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Abstract:

The ability to predict a cancer patient’s response to radiotherapy and risk of developing adverse
late health effects would greatly improve personalized treatment regimens and individual
outcomes. Telomeres represent a compelling biomarker of individual radiosensitivity and risk, as
exposure can result in dysfunctional telomere pathologies that coincidentally overlap with many
radiation-induced late effects, ranging from degenerative conditions like fibrosis and
cardiovascular disease to proliferative pathologies like cancer. Here, telomere length was
longitudinally assessed in a cohort of fifteen prostate cancer patients undergoing Intensity
Modulated Radiation Therapy (IMRT) utilizing Telomere Fluorescence in situ Hybridization
(Telo-FISH). To evaluate genome instability and enhance predictions for individual patient risk
of secondary malignancy, chromosome aberrations were also assessed utilizing directional
Genomic Hybridization (dGH) for high-resolution inversion detection. We present the first
implementation of individual telomere length data in a machine learning model, XGBoost,
trained on pre-radiotherapy (baseline) and in vitro exposed (4 Gy y-rays) telomere length
measures, to predict post-radiotherapy telomeric outcomes, which together with chromosomal
instability provide insight into individual radiosensitivity and risk for radiation-induced late
effects.
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Introduction:

Radiation late effects are a broad class of negative and often permanent health effects
experienced by cancer patients long after radiation therapy'~, which can include cardiovascular
disease®, pulmonary and arterial fibrosis*, cognitive deficits®, bone fractures®, and secondary
cancers’. Such late effects are of particular concern for pediatric patients®, and risks for radiation
late effects are highly dependent on patient-intrinsic factors as well, including genetics, age, sex,
and lifestyle!>°. Therefore, identifying a patient’s specific risks for radiation late effects prior to
radiotherapy is important for improving individual treatment planning and overall patient
outcomes. A number of strategies for predicting risks for radiation late effects have been
employed, which tend to irradiate patient-derived samples in vitro for monitoring of
biomarker(s) to infer in vivo cellular and normal tissue in vivo responses to exposure'?; e.g.,
evaluation of y-H2AX foci kinetics!'!!2, apoptosis in normal blood lymphocytes'®, and
chromosome aberration frequencies'*'®. Additionally, Genome Wide Association Studies
(GWAS)!'718 sequencing!®, and imaging studies (i.e radiogenomics®’) have revealed promising
putative markers that show promise for predicting risks for late effects. However, accurately
predicting an individual patient’s response to radiotherapy and associated risk of developing
adverse late health effects remains challenging in terms of cost-effectiveness, throughput, and
predictive power, therefore new approaches are needed.

Telomeres are protective features of chromosomal termini that guard against genome
degradation and inappropriate activation of DNA damage responses (DDRs)?!"22. Tt is well
established that telomeres shorten with cell division, oxidative stress?’, and aging?*. Telomeres
also shorten with a host of lifestyle factors (e.g., nutrition®, exercise?S, stress?’) and
environmental exposures (e.g. air pollution?®, UV?’) as well. Telomere length is a highly
heritable trait, as is telomere length regulation®®-33, supportive of individual variation in
telomeric response to specific stressors. Interestingly, short telomeres have been proposed as
hallmarks of radiosensitivity*4, and ionizing radiation (IR) exposure has been shown to evoke
both shortening and lengthening of telomeres*>~*°. Short telomeres are biomarkers and even
effectors for a range of aging-related pathologies*!, including cardiovascular disease (CVD)*,
pulmonary fibrosis*?, and aplastic anemia*’, degenerative conditions also regarded as radiation
late effects* 6. On the other hand, longer telomeres are associated with increased cancer risk,
particularly for leukemias*’, a common cancer following IR-exposure*®. Thus, patients with
shorter telomeres after radiation therapy are more likely to develop short telomere (degenerative)
pathologies, while patients with longer telomeres following radiotherapy are at higher risk for
developing proliferative pathologies (cancer).

Given that telomere length is influenced by a variety of genetic factors and exposures
including IR exposure®*°, we reasoned that a patient’s telomeric outcome post-radiation
therapy, rather than their pre-treatment (baseline) measures, would be most informative for
assessing individual risks for radiation late effects and long-term health consequences.

30-33

Furthermore, since patient-derived pre-radiation therapy samples irradiated in vitro provide an

informative proxy for individual patient radiosensitivity and response in vivo*=!, an effective
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means to accurately predict an individual patient’s telomeric outcome post-radiation therapy
could be developed, thereby improving personalized treatment strategies and individual
outcomes.

Chromosome aberrations (CAs) are well-established biomarkers of IR-exposure™?,
associated with virtually all cancers®?, and highly informative indicators of risk for radiation late
effects, in particular, secondary cancers!#~!6, Tonizing radiation is exceptional in its ability to
induce prompt double strand breaks (DSBs)>*, damage that obligates a cellular response to
address and resolve. Chromosome rearrangements result from the misrepair of such damage, and
so provide a quantitative measure of cellular capacity for DNA repair®. In general, IR-induced
CAs negatively impact cell survival and genome stability, resulting in senescence, apoptosis, and
cancer™?, respectively. Notably, chromosomal inversions and deletions have previously been
proposed as signatures of radiation-induced secondary cancers®. Cytogenetic analysis however,
is both time and labor intensive, often requiring that hundreds or even thousands of cells be
scored, limiting its clinical utility®®. We speculated that inclusion of an additional type of CA,
specifically inversions, now possible using the strand-specific cytogenomic methodology of
directional Genome Hybridization (AGH)>’, might serve to reduce the number of cells required,
while also informing potential risks for secondary cancers.

