

1 **Functional remodeling of lysosomes by type I interferon modifies host defense**

2

3

4 Hailong Zhang^{1,2,3}, Abdelrahim Zoued^{1,2,3}, Xu Liu^{1,2,3}, Brandon Sit^{1,2}, Matthew K. Waldor^{1,2,3*}

5

6 1Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA

7 2Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA

8 3Howard Hughes Medical Institute, Boston, Massachusetts, USA

9 *Correspondence: mwaldor@research.bwh.harvard.edu

10

11

12

13 **SUMMARY**

14 Organelle remodeling is critical for cellular homeostasis, but host factors that control organelle
15 function during microbial infection remain largely uncharacterized. Here, a genome-scale
16 CRISPR/Cas9 screen in intestinal epithelial cells with the prototypical intracellular bacterial
17 pathogen *Salmonella* led us to discover that type I interferon (IFN-I) remodels lysosomes. Even
18 in the absence of infection, IFN-I signaling modified the localization, acidification, protease
19 activity and proteomic profile of lysosomes. Proteomic and genetic analyses revealed that
20 multiple IFN-I-stimulated genes including *Ifitm3*, *Slc15a3*, and *Cnp* contribute to lysosome
21 acidification. IFN-I-dependent lysosome acidification stimulated intracellular *Salmonella*
22 virulence gene expression, leading to rupture of the *Salmonella*-containing vacuole and host
23 cell death. Moreover, IFN-I signaling promoted *in vivo* *Salmonella* pathogenesis in the
24 intestinal epithelium, where *Salmonella* initiates infection. Our findings explain how an
25 intracellular bacterial pathogen co-opts epithelial IFN-I signaling. We propose that IFN-I
26 control of lysosome function broadly impacts host defense against diverse viral and microbial
27 pathogens.

28

29 **KEYWORDS**

30 Type I interferon, Lysosome remodeling, *Salmonella* pathogenesis, Intestinal epithelium,
31 Mucosal defense

32

33 **INTRODUCTION**

34 Microbial pathogens have evolved varied virulence strategies to modulate host cell function
35 (Geoghegan and Holmes, 2018; Ribet and Cossart, 2015). A common mechanism, employed by
36 all viral and some bacterial pathogens, is to enter host cells, where they co-opt cellular
37 functions while simultaneously evading extracellular threats such as innate and adaptive
38 immune mechanisms (Hybiske and Stephens, 2008; Lee et al., 2019). Inside cells, intracellular
39 pathogens interact with and exploit host cell organelles to support their proliferation (Omotade
40 and Roy, 2019). As a result of their intimate relationships with and manipulation of varied host
41 cell functions, intracellular pathogens have proven to be outstanding tools to probe basic
42 eukaryotic cell biology (Welch, 2015).

43 Compared to knowledge of how microbial pathogens interact with phagocytic cells, less is
44 known about the landscape of pathogen-epithelial cell interactions at barrier sites, where most
45 infections originate (Jo, 2019). The human foodborne pathogen *Salmonella enterica* serovar
46 Typhimurium (Stm) is a model intracellular bacterium that initially invades and subsequently
47 kills intestinal epithelial cells (IECs) before spreading systemically via circulating phagocytes
48 (Hurley et al., 2014). Stm's entry into and initial trafficking inside IEC is well-characterized,
49 and a hallmark of Stm infection is the formation of the *Salmonella*-containing vacuole (SCV), a
50 dynamic, lysosome-like compartment that is permissive for Stm replication (Steele-Mortimer,
51 2008; Tuli and Sharma, 2019). However, the IEC pathways that control Stm-induced
52 cytotoxicity remain incompletely defined.

53 One striking feature of the host response to Stm is the induction of type I interferons
54 (IFN-Is), which include IFN α and IFN β (Hess et al., 1989). IFN-Is are cytokines that, once
55 secreted, bind the IFN-I receptor (IFNAR1/2) to activate JAK-STAT signaling, which triggers
56 expression of intracellular anti-microbial transcriptional programs consisting of over 400
57 IFN-stimulated genes (ISGs) (Schoggins and Rice, 2011). Due to the large size of the
58 “interferome” and the complex interactions of ISGs with thousands of additional cellular
59 proteins (Hubel et al., 2019), knowledge of the full spectrum of IFN-I-mediated changes in
60 cellular function is incomplete. Although IFN-Is are known to have critical roles in antiviral
61 responses, their functions in bacterial infection are less clear, and IFN-I signaling has been
62 reported to be either protective or detrimental to the host depending on the specific bacterial
63 pathogen (Kovarik et al., 2016).

64 Here, we carried out a genome-scale CRISPR/Cas9 screen to identify the host factors that
65 contribute to Stm’s cytotoxicity to IECs. This screen revealed IFN-I signaling as a key
66 susceptibility factor for cytotoxicity in IECs and led to our discovery of a novel role for IFN-I
67 signaling in lysosomal localization and function, including the modification of this organelle’s
68 pH, protease activity, and protein content. Organellar proteomics revealed that 11 ISGs were
69 enriched in lysosomes following IFN-I stimulation, several of which were found to directly
70 impact lysosomal pH. IFN-I signaling-dependent lysosomal acidification stimulated Stm
71 virulence gene expression, and *in vivo* studies confirmed a role for epithelial IFN-I signaling in
72 promoting systemic Stm infection. IFN-I signaling mediated control of lysosome function likely
73 contributes to host responses to diverse intracellular pathogens and viruses.

74

75 **RESULTS**

76 **A CRISPR/Cas9 screen identifies IEC factors required for Stm cytotoxicity**

77 As large-scale genetic screens to identify epithelial cell factors that mediate interactions with
78 intracellular pathogens are lacking, we performed a multi-round, genome-wide CRISPR/Cas9
79 loss-of-function screen in the human colonic epithelial cell line HT29-Cas9 (Blondel et al.,
80 2016), to identify IEC genes that confer resistance to Stm cytotoxicity (Figure 1A). HT29 cells
81 are efficiently invaded and subsequently killed by Stm, providing a strong selective force to
82 enrich for guide RNAs targeting host factors that modulate cytotoxicity. The screen identified
83 known pathways that sensitize cells to Stm infection, including those involved in regulation of
84 actin dynamics (Arp2/3 and Rac), which are important in pathogen invasion (Table S1 and
85 Figures 1B, C), (Unsworth et al., 2004; Yeung et al., 2019). Genes linked to pathways not
86 previously directly linked to Stm virulence, including the Fc-gamma receptor-dependent
87 phagocytic and GPI anchor modification pathways were also enriched (Figures 1B, C).
88 Strikingly, the top ‘hits’ of the screen were remarkably coherent - the seven most enriched guide
89 RNAs from both libraries screened corresponded to genes in the IFN-I signaling pathway,
90 including the receptor (*Ifnar1/Ifnar2*), adaptor (*Jak1/Tyk2*), and transcription factor
91 (*Stat1/Stat2/Irf9*) components of the system (Figures 1D, E), suggesting that IFN-I signaling is
92 a major driver of Stm-mediated cytotoxicity in IECs.

93

94 **IFN-I promotes Stm cytotoxicity in IECs**

95 Stm induces IFN-I production during infection (Hess et al., 1989), but the function of IFN-I
96 signaling in IECs is unknown. A clonal knockout of *Ifnar2*, the top enriched hit in both libraries,
97 was constructed in the HT29-Cas9 background (Figure S1A), to validate the screen findings. At
98 both early and late infection time points, *Ifnar2* KO cells were more resistant to Stm-induced
99 cell death than the wild-type (WT) parental line (Figure 2A and S1B, C). Priming cells with
100 IFN β (a major IFN-I), conditions that mimic the multiple rounds of the original screen, further
101 sensitized WT but not *Ifnar2* KO cells to death (Figure 2A). To complement these findings, we
102 treated WT cells with chemical inhibitors of JAK-STAT signaling, the downstream target of
103 activated IFNAR1/2. Similar to *Ifnar2* KO cells, treatment with the JAK inhibitors ruxolitinib
104 and pyridone-6 also diminished Stm-induced death in WT cells, indicating active IFN-I
105 signaling is required for this phenotype (Figure 2B).

106 Our overall observations that IFN-I promotes Stm-induced IEC death is consistent with
107 prior data that this cytokine enhances necroptosis in Stm-infected macrophages (Robinson et al.,
108 2012). However, it is not clear whether macrophage and epithelial cell responses to Stm
109 infection are similar; furthermore, it is known that Stm-induced cell death in macrophages is
110 invasion-independent (van der Velden et al., 2000). Thus, we next tested whether
111 IFN-I-promoted epithelial cell death depended on SPI-1 or SPI-2, critical *Salmonella*
112 pathogenicity islands that each encode type 3 secretion systems (T3SS) required for cellular
113 invasion and intracellular survival, respectively (Galan et al., 2014). SPI-1-deficient ($\Delta prgH$)
114 Stm did not induce epithelial cell death in any condition, confirming that in IECs cytotoxicity
115 requires cell invasion (Figure 2A). In contrast, SPI-2-deficient ($\Delta ssaV$) Stm led to reduced but

116 still detectable levels of cytotoxicity that remained sensitive to IFN β priming, suggestive of
117 both SPI-2-dependent and independent mechanisms of intracellular Stm-induced cytotoxicity
118 (Figure 2A).

119 In support of the population-level LDH assays, flow cytometry of HT29 or HeLa cells
120 infected with fluorescent Stm and stained with the cell death probe Annexin-V indicated that
121 IFN-I only influenced cell death in the population of cells that contained intracellular Stm
122 (Figures 2C and S1D-F). In addition, we found that. IFN-I signaling did not impact Stm
123 invasion (Figures 2D and S2A), nor did it influence bacterial association with the early
124 endosomal marker Rab5, late endosomal marker Rab7 or lysosomal marker LAMP1
125 (Desjardins et al., 1994) (Figures 2E, F and S2B-E). Together, these data suggest that
126 IFN-I-mediated sensitization of epithelial cells to Stm occurs downstream of cell invasion and
127 initial SCV formation.

128

129 **IFN-I regulates lysosome localization and function**

130 During our analyses of SCV formation, we unexpectedly observed that IFN-I signaling alters
131 the subcellular localization of lysosomes in epithelial cells, even in the absence of infection. In
132 HeLa cells, lysosomes (identifiable as LAMP1+/Lysotracker+ co-staining organelles) were
133 scattered throughout the cytoplasm under basal conditions. Following IFN β stimulation,
134 lysosomes re-localized to the perinuclear region (Figures 3A, B, Video S1, 2); lysosome
135 re-localization was not observed in *Ifnar2* KO HeLa cells, confirming that this response was
136 dependent on IFN-I signaling.

137 Notably, IFN β priming led to significantly higher intensities of two fluorescent reporters
138 (Lysotracker and Lysosensor) of lysosomal pH in WT but not *Ifnar2* KO cells, indicating that
139 IFN-I signaling lowers lysosome pH (Figures 3C and S3A-C). Moreover, staining with
140 fluorescent reporters of general lysosomal protease activity (DQ-BSA (Reis et al., 1998)), or
141 cathepsin D (a major lysosomal protease) activity revealed that their activities were elevated by
142 IFN β stimulation in an *Ifnar2*-dependent fashion (Figures 3D, E and S3D). These findings are
143 consistent with the idea that the activity of most resident lysosomal proteins, including
144 cathepsins and other degradative enzymes, is positively regulated by acidic pH (Butor et al.,
145 1995). Staining with fluorescent reporters of endocytic activity (Dextran-568) suggested that
146 IFN-I signaling does not impact general endocytic trafficking; thus, IFN-I signaling appears to
147 specifically influence lysosome function and positioning (Figure S3E). IFN β -induced lysosomal
148 acidification and protease activation was abolished by the addition of the v-ATPase inhibitor
149 bafilomycin A1 (Bfa1) (Yoshimori et al., 1991) (Figure 3C, D), demonstrating that IFN-I
150 signaling primarily relies on the conventional lysosomal acidification machinery.

151 Together, these observations reveal that IFN-I signaling promotes epithelial cell lysosomal
152 re-localization, acidification and degradative activity, without broadly affecting intracellular
153 trafficking. Besides epithelial cells such as HeLa and HT29, IFN β treatment also reduced
154 lysosomal pH in monocyte/macrophage-like THP-1 cells (Figure S3F), suggesting that IFN-I
155 signaling controls lysosomal acidification outside of epithelial cell lineages.

