD-L1 on myeloid cells, we first analyzed12
samples from 6 subjects with moderate COVID-19 and 6 subjects with severe COVID-19. Gates
were set based on a comparison between samples that were clearly highly activated and those
that were clearly non-activated. These gates were then applied to all samples in the study and
used consistently for all populations analyzed. Specifically, gates for CD25, CD38, CD69, HLA-
DR, PD-1 and PD-L1 were the same for all cell types where they were applied. For example, the
CD38 gate was the same for CD4 T cells, CD8 T cells and Tth cells, the CD25 gate was the
same for CD4 and CD8 T cells, and the CD69 gate was the same for CD4 T cells, CD8 T cells,
NK cells, eosinophils, neutrophils etc. Data was analyzed using a FlowJo software versions

10.6.0 and 10.6.1 (FlowJo LLC, Ashland, OR).

Data and statistical analysis

P-values: Apart from the paired-sample tests in Figure 10, all p-values were calculated using
unpaired, two-tailed Wilcoxon Rank Sum tests. In all cases, corrections for multiple testing were
performed using the False Discovery Rate (FDR) method. For between group comparisons of the
clinical data, p-values were calculated using the Kruskal-Wallis one-way analysis of variance

test.
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Correlation graph: The correlation graph in Fig. 2A was built from the matrix of Pearson

correlations in Fig. 2B using the R iGraph package (32)
Heatmap: The heatmap in Figure 6 was generated using Euclidean distance and the clustering
method Ward.D2.

Smoothed time-course graphs: Time-series data from each patient were organized in terms of the

relative number of days from the date of the first sample (hereon denoted pseudo-time), and then
aligned by first sample. To reduce the potential effects of outlier samples, median values were
calculated for each severity category and each day for the samples available. If no samples were
available at a given pseudo-time day, we inferred a value using linear interpolation between the
before and after pseudo-time points. The vertical bars at each pseudo-time point are equal to one
standard deviation from the indicated median value. Plot point with no error bars are those with
only one sample or represent an inferred value. Loess smoothing was performed on the median
values for each disease severity class using the geom_smooth function in the R ggplot library
(33)

UMAP: The UMAP plots in Figure 7 were generated directly from the CyTOF signal intensities
following archsinh transformation with a co-factor value of 5. To ensure against batch and other
potential confounding effects, we specifically selected samples collected and stained in a highly
uniform fashion from a single donor and z-score normalized probe intensities for each sample

prior to UMAP projection to 2D.
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Figure legends

Figure 1. Clinical course and mechanistic data for COVID-19 subjects. Each subject is
represented in one row. Subjects are first grouped by severity: severe (red), moderate (blue) and
mild (cyan) disease. Subjects are next ranked by highest ever ordinal score (most severe at top),
and finally ranked by minimum ordinal score (representing the largest change over time). X-axis:
days from first clinical assessment, typically the date of hospital admission. Colored points
represent the ordinal score captured daily. No subjects had a score of 1 (recovered) at any point.
Dates with CyTOF data available are denoted by circles; dates without CyTOF data are denoted

by triangles.

Figure 2. Overview of correlations among cell frequencies and Covid-19 patient
characteristics. (A) Heatmap visualization of pairwise Pearson correlations with p < 0.05 among
ordinal score, age, BMI, CyTOF population frequencies and CBC parameters. Key indicates r
value scale for positive (red) and negative (blue) correlations. (B) Network map visualization of
correlations between CyTOF major immune cell subsets in our mild, moderate and severe
COVID-19 cohort. Shown are positive (blue lines) and negative (red lines) Pearson correlations
with absolute(r) > 0.35 and p < 0.05. Line thickness corresponds to the strength of association
(thicker is stronger). Correlations within major cell populations (same-color nodes) are not

shown.

Figure 3. Correlations among immune cell populations in Covid-19 patients suggest disease
severity is driven by an increase in neutrophils and a correlated depletion of plasmacytoid

dendritic cells (pDC) and basophils. (A to F) Plots display FDR-adjusted Pearson correlations
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and linear regression lines with 95% confidence interval shading. Data points are colored

according to the ordinal score observed for each patient at admission.

