
1 
 

Bioactivity descriptors for uncharacterized compounds 
Martino Bertoni1,*, Miquel Duran-Frigola1,*,†, Pau Badia-i-Mompel1,*, Eduardo Pauls1, Modesto 

Orozco-Ruiz1, Oriol Guitart-Pla1, Víctor Alcalde1, Víctor M Diaz2, Antoni Berenguer-Llergo1, 

Antonio García de Herreros2 and Patrick Aloy1,3,† 

 

1. Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB 

Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain 

2. Programa de Recerca en Càncer, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM) and 

Departament de Ciències de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain 

3. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 

 

* These authors contributed equally to this work 
† Corresponding authors: miquel.duran@irbbarcelona.org; patrick.aloy@irbbarcelona.org 

 
Keywords: Bioactivity signatures, signature-activity relationships (SigAR) models, chemical space, 

chemoinformatics, Snail1 inhibitors. 

Abstract 

Chemical descriptors encode the physicochemical and structural properties of small molecules, 

and they are at the core of chemoinformatics. The broad release of bioactivity data has prompted 

enriched representations of compounds, reaching beyond chemical structures and capturing their 

known biological properties. Unfortunately, ‘bioactivity descriptors’ are not available for most small 

molecules, which limits their applicability to a few thousand well characterized compounds. Here 

we present a collection of deep neural networks able to infer bioactivity signatures for any 

compound of interest, even when little or no experimental information is available for them. Our 

‘signaturizers’ relate to bioactivities of 25 different types (including target profiles, cellular 

response and clinical outcomes) and can be used as drop-in replacements for chemical 

descriptors in day-to-day chemoinformatics tasks. Indeed, we illustrate how inferred bioactivity 

signatures are useful to navigate the chemical space in a biologically relevant manner, unveiling 

higher-order organization in natural product collections, and to enrich mostly uncharacterized 

chemical libraries for activity against the drug-orphan target Snail1. Moreover, we implement a 

battery of signature-activity relationship (SigAR) models and show a substantial improvement in 

performance, with respect to chemistry-based classifiers, across a series of biophysics and 

physiology activity prediction benchmarks. 
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Introduction 

Most of the chemical space remains uncharted and identifying its regions of biological relevance 

is key to medicinal chemistry and chemical biology1,2. To explore and catalogue this vast space, 

scientists have invented a variety of chemical descriptors, which encode physicochemical and 

structural properties of small molecules. These encodings are at the core of chemoinformatics 

and are fundamental in compound similarity searches, clustering and, when applied to 

computational drug discovery (CDD), structure optimization and target prediction.   

The corpus of bioactivity records available suggests that other numerical representations of 

molecules are possible, reaching beyond chemical structures and capturing their known biological 

properties. Indeed, it has been shown that an enriched representation of molecules can be 

achieved through the use of ‘bioactivity signatures’3. Bioactivity signatures are multi-dimensional 

vectors that capture the biological traits of the molecule (for example, its target profile) in a format 

that is akin to the structural descriptors or fingerprints used in the field of chemoinformatics. 

Currently, public databases contain experimentally determined bioactivity data for about a million 

molecules, which represent only a small percentage of commercially available compounds4 and 

a negligible fraction of synthetically accessible chemical space5. In practical terms, this means 

bioactivity signatures cannot be derived for most compounds, and CDD methods are limited to 

using chemical information alone as a primary input, thereby hindering their performance and not 

fully exploiting the bioactivity knowledge produced over the years by the scientific community. 

Recently, we integrated the major chemogenomics and drug databases in a single resource 

named the Chemical Checker (CC), which is the largest collection of small molecule bioactivity 

signatures available to date6. In the CC, bioactivity signatures are organized by data type (ligand-

receptor binding, cell sensitivity profiles, toxicology, etc.), following a chemistry-to-clinics rationale 

that facilitates the selection of relevant signature classes at each step of the drug discovery 

pipeline. In essence, the CC is an alternative representation of the small-molecule knowledge 

deposited in the public domain and, as such, it is also limited by the availability of experimental 

data and the coverage of its source databases (e.g. ChEMBL7 or DrugBank8). Thus, the CC is 

most useful when a substantial amount of bioactivity information is available for the molecules 

and remains of limited value for poorly characterized compounds9. In the current study, we 

present a methodology to infer CC bioactivity signatures for any compound of interest, based on 

the observation that the different bioactivity spaces are not completely independent, and thus 

similarities of a given bioactivity type (e.g. targets) can be transferred to other data kinds (e.g. 
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therapeutic indications). Overall, we make bioactivity signatures available for any compound of 

interest, assigning confidence to our predictions and illustrating how they can be used to navigate 

the chemical space in an efficient, biologically relevant manner. Moreover, we explore their added 

value in the identification of hit compounds against the drug-orphan target Snail1 in a mostly 

uncharacterized compound library, and through the implementation of a battery of signature-

activity relationship (SigAR) models to predict biophysical and physiological properties of 

molecules.  

Results and Discussion 

The current version of the CC is organized in 5 levels of complexity (A: Chemistry, B: Targets, C: 

Networks, D: Cells and E: Clinics), each of which is divided into 5 sublevels (1-5). In total, the CC 

is composed of 25 spaces capturing the 2D/3D structures of the molecules, targets and metabolic 

genes, network properties of the targets, cell response profiles, drug indications and side effects, 

among others (Figure 1a). In the CC, each molecule is annotated with multiple n-dimensional 

vectors (i.e. bioactivity signatures) corresponding to the spaces where experimental information 

is available. As a result, chemistry (A) signatures are widely available (~106 compounds), whereas 

cell-based assays (D) cover about 30,000 molecules and clinical (E) signatures are known for 

only a few thousand drugs (Figure 1b). We thus sought to infer missing signatures for any 

compound in the CC, based on the observation that the different bioactivity spaces are not 

completely independent and can be correlated. 

Bioactivity signatures must be amenable to similarity calculations, ideally by conventional metrics 

such as cosine or Euclidean distances, so that short distances between molecule signatures 

reflect a similar biological behavior. Therefore, inference of bioactivity signatures can be posed 

as a ‘metric learning’ problem where observed compound-compound similarities of a given kind 

are correlated to the full repertoire of CC signatures, so that similarity measures are possible for 

any compound of interest, including those that are not annotated with experimental data. In 

practice, for each CC space (Si), we tackle the metric learning problem with a so-called Siamese 

neural network (SNN), having as input a stacked array of CC signatures available for the 

compound (belonging to any of the A1-E5 layers, S1-S25) and as output an n-dimensional 

embedding optimized to discern between similar and dissimilar molecules in Si. More specifically, 

we feed the SNN with triplets of molecules (an ‘anchor’ molecule, one that is similar to the anchor 

(‘positive’) and one that is not (‘negative’)), and we ask the SNN to correctly classify this pattern 

with a distance measurement performed in the embedding space (Figure 1a and S1). We trained 
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25 such SNNs, corresponding to the 25 spaces available in the CC. We used 107 molecule triplets 

and chose an SNN embedding dimension of 128 for all CC spaces, scaling it to the norm so as 

to unify the distance magnitude across SNNs (see online Methods for details). As a result of this 

procedure, we obtained 25 SNN ‘signaturizers’ (S1-25), each of them devoted to one of the CC 

spaces (Si). A signaturizer takes as input the subset of CC signatures available for a molecule 

and produces a 128D signature that, in principle, captures the similarity profile of the molecule in 

the Si CC space, where experimental information may not be available for the compound. 

To handle the acute incompleteness of experimental signatures accessible for training the SNNs 

(Figure 1b), we devised a signature-dropout sampling scheme that simulates a realistic prediction 

scenario where, depending on the CC space of interest (Si), signatures from certain spaces will 

be available while others may not. For example, in the CC, biological pathway signatures (C3) 

are directly derived from binding signatures (B4), thus implying that, in a real B4 prediction case, 

C3 will never serve as a covariate. In practice, signature sampling probabilities for each CC space 

Si were determined from the coverage of S1-S25 signatures of molecules lacking an experimental 

Si signature. Overall, chemical information (A1-5), as well as signatures from large 

chemogenomics databases (e.g. B4-5), could be used throughout (Figure S2). Signatures related 

to the subset of drug molecules (e.g. MoA: B1, indications: E2, side-effects: E3, etc.) were 

mutually inclusive; however, they were more frequently dropped out in order to extend the 

applicability of signaturizers beyond the relatively narrow space of known drugs. 

