

1 **YhcB (DUF1043), a novel cell division protein conserved across gamma-proteobacteria**

2 Jitender Mehla^{a,##*}, George Liechti^b, Randy M. Morgenstein^c, J. Harry Caufield^a,
3 Ali Hosseinnia^d, Alla Gagarinova^e, Sadhna Phanse^d,
4 Mary Brockett^b, Neha Sakhawalkar^a, Mohan Babu^d, Rong Xiao^{f,g},
5 Gaetano T. Montelione^{g,h}, Sergey Vorobiev^{g,i}, Tanneke den Blaauwen^j, John F. Hunt^{g,i},
6 Peter Uetz^{a,##}

7 ^aCenter for the Study of Biological Complexity, Virginia Commonwealth University, Richmond,
8 VA, United States

9 ^bDepartment of Microbiology and Immunology, Henry Jackson Foundation, Uniformed Services
10 University of the Health Sciences, Bethesda, MD, United States

11 ^cDepartment of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater,
12 OK, United States

13 ^dDepartment of Biochemistry, Research and Innovation Centre, University of Regina, Regina,
14 Saskatchewan, Canada

15 ^eDepartment of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon,
16 Saskatchewan, Canada

17 ^fNexomics Biosciences Inc., Rocky Hill, NJ, USA

18 ^gNortheast Structural Genomics Consortium

19 ^hDepartment of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY,
20 USA

21 ⁱDepartment of Biological Sciences, Columbia University, New York, NY, USA

22 ^jBacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, University of
23 Amsterdam, Amsterdam, Netherlands

24 *Current address: Department of Chemistry and Biochemistry, University of Oklahoma, 101
25 Stephenson Parkway, Norman, OK 73019, United States

26

27 #Correspondence: **Jitender Mehla** (jitendermehla@ou.edu), **Peter Uetz** (uetz@vcu.edu)

28

29 **Running title:** Structure and function of YhcB (DUF1043). **Keywords:** Cell division/ divisome,
30 / DUF1043 / envelope biosynthesis/ FtsZ/ FtsI, protein function & structure /RodZ / x-ray
31 crystallography.

32

33

34

35

36 **Abstract**

37 YhcB, an uncharacterized protein conserved across gamma-proteobacteria, is composed
38 predominantly of a single Domain of Unknown Function (DUF 1043) with an N-terminal
39 transmembrane α -helix. Here, we show that *E. coli* YhcB is a conditionally essential protein that
40 interacts with the proteins of the cell divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ,
41 RodA). We found 7 interactions of YhcB that are conserved in *Yersinia pestis* and/or *Vibrio*
42 *cholerae*. Furthermore, we identified several point mutations that abolished interactions of YhcB
43 with FtsI and RodZ. The *yhcB* knock-out strain does not grow at 45°C and is hypersensitive to
44 cell-wall acting antibiotics even in stationary phase. The deletion of *yhcB* leads to filamentation,
45 abnormal FtsZ ring formation, and aberrant septa development. The 2.8 Å crystal structure for
46 the cytosolic domain from *Haemophilus ducreyi* YhcB shows a unique tetrameric α -helical
47 coiled-coil structure that combines parallel and anti-parallel coiled-coil intersubunit interactions.
48 This structure is likely to organize interprotein oligomeric interactions on the inner surface of the
49 cytoplasmic membrane, possibly involved in regulation of cell division and/or envelope
50 biogenesis/integrity in proteobacteria. In summary, YhcB is a conserved and conditionally
51 essential protein that is predicted to play a role in cell division and consequently or in addition
52 affects envelope biogenesis.

53

54 **Importance**

55 Only 0.8 % of the protein annotations in the UniProt are based on experimental evidence and
56 thus, functional characterization of unknown proteins remains a rate-limiting step in molecular
57 biology. Herein, the functional properties of YhcB (DUF1043) were investigated using an
58 integrated approach combining X-ray crystallography with genetics and molecular biology.
59 YhcB is a conserved protein that appears to be needed for the transition from exponential to
60 stationary growth and is involved in cell division and/or envelope biogenesis/integrity. This
61 study will serve as a starting point for future studies on this protein family and on how cells
62 transit from exponential to stationary survival.

63

64

65

66

67

68

69

70

71

72

73

74 Introduction

75 The sequencing revolution has flooded databases with millions of uncharacterized protein
76 sequences. Only 0.8 % of the ~180 million protein sequences in UniProtKB/TrEMBL (1) are
77 experimentally annotated or are associated with transcript data (0.72%) (Uniprot, Feb 2, 2020).
78 Around 25.51% of sequence annotations have been inferred by homology and another 73.69% of
79 sequences have been annotated by prediction algorithms (1). The functions of most proteins in
80 Uniprot (or Pfam) are either computationally predicted or unknown. Therefore, functional
81 characterization of unknown proteins, remains a rate-limiting step in molecular biology (2–4).
82 Initially, *E. coli* YhcB was thought to be a subunit of cytochrome bd (oxidase) but was later
83 found to be dispensable for the assembly of cytochrome bd (5). Large-scale genomic and
84 proteomic studies indicated that *yhcB* may be involved in biofilm formation (6), cell envelope
85 integrity (7), cold sensitivity (8), and DNA damage-associated (cell survival, repair) processes
86 (9–11). Furthermore, a synthetic lethal phenotype was observed in combination with a cell shape
87 maintenance gene deletion, *rodZ* (12). The latter study suggested a role in cell division which
88 was recently confirmed by Sung et al. 2020 (13) who also found cell division defects in *yhcB*
89 deletion strains. However, the molecular mechanism of these phenotypes remained unknown.
90 Here, we investigate the structure and function of *E. coli* YhcB and its role in cell division by
91 screening for YhcB-mutant phenotypes and for interacting proteins. Most importantly, we
92 investigated the molecular basis for this function by determination of the x-ray crystal structure
93 of the cytoplasmic region of the YhcB ortholog from *Haemophilus ducreyi*.