Figure 4. Cross-sectional immune correlates of Covid-19 disease severity. (A) In 274
samples from 59 Covid-19 patients, the abundances of neutrophils, T cells, NK cells,
plasmacytoid dendritic cells (pDCs), and basophils are highly correlated with disease severity
(all p-values FDR adjusted). Red plot points mark values for samples further analyzed in

improving versus declining patients (Figure 9).

Figure 5. Immune cell frequencies vary by COVID-19 disease severity. (A) Clinically-
measured CBC absolute count values from day of admission. Dashed black lines mark the
clinical laboratories normal ranges. Subjects grouped based on disease severity, mild (cyan),
moderate (blue) and severe (red), and SARS-CoV-2 negative hospitalized controls (gray). (B and
C) The relative proportions of immune cell sub-types vary by disease severity. CyTOF cell
frequencies based on disease severity expressed as either percentage of all leukocytes (B) or
percentage of parent population (C). Gray bands mark the means (dashed black line) +/- 1
standard deviation in 20 healthy control subjects. Asterisks in C indicate significance * p<0.05

and *** p < 0.001.

Figure 6. Admission-day sample CyTOF cell frequencies fall into three distinct clusters
Heatmap showing row-normalized Z-scores thresholded at +/-2 (see color key). Disease-severity
scores are shown on the right hand-side of the heatmap for the day of admission, day of

sampling, maximum score and score at discharge (Disease score key shown at top of heatmap)
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Clusters are marked A-C at right, and indicated by green, orange, and red highlighting on the

dendrogram at left.

Figure 7. The COVID-19 immune landscape changes over recovery time. UMAP projections
of batch-corrected CyTOF probe intensities for four samples from a single COVID-19 patient
recovering from a disease severityordinal score of 6 to a score of 3 over a period of 6 weeks (see

methods for details).

Figure 8. Immune profiles of moderate and severe patients diverge over time reflecting
different disease trajectories. Longitudinal plots of gated populations for (A) innate and (B)
adaptive cell types. Days (relative) from first hospitalization are shown. Loess trajectory
smoothing was performed on the median values (colored disks) for each group at each time
point. Vertical bars indicate +/- 1 standard deviation around the median at each time point. Plot
points without vertical error bars are from single data points, or interpolated values used for

smoothing.

Figure 9. Immune signatures of clinical decline and improvement. (A) Schematic outlining
approach for identifying immune signatures of clinical decline and improvement focusing on
changes in monitored parameters in longitudinal samples taken before and after changes in
clinical score. (B) Log2-fold change in the indicated cell populations as measured by CyTOF or
CBC analysis in longitudinal samples taken before and after improving (green) or declining (red)
clinical scores. Asterisks indicates a significant difference in the fold changes (two-tailed,

unpaired Wilcoxon Rank Sum FDR-adjusted p < 0.05) between improving (n=7) and declining
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(n=10) patient groups for the indicated cell populations. (C) Longitudinal analyses of the

frequency of neutrophils, T cells, NK cells and pDCs vs. clinical score in 3 individual patients.

Figure 10. Early immune signatures of tocilizumab but not convalescent plasma in severe
COVID-19. (A) Serum CRP in patients receiving tocilizumab (top; n=7) or Convalescent plasma
(bottom; n=7) measured in clinical labs relative to day of treatment. Each line represents an
individual patient. (B and C) Change in blood immune populations measured by CyTOF after
treatment with tocilizumab (B) or convalescent plasma (C). The fold change in each population
for each subject was determined by dividing the percent of each population in the first post-
treatment sample at day +2 or more after treatment with the closest pre-treatment sample
available as detailed in Supplemental Table 3. All are shown as percent of CD45+ cells unless
otherwise indicated. (D) Plots showing the percent of the indicated populations in tocilizumab-
treated patients before and after treatment, using the time points used for analysis in (B and
Supplemental Table 3). (E) Plots showing all the data points available for tociluzimab-treated
patients for the indicated populations shown in (D and Supplemental Table 3). Each line
represents an individual patient and the color of the line reflects the clinical ordinal score at the

time of sampling. *, p<0.05 Wilcoxon matched pairs test, adjusted for multiple comparisons.
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(n=24)
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(n=28)
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(n=7)