156

157 **The ISG IFITM3 regulates lysosomal function and Stm cytotoxicity**

158 To begin to dissect the mechanism by which IFN-I signaling regulates lysosome acidification
159 and function, we first took a candidate-based approach and investigated IFITM3. This
160 transmembrane ISG has antiviral activity and is thought to reside in the endosomal trafficking
161 system and to interact with the lysosomal v-ATPase complex (Spence et al., 2019; Wee et al.,
162 2012), suggesting a potential role for this protein in lysosome function. Immunofluorescence
163 analysis revealed that IFITM3 co-localized with LAMP1, but not Rab5, confirming that
164 IFITM3 is a lysosomal protein (Figure 4A). Remarkably, lysosomal pH in *Ifitm3* KO cells was
165 elevated in both basal and IFN β -primed conditions relative to WT cells, partially phenocopying
166 the *Ifnar2* KO, and suggesting that IFITM3 contributes to IFN-I-mediated lysosomal
167 remodeling (Figures 4B-D). *Ifitm3*'s contribution to basal pH levels are consistent with the tonic
168 activities of IFNs observed in diverse mammalian cell types (Schoggins et al., 2014). *Ifitm3* KO
169 cells were more resistant to Stm-induced cell death than the WT parental line both before and
170 after IFN β priming (Figure 4E), suggesting that this ISG contributes to IFN-I signaling
171 augmentation of Stm cytotoxicity.

172

173 **Discovery of ISGs with novel roles in lysosomal pH regulation**

174 Given that both lysosomal pH and degradative activity in *Ifitm3* KO cells were still somewhat
175 sensitive to IFN β priming (Figures 4C, D), we hypothesized that additional ISGs regulate
176 lysosome function. To identify these factors, we employed organellar proteomics, a powerful
177 and unbiased affinity-based technique that has not yet been applied to host-pathogen
178 interactions. We used a recently described lysosomal pulldown system, LysoIP (Abu-Remaileh

179 et al., 2017), to profile the proteomes of intact lysosomes from WT or *Ifnar2* KO cells in basal
180 or IFN β -stimulated states. The purity and integrity of the lysosome samples was confirmed by
181 verifying the presence of luminal cathepsin D and the absence of cytosolic and Golgi apparatus
182 markers (Figures 5A and S4). Quantitative profiling revealed that the abundances of ~15
183 proteins, most of them ISGs, were increased in purified lysosomes upon IFN β stimulation
184 (Figure 5B). Spectral counts for IFITM3 were enriched in lysosomes from IFN β -treated cells,
185 supporting the imaging above (Figure 4A) and providing validation of the dataset. Immunoblots
186 of purified lysosomal and cytoplasmic fractions from naïve and IFN β -treated cells with
187 antibodies to IFITM3 further corroborated this observation, and immunoblots for the known
188 cytosolic ISG IFIT3 served as a negative control in this assay (Figure 5A).

189 We constructed KO cell lines for most of the lysosomally enriched ISGs and assessed their
190 contributions to the pH of this degradative organelle (Figure 5C). Although most ISGs did not
191 appear to influence lysosomal pH, we found two additional ISGs (*Slc15a3* and *Cnp*) that like
192 *Ifitm3* contributed to both basal and IFN-I-mediated lysosomal acidification (Figure 5C). In
193 contrast to *Ifitm3*, *Slc15a3*, a lysosome-resident, proton-coupled histidine and di-tripeptide
194 transporter (Song et al., 2018), likely does not interact with the v-ATPase, suggesting that both
195 v-ATPase-dependent and independent mechanisms may underlie IFN-I-induced lysosomal
196 acidification. Similarly, *Cnp*, the other identified regulator of lysosome pH, is a 2',3'-cyclic
197 nucleotide 3' phosphodiesterase whose activity has not been linked to the v-ATPase.

198

199 **IFN-I stimulates intracellular Stm virulence gene expression and facilitates SCV damage**

200 We hypothesized that IFN-I's role in lysosomal acidification might explain why IFN-I signaling
201 enhances Stm cytotoxicity because acidic pH is known to stimulate expression of
202 SPI-2-encoded and other virulence genes (Chakraborty et al., 2015; Prost et al., 2007).
203 Consistent with this idea, IFN β priming increased intracellular Stm SPI-2 encoded gene
204 expression (Figures 6A and S5A). These genes were only induced after SCV formation (i.e.
205 later than one-hour post-infection), and the effect of IFN β priming was eliminated in *Ifnar2* KO
206 cells. Furthermore, treatment with Bfa1 abolished IFN β induction of SPI-2 expression (Figures
207 6A and S5A), suggesting that diminished SCV acidification is the primary mechanism of
208 IFN-I-enhanced SPI-2 induction. Analyses of SPI-2 gene expression using flow cytometry and
209 a fluorescent *P_{sifB}::gfp* Stm reporter strain (Garmendia et al., 2003), confirmed this phenotype at
210 single bacterial cell resolution (Figure 6B). Similar expression trends were also observed in
211 known acid-induced, virulence-associated genes that are not encoded within SPI-2, such as
212 *pagD* (Gunn et al., 1995) (Figures 6C and S5B, C). This is consistent with the observation
213 above (Figure 2A) that SPI-2-deficient Stm retain some cytotoxicity. Importantly, the
214 expression of SPI-1 genes, which encode invasion-specific functions, was not altered in
215 infections with IFN β priming or in *Ifnar2* KO cells (Figures 6D and S5D). Together, these data
216 indicate that IFN-I-mediated acidification of lysosomes promotes intracellular Stm virulence
217 gene expression.

218 The Stm virulence program can lead to the breakage of SCV, exposing the pathogen to the
219 host cytosol (Roy et al., 2004; Xu et al., 2019). To assess whether the pathogen was
220 cytosol-exposed, infected cells were treated with high concentrations of gentamicin, an

221 antibiotic that can penetrate into cells at high concentrations (Myrdal et al., 2005). Stm in
222 IFN β -treated WT cells were markedly more sensitive to gentamicin than bacteria in
223 IFN β -treated *Ifnar2* KO cells (Figure 6E), suggesting that IFN-I activation of Stm virulence
224 gene expression promotes SCV rupture and facilitates the pathogen's access to the cytosol.
225 Consistent with this idea, ~60% of Stm stained positive for galectin-3, a marker of SCV damage
226 (Thurston et al., 2012), in infected IFN β -primed WT HeLa cells, whereas <20% of Stm were
227 galectin-3+ in infected *Ifnar2* KO cells (Figures 6F, G). Together, these data suggest a model
228 that explains why IFN-I signaling was a hit in the CRISPR/Cas9 screen: IFN-I
229 signaling-dependent lysosome acidification stimulates intracellular Stm virulence gene
230 expression, which promotes SCV rupture and subsequent Stm-induced cytotoxicity.

231

232 **IFN-I promotes epithelial Stm pathogenesis *in vivo***

233 To understand the function of IFN-I signaling in Stm pathogenesis, we used a more physiologic
234 culture system - primary human-derived small intestinal organoids. IFN β priming of organoids
235 increased cell death associated with Stm infection, whereas treatment of organoids with
236 pyridone-6 had the opposite effect (Figures 7A, B), supporting the idea that IFN-I signaling
237 promotes Stm pathogenicity in IECs.

238 To further dissect the importance of IFN-I signaling in the context of *in vivo* Stm infection,
239 we used bone marrow transfers to generate chimeric C57BL/6 mice that had *Ifnar1* deleted in
240 only the hematopoietic compartment or in other bodily tissues, including epithelial surfaces
241 (Figure S6A-C). Following intraperitoneal delivery of poly (I:C) to induce IFN β production

242 (Lauterbach et al., 2010), chimeric mice were oro-gastrically inoculated with Stm to assess the
243 roles of epithelial and hematopoietic compartments in resistance to infection (Figure 7C).
244 Strikingly, mice with KO epithelium and WT bone marrow were relatively resistant to oral Stm
245 infection, with reduced weight loss and distal organ bacterial loads compared to mice that had
246 WT epithelium and bone marrow (Figures 7D, E), suggesting that IEC IFN-I signaling
247 enhances Stm pathogenicity during infection. We also observed a similar phenotype in mice
248 with WT epithelium and KO bone marrow (Figures 7D, E), consistent with previous
249 observations that immune cell IFN-I signaling also promotes Stm pathogenesis (Robinson et al.,
250 2012). Mice that had both KO epithelium and bone marrow were more protected than either
251 chimera (Figures 7D, E), further supporting the idea that Stm takes advantage of IFN-I
252 signaling in both the gut epithelium as well as in bone marrow-derived cells.

253 Although histological analyses revealed similar levels of tissue damage in both chimeras
254 (Figures 7F, G), finer-scale immunofluorescence studies with TUNEL staining to quantify cell
255 death showed that TUNEL+ (dying) cells tracked with the WT compartment. In chimeric mice
256 with WT epithelium, TUNEL staining primarily co-localized with E-cadherin-positive IECs
257 (Figures 7H, I). In contrast, in Stm-infected chimeric mice with WT bone marrow, cell death
258 was primarily localized to E-cadherin-negative cells in the lamina propria (Figures 7H, I).
259 Together, these *in vivo* studies suggest that IFN-I signaling in the epithelial compartment
260 facilitates Stm-induced IEC death and pathogen spread.

261

262 **DISCUSSION**

263 Our findings underscore the utility of model intracellular pathogens like Stm as probes for
264 the investigation of fundamental cell processes. The top hits in the genome-scale CRISPR/Cas9
265 screen that initiated this study were remarkably coherent and revealed that IFN-I signaling
266 sensitizes epithelial cells to Stm cytotoxicity. IFN-I-dependent lysosome acidification in IECs
267 stimulated Stm virulence gene expression, heightened SCV damage and exacerbated cell death,
268 offering a plausible molecular pathway that explains the results of the screen. Importantly, our
269 work uncovered a fundamental new role for IFN-I signaling. We discovered that this canonical
270 antiviral signaling pathway, which has been studied for more than 5 decades (Gonzalez-Navajas
271 et al., 2012), controls the subcellular localization, protein content, pH, and protease activity of
272 lysosomes. Several ISGs, including *Ifitm3*, *Slc15a3*, and *Cnp*, that were found to localize to
273 lysosomes, were shown to contribute to lysosomal acidification. Thus, IFN-I signaling controls
274 the function of an organelle – the lysosome – in addition to directly or indirectly modulating the
275 expression and activities of hundreds of ISGS and their interaction partners.

276 The functions of the three ISGs that were identified as participants in IFN-I-mediated
277 lysosomal acidification suggests that more than one mechanism accounts for this phenotype. It
278 seems likely that putative v-ATPase-associated proteins such as *Ifitm3* contribute to
279 acidification processes by directly modulating the proton concentration gradient. However,
280 ISGs with known non-ATPase-related functions such as *Slc15a3*, which is a proton-coupled
281 histidine and di-tripeptide transporter, may not play similar roles. While we cannot exclude
282 v-ATPase-mediated mechanisms for such proteins, we speculate that *Slc15a3* may show
283 transport preferences for non-neutral dipeptides that could influence lysosome luminal pH.

284 Previous studies have linked *Cnp* with not only lysosomal, but mitochondrial compartments
285 (McFerran and Burgoyne, 1997), raising the possibility that ISG function in additional cell
286 compartments could also indirectly contribute to lysosomal acidification. Interestingly, *Cnp*, a
287 membrane-bound protein, has additionally been linked to microtubule function, suggesting that
288 it may also play a role in IFN-I-mediated lysosomal repositioning (Bifulco et al., 2002).

289 Although a virtually universal antiviral immune signal, the consequences of IFN-I
290 signaling on bacterial pathogens has remained less clear and is in many cases detrimental to the
291 host (Kovarik et al., 2016). Several intracellular bacterial pathogens, including *Listeria*
292 *monocytogenes*, *Mycobacterium tuberculosis* and Stm, appear to have decreased virulence in
293 IFNAR1-deficient mice. Studies of the bases for these phenotypes have primarily focused on
294 immune-mediated explanations (Boxx and Cheng, 2016; Kernbauer et al., 2013; O'Connell et
295 al., 2004) (bring back previous citations). For Stm, we propose that IFN-I signaling contributes
296 to the outcome of infection at least in part by inducing remodeling of epithelial cell lysosomes
297 and thereby stimulating the Stm virulence program. Our findings suggest that IFN-I signaling
298 can modify innate defense in the epithelial as well as the immune compartment and is
299 complementary and compatible with previously proposed mechanisms for IFN-I-enhanced Stm
300 infection in bone-marrow derived immune cells. Such mechanisms include elevated
301 macrophage necroptosis (Hos et al., 2017; Robinson et al., 2012) and transcriptional
302 reprogramming (Perkins et al., 2015), altered dendritic cell homeostasis (Stefan et al., 2017),
303 and increased neutrophil-mediated inflammation (Wilson et al., 2019). The role of IFN-I
304 modulation of lysosome function to Stm infection in non-epithelial cells, such as macrophages,

305 requires further study. Furthermore, it remains an open question whether Stm purposely
306 stimulates and exploits IFN-I signaling as part of its pathogenic strategy.

307 Although IFN-I-induced lysosomal acidification sensitizes cells to an intracellular bacterial
308 pathogen, our finding that several known ISGs with antiviral properties, such as *Ifitm3*, *Slc15a3*
309 and *Cnp*, participate in this process leads us to speculate that this mechanism may be protective
310 against viral threats. IFN-I-mediated lysosomal remodeling may also play a role in
311 non-infectious pathologies, such as lysosomal cholesterol accumulation (Kuhnl et al., 2018) and
312 other lysosome-related disorders. It remains unclear whether these effects might be driven by
313 the tonic IFN-I signaling that occurs in many tissues (Schoggins et al., 2014), or instead require
314 pathogenic elevations of IFN-I.