94 Results

95 **YhcB is conserved in proteobacteria**

96 YhcB is conserved across most gamma-proteobacteria but absent in other bacterial genomes
97 (**Fig. 1**). The *yhcB* gene is located upstream of two periplasmic outer membrane stress sensor
98 proteases (*degQ* and *degS*) and downstream of a cell division gene *zapE* (*yhcM*), which is
99 encoded on the opposite strand (**Fig. S1**; for details, see legends of **Fig. S1**).

100 ***yhcB* deletion results in multiple phenotypes**

101 In order to understand the function and phenotypes of *yhcB*, we used a *yhcB* deletion strain to
102 carry out extensive phenotyping. The $\Delta yhcB$ strain grows with a mass doubling time of 25 min,
103 whereas the wild-type (WT) doubles every 22 min. Morphologically, cultures of *E. coli* $\Delta yhcB$
104 exhibited increased cell lengths but reduced diameters (**Fig. S2**). The $\Delta yhcB$ cells grow normal
105 under exponential conditions but do not fully activate the growth arrest regulation towards
106 stationary phase, which results in filaments. Stationary filamentous cells lacking *yhcB* exhibit no
107 change in DNA concentration compared to WT cells (**Fig. 2A**), but DNA segregation is often
108 disturbed. This is in contrast to exponential cells, where both DNA concentration and
109 segregation appear to be unchanged in $\Delta yhcB$ cells compared to the WT strain (**Fig. 2B**).
110 Additionally, $\Delta yhcB$ cells showed several other phenotypes, including temperature sensitivity
111 (**Fig. 3A-B**; **Fig. S3a-d**). Given that we found cell division defects (e.g. filamentation,) and
112 susceptibility of $\Delta yhcB$ strain to several PG-targeting antibiotics (**Fig. S4a**), (14) we tested the
113 effect of two cell-wall targeting antibiotics (A22 and Mecillinam) on $\Delta yhcB$ cells. Proteins of the
114 cell elongasome such as MreB and PBP2 are direct targets of the cell-wall antibiotics A22 and
115 Mecillinam, respectively, and our experiments confirmed that the $\Delta yhcB$ strain was
116 hypersensitive to both antibiotics (**Fig. 3C**).

117 We have not attempted to complement the aforementioned deletions by overexpression
118 constructs, but such experiments have been described by Sung et al. 2020, showing that all
119 phenotypes of their *yhcB* mutants were completely or significantly restored by YhcB expression
120 (see Discussion for details).

121 **Stationary phase cultures of $\Delta yhcB$ strain exhibit susceptibility to cell-wall targeting
122 antibiotics**

123 Most of the inhibitors/antibiotics that target cell-envelope biogenesis, especially β -lactams, need
124 actively growing cells to attain their maximum antibacterial activity. Given that a *yhcB* mutant
125 strain exhibits hypersensitivity to antibiotics that target the bacterial cell wall (**Fig. 3C**), we
126 tested $\Delta yhcB$ cells in early log phase, overnight and after 2 days in stationary phase. We counted
127 a lower number of survivor cells in $\Delta yhcB$ strain compared to WT strain upon A22 treatment
128 (**Fig. 4A**). No viable (persister) cell was observed after exposure of exponentially growing cells
129 to Mecillinam (**Fig. 4A**). Two-day-old WT cells were least sensitive to cell-wall targeting
130 antibiotics followed by overnight and exponential cells. However, we observed the opposite
131 trend for the $\Delta yhcB$ cells in terms of their sensitivity towards cell-wall acting antibiotics. All
132 mutant cells were found to be hypersensitive to the cell-wall antibiotics compared to overnight
133 cells (**Fig. 4B**). We also observed that WT cells adapted to antibiotic stress after 2 hours whereas
134 $\Delta yhcB$ cells did not recover from the antibiotic shock even after 6 hours (**Fig. 4B**). A22 and
135 Mecillinam inhibited growth of $\Delta yhcB$ mutants ~ 3-fold more than WT cells after 6 h (**Fig. 4B**).
136 The hypersensitivity of 2 days old stationary cells indicates either an active PG synthesis
137 machinery in stationary phase cells or defective cell envelope (**Fig. S4-b**). The latter was also
138 supported by the β -galactosidase assay that reports envelope leakiness (**Fig. S3-c**).

139 ***yhcB* gene deletion leads to abnormal FtsZ ring and septum formation**

140 The aforementioned $\Delta yhcB$ phenotypes indicate defective cell division in $\Delta yhcB$ mutant cells.
141 Therefore, in order to visualize the cell membrane and clearly discern septum formation we
142 stained the cells with SynaptoRedTMC2 / FM4-64. No septum formation was observed in the
143 majority of filamented cells (**Fig. 3B**). To determine if YhcB is necessary for successful
144 formation of the bacterial divisome, we monitored FtsZ-ring formation in $\Delta yhcB$ cells.
145 Immunolabelling with FtsZ-specific antibodies and secondary antibodies conjugated to a
146 fluorophore in $\Delta yhcB$ cells showed that the Z-ring was not assembled properly/stably (**Fig. 5A-C**)
147 despite sufficient concentration of FtsZ in $\Delta yhcB$ cells (**Fig. 5B**) and cells in all states
148 potentially failed to form a Z ring. Notably, the $\Delta yhcB$ cells have more than twice the amount of
149 FtsZ compared to the WT strain at the beginning of the stationary phase but that still did not
150 rescue the phenotype. Furthermore, the FtsZ-ring formation appeared abnormal in the $\Delta yhcB$
151 strain with mis-localization of FtsZ (**Fig. 5D-E, Table 1**).

