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Abstract: 

The ability to predict a cancer patient’s response to radiotherapy and risk of developing adverse 
late health effects would greatly improve personalized treatment regimens and individual 
outcomes. Telomeres represent a compelling biomarker of individual radiosensitivity and risk, as 
exposure can result in dysfunctional telomere pathologies that coincidentally overlap with many 
radiation-induced late effects, ranging from degenerative conditions like fibrosis and 
cardiovascular disease to proliferative pathologies like cancer. Here, telomere length was 
longitudinally assessed in a cohort of fifteen prostate cancer patients undergoing Intensity 
Modulated Radiation Therapy (IMRT) utilizing Telomere Fluorescence in situ Hybridization 
(Telo-FISH). To evaluate genome instability and enhance predictions for individual patient risk 
of secondary malignancy, chromosome aberrations were also assessed utilizing directional 
Genomic Hybridization (dGH) for high-resolution inversion detection. We present the first 
implementation of individual telomere length data in a machine learning model, XGBoost, 
trained on pre-radiotherapy (baseline) and in vitro exposed (4 Gy γ-rays) telomere length 
measures, to predict post-radiotherapy telomeric outcomes, which together with chromosomal 
instability provide insight into individual radiosensitivity and risk for radiation-induced late 
effects. 
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Introduction: 
Radiation late effects are a broad class of negative and often permanent health effects 

experienced by cancer patients long after radiation therapy1,2, which can include cardiovascular 
disease3, pulmonary and arterial fibrosis4, cognitive deficits5, bone fractures6, and secondary 
cancers7.  Such late effects are of particular concern for pediatric patients8, and risks for radiation 
late effects are highly dependent on patient-intrinsic factors as well, including genetics, age, sex, 
and lifestyle1,2,9. Therefore, identifying a patient’s specific risks for radiation late effects prior to 
radiotherapy is important for improving individual treatment planning and overall patient 
outcomes. A number of strategies for predicting risks for radiation late effects have been 
employed, which tend to irradiate patient-derived samples in vitro for monitoring of 
biomarker(s) to infer in vivo cellular and normal tissue in vivo responses to exposure10; e.g., 
evaluation of γ-H2AX foci kinetics11,12, apoptosis in normal blood lymphocytes13, and 
chromosome aberration frequencies14–16. Additionally, Genome Wide Association Studies 
(GWAS)17,18, sequencing19, and imaging studies (i.e radiogenomics20) have revealed promising 
putative markers that show promise for predicting risks for late effects. However, accurately 
predicting an individual patient’s response to radiotherapy and associated risk of developing 
adverse late health effects remains challenging in terms of cost-effectiveness, throughput, and 
predictive power, therefore new approaches are needed. 

Telomeres are protective features of chromosomal termini that guard against genome 
degradation and inappropriate activation of DNA damage responses (DDRs)21,22. It is well 
established that telomeres shorten with cell division, oxidative stress23, and aging24.  Telomeres 
also shorten with a host of lifestyle factors (e.g., nutrition25, exercise26, stress27) and 
environmental exposures (e.g. air pollution28, UV29) as well. Telomere length is a highly 
heritable trait, as is telomere length regulation30–33, supportive of individual variation in 
telomeric response to specific stressors. Interestingly, short telomeres have been proposed as 
hallmarks of radiosensitivity34, and ionizing radiation (IR) exposure has been shown to evoke 
both shortening and lengthening of telomeres35–40. Short telomeres are biomarkers and even 
effectors for a range of aging-related pathologies41, including cardiovascular disease (CVD)42, 
pulmonary fibrosis42, and aplastic anemia43, degenerative conditions also regarded as radiation 
late effects44–46. On the other hand, longer telomeres are associated with increased cancer risk, 
particularly for leukemias47, a common cancer following IR-exposure48. Thus, patients with 
shorter telomeres after radiation therapy are more likely to develop short telomere (degenerative) 
pathologies, while patients with longer telomeres following radiotherapy are at higher risk for 
developing proliferative pathologies (cancer).    

Given that telomere length is influenced by a variety of genetic factors30–33 and exposures 
including IR exposure35–40, we reasoned that a patient’s telomeric outcome post-radiation 
therapy, rather than their pre-treatment (baseline) measures, would be most informative for 
assessing individual risks for radiation late effects and long-term health consequences. 
Furthermore, since patient-derived pre-radiation therapy samples irradiated in vitro provide an 
informative proxy for individual patient radiosensitivity and response in vivo49–51, an effective 
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means to accurately predict an individual patient’s telomeric outcome post-radiation therapy 
could be developed, thereby improving personalized treatment strategies and individual 
outcomes.   

Chromosome aberrations (CAs) are well-established biomarkers of IR-exposure52, 
associated with virtually all cancers53, and highly informative indicators of risk for radiation late 
effects, in particular, secondary cancers14–16. Ionizing radiation is exceptional in its ability to 
induce prompt double strand breaks (DSBs)54, damage that obligates a cellular response to 
address and resolve. Chromosome rearrangements result from the misrepair of such damage, and 
so provide a quantitative measure of cellular capacity for DNA repair52. In general, IR-induced 
CAs negatively impact cell survival and genome stability, resulting in senescence, apoptosis, and 
cancer52, respectively. Notably, chromosomal inversions and deletions have previously been 
proposed as signatures of radiation-induced secondary cancers55. Cytogenetic analysis however, 
is both time and labor intensive, often requiring that hundreds or even thousands of cells be 
scored, limiting its clinical utility56. We speculated that inclusion of an additional type of CA, 
specifically inversions, now possible using the strand-specific cytogenomic methodology of 
directional Genome Hybridization (dGH)57, might serve to reduce the number of cells required, 
while also informing potential risks for secondary cancers. 