We evaluated the performance of a signaturizer Si in an 80:20 train-test split both (a) as its ability 

to classify similar and dissimilar compound pairs within the triplets (Figures 1c and S3), and (b) 

as the correlation observed between each ‘predicted’ signature (i.e. obtained without using Si as 

part of the input (S1-S25)) and, correspondingly, a ‘truth’ signature produced using only Si (Figures 

1c and S3). In the online Methods section, we further explain these two metrics, as well as the 

splitting and signature-dropout methods that are key to obtain valid performance estimates. In 

general, as expected, ‘chemistry’ (A) signaturizers performed almost perfect (Figure 1c), although 

these are of little added value since chemical information is always available for compounds. At 

the ‘targets’ levels (B), the performance of the signaturizers was high for large-scale binding data 

B4), while accuracy was variable at deeper annotation levels where the number of compounds 

available for training was smaller (e.g. MoA (B1) or for drug-metabolizing enzymes (B2)) (Figure 

1d). Performance at the ‘networks’ level (C) was high, as this level is directly informed by the 

underlying ‘targets’ (B) level. Not surprisingly, the most challenging models were those related to 

cell-based (D) and clinical (E) data, probably due to the inherent complexity of these data with 
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respect to the number of annotated molecules. On average, the accuracy of cell-based 

signaturizers was moderate (~0.7) and true-vs-predicted correlation of clinical signatures such as 

therapeutic classes (ATC; E1) was variable across molecules. The performance of SNNs varied 

depending on the CC space and molecule of interest, with signatures being well predicted in all 

spaces. Figure 1e-f illustrates this observation for three drugs (namely perphenazine (1), 

acebutolol (2) and perhexiline (3)), which have predicted signatures of variable quality in the 

transcriptional (D1) and side-effects (E3) spaces. Overall, bioactivity maps were well covered by 

test-set molecules, indicating that our SNNs are unbiased and able to generate predictions that 

are spread throughout the complete bioactivity landscape (Figures 1g and S4). 

Large-scale inference of bioactivity signatures 

Having trained and validated the signaturizers, we massively inferred missing signatures for the 

~800,000 molecules available in the CC, obtaining a complete set of 25x128-dimensional 

signatures for each molecule (chemicalchecker.org/downloads). To explore the reliability of the 

inferred signatures, we assigned an ‘applicability’ score (α) to predictions based on the following: 

(a) the proximity of a predicted signature to true (experimental) signatures available in the training 

set; (b) the robustness of the SNN output to a test-time data dropout10; and (c) the accuracy 

expected a priori based on the experimental CC datasets available for the molecule (Figure 2a). 

A deeper explanation of this score can be found in the online Methods, along with Figure S5 

showing the relative contribution of a, b and c factors to the value of α. In a similarity search 

exercise, we found that α scores ≥ 0.5 retrieved a significant number of true hits (odds-ratios > 8, 

P-values < 1.7·10-21 (Figure S6)). This observation shows that, even for modest-quality CC 

spaces such as D1 (transcription), the number of signatures available can be substantially 

increased by our method (in this case from 11,638 molecules covered in the experimental version 

of the CC to 69,532 (498% increase) when SNN predictions are included (Figure S7)). Moreover, 

low- and high-α areas of the signature landscape can be easily delimited, indicating the presence 

of reliable regions in the prediction space (Figure 2b). 

The 5x5 organization of the CC (A1-E5) was designed to capture distinct aspects of the chemistry 

and biology of compounds, and a systematic assessment of the original (experimental) resource 

revealed partial correlations between the 25 data types6. The original pattern of correlations was 

preserved among inferred signatures, especially for the high-α ones (Figures 2c and S8), thereby 

suggesting that the data integration performed by the SNNs conserves the genuine information 

contained within each data type, and implying that signatures can be stacked to provide non-
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redundant, information-rich representations of the molecules. For example, the 25 CC spaces can 

be concatenated horizontally to obtain a global signature (GSig) of 3,200 dimensions (25x128D), 

encapsulating in a unique signature all the bioactivities assigned to a molecule (Figure 2d). 

Similarity measures performed in the GSig space up-rank pairs of compounds with the same MoA 

or ATC code (Figure 2e) and have an overall correlation with the rest of experimental data 

available from the CC, capturing not only chemical similarities between molecules but also 

common target profiles, clinical characteristics and, to a lesser degree, cell-based assay read-

outs (Figure 2f). 

Indeed, as shown in Figure 2g, a 2D projection of GSigs reveals clusters of molecules with specific 

biological traits. Of note, some of the clusters group molecules with similar chemistries (e.g. 

ESR1,2 ligands), while others correspond to sets of diverse compounds (e.g. MAPK8,9,10 

inhibitors). Most of the clusters have a mixed composition, containing subgroups of chemically 

related compounds while also including distinct molecules, as is the case for the HSP90AA1-

associated cluster, of which compounds 4 and 5 are good representatives (Figure 2h). 

Bioactivity-guided navigation of the chemical space 

Taken together, CC signatures offer a novel bioactivity-driven means to organize chemical space, 

with the potential to unveil higher levels of organization that may not be apparent in the light of 

chemical information alone. In Figure 3a, we analyze a diverse set of over 30 compound 

collections, ranging from species-specific metabolomes to purchasable building-block (BB) 

libraries. To expose the regions of the global bioactivity space covered by these collections, we 

first performed a large-scale GSig-clustering on the full CC. We then calculated GSigs for each 

compound in each library and mapped them to the CC clusters, thereby obtaining a specific 

cluster occupancy vector for each collection. Finally, we used these vectors to hierarchically group 

all the compound libraries. As can be seen, drug-related libraries (e.g. IUPHAR and IDG) had 

similar occupancy vectors to the reference CC library, meaning they were evenly distributed in 

the bioactivity space, which is expected given the over-representation of medicinal chemistry in 

our resource. Libraries containing BBs from different providers (ChemDiv, Sigma Aldrich and 

ChemBridge) were grouped together, although with an uneven representativity of the CC 

bioactivity space. Similar trends were observed for species-specific metabolomes (Yeast, E. coli 

and Human (HMDB)) and natural products collected from various sources (Traditional Chinese 

Medicines (TCM), African substances (AfroDb) or food ingredients (FooDB)). 
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To gain a better understanding of the bioactivity areas encompassed by each collection, we chose 

five examples related to drug molecules, metabolomes and natural product extracts. More 

specifically, we considered 6,505 approved and experimental drugs (REPO Hub)11, 8,603 

endogenous human metabolites (HMDB)12, 6,355 metabolites found in other species beyond 

vertebrates (MetaboLights)13, 49,818 food constituents (FooDB; www.foodb.ca) and 6,502 plant 

chemicals (CMAUP)14. Figure 3b shows that, despite their variable depth of annotation (Figure 

S9), these collections, for the most part, are laid out in high-α regions of the GSig space. 

Moreover, Figure 3c offers a comparative view of the bioactivity areas occupied by each 

collection, with some overlapping regions as expected, especially between natural product 

collections. The map reveals a region that is specific to drug molecules, possibly belonging to a 

set of bioactivities that is outside the reach of natural metabolites. 

A deeper dive reveals further structure in the bioactivity maps. For example, when we focus on 

drug molecules (REPO Hub), broad therapeutic areas such as infectious diseases, 

neurology/psychiatry, cardiology and oncology can be circumscribed within certain regions of the 

GSig landscape (Figure 3d), and the same applies to finer-grained disease categories 

(indications) and mechanisms of action (Figure S10). Thus, the chemistry-to-clinics scope of 

GSigs provides a multi-level view of the chemical space, clustering compounds first on the basis 

of their targets and, in turn, keeping targets close in space if they belong to the same disease 

area. This is exemplified by PI3K, CDK and VEGFR inhibitors, which have their own well-defined 

clusters within the oncology region of the map, and by histamine receptor antagonists and 

acetylcholine receptor agonists, which are placed together in an area assigned to 

neurology/psychiatry (Figures 3d and S10). 