152 **Peptidoglycan (PG)-labelling showed incomplete septa and absence of septal PG formation
153 in $\Delta yhcB$ filaments**

154 The $\Delta yhcB$ strain showed impaired FtsZ ring formation, defective cell division, and
155 hypersensitivity to antibiotics that target the cell wall (e.g. PG synthesis). Therefore, to locate
156 intracellular sites of YhcB activity, we sought to monitor peptidoglycan (PG) synthesis in $\Delta yhcB$
157 cells. PG-labeling in a $\Delta yhcB$ strain was probed using a non-toxic, fluorescent D-amino acid
158 analog of D-alanine (NADA), (15), which incorporates into the stem peptide of previously
159 synthesized PG in living bacteria (**Fig. 6A**). In addition, we used another modified, D-amino acid

160 dipeptide, EDA-DA (15–17) that incorporates specifically into the stem peptide of newly
161 synthesized PG in the bacterial cytoplasm (**Fig. 6B**). Utilizing both probes, we are able to
162 investigate whether the processes of PG synthesis and turnover were significantly affected in our
163 $\Delta yhcB$ strain, as well as observed defects in septum formation.

164 Not surprisingly, we observed far fewer labeled septa in the elongated forms of $\Delta yhcB$.
165 Similar to our previous observations, we also noticed a population of WT-like cells (in terms of
166 length and presence of labeled division septa). For the filamented forms, we observed what
167 appeared to be septal labeling using both NADA and EDA-DA probes, however, septum
168 formation often appeared either aberrant or incomplete (**Fig. 6B**). We did observe PG labeling
169 around the cell periphery in some elongated cells, indicating that new PG synthesis by the
170 elongasome appears to occur in these cells for some period of time. In conclusion, peptidoglycan
171 synthesis seemed to function apart from septum synthesis in filaments with diffuse Z-rings.

172 **YhcB genetically interacts with proteins of the cell division apparatus**

173 Given that *yhcB* is responsible for several phenotypes, we investigated the epistatic connections
174 of *yhcB* with other bacterial genes (i.e. if phenotypes of one mutation are modified by mutations
175 in other genes). For that purpose, we used data from our previous envelope integrity study of
176 *Escherichia coli* screened under both auxotrophic (rich medium) and prototrophic (minimal
177 medium) conditions. Strikingly, at a high stringent filtering of the genetic interaction score ($|E$ -
178 score ≥ 10 ; $P \leq 0.05$; **Table 2**; **Fig. 7A**), except *ftsE* and *rodZ*, we found 28 condition-dependent
179 synthetic lethal interactions for gene pairs involved in cell division, cell shape, and cell wall
180 biogenesis (or integrity), indicating that these genes are functionally related.

181 **YhcB co-purifies with cell division proteins**

182 Next, we searched for YhcB interacting partners by expressing the protein with a C-terminal
183 affinity from its native locus to maintain physiological protein level. YhcB was then affinity-
184 purified (AP) from detergent solubilized cell extracts and analyzed by mass spectrometry (MS).
185 In addition, we gathered proteins associated with YhcB in previous AP/MS and co-fractionation
186 studies (18), as well as from quantitative proteomics (19) without epitope tagging. By combining
187 these four sets of data, we were able to identify 49 high-confidence proteins that co-purified with
188 YhcB and are involved in cell division / shape / biogenesis or maintaining membrane barrier
189 function (**Table S1**).

190 **Binary protein-protein interactions of YhcB**

191 Based on the interactions we found for YhcB from the above proteomic screens, as well as their
192 relevance to *yhcB* phenotypes (e.g. RodZ), and results from other literature/database surveys, we
193 chose 35 candidate proteins to test for direct interaction with YhcB (**Table S1**) using a bacterial
194 two hybrid (B2H) system (20). We were able to verify a total of 10 interactions in *E. coli* (**Table**
195 **3**) that were detected in multiple assays and/or conserved across species. Six of those were
196 confirmed by the aforementioned MS-based proteomics dataset (**Table S1**), consistent with the
197 validation rate typically observed for *E. coli* proteins using B2H assays (18, 21).

198 In order to find biologically relevant and conserved interactions, we also tested the interactions
199 found among *E. coli* proteins with their homologs from *Yersinia pestis* and *Vibrio cholerae* (**Fig.**
200 **7B**, see also **Fig. 1**). We detected 13 and 5 interactions of YhcB in *Yersinia pestis* and *Vibrio*
201 *cholerae*, respectively (**Table 3**). Six *Yersinia* and two of the *Vibrio* interactions were also

202 detected in *E. coli* (**Table 3**). Interactions that were detected in at least two species were
203 considered to be conserved (and thus as more reliable) and we found 8 interactions in at least 2
204 species (**Table 3**). Only one interaction was detected in all three species, that of YhcB with
205 HemX (**Table 3**).

206 We also tested cross-species interactions, that is, YhcB of *E. coli*, *Y. pestis* and *V. cholerae* were
207 tested against test proteins of *E. coli*, *Y. pestis*, and *V. cholerae* for both intra- and inter-species
208 interactions (**Table S2**). For instance, 4 YhcB interactions were found between *E. coli* YhcB and
209 *V. cholerae* MurF, RodA, ZapE, and HemX, respectively, although YhcB shares only 45%
210 sequence identity with its orthologs in both species. In addition, 8 PPIs were found between *E.*
211 *coli* and *Y. pestis* which share 80% identity between their YhcB proteins (**Table 3**), and a few
212 more across various combinations of the three bacteria (**Table S2**).

213 Importantly, YhcB interacts physically with proteins that comprise the cell elongasome (e.g.
214 **RodZ**, **RodA**) and divisome (e.g. **FtsI**, **FtsQ**), complexes that are involved in cell-wall
215 biogenesis and septum formation. Consistent with this observation, in addition to a *rodZ* mutant,
216 we were able to confirm synthetic lethal or loss of fitness interactions between *yhcB* and genes
217 involved in cell division (e.g. *ftsI*, *ftsQ*), cell-wall biosynthesis (*mrdA*), and cell shape
218 maintenance (e.g. *mreB*) (**Fig. 7A-B**). These observations provide strong genetic and physical
219 evidence that YhcB is involved in cell division and / or cell-wall biogenesis.