315 Our finding that IFN-I signaling governs the composition and function of the lysosome
316 provides a new cell biologic perspective for understanding cytokine function. It will be of
317 interest to determine whether other immune signals (i.e. including other IFNs and cytokines)
318 can also direct remodeling of lysosomes and other organelles, such as the mitochondria and
319 endoplasmic reticulum, under homeostasis and in diverse pathogenic contexts. Such activities
320 may constitute a broadly applicable lens through which to view and enhance our understanding
321 of the cell biology of innate defense.

322 **AUTHOR CONTRIBUTIONS**

323 H.L.Z. and M.K.W. conceived and all authors designed the study. H.L.Z., A.Z., and X.L.
324 performed all experiments and analyzed data. H.L.Z., B.S., and M.K.W. wrote the manuscript
325 and all authors edited the paper.

326

327 **ACKNOWLEDGEMENTS**

328 We thank members of the Waldor lab for helpful discussions on all aspects of this project, Dr.
329 David Breault at the Harvard Digestive Diseases Center (HDDC) Organoid Core for the
330 primary human small intestine organoids; and Michal Pyzik from Dr. Richard Blumberg's lab
331 for assistance in creation of bone marrow chimeric mice.

332 Research in the M.K.W. laboratory is supported by HHMI and NIH grant R01 AI-042347. A.Z.
333 was supported by an EMBO long-term fellowship (ALTF 1514-2016) and by a HHMI
334 Fellowship of the Life Sciences Research Foundation.

335

336 **DECLARATION OF INTERESTS**

337 The authors declare no competing interests.

338

339 **Figure 1. A CRISPR/Cas9 screen identifies IEC factors required for Stm cytotoxicity**

340 (A) Workflow for CRISPR/Cas9 Stm cytotoxicity screen in HT29-Cas9 cells.
341 (B) Adjusted p-values for selected enriched Gene Ontology (GO) terms from GO-analyzed hits
342 in the Stm cytotoxicity screen (upper threshold set at $p < 1E-03$).
343 (C) Cytoscape visualization of enriched pathways.
344 (D) Scatterplots showing normalized read enrichment of specific sgRNAs in two libraries (A
345 and B) after 4 rounds of Stm infection. Genes involved in IFN-I signaling are delineated by the
346 dashed red circle.
347 (E) Overview of IFN-I signaling pathway. Numbers correspond to hit ranks in each library.

348

349 **Figure 2. IFN-I promotes Stm cytotoxicity in IECs**

350 (A) Survival of IFN β -primed or unprimed WT or *Ifnar2* KO HT29 cells 4 hours post WT or
351 mutant Stm infection. Mean \pm s.d., $n = 3$.
352 (B) Survival of mock or drug-treated WT HT29 cells 20 hours post WT Stm infection. Mean \pm
353 s.d., $n = 3$.
354 (C) Flow cytometry of IFN β -primed or unprimed WT and *Ifnar2* KO HT29 cells 20 hours post
355 mCherry-Stm infection and stained with Annexin V-FITC. FITC, fluorescein isothiocyanate.
356 (D) Flow cytometric quantification of invasion of HT29 cells by mCherry-Stm. Mean \pm s.d., n
357 = 3.
358 (E) Representative images of LAMP1-RFP-expressing HeLa cells 4 hours post GFP-Stm
359 infection. Boxed insets depict higher magnification showing bacterial colocalization with

360 LAMP1-RFP. Scale bar, 10 μ m.

361 (F) Quantification of LAMP1-RFP-positive Stm from 10 fields. Mean \pm s.d., n = 3.

362 Statistical analysis was performed by two-tailed Student's *t* test (*P < 0.05, **P < 0.01 and
363 ***P < 0.001).

364 See also Figure S1, 2 and Table S1.

365

366 **Figure 3. IFN-I signaling regulates lysosomal positioning, acidity, and protease activity**

367 (A) Representative images of lysosome (LAMP1-GFP+/LysoTracker+ compartment)
368 distribution in WT and *Ifnar2* KO HeLa cells with or without 16 hours of IFN β stimulation.
369 Nuclei (blue) were stained with DAPI and actin (purple) was stained with phalloidin. Scale bar,
370 5 μ m.

371 (B) Quantification of perinuclear lysosome indices from 10 cells. Mean \pm s.d., n = 3.

372 (C-D) Flow cytometry of LysoTracker Red (C) and DQ-Green BSA fluorescence (D) in HeLa
373 cells \pm 16 hours of treatment with IFN β or the lysosomal acidification inhibitor Bfa1. Vertical
374 dashed lines indicate the mean fluorescence value of the mock control in WT (red) or *Ifnar2*
375 KO (blue) cells.

376 (E) Relative cathepsin D activity in WT and *Ifnar2* KO HeLa cells \pm 16 hours of IFN β
377 treatment. Mean \pm s.d., n = 5.

378 Statistical analysis was performed by two-tailed Student's *t* test (**P < 0.001).

379 See also Figure S3.

380

381 **Figure 4. The ISG IFITM3 regulates lysosomal function and Stm cytotoxicity**

382 (A) Representative images of LAMP1-RFP or Rab5-RFP-expressing HeLa cells stained with

383 IFITM3 antibody (GFP). Nuclei (blue) were stained with DAPI. Scale bar, 5 μ m.

384 (B) Immunoblotting for IFITM3 in WT and *Ifitm3* KO HeLa cells \pm 16 hours of IFN β

385 treatment.

386 (C-D) Flow cytometry of LysoTracker Red (D) and DQ-Green BSA fluorescence (E) in WT,

387 *Ifitm3* KO and *Ifnar2* KO HeLa cells \pm 16 hours of IFN β treatment.

388 (E) Survival of IFN β -primed or unprimed WT, *Ifitm3* or *Ifnar2* KO HeLa cells 4 hours post Stm

389 infection. Mean \pm s.d., n = 3.

390 Statistical analysis was performed by two-tailed Student's *t* test (*P < 0.05, **P < 0.01 and

391 ***P < 0.001).

392

393 **Figure 5. Discovery of ISGs with novel roles in lysosomal pH regulation**

394 (A) Immunoblotting for known (LAMP1, CTSD) and suspected (IFITM3) lysosomal proteins

395 in whole-cell lysates (T) and purified lysosomes (IP).

396 (B) Relative fold change scatterplot of protein abundance in lysosomes purified from WT or

397 *Ifnar2* KO HeLa cells \pm 16 hours of IFN β treatment. Colored dots indicate proteins that are

398 known ISGs.

399 (C) Quantification of mean fluorescence intensity from flow cytometry of Lysotracker staining

400 in WT or ISG KO cells \pm 16 hours of IFN β treatment.

401 Statistical analysis was performed by two-tailed Student's *t* test (*P < 0.05, **P < 0.01 and

402 ***P < 0.001).

403 See also Figure S4 and Table S2.

404

405 **Figure 6. IFN-I signaling promotes Stm virulence gene expression and SCV rupture**

406 Relative induction of SPI-2 (*ssaV*) (A), PhoP-induced virulence gene (*pagD*) (C) and SPI-1

407 (*prgH*) (D) in intracellular Stm from WT and *Ifnar2* KO HeLa cells \pm 16 hours of drug

408 treatment. Data are normalized to transcript levels in LB-cultured Stm (red). Mean \pm s.d., n = 3.

409 (B) Flow cytometry of intracellular *P_{sifB}::gfp* Stm isolated from WT and *Ifnar2* KO HeLa cells

410 \pm 16 hours of drug treatment. LB-cultured Stm were used as the mock control.

411 (E) Intracellular CFU counts from IFN β -treated WT and *Ifnar2* KO HeLa cells 2 hour post Stm

412 infection. Infected cells were treated with gentamicin (Gm) at the indicated concentrations

413 (μ g/ml). Data were normalized to the WT+IFN β Gm 10 group. Mean \pm s.d., n = 5.

414 (F) Representative images of Gal3-GFP-expressing HeLa cells 4 hour post mCherry-Stm

415 infection. Scale bar, 10 μ m.

416 (G) Quantification of the Gal3 positive SCVs from 10 cells. Mean \pm s.d., n = 3.

417 Statistical analysis was performed by two-tailed Student's *t* test (**P < 0.001).

418 See also Figure S5.

419

420 **Figure 7. IFN-I signaling in intestinal epithelial cells promotes Stm pathogenesis.**

421 (A) Representative images of IFN β or pyridone-6-primed or unprimed human small bowel

422 enteroids 20 hours post WT Stm infection. Propidium iodide (PI) staining was used to detect

423 cell death. Scale bar, 100 μ m.

424 (B) Enteroid survival 20 hours post WT Stm infection. Mean \pm s.d., n = 3.

425 (C) Timeline of generation (top) and oral Stm infection (bottom) of *Ifnar1* chimeric mice.

426 (D) Body weights of Stm-infected chimeric mice. Mean \pm s.e.m., n = 12 mice.

427 (E) Liver and spleen Stm CFU burdens from chimeric mice 5 days post-Stm infection. Mean \pm

428 s.d., n = 12 mice.

429 (F) Representative H&E stained ileal sections from chimeric mice 5 days post-Stm infection.

430 Scale bars, 100 μ m.

431 (G) Average histological scores of chimeric mice 5 days post-Stm infection from 8 fields. Mean

432 \pm s.d., n = 4 mice.

433 (H) Representative images of ileal sections from chimeric mice 5 days post-Stm infection. IECs

434 were identified with E-cadherin (red), dying cells with TUNEL (green), and nuclei with DAPI

435 (blue). The white dashed line marks the epithelial surface. Scale bar, 100 μ m.

436 (I) Quantification of TUNEL+/E-cadherin+ (red) or TUNEL+/E-cadherin- (blue) cells per field

437 from 8 fields. Mean \pm s.d., n = 4 mice.

438 Statistical analysis was performed by two-tailed Student's *t* test in (B) and (G). Statistical

439 analysis was performed by two-tailed Mann-Whitney U-test in (D) and (E). (*P < 0.05, **P <

440 0.01 and ***P < 0.001).

441 See also Figure S6.

442

443 **Figure S1. IFN-I promotes intracellular Stm cytotoxicity, Related to Figure 2**

444 (A) Relative expression of the IFN-I target gene *oas1* in WT and *Ifnar2* KO HT29 cells 16

445 hours post-IFN β treatment. Mean \pm s.d., n = 3.

446 (B) Survival of IFN β -primed or unprimed WT or *Ifnar2* KO HT29 cells 20 hours post WT or

447 mutant Stm infection. Mean \pm s.d., n = 3.

448 (C) Representative bright-field images of WT and *Ifnar2* KO HT29 cells 2 days post Stm

449 infection. Scale bar, 250 μ m or 100 μ m, respectively.

450 (D) Quantification of flow cytometry data in Figure 2C. Mean \pm s.d., n = 4.

451 (E) Flow cytometry of IFN β -primed or unprimed WT and *Ifnar2* KO HeLa cells 20 hours post

452 mCherry-Stm infection and stained with Annexin V-FITC.

453 (F) Quantification of flow cytometry data from Figure S2E. Mean \pm s.d., n = 4.

454 Statistical analysis was performed by two-tailed Student's *t* test (*P < 0.05, **P < 0.01 and

455 ***P < 0.001).

456

457 **Figure S2. IFN-I does not affect Stm invasion or SCV formation, Related to Figure 2**

458 (A) Flow cytometry of IFN β -primed WT and *Ifnar2* KO HT29 cells 4 hours post mCherry-Stm

459 infection. Quantification is shown in Figure 2D.

460 (B) Representative images of Rab5-RFP-expressing HeLa cells at 4 hours post GFP-Stm

461 infection. Scale bar, 10 μ m.

462 (C) Quantification of Rab5-RFP-positive Stm from 10 fields. Mean \pm s.d., n = 3.

463 (D) Representative images of Rab7-RFP-expressing HeLa cells 4 hours post GFP-Stm infection.

464 Scale bar, 10 μ m.

465 (E) Quantification of Rab7-RFP-positive Stm from 10 fields. Mean \pm s.d., n = 3.

466

467 **Figure S3. IFN-I signaling regulates lysosomal remodeling in both epithelial cell and**

468 **THP1 cells, Related to Figure 3**

469 (A) Quantification of mean fluorescence intensity (MFI) from Figure 3C. Mean \pm s.d., n = 3.

470 (B) Flow cytometry of LysoSensor staining in WT and *Ifnar2* KO HeLa cells \pm 16 hours of
471 IFN β treatment.

472 (C) Flow cytometry of LysoTracker staining in HT29 cells \pm 16 hours of drug treatment.

473 (D) Quantification of mean fluorescence intensity from Figure 3D. Mean \pm s.d., n = 3.

474 (E) Flow cytometry of Dextran-568 uptake in WT and *Ifnar2* KO HeLa cells \pm 16 hours of
475 IFN β treatment.