Analogous observations can be made beyond the well-annotated universe of drug molecules, 

consistently organizing the chemical space in relevant ways. For example, the HMDB map 

highlights tissue- and biofluid-specific regions with varying degrees of chemical diversity (Figures 

3d and S11), and the MetaboLights cross-species metabolome database is well organized by 

taxonomy (e.g. Chordata, Ascomycota, Actinobacteria), revealing conserved metabolite regions 

as well as species-specific ones (in general, we found the former to be less chemically diverse 

(Figure S11)). Likewise, plants can be organized in families and species by means of their 

ingredient signatures, as exemplified in Figure 3d for three Lamiaceae and two Apiaceae species. 

Finally, the map of food ingredients displays clear bioactivity clusters of food chemicals, adding 

to recent work suggesting that the food constituents landscape can be charted and exploited to 

identify links between diet and health15. 
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Enriching chemical libraries for activity against Snail1 

After seeing that inferred CC signatures are indeed useful to characterize large natural product 

collections, we sought to assess whether they are also advantageous in combination with more 

classical chemo-centric approaches. To this end, we performed a computational assessment of 

two chemical libraries, namely the Prestwick collection (PWCK) and the IRB Barcelona proprietary 

library (IRB). The IRB library contains >17k compounds, only 3% of which have reported 

bioactivities and are thus included in the CC. This library was originally designed to inhibit t-RNA 

synthetases by means of ambivalent small molecules displaying ATP-like and amino acid-like 

chemotypes. The PWCK library is considerably smaller (>1k compounds), and it is composed of 

well-annotated molecules over a wide range of activities (>99% of the molecules are present in 

the CC). Thus, the IRB and PWCK libraries represent two typical scenarios, the recycling of a 

targeted library, and the use of a small diversity-oriented compound collection, respectively. 

We sought to enrich these libraries for activity against the product of SNAI1 gene, Snail1, a zinc-

finger transcription factor with an essential role in the epithelial-to-mesenchymal transition 

(EMT)16. Being a transcription factor, Snail1 is almost “undruggable”17, and we looked for indirect 

strategies to inhibit its function. In a previous siRNA screening, we found that the knock-down of 

certain deubiquitinases (DUBs) significantly decreased Snail1 levels, suggesting that DUBs 

promote Snail1 stabilization and are required for its effects on EMT and cancer progression18.  

We searched the literature for previous knowledge on DUB inhibition by small molecules19-21 and 

categorized DUBs on the basis of their performance in the siRNA-DUB/Snail1 screening assay 

(Data S1). We curated 45 DUB inhibitors, 6 of which were inhibitors of candidate DUBs in the 

siRNA-DUB/Snail1 assay. In parallel, we collected 5,540 compound-DUB interactions available 

in the CC corresponding to 15 of the DUBs. Overall, this search yielded a substantial pool of 

chemical matter related to DUB inhibition (Data S1). 

In addition to DUBs, we considered other proteins with a well-established connection to Snail1 

activity, including TGFBR1/2, ERK2, FBXL5/14, DDR2 and GSK3B22. We collected perturbational 

(e.g. shRNA) expression signatures for these genes, together with the signatures of prominent 

DUBs found in the siRNA-DUB/Snail1 screen. In total, we retrieved 95 transcriptional signatures 

from the L1000 Connectivity Map and 18 from the Gene Expression Omnibus (GEO)23 (see Data 

S1 for the full list of signatures). Each signature was converted to the CC D1 format. Finally, we 
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derived networks-level (C) signatures for the previous Snail1-related genes by exploring their 

pathways (C3), biological processes (C4) and interactome neighborhoods (C5). 

We then devised a strategy to select a few hundred compounds enriched for activity against 

Snail1 from the IRB and PWCK libraries (Figure 4a). On the one hand, we defined two ‘chemical 

queries’ to identify compounds that were either (i) chemically similar (P < 0.001) to well-curated 

DUB inhibitors, or (ii) similar to DUB inhibitors in a broader list (combined with binding data from 

chemogenomics resources; online Methods). On the other hand, we designed two ‘biological 

queries’ to capture connectivities between the biology of Snail1 and the bioactivity data available 

in the CC. In particular, we looked for (iii) compounds whose gene expression pattern might mimic 

Snail1-related transcriptional signatures (P < 0.001), and also (iv) compounds whose (putative) 

targets were functionally related to Snail1 (i.e. C3-5 similarities to TGFBR1/2, ERK2, etc., P < 

0.001), applying a mild constraint based on D1. 

After inferring CC bioactivity signatures for all the ~20k compounds in our libraries, we performed 

the chemical and biological queries detailed above and selected 150 molecules from each query 

(Data S1); 183 of these belonged to the IRB library, and 117 to the PWCK collection. In addition, 

we selected 183 random compounds to be used as background. To validate the capacity of these 

compounds to decrease Snail1 protein levels, we used a Snail1-Firefly-luciferase fusion protein 

stably expressed in MDA-MB-231 cells (Figure 4a)18. 

Figure 4b shows the outcome of the Snail1-luciferase screening assay. As can be seen, 22 out 

of the 25 compounds displaying the strongest Snail1 down-regulation (including the two controls) 

came from chemical and biological queries. Importantly, a substantial number of hits (10 in the 

top 25) were candidate molecules selected by both biological and chemical queries, and an 

additional 3 compounds were retrieved only by biological queries. This observation highlights the 

added value of bioactivity signatures to complement chemical similarity searches (Figure 4c). 

Overall, considering as positive those molecules able to decrease 1.5 times Snail1 levels, 

selected compounds showed a 6-fold enrichment over the hit-rate of random compounds (Figure 

4d). It is also worth noting that 17 of the positive hits were not known to be bioactive, and therefore 

their CC signatures have been fully inferred by our signaturizers. Finally, we selected the 10 

compounds that displayed the strongest effect on reducing Snail1 levels and re-tested them in a 

confirmatory dose-response assay. Indeed, 4 of them showed a dose-dependent regulation of 

Snail1 (Figure 4e). Of note, compounds 8 and 9 had the same chemotype, which was identified 

in 4 of the top 25 hits. Taken together, these results demonstrate that the various kinds of inferred 
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chemical and biological signatures can be used to implement complex searches to tackle the 

activity of currently orphan targets. 

Enhanced prediction capabilities compared to chemical descriptors 

In addition, we examined whether our signaturizers could be used as molecular features to predict 

the outcome of a given bioassay of interest, analogous to the use of chemical descriptors in 

structure-activity relationship (SAR) studies. We thus developed signature-activity relationship 

(SigAR) models, and trained machine-learning classifiers to learn discriminative features from the 

CC signatures of ‘active’ (1) and ‘inactive’ (0) compounds, with the goal of assigning a 1/0 label 

to new (untested) compounds.  

To evaluate the SigAR approach in a wide range of scenarios, we used nine state-of-the-art 

biophysics and physiology benchmark datasets available from MoleculeNet24. More specifically, 

we considered bioassays extracted from PubChem (PCBA), namely an unbiased virtual screening 

dataset (MUV), inhibition of HIV replication (HIV), inhibition of beta-secretase 1 activity (BACE), 

blood-brain barrier penetration data (BBBP), toxicity experiments (Tox21 and ToxCast), organ-

level side effects (SIDER), and clinical trial failures due to safety issues (ClinTox). Although none 

of these benchmark datasets are explicitly included in the CC resource, data points can be shared 

between MoleculeNet and the CC, which would trivialize predictions. To rule out this possibility, 

we excluded certain CC signature classes from some of the exercises, as detailed in Table S1 

(e.g. side-effect signatures (E3) were not used in the SIDER set of MoleculeNet tasks). 

