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Abstract 

Despite a rapidly growing body of literature on COVID-19, our understanding of the immune 

correlates of disease severity, course and outcome remains poor. Using mass cytometry, we 

assessed the immune landscape in longitudinal whole blood specimens from 59 patients 

presenting with acute COVID-19, and classified based on maximal disease severity. Hospitalized 

patients negative for SARS-CoV-2 were used as controls. We found that the immune landscape 

in COVID-19 forms three dominant clusters, which correlate with disease severity. Longitudinal 

analysis identified a pattern of productive innate and adaptive immune responses in individuals 

who have a moderate disease course, whereas those with severe disease have features suggestive 

of a protracted and dysregulated immune response. Further, we identified coordinate immune 

alterations accompanying clinical improvement and decline that were also seen in patients who 

received IL-6 pathway blockade. The hospitalized COVID-19 negative cohort allowed us to 

identify immune alterations that were shared between severe COVID-19 and other critically ill 

patients. Collectively, our findings indicate that selection of immune interventions should be 

based in part on disease presentation and early disease trajectory due to the profound differences 

in the immune response in those with mild to moderate disease and those with the most severe 

disease.  
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Introduction 

The coronavirus-19-disease (COVID-19) pandemic has brought a worldwide focus not only on 

the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), but also on how immunity 

to this virus both promotes viral clearance and contributes to morbidity and mortality in infected 

individuals. There is a wide range of disease severity in SARS-CoV-2 infected individuals, 

ranging from asymptomatic infection to severe COVID-19 requiring mechanical ventilation, and 

in some cases, to death. Some factors have been identified that are associated with increased 

disease severity and poor outcome during COVID-19, including age, race, obesity, hypertension, 

and type 2 diabetes (1-11). However, we still do not understand the biologic factors that 

contribute to disease severity and outcome. It is becoming clear that not only does the severity of 

disease vary amongst SARS-CoV-2 infected individuals, but the immune response can also vary 

widely leading to differing immune landscapes between patients. Therefore, it is important to 

understand how the immune landscape contributes to COVID-19 severity and outcome. Another 

important gap in our knowledge is how the immune landscape in COVID-19 resembles or is 

distinct from that seen in critically ill patients hospitalized for other reasons, since the immune 

landscape may change in the context of critical illness regardless of its etiology. In particular, it 

is important to determine if the early immune landscape can be used to inform which COVID-19 

patients will have a severe disease course, and would benefit from early interventions. 

Although we can learn about immunity to SARS-CoV-2 by assessing a snapshot of the 

immune response at one point in time, the immune response to infection is dynamic and is best 

studied over time. Early immune responses to viruses are dominated by the innate immune 

system, including neutrophils, monocytes, plasmacytoid dendritic cells (pDCs) and natural killer 

(NK) cells, while adaptive immune responses of T and B cells critical for viral clearance develop 
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over days to weeks. Understanding how these populations change over time and relate to disease 

trajectory can give insight into the signature of a productive anti-SARS-CoV-2 immune response 

associated with clinical improvement, and whether immune dysregulation contributes to severe 

COVID-19. Additionally, early in the pandemic hospitalized patients were treated with a variety 

of experimental therapeutics, including the antiviral agent remdesivir, cytokine modulating 

therapies, and plasma from convalescent patients, all with varying efficacy in clinical studies and 

trials. However, how and if these treatments affect the immune landscape before and after 

therapeutic exposure has not been described. To address these outstanding and important 

questions regarding the immune response during COVID-19, we used mass cytometry integrated 

with detailed clinical data to examine how the immune landscape changes over time in severe 

and moderate disease through natural progression and recovery, and also in the context of 

immune intervention. 

 

Results 

Patient demographics and clinical characteristics  

We collected peripheral blood from 59 patients with COVID-19 (52 hospitalized patients and 7 

ambulatory outpatients) at the Virginia Mason Medical Center, Seattle, Washington during the 

months of April and May 2020. Notably, we performed deep longitudinal sampling over the 

course of disease with an average of 4 time points per subject (Range: 1-18; Figure 1) allowing 

for detailed immune trajectories of recovery. Patients were classified based on maximum disease 

severity using a 7-point ordinal scale (OS) representing the following outcomes: 1, not 

hospitalized with resumption of normal activities; 2, not hospitalized, but unable to resume 

normal activities; 3, hospitalized, not requiring supplemental oxygen; 4, hospitalized, requiring 
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supplemental oxygen; 5, hospitalized, requiring nasal high-flow oxygen therapy, noninvasive 

mechanical ventilation, or both; 6, hospitalized, invasive mechanical ventilation; and 7, death 

(12).Of the hospitalized patients, 24 were classified as having severe disease on the basis of 

requiring management in a critical care unit (CCU); all required mechanical ventilation (maximal 

OS≥6), except one who was on high flow oxygen (maximal OS=5). The remaining 28 

hospitalized patients were not in the CCU and were classified as having moderate COVID-19, 

with all requiring supplemental oxygen at some point in their hospital course (maximal OS=3-5). 

The 7 ambulatory patients had mild disease (OS=2) and did not require hospitalization. For a 

control group, we also collected blood from 17 hospitalized patients who tested negative for 

SARS-CoV-2; four of these patients were admitted to the CCU and the remainder to the floor. 

These patients were age and sex-matched to the hospitalized COVID-19 groups, and were 

admitted for a variety of conditions including respiratory (n=4), cardiac (n=4), gastrointestinal 

(n=3), neurologic (n=3) and miscellaneous conditions (n=3).  

The demographic and clinical characteristics of all the patient groups are summarized in 

Table 1. There was no significant difference in age or sex composition between severe, moderate 

and mild COVID-19 groups. Regarding racial distribution, there was an overrepresentation in the 

severe COVID-19 group of African American (16.7%) and Hispanic (37.5%) individuals based 

on the Washington state population, which is 78.5% white, 4.4% African American and 13% 

Hispanic (13). Duration of symptoms at time of presentation was longer in the severe disease 

group (median 9 days, range 3-22) compared to both the moderate (median 4 days, range 0-27) 

and mild (median 5 days, range 2-14) groups (p value=0.01). Duration of hospitalization was 

also significantly longer in the severe disease group (median 19 days, range 4-65) compared to 

the moderate disease group (median 6 days, range 2-28) (p value<0.01), although discharge was 
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delayed for some patients due to restrictions placed on transfers to skilled nursing facility 

pending viral clearance from nasopharyngeal swabs.  

