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8 Abstract

9 Smartphones are equipped with various types of sensors which make them a promising tool
10 to assist diverse digital farming tasks because of their mobility, cost, accessibility, and
11  computing power allow us to perform real-time practical applications. This paper presents
12 the utilization of various non-destructive methods of nutrient and disease classification
13 techniques using smartphone collected images, processed through various image
14  segmentation algorithms. Both in vivo and in vitro estimations shows comparable results
15  with both chlorophyll and nitrogen contents of a crop shoot. Moreover, the correlation
16  between SPAD measured values and nitrogen of crop shoot showed a significant linear
17 association (R°=0.7309), revealing the potency of in vivo observation for prediction of actual
18  chlorophyll content in tea crop. SPAD values and yield have a strong linear relationship
19  (R*=0.7103), in which SPAD-meter performed better detection at very low values. The study
20  concluded that the proposed techniques could be used for automatic detection as well as

21  classification of foliar diseases and nutrients in tea.

22 Keywords: Chlorophyll; Disease assessment; Image segmentation; Nitrogen; SPAD meter.
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23  Introduction

24  In the technology era, industries are shifting from manual to automated solutions for
25  various problems. The developed technology has not only augmented the efficiency, but
26 they also have shortened the time, cost, and labour required to get assured excellence. In
27  agriculture, tea is one of the major economic plantation crops casing a large amount of area
28 and labour. Presently, the industry as a whole facing lot of problems in which nutrient and
29 disease management are primary concerns besides labour shortage, in turn, leads to
30 economic volatility. The idea behind this research is to develop precision non-destructive
31  methods which can work out for the problem of nutrient and disease assessment in the tea
32 crop by examining the image. In the modern world, image processing has fetched it in
33  reality which can be used in any ecological conditions and lead to very momentous, reliable
34 and precise elucidations in problem-solving. Such a study can give a clear idea about
35 nutrition status and its kind, the area of pest incidences, pesticide requirement or just to do
36 what is necessary, etc., for a crop by comparing the colour of a plant’s leaves with the
37 endorsements given by agricultural organizations. The tea industry is highly dependent on
38  productivity where potentially destructive blight diseases can result in ~35% crop loss.
39  Therefore, the use of disease detection technique plays an important role that could enable

40 planters to take preventive/quarantine measures at the initial stage of disease transition.

41 Chlorophylls play an important role in the plant as primary photosynthetic pigment
42  composed together with carotenoids exhibits a unique colour appearance which is specific
43  to genotype and even used as a parameter of physiological maturity, nutrient status and
44  quality (Pagola et al. 2009). The chlorophyll content is strongly related to the colour and
45  flavour of the tea is principally determined by crop shoot chemical constituents (Wang et al.,
46  2004) and is positively correlated with the scores for appearance and infused leaf (Wang et
47  al., 2014). Leaf chlorophyll is mostly used as an index to diagnose diseases and nitrogen (N)
48  status in the plants besides minor nutrient symptoms. N is the most required mineral
49  nutrient in tea where the optimum and timely application is crucial in achieving a higher
50 vyield. However, an excess application of N in the agricultural environment can lead to water
51  pollution and upon intake, it is transformed into nitrosamines molecules acting as

52  carcinogens (Turner and Rabalais, 1991). Hence, site-specific timely application of N at
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53  required quantity with a spatial concern could be a sustainable method to overcome the
54  limitations of traditional replacement theory; however, methods have to be developed for

55 real-time estimation along with cost-effectiveness.