1510 15 20 25 30 35 40 45 50 5560 65
Days from first clinical assessment

Disease Ordinal Score
2, not hospitalized but unable to resume normal activities
3, hospital, not requiring supplemental oxygen
4, hospital requiring supplemental oxygen
5, hospital, requiring nasal high flow oxygen therapy,
non-invasive mechanical ventilation or both

@ 6, hospital, requiring invasive mechanical ventilation
@ 7, death

CyTOF: Yes (circle); No (triangle)

Figure 1. Clinical course and mechanistic data for COVID-19 subjects. Each subject is represented in one row.
Subjects are first grouped by severity: severe (red), moderate (blue) and mild (cyan) disease. Subjects are next ranked
by highest ever ordinal score (most severe at top), and finally ranked by minimum ordinal score (representing the
largest change over time). X-axis: days from first clinical assessment, typically the date of hospital admission. Colored
points represent the ordinal score captured daily. No subjects had a score of 1 (recovered) at any point. Dates with
CyTOF data available are denoted by circles; dates without CyTOF data are denoted by triangles.
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Figure 2. Overview of correlations among cell frequencies and Covid-19 patient characteristics. (A) Heatmap
visualization of pairwise Pearson correlations with p < 0.05 among ordinal score, age, BMI, CyTOF population
frequencies and CBC parameters. Key indicates r value scale for positive (red) and negative (blue) correlations.
(B) Network map visualization of correlations between CyTOF major immune cell subsets in our mild, moderate
and severe COVID-19 cohort. Shown are positive (blue lines) and negative (red lines) Pearson correlations with
absolute(r) > 0.35 and p < 0.05. Line thickness corresponds to the strength of association (thicker is stronger).
Correlations within major cell populations (same-color nodes) are not shown.
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Figure 3. Correlations among immune cell populations in Covid-19 patients suggest disease
severity is driven by an increase in neutrophils and a correlated depletion of plasmacytoid
dendritic cells (pDC) and basophils. (A to F) Plots display FDR-adjusted Pearson correlations and
linear regression lines with 95% confidence interval shading. Data points are colored according to
the ordinal score observed for each patient at admission.
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Figure 4. Cross-sectional immune correlates of Covid-19 disease severity. (A) In 274
samples from 59 Covid-19 patients, the abundances of neutrophils, T cells, NK cells,
plasmacytoid dendritic cells (pDCs), and basophils are highly correlated with disease severity
(all p-values FDR adjusted). Red plot points mark values for samples further analyzed in
improving versus declining patients (Figure 9).
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Figure 5. Immune cell frequencies vary by COVID-19 disease severity. (A) Clinically-measured CBC absolute
count values from day of admission. Dashed black lines mark the clinical laboratories normal ranges. Subjects grouped
based on disease severity, mild (cyan), moderate (blue) and severe (red), and SARS-CoV-2 negative hospitalized
controls (gray). (B and C) The relative proportions of immune cell sub-types vary by disease severity. CyTOF cell
frequencies based on disease severity expressed as either percentage of all leukocytes (B) or percentage of parent
population (C). Gray bands mark the means (dashed black line) +/- 1 standard deviation in 20 healthy control subjects.
Asterisks in C indicate significance * p<0.05 and *** p < 0.001.
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Figure 6. Admission-day sample CyTOF cell frequencies fall into three distinct clusters
Heatmap showing row-normalized Z-scores thresholded at +/-2 (see color key). Disease-
severity scores are shown on the right hand-side of the heatmap for the day of admission, day
of sampling, maximum score and score at discharge (Disease score key shown at top of