Significant advancements have also been made in the application of machine learning
(ML) to a variety of scenarios, including predictions related to acute radiation toxicity>®,
treatment planning>’, and secondary cancer risk post radiation therapy®. Extreme Gradient
Boosting (XGBoost) is a powerful ML model that uses a gradient boosted ensemble of decision
trees to learn complex relationships (linear and nonlinear) within data®'. XGBoost has many
translational applications, such as predicting future gastric cancer risk®?, lung cancer detection®,
and radiation-related fibrosis®*. One potentially limiting caveat to ML is the requirement for
extraordinarily large amounts of data to create robust, generalizable models. Telomere
Fluorescence in situ Hybridization (Telo-FISH) is a cell-by-cell imaging-based approach for
measuring telomere length capable of generating sufficient volumes of data for developing ML
models; average experiments generate 200,000 - 1,000,000 individual telomere length
measurements®. Interestingly and to date, individual telomere length measurements (Telo-FISH,
Q-FISH, flow-FISH, etc.) have not been utilized in ML models for risk predictions, despite the
informative nature of such an approach.

Here we provide a proof-of-principle demonstration utilizing longitudinal analysis of
telomere length and chromosomal instability in fifteen (15) prostate cancer patients undergoing
Intensity Modulated Radiation Therapy (IMRT). We present the first implementation of
individual telomere length (Telo-FISH) data in a ML model - XGBoost - and evaluate its ability
to predict post-IMRT telomeric outcomes using individual patient’s pre-IMRT (baseline) and in
vitro irradiated telomere lengths. Overall, results provide insight into predicting individual

radiosensitivity and risk for radiation-induced late effects.
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Results:

Longitudinal analyses of telomere length associated with radiation therapy

Blood was collected from 15 prostate cancer patients undergoing IMRT at baseline (pre-
IMRT), immediately post-IMRT (conclusion of treatment regimen), and three months post-
IMRT. Baseline blood samples were split, half serving as the non-irradiated control (0 Gy), and
the other half irradiated in vitro (4 Gy, Cs!*7 y-rays) as a proxy for individual radiation response.
The lengths of thousands of individual telomeres (n = 50 cells/patient/time point) were measured
on metaphase chromosomes (lymphocytes stimulated from whole blood) by Telo-FISH at all
time points (1: pre-therapy non-irradiated; 2: in vitro irradiated (4 Gy); 3B: immediately post-
IMRT; and 4 C: three months post-IMRT) (Fig 1A). For the overall cohort, differences in mean
telomere length (MTL) between samples approached, but did not reach statistical significance (p
= 0.059, repeated measures ANOVA). Relative to the pre-IMRT non-irradiated samples, overall
MTL modestly increased after 4 Gy in vitro irradiation, and showed an even greater increase
immediately after completion of the IMRT regimen, suggesting that increased MTL is an overall
response to radiation exposure in this cohort. At three months IMRT, MTL for the cohort
approached pre-IMRT levels.

Complete blood counts (CBC) were also evaluated in the same samples, and longitudinal
changes in patients” MTL were negatively correlated (R? = -0.126) with total peripheral white
blood cell (WBC) counts (Supp Fig 1A). Longitudinal correlations between numbers of WBC
types and MTL (all time points, for each patient) revealed a positive relationship with basophils
(R?=0.278) and a negative relationship with lymphocytes (R? = -0.294) (Supp Fig 1B).
Furthermore, longitudinal correlations between MTL and the proportions of lymphocyte sub-
groups (all time points, for each patient) revealed positive relationships with natural killer (NK)
and CD4 cells (R? = 0.408, 0.282), and negative relationships with CD8 and CD19 cells (R? = -
0.251, -0.288) (Supp Fig 1C). These results support the notion that the overall changes in MTL
associated with radiation exposure, specifically apparent telomere elongation, could be at least
partially due to cell killing and shifts in lymphocyte populations, as previously proposed*®.

Telomere length dynamics revealed individual differences in radiation response

We hypothesized that groups of patients would cluster based on differential telomeric
responses to radiation therapy, with sub-groups displaying either shorter or longer MTL post-
IMRT. Clustering patients by longitudinal changes in MTL revealed two broad trends over time
(Fig 1B). Patients that clustered in group 1 (n=3) had relatively longer MTL at baseline (pre-
IMRT), and showed a dramatic, persistent decrease in MTL post-IMRT (Fig 1C). Those patients
that clustered in group 2 (n=11) had relatively shorter MTL at baseline, and showed a dramatic,
sustained increase in MTL post-IMRT (Fig 1C). Reduced MTL three months post-IMRT
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4243 while increased MTL suggests

suggests increased risks for degenerative radiation late effects
increased risks for proliferative secondary cancers®’.

In addition to MTL, Telo-FISH provides measures for many hundreds of individual
telomeres, enabling generation of telomere length distributions and longitudinal analysis of shifts
in populations of short and long telomeres®. For the overall cohort, numbers of short telomeres
(yellow) decreased and numbers of long telomeres (red) dramatically increased three months
post-IMRT (Fig 2A). When individual telomeres from patients in the MTL clustered group 1
(n=3) were combined, dramatic and persistent increases in the numbers of short telomeres post-
IMRT were observed (Fig 2B), while MTL clustered group 2 patients (n=11) showed dramatic
and persistent increases in numbers of long telomeres post-IMRT (Fig 2C). Again, patients with
increased numbers of short telomeres are presumed to have increased risks for degenerative
radiation late effects*>*3, while those with increased numbers of long telomeres are at increased
risk of secondary cancers*’. Numbers of short and long telomeres were feature engineered (see
Materials and Methods) from each patient’s individual telomere length data for further analysis.

Differences in the average number of short and long telomeres between samples
approached but did not reach statistical significance for the overall cohort (p<0.1; repeated
measures ANOVA) (Fig 3A). We speculated that clustering patients by numbers of short or long
telomeres would reveal longitudinal trends similar to those observed when clustering patients by
MTL (Fig 1B/C). Clustering patients by longitudinal changes in numbers of short or long
telomeres (Fig 3B/D) revealed two broad trends over time (Fig 3C/E). Clustered group 1 (n=3)
showed a dramatic, sustained increase in numbers of short telomeres post-IMRT, with a
corresponding decrease in numbers of long telomeres (Fig 3C/E). Clustered group 2 (n=11)
showed a dramatic, nearly uniform decrease in numbers of short telomeres post-IMRT, with a
corresponding increase in long telomeres (Fig 3C/E). Importantly, clustering patients either by
MTL or by numbers of short or long telomeres post-IMRT identified the same three patients with
shorter telomeres, and eleven with longer telomeres (Fig 1B, Fig 3B/D).