Each MoleculeNet benchmark dataset has a given number of prediction tasks, ranging from 617 

(ToxCast) to just one (HIV, BACE and BBBP). The number of molecules also varies (from 1,427 

in SIDER to 437,929 in PCBA) (Table S1). We trained a classifier for each MoleculeNet task 

independently, following a conformal prediction scheme that relates the prediction score to a 

measure of confidence25. We chose to use a general-purpose machine-learning method (i.e. a 

random forest classifier) with automated hyperparameter tuning, allowing us to focus on the 

added value of the CC signatures rather than the classification algorithm. Finally, although CC 

signatures are abstract representations that do not offer direct structural/mechanistic 

interpretations, we devised a strategy to obtain high-level explanations for predicted activities. 

More specifically, for each molecule, we measured the cumulative explanatory potential (Shapley 

values26) of each signature type (S1-25) across the GSig space, indicating the classes of data 

(chemistry, targets, etc.) that were more determinant for the classifier decision (online Methods). 
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In sum, we implemented an automated (parameter-free) SigAR methodology, the outcome of 

which can be interpreted at the signature-type level and is calibrated as a probability or 

confidence. 

In Figures 5a-d and S12, we show the characteristics of a representative classifier, corresponding 

to the heat shock factor response element (SR-HSE) task in the Tox21 panel. In a 5-fold cross-

validation, active molecules got higher prediction scores than inactive compounds (Figure S12). 

Moreover, the SigAR model outperformed the conventional chemical Morgan fingerprints (MFps) 

(Figure 5a). Additionally, the accuracy of the classifier was more robust to successive removal of 

training data (Figure 5b), suggesting that, in principle, fewer data would be necessary to achieve 

a proficient model if CC signatures are used. Of note, some molecules had a high prediction score 

with the GSig-based model but were nonetheless predicted to be inactive by the MFp-based 

counterpart, and vice versa (Figure 5c), thus pointing to complementarity between the SigAR and 

SAR approaches. Indeed, CC chemistry levels were not among the best ‘explanatory’ signature 

types for the SR-HSE classifier. Instead, HTS bioassays (B5) and cell morphology data (D4) 

appeared to be more informative (Figure 5d), an observation that is also apparent when active 

molecules are laid out on the B5 and D4 2D maps (Figure 5e). 

Figure 5f demonstrates that GSigs are generally favorable to MFps across the 12 toxicity 

pathways defined in the Tox21 benchmark dataset, with particularly large differences for the SR-

p53, NR-Aromatase, NR-AR, NR-PPAR-gamma and SR-HSE tasks, and essentially the same 

performance for the NR-AhR and NR-ER tasks. Figures S13-S17 give further details for these 

classifiers, supporting the robustness of the SigAR approach and demonstrating that, depending 

on the classification task, the model will benefit from specific CC signature types (Figures 5e, S16 

and S17). The NR-AhR model, for instance, mostly leverages the chemical levels (A), whereas 

SR-ATAD5 benefits from cell sensitivity data (D2), and NR-ER-LBD exploits the functional (e.g. 

biological process (C3)) information contained within the network levels of the CC. 

More comprehensively, in Figure 5g we evaluate the predictive power of the SigAR classifiers 

across the full collection of MoleculeNet benchmark datasets, comprising 806 prediction tasks 

(Table S1). Our SigAR predictions were generally more accurate than the equivalent chemistry-

based models, meaning that our signaturizers feed additional, valuable information to a broad 

range of activity prediction tasks. We observed a remarkable added value of the SigAR 

methodology for the physiology benchmark datasets (e.g. SIDER and ClinTox), which are, a priori, 

those that should benefit most from an integrative (data-driven) approach like ours. Overall, we 
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observed 8.5% median improvements in performance with respect to chemistry-based classifiers 

(IQR: 1.4%-19.5%, Wilcoxon’s test P-value = 5·10-60) (Figure 5h). This implies a median reduction 

of the gap between actual and perfect (ideal) performance of 17.6% (IQR: 24.4%-31.5%). 

Reassuringly, considering only molecules with reported bioactivity (i.e. included in the CC) further 

accentuated the difference in performance (Figure S18), highlighting the importance of data 

integration methodologies to overcome the limitations of a classical (chemistry-only) approach. 

Code and models 

Software for generating CC signatures is available as a python package at 

http://gitlabsbnb.irbbarcelona.org/packages/signaturizer. The ‘signaturizer’ API allows conversion 

of molecules (represented as SMILES strings) to the 25 signature types available from the CC. 

These pre-trained signaturizers are light-weight versions of the SNNs presented here, freeing the 

user from the need of setting up a full version of the CC (online Methods). Signaturizers are 

available as TensorFlow Hub ‘SavedModel’ instances and are automatically downloaded by the 

API the first time they are used. The full CC repository is open-sourced at 

http://gitlabsbnb.irbbarcelona.org/packages/chemical_checker. 

Concluding remarks 

Drug discovery is a funneling pipeline that ends with a drug being selected from a starting pool of 

hundreds of thousands, if not millions, of compounds. Computational drug discovery (CDD) 

methods can aid in many steps of this costly process27, including target deconvolution, hit-to-lead 

optimization and anticipation of toxicity events. An efficient mathematical representation of the 

molecules is key to all CDD methods, 2D structural fingerprints being the default choice in many 

cases. 

The renaissance of (deep) neural networks has fueled the development of novel structure 

‘featurizers’28 based on graph/image convolutions of molecules29-31, the apprehension of the 

SMILES syntax32, or even a unified representation of protein targets33. These techniques are able 

to identify problem-specific patterns and, in general, they outperform conventional chemical 

fingerprints. However, neural networks remain challenging to deal with, and initiatives such as 

DeepChem are contributing to making them accessible to the broad CDD community34. The CC 

approach presented here shares with these initiatives the will to democratize the use of advanced 

molecular representations. Our approach is complementary in that it does not focus on optimally 
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encoding chemical structures. Instead, we have undertaken the task of gathering, harmonizing 

and finally vectorizing the bioactivity data available for the molecules in order to embed a wide 

array of bioactivities in a compact descriptor. 

Since CC signatures are simple 128D vectors, they are compatible with other CDD toolkits that 

primarily use multi-dimensional descriptors to represent molecular structures. This compatibility 

presents a unique opportunity to inject biological information into similarity searches, visualization 

of chemical spaces, and clustering and property prediction, among other widely used CDD tasks.  

In this study, we showed how CC signatures can be used to navigate the chemical space in a 

biological-relevant manner, revealing somehow unexpected high-order structure in poorly 

annotated natural product collections. We also demonstrated that inferred bioactivity signatures 

are useful to annotate mostly uncharacterized chemical libraries and enrich compound collections 

for activity against a drug-orphan target, beyond chemical similarities. Moreover, compared to 

using chemical information alone, we observed a superior performance of SigAR models across 

a series of biophysics and physiology activity-prediction benchmark datasets. We chose to train 

models with minimal parameter tuning, illustrating how our signaturizers can be used in practice 

with minimal knowledge of machine learning to obtain state-of-the-art performances. 

A limitation of CC signatures is that they are difficult to interpret in detail. That is, the underlying 

data points (binding to receptor ‘x’, occurrence of drug side effect ‘y’, etc.) cannot be deconvoluted 

from the 128D signature. This caveat is common to other machine-learning applications (e.g. 

natural language processing) where embedded representations of entities are favored over 

sparser, more explicit ones35. Nonetheless, we show that CC signatures can be interpreted at a 

coarser level, indicating which signature types are more informative for a certain prediction task. 

Another caveat of our approach is the likely existence of ‘null’ signatures corresponding to 

innocuous molecules with no actual bioactivity in a given CC data type36. Likewise, the accuracy 

of the signatures may vary depending on the molecule. To control for these factors, CC signatures 

are accompanied by an applicability score that estimates the signature quality on the basis of the 

amount of experimental data available for the molecule, the robustness of the prediction and the 

resemblance of the predicted signature to signatures available from the training set. 