220 **Crystal structure of the YhcB cytoplasmic domain**

221 In order to reveal the molecular basis of YhcB function, we determined its crystal structure.
222 Screening of several proteobacterial orthologs for their purification and crystallization behavior
223 led to us to focus on the structure determination of the cytoplasmic region of YhcB from the
224 gamma proteobacterium *Haemophilus ducreyi*, an opportunistic genital pathogen. We expressed
225 a truncated version of 132 amino acid protein in *E. coli* with a deletion of the predicted N-
226 terminal transmembrane α -helix (residues 2-30) (22). A hexahistidine affinity tag was added to
227 its native C-terminus for purification. We performed hydrodynamic analyses on the
228 crystallization stock of this purified protein construct using size exclusion chromatography with
229 multi-angle light scattering (SEC-MALS), which showed that it is primarily monomeric but
230 forms small amounts of stable tetramer (2.5%) and hexadecamer (0.9%) in solution (**Fig. S5**).

231 This cytosolic region produced crystals that diffracted to ~3 Å resolution, but they could not be
232 solved using anomalous diffraction from selenomethionine-labeled protein due to the absence of
233 any internal methionine residues in the native protein sequence. We therefore introduced I51M
234 and L72M mutations at two conserved hydrophobic sites that have methionine in some YhcB
235 orthologs, which enabled us to solve and refine the structure at 2.8 Å resolution using single-
236 wavelength anomalous diffraction from selenomethionine-labeled protein (**Table S3** and **Fig. 8**).
237 Validation of the crystal structure is described in the Methods section.

238 The crystal structure of the cytosolic region of *H. ducreyi* YhcB shows a coiled-coil tetramer
239 (**Fig. 8A**) in the asymmetric unit that is very likely to be a physiologically relevant assembly of
240 the protein based on several lines of evidence described below. All four subunits form a long,
241 continuous α -helix with an equivalent conformation (**Fig. 8B**) that starts at residues 34-37 and
242 ends at residues 87-91 in the different subunits. At the C-termini of these α -helices, the
243 polypeptide chains could be traced into weak electron density through residues 98-101, but there
244 is no interpretable electron density for the remaining 27 residues in any protomer. This entire

245 segment of the protein has a high probability of backbone disorder according to the program
246 DISOPRED3 (23), which predicts that over half of these disordered residues will participate in
247 interprotein interactions. There is substantial amount of diffuse electron density in the crystal
248 structure near the C-termini of the protomers that cannot be modeled in any specific
249 conformation but that presumably derives from this disordered protein segment. The inability to
250 model this density accounts for the relatively high R-factors of the refined structure ($R_{\text{work}} = 30.8$,
251 $R_{\text{free}} = 38.4$). However, the other measures of refinement quality are all good (**Table S3**), and the
252 close match between the refined backbone B-factors and the probability of backbone disorder
253 according to Disopred3 (**Fig. 8C**) further supports the high quality of the refinement.

254 The core of the YhcB homotetramer is an antiparallel coiled-coil 4-helix bundle formed by
255 residues 65-83 in each protomer (**Fig. 8A**). The interhelical packing pattern characteristic of
256 coiled-coil interactions is interrupted by the alanine at position 73, which is responsible for the
257 hole in the molecular surface visible in the view at the lower right in **Fig. 8A**, but the register of
258 the coiled-coil interactions between the helices is nonetheless continuous through this region.
259 This tetramer represents a dimer of V-shaped dimers that make parallel coiled-coil packing
260 interactions at their N-termini spanning residues 37-51 (i.e., the closed end of the V). The
261 subunits in this dimer splay apart starting at glutamine 54, which enables the open ends of the V-
262 shaped dimer to interact to form the antiparallel coiled-coil 4-helix bundle. The overall assembly
263 thus combines parallel and antiparallel coiled-coil packing interactions to form a tetramer with
264 222 symmetry (i.e., three orthogonal two-fold axes that intersect at the center of the assembly in
265 the hole in the antiparallel coiled-coil region formed by alanine 72). While mixed
266 parallel/antiparallel coiled-coil α -helical bundles have been observed before (e.g., in PDB id
267 4cq4 (24)), the program DALI (25) identifies the YhcB homotetramer as a novel protein
268 structure because it has a unique tertiary structure in the region linking the parallel and
269 antiparallel α -helical bundles.

270 The physiological relevance of this tetrameric assembly is supported by several lines of
271 evidence, including strong evolutionary couplings (26) or pairwise evolutionary sequence
272 correlations between the amino acids interacting in the central antiparallel coiled-coil bundle
273 (**Fig. 8D**). The reliability of this computational analysis is supported by detection of the expected
274 pattern of couplings between residues 3-4 apart in the long α -helix observed in the crystal
275 structure. The strongest cluster of interactions in this analysis is between residues in the packing
276 core of the antiparallel coiled-coil bundle, and couplings of this kind generally derive from direct
277 physical contacts in a protein structure (27). While *E. coli* YhcB was not found to self-associate
278 in our B2H screens nor in our co-purification experiments, Li *et al.* (2012) did find a self-
279 interaction in a B2H screen using a different construct geometry. Detection of productive B2H
280 interactions can depend on construct design due to the complexities of molecular geometry,
281 especially for homo-oligomers, so at least some of the B2H data support physiologically
282 significant self-interaction. Finally, the program PISA (28) also identifies the tetramer as a likely
283 physiological oligomer based on quantitative analysis of its intersubunit packing interactions.
284 Each subunit buries an average of $2,530 \text{ \AA}^2$ of solvent-accessible surface area in interfaces in the
285 tetramer (755 \AA^2 in the parallel coiled-coil interface and 790 \AA^2 and 988 \AA^2 in the antiparallel
286 coiled-coil interfaces), which is in the range characteristic of physiological oligomers.

287 While these observations all support the physiological significance of the tetramer observed in
288 the crystal structure of *H. ducreyi* YhcB, the observation of a primarily monomeric structure in
289 the crystallization stock suggests the affinity of the tetramer is such that it may reversibly

290 dissociate *in vivo* dependent on local concentration. The absence or presence of binding partners
291 that have higher affinity for the tetramer than the monomer could also modulate tetramer
292 formation *in vivo*. The failure to detect self-association in our co-purification experiments is also
293 consistent with relatively facile dissociation of the physiological tetramer.