Significant advancements have also been made in the application of machine learning 
(ML) to a variety of scenarios, including predictions related to acute radiation toxicity58, 
treatment planning59, and secondary cancer risk post radiation therapy60. Extreme Gradient 
Boosting (XGBoost) is a powerful ML model that uses a gradient boosted ensemble of decision 
trees to learn complex relationships (linear and nonlinear) within data61. XGBoost has many 
translational applications, such as predicting future gastric cancer risk62, lung cancer detection63, 
and radiation-related fibrosis64. One potentially limiting caveat to ML is the requirement for 
extraordinarily large amounts of data to create robust, generalizable models. Telomere 
Fluorescence in situ Hybridization (Telo-FISH) is a cell-by-cell imaging-based approach for 
measuring telomere length capable of generating sufficient volumes of data for developing ML 
models; average experiments generate 200,000 - 1,000,000 individual telomere length 
measurements65. Interestingly and to date, individual telomere length measurements (Telo-FISH, 
Q-FISH, flow-FISH, etc.) have not been utilized in ML models for risk predictions, despite the 
informative nature of such an approach. 

Here we provide a proof-of-principle demonstration utilizing longitudinal analysis of 
telomere length and chromosomal instability in fifteen (15) prostate cancer patients undergoing 
Intensity Modulated Radiation Therapy (IMRT). We present the first implementation of 
individual telomere length (Telo-FISH) data in a ML model - XGBoost - and evaluate its ability 
to predict post-IMRT telomeric outcomes using individual patient’s pre-IMRT (baseline) and in 
vitro irradiated telomere lengths.  Overall, results provide insight into predicting individual 
radiosensitivity and risk for radiation-induced late effects. 
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Results: 

Longitudinal analyses of telomere length associated with radiation therapy  

Blood was collected from 15 prostate cancer patients undergoing IMRT at baseline (pre-
IMRT), immediately post-IMRT (conclusion of treatment regimen), and three months post-
IMRT. Baseline blood samples were split, half serving as the non-irradiated control (0 Gy), and 
the other half irradiated in vitro (4 Gy, Cs137 γ-rays) as a proxy for individual radiation response. 
The lengths of thousands of individual telomeres (n = 50 cells/patient/time point) were measured 
on metaphase chromosomes (lymphocytes stimulated from whole blood) by Telo-FISH at all 
time points (1: pre-therapy non-irradiated; 2: in vitro irradiated (4 Gy); 3B: immediately post-
IMRT; and 4 C: three months post-IMRT) (Fig 1A). For the overall cohort, differences in mean 
telomere length (MTL) between samples approached, but did not reach statistical significance (p 
= 0.059, repeated measures ANOVA). Relative to the pre-IMRT non-irradiated samples, overall 
MTL modestly increased after 4 Gy in vitro irradiation, and showed an even greater increase 
immediately after completion of the IMRT regimen, suggesting that increased MTL is an overall 
response to radiation exposure in this cohort. At three months IMRT, MTL for the cohort 
approached pre-IMRT levels. 

Complete blood counts (CBC) were also evaluated in the same samples, and longitudinal 
changes in patients’ MTL were negatively correlated (R2 = -0.126) with total peripheral white 
blood cell (WBC) counts (Supp Fig 1A). Longitudinal correlations between numbers of WBC 
types and MTL (all time points, for each patient) revealed a positive relationship with basophils 
(R2 = 0.278) and a negative relationship with lymphocytes (R2 = -0.294) (Supp Fig 1B). 
Furthermore, longitudinal correlations between MTL and the proportions of lymphocyte sub-
groups (all time points, for each patient) revealed positive relationships with natural killer (NK) 
and CD4 cells (R2 = 0.408, 0.282), and negative relationships with CD8 and CD19 cells (R2 = -
0.251, -0.288) (Supp Fig 1C). These results support the notion that the overall changes in MTL 
associated with radiation exposure, specifically apparent telomere elongation, could be at least 
partially due to cell killing and shifts in lymphocyte populations, as previously proposed36. 

Telomere length dynamics revealed individual differences in radiation response 

We hypothesized that groups of patients would cluster based on differential telomeric 
responses to radiation therapy, with sub-groups displaying either shorter or longer MTL post-
IMRT. Clustering patients by longitudinal changes in MTL revealed two broad trends over time 
(Fig 1B). Patients that clustered in group 1 (n=3) had relatively longer MTL at baseline (pre-
IMRT), and showed a dramatic, persistent decrease in MTL post-IMRT (Fig 1C). Those patients 
that clustered in group 2 (n=11) had relatively shorter MTL at baseline, and showed a dramatic, 
sustained increase in MTL post-IMRT (Fig 1C). Reduced MTL three months post-IMRT 
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suggests increased risks for degenerative radiation late effects42,43, while increased MTL suggests 
increased risks for proliferative secondary cancers47.   

In addition to MTL, Telo-FISH provides measures for many hundreds of individual 
telomeres, enabling generation of telomere length distributions and longitudinal analysis of shifts 
in populations of short and long telomeres65. For the overall cohort, numbers of short telomeres 
(yellow) decreased and numbers of long telomeres (red) dramatically increased three months 
post-IMRT (Fig 2A). When individual telomeres from patients in the MTL clustered group 1 
(n=3) were combined, dramatic and persistent increases in the numbers of short telomeres post-
IMRT were observed (Fig 2B), while MTL clustered group 2 patients (n=11) showed dramatic 
and persistent increases in numbers of long telomeres post-IMRT (Fig 2C). Again, patients with 
increased numbers of short telomeres are presumed to have increased risks for degenerative 
radiation late effects42,43, while those with increased numbers of long telomeres are at increased 
risk of secondary cancers47. Numbers of short and long telomeres were feature engineered (see 
Materials and Methods) from each patient’s individual telomere length data for further analysis.  

Differences in the average number of short and long telomeres between samples 
approached but did not reach statistical significance for the overall cohort (p<0.1; repeated 
measures ANOVA) (Fig 3A). We speculated that clustering patients by numbers of short or long 
telomeres would reveal longitudinal trends similar to those observed when clustering patients by 
MTL (Fig 1B/C). Clustering patients by longitudinal changes in numbers of short or long 
telomeres (Fig 3B/D) revealed two broad trends over time (Fig 3C/E). Clustered group 1 (n=3) 
showed a dramatic, sustained increase in numbers of short telomeres post-IMRT, with a 
corresponding decrease in numbers of long telomeres (Fig 3C/E). Clustered group 2 (n=11) 
showed a dramatic, nearly uniform decrease in numbers of short telomeres post-IMRT, with a 
corresponding increase in long telomeres (Fig 3C/E). Importantly, clustering patients either by 
MTL or by numbers of short or long telomeres post-IMRT identified the same three patients with 
shorter telomeres, and eleven with longer telomeres (Fig 1B, Fig 3B/D). 