56 Although disease symptom and nutrient status of the plant can be assessed by
57 human observation, yet initial stage identification, cause for a larger area and their spatial
58 relationship with an associated environmental variable are quite impossible for a common
59  agrarian but very important for disease dynamics. So far, various conventional invasive
60 methods have been practised and modern non-destructive methods are being developed to
61 assess the leaf chlorophyll, nitrogen and disease of various crop plants. Conventional
62 methods of determining the chlorophyll and nitrogen content are destructive
63 chromatographic methods, laborious and are not adaptable to real-time estimation
64  (Gilmore and Yamamoto, 1991). As an alternative, the non- destructive image processing
65 technique is an emerging field of agriculture, enabling real-time measurement using digital
66 images to get the intrinsic characteristics of leaf i.e. colour and texture and are related to
67  geographical information. This method is a very easy, portable, less time consuming, cost-
68 effective and provides accurate information and understanding at a spatial scale. The
69 proposed image processing method in the study deals with trichromatic colours, i.e. RGB
70  and compared to the destructive methods for nitrogen and chlorophyll contents besides

71  disease detection by using various statistical analyses.
72 Material and methods

73  The overview of the methodology proposed in the study depicted in Fig.-1. Initially, the
74 chlorophyll content of UPASI clones was chemically estimated at different seasons for two
75  agricultural years using acetone after recording SPAD-502 chlorophyll meter (Konica Minolta
76  Sensing Inc., Tokyo, Japan). The same leaves were photographed using a smartphone for the
77  estimation of chlorophyll using image processing algorithms. The settings of the camera,
78 includes enabling GPS, sensor light sensitivity (ISO) and exposure time were set in auto
79 mode and the camera could select them based on light conditions. The histogram of leaf
80 image was obtained using Imagel and extracted RGB values correlated with the SPAD and

81  chemically estimated chlorophyll. Neural network analysis with genetic algorithm was used
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82  to estimate the plant pigments by training (70% of the data) and validation (30% of the
83  data). The accuracy of the developed model is based on R% SE and RMSE.

84 For the development of a non-destructive method of N estimation, a randomised
85 completely block designed (RCBD) experiment was conducted with UPASI-9 clone after two
86  years of pruning. Each treatment replicated three times and each block consisted of ~100
87  plants. Experimental plots treated with various levels of Nitrogen (0, 150, 300, 600, 900 and
88 1600 kg/ha/y in four splits) and images were taken before and after every harvest. Mother
89 leaf collected from respective plots subjected to shade drying and grinding, the N content of

90 the samples was determined by Kjeldahl digestion technique.

91 Image segmentation algorithm used to classify the diseased with non-diseased parts
92 in the leaf using neural networks with a genetic algorithm. In the first step of fitness
93  computation, the dataset of the pixel is clustered according to nearest respective cluster
94  centres such that each pixel X; of the colour image is put into the respective cluster with the

95  cluster centre z; forj = 1,2,...,K by the following equations
96 I)|X: — Z;|| < 11X — Z|
i=12,...mxn, [=12,..,Kandp #j

97 The percentage of disease was spatially interpolated geo-statistically using the kriging
98 method in which the weights are assessed by the autocorrelation to obtain unbiased error
99 and minimum estimation variance. Kriging interpolation uses the attribute values (i.e.
100  nugget, sill, and range values) obtained from semivariogram analysis and was evaluated
101  through a leave-one-out cross-validation approach (Gholizadeh et al., 2012). Maps were

102  created in ArcGIS software.

103  Results and Discussion

104  Estimation of chlorophyll

105 Initially, acetone extracted leaf pigments were estimated and the results are correlated with
106  the RGB features extracted from smartphone capture images using Imagel software was
107  shown in Fig.-2. The correlation between the SPAD estimated pigment values and image
108  processing values shown in Fig.-3. A significant and positive correlation was observed

5
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109  between SPAD meter reading and image algorithm reading at each stage of measurement.
110 The coefficients of determination (R?) indicated that there was a minor variation in
111 chlorophyll content which was explained by image processing algorithm reading at each
112  measurement stage of development (Fig.-3b) that ranging from 0.8 to 2% (Table-1). The
113  relationship between image feature and SPAD values indicated that red (R* = 0.830) and
114  green (R? = 0.857) colours are highly related with the SPAD values except for blue colour (R?
115 = 0.006). The result also indicated the SPAD values are negatively correlated with the red (y
116  =-3.650x + 302.054) and green (y =-2.435x + 278.679) while blue is positively related (y =
117  0.107x + 13.194; Fig.-3a). The results show that the image processing algorithm readings can
118 be used as an effective indicator for evaluating the chlorophyll content of the leaf at a
119  different stage of the crop. Based on this exercise, the reader must conclude that surface