Contrary to most chemical descriptors, CC signatures evolve with time as bioactivity 

measurements accumulate in the databases. We will release updated versions of the 

signaturizers once a year and, as developers of the CC, we are committed to keeping abreast of 

the latest phenotypic screening technologies and chemogenomics datasets. Although the current 
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version of the CC is constrained to 25 categories, our resource is prepared to accommodate new 

data types, offering the opportunity to customize and extend the current repertoire of 

signaturizers. The growth of the CC resource is restricted by the number and quality of publicly 

accessible datasets, a limitation that is likely to be ameliorated with the implementation of private-

public partnerships and the general awareness that, in the markedly gene-centric omics era, the 

depth of small molecule annotation lags behind genomes and proteomes37,38. The ever-growing 

nature of chemical matter (in contrast to the finite number of genes) demands computational 

methods to provide a first estimate of the biological properties of compounds39. We believe that 

CC signaturizers can bridge this gap and become a reference tool to scrutinize the expected 

bioactivity spectrum of compounds. 

Online Methods 

Data collection 

Experimental CC signatures were obtained from the CC repository (version 2019/05). Drug 

Repurposing Hub molecules and annotations were downloaded from https://clue.io/repurposing 

(June 2019). HMDB and FooDB data were downloaded from http://hmdb.ca and http://foodb.ca, 

respectively (April 2020). Plant ingredients were collected from CMAUP (July 2019) and cross-

species metabolites from https://www.ebi.ac.uk/metabolights (April 2020). MoleculeNet 

benchmark datasets were downloaded from http://moleculenet.ai in June 2019. The remaining 

compound collections were fetched from ZINC catalogs (http://zinc.docking.org) (June 2020). 

Siamese neural networks 

We carried out all procedures specified below for each CC dataset (Si) independently, and we 

trained 25 SNNs based on existing CC signatures and molecule triplets reflecting Si similarities. 

SNNs use the same weights and neural architecture for the three input samples to produce 

comparable output vectors in the embedding space. 

Covariates matrix. We trained a SNN having horizontally concatenated signatures (S1-S25) as a 

covariates matrix (X), and producing 128D-vectors as output (Y). The covariates matrix was 

stacked with a pre-compressed version of CC signatures (named signatures type II) with 128 

dimensions. Only CC datasets covering at least 10% of Si were stacked in X. Thus, given n 

molecules in Si, and having m S1-25 datasets cross-covering at least 10% of n, X would be of 
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shape (n, 128·m). For each molecule (row), missing signatures were represented as not-a-

number (NaN) values. 

Triplet sampling. We sampled 107 molecule triplets (i.e. 107/n triplets per anchor molecule). 

Positive samples (i.e. molecules similar to the anchor) were drawn using the FAISS k-nearest 

neighbor search tool40. The value of k was empirically determined so that it maximized the 

average ROC-AUC of similarity measures performed against the rest of CC datasets, and it was 

then clipped between 10 and 50. Negative samples were randomly chosen from the pool of 

molecules at larger distance than the positive compounds. 

SNN architecture. SNNs were built and trained using Keras (https://github.com/fchollet/keras). 

After the 128·m-dimensional input layer, we added a Gaussian dropout layer (s = 0.1). We then 

sequentially added two fully connected (dense) layers whose size was determined by the m 

magnitude. When m·128 was higher than 512, the two hidden layers had sizes of 512 and 256, 

respectively. For smaller m values, we linearly interpolated the size between input and output 

(128) dimensions (e.g. for m = 7, the two hidden layers had sizes of 448 and 224, respectively). 

Finally, a dense output layer of 128 dimensions was sequentially added. For the hidden layers, 

we used a SeLU activation with alpha-dropout regularization (0.2), and the last (output) layer was 

activated with a Tanh function, together with an L2-normalization. 

Signature dropout. We devised a dropout strategy to simulate availability of CC signatures at 

prediction time. To do so, we measured the proportion of experimental S1-25 signatures available 

for not-in-Si molecules. These observed (realistic) probabilities were then used to mask input data 

at fitting time, more frequently setting those CC categories with the smaller probabilities to NaN. 

The Si signature was dropped out with an oscillating probability (0-1) over the training iterations 

(5,000 oscillation cycles per epoch). 

Loss functions. To optimize the SNN, we used a pair of loss functions with a global orthogonal 

regularization41. The first one was a conventional triplet loss, checking that the distance between 

the anchor and the positive molecule measured in the embedding (128D) space was shorter than 

the anchor-negative distance (margin = 1). The second loss was exclusively applied to the anchor 

molecule, and it controlled that the embedding resulting from the signature dropout was similar to 

the embedding obtained using Si alone (mean-squared error (MSE)). Global orthogonal 

regularization (alpha = 1) was used to favor maximal spread-out of signatures in the embedding 

space. The Adam optimizer was used with a default learning rate of 10-4.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.07.21.214197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214197
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Evaluation. For each Si, we split the list of n molecules into train (80%) and test (20%) sets. 

Splitting was done after removing near-duplicates with FAISS. We then defined three triplet splits, 

i.e. train-train, test-train and test-test, using molecules from the train and test sets as anchors and 

positives/negatives, correspondingly. For CC spaces with less than 30,000 molecules, we trained 

the model for 5 epochs, whereas the largest datasets were trained for 2 epochs. Two accuracy 

measures were defined: (a) a triplet-based accuracy quantifying the proportion of correctly 

classified triplets by Euclidean distance measurements in the embedding space (dropping out Si); 

and (b) an anchor-based accuracy measuring the correlation between the Si-dropped-out 

embedding and the Si-only embedding. Given the bimodal distribution endowed by the Tanh 

activation, we chose to use a Matthews correlation coefficient (MCC) on a contingency table of 

binarized data (positive/negative along the 128 dimensions). 

Light-weight signaturizers. We ran predictions for all molecules available in the CC universe (N = 

778,531), producing 25 matrices of shape (n, 128). These matrices were used to learn chemistry-

to-signature (CTS) signaturizers that are easy to distribute, allowing us to obtain signatures for a 

given molecule on-the-fly. CTS signaturizers were trained on a large number of molecules (N) 

with the aim to approximate the pre-calculated signatures presented in this work. Thus, in 

practice, a CTS signaturizer will often act as a mapping function, since the number of pre-

calculated signatures is very large and covers a considerable portion of the medicinal chemistry 

space. CTS signaturizers were trained for 30 epochs and validated with an 80:20 train-test split, 

using 2048-bit Morgan Fingerprints (radius = 2) as feature vectors. Three dense hidden layers 

were used (1024, 512 and 256 dimensions) with ReLU activations and dropout regularization 

(0.2). The output was a dense layer of 128 dimensions (Tanh activation). The Adam optimizer 

was used (learning rate = 10-3). CTS signaturizers achieved a correlation with the type III signature 

of 0.769 +/- 0.074. 

Applicability domain estimation 

An applicability score (α) for the signatures can be obtained at prediction time by means of a linear 

combination of five factors related to three characteristics that help increase trust in the 

predictions. These factors were tuned and calibrated on the test set. 

Distance. Signatures that are close to training-set signatures are, in principle, closer to the 

applicability domain. We measured this distance in an unsupervised way (i.e. average distance 

to 5/25 nearest-neighbors) and in a supervised way by means of a random forest regressor trained 

on signatures as features and prediction accuracy (correlation) as dependent variable. In addition, 
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we devised a measure of ‘intensity’, defined as the mean absolute deviation of the signatures to 

the average (null) signature observed in the training set. 

Robustness. The signature-dropout procedure presented above can be applied at prediction time 

to obtain an estimate of the robustness of the prediction. For each molecule, we generated 10 

dropped-out inputs, thereby obtaining an ensemble of predictions. Small standard deviations over 

these predictions indicate a robust output. 

Expectancy a priori. We calculated the accuracy that is expected given the input signatures 

available for a particular molecule. Some CC signature types are highly predictive for others; thus, 

having these informative signatures at hand will in principle favor reliable predictions. This prior 

expectancy was calculated by fitting a random forest classifier with 25 absence/presence features 

as covariates and prediction accuracy as outcome. 

Library enrichment for activity against Snail1 

Computational screening 

Compound collections. Two compound collections were considered for screening, namely the 

IRB Barcelona library (17,563 compounds, considering the connectivity layer of the InChIKey) 

and the commercial Prestwick library (1,108 compounds). Of these, 627 and 1,104 were part of 

the CC universe, respectively, meaning that they had some type of reported bioactivity. 