Linear regression poorly predicted post-IMRT telomeric outcomes  

Based on the two distinct groups identified by MTL and numbers of short and long 
telomeres three months post-IMRT (Fig 1/3), we hypothesized that pre-IMRT measurements of 
MTL and numbers of short and long telomeres could predict their respective post-IMRT 
outcomes using linear regression. For MTL, two linear regression models were created. The first 
used only MTL from pre-IMRT (baseline) non-irradiated samples as the independent variable, 
and the second used MTL from both the non-irradiated and in vitro irradiated pre-IMRT samples 
as independent variables for predicting post-IMRT MTL (Fig 4A). The R2 values for the two 
models were 0.161 and 0.165 respectively (Fig 4A), evidence that linear regression poorly 
captured the relationship between pre- and post-IMRT MTL. For numbers of short and long 
telomeres, two linear regression models were similarly created. The models for short telomeres 
yielded R2 values of 0.433 and 0.554, and the models for long telomeres yielded R2 values of 
0.046 and 0.208 (Fig 4B/C). While the models for numbers of short telomeres had modestly 
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higher R2 values than those for MTL or long telomeres, all linear regression models performed 
too poorly to confidently predict telomeric outcomes. 

Development of XGBoost machine learning models for accurate prediction of post-IMRT 
telomeric outcomes 

The fact that linear regression poorly predicted post-IMRT telomeric outcomes could be 
due to the low number of observations (n=14), and/or the nonlinearity of telomere length 
dynamics (changes over time) in response to radiation exposure (Fig 1-4). We sought an 
alternative approach that could effectively utilize our vast dataset of pre-IMRT individual 
telomere length measurements (n=128,800), and also capture the nonlinearity of telomeric 
responses. Considering that XGBoost had recently been used to predict cancer risk and radiation-
induced fibrosis using patient data61–64, we hypothesized that XGBoost models could be trained 
with pre-IMRT individual telomere length measurements to accurately predict post-IMRT 
telomeric outcomes. 

Pre-IMRT (baseline) telomere length data required extensive preprocessing prior to 
training the XGBoost model for predicting three-month post-IMRT MTL (Fig 5). Data was 
reshaped into a matrix consisting of 128,800 rows (one for each individual telomere 
measurement) and four columns: patient ID, individual telomere length value, label denoting pre-
IMRT sample of origin (non-irradiated or in vitro irradiated), and three-month post-IMRT MTL 
(Supp Table 1A). Reshaped data was randomly shuffled and stratified by patient ID and sample 
of origin, then split into training (80% of total) and test (20% of total) data sets. Shuffling 
guarded against order of measurement bias (Telo-FISH image acquisition), while stratifying 
ensured equivalent numbers of individual telomeres from each patients’ pre-IMRT samples (non-
irradiated vs. in vitro irradiated) in the training and test data sets. Patient IDs were stripped from 
the training and test data sets, and individual telomeres from the non-irradiated and in vitro 
irradiated samples were encoded as 0 and 1 to denote sample origin (Supp Table 1B). XGBoost 
model hyperparameters were optimized using a randomized hyperparameter search66. 

XGBoost model performance was evaluated across the training data set using five-fold 
cross validation67. Mean absolute error (MAE), the mean of all differences between predicted 
and actual values of mean telomere length, was used to assess the model’s performance and 
ability to generalize to new data (Supp Table 2A). Five-fold cross validation on the full training 
data set yielded an average MAE of 3.233 with a standard deviation of 0.052 (Supp Table 2A), 
suggesting that the model was not overfitting to portions (folds) of the training data and that it 
could generalize to new data. Model performance was also evaluated when training across 
variable numbers of individual telomere measurements (n=100 to 103,040) (Supp Table 2A). 
After training the XGBoost model on the full training data set, the model was challenged to 
predict three-month post-IMRT MTL using new data - the test data set. The XGBoost model 
predictions for MTLs in the test set matched the true values with an R2 value of 0.882 (Supp 
Table 2A). Averaging predictions per patient for three-month post-IMRT MTL in the test set 
increased the R2 value to 0.931 (Fig 6A). Together, these results demonstrate that the XGBoost 
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model learned the nonlinear relationships between pre-IMRT individual telomere length data and 
three-month post-IMRT MTLs (training data set), and generalized to new data (test data set) with 
highly accurate predictions.  

Pre-IMRT individual telomere length data was also processed and reshaped for training 
separate XGBoost models to predict numbers of short or long telomeres three months post-IMRT 
(Fig 5, Supp Table 1C/E). Reshaped data was split into training (80%) and test (20%) data sets 
and shuffled and stratified in an identical manner as described for MTL (Supp Table 1D/F). 
Hyperparameters of the XGBoost models were optimized using a randomized search66, and the 
model’s performance and generalizability were analyzed using five-fold cross validation67 with a 
MAE error metric. For XGBoost models for short telomeres, five-fold cross validation on the full 
training data set yielded an average MAE of 232.3 with a standard deviation of 5.870 (Supp 
Table 2B), while XGBoost models for long telomeres yielded an average MAE of 326.0 and 
standard deviation of 3.93, suggesting that both models were reasonably good at fitting the data 
and likely to generalize to new data (Supp Table 2C). Model performance was also evaluated 
using variable numbers of training data (n=100 to 103,040). Fully trained XGBoost models were 
challenged with predicting three-month post-IMRT numbers of short or long telomeres in the test 
set, and predictions matched the true values with an R2 value of 0.814 and 0.827, respectively 
(Supp Table 2B/C). Averaging predictions per patient for post-IMRT numbers of short or long 
telomeres increased the R2 value to 0.877 and 0.890, respectively (Fig 6B/C). These results 
suggested that the XGBoost models learned the relationships between pre-IMRT individual 
telomere length data and three-month post-IMRT numbers of short or long telomeres (training 
data set), and effectively generalized to new data (test data set). 