476 (F) Flow cytometry of LysoTracker staining in monocytic macrophage-like THP1 cells \pm 16
477 hours of IFN β treatment.

478 Statistical analysis was performed by two-tailed Student's *t* test (**P < 0.01 and ***P < 0.001).

479

480 **Figure S4. Purity of isolated lysosomes and IFITM3 gene KO in HeLa cells, Related to**

481 **Figure 5**

482 Immunoblotting for protein markers of indicated subcellular compartments in whole-cell lysates

483 (T) and purified lysosomes (IP).

484

485 **Figure S5. Intracellular Stm virulence gene expression, Related to Figure 6**

486 (A-D) Relative induction of individual SPI-2 (A), PhoP-induced (B), SPI-3 (C) or SPI-1 (D)

487 genes in intracellular Stm from WT and *Ifnar2* KO HeLa cells \pm drug treatment. Data are

488 normalized to transcript levels from LB-cultured Stm (red). Mean \pm s.d., n = 3.

489 Statistical analysis was performed by two-tailed Student's *t* test (***(P < 0.001).

490

491 **Figure S6. Generation of chimeric mice by bone marrow transfer, Related to Figure 7**

492 (A-C) Flow cytometry of peripheral blood CD45.1 and CD45.2+ cells in mock and chimeric

493 mice 4 weeks after bone marrow transplantation. WT mock mice carry CD45.2 allele but not

494 CD45.1 (A), which is abolished by irradiation (B, C). 4 weeks later after CD45.1 BM transfer,

495 the chimeric mice carry CD45.1 allele but not CD45.2 (B, C).

496

497

498 **STAR METHODS**

499 **KEY RESOURCE TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
LAMP1 (D4O1S) Mouse mAb	Cell Signaling Technology	15665S
Anti-IFIT3/P60 antibody [OTI1G1]	Abcam	ab118045
IFITM3 Antibody	Proteintech	11714-1-AP
Cathepsin D Monoclonal Antibody (CTD-19)	ThermoFisher	MA1-26773
Anti-GM130 antibody [EP892Y] - cis-Golgi Marker	Abcam	ab52649
β-Actin Antibody (AC-15)	Santa Cruz	sc-69879
PE/Cy7 anti-mouse CD45.2	Biolegend	109829
FITC anti-mouse CD45.1	Biolegend	110706
Human/Mouse E-Cadherin Antibody	R&D	AF748
Anti-Rabbit IgG (whole molecule)-Peroxidase antibody	Sigma	A4914
Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP	ThermoFisher	31430
Rabbit anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP	Invitrogen	R-21459
Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 568	Invitrogen	A-11057
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Invitrogen	A-11034
Bacterial Strains		
Salmonella Typhimurium SL1344	Dr. Dirk Bumann	
Salmonella Typhimurium SL1344 ΔprgH	This study	
Salmonella Typhimurium SL1344 ΔssaV	This study	
Salmonella Typhimurium SL1344-eGFP	This study	
Salmonella Typhimurium SL1344-mCherry	This study	
Salmonella Typhimurium SL1344-P _{sifB} -GFP	Dr. Dirk Bumann	
Salmonella Typhimurium SL1344-mCherry-P _{sifB} -GFP	This study	
One Shot Stbl3 Chemically Competent E. coli	Thermo Fisher Scientific	Cat No.C737303
Chemicals and Recombinant Proteins		
IFNβ	Peprotech	Cat No. 300-02BC
pyridine-6	BioVision	Cat No. 2534
Ruxolitinib (NCB018424)	Selleckchem	Cat No.S1378
Polybrene,	Sigma	Cat No. TR-1003-G
Trizol	Invitrogen	Cat No. 15596018

SuperScript III reverse transcriptase	Invitrogen	Cat No. 18080085
Roche 2×SYBR master mix	Roche	Cat No. 04707516001
BfA1	SantaCruz	Cat No. sc-201550
Critical Commercial Assays		
Blood and Cell Culture DNA MaxiKit	QIAGEN	Cat No. 13362
TransIT-LT1	Mirus	Cat No. MIR230
QIAquick Gel Extraction Kit	Qiagen	Cat No. 28704
LDH assay kit	Promega	Cat No. G1780
FITC Annexin V Apoptosis Detection kit	BioLegend	Cat No. 640922
Lipofectamine 3000	ThermoFisher	Cat No. L3000008
Lysotracker	ThermoFisher	Cat No. L7528
Lysosensor	Thermofisher	Cat No. L7545
fluorogenic peptide substrate of cathepsin D	Biovision	Cat No. K143
Dextran 568	ThermoFisher	Cat No. D22912
DQ-Red BSA	ThermoFisher	Cat No. D12050
10% Tris-Glycine gels	ThermoFisher	Cat No. XP00102BOX
nitrocellulose membranes	Invitrogen	Cat No. IB23002
SuperSignal West Pico Enhanced Chemiluminescence kit	ThermoFisher	Cat No. 34577
PureLink Micro-to-Midi total RNA purification system	Invitrogen	Cat No. 12183
Ambion Turbo DNA-free DNase	Invitrogen	Cat No. AM1907
TUNEL kit	ThermoFisher	Cat No. A23210
Experimental Models: Cell Lines		
HeLa	ATCC	CRM-CCL-2, female
HEK293T	ATCC	CRL-3216, female
HT29	ATCC	HTB-38, female
THP-1	ATCC	TIB-202, male
Primary human small intestine organoids	Harvard Digestive Diseases Center Organoid Core	Gift from Dr. David Breault
Experimental Models: Organisms/Strains		
Mouse: C57BL/6J B6(Cg)-Ifnar1tm1.2Ees/J	The Jackson Laboratory	Stock No: 028288
Mouse: B6.SJL-Ptprca Pepcb/BoyJ	The Jackson Laboratory	Stock No: 002014
Oligonucleotides		
qPCR primers, see Table S3		
CRISPR gene KO primers, see Table S4		

Recombinant DNA		
lentiGuide-Puro	Addgene	52963
psPAX2	Addgene	12260
pMD2.G	Addgene	12259
pLJC5-LAMP1-RFP-3xHA	Addgene	102932
pHR-FKBP:mCherry-Rab5a	Addgene	72901
pHR-FKBP:mCherry-Rab7a	Addgene	72903
LAMP1-mGFP	Addgene	34831
pLJC5-Tmem192-3xHA	Addgene	102930
mAG-GAL3	Addgene	62734
Software and Algorithms		
Primer3	Untergasser et al., 2012	http://primer3.ut.ee/
ImageJ	NIH	https://imagej.nih.gov/ij/download.html
FlowJo 10.2	FlowJo	https://www.flowjo.com/solutions/flowjo
GraphPad Prism	GraphPad Software	https://www.graphpad.com
Gene set enrichment Analysis	Broad Institute	http://www.broadinstitute.org/gsea
DAVID analysis	NIAID/NIH	http://david.abcc.ncifcrf.gov

500

501 **CONTACT FOR REAGENT AND RESOURCE SHARING**

502 Further information and requests for resources and reagents should be directed to and will be

503 fulfilled by the Lead Contact, Matthew K Waldor (mwaldor@research.bwh.harvard.edu)

504

505 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

506

507 **Bacterial strains, plasmids, and antibodies**

508 Strains, plasmids, oligonucleotides and antibodies used in this study are listed in key resources

509 table and table S3, 4. *Escherichia coli* K-12 DH5 α λ pir was used for cloning procedures and
510 plasmid propagation. *S. typhimurium* strain SL1344 and its ΔSPI-1 and ΔSPI-2 derivatives were
511 cultured in Luria-Bertani (LB) medium or on LB agar plates at 37°C supplemented with
512 streptomycin (100 μ g/ml). The SPI-1 (*prgH*) and SPI-2 (*ssav*) genes were deleted from
513 wild-type (WT) SL1344 with the lambda red recombination system (Datsenko and Wanner,
514 2000). This approach was also used to introduce the GFP and mCherry-coding sequence with a
515 constitutive promoter (P_{rpsM}) into the *putP-putA* locus (Hautefort et al., 2003).

516

517 **Cell lines**

518 HeLa (ATCC, Cat No. CRM-CCL-2, female) and HEK293T (ATCC, Cat No. CRL-3216,
519 female) cells were cultured in Dulbecco's modified Eagle's medium (DMEM; ThermoFisher,
520 Cat No. 11965) supplemented with 10% fetal bovine serum (FBS; Gibco, Cat No. 16140-071).
521 HT29 (ATCC, Cat No. HTB-38, female) cells were cultured in McCoy's 5A modified medium
522 (Thermo Fisher, Cat No. 30-2007) supplemented with 10% FBS. THP-1 (ATCC, Cat No.
523 TIB-202, male) cells were cultured in RPMI-1640 medium (Lonza, Cat No. 12-167F) with 10%
524 non-heat inactivated FBS (GeminiBio, Cat NO. 100-500) and supplemented with HEPES
525 (Lonza, Cat No. 17-737E), 2-Mercaptoethanol (Invitrogen, Cat No. 21985023) and
526 L-Glutamine (Lonza, Cat No. 17-605E). All cells were cultured at 37°C in a 5% CO₂ incubator.

527

528 **Infection of organoids derived from human small intestine**

529 Primary human small intestine organoids (enteroids) were kindly provided by Dr. David Breault
530 at the Harvard Digestive Diseases Center (HDDC) Organoid Core. Enteroids were cultured in
531 the following medium: advanced DMEM/F12 (Gibco, Cat No.12634-028) supplemented with
532 L-WRN conditioned medium (ATCC CRL-3276; HDDC Organoids Core), HEPES (10mM, pH
533 7.4), GlutaMax (Gibco, Cat No.35050-061), B₂₇ (Gibco, Cat No.12587010), N2 (Gibco, Cat
534 No.17502-048), 1mM N-acetyl-L-cysteine (Sigma, Cat No.A8199), 10mM nicotinamide
535 (Sigma, Cat No.N0636), 5μM A83-01 (Sigma, Cat No.SML0788), 10μM SB202190 (Sigma,
536 Cat No.S7067), 50ng/ml murine EGF (Peprotech, Cat No.315-09), 10nM gastrin (Sigma, Cat
537 No.G9145), and 10μM Y-27632 (Sigma, Cat No.Y0503). For Stm infection, approximately 100
538 enteroids were seeded in 50μl Matrigel (Corning, Cat No.356231) in each well of a 24-well
539 plate. Three to four days after seeding, enteroids were either mock treated, or primed with either
540 10ng/ml IFNβ or 0.5 μM pyridine-6 for 16 hours. Enteroids were then released from Matrigel
541 by incubation in 500μl Cell Recovery Solution (Corning, Cat No.354253) for 30 mins on ice.
542 Resuspended enteroids were pipetted up and down 50 times with a P1000 pipette and then
543 transferred to a new 24-well plate. Each well was infected with approximately 3×10⁷ Stm. The
544 plate was centrifuged for 5 mins at 300× g before it was placed in a 37°C incubator for 30 mins.
545 After infection, enteroids were transferred to microcentrifuge tubes, spundown, mixed with
546 50μl Matrigel per tube/sample, and seeded into a new 24-well plate. After Matrigel
547 solidification at 37°C, 500μl full enteroid media containing 50μg/ml gentamicin was added to
548 each well at 10ng/ml IFNβ or 0.5μM pyridine-6 was added to the corresponding primed
549 samples. At 20 hpi, propidium iodide (Invitrogen, Cat No.V13241) was used to stain the

550 enteroids before imaging. To quantitatively measure cell death, the media from each
551 well/sample was also assayed for LDH activity as described above. LDH release values of
552 mock treated samples were set at 1 for normalization.

553

554 **Bone marrow chimera mice**

555 C57BL/6 and *Ifnar1*^{-/-} mice were purchased from The Jackson Laboratory (Bar Harbor, ME,
556 USA) and were maintained on a 12-hour light/dark cycle and a standard chow diet at the
557 Harvard Institute of Medicine specific pathogen-free (SPF) animal facility (Boston, MA, USA).
558 Animal experiments were performed according to guidelines from the Center for Animal
559 Resources and Comparative Medicine at Harvard Medical School. All protocols and
560 experimental plans were approved by the Brigham and Women's Hospital Institutional Animal
561 Care and Use Committee (Protocol #2016N000416). Littermate control male and female mice
562 were randomly assigned to each group and experiments were performed blinded with respect to
563 treatment. For bone marrow chimeras, recipient mice were irradiated two times with 600 rad
564 1□day before injection of bone marrow from WT or *Ifnar1*^{-/-} mice. Bone marrow was extracted
565 from femurs of donor mice by flushing with PBS and then washed once in PBS; 1× 10⁶ cells
566 were injected into the tail vein of recipient mice. Mice were monitored for 4 weeks, at which
567 point engraftment was evaluated by flow cytometry.