Chronic medical conditions such as diabetes, hypertension and cancer were common in the 

hospitalized COVID-19 cohorts. Diabetes was present in 45.8% of the severe group, 28.6% of 

the moderate group and 28.6% of the mild group. Hypertension was present in 50% of the severe 

group and 67.9% of the moderate group but absent in the mild group. Cancer was present in 

4.2% of the severe COVID-19 group, 21.4% of the moderate group and absent in the mild group. 

Obesity was also more prevalent in the hospitalized COVID-19 cohort with a median BMI > 29 

in both severe and moderate disease groups compared to a median BMI ~25 in the mild COVID-

19 (p value = 0.08) and the hospitalized SARS-CoV-2 negative groups.  

Because this cohort was from the early stage of the pandemic in the USA, hospitalized 

patients received a variety of experimental treatments, including hydroxychloroquine, 

remdesivir, tocilizumab and convalescent plasma (Supplemental Figure 1). Notably many 

patients received more than one type of experimental treatment. In the severe COVID-19 group, 

7 patients (29.2%) received hydroxychloroquine, 17 (70.8%) received remdesivir, 8 (33.3%) 

received tocilizumab and 15 (62.5%) received convalescent plasma. Among the moderately ill, 2 

(7.1%) received hydroxychloroquine, 11 (39.3%) received remdesivir, and 4 (14.3%) received 

convalescent plasma. The mild disease group did not receive any of these COVID-19 therapies.  

 

Elevated white blood cell counts in COVID-19 are driven by an increase in neutrophils, with 

correlated depletion of plasmacytoid dendritic cells and basophils  

We assessed the immune landscape by combining clinical data with mass cytometry (CyTOF) 

performed on whole blood samples recovered from the clinical laboratory. The CyTOF panel 
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was designed to assess the composition of the innate and lymphocyte compartments and 

determine the maturation, lineage and activation status of these cell populations (Supplemental 

Table 1, Supplemental Figures 2-4). To better understand the impact of disease, we performed 

correlation analysis on the first sample collected for each patient in the COVID-19 cohort (n=59; 

Figure 2 and Supplemental Figure 5). The heatmap in Figure 2A shows all significant 

correlations between clinical data (disease severity ordinal score, age, BMI and CBC) and 

CyTOF immune cell percentages of the total CD45+ (pan-leucocyte marker) cell compartment, 

whereas the correlation network in Figure 2B focuses only on correlations among major 

leukocyte populations identified by CyTOF. We found correlations consistent with the current 

literature. For example, white blood cell (WBC) counts and neutrophil counts were significantly 

correlated (Figure 2A), not surprisingly given that neutrophils comprise a large proportion of 

WBC, and both are elevated in severe COVID-19 (14, 15). Neutrophils in both the CBC and 

CyTOF datasets also inversely correlated with proportions of lymphocytes and T cells (Figures 

2A-B) supporting previous reports that the neutrophil-to-lymphocyte ratio is increased in severe 

COVID-19 (15-18). In addition, both pDCs and basophils negatively correlated with neutrophils, 

positively correlated with T cells and positively correlated with each other (Figures 3A-E). 

Together these findings for pDCs and basophils are consistent with recent studies reporting 

depletion of these cell types in acute COVID-19 (19, 20). Although our CyTOF panel had 

limited ability to distinguish T cell lineage, T follicular helper (Tfh) cells were assessed. Notably, 

unlike other T cell populations the percentage of Tfh cells in the memory CD4+ compartment 

showed a positive correlation with neutrophils, although this did not reach statistical significant 

(Figure 3F). Taken together these observations indicate that coordinate and counter-acting 
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changes in neutrophils, lymphocytes, pDCs and basophils drive the immune signature of 

COVID-19.  

 

The immune landscape differentiates individuals based on disease severity 

In order to understand whether the immune signature in COVID-19 differed by disease severity 

we determined the correlation between cell frequency and ordinal score at the time of sampling. 

Increasing neutrophil frequency was positively correlated with increasing disease severity 

(Pearson correlation ~ 0.46, FDR-adjusted p < 0.01), while T cells, NK, pDCs and basophils 

were lower in severe disease (all FDR-adjusted p-values < 0.005) (Figure 4). To determine if the 

immune landscape early in disease distinguishes severe from mild disease, we next performed a 

cross-sectional analysis of our population categorized based on an individual’s highest disease 

score during the course of their illness using data from the first sample collected for each patient 

(Figure 5, Supplemental Figure 5). The CBC data showed the greatest difference with disease 

severity in white blood cell counts with an increase in the absolute neutrophils and monocyte 

counts and low absolute lymphocyte counts (Figure 5A). However, these CBC results frequently 

fell within the normal range and notably, the hospitalized COVID-19 negative population 

showed very similar changes to those seen with severe COVID-19, suggesting that these findings 

are not unique to COVID-19 but are instead reflective of critical illness.  

In contrast, the cross-sectional analysis of the CyTOF dataset identified two different 

patterns of immune alterations in the COVID-19 cohort: those that were also present in the 

hospitalized COVID-19 negative cohort, and those that were unique to severe COVID-19. 

Immune cell populations that were similar between severe COVID-19 and hospitalized COVID-

19 negative patients correlated with COVID19 disease score at all time points, as shown in 
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Figure 4. Specifically, there was an increase in neutrophils and HLA-DRlo monocytes with a 

decrease in T cells, NK, basophils and pDCs in severe disease (Figure 5B).  Notably, for each of 

these cell types the changes seen in severe COVID-19 subjects were similar to the hospitalized 

COVID-19-negative cohort, suggesting that these changes are features of critical illness and not 

unique to severe COVID-19. Immune alterations unique to severe COVID-19 in this cross-

sectional analysis included increases in CD38+ CD8 T cells (FDR-adjusted p = 0.02), Tfh cells 

(FDR-adjusted p = 0.03) and plasmablasts (FDR-adjusted p = 0.00007) (Figure 5C, 

Supplemental Figure 5). There were also increases in CD4 central memory T cells and HLA 

DR+ CD8 T cells although these were not statistical significant after adjusting for multiple 

testing (Figure 5C).  