Longitudinal analyses of chromosomal instability associated with radiation therapy 

Directional Genomic Hybridization (dGH) is a cytogenomics, fluorescence-based 
methodology for high-resolution detection of chromosome aberrations (CAs) missed even by 
sequencing68, particularly inversions57,69. We hypothesized that the increased efficiency of dGH 
for detecting inversions would facilitate scoring fewer metaphase spreads (n=30/time 
point/patient) than traditional cytogenetic techniques56, while still retaining superb sensitivity to 
individual chromosomal instability, and thus the ability to infer patients at higher risks for 
secondary cancers. Many significant differences in frequencies of IR-induced rearrangements 
were observed (Fig 7A-D), with inversions occurring at the highest frequencies, consistent with 
expectations57,69. Interestingly, overall average frequencies of inversions at three months post-
IMRT were comparable to the in vitro irradiated samples (Fig 7A). Frequencies of 
translocations, dicentrics, and chromosome fragments (deletions) were highest after in vitro 
irradiation, and remained relatively high immediately post-IMRT (Fig 7B-D). High frequencies 
of translocations and chromosome fragments persisted post-IMRT (Fig 7B/D), while dicentrics 
decreased somewhat (Fig 7C). Frequencies of sister chromatid exchanges (SCE) did not 
significantly change over time, consistent with expectation and exposure. Notably, elevated 
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frequencies of CAs at three months post-IMRT suggested ongoing genomic instability in the 
overall cohort52,53,55 (Fig 7A-D). 

Significant changes in frequencies of IR-induced rearrangements were also coincident 
with numbers of peripheral blood lymphocytes. Longitudinal correlations between patients’ 
average frequencies of CAs and numbers of peripheral blood lymphocytes (all time points) 
revealed strongly negative correlations (Supp Fig 2A-D). Frequencies of inversions and 
dicentrics had the highest negative correlations (R2 = -0.752, -0.751), indicating they were highly 
informative - and similar - markers for cell death. These results suggest that patients 
demonstrating chromosomal instability (specifically, elevated frequencies of inversions or 
dicentrics), also experience higher levels of cell killing (i.e., greater radiosensitivity) consistent 
with previous reports70,71. 

Next, we hypothesized that clustering patients by longitudinal changes in CA frequencies 
(all samples) would reveal groups of patients with lower or higher frequencies of CAs, which 
would be indicative of individual chromosomal instability and radiosensitivity. When clustering 
patients by CA type, we observed groups of patients with differential responses only for 
inversions and chromosome fragments (deletions), which displayed increased frequencies 
immediately post-IMRT, suggesting increased chromosomal instability (Fig 8A/D, Supp Fig 
3A/B). We note that the two patients with the highest post-IMRT frequencies of inversions (ID 
#16) and chromosome fragments (ID #6), also had very high post-IMRT MTLs; both biomarkers 
suggestive of increased risks for secondary cancers14–16,47 (Fig 1C, Fig 8A/D, Supp Fig 3A/B). 

Other CA types had longitudinal responses that were relatively uniform between patients 
and did not cluster patients (Fig 8B/C, Supp Fig 4A/B). We hypothesized that while individual 
types of CAs failed to cluster patients into groups, individual patients may show lower or higher 
frequencies of CAs. To determine if some patients showed a general susceptibility to 
chromosomal instability, we feature engineered ‘aberration index’ by summing all types of CAs 
(less sister chromatid exchanges) (Fig 8A-D) per cell for all time points. As indicated by the 
aberration index, groups of patients with lower or higher total CA frequencies were not observed 
(Fig 8E, Supp Fig 4C). These results in conjunction with the telomere length data, identified 
two patients (ID #s 6, 16) at potentially increased risks for secondary cancers14–16,47, and are 
supportive of inversions and deletions being more informative than other CA types for predicting 
IR-induced secondary cancers, consistent with prior reports55. These results also indicate that the 
numbers of cells scored were too low (n=30) to detect significant differences in individual 
patient susceptibility to chromosomal instability in general. 

Linear regression poorly predicted radiation-induced chromosomal instability 

We speculated that pre-IMRT CA frequencies could be predictive of post-IMRT 
frequencies. Two linear regression models were made for each CA type to predict post-IMRT 
frequencies; the first used only the pre-IMRT (baseline) non-irradiated sample CA frequency, 
and the second used CA frequencies from both pre-IMRT non-irradiated and in vitro irradiated 
samples. The models showed poor predictive power overall, and although inclusion of the in 
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vitro irradiated sample data improved performance overall, both models were insufficient for 
predicting post-IMRT CA frequencies with confidence (Fig 9A-E). The model for dicentrics 
performed best, with an R2 score of 0.514 when using data from both irradiated and non-
irradiated baseline samples. These results suggest that while in vitro irradiated sample data added 
predictive power, the number of cells scored per time point/patient (n=30) was too low to enable 
accurate predictions of individual patient outcomes regarding CAs frequencies post-IMRT using 
linear regression. 

XGBoost machine learning models poorly predicted radiation-induced chromosomal 
instability 

We attempted training XGBoost models using pre-IMRT (baseline) CA data to predict 
post-IMRT CA frequencies. Rather than using CA data per patient, which would be insufficient 
for model training (n=15), we used pre-IMRT CA frequencies on a per cell basis (n=840) to 
predict three-month post-IMRT average CA frequencies. Pre-IMRT CA frequency data was 
extensively processed prior to XGBoost model training (Supp Fig 5, Supp Table 3A-D), in a 
nearly identical manner as described for pre-IMRT telomere length data. The key difference was 
that CA data was reshaped to train XGBoost models with pre-IMRT CA count data per cell 
(n=672 cells) in order to predict three-month post-IMRT average CA frequencies. Separate 
datasets and XGBoost models were created for each type of CA. 