Linear regression poorly predicted post-IMRT telomeric outcomes

Based on the two distinct groups identified by MTL and numbers of short and long
telomeres three months post-IMRT (Fig 1/3), we hypothesized that pre-IMRT measurements of
MTL and numbers of short and long telomeres could predict their respective post-IMRT
outcomes using linear regression. For MTL, two linear regression models were created. The first
used only MTL from pre-IMRT (baseline) non-irradiated samples as the independent variable,
and the second used MTL from both the non-irradiated and in vitro irradiated pre-IMRT samples
as independent variables for predicting post-IMRT MTL (Fig 4A). The R? values for the two
models were 0.161 and 0.165 respectively (Fig 4A), evidence that linear regression poorly
captured the relationship between pre- and post-IMRT MTL. For numbers of short and long
telomeres, two linear regression models were similarly created. The models for short telomeres
yielded R? values of 0.433 and 0.554, and the models for long telomeres yielded R? values of
0.046 and 0.208 (Fig 4B/C). While the models for numbers of short telomeres had modestly
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higher R? values than those for MTL or long telomeres, all linear regression models performed
too poorly to confidently predict telomeric outcomes.

Development of XGBoost machine learning models for accurate prediction of post-IMRT
telomeric outcomes

The fact that linear regression poorly predicted post-IMRT telomeric outcomes could be
due to the low number of observations (n=14), and/or the nonlinearity of telomere length
dynamics (changes over time) in response to radiation exposure (Fig 1-4). We sought an
alternative approach that could effectively utilize our vast dataset of pre-IMRT individual
telomere length measurements (n=128,800), and also capture the nonlinearity of telomeric
responses. Considering that XGBoost had recently been used to predict cancer risk and radiation-
induced fibrosis using patient data®! %4, we hypothesized that XGBoost models could be trained
with pre-IMRT individual telomere length measurements to accurately predict post-IMRT
telomeric outcomes.

Pre-IMRT (baseline) telomere length data required extensive preprocessing prior to
training the XGBoost model for predicting three-month post-IMRT MTL (Fig 5). Data was
reshaped into a matrix consisting of 128,800 rows (one for each individual telomere
measurement) and four columns: patient ID, individual telomere length value, label denoting pre-
IMRT sample of origin (non-irradiated or in vitro irradiated), and three-month post-IMRT MTL
(Supp Table 1A). Reshaped data was randomly shuffled and stratified by patient ID and sample
of origin, then split into training (80% of total) and test (20% of total) data sets. Shuffling
guarded against order of measurement bias (Telo-FISH image acquisition), while stratifying
ensured equivalent numbers of individual telomeres from each patients’ pre-IMRT samples (non-
irradiated vs. in vitro irradiated) in the training and test data sets. Patient IDs were stripped from
the training and test data sets, and individual telomeres from the non-irradiated and in vitro
irradiated samples were encoded as 0 and 1 to denote sample origin (Supp Table 1B). XGBoost
model hyperparameters were optimized using a randomized hyperparameter search®®.

XGBoost model performance was evaluated across the training data set using five-fold
cross validation®’. Mean absolute error (MAE), the mean of all differences between predicted
and actual values of mean telomere length, was used to assess the model’s performance and
ability to generalize to new data (Supp Table 2A). Five-fold cross validation on the full training
data set yielded an average MAE of 3.233 with a standard deviation of 0.052 (Supp Table 2A),
suggesting that the model was not overfitting to portions (folds) of the training data and that it
could generalize to new data. Model performance was also evaluated when training across
variable numbers of individual telomere measurements (n=100 to 103,040) (Supp Table 2A).
After training the XGBoost model on the full training data set, the model was challenged to
predict three-month post-IMRT MTL using new data - the test data set. The XGBoost model
predictions for MTLs in the test set matched the true values with an R? value of 0.882 (Supp
Table 2A). Averaging predictions per patient for three-month post-IMRT MTL in the test set
increased the R? value to 0.931 (Fig 6A). Together, these results demonstrate that the XGBoost
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model learned the nonlinear relationships between pre-IMRT individual telomere length data and
three-month post-IMRT MTLs (training data set), and generalized to new data (test data set) with
highly accurate predictions.

Pre-IMRT individual telomere length data was also processed and reshaped for training
separate XGBoost models to predict numbers of short or long telomeres three months post-IMRT
(Fig 5, Supp Table 1C/E). Reshaped data was split into training (80%) and test (20%) data sets
and shuffled and stratified in an identical manner as described for MTL (Supp Table 1D/F).
Hyperparameters of the XGBoost models were optimized using a randomized search®, and the
model’s performance and generalizability were analyzed using five-fold cross validation®” with a
MAE error metric. For XGBoost models for short telomeres, five-fold cross validation on the full
training data set yielded an average MAE of 232.3 with a standard deviation of 5.870 (Supp
Table 2B), while XGBoost models for long telomeres yielded an average MAE of 326.0 and
standard deviation of 3.93, suggesting that both models were reasonably good at fitting the data
and likely to generalize to new data (Supp Table 2C). Model performance was also evaluated
using variable numbers of training data (n=100 to 103,040). Fully trained XGBoost models were
challenged with predicting three-month post-IMRT numbers of short or long telomeres in the test
set, and predictions matched the true values with an R? value of 0.814 and 0.827, respectively
(Supp Table 2B/C). Averaging predictions per patient for post-IMRT numbers of short or long
telomeres increased the R? value to 0.877 and 0.890, respectively (Fig 6B/C). These results
suggested that the XGBoost models learned the relationships between pre-IMRT individual
telomere length data and three-month post-IMRT numbers of short or long telomeres (training
data set), and effectively generalized to new data (test data set).