Unsupervised hierarchical clustering of the CyTOF data for each subject’s initial sample 

identified three major clusters of patients (Figure 6): a T cell predominant cluster with a relative 

decrease in neutrophils (cluster A), a cluster with mixed features including a predominance of 

monocyte, DC and NK cells (cluster B), and a third cluster (cluster C) whose patients had high 

levels of neutrophils and a relative paucity of other cell types. These clusters generally 

differentiated individuals based on their disease severity, with more moderate disease courses 

and good outcome associated with clusters A and B, while those with the most severe disease 

and death were associated with cluster C. These findings indicate that there is not one single 

immune signature in COVID-19, but that the immune response differs in individuals based on 

the ultimate disease severity. 

 

Immune trajectories discriminate moderate and severe COVID-19 
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To better understand the kinetics and coordinated changes in immune signatures, we tracked 

immune cell types in the blood over time based on date of admittance to the hospital. We focused 

on exploring differences in longitudinal analysis of moderate and severe patients based on 

distinct clustering between these groups as shown in Figure 6. The time course was limited to 15 

days post admittance for sufficient and comparable sampling in both the moderate and severe 

cohorts (Supplemental Figure 6).  

Key to understanding features that distinguish moderate from severe COVID-19 is an 

appreciation of the evolution of the immune response over time, as shown in a UMAP 

visualization of immune changes with disease severity within cell types of an individual patient 

(Figure 7). Using gated data from Figures 2 and 3, we focused on specific cell types and markers 

of innate and adaptive immunity. Figures 5B-D show Loess-smoothed trajectories whereas 

Supplemental Figures 7-9 show individual and averaged plots. We found that patients with 

moderate COVID-19 had a dynamic immune response that resolved over time typical of a 

productive anti-viral response whereas patients with severe COVID-19 had an aberrant immune 

response, diverging early from that seen in moderate COVID-19 subjects and continuing to 

diverge beyond the first fifteen days of hospitalization. Specifically in the moderate COVID-19 

cohort, there was an early reduction in circulating neutrophils with a concomitant increase in 

circulating monocytes, total DCs and basophils, with maximal change at 4-5 days post 

hospitalization (Figure 8A, Supplemental Figures 7-9). In addition, NK cell increases followed 

these early myeloid cell changes, peaking at 5-6 days post hospitalization (Figure 8A, 

Supplemental Figures 8-9). In contrast in the severe COVID-19 cohort, these innate cell 

populations were less dynamic with little variation during the first fifteen days of hospitalization 

(Figure 8A, Supplemental Figures 8-9). However, it should be noted that this was not the case 
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for all innate cells examined. For example, HLA-DRlo monocytes, which we and others found to 

be increased in severe COVID-19 (Figure 5B) (21) and are known to be increased in severe 

inflammatory syndromes such as sepsis (22-24), were more dynamic in the severe COVID-19 

cohort than the moderate COVID-19 cohort. HLA-DRlo monocytes in severe COVID-19 subjects 

increased with time peaking at 5-6 days of hospitalization and then resolved to levels similar to 

those seen in patients with moderate COVID-19 by day 15 post hospitalization (Figure 8A, 

Supplemental Figures 8-9). Thus overall, patients with moderate COVID-19 showed a signature 

of a productive innate immune response in their blood, peaking early after hospitalization, 

whereas patients with severe disease showed a blunted and delayed innate response. 

Adaptive responses also differed between moderate and severe COVID-19 over time 

(Figures 8B, Supplemental Figures 8-9). In patients with moderate COVID-19, total T cells 

expanded and contracted consistent with an expected anti-viral T cell response, with a later 

enrichment of memory CD4 T cells (Figure 8B).  Memory B cells increased more robustly over 

time in the moderate COVID-19 cohort throughout hospitalization, suggestive of sustained 

interaction with memory CD4 T cells and antibody production. In contrast, patients with severe 

COVID-19 consistently had lower levels of both T cells and memory B cells over the course of 

hospitalization suggesting a diminished or delayed adaptive immune response to the virus. The 

Tfh response in the severe COVID-19 cohort was greater than that of moderate COVID-19 

cohort at all time points perhaps indicating unresolved T cell help or Tfh sustained by high IL-6 

in critically ill patients. In addition, in the severe COVID-19 cohort, Treg cells as a percentage of 

total CD4 T cells were increased over time as compared to the moderate COVID-19 cohort 

(Figure 8B), likely in response to ongoing inflammation due to viral persistence. Consistent with 

this idea, the percentage of CD8 T cells expressing HLA-DR, a marker of activation, also 
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increased over time in the severe COVID-19 cohort (Figure 8B), as did CD8 T cells expressing 

CD38 and PD-1 (Supplemental Figure 7B) while total memory CD8 T cells increases were 

similar between moderate and severe patients (Figure 8B). Overall, our longitudinal analysis 

revealed that the immune trajectory differs between moderate and severe patients during the first 

two weeks after initial hospitalization. Patients with moderate disease showed signatures of a 

productive anti-viral response that resolved within the 2 weeks of the study time, whereas 

patients with severe disease showed signs of an aberrant response after hospital admittance that 

persisted for at least the first two weeks in hospital.  

 

Immune signatures of clinical improvement in patients with COVID-19 

To identify key immune cell populations that are associated with either clinical improvement or 

decline, we focused our analysis on samples taken from individuals before and after a change in 

ordinal score, reflective of disease severity. We assessed changes in the absolute abundance of 

immune cell populations by CBC or in the frequency of immune cell subsets in our CyTOF 

analyses across these key clinical times.  We identified subjects that had samples drawn across a 

score improvement of ≥ 2, or a score decline of ≥ 1 (Figure 9A). This analysis identified several 

populations whose abundance or frequency was significantly altered upon changes in ordinal 

score (Figure 9B). Consistent with the lymphopenia observed in severe COVID-19, we found 

that absolute lymphocytes decreased with clinical decline whereas an increase in the absolute 

number of lymphocytes was associated with clinical improvement. The increase in lymphocytes 

was mediated by a general increase in the frequency of naïve and memory CD4+ and CD8+ T 

cells as well as NK cells, but not B cells. The frequency of pDCs also increased in subjects 

around the time of clinical improvement, whereas the frequency of neutrophils decreased in 
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improving patients.  Longitudinal analysis of individual subjects further demonstrated that 

changes in the frequency of neutrophils, T cells, NK cells and pDCs could be observed during 

recovery from severe COVID-19 (Figure 9C). This analysis demonstrates that the immune 

landscape is dynamic in COVID-19, and that resolution of key features of severe disease resolve 

co-incident with improvement in clinical status.  