XGBoost models for each type of CA were evaluated across their respective training sets 
using five-fold cross validation67 with a MAE metric. The cross-validation metrics for all 
XGBoost models with CA data suggested a failure of the models to learn relationships between 
pre-IMRT CA count data per cell and three-month post-IMRT average CA frequencies (Supp 
Table 4A). Furthermore, dramatic fluctuations in model performance were noted when running 
multiple iterations of cross-validation, again suggesting that the models failed to learn the 
relationships between the pre- and post-IMRT CA frequencies (Supp Table 4A-C). We 
attempted to improve model performance with many types of feature engineering (e.g boolean 
features), numerical transformations, and adjustments to model hyperparameters, none of which 
yielded meaningful improvements in any combination (data not shown). Regardless of poor 
model performance in cross-validation, we challenged the XGBoost models to predict post-
IMRT average CA frequencies using pre-IMRT CA count data per cell in the test set (n=168 
cells). In XGBoost model predictions for three month post-IMRT CA frequencies in the test set, 
none of the predictions matched the true values, with an R2 above 0.1 (Fig 10A-E, Supp Table 
4A-C). These results indicate that either the amount of data was insufficient for training 
XGBoost models (n=840 cells at pre-IMRT), or the strategy of predicting post-IMRT average 
CA frequencies using pre-IMRT CA count data per cell was inherently faulty. 
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Discussion: 
 Better prediction of a cancer patient’s individual response to radiation therapy and risk 
for developing adverse late health effects remains a prime objective for the treatment modality in 
general1–7, and particularly in regard to pediatric patients8. Over recent years, a variety of 
approaches for predicting radiation late effects have been developed10–20, albeit with varying 
degrees of compromise between cost-effectiveness, throughput, and predictive power. One 
notable and extremely promising exception is the use of ML models, which can leverage 
extensive amounts of patient data to make accurate predictions of treatment outcomes58–60,62–64. 

Predicting a patient’s telomeric response to radiation therapy is of clinical interest for 
predicting risks of radiation late effects, as shorter telomeres confer radiosensitivity34 and 
increase risk of degenerative late effects (CVD42, pulmonary fibrosis42, aplastic anemia43), while 
longer telomeres increase risk for secondary cancers, particularly leukemias47. Given that 
telomeric responses to radiation exposure can be highly dynamic35–40 and vary between 
individuals (Fig 1-3), a framework for predicting a patient’s particular telomeric responses to 
radiation therapy is critical for utilizing telomere length as a biomarker for radiation late effects. 
Here, we demonstrate the feasibility of using ML to accurately predict an individual patient’s 
telomeric response to radiation therapy. We successfully implemented individual telomere length 
data in a machine learning model, XGBoost, for highly accurate predictions of post-IMRT 
telomeric outcomes (Fig 5/6, Supp Table 3). The ML models and Telo-FISH methods used are 
fully available, providing a valuable resource for continued research into telomere length as a 
biomarker for radiation late effects associated with any manner of exposure. 

The possibility of improving assessment of chromosomal instability and associated risk 
for development of secondary cancers following radiation therapy14–16 was also explored utilizing 
dGH, which facilitated inversion detection at higher resolution than traditional cytogenetic 
assays57,69. Indeed, inversions were observed at higher frequencies than other types of CAs both 
before and after radiation therapy (Fig 7A), consistent with prior reports57,69. Groups of patients 
with increased frequencies of chromosomal inversions and fragments (deletions), previously 
proposed signatures of radiation-induced cancers55, were also observed three months post-IMRT 
(Fig 8A/D). Two patients from these groups had very high MTLs three months post-IMRT as 
well, also supportive increased risks for secondary cancers14–16,47.  We attempted to derive some 
predictive value from CA data with linear regression and XGBoost implementations, but both 
efforts were summarily unsuccessful; the low numbers of cells scored per patient likely 
subverted successful predictions from the data. 

Although we were unable to predict post-IMRT changes in CA frequencies, our 
observations of strong correlations between patients’ average frequencies of CAs and changes in 
peripheral blood lymphocyte counts associated with IMRT indicated that our approach of 
detecting inversions for evaluating chromosomal instability was fundamentally correct. Patients 
with higher levels of radiation therapy-induced chromosomal instability also experienced 
increased levels of cell death; i.e., they exhibited individual radiosensitivity70,71. Inversions and 
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dicentrics in particular had strong, negative correlations with lymphocytes cell counts (R2 = -
0.752, -0.751) (Supp Fig 2A/B).  

Relationships between peripheral blood cell count data and MTL were also observed. 
Counts of peripheral white blood cells (WBCs) were negatively correlated with MTL associated 
with IMRT (R2 = -0.126), supportive of shorter telomeres contributing to cell 
killing/radiosensitivity (Supp Fig 1A). When parsing WBCs by sub-type, a stronger negative 
relationship between MTL and lymphocyte counts was seen (R2 = -0.294). When parsing 
lymphocytes by sub-type and correlating MTL with the proportions of cell-types, we observed 
positive correlations with NK and CD4 cells (R2 = 0.408, 0.282), and negative correlations with 
CD8 and CD19 cells (R2 = -0.251, -0.288). These results support our previously proposed 
supposition that the observed changes in MTL associated with radiation exposure could be 
partially due to changes in peripheral blood lymphocyte cell populations36. 

Longitudinal assessment of individual telomere length by Telo-FISH in cancer patients 
undergoing IMRT facilitated demonstration of XGBoost as the ML model of choice for 
predicting telomeric outcomes post-IMRT. Given the notion that risks for radiation late effects 
occur on a spectrum1–8, and the differential telomeric responses between individuals and 
radiation modalities, we posit that the true range of telomeric responses for radiation therapy 
patients in general is much broader than those observed here in this prostate cancer cohort (Fig 
1-3). Thus, while our XGBoost models effectively generalized to new data within our 
experimental design (similar patient sex, radiation modality, cancer type, etc.) (Fig 6, Supp 
Table 3), it’s unlikely that our trained models, in their current iteration, would generalize to data 
collected under different experimental parameters. Moreover, with regard to measurement of 
individual telomere lengths for training XGBoost models, Telo-FISH could readily be 
interchanged with comparable assays (Q-FISH, flow-FISH), which may provide higher 
throughput. Additionally, the ML approaches described here were not strictly dependent upon 
XGBoost, and could be conducted using other machine learning models and frameworks (e.g., 
random forests, kNN). Our paradigm of training ML models with individual telomere length data 
for prediction of post-IMRT telomeric outcomes provides improved predictive power and novel 
insight into individual radiosensitivity and risk of late effects, as well as a general framework 
that could be deployed for radiation therapy patients regardless of cancer type, radiation 
modality, or individual patient sex or genetic susceptibilities. 