Longitudinal analyses of chromosomal instability associated with radiation therapy

Directional Genomic Hybridization (dGH) is a cytogenomics, fluorescence-based
methodology for high-resolution detection of chromosome aberrations (CAs) missed even by
sequencing®®, particularly inversions®”%°, We hypothesized that the increased efficiency of dGH
for detecting inversions would facilitate scoring fewer metaphase spreads (n=30/time
point/patient) than traditional cytogenetic techniques’®, while still retaining superb sensitivity to
individual chromosomal instability, and thus the ability to infer patients at higher risks for
secondary cancers. Many significant differences in frequencies of IR-induced rearrangements
were observed (Fig 7A-D), with inversions occurring at the highest frequencies, consistent with
expectations®®°, Interestingly, overall average frequencies of inversions at three months post-
IMRT were comparable to the in vitro irradiated samples (Fig 7A). Frequencies of
translocations, dicentrics, and chromosome fragments (deletions) were highest after in vitro
irradiation, and remained relatively high immediately post-IMRT (Fig 7B-D). High frequencies
of translocations and chromosome fragments persisted post-IMRT (Fig 7B/D), while dicentrics
decreased somewhat (Fig 7C). Frequencies of sister chromatid exchanges (SCE) did not
significantly change over time, consistent with expectation and exposure. Notably, elevated
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frequencies of CAs at three months post-IMRT suggested ongoing genomic instability in the
overall cohort>>3-3 (Fig 7A-D).

Significant changes in frequencies of IR-induced rearrangements were also coincident
with numbers of peripheral blood lymphocytes. Longitudinal correlations between patients’
average frequencies of CAs and numbers of peripheral blood lymphocytes (all time points)
revealed strongly negative correlations (Supp Fig 2A-D). Frequencies of inversions and
dicentrics had the highest negative correlations (R? = -0.752, -0.751), indicating they were highly
informative - and similar - markers for cell death. These results suggest that patients
demonstrating chromosomal instability (specifically, elevated frequencies of inversions or
dicentrics), also experience higher levels of cell killing (i.e., greater radiosensitivity) consistent
with previous reports’®7!,

Next, we hypothesized that clustering patients by longitudinal changes in CA frequencies
(all samples) would reveal groups of patients with lower or higher frequencies of CAs, which
would be indicative of individual chromosomal instability and radiosensitivity. When clustering
patients by CA type, we observed groups of patients with differential responses only for
inversions and chromosome fragments (deletions), which displayed increased frequencies
immediately post-IMRT, suggesting increased chromosomal instability (Fig 8A/D, Supp Fig
3A/B). We note that the two patients with the highest post-IMRT frequencies of inversions (ID
#16) and chromosome fragments (ID #6), also had very high post-IMRT MTLs; both biomarkers
suggestive of increased risks for secondary cancers'*'%47 (Fig 1C, Fig 8A/D, Supp Fig 3A/B).

Other CA types had longitudinal responses that were relatively uniform between patients
and did not cluster patients (Fig 8B/C, Supp Fig 4A/B). We hypothesized that while individual
types of CAs failed to cluster patients into groups, individual patients may show lower or higher
frequencies of CAs. To determine if some patients showed a general susceptibility to
chromosomal instability, we feature engineered ‘aberration index’ by summing all types of CAs
(less sister chromatid exchanges) (Fig 8 A-D) per cell for all time points. As indicated by the
aberration index, groups of patients with lower or higher total CA frequencies were not observed
(Fig 8E, Supp Fig 4C). These results in conjunction with the telomere length data, identified
two patients (ID #s 6, 16) at potentially increased risks for secondary cancers!4'1%47 and are
supportive of inversions and deletions being more informative than other CA types for predicting
IR-induced secondary cancers, consistent with prior reports®>. These results also indicate that the
numbers of cells scored were too low (n=30) to detect significant differences in individual
patient susceptibility to chromosomal instability in general.

Linear regression poorly predicted radiation-induced chromosomal instability

We speculated that pre-IMRT CA frequencies could be predictive of post-IMRT
frequencies. Two linear regression models were made for each CA type to predict post-IMRT
frequencies; the first used only the pre-IMRT (baseline) non-irradiated sample CA frequency,
and the second used CA frequencies from both pre-IMRT non-irradiated and in vitro irradiated
samples. The models showed poor predictive power overall, and although inclusion of the in
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vitro irradiated sample data improved performance overall, both models were insufficient for
predicting post-IMRT CA frequencies with confidence (Fig 9A-E). The model for dicentrics
performed best, with an R? score of 0.514 when using data from both irradiated and non-
irradiated baseline samples. These results suggest that while in vitro irradiated sample data added
predictive power, the number of cells scored per time point/patient (n=30) was too low to enable
accurate predictions of individual patient outcomes regarding CAs frequencies post-IMRT using
linear regression.

XGBoost machine learning models poorly predicted radiation-induced chromosomal
instability

We attempted training XGBoost models using pre-IMRT (baseline) CA data to predict
post-IMRT CA frequencies. Rather than using CA data per patient, which would be insufficient
for model training (n=15), we used pre-IMRT CA frequencies on a per cell basis (n=840) to
predict three-month post-IMRT average CA frequencies. Pre-IMRT CA frequency data was
extensively processed prior to XGBoost model training (Supp Fig 5, Supp Table 3A-D), in a
nearly identical manner as described for pre-IMRT telomere length data. The key difference was
that CA data was reshaped to train XGBoost models with pre-IMRT CA count data per cell
(n=672 cells) in order to predict three-month post-IMRT average CA frequencies. Separate
datasets and XGBoost models were created for each type of CA.