568

569 **Infection of chimeric mice**

570 20μg poly (I:C) (Sigma, Cat No. P1530) was given intraperitoneally to chimeric mice one day

571 before Stm infection and every other day for a total of 3 doses to stimulate IFN production.
572 Food was withdrawn for 4 hours before infection. Stm inocula were prepared as described
573 above. Mice were infected orogastrically with $5\text{ }\square\times\text{ }\square 10^8$ Stm in 100 μl PBS. Food was returned
574 to the cages 2hpi. Infected mice were sacrificed 5 days after infection. Tissue samples of the
575 small intestine, spleen and liver were collected for histological analysis and enumeration of
576 colony-forming units (CFU). CFU were quantified by serial-dilution plating of homogenized
577 tissue samples on LB plates containing 100 $\mu\text{g}/\text{ml}$ streptomycin.

578

579 **METHOD DETAILS**

580

581 **Pharmacologic inhibitors and IFN β priming**

582 JAK inhibitors pyridine-6 (BioVision, Cat No. 2534) and ruxolitinib (NCB018424)
583 (Selleckchem, Cat No.S1378) were used at 0.5 μM . IFN β (Peprotech, Cat No. 300-02BC) was
584 used at 10ng/ml for cell priming. Drug-treated cells were primed for 16 hours (unless otherwise
585 indicated) before Stm infection.

586

587 **Stm infections**

588 All tissue culture infections were done according to the following procedure unless otherwise
589 indicated. WT and mutant Stm were grown for ~16 hours at 37°C with shaking and then
590 sub-cultured (1:33) in LB without antibiotics for 3 hours until the cultures reached an OD₆₀₀ of
591 0.8. To prepare the inoculum, cultures were first pelleted at 5,000 \times g for 5 min. The pellets were

592 resuspended in DMEM without FBS, and an appropriate volume of bacterial solution was
593 added to cells to reach a multiplicity of infection (MOI) of 100 bacteria per eukaryotic cell. The
594 cells were then incubated with bacteria for 30 min at 37°C with 5% CO₂. Extracellular bacteria
595 were removed by extensive washing with phosphate-buffered saline (PBS; Gibco, Cat No.
596 14190250) and addition of 50 μ g/ml gentamicin to the medium. At 2 hours post infection (hpi),
597 the gentamicin concentration was decreased to 5 μ g/ml.

598

599 **CRISPR/Cas9 Stm infection screen**

600 HT29-Cas9 CRISPR libraries were constructed as described previously (Blondel et al., 2016)
601 using the Avana sgRNA library, which contains four different sgRNAs targeting each human
602 protein-coding gene (Doench et al., 2016). For each library, two sets of four T225 flasks
603 (Corning, Cat No. 14-826-80) were seeded with 15×10^6 cells per flask and then incubated for
604 48 hours. At the time of the screen, there were $\sim 150 \times 10^6$ cells per experimental condition,
605 corresponding to $\sim 2,000 \times$ coverage per sgRNA. Cells were at $\sim 70\%$ confluence at the time of
606 infection. The infection was done as described above with minor modifications. Briefly, HT29
607 libraries were infected with WT Stm at an MOI of 300 for 30 min. After infection, the libraries
608 were expanded in McCoy's 5A + FBS containing 5 μ g/ml gentamicin, to both permit
609 intracellular bacterial cytotoxicity and minimize the intracellular gentamicin concentration to
610 allow Stm invasion during the next round of infection. Flasks were checked daily to monitor
611 recovery of survivor cells; when 70% confluence was achieved, cells were trypsinized, pooled,
612 and reseeded for the next round of infection. In total, four rounds of infection were conducted.

613 Surviving cells from the last round of infection were used for preparation of genomic DNA.

614

615 **Genomic DNA preparation, sequencing, and analyses of screen results**

616 Genomic DNA was obtained from 75×10^6 cells after positive selection, as well as from input
617 cells, using the Blood and Cell Culture DNA MaxiKit (QIAGEN, Cat No. 13362). sgRNA
618 sequences was amplified by PCR as described (Doench et al., 2016). The read counts were first
619 normalized to reads per million within each condition by the following formula: reads per
620 sgRNA / total reads per condition $\times 10^6$. Reads per million were then \log_2 -transformed by first
621 adding 1 to all values, in order calculate the log of sgRNAs with zero reads. The \log_2
622 fold-change of each sgRNA was then determined relative to the input sample for each
623 biological replicate. MAGeCK analysis for genome-scale CRISPR-Cas9 knockout screens was
624 used to evaluate the rank and statistical significance of perturbations from the ranked list (Li et
625 al., 2014) and enriched pathways were determined using ClueGo (Bindea et al., 2009).

626

627 **Lentivirus preparation and transductions**

628 The Galectin 3, Rab5, Rab7, LAMP1, and LC3B lentiviral expression plasmids used in the
629 study are listed in Table S4. Lentiviral packaging plasmids psPAX2 and pVSV-G, and the
630 corresponding cargo plasmid were transfected into 293T cells with the TransIT-LT1 transfection
631 reagent (Mirus, Cat No. MIR230). 48 hours following transfection, 293T culture supernatants
632 were harvested, passed through a $0.45 \mu\text{m}$ pore filter, and added to target cells that were grown
633 to 70-80% confluence in 6-well plates. Polybrene (Sigma, Cat No. TR-1003-G) ($8 \mu\text{g}/\text{ml}$) was

634 added and the 6-well plates were spun at 1000×g for 2 hours at 30°C, after which cells were
635 returned to 37°C. The infections were repeated the next day with supernatants from 72
636 hour-transfected 293T cultures.

637

638 **Construction of cell lines with targeted gene disruptions**

639 The sgRNA sequences used for construction of targeted HT29-Cas9 and HeLa-Cas9 mutant cell
640 lines are listed in Table S4. All sgRNA oligonucleotides were obtained from Integrated DNA
641 Technologies (IDT) and cloned into the pLentiGuide-Puro plasmid. Briefly, 5µg of plasmid
642 pLentiGuide-Puro was digested with BmsBI (Fermentas, Cat No. ER0451) and purified using
643 the QIAquick Gel Extraction Kit (Qiagen, Cat No. 28704). Each pair of oligos was annealed
644 and phosphorylated with T4 PNK (NEB, Cat No. M0201S) in the presence of 10× T4 DNA
645 ligase buffer in a thermocycler with the following parameters: i) incubation for 30 minutes at
646 37°C, ii) incubation at 95°C for 5 min with a ramp down to 25°C at 5°C per minute. Oligos
647 were then diluted 1:200, and 1µl of the diluted oligo mixture was ligated with 50ng of BsmBI
648 digested plasmid. Ligations were transformed into the STBL3 *Escherichia coli* strain (Thermo
649 Fisher, Cat No. C7373-03) and positive clones were identified by Sanger sequencing (Genewiz).
650 Lentiviral transduction of sgRNAs cloned into pLentiGuide-Puro into HT29-Cas9 and
651 HeLa-Cas9 cells was performed as described above. Targeted gene KO cell lines were selected
652 by puromycin (1µg/ml) for 10 days. HT29 KO cells were isolated as single clones while HeLa
653 cells were CRISPR KO pools after drug selection.

654

655 **Cell survival assays**

656 For cell survival assays, 5×10^4 HT29 cells were seeded into 96-well plates and primed with or
657 without drugs in McCoy's 5A medium supplemented with 10% FBS. HT29 cells were infected
658 with Stms trains at an MOI of 100 as described above. Cell survival analysis was performed
659 using an LDH assay (Promega, Cat No. G1780) according to the manufacturer's protocol at 4
660 and 20 hpi.

661

662 **Stm invasion assays**

663 mCherry- or GFP-tagged Stm were used in all flow cytometry and immunofluorescence
664 experiments. Stm infections were performed as described above with varying MOIs. At 4 hpi,
665 suspended and attached cells were collected, resuspended in PBS, and immediately analyzed
666 with a LSR II (BD Bioscience) or SH800 (Sony) flow cytometer. Data were processed with
667 FlowJo software (v10.6.1).

668

669 **Annexin V staining and FACS analysis**

670 Cell death was detected with the FITC Annexin V Apoptosis Detection kit (BioLegend, Cat No.
671 640922). Infections were performed as described above with mCherry-Stm at an MOI of 100.
672 20 hpi suspended and attached cells were collected, resuspended in 100 μ l of Annexin V binding
673 buffer at 1×10^7 cells/ml and mixed with 5 μ l of FITC-conjugated Annexin V. After incubation at
674 room temperature (RT) for 15 min in the dark, 400 μ l of Annexin V binding buffer was added
675 and stained cells were immediately analyzed by flow cytometry as described above.

676

677 **Immunofluorescence microscopy of tissue cultured cells**

678 HeLa cells were seeded in 12-well plates on 18 mm glass coverslips or 6-well chambers
679 (Mat-TEK, Cat No.P06G-1.5-10-F). Cells were transiently transfected with LAMP1-GFP
680 expressing plasmid mixed with Lipofectamine 3000 (ThermoFisher, Cat No. L3000008)
681 according to the manufacturer's instructions. 24 hours post-transfection cells were primed with
682 or without 10ng/ml IFN β for 16 hours. The cells were then stained with 75nM Lysotracker
683 (ThermoFisher, Cat No. L7528) for 15 min and then fixed with 2% PFA for 20 min at RT. The
684 samples were washed with PBS three times, and stained with fluorescent phalloidin (1:1000)
685 and 4,6-diamidino-2-phenylindole (DAPI, 1 μ g/ml) to label actin filaments and nuclei,
686 respectively. For experiments with LAMP1-RFP, Rab5-RFP, Rab7-RFP, Gal3-GFP, and
687 eGFP-LC3B cell lines, cells were seeded in 6-well chambers and primed with 10ng/ml IFN β
688 for 16 hours before infection with fluorescently-labeled Stm at an MOI 50. Live cells were
689 analyzed at 2 hpi by confocal microscopy to detect localization of Gal3 and Stm.

690

691 **Quantification of lysosome distribution**

692 Lysosome distribution was analyzed as described (Li et al., 2016); the area occupied by nuclei
693 was excluded from analyses. Average LAMP1 intensities were measured for the area within
694 5 μ m of the nucleus ($I_{\text{perinuclear}}$), and the area $>10\mu\text{m}$ from the nucleus ($I_{\text{peripheral}}$). The average
695 intensities were calculated and normalized to cell areas. The perinuclear index was defined as
696 $I_{\text{perinuclear}}/I_{\text{peripheral}}$. Quantifications were carried out on 10 cells per group with ImageJ.

697

698 **Measurement of lysosome acidity**

699 Cells with no treatment or with either 10ng/ml IFN β or 5nM BfA1 (SantaCruz, Cat No.
700 sc-201550) treatment for 16 hours were stained with 75nM Lysotracker or Lysosensor
701 (Thermofisher, Cat No. L7545) for 15 min and washed with PBS. The fluorescence intensity of
702 the stained cells was determined by flow cytometry.

703

704 **Cathepsin D activity assay**

705 HeLa cells were seeded in 96-well plates with or without 10ng/ml IFN β priming for 16 hours. A
706 fluorogenic peptide substrate of cathepsin D, Mca-P-L-G-L-Dpa-A-R-NH2 (Biovision, Cat No.
707 K143), was added to the cells to a final concentration of 200 μ M for 2 hours. The fluorescence
708 intensity of each well was measured with a fluorescence plate reader. Each sample was assayed
709 in triplicate and normalized to a standard curve.

710

711 **Endocytosis and lysosome function assays**

712 HeLa cells were seeded in 24-well plates with or without 10ng/ml IFN β priming. Cells were
713 treated with either 50 μ g/ml Dextran 568 (ThermoFisher, Cat No. D22912) or 25 μ g/ml DQ-Red
714 BSA (ThermoFisher, Cat No. D12050) for 2 hours in growth medium. Then, cells were washed
715 with PBS and trypsinized for fluorescence quantification by flow cytometry.

716

717 **Lysosome immunopurification (LyoIP)**

718 LysoIP was performed largely as described (Abu-Remaileh et al., 2017). Briefly,
719 pLJC5-3×HA-TMEM192 was used to introduce a lysosomal tag protein in WT and *Ifnar2* KO
720 HeLa cells. 15 million cells were used for each replicate. Cells were rinsed twice with
721 pre-chilled PBS and then scraped in 1ml of PBS containing protease and phosphatase inhibitors
722 and pelleted at 100×g for 2 min at 4°C. Cells were resuspended in 950μl of the same buffer, and
723 25μl (equivalent to 2.5% of the total number cells) was reserved for further processing to
724 generate the whole-cell sample. The remaining cells were gently homogenized with 25 strokes
725 of a 2ml Dounce-type homogenizer. The homogenate was then centrifuged at 100×g for 2 min
726 at 4°C to pellet the cell debris and intact cells, while cellular organelles including lysosomes
727 remained in the supernatant. The supernatant was incubated with 150μl of anti-HA magnetic
728 beads preequilibrated with PBS on a rotator shaker for 3 min. Immunoprecipitates were then
729 gently washed three times with PBS on a DynaMag Spin Magnet. Beads with bound lysosomes
730 were resuspended in 100μl pre-chilled 1% Triton-X lysis buffer to extract proteins. After 10
731 min incubation on ice, the beads were removed with the magnet. 5μl of each sample were
732 subjected to 12.5%-acrylamide SDS-PAGE and immunodetected using antibody listed in Table
733 S6, while the remainder was submitted to the Thermo Fisher Center for Multiplexed Proteomics
734 of Harvard Medical School (Boston, MA, USA) for Isobaric Tandem Mass Tag (TMT)-based
735 quantitative proteomics.