Data availability: 
Raw and processed individual telomere length (Telo-FISH) data files and chromosome 
aberration score sheets (dGH) are available for download at https://github.com/Jared-Luxton/. 
All data processing pipelines and code was written in Python and stored in Jupyter notebooks at 
https://github.com/Jared-Luxton/. The Jupyter notebooks can be run within a web browser and 
are available for download. 
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Materials and Methods: 

Patient consent, IMRT therapy information 

With informed consent as per the institutional review board, 16 consecutive patients that were 
receiving pelvis and prostate or prostate fossa radiation therapy were asked to participate. No 
patient had received androgen ablation or chemotherapy to avoid confounding factors. One 
patient was found to have metastatic disease after consent and was removed from further study. 
A total of 15 patients provided consent and blood was obtained at pre-IMRT (baseline), 
immediately post-IMRT (the last week) and 3 months post-IMRT. Blood was subject to 
complete blood counts, and telomere length and chromosome aberration analyses. Radiation 
consisted of 54 Gy to the pelvic lymphatics, with a total of 70 Gy (n=11) or 78 Gy (n=3) to the 
prostate fossa. One patient underwent brachytherapy boost. 

Sample collection and processing for Telo-FISH and dGH 

Peripheral blood was drawn and shipped in 10 mL sodium heparin tubes (Becton, Dickinson, and 
Co #367874) under ambient conditions to Colorado State University and received within 24 
hours of blood draw. All heparinized blood samples were cultured in T-25 tissue culture flasks, 
at 1 parts blood per 9 parts Gibco PB-Max Karyotyping Medium (ThermoFisher #12557013), 
with 5.0 mM 5-bromo-deoxyuridine (BrdU) and 1.0 mM 5-bromo-deoxycytidine (BrdC) added 
to the medium as previously described57. Pre-IMRT blood samples were split into two fractions 
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(non-irradiated and in vitro irradiated) with identical culturing conditions as other time point 
samples, and one fraction was irradiated in a Cs137 irradiator in vitro at a dose rate of 2.5 
Gy/min for a total dose of 4 Gy (γ-rays). 48 hours after stimulation, KaryoMax Colcemid 
(ThermoFisher #15210040) was added (0.1 μg per mL of medium) for four hours of incubation, 
then metaphase chromosome spreads were harvested with standard cytogenetic protocols72. Prior 
to Telo-FISH and dGH, slides with metaphase chromosome spreads were subject to CO-FISH 
for removal of BrdU/BrdC incorporated DNA as previously described73. 

Telomere Fluorescence in situ Hybridization (Telo-FISH), imaging, quantifications 

Protocol: Slides with metaphase chromosome spreads were prepared and hybridized with a 
fluorescently labeled telomere probe as previously described65. Briefly, slides were washed in 1x 
PBS for 5 min, dehydrated with an ice-cold ethanol series (75%, 85% and 100%) for 2 min each, 
air dried, and denatured in 70% formamide in 2x saline sodium citrate (SSC) at 75°C for 2 min, 
followed by a second ice-cold ethanol series, and air dried again. Probe hybridization mixture 
consisted of G-rich (TTAGGG-’3) peptide nucleic acid (PNA) telomere probe labeled with 
Cyanine-3 (Cy3; Biosynthesis) at a 5nM concentration in 36 µL of formamide, 12 µL of 0.5 M 
Tris-HCl, 2.5 µL of 0.1 M KCl, and 0.6 µl of 0.1 M MgCl2. Hybridization mixture was 
incubated at 75°C for 5 min and cooled on ice for 10 min, then 50 µL of mix was applied to each 
slide. Slides were coverslipped and hybridized at 37°C for 4 h. After hybridization, slides were 
washed five times at 43.5°C for three min each: washes one and two: 50% formamide in 2xSSC; 
washes three and four: 100% 2xSSC; and washes five and six: 2xSSC plus 0.1% Nonidet P-40. 
After washing, slides were counterstained with one drop of DAPI in Prolong Gold Antifade 
(ThermoFisher #P36931), coverslipped, and stored at 4°C for 24 h prior to imaging.  
Image acquisition: Metaphase spreads (50 per patient/time point) were imaged at 100x mag on 
a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp lightsource.  
Individual telomere quantifications: Relative fluorescence intensity of individual telomeres 
was quantified using the ImageJ74 plugin Telometer (https://demarzolab.pathology.jhmi.edu/telometer/). 
Variation in Telo-FISH was controlled by assigning each patient a pair of slides made from BJ1 
primary cells and BJ-hTERT cell lines. For each patient the slide preparation, Telo-FISH 
protocol, image acquisition and telomere quantifications were performed on the full time-course 
of samples and a pair of BJ1/BJ-hTERT controls (50 metaphases per control) at the same time 
and on the same respective days. Mean telomere length was quantified for each pair of control 
samples yielding a ratio for standardizing patients’ telomere values as previously described75. 

Telo-FISH data processing, feature engineering of short and long telomeres 

Processing individual telomere length data: For each patient, outliers were removed from 
individual telomere length data per sample by omitting measurements three standard deviations 
from the mean. For samples with fewer individual telomere length measurements than the 
theoretical number (human cells, 50 metaphase spreads), missing telomere values were imputed 
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by randomly sampling measurements from the observed distribution of individual telomeres; 
randomly sampled telomeres were added up to the theoretical number of telomeres per sample. 
Feature engineering short and long telomeres: Individual telomeres from the pre-IMRT non-
irradiated time point were split into quartiles, designating telomeres in the bottom 25% in yellow, 
the middle 50% in blue, and top 25% in red. Quartile cut-off values, established by the pre-
IMRT non-irradiated sample’s distribution (values that separate quartiles), were applied to 
subsequent time points to feature engineer the relative shortest (yellow), mid-length (blue), and 
longest (red) individual telomeres per time point.  