 

Early immune signatures of tocilizumab, but not convalescent plasma, treatment in severe 

COVID-19 patients 

To determine if there were immune signatures of tocilizumab or convalescent plasma treatment, 

we identified 7 patients treated with tocilizumab and 7 patients treated with convalescent plasma 

in our cohort who had CyTOF samples both before and after treatment (Supplemental Tables 2 

and 3). Notably, these patients all had severe disease and there were stringent criteria for the use 

of tocilizumab including rapidly escalating oxygen needs combined with an IL-6 level > 20x 

upper limit of normal (ULN); and CRP >125 mg/dl (ULN, 7). Marked elevations in ferritin, 

LDH and D-dimer were also weighted in the decision making process. All patients were also 

treated with remdesivir, with the exception of one patient in the convalescent plasma group. 

Additionally, 6/7 patients in the tocilizumab group analyzed were treated with convalescent 

plasma prior to tocilizumab treatment (1-6 days pre tocilizumab). None of the 7 patients in the 

convalescent plasma group were treated with tocilizumab during the time points analyzed. Also 

important, patient care was similar between the two groups as the use of tocilizumab in our 

hospital does not result in alterations to patient care. 

We first assessed serum C-reactive protein (CRP) levels in these two groups as a measure of 

the effectiveness of tocilizumab treatment, which should reduce this marker of systemic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.09.18.303420doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303420
http://creativecommons.org/licenses/by-nc-nd/4.0/


inflammation. Indeed, treatment with tocilizumab swiftly reduced serum CRP in all patients 

(Figure 6A). Serum ferritin was also reduced mainly in those patients with very high 

concentrations pre-treatment (Supplemental Figure 10A). In contrast, convalescent plasma 

treatment had no consistent effect on CRP levels (Figure 10A). Therefore, tocilizumab treatment 

showed an acute clinical signature of reduced inflammation in patients with severe COVID-19, 

whereas convalescent plasma did not consistently affect these measures. 

We then compared acute changes in immune populations in the blood before and after 

tocilizumab or convalescent plasma treatment by assessing the closest CyTOF sample before day 

of treatment (Range: day -4 to day 0) with the first CyTOF sample available after treatment 

(Range: day 2 to 9 post-treatment). The specific time points used for each individual are shown 

in Supplemental Table 3. Dividing the post-treatment time point cell frequency by the pre-

treatment time point for each patient allowed us to assess the fold change in response to 

treatment for each patient. In the tocilizumab group there were several populations of immune 

cells that differed significantly before and after treatment (Figure 10B). In contrast, there were no 

significant changes after convalescent plasma treatment in the immune cell populations analyzed 

by CyTOF (Figure 10C, Supplemental Figures 10B-C). The significant changes in response to 

tocilizumab treatment included a reduction in the percent of neutrophils and an increase in the 

percent total T cells, eosinophils, basophils, and DCs among CD45+ cells (Figures 10B, 10D, 

10E). There were also increases in several CD4 and CD8 T cell subpopulations, and no changes 

in any B cell populations after tocilizumab (Figure 7B). Moreover, our findings for T cells, B 

cells, neutrophils and basophils were consistent with our signature of clinical improvement 

shown in Figure 9. However, there was not complete overlap between the tocilizumab signature 

and the clinical improvement signature as NK cells and pDCs were not significantly changed by 
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tocilizumab (Figure 10B, data not shown) but were increased in improving patients (Figure 10B). 

In the tocilizumab group, we also identified increased populations associated with T cell 

activation, including HLA-DR+ and CD38+ CD4 and CD8 T cells (Figures 10B, 10D, 10E). In 

summary, we observed a clear acute signature of tocilizumab treatment that shares some but not 

all features of the immunologic changes seen with clinical improvement, whereas there is no 

acute change in the immune landscape with convalescent plasma treatment, in patients with 

severe COVID-19. 
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Discussion 

A growing literature indicates that the immune landscape is profoundly altered by COVID-19 

and differs between individuals dependent on disease severity (18, 20, 25, 26).  Whether the 

immune landscape is a reflection of disease severity, a source of severe disease or a combination 

of the two is still not fully understood. Here, we utilized recovered samples from the clinical 

laboratory to rapidly assess peripheral blood cell populations by CyTOF and this data was 

analyzed in conjunction with clinical laboratories and disease severity scores. Importantly, we 

were able to collect samples longitudinally among the hospitalized individuals, allowing us to 

examine the evolution of immune responses through natural progression and recovery, and in the 

context of immune intervention. Novel aspects of our study included: 1) deep longitudinal 

sampling allowing for detailed immune trajectories of recovery, 2) a control cohort of moderate 

and severely ill hospitalized COVID-19 negative patients, and 3) analysis of immune signatures 

associated with tocilizumab and convalescent plasma treatments. 

Notably, we found that at the time of initial sampling the immune landscape in COVID-19 

forms three dominant clusters that relate to disease severity.  When we examined individual cell 

populations based on disease severity, we found, as others have, that the neutrophil to 

lymphocyte ratio is increased in individuals with severe COVID-19 (15-18).  Furthermore, this 

inverse relationship with neutrophils applies to basophils, DC, NK and monocytes, and only 

modestly with B cells, and is most pronounced among T lymphocytes with the exception of Tfh, 

which are positively correlated to neutrophil numbers, a finding also consistent with the current 

literature (18). Interestingly, many changes seen in severe COVID-19 compared to mild and 

moderate disease were also seen in our hospitalized COVID-19 negative control cohort. 

Including this unique control group allowed us to identify differences between critically ill 

patients in general and those infected with SARS-CoV-2. Features shared between the 
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hospitalized severe COVID-19 patients and the COVID-19 negative cohort included increased 

neutrophils, and decreased T cells, NK cells, pDCs and basophils, and likely reflect active 

inflammation during critical illness. In contrast, increased Tfh, plasmablasts and evidence of T 

cell activation were unique to the severe COVID-19 patients and may reflect the anti-viral 

response in these individuals or unique aspects of the pathology of SARS-CoV-2 infection.   

Our longitudinal assessment further allowed us to identify patterns that distinguished severe 

and moderate disease. Individuals with a moderate disease course showed a pattern consistent 

with productive innate and adaptive immune response characterized by early and transient 

increases in monocytes and NK cells with later sustained increases in memory T and B cells. 

Those with severe disease have features suggestive of a dysregulated immune response 

characterized by delayed and prolonged increases in Tfh, HLA-DRlo monocytes and activated 

CD8 T cells. Although the time from first symptom and first sample was delayed in severe 

patients as compared to moderate, this was not reflected in a simple shift of the immune 

trajectory. Instead, changes in multiple cell types of moderate subjects were transitory while 

evidence of persistent activation in different immune cells were progressive and unresolved in 

severe patients. This suggests that the degree of inflammation or persistence of virus markedly 

changed the immune landscape over time in severe as compared to moderate disease.  