736

737 **Immunoblot analyses**

738 Mammalian cell lysates were prepared in radioimmuno-precipitation assay (RIPA) buffer

739 supplemented with 1 tablet of EDTA-free protease inhibitor (Roche, Cat No. C762Q77) per
740 25ml buffer. Lysates were kept at 4°C for 30 min and then clarified by centrifugation in a
741 microcentrifuge at 13,000 rpm at 4°C for 10 min. Proteins were denatured by the addition of
742 SDS sample buffer and boiling for 5 min. Proteins were separated by electrophoresis in 10%
743 Tris-Glycine gels (ThermoFisher, Cat No. XP00102BOX), and then transferred onto
744 nitrocellulose membranes (Invitrogen, Cat No. IB23002). The antibodies and dilutions used are
745 listed in Table S6. Blots were developed with the SuperSignal West Pico Enhanced
746 Chemiluminescence kit (ThermoFisher, Cat No. 34577), and imaged with a Chemidoc
747 (Bio-Rad).

748

749 **qRT-PCR quantification of Stm virulence gene expression**

750 Hela cells were seeded at 1.5×10^6 cells per 6-well plates. After drug-treatment for 16 hours,
751 cells were infected with Stm at an MOI of 50 as described above. Cells were washed with PBS
752 and lysed in Trizol (Invitrogen, Cat No. 15596018) at 1 and 4 hpi. RNA was purified with the
753 PureLink Micro-to-Midi total RNA purification system (Invitrogen, Cat No. 12183) according
754 to the manufacturer's instructions. RNA samples were treated for residual DNA contamination
755 using Ambion Turbo DNA-free DNase (Invitrogen, Cat No. AM1907). Purified RNA was
756 quantified on a Nanodrop 1000 (Thermo Scientific). RNA was reverse transcribed for
757 quantitative RT-PCR (qRT-PCR) experiments by adding 10 µg of total RNA to a mixture
758 containing random hexamers (Life Technologies), 0.01M dithiothreitol, 25 mM dNTPs
759 (Thermo Scientific, Cat No. R0191), reaction buffer and 200 units of SuperScript III reverse

760 transcriptase (Invitrogen, Cat No. 18080085). cDNA was diluted 1:50 in dH₂O and mixed with
761 an equal volume of target-specific primers and Roche 2×SYBR master mix (Roche, Cat
762 No.04707516001). Plates were centrifuged at 1000 rpm for 1 min and stored at 4°C in the dark
763 until ready for use. Primer pairs were designed to minimize secondary structures, a length of
764 ~20-nucelotides and a melting temperature of 60°C using the primer design software Primer 3.
765 Primer sequences are listed in Table S3. For data normalization, quadruplicate C_t values for
766 each sample were averaged and normalized to C_t values of the control gene *rpoB*. The relative
767 gene expression level of Stm in infection conditions was normalized to LB-cultured Stm.

768

769 **Flow cytometric analysis of Stm virulence gene expression**

770 HeLa cells were infected with mCherry-and *sifB*-GFP-expressing-Stm as described above. Cell
771 lysis was performed 4 hpi by washing three times with PBS and subsequent incubation for 10
772 min with PBS containing 0.1% Triton X-100. Cell lysates were then analyzed by flow
773 cytometry. Stm were first identified by gating on the mCherry signal and *sifB* expression was
774 quantified by gating on the mCherry+/GFP+ population. LB cultured Stm served as negative
775 control.

776

777 **Gentamicin protection assay**

778 Gentamicin protection assays were carried out as described (Knodler et al., 2014). Briefly,
779 HeLa cells in 96-well plates were infected in triplicate with Stm at an MOI of 50. Cells were
780 washed three times with PBS and incubated in medium containing 100µg/ml gentamicin for 30

781 min to eliminate extracellular bacteria. Then, media with either 10, 100 or 400 μ g/ml gentamicin
782 was applied to the cells. Cells were lysed 2hpi by washing three times with PBS and subsequent
783 incubation for 10 min with PBS containing 0.1 % Triton X-100. Colony forming units (CFUs)
784 were enumerated by plating serial dilutions of the lysates onto LB plates with 100 μ g/ml
785 streptomycin. Data was normalized to the CFU of WT HeLa cells at gentamicin 10.

786

787 **Histology and tissue immunofluorescence**

788 Formalin-fixed, paraffin-embedded distal small intestinal samples sections of 4 μ m thickness
789 were mounted on glass slides and stained with hematoxylin and eosin. Histology score was
790 evaluated as described (Erben et al., 2014). For immunofluorescence analysis, distal small
791 intestinal samples were collected and flushed with PBS and fixed in 4% paraformaldehyde
792 (PFA) overnight at 4°C followed by washing with PBS. Tissues were embedded in Optimal
793 Cutting Temperature Compound (Tissue-Tek) and stored at -80°C before sectioning on a
794 CM1860 UV cryostat (Leica). 6 μ m-thick slides were stained with TUNEL (ThermoFisher, Cat
795 No. A23210) according to the manufacturer's instructions and then incubated with
796 anti-E-cadherin antibodies at 4°C overnight at a 1:200 in PBS. The next day, AF568-conjugated
797 secondary antibody, diluted at 1:500, was applied to the slides for 1 hour. Nuclei were stained
798 with DAPI at RT for 5 min in the dark. Samples were imaged with an Eclipse Ti confocal
799 microscope with a 20 \times objective (Nikon).

800

801 **QUANTIFICATION AND STATISTICAL ANALYSIS**

802 Statistical analyses were carried out using the two-tailed Student's *t* test or one-way analysis of
803 variance (ANOVA) with Dunnet's post-correction on GraphPad Prism5.

804

805 **DATA AND CODE AVAILABILITY**

806 Original data for results of CRISPR screening is in Table S1, and original data for mass
807 spectrometry of lysosome proteomic is in Table S2.

808

809 **Supplementary items**

810 Table S1: CRISPR/Cas9 screening results, related to figure 1

811 Table S2: Mass spectrometry of lysosome proteomic, related to figure 3

812 Table S3: qPCR primers

813 Table S4: CRISPR KO primers

814

815

816 **REFERENCES**

817 Abu-Remaileh, M., Wyant, G.A., Kim, C., Laqtom, N.N., Abbasi, M., Chan, S.H., Freinkman, E., and Sabatini, D.M.
818 (2017). Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from
819 lysosomes. *Science* **358**, 807-813.

820 Bifulco, M., Laezza, C., Stingo, S., and Wolff, J. (2002). 2',3'-Cyclic nucleotide 3'-phosphodiesterase: a
821 membrane-bound, microtubule-associated protein and membrane anchor for tubulin. *Proc Natl Acad Sci U S A* **99**,
822 1807-1812.

823 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pages, F., Trajanoski,
824 Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway
825 annotation networks. *Bioinformatics* **25**, 1091-1093.

826 Blondel, C.J., Park, J.S., Hubbard, T.P., Pacheco, A.R., Kuehl, C.J., Walsh, M.J., Davis, B.M., Gewurz, B.E., Doench,
827 J.G., and Waldor, M.K. (2016). CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation
828 in Bacterial Type III Secretion System-Mediated Cytotoxicity. *Cell host & microbe* **20**, 226-237.

829 Boxx, G.M., and Cheng, G. (2016). The Roles of Type I Interferon in Bacterial Infection. *Cell host & microbe* **19**,
830 760-769.

831 Butor, C., Griffiths, G., Aronson, N.N., Jr., and Varki, A. (1995). Co-localization of hydrolytic enzymes with widely
832 disparate pH optima: implications for the regulation of lysosomal pH. *J Cell Sci* **108** (Pt 6), 2213-2219.

833 Chakraborty, S., Mizusaki, H., and Kenney, L.J. (2015). A FRET-based DNA biosensor tracks OmpR-dependent
834 acidification of *Salmonella* during macrophage infection. *PLoS biology* **13**, e1002116.

835 Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in *Escherichia coli* K-12
836 using PCR products. *Proc Natl Acad Sci U S A* **97**, 6640-6645.

837 Desjardins, M., Celis, J.E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G., and Huber, L.A. (1994). Molecular
838 characterization of phagosomes. *J Biol Chem* **269**, 32194-32200.

839 Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C.,
840 Orchard, R., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of
841 CRISPR-Cas9. *Nat Biotechnol* **34**, 184-191.

842 Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M.M., Zeitz, M., Siegmund, B.,
843 and Kuhl, A.A. (2014). A guide to histomorphological evaluation of intestinal inflammation in mouse models. *Int J
844 Clin Exp Pathol* **7**, 4557-4576.

845 Galan, J.E., Lara-Tejero, M., Marlovits, T.C., and Wagner, S. (2014). Bacterial type III secretion systems: specialized
846 nanomachines for protein delivery into target cells. *Annual review of microbiology* **68**, 415-438.

847 Garmendia, J., Beuzon, C.R., Ruiz-Albert, J., and Holden, D.W. (2003). The roles of SsrA-SsrB and OmpR-EnvZ in the
848 regulation of genes encoding the *Salmonella typhimurium* SPI-2 type III secretion system. *Microbiology* **149**,
849 2385-2396.

850 Geoghegan, J.L., and Holmes, E.C. (2018). The phylogenomics of evolving virus virulence. *Nature reviews Genetics*
851 **19**, 756-769.

852 Gonzalez-Navajas, J.M., Lee, J., David, M., and Raz, E. (2012). Immunomodulatory functions of type I interferons.
853 *Nature reviews Immunology* **12**, 125-135.

854 Gunn, J.S., Alpuche-Aranda, C.M., Loomis, W.P., Belden, W.J., and Miller, S.I. (1995). Characterization of the
855 *Salmonella typhimurium* pagC/pagD chromosomal region. *J Bacteriol* **177**, 5040-5047.

856 Hautefort, I., Proenca, M.J., and Hinton, J.C. (2003). Single-copy green fluorescent protein gene fusions allow
857 accurate measurement of *Salmonella* gene expression in vitro and during infection of mammalian cells. *Appl
858 Environ Microbiol* 69, 7480-7491.

859 Hess, C.B., Niesel, D.W., and Klimpel, G.R. (1989). The induction of interferon production in fibroblasts by invasive
860 bacteria: a comparison of *Salmonella* and *Shigella* species. *Microb Pathog* 7, 111-120.

861 Hos, N.J., Ganesan, R., Gutierrez, S., Hos, D., Klimek, J., Abdullah, Z., Kronke, M., and Robinson, N. (2017). Type I
862 interferon enhances necroptosis of *Salmonella Typhimurium*-infected macrophages by impairing antioxidative
863 stress responses. *J Cell Biol* 216, 4107-4121.

864 Hubel, P., Urban, C., Bergant, V., Schneider, W.M., Knauer, B., Stukalov, A., Scaturro, P., Mann, A., Brunotte, L.,
865 Hoffmann, H.H., *et al.* (2019). A protein-interaction network of interferon-stimulated genes extends the innate
866 immune system landscape. *Nature immunology* 20, 493-502.

867 Hurley, D., McCusker, M.P., Fanning, S., and Martins, M. (2014). *Salmonella*-host interactions - modulation of the
868 host innate immune system. *Front Immunol* 5, 481.

869 Hybiske, K., and Stephens, R.S. (2008). Exit strategies of intracellular pathogens. *Nat Rev Microbiol* 6, 99-110.

870 Jo, E.K. (2019). Interplay between host and pathogen: immune defense and beyond. *Experimental & molecular
871 medicine* 51, 1-3.

872 Kernbauer, E., Maier, V., Rauch, I., Muller, M., and Decker, T. (2013). Route of Infection Determines the Impact of
873 Type I Interferons on Innate Immunity to *Listeria monocytogenes*. *PLoS One* 8, e65007.

874 Knodler, L.A., Nair, V., and Steele-Mortimer, O. (2014). Quantitative assessment of cytosolic *Salmonella* in
875 epithelial cells. *PLoS One* 9, e84681.

876 Kovarik, P., Castiglia, V., Ivin, M., and Ebner, F. (2016). Type I Interferons in Bacterial Infections: A Balancing Act.
877 *Front Immunol* 7, 652.

878 Kuhnl, A., Musiol, A., Heitzig, N., Johnson, D.E., Ehrhardt, C., Grewal, T., Gerke, V., Ludwig, S., and Rescher, U.
879 (2018). Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting
880 Endosomal Escape of Influenza A Virus. *mBio* 9.