120  chlorophyll measurements are worthwhile by making use of an image processing algorithm.
121 Measuring the nitrogen status and its relationship with yield

122 A regression analysis was made between SPAD readings and leaf N content besides the
123 vyield. There was a significant positive linear relationship between both the attributes as
124  displayed in Fig.-4. Regression analysis of the SPAD readings and yield demonstrated that
125  these attributes produced a significant linear relationship R? = 0.7309; y = 85.213x - 3980.2
126  (Fig.-4a). Similarly, the regression analysis of the SPAD readings and N demonstrated a
127  significant linear relationship R? = 0.7103; y = 0.1868x - 7.8051 (Fig.-4b). Similar results were
128 arrived by Yang et al. (2014), Ramesh et al. (2002) and Swain & Sandip (2010) who
129  established the linear relationships between leaf N content and SPAD readings and highly

130  significant correlations of SPAD readings with the yield in various crops.
131  Clonal Characterisation

132 The clonal signature of the UPASI released clones and an important estate selection was
133 created to identifying the superior materials from the seedling blocks or infillings of an area
134  of interest. The signature of the respective clones was established using a supervised image
135 classification method and the algorithm was applied to the images of seedling fields. The
136 plotrix of the UPASI released clones was depicted in the Fig.-5. From Fig.-6, it was observed

137  that using supervised image segmentation algorithm can be exploited for the identification
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138  and composition of infilling clones in the area or some of the elite clones like materials from

139  the seedlings block for crop improvement.
140 Disease assessment by Image segmentation

141  For the assessment of blister blight disease, the images were subjected to K-mean
142  hierarchical clustering and the area of infected portions was measured from the targeted
143  cluster. Fig. 7 shows the original images followed by output segmented clusters revealed
144  that the captured image can be classified into a different class of diseases. The classification
145  of images with the Minimum Distance Criterion shows that there was about 95% accuracy in
146  measuring the area of the target and the remaining 5% error consider as misclassification.
147  Form Fig.-8, it was understood that inbuilt GPS of a smartphone can be utilised for plotting
148 the disease occurrence with geographic information. This method can be used for
149  monitoring disease dynamics before and after the application fungicides on a real-time

150 basis.
151  Conclusion

152 The study demonstrated various non-invasive image processing methods for the
153  quantification of chlorophyll, nitrogen and disease. The methods can enable common
154  agrarian for real-time estimation and assessment of nutrients and disease and its spatial
155 dynamics for larger area management. Further study is required for validation and

156  developing an Android application for planter’s utility.
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187  Fig.-2: The relationship between RGB features and chemically estimated plant

188  pigments
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204 Unprocessed image Processed image

205

206

207  Fig.-6: Application of supervised classification method for clonal identification
208 (top row) and elite clones like materials in the seedling block (bottom row)

209 using image segmentation analysis.
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213 Fig.-8: Spatial interpolation of blister disease (A) percentage before (B) and
214 after chemical control (C).

215

216

217 Table-1: Validation of chemically estimated pigments with the SPAD and image

218  extracted values

SPAD | R? SE |RMSE | | Image | R’ SE | RMSE

Chl-a |0.862|0.322 | 0.568 | | Chl-a |0.951|0.061 | 0.247

Chl-b |0.761]0.233|0.482 | | Chl-b |0.968 | 0.027 | 0.165

Caro 0.997 | 0.014 | 0.120 | | Caro 0.931 | 0.024 | 0.156

T-Chl | 0.946 | 0.280 | 0.529 | | TChI 0.938 | 0.101 | 0.317

Xantho | 0.666 | 0.095 | 0.308 | | Xantho | 0.974 | 0.007 | 0.086

219  Chl-a: Chlorophyll-a; Chl-b: Chlorophyll-b; Caro: Carotenoid; T-Chl; Total
220  Chlorophyll; Xantho: Xanthophyll; the unit of all the plant pigments are
221 expressed as mg/g; R*: Correlation coefficient values; SE: standard error; and

222  RMSE: Root mean sum square error.
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