heatmap) Clusters are marked A-C at right, and indicated by green, orange, and red
highlighting on the dendrogram at left.
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Figure 9. Immune signatures of clinical decline and improvement. (A) Schematic outlining approach for
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identifying immune signatures of clinical decline and improvement focusing on changes in monitored parameters in
longitudinal samples taken before and after changes in clinical score. (B) Log2-fold change in the indicated cell
populations as measured by CyTOF or CBC analysis in longitudinal samples taken before and after improving
(green) or declining (red) clinical scores. Asterisks indicates a significant difference in the fold changes (two-tailed,
unpaired Wilcoxon Rank Sum FDR-adjusted p < 0.05) between improving (n=7) and declining (n=10) patient
groups for the indicated cell populations. (C) Longitudinal analyses of the frequency of neutrophils, T cells, NK
cells and pDCs vs. clinical score in 3 individual patients.
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Figure 10. Early immune signatures of tocilizumab but not convalescent plasma in severe COVID-19. (A)
Serum CRP in patients receiving tocilizumab (top; n=7) or Convalescent plasma (bottom; n=7) measured in clinical
labs relative to day of treatment. Each line represents an individual patient. (B and C) Change in blood immune
populations measured by CyTOF after treatment with tocilizumab (B) or convalescent plasma (C). The fold change
in each population for each subject was determined by dividing the percent of each population in the first post-
treatment sample at day +2 or more after treatment with the closest pre-treatment sample available as detailed in
Supplemental Table 3. All are shown as percent of CD45+ cells unless otherwise indicated. (D) Plots showing the
percent of the indicated populations in tocilizumab-treated patients before and after treatment, using the time points
used for analysis in (B and Supplemental Table 3). (E) Plots showing all the data points available for tociluzimab-
treated patients for the indicated populations shown in (D and Supplemental Table 3). Each line represents an
individual patient and the color of the line reflects the clinical ordinal score at the time of sampling. *, p<0.05
Wilcoxon matched pairs test, adjusted for multiple comparisons.
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Table 1. Cohort demographics and clinical characteristics
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Severe Moderate Mild Hospitalized
COVID-19 COVID-19 COVID-19 COVID-19 negative
(n=24) (n=28) (n=28) (n=17)
Median (Range) Median (Range) | Median (Range) Median (Range)
Age (yrs) 61 (31-89) 67 (34-96) 54 (27-76) 67 (30-97)
Number of days
hospitalized 19 (4-65) 6 (2-28) NA 5 (1-34)
Days from symptom
onset to admission 9(3-22) 4(0-27) 5(2-14) NA
Disease score at 4 (2-4)
admission 989 2(2) e
BMI | 30.1(18.1-54.5) 29.0 (17.0-54.1) | 25.5(22.5-37.2) 25.7 (21.1-69)
Number (%) Number (%) Number (%) Number (%)
Outcome: discharged 18 (75%) 28 (100%) NA 16 (94.1%)
Outcome: deceased 6 (25%) 0 (0%) NA 1 (5.9%)
Female 12 (50%) 14 (50%) 3 (42.9%) 10 (58.8%)
Race
Asian 1 (4.2%) 3 (10.7%) 3 (42.9%) 1 (5.9%)
African American 4 (16.7%) 5 (17.9%) 1 (14.3%) 0 (0%)
Native FHawaiian/ 0 (0%) 1(3.6%) 0 (0%) 0 (0%)
Native American 2 (8.3%) 0 (0%) 0 (0%) 1 (5.9%)
White 6 (25%) 17 (60.7%) 2 (28.6%) 14 (73.7%)
Unknown/Other 11 (45.8%) 2 (7.1%) 1 (14.3%) 1 (5.9%)
Hisparﬁi?ﬂ;'i% 9 (37.5%) 2 (7.1%) 1 (14.3%) 0 (0%)
Preexisting
comorbidities
Cancer 1 (4.2%) 6 (21.4%) 0 (0%) 2 (8.7%)
Diabetes 11 (45.8%) 8 (28.6%) 2 (28.6%) 3 (17.6%)
Hypertension 12 (50%) 19 (67.9%) 0 (0%) 6 (35.3%)
Exposure to
experimental
medicine
Hydroxychloroquine 7 (29.2%) 2 (7.1%) 0 (0%) NA
Remdesivir 17 (70.8%) 11 (39.3%) 0 (0%) NA
Tocilizumab 8 (33.3%) 0 (0%) 0 (0%) NA
Convalescent plasma 15 (62.5%) 4 (14.3%) 0 (0%) NA
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