Chemical queries. These queries involved the search for compounds that were (i) chemically 

similar to curated DUB inhibitors, based on their known activity on promising DUBs according to 

a previous siRNA/Snail1 screen18 (Data S1), or (ii) similar to DUB inhibitors belonging to a broader 

list (with DUB-binding data available). Query i was achieved by computing chemical similarity 

(best across A1-2, P < 0.001) to a DUB inhibitors from the literature (curation categories 1 and 2 

in Data S1, corresponding to 6 DUB inhibitors); 56 compounds were selected by this query. Query 

ii was composed of the intersection between two sub-queries. First, we looked for compounds 

that were similar (A1-2, P < 0.001) to any DUB inhibitor from the literature (all curation categories 

in Data S1). Of these, with a specific known (or predicted) compound-DUB interaction, according 

to a high-confidence binding collection extracted from B1, B2 and B4 (below the Pharos cutoff42). 

Compound-DUB interactions were predicted by using an in-house version of the classical 

similarity ensemble approach (SEA)43 based on A1-2, and taking into account ‘maximum 
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similarity’, as recently recommended by SEA authors44 (we chose the cutoff with an optimal 

precision-recall trade-off). 

Biological queries. In addition to DUBs, we considered other proteins relevant to Snail1 activity, 

namely TGFBR1/2, ERK2, FBXL5/14, DDR2 and GSK3B (Data S1). We then looked for 

transcriptional signatures associated with these genes in the L1000 Connectivity Map (shRNA 

assays, reversed over-expression assays, and known small molecule perturbagens) and also in 

CREEDS, which brings together data from GEO45. Overall, we gathered 132 transcriptional 

signatures with potential of having a connection to Snail1 (Data S1). Different priorities (0-4) were 

given to these signatures based on our mechanistic knowledge of Snail1 (Data S1 legend). 

Transcriptional signatures were converted to the CC D1 format as explained above. In addition, 

we derived C3-5 signatures for the Snail1-related genes, including DUBs highlighted by the 

siRNA/Snail1 screen. 

We looked for connectivities (similarities, P < 0.001) between signatures of compounds in the D1 

space and the list of Snai1-related signatures (at least 10 up/down regulated genes per signature). 

We did two searches (search H and search L), one against high-priority signatures (priority ≥ 3, 

Data S3), and another with a more relaxed cutoff (priority ≥ 1). In parallel, we derived C3-5 

signatures for non-DUB Snail1-related genes (TGFBR1/2, etc.). 

Random query. Molecules were randomly picked from the PWCK and IRB libraries, proportionally 

to the relative abundance of molecules from the two libraries in the lists retrieved from the previous 

queries (Data S1). 

Cells 

We used MDA-MB-231 cells stably transduced with pLEX-Snail1-Firefly Luciferase and pMSCV-

Renilla Luciferase from our previous study18, and cultured them in DMEM supplemented with 10% 

FBS, glutamine and antibiotics (Thermo Fisher Scientific). 

Dual-luciferase assay screening 

We seeded 5·104 cells in 96-well white plates prepared for cell culture (Corning). The day after, 

pre-diluted compounds of the chemical libraries were added to the cells at a final concentration 

of 20 µM, or in a few cases, of 4 µM, depending on the stock concentration and the maximum 

amount of DMSO that could be used in the assay. Several replicas of the vehicle controls (DMSO) 

or the positive control (the general DUB inhibitor PR-619 (Sigma-Aldrich)) were distributed along 
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the experimental plates to allow internal normalization. After 6 h of incubation, medium was 

removed. Cells were then directly lysed with passive lysis buffer (Promega), and plates were 

stored at -20ºC. Firefly and Renilla luciferase were quantified using the Dual-Luciferase Reporter 

assay system (Promega) in a GloMax luciferase plate reader (Promega). Four replicas conducted 

on two days were performed. 

Intensities were corrected for each measurement (i.e. Firefly and Renilla) using one linear model 

per replica. The linear model included plate, row and column (as ordinal covariates) and type of 

measure (namely compounds, negative and positive controls) as fixed effects, as well as plate-

row and plate-column interactions. Estimation of effects for plate, row and column (and their 

interactions) were used to correct intensity values. Intensities were previously transformed 

(square root) in order to fulfill the assumptions of linear models. In practice, this transformation 

implies a correction based on the median (instead of mean) effects, and it is thus robust to outliers 

(potential hits). Corrected values were transformed back to the original scale of the measures 

after correction. For normalization against controls, log2-ratios of intensities were computed 

against the mean of negative controls within each marker-replicate. Log2-ratios of Firefly:Renilla 

were then computed for signal evaluation. 

The enrichment of hit rates was evaluated separately for each query (chemical, biological) with 

respect to the random distribution of Firefly:Renilla ratios. 

Signature-activity relationship (SigAR) models 

For each classification task in the MoleculeNet, we sought to predict active/inactive (1/0) 

compounds using horizontally stacked CC signatures. A random forest classifier was trained 

using hyperparameters identified with HyperOpt46 over 10 iterations (number of estimators: (100, 

500, 1000), max depth: (None, 5, 10), minimum sample split: (2, 3, 10), criterion: (gini, entropy), 

maximum features: (square root, log2)). Classifiers were calibrated using a Mondrian cross-

conformal prediction scheme over 10 stratified splits. Evaluation was done with five stratified 

80:20 train-test splits. Large MoleculeNet datasets such as PCBA were trained on a maximum of 

30 under-sampled datasets, each comprising 10,000 samples. Scaffold-aware stratified splits, 

when necessary, were done ensuring that Murcko scaffolds47 observed in the training set were 

not present in the test set48. 

Signature importance for each prediction was calculated by aggregating Shapley values (SHAP) 

as follows. First, features were ranked by their absolute SHAP across molecules. We then 
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calculated the cumulative rank specific to each signature type (Si) (up to 250 features). Signature 

types with more of their dimensions in highly ranked positions were deemed to be more 

‘explanatory’ for the prediction task. 
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Figures and Tables 

 

Figure 1. Training and evaluation of CC signaturizers. (a) Scheme of the methodology. 

Signaturizers produce bioactivity signatures that ‘fill the gaps’ in the experimental version of the 

CC. A SNN is trained using a signature-dropout scheme over 107 triplets of molecules (anchor, 

positive, negative) to infer missing signatures in each bioactivity space. The inferred signatures 

are finally evaluated. (b) Coverage of the experimental version of the CC. The bar plot indicates 

the number of molecules available for each CC data type. The heatmap shows the cross-

coverage between datasets, i.e. it is a 25x25 matrix capturing the proportion of molecules in one 

dataset (rows) that are also available in other datasets (columns) (c) Accuracy of the 25 

signaturizers, measured as the proportion of correctly classified cases within a triplet. ‘Train-test’ 

refers to the case where the ‘anchor’ molecule belongs to the ‘test’ set, and the ‘positive’ and 

‘negative’ molecules belong to the training set. ‘Test-test’ corresponds to the most difficult case 

where none of the three molecules within the triplet has been utilized during the training. (d) 

Performance of the 25 signaturizers, measured for each molecule as the correlation between the 
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‘true’ and ‘predicted’ signatures along the 128 dimensions. Given the bimodal distribution of 

signature values, signatures are binarized (positive/negative) and correlation is measured as a 

Matthew’s correlation coefficient (MCC) over the true-vs-predicted contingency table. (e) Three 

exemplary molecules (1, 2 and 3) are shown for the D1 and E3 spaces. True and predicted 

signatures are displayed as color bars, both sorted according to true signature values. (f) 
Correspondingly, t-SNE 2D projections of D1 and E3 predictions, where 1, 2 and 3 are highlighted. 

(g) 2D-projected train (gray) and test (colored) samples for the 25 CC spaces. The legend at the 

bottom specifies the A1-E5 organization of the CC. 
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Figure 2. Large-scale bioactivity prediction using the signaturizers (~800k molecules). (a) 

Features combined to derive the applicability scores (α). (b) Applicability scores for the 

predictions, displayed across the 25 (A1-E5) 2D-projected signature maps. A grid was defined on 

the 2D coordinates, molecules were binned and the average α is plotted in a red (low) to blue 

(high) color scale. (c) Cross-correlation between CC spaces, defined as the capacity of similarities 

measured in Si (rows) to recall the top-5 nearest neighbors in Sj (columns) (ROC-AUC). Top 10k 

molecules (sorted by α) were chosen as Si. (d) Scheme of the signature stacking procedure. 