294 Based on the location of its N-terminal transmembrane α -helices, the YhcB tetramer is
295 likely to sit like an ~120 Å long handle parallel to the inner surface of the cytoplasmic membrane
296 (lower left in **Fig. 8A**). The surface of this handle is characterized by a spiral pattern of strongly
297 negative electrostatic potential (right in **Fig. 8A**) that is likely to influence YhcB's interprotein
298 interactions as well as its interactions with the nearby negatively charged surface of the
299 cytoplasmic membrane. This structure could serve as a reversibly forming assembly point for
300 multiprotein complexes on the surface of the membrane dependent on the local concentration of
301 YhcB.

302 The interaction sites of YhcB are conserved

303 We used site-directed mutagenesis to map and identify the residues involved in PPIs of YhcB.
304 We divided the *E. coli* YhcB protein into 6 different regions based on the conserved residues
305 identified by multiple sequence alignment and ConsurfDB analysis (**Fig. 9A**). The resulting
306 variants cover different stretches of *yhcB* that we named v1 (N-terminal) to v6 (C-terminal). We
307 also included a mutant lacking a transmembrane region (v7 or only cytoplasmic/CY) in order to
308 investigate what role membrane localization (or the TM region) plays in the proper functioning
309 of YhcB (v7 had the N-terminal 21 amino acids deleted).

310 Only the conserved residues of these regions were mutated (**Fig. 9A; mutated residues**). Each
311 YhcB-variant had between four to eight amino acid substitutions and all residues were replaced
312 with either alanine or glycine. In total, we created 37 mutations and each *yhcB* variant was tested
313 against the positive interacting partners identified previously in B2H screens. The amino acids
314 substitutions of *yhcB* variants v1, v4, and v5 had the strongest effect on interactions and were
315 thus considered as potential PPI sites of YhcB (**Fig. 9B**). Amino acids H76, A78, S80, S81, L84,
316 P86, P94, and F95 of YhcB-v5 (shown as arrowheads in **Fig. 9A**) seems to form an interaction
317 site for multiple interacting proteins, especially FtsI, RodZ, YciS, and YidC (**Fig. 9B**). YhcB-v1
318 includes the conserved residues in the TM region only. These residues seem to be required for
319 interactions with YciS and RodZ. The rationale for substitution of TM residues was to test if the
320 region had any effect on PPIs or whether it was only required for interactions with the
321 membrane. Interestingly, the TM region is required for interactions with all proteins: when it is
322 deleted, all interactions are lost (v7 in **Fig. 9B**, but see Discussion). Notably, the substitutions in
323 *yhcB*-v3 appear to result in several stronger interactions (**Fig. 9B**). The locations of these
324 mutations are indicated in the monomer and tetrameric models we derived from the structure
325 (**Fig. 9C**).

326

327 Discussion

328 **Phenotypes and interactions.** In *E. coli*, *yhcB* is conditionally essential and required for survival
329 at high and low temperature, which is supported by previous large scale screens (29, 30). While
330 the mechanisms underlying the temperature-related phenotypes remain unclear, heterologous
331 expression of a *Caenorhabditis elegans* heat shock protein (CeHSP17) enabled *E. coli* cells to

332 grow at 50°C and was cross-linked and co-purified with YhcB (31), linking YhcB to the *E. coli*
333 heat shock response. Notably, we also observed an interaction between YhcB, YciS, and HemX
334 proteins. YciS is a heat shock-induced protein (32) which has been co-purified with YhcB and
335 HemX (33).

336 In *E. coli* and *Salmonella*, YhcB expression was reduced significantly upon overexpression of
337 SdsR, a small RNA transcribed by the general stress sigma factor σS (34, 35). It was proposed
338 that SdsR-mediated *yhcB* repression may be the primary cause for the SdsR-driven cell lysis
339 because of the perturbation of cell division. These authors have reported defective growth with
340 filamented cells upon *yhcB* deletion (13, 35) and support our results.

341 Sung et al. 2020 showed that *yhcB* deletions were restored by overexpressing YhcB protein,
342 even when the transmembrane segment was missing. Effective complementation excludes the
343 possibility that the phenotype was caused by polar effects of the deletion mutants or independent
344 mutations elsewhere in the genome. While the phenotypes found by Sung et al. 2020 are similar
345 to ours, most differences can likely be explained by somewhat different conditions and different
346 strains (*E. coli* K-12 BW25113 in the Keio deletions used by us, but MG1655 used by Sung et al.
347 2020).

348 **Envelope stress-related interactions.** YhcB physically interacts with outer membrane stress
349 sensor proteases (*degQ* and *degS*) (Table 3) and both YhcB and DegS were predicted to be
350 required for colonization of a host by *Vibrio* (36). Further, both DegQ and DegS proteases are
351 involved in protein quality control in the cell envelope (37), suggesting a role of *yhcB* in stress
352 related processes during cell-wall biogenesis or in cell envelope integrity. Also, in *E. coli*, the
353 *yhcB* gene is predicted to be a part of MazF regulon and its mRNA is processed by MazF, a
354 stress-induced endoribonuclease that is involved in post-transcriptional regulatory mechanism of
355 protein synthesis globally in different stress-conditions (38).

356 The hypersensitivity of $\Delta yhcB$ to cell-wall acting antibiotics (14), specifically to vancomycin,
357 could be because of impaired cell-wall biogenesis that leads to a permeable cell envelope (Fig.
358 S3-c) and is further supported by the involvement of *yhcB* as part of the secondary resistome
359 against colistin, an antibiotic targeting the outer membrane, in *Klebsiella pneumoniae* (39).