XGBoost models for each type of CA were evaluated across their respective training sets
using five-fold cross validation®” with a MAE metric. The cross-validation metrics for all
XGBoost models with CA data suggested a failure of the models to learn relationships between
pre-IMRT CA count data per cell and three-month post-IMRT average CA frequencies (Supp
Table 4A). Furthermore, dramatic fluctuations in model performance were noted when running
multiple iterations of cross-validation, again suggesting that the models failed to learn the
relationships between the pre- and post-IMRT CA frequencies (Supp Table 4A-C). We
attempted to improve model performance with many types of feature engineering (e.g boolean
features), numerical transformations, and adjustments to model hyperparameters, none of which
yielded meaningful improvements in any combination (data not shown). Regardless of poor
model performance in cross-validation, we challenged the XGBoost models to predict post-
IMRT average CA frequencies using pre-IMRT CA count data per cell in the test set (n=168
cells). In XGBoost model predictions for three month post-IMRT CA frequencies in the test set,
none of the predictions matched the true values, with an R? above 0.1 (Fig 10A-E, Supp Table
4A-C). These results indicate that either the amount of data was insufficient for training
XGBoost models (n=840 cells at pre-IMRT), or the strategy of predicting post-IMRT average
CA frequencies using pre-IMRT CA count data per cell was inherently faulty.
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Discussion:

Better prediction of a cancer patient’s individual response to radiation therapy and risk
for developing adverse late health effects remains a prime objective for the treatment modality in
general!”’, and particularly in regard to pediatric patients®. Over recent years, a variety of
approaches for predicting radiation late effects have been developed!®%’, albeit with varying
degrees of compromise between cost-effectiveness, throughput, and predictive power. One
notable and extremely promising exception is the use of ML models, which can leverage
extensive amounts of patient data to make accurate predictions of treatment outcomes>8-60-62-64,

Predicting a patient’s telomeric response to radiation therapy is of clinical interest for
predicting risks of radiation late effects, as shorter telomeres confer radiosensitivity** and
increase risk of degenerative late effects (CVD*2, pulmonary fibrosis*?, aplastic anemia*?), while
longer telomeres increase risk for secondary cancers, particularly leukemias*’. Given that
telomeric responses to radiation exposure can be highly dynamic*>#° and vary between
individuals (Fig 1-3), a framework for predicting a patient’s particular telomeric responses to
radiation therapy is critical for utilizing telomere length as a biomarker for radiation late effects.
Here, we demonstrate the feasibility of using ML to accurately predict an individual patient’s
telomeric response to radiation therapy. We successfully implemented individual telomere length
data in a machine learning model, XGBoost, for highly accurate predictions of post-IMRT
telomeric outcomes (Fig 5/6, Supp Table 3). The ML models and Telo-FISH methods used are
fully available, providing a valuable resource for continued research into telomere length as a
biomarker for radiation late effects associated with any manner of exposure.

The possibility of improving assessment of chromosomal instability and associated risk
for development of secondary cancers following radiation therapy!'#-'® was also explored utilizing
dGH, which facilitated inversion detection at higher resolution than traditional cytogenetic
assays® %, Indeed, inversions were observed at higher frequencies than other types of CAs both
before and after radiation therapy (Fig 7A), consistent with prior reports®”-%°. Groups of patients
with increased frequencies of chromosomal inversions and fragments (deletions), previously
proposed signatures of radiation-induced cancers®, were also observed three months post-IMRT
(Fig 8A/D). Two patients from these groups had very high MTLs three months post-IMRT as
well, also supportive increased risks for secondary cancers'*1%47, We attempted to derive some
predictive value from CA data with linear regression and XGBoost implementations, but both
efforts were summarily unsuccessful; the low numbers of cells scored per patient likely
subverted successful predictions from the data.

Although we were unable to predict post-IMRT changes in CA frequencies, our
observations of strong correlations between patients’ average frequencies of CAs and changes in
peripheral blood lymphocyte counts associated with IMRT indicated that our approach of
detecting inversions for evaluating chromosomal instability was fundamentally correct. Patients
with higher levels of radiation therapy-induced chromosomal instability also experienced
increased levels of cell death; i.e., they exhibited individual radiosensitivity’®’!. Inversions and
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dicentrics in particular had strong, negative correlations with lymphocytes cell counts (R? = -
0.752,-0.751) (Supp Fig 2A/B).

Relationships between peripheral blood cell count data and MTL were also observed.
Counts of peripheral white blood cells (WBCs) were negatively correlated with MTL associated
with IMRT (R? = -0.126), supportive of shorter telomeres contributing to cell
killing/radiosensitivity (Supp Fig 1A). When parsing WBCs by sub-type, a stronger negative
relationship between MTL and lymphocyte counts was seen (R? = -0.294). When parsing
lymphocytes by sub-type and correlating MTL with the proportions of cell-types, we observed
positive correlations with NK and CD4 cells (R? = 0.408, 0.282), and negative correlations with
CDS8 and CD19 cells (R? = -0.251, -0.288). These results support our previously proposed
supposition that the observed changes in MTL associated with radiation exposure could be
partially due to changes in peripheral blood lymphocyte cell populations?®.

Longitudinal assessment of individual telomere length by Telo-FISH in cancer patients
undergoing IMRT facilitated demonstration of XGBoost as the ML model of choice for
predicting telomeric outcomes post-IMRT. Given the notion that risks for radiation late effects
occur on a spectrum!~®, and the differential telomeric responses between individuals and
radiation modalities, we posit that the true range of telomeric responses for radiation therapy
patients in general is much broader than those observed here in this prostate cancer cohort (Fig
1-3). Thus, while our XGBoost models effectively generalized to new data within our
experimental design (similar patient sex, radiation modality, cancer type, etc.) (Fig 6, Supp
Table 3), it’s unlikely that our trained models, in their current iteration, would generalize to data
collected under different experimental parameters. Moreover, with regard to measurement of
individual telomere lengths for training XGBoost models, Telo-FISH could readily be
interchanged with comparable assays (Q-FISH, flow-FISH), which may provide higher
throughput. Additionally, the ML approaches described here were not strictly dependent upon
XGBoost, and could be conducted using other machine learning models and frameworks (e.g.,
random forests, KNN). Our paradigm of training ML models with individual telomere length data
for prediction of post-IMRT telomeric outcomes provides improved predictive power and novel
insight into individual radiosensitivity and risk of late effects, as well as a general framework
that could be deployed for radiation therapy patients regardless of cancer type, radiation
modality, or individual patient sex or genetic susceptibilities.