Statistical and clustering analyses of Telo-FISH data 

Statistical and clustering analyses were conducted with Python in Jupyter notebooks (see Code 
availability). With the statsmodels library76, mean telomere length and numbers of short and long 
telomeres were analyzed with a repeated measures ANOVA and post-hoc Tukey’s HSD test 
(two-tailed p values for both tests). Analyses were performed on all patients (n=14, less patient 
ID 13; 3 months post-IMRT sample failed to culture) and all four time course samples. A square 
root transformation was performed on numbers of short and long telomeres prior to statistical 
analysis. Ordinary least squares linear regression was performed with the scikit-learn 
LinearRegression tool. Hierarchical clustering analyses were performed on z-score normalized 
data using the scipy library with a single linkage method and Pearson correlation metric. Pearson 
correlations between patients’ longitudinal measurements of telomere length and complete blood 
count data was done with Python. 

XGBoost models with individual telomere length data, randomized hyperparameter 
search, cross validation 

XGBoost models, model hyperparameter tuning, and cross validation tools were performed in 
Python through the scikit-learn API77. XGboost model features were individual telomere length 
values and sample labels denoted pre-IMRT sample origin (non-irradiated, in vitro irradiated), 
which were encoded as 0/1. Model hyperparameters were tuned using a randomized search with 
RandomizedSearchCV. For models predicting mean telomere length at late post-IMRT, final 
model hyperparameters were modified as follows: n_estimators=200, max_depth=7, 
learning_rate=0.2, objective ='reg:squarederror', random_state=1. For models predicting short 
and long telomeres at late post-IMRT, final model hyperparameters were similar as for mean 
telomere length, with max_depth=6. Five-fold cross validation was performed with 
cross_val_score and a negative mean absolute error metric.  

directional Genomic Hybridization (dGH), image acquisition, data processing 

Protocol: High-resolution detection of chromosome aberrations (inversions, translocations) was 
performed with directional Genomic Hybridization (dGH) whole chromosome (Cy3) and 
subtelomere (Cy5) paints to chromosomes 1, 2, and 3 (KromaTiD Inc.) as previously 
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described57. Briefly, slides were submersed in Hoechst 33258 (Millipore Sigma #B1155) for 15 
min, photolyzed for 35 min using a SpectroLinker UV Crosslinker (365 nm UV), and treated 
with exonuclease III (New England Biolabs #M0206L) for 30 min. Paint hybridization mixture 
was applied to slides, which were then coverslipped, sealed with rubber cement, and denatured at 
70°C for three min. Slides were hybridized for 24 h at 37°C, followed by five washes in 2xSSC 
at 43.5°C. After washing, slides were counterstained with one drop of DAPI in Prolong Gold 
Antifade (ThermoFisher #P36931), coverslipped, and stored at 4°C for 24 h prior to imaging.  
Image acquisition: Metaphase spreads (30 per patient/time point) were imaged/scored at 63x 
mag on a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp lightsource.  
Data processing: Counts of chromosome aberrations were adjusted for clonality, where identical 
aberrations between cells for a patient’s given time point were noted but scored only once. 

Statistical and clustering analyses of chromosome aberrations (dGH) 

Statistical and clustering analyses were conducted with Python in Jupyter notebooks (see Code 
availability). With the statsmodels library, average chromosome aberration frequencies were 
analyzed with a repeated measures ANOVA and post-hoc Tukey’s HSD test (two-tailed p values 
for both tests). Analyses were performed on all patients (n=14, less patient ID 13; 3 months post-
IMRT sample failed to culture) and all time course samples (4). Ordinary least squares linear 
regression was performed with the scikit-learn LinearRegression tool. Hierarchical clustering 
analyses were performed on z-score normalized data using the scipy library with a single linkage 
method and Pearson correlation metric. Pearson correlations between patients’ longitudinal 
measurements of average chromosome aberration frequencies and complete blood count data 
was done with Python. 

XGBoost model design with chromosome aberrations 

XGBoost models, model hyperparameter tuning, and cross validation were accessed in Python 
via the same manner as described for Telo-FISH data above. XGboost model features were 
counts of scored chromosome aberrations per cell, with sample labels denoting pre-IMRT 
sample origin (non-irradiated, in vitro irradiated; encoded as 0/1). Model hyperparameters were 
tuned using a randomized search with RandomizedSearchCV; models were ultimately non-
performant. Final model hyperparameters (used with all chromosome aberrations) were: 
n_estimators=200, max_depth=15, learning_rate=0.1, objective='reg:squarederror', 
random_state=0. Five-fold cross validation was performed with a negative mean absolute error 
metric.  
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Figures: 