360 **Role in cell division and/or envelope biogenesis.** A functional cell envelope and peptidoglycan
361 biosynthesis is essential for cells to attach and form mature biofilms (40) and thus directly or
362 indirectly support *yhcB* cell-wall associated phenotypes. The hypersensitivity of $\Delta yhcB$ cells
363 towards cell-wall antibiotics in stationary phase potentially indicates an adaptive role during the
364 stationary phase of bacterial cells. This notion is further supported by increased gene expression
365 of YhcB during stationary phase growth in *Salmonella* (34) and in *E. coli* (41) and the inability
366 of $\Delta yhcB$ to reduce length growth during stationary phase.

367 The PG-labelling using NADA and ED-DA fluorescent probes that report on PG synthesis show
368 that lateral and septal PG synthesis is functioning globally as in wild type cells, apart from the
369 positions of diffuse Z-ring localization. This suggests that YhcB is likely not directly involved in
370 PG synthesis. However, a synthetic lethal and a physical interaction was observed between YhcB
371 and YciB (Fig. 7A-B), a protein previously shown to be involved in PG synthesis (42) and a
372 predicted intracellular septation protein (43). The deletion of *yhcB* does not only result in
373 filamentation but also diffuse localization of Z-rings in those filamented cells. These phenotypes,

374 together with the genetic and physical interactions of YhcB with FtsI, FtsQ, FtsZ, RodA, RodZ,
375 and MreB, strongly support its role in cell division.

376 In order to accommodate our own and other observations, we propose a model for YhcB's role in
377 cell division which is based on previous models (44) (**Fig. 10**). YhcB interacts with several
378 division proteins, including RodZ and RodA, suggesting that it is involved in the elongasome.
379 Mid-cell localization of RodZ was shown to be essential for Z-ring formation (45). RodA forms
380 a permanent complex with PBP2 (46) which was shown to be initially present at mid cell during
381 Z-ring formation (47). The combined interactions of YhcB suggests that the elongasome brings
382 YhcB to the assembly site of the divisome during preseptal PG synthesis. The divisome is a
383 highly dynamic complex, hence its isolation has been only partly successful (47) but YhcB was
384 detected as one of the protein of divisome complex isolated from cells in exponential and
385 stationary phase using mass spectrometry (47).

386 Consequently, many proteins have been reported that are supposed to help the FtsZ filaments to
387 interact with each other (48, 49). But how are the boundaries of the Z-ring constrained? On the
388 periplasmic side of the cytoplasmic membrane (CM), preseptal PG synthesis is thought to
389 provide the borders in between which the new septum should be synthesised (50, 51). We
390 suggest that YhcB helps to provide this function on the cytoplasmic side of the CM. While
391 associated with RodZ at elongasome positions YhcB may be dimeric or monomeric but these
392 interactions are dynamic and likely transient. When the elongasome is stalled at the nascent Z-
393 ring from both sides of the ring, YhcB could come sufficiently close to form a weakly interacting
394 tetramer parallel to the surface of the cytoplasm. This would provide a restricted width of the Z-
395 ring of about 120 Å, which correlates well with the average width of the Z-ring of ± 115 Å (52)
396 and suggests that YhcB helps to determine the width of the Z-ring. The surface of the coiled coil
397 of YhcB is sufficiently charged to interact with the membrane as well as with a number of cells
398 division proteins and may tether the assembly in the close proximity of the CM.

399 **Structural considerations.** The crystal structure of the *Haemophilus ducreyi* ortholog (**Fig. 8**)
400 shows that its interaction sites cluster near the antiparallel alpha-helical coiled-coil at the center
401 of the YhcB tetramer (**Fig. 9C**). Therefore, when the local concentration of YhcB is sufficient to
402 drive homo-tetramerization, the tetramer and its 222 symmetry will enable it to mediate specific
403 interactions tethered directly to the inner-surface of the cytoplasmic membrane. These
404 interactions could serve as a focal point for organization of geometrically-defined
405 supramolecular complexes controlling membrane morphology and dynamics during cell division.
406 At lower concentrations, the monomer of YhcB could alternatively sequester the interaction
407 interfaces of binding partners in a dissociated state in order to drive membrane morphology and
408 dynamics in a different direction. The data presented in this paper supports YhcB playing a role
409 in envelope biogenesis/integrity and cell division in Gamma proteobacteria. Biophysical studies
410 of the interacting complexes identified in this paper, including cryo-EM reconstructions of the
411 membrane-bound complexes, should provide deeper and more specific insight into the details of
412 the related molecular mechanisms.

413 Materials and Methods

414 Bacterial strains and reagents

415 All strains used are listed below in their context of use. Strains were grown in LB media at 37°C
416 unless otherwise mentioned. The Knock outs (KOs) were obtained from the *E. coli* Keio

417 collection (53). PCR was used to confirm the *E. coli* Keio KOs using gene specific primers. *E.*
418 *coli* TOP10 and DH5 α were used for cloning. For protein expression, *E. coli* BL21(pLys) cells
419 were used. *E. coli* was selected at 100 μ g/ml ampicillin and/or 35 μ g/ml chloramphenicol for
420 expression in liquid media. All the expression experiments were done at 30°C unless otherwise
421 mentioned. Antibiotics A22 and Mecillinam were purchased from Sigma-Aldrich (now Millipore
422 Sigma).

423 **Phylogenetic analysis and Comparative genomic analysis**

424 To determine potential for conservation of genes coding for our proteins of interest across
425 bacterial species, we used the following methods. Starting with each gene's UniProtKB identifier
426 for *E. coli* K12, we identified membership of each in an orthologous group (OG) as defined by
427 EggNOG v5.0 (54). Gene names, UniProtKB IDs, and corresponding EggNOG OGs are as
428 follows: *ftsI* (P0AD68, COG0768), *ftsQ* (P06136, COG1589), *ftsZ* (P0A9A6, COG0206), *rodA*
429 (P0ABG7, COG0772), *rodZ* (P27434, COG1426), *yciS* (P0ACV4, COG3771), *yhcB* (P0ADW3,
430 COG3105), *yidC* (P25714, COG0706). In each case, the OG based on the broadest taxonomic
431 definition was used (i.e., a COG). We then assembled a tree of 197 bacterial species and strains
432 based on their NCBI taxonomy (55) and, for each, determined presence of at least one gene with
433 membership in each of the above OGs as per EggNOG. Presence of these OG members was
434 mapped and visualized with the iTOL tool v4 (56).