Data availability:

Raw and processed individual telomere length (Telo-FISH) data files and chromosome
aberration score sheets (dGH) are available for download at https://github.com/Jared-Luxton/.

All data processing pipelines and code was written in Python and stored in Jupyter notebooks at
https://github.com/Jared-Luxton/. The Jupyter notebooks can be run within a web browser and
are available for download.
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Materials and Methods:

Patient consent, IMRT therapy information

With informed consent as per the institutional review board, 16 consecutive patients that were
receiving pelvis and prostate or prostate fossa radiation therapy were asked to participate. No
patient had received androgen ablation or chemotherapy to avoid confounding factors. One
patient was found to have metastatic disease after consent and was removed from further study.
A total of 15 patients provided consent and blood was obtained at pre-IMRT (baseline),
immediately post-IMRT (the last week) and 3 months post-IMRT. Blood was subject to
complete blood counts, and telomere length and chromosome aberration analyses. Radiation
consisted of 54 Gy to the pelvic lymphatics, with a total of 70 Gy (n=11) or 78 Gy (n=3) to the
prostate fossa. One patient underwent brachytherapy boost.

Sample collection and processing for Telo-FISH and dGH

Peripheral blood was drawn and shipped in 10 mL sodium heparin tubes (Becton, Dickinson, and
Co #367874) under ambient conditions to Colorado State University and received within 24
hours of blood draw. All heparinized blood samples were cultured in T-25 tissue culture flasks,
at 1 parts blood per 9 parts Gibco PB-Max Karyotyping Medium (ThermoFisher #12557013),
with 5.0 mM 5-bromo-deoxyuridine (BrdU) and 1.0 mM 5-bromo-deoxycytidine (BrdC) added
to the medium as previously described’. Pre-IMRT blood samples were split into two fractions
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(non-irradiated and in vitro irradiated) with identical culturing conditions as other time point
samples, and one fraction was irradiated in a Cs137 irradiator in vitro at a dose rate of 2.5
Gy/min for a total dose of 4 Gy (y-rays). 48 hours after stimulation, KaryoMax Colcemid
(ThermoFisher #15210040) was added (0.1 pg per mL of medium) for four hours of incubation,
then metaphase chromosome spreads were harvested with standard cytogenetic protocols’. Prior
to Telo-FISH and dGH, slides with metaphase chromosome spreads were subject to CO-FISH
for removal of BrdU/BrdC incorporated DNA as previously described’s.

Telomere Fluorescence in situ Hybridization (Telo-FISH), imaging, quantifications

Protocol: Slides with metaphase chromosome spreads were prepared and hybridized with a
fluorescently labeled telomere probe as previously described®. Briefly, slides were washed in 1x
PBS for 5 min, dehydrated with an ice-cold ethanol series (75%, 85% and 100%) for 2 min each,
air dried, and denatured in 70% formamide in 2x saline sodium citrate (SSC) at 75°C for 2 min,
followed by a second ice-cold ethanol series, and air dried again. Probe hybridization mixture
consisted of G-rich (TTAGGG-’3) peptide nucleic acid (PNA) telomere probe labeled with
Cyanine-3 (Cy3; Biosynthesis) at a 5nM concentration in 36 pL of formamide, 12 pL of 0.5 M
Tris-HCI, 2.5 pL of 0.1 M KCl, and 0.6 ul of 0.1 M MgCl2. Hybridization mixture was
incubated at 75°C for 5 min and cooled on ice for 10 min, then 50 pL. of mix was applied to each
slide. Slides were coverslipped and hybridized at 37°C for 4 h. After hybridization, slides were
washed five times at 43.5°C for three min each: washes one and two: 50% formamide in 2xSSC;
washes three and four: 100% 2xSSC; and washes five and six: 2xSSC plus 0.1% Nonidet P-40.
After washing, slides were counterstained with one drop of DAPI in Prolong Gold Antifade
(ThermoFisher #P36931), coverslipped, and stored at 4°C for 24 h prior to imaging.

Image acquisition: Metaphase spreads (50 per patient/time point) were imaged at 100x mag on
a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp lightsource.
Individual telomere quantifications: Relative fluorescence intensity of individual telomeres

was quantified using the ImageJ’* plugin Telometer (https:/demarzolab.pathology.jhmi.edu/telometery).
Variation in Telo-FISH was controlled by assigning each patient a pair of slides made from BJ1
primary cells and BJ-hTERT cell lines. For each patient the slide preparation, Telo-FISH
protocol, image acquisition and telomere quantifications were performed on the full time-course
of samples and a pair of BJ1/BJ-hTERT controls (50 metaphases per control) at the same time
and on the same respective days. Mean telomere length was quantified for each pair of control
samples yielding a ratio for standardizing patients’ telomere values as previously described”.

Telo-FISH data processing, feature engineering of short and long telomeres

Processing individual telomere length data: For each patient, outliers were removed from
individual telomere length data per sample by omitting measurements three standard deviations
from the mean. For samples with fewer individual telomere length measurements than the
theoretical number (human cells, 50 metaphase spreads), missing telomere values were imputed
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by randomly sampling measurements from the observed distribution of individual telomeres;
randomly sampled telomeres were added up to the theoretical number of telomeres per sample.
Feature engineering short and long telomeres: Individual telomeres from the pre-IMRT non-
irradiated time point were split into quartiles, designating telomeres in the bottom 25% in yellow,
the middle 50% in blue, and top 25% in red. Quartile cut-off values, established by the pre-
IMRT non-irradiated sample’s distribution (values that separate quartiles), were applied to
subsequent time points to feature engineer the relative shortest (yellow), mid-length (blue), and
longest (red) individual telomeres per time point.