Figure 1. Telomere length dynamics (Telo-FISH). Mean telomere length expressed as relative 
fluorescence intensity. A) Time-course for all patients (n=15; 50 cells/patient/time point): 1 non 
irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: immediate 
post-IMRT; and 4 C: 3 months post-IMRT. Boxes denote quantiles, horizontal grey lines denote 
medians. Telomere values were standardized using a pair of BJ1/BJ-hTERT control samples. B) 
Hierarchical clustering of patients by longitudinal changes in mean telomere length (z-score 
normalized). C) Time-course for clustered groups of patients (n=3, purple; n=11, blue); center 
lines denote medians, lighter bands denote confidence intervals. Patient ID 13 not clustered; 3 
months post-IMRT sample failed to culture. Significance was assessed using a repeated 
measures ANOVA and post-hoc Tukey’s HSD test. 
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Figure 2. Telomere length distributions (Telo-FISH). Individual telomere length distributions 
of patients (n=15): 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro 
irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. RFI: Relative Fluorescence 
Intensity. Individual telomeres from the pre-therapy non-irradiated time point were split into 
quartiles, designating telomeres in bottom 25% in yellow, the middle 50% in blue, and top 25% 
in red. Quartile cut-off values, established by the distribution of the pre-therapy non-irradiated 
time point, were applied to subsequent time points to feature engineer the relative shortest 
(yellow), mid-length (blue), and longest (red) individual telomeres per time point. A) Individual 
telomeres for all patients (averaged) per time point. B) Individual telomeres for patients in mean 
telomere length clustered group 1 (n=3; aggregated) and C) group 2 (n=11; aggregated). 
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Figure 3. Longitudinal shifts in numbers of short and long telomeres (Telo-FISH). Numbers 
of short and long telomeres feature engineered from individual telomere length distributions per 
patient. 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: 
immediate post-IMRT; 4 C: 3 months post-IMRT. Shortest (yellow), mid-length (blue), and 
longest (red) telomeres were feature engineered per patient (n=15) (see Materials and Methods). 
A) Counts of short, medium, and long telomeres, 4600 individual telomeres per patient (n=15) 
per time point. Significance was assessed for counts of short and long telomere using a square-
root transformation and a repeated measures ANOVA with post-hoc Tukey’s HSD test. 
Hierarchical clustering of patients by longitudinal changes in numbers of short telomeres B) and 
long telomeres D) (z-score normalized). Time-courses of patient groups (n=3, purple; n=11, 
blue) clustered by numbers of short C) and long E) telomeres; center lines denote medians and 
lighter bands denote confidence intervals. Patient ID 13 not clustered; 3 months post-IMRT 
sample failed to culture. 
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Figure 4. Linear regression models failed to predict post-IMRT telomeric outcomes. 
Ordinary least squares linear regression models were made using pre-IMRT telomeric data 
(Telo-FISH) from only the non-irradiated (1 non irrad) or also the in vitro irradiated (2 irrad @ 4 
Gy) samples to predict 3 months post-IMRT telomeric outcomes. R2 values indicate the amount 
of variance in 3 months post-IMRT telomeric outcomes explained by the pre-therapy sample 
data. Models made using mean telomere length A) and numbers of short B) and long C) 
telomeres. 
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Figure 5. Processing of Telo-FISH data for training and testing XGBoost models. Schematic 
for our machine learning pipeline with individual telomere length data (Telo-FISH). 
Preprocessed data: Feature 1: pre-IMRT individual telomere lengths measurements (n=128,800); 
Feature 2: pre-IMRT sample labels (non-irradiated, in vitro irradiated, encoded as 0/1); Target: 3 
months post-IMRT telomeric outcomes (mean telomere length or numbers of short and long 
telomeres). Data is randomly shuffled and stratified (by patient ID and pre-therapy sample 
origin) and split into training (80%) and testing (20%) datasets; patient IDs are stripped after 
splitting. Five-fold cross validation was used, and models were evaluated with Mean Absolute 
Error (MAE) and R2 scores between predicted and true values in the test set. See Materials and 
Methods and Code availability for model hyperparameters and implementations in Python. 
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Figure 6. High performance of XGBoost models for predicting post-IMRT telomeric 
outcomes. XGBoost models were trained on pre-IMRT individual telomere length 
measurements (n=103,040, Telo-FISH) to predict 3 months post-IMRT telomeric outcomes. 
Trained XGBoost models were challenged with the test set (new data, n=25,760 individual 
telomeres) to predict 3 month post-IMRT telomeric outcomes. XGBoost predictions were 
averaged on a per patient basis for mean telomere length A) and numbers of short B) and long C) 
telomeres. R2 values between averaged predictions and actual values were 0.931 (A), 0.877 (B), 
and 0.890 (C). 
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Figure 7. Longitudinal analyses of chromosomal instability (dGH). Chromosome aberrations 
were scored using directional Genomic Hybridization (dGH) in cultured T-cells harvested in 
metaphase (n=30/patient/timepoint) from whole blood of patients (n=15). 1 non irrad: pre-IMRT 
non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: immediate post-IMRT; 4 C: 3 
months post-IMRT. Counts of inversions and translocations (A/B) were adjusted for clonality, 
where identical aberrations between cells are noted but scored only once. Excess chr fragments: 
counts of chromosome fragments per cell after subtracting 1 count per n observed dicentrics. A) 
inversions, B), translocations, C) dicentrics, D) chromosome fragment, and E) sister chromatid 
exchanges. Significance was assessed for average aberration frequencies using a repeated 
measures ANOVA and post-hoc Tukey’s HSD test. p<0.05, p<0.01, p<.001 = *, **, ***. 
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Figure 8. Clustering of patients by chromosome aberration frequencies. Time-courses for 
groups of patients hierarchically clustered into discrete groups (blue/purple) per aberration type. 
1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: 
immediate post-IMRT; 4 C: 3 months post-IMRT. Excess chr fragments: counts of chromosome 
fragments per cell after subtracting 1 count per n observed dicentrics. Aberration index is created 
by summing all aberrations (A-D) per cell. Center lines denote medians and lighter bands denote 
confidence intervals. Clustered groups of patients for inversions A), translocations B), dicentrics 
C), chromosome fragments D), and aberration index E). 
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Figure 9. Linear regression models failed to predict post-IMRT chromosome aberration 
frequencies. Ordinary least squares linear regression models were made using pre-IMRT 
average aberration frequencies from only the non-irradiated (1 non irrad) or also the in vitro 
irradiated (2 irrad @ 4 Gy) samples to predict 3 months post-IMRT average aberration 
frequencies. Excess chr fragments: counts of chromosome fragments per cell after subtracting 1 
count per n observed dicentrics. Aberration index is created by summing all aberrations (A-D) 
per cell. R2 values indicate the amount of variance in late post-IMRT outcomes explained by the 
pre-IMRT sample data. Models made with inversions A), translocations B), dicentrics C), 
chromosome fragments D), and aberration index E). 
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Figure 10. XGBoost models failed to predict post-IMRT chromosome aberration 
frequencies. XGBoost models were trained on pre-IMRT counts of different chromosome 
aberration types per cell (n=672) to predict 3 months post-IMRT average chromosome aberration 
frequencies. Trained XGBoost models were challenged with the test set (new data, n=168 cells) 
to predict 3 months post-IMRT average chromosome aberration frequencies. Excess chr 
fragments: counts of chromosome fragments per cell after subtracting 1 count per n observed 
dicentrics. Aberration index is created by summing all aberrations (A-D) per cell. XGBoost 
predictions were averaged on a per patient basis for inversions A), translocations B), dicentrics 
C), chromosome fragments D), and aberration index E). For all models, R2 values between 
averaged predictions and actual values did not exceed 0.100. 
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