881 Lauterbach, H., Bathke, B., Gilles, S., Traidl-Hoffmann, C., Luber, C.A., Fejer, G., Freudenberg, M.A., Davey, G.M.,
882 Vremec, D., Kallies, A., *et al.* (2010). Mouse CD8alpha⁺ DCs and human BDCA3⁺ DCs are major producers of
883 IFN-lambda in response to poly IC. *J Exp Med* 207, 2703-2717.

884 Lee, H.C., Chathuranga, K., and Lee, J.S. (2019). Intracellular sensing of viral genomes and viral evasion.
885 *Experimental & molecular medicine* 51, 1-13.

886 Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown, M., and Liu, X.S. (2014).
887 MAGECK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.
888 *Genome Biol* 15, 554.

889 Li, X., Rydzewski, N., Hider, A., Zhang, X., Yang, J., Wang, W., Gao, Q., Cheng, X., and Xu, H. (2016). A molecular
890 mechanism to regulate lysosome motility for lysosome positioning and tubulation. *Nat Cell Biol* 18, 404-417.

891 McFerran, B., and Burgoyne, R. (1997). 2',3'-Cyclic nucleotide 3'-phosphodiesterase is associated with
892 mitochondria in diverse adrenal cell types. *J Cell Sci* 110 (Pt 23), 2979-2985.

893 Myrdal, S.E., Johnson, K.C., and Steyger, P.S. (2005). Cytoplasmic and intra-nuclear binding of gentamicin does not
894 require endocytosis. *Hear Res* 204, 156-169.

895 O'Connell, R.M., Saha, S.K., Vaidya, S.A., Bruhn, K.W., Miranda, G.A., Zarnegar, B., Perry, A.K., Nguyen, B.O., Lane,
896 T.F., Taniguchi, T., *et al.* (2004). Type I interferon production enhances susceptibility to *Listeria monocytogenes*

897 infection. *J Exp Med* 200, 437-445.

898 Omotade, T.O., and Roy, C.R. (2019). Manipulation of Host Cell Organelles by Intracellular Pathogens.

899 *Microbiology spectrum* 7.

900 Perkins, D.J., Rajaiah, R., Tenant, S.M., Ramachandran, G., Higginson, E.E., Dyson, T.N., and Vogel, S.N. (2015).

901 *Salmonella Typhimurium* Co-Opt the Host Type I IFN System To Restrict Macrophage Innate Immune

902 Transcriptional Responses Selectively. *Journal of immunology* 195, 2461-2471.

903 Prost, L.R., Daley, M.E., Le Sage, V., Bader, M.W., Le Moual, H., Klevit, R.E., and Miller, S.I. (2007). Activation of the

904 bacterial sensor kinase PhoQ by acidic pH. *Mol Cell* 26, 165-174.

905 Reis, R.C., Sorgine, M.H., and Coelho-Sampaio, T. (1998). A novel methodology for the investigation of intracellular

906 proteolytic processing in intact cells. *Eur J Cell Biol* 75, 192-197.

907 Ribet, D., and Cossart, P. (2015). How bacterial pathogens colonize their hosts and invade deeper tissues.

908 *Microbes and infection* 17, 173-183.

909 Robinson, N., McComb, S., Mulligan, R., Dudani, R., Krishnan, L., and Sad, S. (2012). Type I interferon induces

910 necroptosis in macrophages during infection with *Salmonella enterica* serovar *Typhimurium*. *Nature immunology*

911 13, 954-962.

912 Roy, D., Liston, D.R., Idone, V.J., Di, A., Nelson, D.J., Pujol, C., Bliska, J.B., Chakrabarti, S., and Andrews, N.W. (2004).

913 A process for controlling intracellular bacterial infections induced by membrane injury. *Science* 304, 1515-1518.

914 Schoggins, J.W., MacDuff, D.A., Imanaka, N., Gainey, M.D., Shrestha, B., Eitson, J.L., Mar, K.B., Richardson, R.B.,

915 Ratushny, A.V., Litvak, V., et al. (2014). Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in

916 innate immunity. *Nature* 505, 691-695.

917 Schoggins, J.W., and Rice, C.M. (2011). Interferon-stimulated genes and their antiviral effector functions. *Current*

918 *opinion in virology* 1, 519-525.

919 Song, F., Yi, Y., Li, C., Hu, Y., Wang, J., Smith, D.E., and Jiang, H. (2018). Regulation and biological role of the

920 peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage. *Cell*

921 *death & disease* 9, 770.

922 Spence, J.S., He, R., Hoffmann, H.H., Das, T., Thinon, E., Rice, C.M., Peng, T., Chandran, K., and Hang, H.C. (2019).

923 IFITM3 directly engages and shuttles incoming virus particles to lysosomes. *Nature chemical biology* 15, 259-268.

924 Steele-Mortimer, O. (2008). The *Salmonella*-containing vacuole: moving with the times. *Curr Opin Microbiol* 11,

925 38-45.

926 Stefan, K.L., Fink, A., Surana, N.K., Kasper, D.L., and Dasgupta, S. (2017). Type I interferon signaling restrains

927 IL-10R⁺ colonic macrophages and dendritic cells and leads to more severe *Salmonella* colitis. *PLoS One* 12,

928 e0188600.

929 Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., and Rando, F. (2012). Galectin 8 targets damaged

930 vesicles for autophagy to defend cells against bacterial invasion. *Nature* 482, 414-418.

931 Tuli, A., and Sharma, M. (2019). How to do business with lysosomes: *Salmonella* leads the way. *Curr Opin*

932 *Microbiol* 47, 1-7.

933 Unsworth, K.E., Way, M., McNiven, M., Machesky, L., and Holden, D.W. (2004). Analysis of the mechanisms of

934 *Salmonella*-induced actin assembly during invasion of host cells and intracellular replication. *Cell Microbiol* 6,

935 1041-1055.

936 van der Velden, A.W., Lindgren, S.W., Worley, M.J., and Heffron, F. (2000). *Salmonella* pathogenicity island

937 1-independent induction of apoptosis in infected macrophages by *Salmonella enterica* serotype *typhimurium*.

938 Infection and immunity 68, 5702-5709.

939 Wee, Y.S., Roundy, K.M., Weis, J.J., and Weis, J.H. (2012). Interferon-inducible transmembrane proteins of the
940 innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and
941 function. Innate Immun 18, 834-845.

942 Welch, M.D. (2015). Why should cell biologists study microbial pathogens? Molecular biology of the cell 26,
943 4295-4301.

944 Wilson, R.P., Tursi, S.A., Rapsinski, G.J., Medeiros, N.J., Le, L.S., Kotredes, K.P., Patel, S., Liverani, E., Sun, S., Zhu, W.,
945 *et al.* (2019). STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the
946 enteric pathogen *Salmonella Typhimurium*. PLoS Pathog 15, e1007745.

947 Xu, Y., Zhou, P., Cheng, S., Lu, Q., Nowak, K., Hopp, A.K., Li, L., Shi, X., Zhou, Z., Gao, W., *et al.* (2019). A Bacterial
948 Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell 178, 552-566 e520.

949 Yeung, A.T.Y., Choi, Y.H., Lee, A.H.Y., Hale, C., Ponstingl, H., Pickard, D., Goulding, D., Thomas, M., Gill, E., Kim, J.K.,
950 *et al.* (2019). A Genome-Wide Knockout Screen in Human Macrophages Identified Host Factors Modulating
951 *Salmonella* Infection. mBio 10.

952 Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991). Bafilomycin A1, a specific inhibitor of
953 vacuolar-type H⁽⁺⁾-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol
954 Chem 266, 17707-17712.