Statistical and clustering analyses of Telo-FISH data

Statistical and clustering analyses were conducted with Python in Jupyter notebooks (see Code
availability). With the statsmodels library’®, mean telomere length and numbers of short and long
telomeres were analyzed with a repeated measures ANOVA and post-hoc Tukey’s HSD test
(two-tailed p values for both tests). Analyses were performed on all patients (n=14, less patient
ID 13; 3 months post-IMRT sample failed to culture) and all four time course samples. A square
root transformation was performed on numbers of short and long telomeres prior to statistical
analysis. Ordinary least squares linear regression was performed with the scikit-learn
LinearRegression tool. Hierarchical clustering analyses were performed on z-score normalized
data using the scipy library with a single linkage method and Pearson correlation metric. Pearson
correlations between patients’ longitudinal measurements of telomere length and complete blood
count data was done with Python.

XGBoost models with individual telomere length data, randomized hyperparameter
search, cross validation

XGBoost models, model hyperparameter tuning, and cross validation tools were performed in
Python through the scikit-learn APT”7. XGboost model features were individual telomere length
values and sample labels denoted pre-IMRT sample origin (non-irradiated, in vitro irradiated),
which were encoded as 0/1. Model hyperparameters were tuned using a randomized search with
RandomizedSearchCV. For models predicting mean telomere length at late post-IMRT, final
model hyperparameters were modified as follows: n_estimators=200, max_depth=7,
learning_rate=0.2, objective ='reg:squarederror', random_state=1. For models predicting short
and long telomeres at late post-IMRT, final model hyperparameters were similar as for mean
telomere length, with max_depth=6. Five-fold cross validation was performed with

cross_val score and a negative mean absolute error metric.

directional Genomic Hybridization (dGH), image acquisition, data processing

Protocol: High-resolution detection of chromosome aberrations (inversions, translocations) was
performed with directional Genomic Hybridization (dGH) whole chromosome (Cy3) and
subtelomere (Cy5) paints to chromosomes 1, 2, and 3 (KromaTiD Inc.) as previously
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described”’. Briefly, slides were submersed in Hoechst 33258 (Millipore Sigma #B1155) for 15
min, photolyzed for 35 min using a SpectroLinker UV Crosslinker (365 nm UV), and treated
with exonuclease III (New England Biolabs #M0206L) for 30 min. Paint hybridization mixture
was applied to slides, which were then coverslipped, sealed with rubber cement, and denatured at
70°C for three min. Slides were hybridized for 24 h at 37°C, followed by five washes in 2xSSC
at 43.5°C. After washing, slides were counterstained with one drop of DAPI in Prolong Gold
Antifade (ThermoFisher #P36931), coverslipped, and stored at 4°C for 24 h prior to imaging.
Image acquisition: Metaphase spreads (30 per patient/time point) were imaged/scored at 63x
mag on a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp lightsource.
Data processing: Counts of chromosome aberrations were adjusted for clonality, where identical
aberrations between cells for a patient’s given time point were noted but scored only once.

Statistical and clustering analyses of chromosome aberrations (dGH)

Statistical and clustering analyses were conducted with Python in Jupyter notebooks (see Code
availability). With the statsmodels library, average chromosome aberration frequencies were
analyzed with a repeated measures ANOVA and post-hoc Tukey’s HSD test (two-tailed p values
for both tests). Analyses were performed on all patients (n=14, less patient ID 13; 3 months post-
IMRT sample failed to culture) and all time course samples (4). Ordinary least squares linear
regression was performed with the scikit-learn LinearRegression tool. Hierarchical clustering
analyses were performed on z-score normalized data using the scipy library with a single linkage
method and Pearson correlation metric. Pearson correlations between patients’ longitudinal
measurements of average chromosome aberration frequencies and complete blood count data
was done with Python.