Importantly, the persistent features of severe disease are reversed with improvements in clinical 

score and can be modulated in part with immune interventions, such as IL-6 pathway blockade. 

Our findings for the tocilizumab study were intriguing, especially in the light of the recent 

disappointing results from the first randomized double blind phase 3 trial (27). Our data suggests 

that changes in the immune landscape after tocilizumab treatment, with the exception of NK and 

pDC recovery, are consistent with the immune signature of clinical improvement that we 
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identified. Of note, only 4 out of 7 of these tocilizumab-treated patients improved clinically in 

the acute timeframe of our analysis (within 9 days of treatment) with the remaining 3 patients 

only showing clinical improvement at later times. This suggests that although tocilizumab 

treatment induces an acute signature of clinical improvement in both serum CRP and specific 

immune cell populations, this signature is disconnected from immediate clinical change 

indicating that the immune changes with tocilizumab may be inadequate to support full recovery. 

Caveats for our tocilizumab analysis include the small cohort size, and that all but one of these 

patients were treated with convalescent plasma prior to tocilizumab treatment. Therefore, it is 

possible that convalescent plasma acts synergistically with tocilizumab to cause the immune 

signature we identified. Interestingly and in contrast to tocilizumab, we saw no clear immune 

signature of convalescent plasma within 7 days, suggesting either our cohort was too small to see 

changes, the immune populations change after the times we analyzed, or convalescent plasma 

does not act at the level of blood leukocyte populations. It is clear that further investigation is 

needed to determine if tocilizumab has a therapeutic role in COVID-19, and in what patient 

population it would be useful and this may be determined in part by the character and trajectory 

of the immune landscape of the patient.  

The demographics of our COVID-19 patients were consistent with published case reports. 

African Americans and Hispanics were overrepresented in the severe COVID-19 group to the 

population of Washington State, which is consistent with reports from other states in the USA 

(10, 11). We also found that type 2 diabetes was more common in those with severe disease 

compared to moderate or mild disease.  Notably, all groups have higher diabetes prevalence than 

the US or Washington rates (28); the highest prevalence in Washington state is among 65-74 

year olds at 21.5%, which is more than doubled in the cohort with severe disease described here.  
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Diabetes and obesity have consistently been identified risk factors for COVID severity (4-9); 

reduced T-cell function and chronic inflammation have been postulated as potential mechanisms 

driving this increased risk (29).  In addition, some glucose-lowering agents used in diabetes are 

known to impact the immune system (reviewed in (30). Full analysis of the differential impact of 

diabetes and its treatment on our immune signatures is beyond the scope of this work but merits 

further analysis.  

There are limitations to this study. Due to the urgency of the pandemic, we chose to use 

recovered clinical samples for our study and thus the collection schedule and sample availability 

was dictated by the treatment needs of the patient. This meant that we did not have the same time 

points for every patient, and that we could not match between groups the medications that 

individuals were already taking due to pre-existing comorbidities, some of which may impact the 

immune responses seen here. In addition, the differences between the mild, moderate and severe 

COVID-19 groups may reflect the time from disease onset, which significantly varied between 

these groups, and/or differences in viral burden, which we could not assess. The subjects in our 

hospitalized control group were not matched to the SARS-CoV-2 positive groups by race, 

although they are well matched by age.   

In summary, we have identified unique features of the immune landscape in moderate versus 

severe COVID-19 along with features that are common to moderate and severe non-COVID 

illness.  Importantly, our findings indicate that selection of immune interventions should be 

based in part on disease presentation and early disease trajectory due to the profound differences 

in the immune response in those with mild to moderate disease and those with the most severe 

disease. Finally, our characterization of the variety of immune signatures in COVID-19 provides 
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insight into the types of immune interventions that may be beneficial in the treatment of severe 

disease.  
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Methods 

Study design  

Using our newly developed 33-parameter CyTOF panel, we characterized the immune response 

longitudinally in 59 adults with acute COVID-19 including 24 hospitalized patients with severe 

disease, 28 hospitalized patients with moderate disease and 7 ambulatory patients with mild 

disease not requiring hospitalization. All COVID-19 subjects were positive for SARS-CoV-2 and 

our control cohort of 17 hospitalized patients tested negative for SARS-CoV-2. Healthy control 

subjects were age and sex matched to the hospitalized COVID-19 subjects. Importantly the 

samples used were collected prior to the start of the COVID-19 pandemic in December 2019. For 

the hospitalized COVID-19 cohort, longitudinal samples were collected starting as soon as 

possible after hospital admission, then if feasible, daily for the first week, and then at 3-4 day 

intervals subsequently (Figure 1). A single sample was obtained at time of first outpatient visit 

for the ambulatory COVID-19 subjects. A maximum of two samples were obtained from the 

hospitalized COVID-19 negative control subjects. All assays were run and analyzed in a blinded 

manner. 

 

Study approval  

Samples from COVID-19 subjects and from hospitalized COVID-19 negative control subjects 

were recovered from the Virginia Mason Medical Center Central Processing Lab after all tests 

required for clinical care were complete, under approval by the Benaroya Research Institute 

(BRI) -approved protocol IRB20-036.  All healthy control samples were from healthy subjects in 

the BRI Immune-Mediated Disease Registry and Repository who had given written informed 
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consent in accordance with the Declaration of Helsinki and according to the BRI Institutional 

Review Board-approved protocol IRB07109. 