Signatures can be stacked horizontally to obtain a global signature (GSig) of 3,200 dimensions. 

(e) Ability of similarity measures performed in the GSig space to identify pairs of molecules sharing 

the MoA (left) or ATC code (right) (ROC-AUC). (f) Likewise, ability of GSigs to identify the nearest 

neighbors found in the experimental (original) versions of the A1-E5 datasets. (g) t-SNE 2D 

projection of GSigs. The 10k molecules with the highest average α across the 25 signatures are 

displayed. The cool-warm color scale represents ‘chemical diversity’, red meaning that molecules 

in the neighborhood are structurally similar. A subset of representative clusters is annotated with 

enriched binding activities. (h) Example of a cluster enriched in heat shock protein 90 

(HSP90AA1) with highlighted representative molecules with distinct (4) or chemically related (5) 

neighbors. 
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Figure 3. Signature-based analysis of compound collections. (a) Chemical libraries are 

hierarchically clustered by their proximity to the full CC; here, proximity is determined by the 

cluster occupancy vector relative to the k-means clusters identified in the CC collection (number 

of clusters = (N/2)1/2; GSigs are used). Proximal libraries have small Euclidean distances between 

their normalized occupancy vectors. Size of the circles is proportional to the number of molecules 

available in the collection. Color (blue-to-red) indicates the homogeneity (Gini coefficient) of the 

occupancy vectors relative to the CC. (b) Occupancy of high-applicability regions is further 

analyzed for five collections (plus the full CC). In particular, we measure the average 10-nearest-
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neighbor L2-distance (measured in the GSig space) of molecules to the high-α subset of CC 

molecules (103, see Figure 1). The red line denotes the distance corresponding to an empirical 

similarity P-value of 0.01. The percentage indicates the number of molecules in the collection 

having high-α vicinities that are, on average, below the significance threshold. This percentage is 

shown for the rest of the libraries in panel a. (c) The previous five compound collections are 

merged and projected together (t-SNE). Each of them is highlighted in a different color. (d) Detail 

of the compound collections. The first column shows the chemical diversity of the projections, 

measured as the average Tanimoto similarity of the 5-nearest neighbors. Blue denotes high 

diversity and red high structural similarity between neighboring compounds. Coloring is done on 

a per-cluster basis. The rest of the columns focus on annotated subsets of molecules. Blue 

indicates high-density regions. 
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Figure 4. Library enrichment to identify Snail1 inhibitors. (a) Scheme of the methodology. Two 

compound libraries are screened (IRB and PWCK). A ‘chemical query’ is done by looking for 

similarities with known DUB inhibitors. A ‘biological query’ is done by looking for transcriptional 

(D1) and network-based (C3-5) signature matchings with Snail1-relevant targets. Random 

molecules are selected to estimate the background hit rate. A Snail1 expression assay based on 

Firefly:Renilla luciferase ratios is used to screen candidate compounds. (b) Library enrichment 

quantification showing the effects of compounds selected by chemical (red), biological (blue), 

shared between both (magenta) and random (grey) queries, as well as the positive (PR-619) and 

negative (DMSO) controls. (c) Detail of the top 25 hit compounds. (d) Fold enrichment of 

compounds selected by chemical (red), biological (blue) and shared (magenta) queries with 

respect to random picks, based on their capacity to modulate Snail1 levels (Firefly:Renilla assay). 

(e) MDA-MB-231 cells stably expressing luciferase constructs were treated for 6 hours with the 

indicated compounds, at different doses. Firefly:Renilla ratios were normalized with the 

corresponding concentration of vehicle (DMSO). Mean ± SD of 2 independent experiments, each 

of them including 4 replicas, are shown. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.07.21.214197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214197
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 

Figure 5. MoleculeNet benchmarks, comparing the predictive power of CC signatures with a 

classical MFp-based approach. (a) Precision-recall curves (PRCs) for the Tox21 SR-HSE task, 

trained with CC signatures (blue) and MFps (red). Shaded areas span the standard deviation over 

five stratified train-test splits. (b) Robustness of the SR-HSE classifier, understood as the 

maintenance of performance (ROC-AUC) as fewer training samples become available. (c) 

Prediction scores (probabilities) of active test molecules using MFps (x-axis) or CC signatures (y-

axis). (d) Importance of CC datasets for the predictions. Features are ranked by their absolute 

Shapley value (SHAP) across samples (plots are capped at the top 250 features). For each CC 

dataset (Si), SHAPs are cumulatively summed (y-axis; normalized by the maximum cumulative 

sum observed across CC datasets). (e) 2D projections related to SR-HSE (first column) and other 

(second column) tasks, done for the A1, B5 and D4 CC categories (rows). A simple support vector 

classifier (SVC) is trained with the (x,y)-coordinates as features in order to determine an activity-

decision function. Performance is given as a ROC-AUC on the side of the plots. Blue and red 
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areas correspond to likely active and likely inactive regions, respectively. Active compounds are 

overlaid as black dots. (f) Performance of CC signatures (blue) and MFps (red) on the 12 Tox21 

tasks. Tasks are ranked by their CC ROC-AUC performance. (g) Global performances of 

biophysics (purple) and physiology (orange) benchmark tasks. PRC and ROC AUCs are used, 

following MoleculeNet recommendations. Shades of blue indicate whether all 25 CC datasets 

were used (light) or whether conservative dataset removal was applied (darker) (Table S1). 

Dashed and dotted lines mark respectively the best and average reported performance in the 

seminal MoleculeNet study13. (h) Relative performance of CC and MFp classifiers across all 

MoleculeNet tasks (split by ROC-AUC and PRC-AUC metrics, correspondingly; top and middle 

panels). Higher performances are achieved when more active molecules are available for training 

(x-axis). The average gain in AUC is plotted in the bottom panel. 
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Supplementary Figures and Tables 

 

Figure S1. Original and learnt triplet distances for three representative CC datasets, namely B1, 

D1 and E2. The upper row shows the anchor-positive (green) and anchor-negative (red) 

Euclidean distances observed in the signature type I space (i.e. experimental signatures). Positive 

samples are closer to the anchor than negative ones. Correspondingly, the bottom row shows the 

distances observed in the signature III space (i.e. SNN embedding). Only test-test comparisons, 

where none of the molecules were seen during training, are shown. 

 

Figure S2. Proportion of signatures kept by the signature-dropout strategy. Rows (i) represent 

the CC space for which the SNN is being trained, and columns (j) correspond to the signatures 

being sampled. Red indicates that j signatures were typically used to train the i signaturizer. 
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Figure S3. Performance of the signaturizers. (a) Performance (measured as a triplet-resolving 

accuracy) of signatures produced using all data (including the space of interest, ‘all’), only the 

space of interest (‘only-self’), and not using the space of interest (‘not-self’). Related to Figure 1C. 

(b) MCC scores (‘predicted’ signature vs ‘known’ signature) for train and test samples, depicted 

as dashed lines and filled shapes, respectively. Related to Figure 1d. 
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Figure S4. t-SNE 2D projections for two exemplary datasets (B4 and E1). The first two columns 

correspond to molecules in the training and test sets. ‘Unknown’ refers to signatures obtained for 

molecules with no available annotation in the space. ‘Only-self’ shows predictions done taking 

only the B4/E1 space as input. 
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Figure S5. Correlation between the applicability score (α) and the true-vs-predicted signature 

correlation. The applicability score is determined by the linear combination of five factors, 

represented in the pie charts and abbreviated as follows; d: nearest-neighbor distance, r: 

robustness, p: prior (i.e. expected accuracy a priori), s: supervised distance, and i: intensity. The 

area covered by the pie chart corresponds to the coefficient of the linear combination to adjust an 

α score. Plots correspond to 80:20 train-test splits. 
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Figure S6. (a) Enrichment of GSig 10-nearest-neighbors at an α cutoff of 0.5, measured as the 

log2-odds ratio on a contingency table counting the number of neighbors common to Si and GSig. 