XGBoost model design with chromosome aberrations

XGBoost models, model hyperparameter tuning, and cross validation were accessed in Python
via the same manner as described for Telo-FISH data above. XGboost model features were
counts of scored chromosome aberrations per cell, with sample labels denoting pre-IMRT
sample origin (non-irradiated, in vitro irradiated; encoded as 0/1). Model hyperparameters were
tuned using a randomized search with RandomizedSearchCV; models were ultimately non-
performant. Final model hyperparameters (used with all chromosome aberrations) were:
n_estimators=200, max_depth=15, learning_rate=0.1, objective="reg:squarederror’,
random_state=0. Five-fold cross validation was performed with a negative mean absolute error
metric.
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Figure 1. Telomere length dynamics (Telo-FISH). Mean telomere length expressed as relative
fluorescence intensity. A) Time-course for all patients (n=15; 50 cells/patient/time point): 1 non
irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: immediate
post-IMRT; and 4 C: 3 months post-IMRT. Boxes denote quantiles, horizontal grey lines denote
medians. Telomere values were standardized using a pair of BJ1/BJ-hTERT control samples. B)
Hierarchical clustering of patients by longitudinal changes in mean telomere length (z-score
normalized). C) Time-course for clustered groups of patients (n=3, purple; n=11, blue); center
lines denote medians, lighter bands denote confidence intervals. Patient ID 13 not clustered; 3
months post-IMRT sample failed to culture. Significance was assessed using a repeated
measures ANOVA and post-hoc Tukey’s HSD test.
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Figure 2. Telomere length distributions (Telo-FISH). Individual telomere length distributions
of patients (n=15): 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro
irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. RFI: Relative Fluorescence
Intensity. Individual telomeres from the pre-therapy non-irradiated time point were split into
quartiles, designating telomeres in bottom 25% in yellow, the middle 50% in blue, and top 25%
in red. Quartile cut-off values, established by the distribution of the pre-therapy non-irradiated
time point, were applied to subsequent time points to feature engineer the relative shortest
(yellow), mid-length (blue), and longest (red) individual telomeres per time point. A) Individual
telomeres for all patients (averaged) per time point. B) Individual telomeres for patients in mean
telomere length clustered group 1 (n=3; aggregated) and C) group 2 (n=11; aggregated).
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Figure 3. Longitudinal shifts in numbers of short and long telomeres (Telo-FISH). Numbers
of short and long telomeres feature engineered from individual telomere length distributions per
patient. 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B:
immediate post-IMRT; 4 C: 3 months post-IMRT. Shortest (yellow), mid-length (blue), and
longest (red) telomeres were feature engineered per patient (n=15) (see Materials and Methods).
A) Counts of short, medium, and long telomeres, 4600 individual telomeres per patient (n=15)
per time point. Significance was assessed for counts of short and long telomere using a square-
root transformation and a repeated measures ANOV A with post-hoc Tukey’s HSD test.
Hierarchical clustering of patients by longitudinal changes in numbers of short telomeres B) and
long telomeres D) (z-score normalized). Time-courses of patient groups (n=3, purple; n=11,
blue) clustered by numbers of short C) and long E) telomeres; center lines denote medians and
lighter bands denote confidence intervals. Patient ID 13 not clustered; 3 months post-IMRT
sample failed to culture.
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Figure 4. Linear regression models failed to predict post-IMRT telomeric outcomes.
Ordinary least squares linear regression models were made using pre-IMRT telomeric data
(Telo-FISH) from only the non-irradiated (1 non irrad) or also the in vitro irradiated (2 irrad @ 4
Gy) samples to predict 3 months post-IMRT telomeric outcomes. R2 values indicate the amount
of variance in 3 months post-IMRT telomeric outcomes explained by the pre-therapy sample
data. Models made using mean telomere length A) and numbers of short B) and long C)
telomeres.
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Figure S. Processing of Telo-FISH data for training and testing XGBoost models. Schematic
for our machine learning pipeline with individual telomere length data (Telo-FISH).
Preprocessed data: Feature 1: pre-IMRT individual telomere lengths measurements (n=128,800);
Feature 2: pre-IMRT sample labels (non-irradiated, in vitro irradiated, encoded as 0/1); Target: 3
months post-IMRT telomeric outcomes (mean telomere length or numbers of short and long
telomeres). Data is randomly shuffled and stratified (by patient ID and pre-therapy sample
origin) and split into training (80%) and testing (20%) datasets; patient IDs are stripped after
splitting. Five-fold cross validation was used, and models were evaluated with Mean Absolute
Error (MAE) and R2 scores between predicted and true values in the test set. See Materials and
Methods and Code availability for model hyperparameters and implementations in Python.
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Figure 6. High performance of XGBoost models for predicting post-IMRT telomeric
outcomes. XGBoost models were trained on pre-IMRT individual telomere length
measurements (n=103,040, Telo-FISH) to predict 3 months post-IMRT telomeric outcomes.
Trained XGBoost models were challenged with the test set (new data, n=25,760 individual
telomeres) to predict 3 month post-IMRT telomeric outcomes. XGBoost predictions were
averaged on a per patient basis for mean telomere length A) and numbers of short B) and long C)
telomeres. R2 values between averaged predictions and actual values were 0.931 (A), 0.877 (B),
and 0.890 (C).
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Figure 7. Longitudinal analyses of chromosomal instability (dGH). Chromosome aberrations
were scored using directional Genomic Hybridization (dGH) in cultured T-cells harvested in
metaphase (n=30/patient/timepoint) from whole blood of patients (n=15). 1 non irrad: pre-IMRT
non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B: immediate post-IMRT; 4 C: 3
months post-IMRT. Counts of inversions and translocations (A/B) were adjusted for clonality,
where identical aberrations between cells are noted but scored only once. Excess chr fragments:
counts of chromosome fragments per cell after subtracting 1 count per n observed dicentrics. A)
inversions, B), translocations, C) dicentrics, D) chromosome fragment, and E) sister chromatid
exchanges. Significance was assessed for average aberration frequencies using a repeated
measures ANOVA and post-hoc Tukey’s HSD test. p<0.05, p<0.01, p<.001 = *, #* =%,
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Figure 8. Clustering of patients by chromosome aberration frequencies. Time-courses for
groups of patients hierarchically clustered into discrete groups (blue/purple) per aberration type.
1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3 B:
immediate post-IMRT; 4 C: 3 months post-IMRT. Excess chr fragments: counts of chromosome
fragments per cell after subtracting 1 count per n observed dicentrics. Aberration index is created
by summing all aberrations (A-D) per cell. Center lines denote medians and lighter bands denote
confidence intervals. Clustered groups of patients for inversions A), translocations B), dicentrics
C), chromosome fragments D), and aberration index E).
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Figure 9. Linear regression models failed to predict post-IMRT chromosome aberration
frequencies. Ordinary least squares linear regression models were made using pre-IMRT
average aberration frequencies from only the non-irradiated (1 non irrad) or also the in vitro
irradiated (2 irrad @ 4 Gy) samples to predict 3 months post-IMRT average aberration
frequencies. Excess chr fragments: counts of chromosome fragments per cell after subtracting 1
count per n observed dicentrics. Aberration index is created by summing all aberrations (A-D)
per cell. R2 values indicate the amount of variance in late post-IMRT outcomes explained by the
pre-IMRT sample data. Models made with inversions A), translocations B), dicentrics C),
chromosome fragments D), and aberration index E).
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Figure 10. XGBoost models failed to predict post-IMRT chromosome aberration
frequencies. XGBoost models were trained on pre-IMRT counts of different chromosome
aberration types per cell (n=672) to predict 3 months post-IMRT average chromosome aberration
frequencies. Trained XGBoost models were challenged with the test set (new data, n=168 cells)
to predict 3 months post-IMRT average chromosome aberration frequencies. Excess chr
fragments: counts of chromosome fragments per cell after subtracting 1 count per n observed
dicentrics. Aberration index is created by summing all aberrations (A-D) per cell. XGBoost
predictions were averaged on a per patient basis for inversions A), translocations B), dicentrics
C), chromosome fragments D), and aberration index E). For all models, R2 values between
averaged predictions and actual values did not exceed 0.100.
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