 

CyTOF staining, acquisition, and subset identification 

Peripheral blood was collected from each donor into sterile vacutainer tubes containing the 

anticoagulant EDTA. Blood cells were washed twice with phosphate-buffered saline (PBS) and 

stained for viability exclusion with a 100 µM cisplatin solution (Enzo Life Sciences, 

Farmingdale, New York) for one minute at room temperature. Cisplatin was quenched with five 

volumes MaxPar Cell Staining Buffer (CSB; Fluidigm, South San Francisco, CA), and the cells 

then stained with a titered, aliquoted, and frozen cocktail of monoclonal antibodies conjugated to 

metal isotopes for 20 minutes at 4 °C. Red blood cell lysis was performed using RBC Lysis/ 

Fixation solution (BioLegend) for five minutes at room temperature followed by a wash with 

CSB. The resulting leucocytes were fixed overnight at 4°C with MaxPar Fix and Perm Solution 

(Fluidigm, South San Francisco, CA) containing 125 nM Cell-ID Intercalator-Ir (Fluidigm, 

South San Francisco, CA). Following fixation, cells were washed with CBS, resuspended in 

milli-Q water and stored at 4°C until acquisition. All antibodies from Biolegend and BD 

Biosciences were conjugated to their respective metal isotopes using the Maxpar® X8 

Multimetal Labeling Kit (Fluidigm, South San Francisco, CA). Samples were stained within 48 

hours of blood draw. Sample stability with the CyTOF assay was established with three COVID-

19 samples assayed on the day of collection (baseline, Day 0), one day after collection (Day 1) or 

two days after collection (Day 2). Populations and markers on populations were standard and 

based on Staser et.al. (31). All populations and markers with a frequency >5% of live CD45+ 

cells had a CV<40% between baseline and each time point. This variation was less than that of 
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biological comparisons. MaxPar Four Element Calibration Beads (Fluidigm, South San 

Francisco, CA) were added to each sample immediately before acquisition. All samples were 

acquired on a Helios CyTOF3 mass spectrometer (Fluidigm, South San Francisco, CA) with a 

target cell acquisition of 100,000 live events at a rate of 500 events/second to capture >50 cells 

per gated population or marker. The CyTOF panel is shown in Supplemental Table 1 and gating 

strategies are shown in Supplemental Figures 2-4. To determine gates for activation markers 

such as CD25, CD69 and CD38 on T cells and PD-L1 on myeloid cells, we first analyzed12 

samples from 6 subjects with moderate COVID-19 and 6 subjects with severe COVID-19. Gates 

were set based on a comparison between samples that were clearly highly activated and those 

that were clearly non-activated. These gates were then applied to all samples in the study and 

used consistently for all populations analyzed. Specifically, gates for CD25, CD38, CD69, HLA-

DR, PD-1 and PD-L1 were the same for all cell types where they were applied. For example, the 

CD38 gate was the same for CD4 T cells, CD8 T cells and Tfh cells, the CD25 gate was the 

same for CD4 and CD8 T cells, and the CD69 gate was the same for CD4 T cells, CD8 T cells, 

NK cells, eosinophils, neutrophils etc. Data was analyzed using a FlowJo software versions 

10.6.0 and 10.6.1 (FlowJo LLC, Ashland, OR). 

 

Data and statistical analysis 

P-values: Apart from the paired-sample tests in Figure 10, all p-values were calculated using 

unpaired, two-tailed Wilcoxon Rank Sum tests. In all cases, corrections for multiple testing were 

performed using the False Discovery Rate (FDR) method. For between group comparisons of the 

clinical data, p-values were calculated using the Kruskal-Wallis one-way analysis of variance 

test. 
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Correlation graph: The correlation graph in Fig. 2A was built from the matrix of Pearson 

correlations in Fig. 2B using the R iGraph package (32) 

Heatmap: The heatmap in Figure 6 was generated using Euclidean distance and the clustering 

method Ward.D2. 

Smoothed time-course graphs: Time-series data from each patient were organized in terms of the 

relative number of days from the date of the first sample (hereon denoted pseudo-time), and then 

aligned by first sample. To reduce the potential effects of outlier samples, median values were 

calculated for each severity category and each day for the samples available. If no samples were 

available at a given pseudo-time day, we inferred a value using linear interpolation between the 

before and after pseudo-time points. The vertical bars at each pseudo-time point are equal to one 

standard deviation from the indicated median value. Plot point with no error bars are those with 

only one sample or represent an inferred value. Loess smoothing was performed on the median 

values for each disease severity class using the geom_smooth function in the R ggplot library 

(33) 

UMAP: The UMAP plots in Figure 7 were generated directly from the CyTOF signal intensities 

following archsinh transformation with a co-factor value of 5.  To ensure against batch and other 

potential confounding effects, we specifically selected samples collected and stained in a highly 

uniform fashion from a single donor and z-score normalized probe intensities for each sample 

prior to UMAP projection to 2D. 
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Figure legends  

Figure 1. Clinical course and mechanistic data for COVID-19 subjects. Each subject is 

represented in one row. Subjects are first grouped by severity: severe (red), moderate (blue) and 

mild (cyan) disease. Subjects are next ranked by highest ever ordinal score (most severe at top), 

and finally ranked by minimum ordinal score (representing the largest change over time). X-axis: 

days from first clinical assessment, typically the date of hospital admission. Colored points 

represent the ordinal score captured daily. No subjects had a score of 1 (recovered) at any point.  

Dates with CyTOF data available are denoted by circles; dates without CyTOF data are denoted 

by triangles.  

 

Figure 2. Overview of correlations among cell frequencies and Covid-19 patient 

characteristics. (A) Heatmap visualization of pairwise Pearson correlations with p < 0.05 among 

ordinal score, age, BMI, CyTOF population frequencies and CBC parameters.  Key indicates r 

value scale for positive (red) and negative (blue) correlations. (B) Network map visualization of 

correlations between CyTOF major immune cell subsets in our mild, moderate and severe 

COVID-19 cohort. Shown are positive (blue lines) and negative (red lines) Pearson correlations 

with absolute(r) > 0.35 and p < 0.05.  Line thickness corresponds to the strength of association 

(thicker is stronger). Correlations within major cell populations (same-color nodes) are not 

shown.  

 

Figure 3. Correlations among immune cell populations in Covid-19 patients suggest disease 

severity is driven by an increase in neutrophils and a correlated depletion of plasmacytoid 

dendritic cells (pDC) and basophils. (A to F) Plots display FDR-adjusted Pearson correlations 
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and linear regression lines with 95% confidence interval shading.  Data points are colored 

according to the ordinal score observed for each patient at admission. 

 

Figure 4. Cross-sectional immune correlates of Covid-19 disease severity. (A) In 274 

samples from 59 Covid-19 patients, the abundances of neutrophils, T cells, NK cells, 

plasmacytoid dendritic cells (pDCs), and basophils are highly correlated with disease severity 

(all p-values FDR adjusted). Red plot points mark values for samples further analyzed in 

improving versus declining patients (Figure 9).  