435 Genomic co-localization analysis was performed using the SEED annotation environment across
436 representative members of sequenced bacterial species (57).

437 **Gateway cloning**

438 Gateway cloning was performed according to instructions provided by the manufacturer
439 (Invitrogen). The ORFs as entry clones for test proteins were obtained from the *E. coli* ORFeome
440 clones assembled into the pDONR221 vector system (58). Then, the attL-flanked ORFs were
441 cloned into the Gateway-compatible, attR-flanked bacterial two-hybrid (BACTH)-DEST
442 plasmids (pST25-DEST, pUT18C-DEST, and pUTM18-DEST) using the LR reaction to
443 generate attB-flanked ORFs in expression vectors. The plasmid preparations were done using
444 Nucleospin column kits (Macherey Nagel). For the details of the B2H vectors and protocol,
445 please refer to (59, 60).

446 **Bacterial Two Hybrid screening**

447 Bacterial two hybrid screens were carried out as described in Mehla *et al.*, 2017a. Briefly, the
448 expression constructs of test proteins encoding the T25-X and T18-Y fusions were co-
449 transformed into an adenylate cyclase (cya) deficient *E. coli* strain (BTH101). The competent
450 cells were prepared using standard protocols (61). The co-transformants were selected on LB
451 plates containing 100 μ g/ml ampicillin and 100 μ g/ml spectinomycin at 30°C after 48 hours. The
452 selected co-transformants were screened on indicator plates at 30°C for 36-48 hours. The
453 positive interactions were detected by specific phenotypes on indicator plates, i.e., blue colonies
454 on LB-X-Gal-IPTG or red on MacConkey-Maltose medium. For quantification of PPIs (where
455 required), the β -galactosidase assay was used (62). The details of test proteins are shown in
456 **Table S4**.

457 **Affinity purification combined with mass spectrometry and genetic crosses**

458 YhcB fused to SPA-tag, chromosomally at the C-terminus, was confirmed by immunoblotting
459 using anti-FLAG antibody, and then purified in the presence and absence of various mild non-
460 ionic detergents, essentially as described (18). The stably-associated proteins were detected by
461 MS using the SEQUEST/ STATQUEST algorithm, following established procedures (18, 33).
462 Genetic crosses were conducted as previously described (33) by conjugating Hfr Cavalli (Hfr C)
463 *yhCB::Cm^R* donor gene deletion mutant marked with chloramphenicol against the select set of F-
464 ‘recipient’ non-essential single gene deletion or essential hypomorphic mutants marked with
465 kanamycin resistance, including functionally unrelated gene *JW5028* (63) from the Keio single
466 gene deletion mutant library, to generate digenic mutants after both antibiotic selection.

467 **Mapping Protein-protein interaction site (s): Mutagenesis of *yhcB***

468 To map interaction site(s), mutants of YhcB were constructed. YhcB was divided into 6 different
469 regions and in each region 3-4 site-specific substitutions were inserted. Also, a cytoplasmic
470 version without the TM region of YhcB was constructed. Only conserved residues of YhcB were
471 mutated (as shown in **Fig. 9A**). Mutant DNA sequences encoding specific mutants were
472 synthesized as full gene sequences by Geneart (ThermoFisher pvt Ltd). These sequences were
473 further cloned into pDNOR/Zeo using the BP Clonase reaction of Gateway cloning (Invitrogen).
474 The transformants with correct sequences were confirmed by sequencing at least 2 different
475 clones. The ORFs were further sub-cloned into bacterial two hybrid vector pUT18C followed by
476 co-transformation and screening for interactions against prey proteins as discussed above
477 (**Section B2H**).

478 **Growth Inhibition/sensitivity against drugs**

479 The growth of both WT and $\Delta yhcB$ strains was monitored in different media and in different
480 conditions, such as different carbon sources, antibiotics as well as rich and selective media, each
481 in 96-well microplates at 37 °C. The bacterial growth was measured as the optical density (OD)
482 at 562 nm using a plate reader. The % inhibition (or survival) was calculated as previously
483 described (64).

484 **Antibiotic susceptibility testing (Serial dilution assay)**

485 An overnight culture of *E. coli* strains (both WT and $\Delta yhcB$) was tested for susceptibility
486 towards cell-wall antibiotics using serial dilutions. 10^7 cells/ml were serially diluted, and 5 μ l of
487 each dilution was spotted on LB with or without added antibiotic or other compounds (e.g 1%
488 carbon sources). For MacConkey plates, 3 μ l of each dilution was used. The plates were then
489 imaged after 24 hours or at other specific time points (see text for details). A22 (1 μ g/ml) or
490 Mecillinam (0.12-0.25 μ g/ml) was used in dilution assays on hard agar media. These
491 concentrations were chosen based on effective ranges tested by Nichols et al. 2011 (0.5, 2, 5, and
492 15 μ g/ml for A22, resulting in [log] reductions of growth by -1.015628, -4.344713, -3.311473, -
493 3.978085), and Mecillinam (0.03, 0.06, 0.09, and 0.12 μ g/ml, resulting in [log] reductions of -
494 0.339263, -4.244134, -8.923793, -6.08356, respectively).

495 **Persister/survivor cell assay**

496 Persister/survivor cell assays were done as reported previously (65) . Persistence was determined
497 by determining the number of colony-forming units (CFUs) upon exposure to A22 (1 μ g/ml) and
498 Mecillinam (0.12 μ g/ml). We determined the number of persister/survivor cells in the $\Delta yhcB$
499 strain upon exposure to cell-wall antibiotics for 6 hours. The overnight culture was sub-cultured

500 at 37°C for 2 hours and the cells in early log phase were treated with antibiotics. The overnight
501 cells were used as stationary phase cells. For determination of CFUs, 2 μ l of culture (10^7
502 cells/ml) was resuspended in fresh medium, serially diluted, and plated on solid LB medium. The
503 number of survivor cells were determined as colony forming units (CFUs) upon antibiotic
504 treatment. The CFUs were expressed as % survival of treated vs untreated cells.