955

956

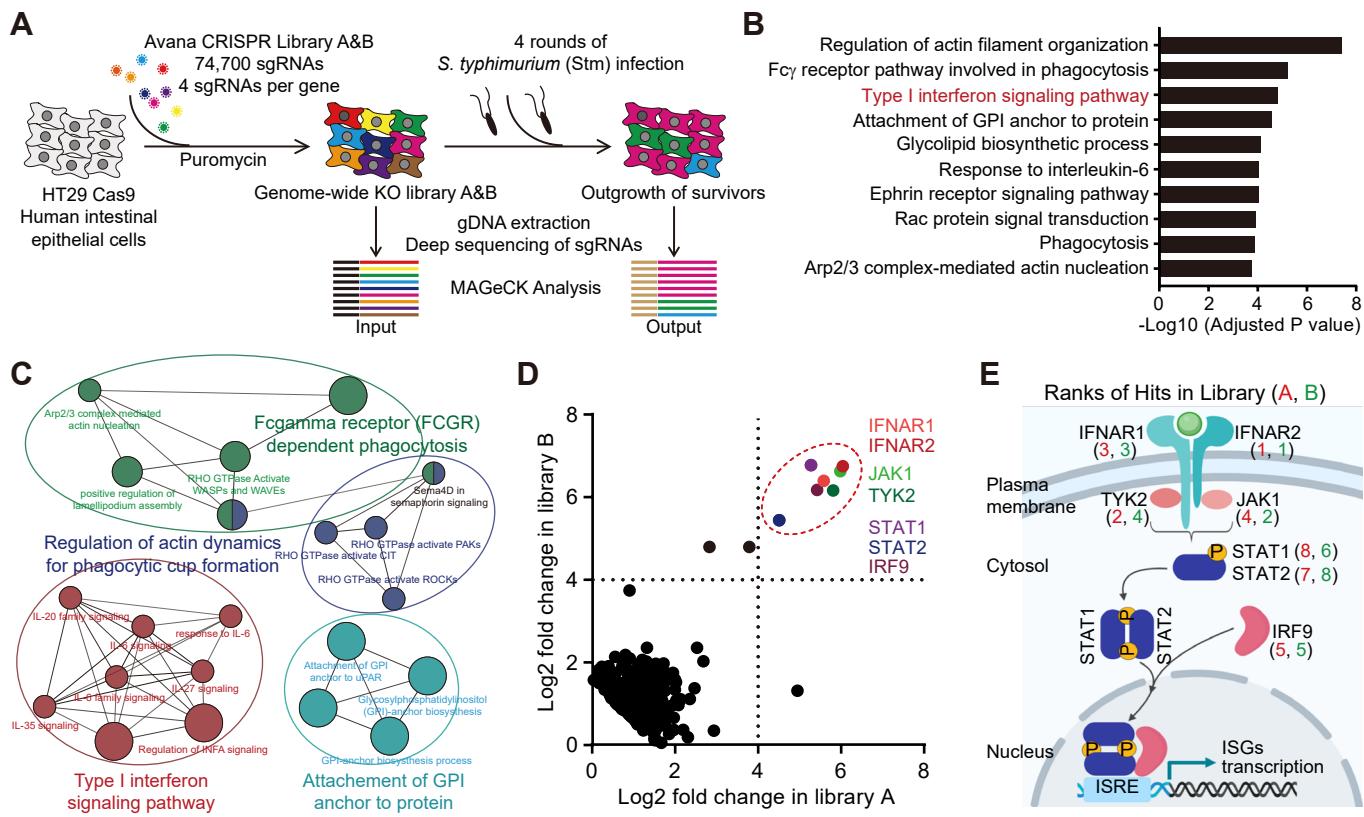
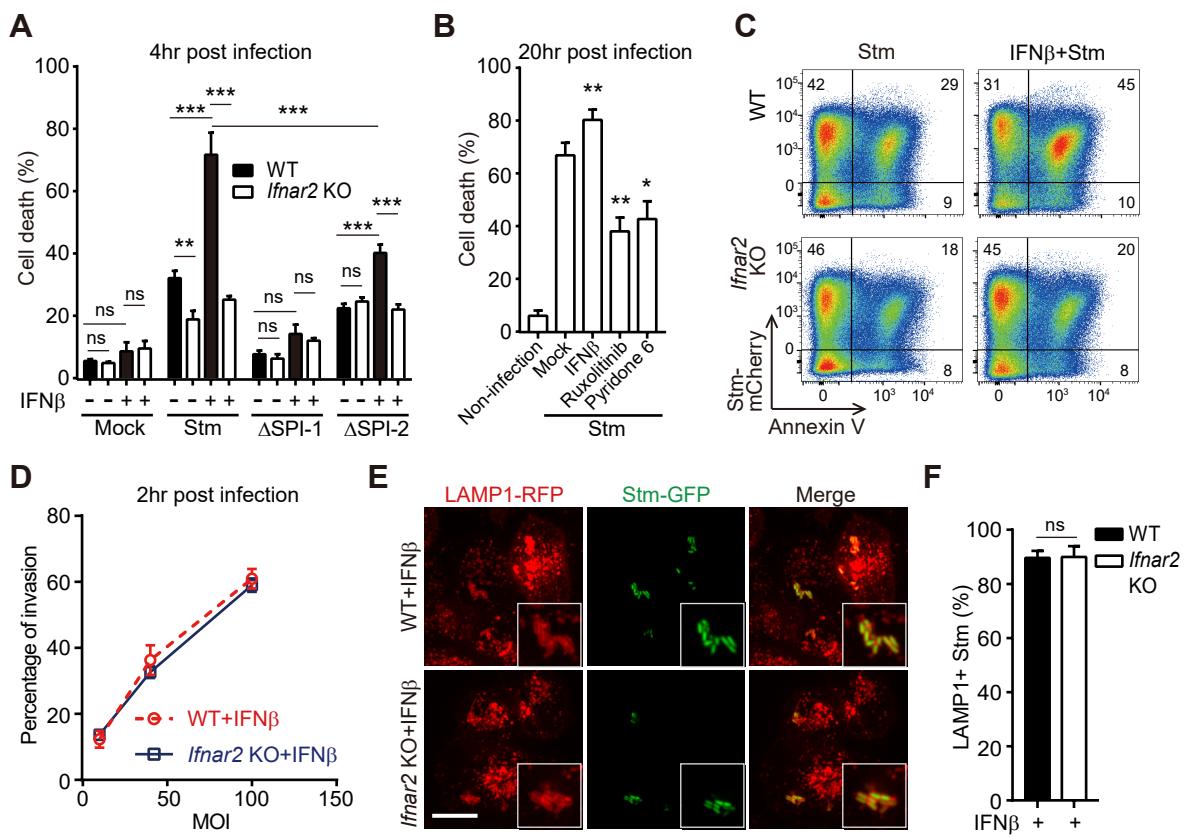
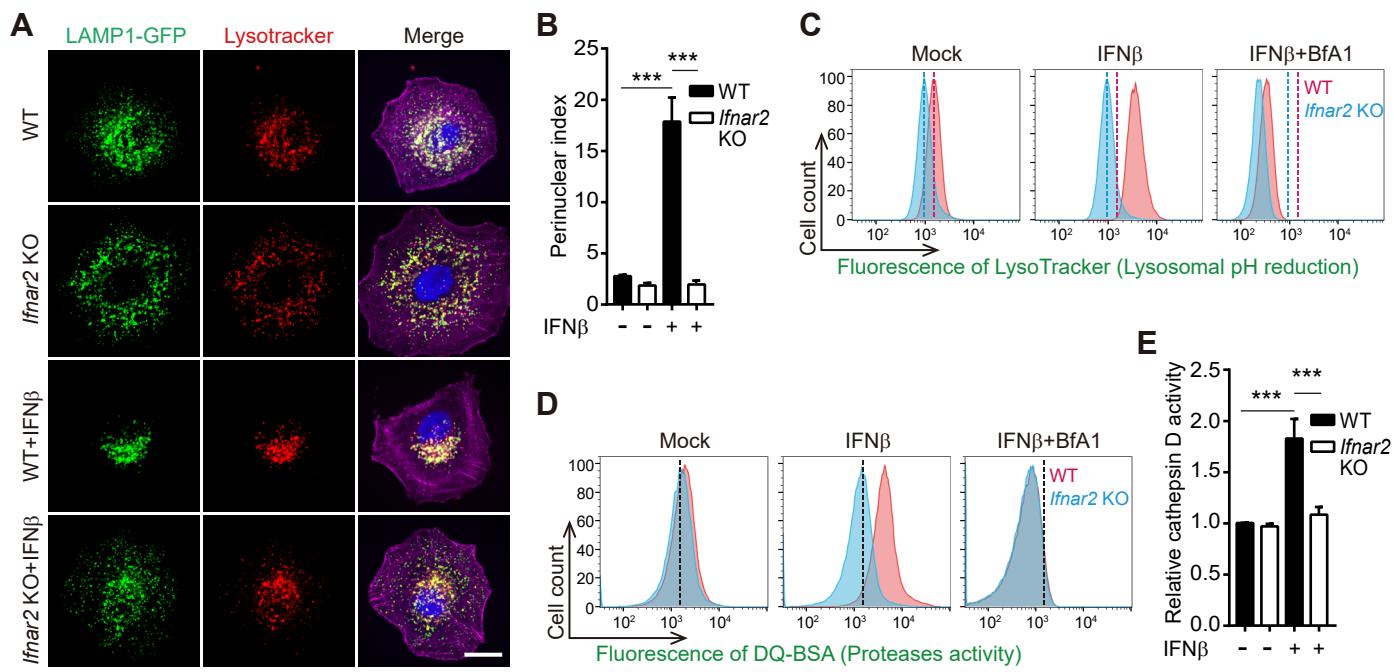
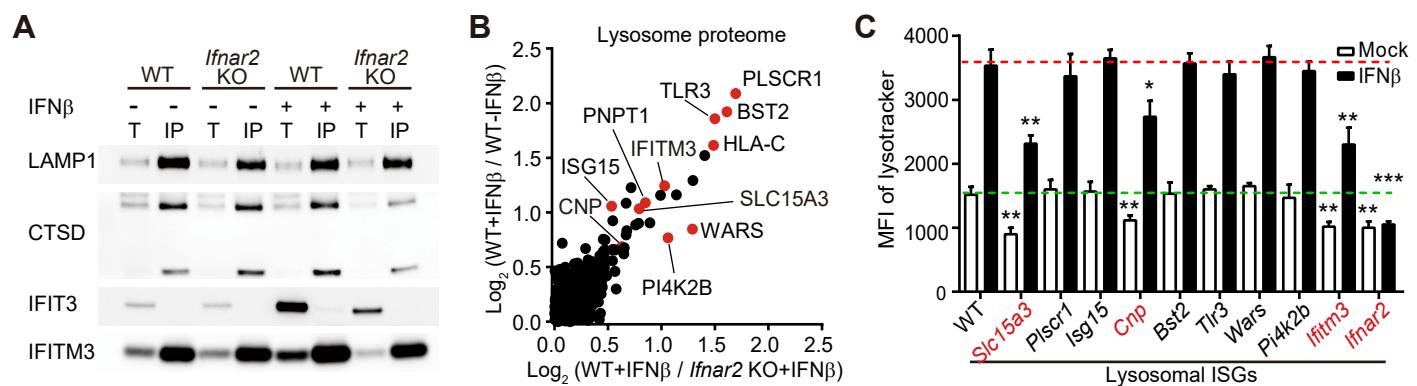





Figure. 1


Figure. 2

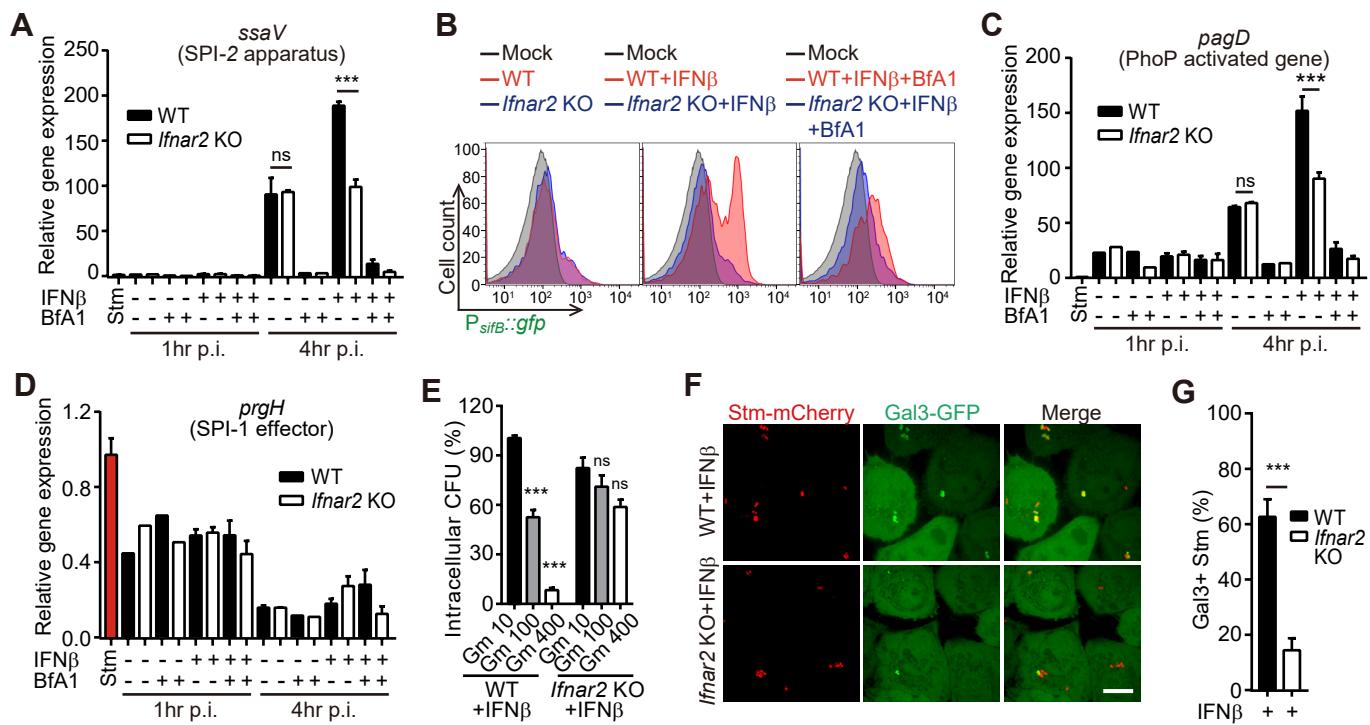

Figure. 3

Figure. 4

Figure. 5

Figure. 6

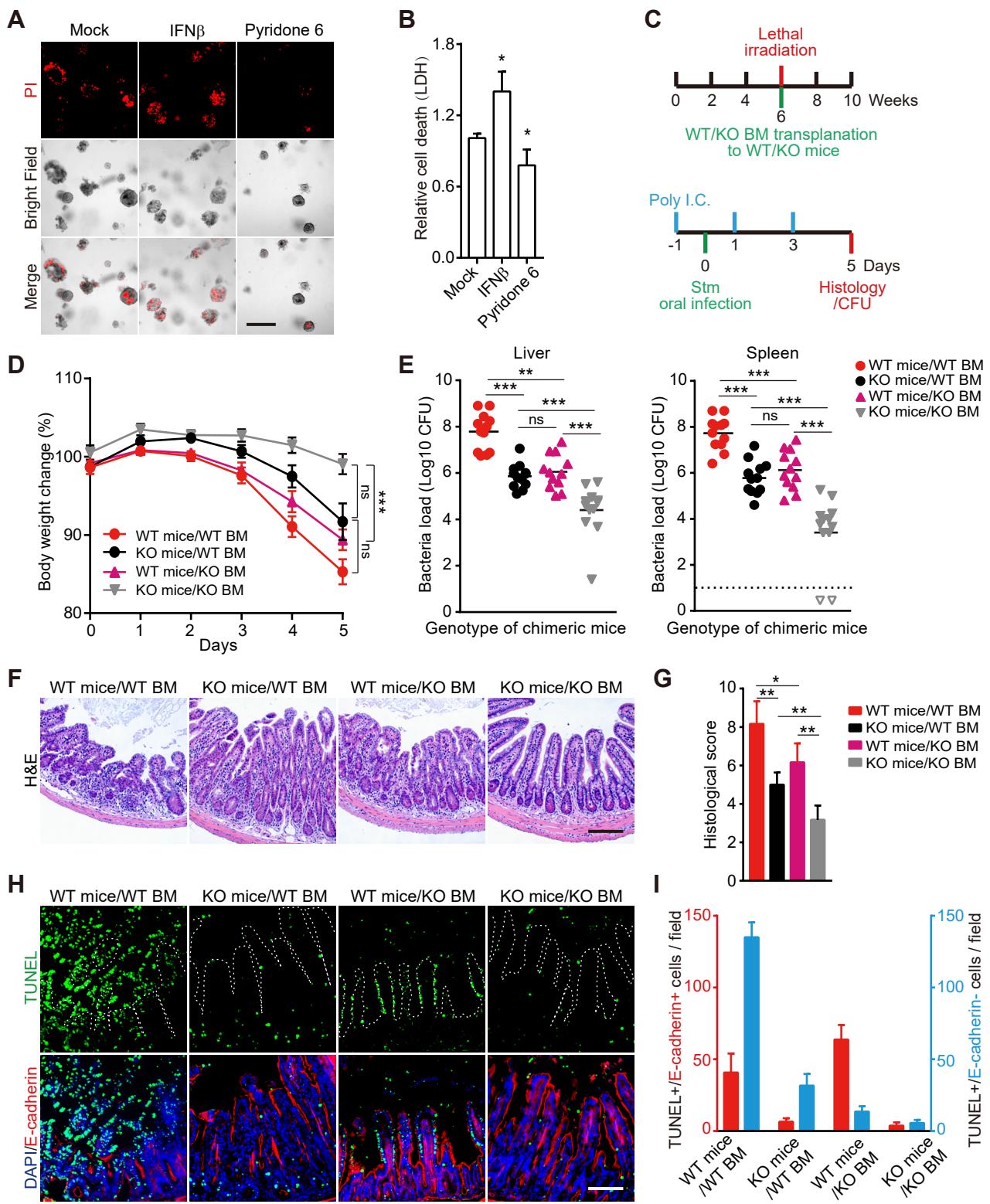


Figure. 7