 

Figure 5. Immune cell frequencies vary by COVID-19 disease severity. (A) Clinically-

measured CBC absolute count values from day of admission.  Dashed black lines mark the 

clinical laboratories normal ranges. Subjects grouped based on disease severity, mild (cyan), 

moderate (blue) and severe (red), and SARS-CoV-2 negative hospitalized controls (gray). (B and 

C) The relative proportions of immune cell sub-types vary by disease severity. CyTOF cell 

frequencies based on disease severity expressed as either percentage of all leukocytes (B) or 

percentage of parent population (C). Gray bands mark the means (dashed black line) +/- 1 

standard deviation in 20 healthy control subjects. Asterisks in C indicate significance * p<0.05 

and *** p < 0.001.  

 

Figure 6. Admission-day sample CyTOF cell frequencies fall into three distinct clusters 

Heatmap showing row-normalized Z-scores thresholded at +/-2 (see color key). Disease-severity 

scores are shown on the right hand-side of the heatmap for the day of admission, day of 

sampling, maximum score and score at discharge (Disease score key shown at top of heatmap) 
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Clusters are marked A-C at right, and indicated by green, orange, and red highlighting on the 

dendrogram at left.  

 

Figure 7. The COVID-19 immune landscape changes over recovery time. UMAP projections 

of batch-corrected CyTOF probe intensities for four samples from a single COVID-19 patient 

recovering from a disease severityordinal score of 6 to a score of 3 over a period of 6 weeks (see 

methods for details). 

 

Figure 8. Immune profiles of moderate and severe patients diverge over time reflecting 

different disease trajectories. Longitudinal plots of gated populations for (A) innate and (B) 

adaptive cell types. Days (relative) from first hospitalization are shown. Loess trajectory 

smoothing was performed on the median values (colored disks) for each group at each time 

point. Vertical bars indicate +/- 1 standard deviation around the median at each time point. Plot 

points without vertical error bars are from single data points, or interpolated values used for 

smoothing.  

 

Figure 9. Immune signatures of clinical decline and improvement. (A) Schematic outlining 

approach for identifying immune signatures of clinical decline and improvement focusing on 

changes in monitored parameters in longitudinal samples taken before and after changes in 

clinical score. (B) Log2-fold change in the indicated cell populations as measured by CyTOF or 

CBC analysis in longitudinal samples taken before and after improving (green) or declining (red) 

clinical scores. Asterisks indicates a significant difference in the fold changes (two-tailed, 

unpaired Wilcoxon Rank Sum FDR-adjusted p < 0.05) between improving (n=7) and declining 
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(n=10) patient groups for the indicated cell populations. (C) Longitudinal analyses of the 

frequency of neutrophils, T cells, NK cells and pDCs vs. clinical score in 3 individual patients. 

 

Figure 10. Early immune signatures of tocilizumab but not convalescent plasma in severe 

COVID-19. (A) Serum CRP in patients receiving tocilizumab (top; n=7) or Convalescent plasma 

(bottom; n=7) measured in clinical labs relative to day of treatment. Each line represents an 

individual patient. (B and C) Change in blood immune populations measured by CyTOF after 

treatment with tocilizumab (B) or convalescent plasma (C). The fold change in each population 

for each subject was determined by dividing the percent of each population in the first post-

treatment sample at day +2 or more after treatment with the closest pre-treatment sample 

available as detailed in Supplemental Table 3. All are shown as percent of CD45+ cells unless 

otherwise indicated. (D) Plots showing the percent of the indicated populations in tocilizumab-

treated patients before and after treatment, using the time points used for analysis in (B and 

Supplemental Table 3). (E) Plots showing all the data points available for tociluzimab-treated 

patients for the indicated populations shown in (D and Supplemental Table 3). Each line 

represents an individual patient and the color of the line reflects the clinical ordinal score at the 

time of sampling. *, p<0.05 Wilcoxon matched pairs test, adjusted for multiple comparisons. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.09.18.303420doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Severe

(n=24)

Moderate

(n=28)

Mild

(n=7)

Days from first clinical assessment

1 5 10 15 20 25 30 35 40 45 50 55 60 65

Disease Ordinal Score

2, not hospitalized but unable to resume normal activities

7, death 

4, hospital requiring supplemental oxygen

5, hospital, requiring nasal high flow oxygen therapy, 

non-invasive mechanical ventilation or both

3, hospital, not requiring supplemental oxygen

6, hospital, requiring invasive mechanical ventilation

CyTOF: Yes (circle); No (triangle)

Figure 1. Clinical course and mechanistic data for COVID-19 subjects. Each subject is represented in one row.

Subjects are first grouped by severity: severe (red), moderate (blue) and mild (cyan) disease. Subjects are next ranked

by highest ever ordinal score (most severe at top), and finally ranked by minimum ordinal score (representing the

largest change over time). X-axis: days from first clinical assessment, typically the date of hospital admission. Colored

points represent the ordinal score captured daily. No subjects had a score of 1 (recovered) at any point. Dates with

CyTOF data available are denoted by circles; dates without CyTOF data are denoted by triangles.
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-1 -0.5 0 10.5

A B

Figure 2. Overview of correlations among cell frequencies and Covid-19 patient characteristics. (A) Heatmap 

visualization of pairwise Pearson correlations with p < 0.05 among ordinal score, age, BMI, CyTOF population 

frequencies and CBC parameters.  Key indicates r value scale for positive (red) and negative (blue) correlations. 

(B) Network map visualization of correlations between CyTOF major immune cell subsets in our mild, moderate 

and severe COVID-19 cohort. Shown are positive (blue lines) and negative (red lines) Pearson correlations with 

absolute(r) > 0.35 and p < 0.05.  Line thickness corresponds to the strength of association (thicker is stronger). 

Correlations within major cell populations (same-color nodes) are not shown. 
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Figure 3. Correlations among immune cell populations in Covid-19 patients suggest disease 

severity is driven by an increase in neutrophils and a correlated depletion of plasmacytoid 

dendritic cells (pDC) and basophils. (A to F) Plots display FDR-adjusted Pearson correlations and 

linear regression lines with 95% confidence interval shading.  Data points are colored according to 

the ordinal score observed for each patient at admission.
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Figure 4. Cross-sectional immune correlates of Covid-19 disease severity. (A) In 274 

samples from 59 Covid-19 patients, the abundances of neutrophils, T cells, NK cells, 

plasmacytoid dendritic cells (pDCs), and basophils are highly correlated with disease severity 

(all p-values FDR adjusted). Red plot points mark values for samples further analyzed in 

improving versus declining patients (Figure 9). 
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Figure 5. Immune cell frequencies vary by COVID-19 disease severity. (A) Clinically-measured CBC absolute 

count values from day of admission.  Dashed black lines mark the clinical laboratories normal ranges. Subjects grouped 

based on disease severity, mild (cyan), moderate (blue) and severe (red), and SARS-CoV-2 negative hospitalized 

controls (gray). (B and C) The relative proportions of immune cell sub-types vary by disease severity. CyTOF cell 

frequencies based on disease severity expressed as either percentage of all leukocytes (B) or percentage of parent 

population (C). Gray bands mark the means (dashed black line) +/- 1 standard deviation in 20 healthy control subjects. 