High enrichments mean that, in the light of the global information available from the CC (i.e. GSig), 

similarities encountered for the Si signature are relevant. The 25 CC categories are ranked by 

enrichment score. Color of the dot denotes CC level (A-E) and numbering indicates the sublevel 

(1-5). (b) Correlation between the two accuracy metrics (i.e. MCC and triplet accuracy) for train-

train and test-test validations. 
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Figure S7. Number of molecules at different applicability (α) cutoffs, obtained for the full universe 

of CC molecules (~800k). The dashed line indicates the number of molecules with ‘experimental’ 

data in the corresponding CC space, while the dotted line indicates the number of molecules with 

no available data in the CC space. The solid line shows the total number of molecules. We can 

see that, for instance, with an α cutoff of 0.5 the number of molecules with reliable D1 signatures 

is 5-fold the number of molecules with experimental information.  
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Figure S8. Exploration of the α score. For each CC dataset Si, we measure, at a given α cutoff, 

the capacity to recall 10-nearest-neighbors across CC spaces, similar to what is done in Figure 

2b. The average ROC-AUC of Si along S1-25 is plotted as empty dots (right, colored axis). We 

consider the profile of ROC-AUCs obtained at the highest α to be the most genuine for the 

signature. We measure how the profile of ROC-AUCs diverges (cosine distance of the 25-

dimensional ROC-AUC vector) as lower α values are taken. Larger distances indicate less ‘purity’ 

in the signature-correlation profile (filled dots, left axis). 
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Figure S9. Number of molecules (a) and CC coverage (b) of five selected compound collections 

with respect to the CC universe (~800k molecules). 
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Figure S10. Drug Repurposing Hub 2D projections. (a) t-SNE 2D projections based on GSigs 

(left) compared to Morgan fingerprint (MFp; 2048-bit, radius: 2) projections (right). Regions 

corresponding to certain MoAs are highlighted. (b) Level of clustering of the different annotations 

specified in the Drug Repurposing Hub, namely ‘targets’, ‘MoA’, ‘indications’ and ‘disease areas’. 

Each dot corresponds to an annotation, and the size of the dot is proportional to the number of 

molecules. The average Euclidean distance in the 2D-projection between molecules with the 

same annotation is calculated, both for GSig- and MFp-based projections. For each annotation 

size, 100 randomly sampled points are drawn from the projection in order to scale the average 

distance measure. The x-axis measures the difference between GSig and MFp distances. Values 

close to 1 indicate that molecules of a certain annotation are well localized in the GSig projection 

and scattered in the MFp projection. Values close to -1 indicate the contrary. The red-to-blue color 

scale follows this axis. The y-axis is a measure of ‘difficulty’, i.e. the maximal inter-annotation 

distance observed between the GSig and MFp projections. Values close to one indicate that, in 
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one of the projections the distance between molecules in the annotation is large (i.e. scattered 

points), while values close to 0 indicate that in both projections molecules with the same 

annotation are close-by. Thus, points in the upper-right corner are favorable to the CC projection, 

points in the mid-bottom region are well-grouped in both projections, and points in the upper-left 

corner are favorable to the MFp projection. The numbering in the MoA subplot relates to the 

legend in the top panel. 
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Figure S11. Association analysis between clusters discovered in 2D projections and annotations 

available for the compounds. REPO Hub, HMDB, MetaboLights, FooDB and CMAUP datasets 

are analyzed separately. REPO Hub annotations: targets, MoAs, indications, disease areas. 

HMDB annotations: tissues, biofluids, biofunctions, cellular components and origin. MetaboLights 

annotations: organism name, group, genus, species, etc. FooDB: food group, subgroup and 

name. CMAUP: plant family and species. The DBSCAN clustering algorithm was used to identify 

clusters based on the (x,y)-coordinates of the 2D projection. Then, a Fisher’s exact test was 

performed for each cluster-annotation pair, based on a contingency table counting the number of 

molecules in/out of the cluster and the number of molecules with/without annotations; P-values < 

0.01 with an FDR < 0.1 and a log2 odds-ratio > 1.5 were considered to be significant. In the plots, 

the color of the projections denotes the number of annotations found to be statistically associated 

with each of the clusters. Blue regions are ‘unspecific’, in that they contain molecules belonging 

to multiple annotations. Red regions are more ‘specific’ as they are associated with few 

annotations. Gray clusters are not enriched with any annotation. The cumulative plots show the 

number of clusters associated with each annotation. In REPO Hub, for instance, most annotations 

are associated with one or two clusters, whereas most FooDB annotations are found enriched in 

five clusters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.07.21.214197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214197
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 

Figure S12. Evaluation of the SR-HSE random forest classifier. (a) Number of active and inactive 

molecules, and proportion of molecules in the train and test sets. (b) Prediction score (PS) 

assigned to active (blue) and inactive (red) molecules in the test set. (c) Validity plot of the cross-

conformal predictor. (d) Train and test ROC curves. (e) Train and test precision-recall curves. (f) 

Other classification scores (PS > 0.38). K: Cohen’s kappa. Prec.: precision, Rec.: recall, Bacc: 

Balanced accuracy. 
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Figure S13. ROC curves for the 12 Tox21 prediction tasks. CC- and MFp-based predictors are 

blue and red, respectively. 
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Figure S14. Performance (ROC-AUC) of the Tox21 models at different training set sizes and 

using GSigs (blue) and MFps (red) as feature vectors. 
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Figure S15. Prediction scores assigned to each active molecule by the predictors at test-time in 

a 5-fold cross-validation (Tox21 benchmark dataset). The color scale denotes the relative 

difference between CC scores and classic (MFp) scores. Blue indicates a high score by the CC 

predictor and a low score by the MFp predictor. Red indicates the opposite. 
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Figure S16. Explanatory potential of CC categories across the Tox21 benchmark dataset. Top 

250 features (ranked by average absolute Shapley values across samples) are summed up in the 

corresponding S1-25 slots. 
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Figure S17. Discriminative power (ROC-AUC) of SVCs based exclusively on 2D representations 

of the signatures. The analysis is done for each signature type (A1-E5) and the 12 Tox21 tasks. 

 

Figure S18. MoleculeNet validation done exclusively with molecules having at least one 

bioactivity data point previously available in the CC. The plot relates to Figure 4g (see legend for 

details). 
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Table S1. MoleculeNet classification tasks. ‘Removed’ column indicates the CC spaces that are 

not used to make predictions. The parenthesis denotes the most aggressive removal. 

 
Category Name Molecules Tasks Split Metric Removed 

Biophysics PCBA 437,929 128 Random PR-AUC B5, (B4, C3, C4, C5) 

MUV 93,087 17 Random PR-AUC B4, (B5, C3, C4, C5) 

HIV 41,127 1 Scaffold ROC-AUC - 

BACE 1,513 1 Scaffold ROC-AUC (B4, B5, C3, C4, C5) 

Physiology BBBP 2,039 1 Scaffold ROC-AUC - 

Tox21 7,831 12 Random ROC-AUC (E4) 

ToxCast 8,575 612 Random ROC-AUC (E4) 

SIDER 1,427 27 Random ROC-AUC E3, (E4) 

ClinTox 1,478 2 Random ROC-AUC E1, E2, E3, E4, E5 

 

Data S1. Library enrichment for activity against Snail1. This dataset contains the selected 

compounds from the IRB and PWCK libraries for their possible activity against Snail1, and the 

information we used to perform these queries (online Methods). We indicate and prioritize (1) 

known DUB inhibitors, listing their known targets, (2) DUBs according to the results of the siRNA-

DUB/Snail1 screening assay and (3) public transcriptional signatures related with the Snail1 

activation pathway. We report the score of each molecule in the inspected queries (e.g. similarity 

to known DUB inhibitors, reversion of Snail1 transcriptional signatures, belonging to the TGFβ 

pathway, etc.). We provide information for all compounds selected in chemical and biological 

queries, as well as the randomly selected ones.  
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