Asterisks in C indicate significance * p<0.05 and *** p < 0.001. 
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Figure 6. Admission-day sample CyTOF cell frequencies fall into three distinct clusters 

Heatmap showing row-normalized Z-scores thresholded at +/-2 (see color key). Disease-

severity scores are shown on the right hand-side of the heatmap for the day of admission, day 

of sampling, maximum score and score at discharge (Disease score key shown at top of 

heatmap) Clusters are marked A-C at right, and indicated by green, orange, and red 

highlighting on the dendrogram at left. 
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Figure 7. The COVID-19 immune landscape changes over recovery time. 

UMAP projections of batch-corrected CyTOF probe intensities for four samples 

from a single COVID-19 patient recovering from a disease severityordinal score of 

6 to a score of 3 over a period of 6 weeks (see methods for details).
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Figure 8. Immune profiles of moderate and severe patients diverge over time reflecting different disease 

trajectories. Longitudinal plots of gated populations for (A) innate and (B) adaptive cell types. Days (relative) from first 

hospitalization are shown. Loess trajectory smoothing was performed on the median values (colored disks) for each group 

at each time point. Vertical bars indicate +/- 1 standard deviation around the median at each time point. Plot points without 

vertical error bars are from single data points, or interpolated values used for smoothing. 
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Figure 9. Immune signatures of clinical decline and improvement. (A) Schematic outlining approach for 

identifying immune signatures of clinical decline and improvement focusing on changes in monitored parameters in 

longitudinal samples taken before and after changes in clinical score. (B) Log2-fold change in the indicated cell 

populations as measured by CyTOF or CBC analysis in longitudinal samples taken before and after improving 

(green) or declining (red) clinical scores. Asterisks indicates a significant difference in the fold changes (two-tailed, 

unpaired Wilcoxon Rank Sum FDR-adjusted p < 0.05) between improving (n=7) and declining (n=10) patient 

groups for the indicated cell populations. (C) Longitudinal analyses of the frequency of neutrophils, T cells, NK 

cells and pDCs vs. clinical score in 3 individual patients.
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Figure 10. Early immune signatures of tocilizumab but not convalescent plasma in severe COVID-19. (A) 

Serum CRP in patients receiving tocilizumab (top; n=7) or Convalescent plasma (bottom; n=7) measured in clinical 

labs relative to day of treatment. Each line represents an individual patient. (B and C) Change in blood immune 

populations measured by CyTOF after treatment with tocilizumab (B) or convalescent plasma (C). The fold change 

in each population for each subject was determined by dividing the percent of each population in the first post-

treatment sample at day +2 or more after treatment with the closest pre-treatment sample available as detailed in 

Supplemental Table 3. All are shown as percent of CD45+ cells unless otherwise indicated. (D) Plots showing the 

percent of the indicated populations in tocilizumab-treated patients before and after treatment, using the time points 

used for analysis in (B and Supplemental Table 3). (E) Plots showing all the data points available for tociluzimab-

treated patients for the indicated populations shown in (D and Supplemental Table 3). Each line represents an 

individual patient and the color of the line reflects the clinical ordinal score at the time of sampling. *, p<0.05 

Wilcoxon matched pairs test, adjusted for multiple comparisons.
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Table 1. Cohort demographics and clinical characteristics 

 

Severe 

COVID-19 

(n=24) 

Moderate 

COVID-19 

(n=28) 

Mild     

COVID-19 

(n=28) 

Hospitalized 

COVID-19 negative 

(n=17) 
 Median (Range) Median (Range) Median (Range) Median (Range) 

Age (yrs) 61 (31-89) 67 (34-96) 54 (27-76) 67 (30-97) 

Number of days 

hospitalized 
19 (4-65) 6 (2-28) NA 5 (1-34) 

Days from symptom 

onset to admission 
9 (3-22) 4 (0-27) 5 (2-14) NA 

Disease score at 

admission 
6 (3-6) 

4 (2-4) 

 
2 (2) 4 (3-4) 

BMI 30.1 (18.1-54.5) 29.0 (17.0-54.1) 25.5 (22.5-37.2) 25.7 (21.1-69) 

 Number (%) Number (%) Number (%) Number (%) 

Outcome: discharged 18 (75%) 28 (100%) NA 16 (94.1%) 

Outcome: deceased 6 (25%) 0 (0%) NA 1 (5.9%) 

Female 12 (50%) 14 (50%) 3 (42.9%) 10 (58.8%) 

Race     

Asian 1 (4.2%) 3 (10.7%) 3 (42.9%) 1 (5.9%) 

African American 4 (16.7%) 5 (17.9%) 1 (14.3%) 0 (0%) 

Native Hawaiian/ 

Pacific Islander 
0 (0%) 1 (3.6%) 0 (0%) 0 (0%) 

Native American 2 (8.3%) 0 (0%) 0 (0%) 1 (5.9%) 

White 6 (25%) 17 (60.7%) 2 (28.6%) 14 (73.7%) 

Unknown/Other 11 (45.8%) 2 (7.1%) 1 (14.3%) 1 (5.9%) 

Ethnicity: 

Hispanic/Latino 
9 (37.5%) 2 (7.1%) 1 (14.3%) 0 (0%) 

Preexisting 

comorbidities 
    

Cancer 1 (4.2%) 6 (21.4%) 0 (0%) 2 (8.7%) 

Diabetes 11 (45.8%) 8 (28.6%) 2 (28.6%) 3 (17.6%) 

Hypertension 12 (50%) 19 (67.9%) 0 (0%) 6 (35.3%) 

Exposure to 

experimental 

medicine 

    

Hydroxychloroquine 7 (29.2%) 2 (7.1%) 0 (0%) NA 

Remdesivir 17 (70.8%) 11 (39.3%) 0 (0%) NA 

Tocilizumab 8 (33.3%) 0 (0%) 0 (0%) NA 

Convalescent plasma 15 (62.5%) 4 (14.3%) 0 (0%) NA 
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