505 **FtsZ localization**

506 The FtsZ ring formation and localization was monitored using both immunolabelling and GFP
507 fusion of FtsZ. The $\Delta yhcB$ and its parental strain BW25113 (WT) were grown in LB at 37 °C for
508 24 h (ON), then dilute 1:1000 and grown to an OD₆₅₀ nm of 0.3 (EXP) or to an OD₆₅₀ nm of 1.2
509 (STAT), fixed for 15 min by addition of a mixture of formaldehyde (f. c. 2.8%) and
510 glutaraldehyde (f. c. 0.04%) to the cultures in the shaking water bath and immunolabeled as
511 described previously (66) with Rabbit polyclonal antibodies against FtsZ (67). As secondary
512 antibody, donkey anti-rabbit conjugated to Cy3 or to Alexa488 (Jackson Immunochemistry,
513 USA) diluted 1:300 in blocking buffer (0.5% (wt/vol) blocking reagents (Boehringer, Mannheim,
514 Germany) in PBS) was used, and the samples were incubated for 30 minutes at 37°C. For
515 immunolocalization, cells were immobilized on 1% agarose in water slabs coated object glasses
516 as described (67) and photographed with an Orca Flash 4.0 (Hamamatsu, Japan) CCD camera
517 mounted on an Olympus BX-60 (Japan) fluorescence microscope through a 100x/N.A. 1.35 oil
518 objective. Images were taken using the program ImageJ with MicroManager
519 (<https://www.micro-manager.org>). Phase contrast and fluorescence images were combined into
520 hyperstacks using ImageJ (<http://imagej.nih.gov/ij/>) and these were linked to the project file of
521 Coli-Inspector running in combination with the plugin ObjectJ
522 (<https://sils.fnwi.uva.nl/bcb/objectj/>). The images were scaled to 15.28 pixel per μ m. The
523 fluorescence background has been subtracted using the modal values from the fluorescence
524 images before analysis. Slight misalignment of fluorescence with respect to the cell contours as
525 found in phase contrast was corrected using Fast-Fourier techniques as described (67). Length,
526 diameter and fluorescence concentration were measured using Coli-Inspector running in
527 combination with the plugin ObjectJ (<https://sils.fnwi.uva.nl/bcb/objectj/>) as described (67).

528 For GFP tagged FtsZ localization, the cells were grown at 37°C in LB media to exponential
529 phase. Imaging was done on M16 glucose plus casamino acids pads with 1% agarose at room
530 temperature. Phase contrast images were collected on a Nikon Eclipse Ni-E epifluorescent
531 microscope equipped with a 100X/1.45 NA objective (Nikon), Zyla 4.2 plus camera, NIS
532 Elements software (Nikon). A functional FtsZ fusion was made by inserting msfGFP at an
533 internal site of FtsZ and replacing the native copy of FtsZ with the fusion protein.

534 **Peptidoglycan (PG)- labelling and localization**

535 The PG labelling studies were conducted as previously reported (15, 16). Briefly, overnight
536 cultures were started from single colonies grown from -80°C freezer stocks (plated overnight).
537 Experimental cultures were then started in 5 ml of LB. Double the amount of the wild type strain
538 was used to inoculate cultures for the $yhcB$ mutant (50 μ l vs 100 μ l in 5 ml) in order to attain
539 ODs as close as possible after two and a half hours of growth (OD₆₀₀ values of 0.8 and 0.7,
540 respectively). This was done to minimize the time required to back-dilute and achieve exactly
541 equivalent OD readings, which likely would have had an effect on the rate of PG synthesis / and
542 turnover.

543 We took logarithmic growing cultures (WT in LB and $\Delta yhcB$ in LB + 1% glucose) and
544 conducted a short pulse with our 1st gen probes (NADA) 2nd gen probes (EDA-DA) for 45
545 seconds. Glucose supplementation was utilized in the $\Delta yhcB$ culture in order to ensure each
546 strain achieved comparable growth kinetics. After the short pulse, bacteria cultures were fixed
547 immediately in 70% (final concentration) ice-cold ethanol for 20 minutes. NADA-labeled cells
548 were washed three times in PBS, mounted on 1% agar pads, and imaged via a Zeiss 710 confocal
549 laser scanning microscope. EDA-DA-labeled cells were subsequently bound to azide-conjugated
550 Alexa Fluor 488 via a click chemistry reaction using a Click-iT Cell Reaction Buffer Kit
551 (Invitrogen), as previously described (16). Cells were then washed three times in PBS +3%
552 BSA, once in PBS, mounted on 1% agar pads, and imaged via Zeiss Elyra PS1 super resolution
553 microscope in structured illumination (SIM) mode. Images are representative of 20 fields of view
554 observed per condition / strain examined.

555 **Light microscopy and image analysis**

556 The cells were stained and imaged to visualize cell membrane and nucleoid using FM4-64
557 SynaptoRed™ C2 (FM4-64 (4-[6-[4-(Diethylamino) phenyl]-1,3,5-hexatrien-1-yl]-1-[3-
558 (triethylammonio) propyl] pyridinium dibromide, Biotium Inc.) and DAPI, respectively. The
559 cells were imaged on an Olympus BX41 microscope at 100x in a dark room. Images were
560 captured with a microscope digital camera (AmScope MU1400). ImageJ software was used for
561 measuring cells dimensions/length (68).

562 **Protein expression, purification, and light-scattering analysis**

563 Residues 31-128 from the YhcB ortholog in *H. ducreyi* (HD1495, UniProt id Q7VLF5,
564 Northeast Structural Genomics Consortium target HdR25) were cloned into a pET21-derived T7
565 expression vector between an N-terminal initiator methionine residue and a C-terminal affinity
566 tag with sequence LEHHHHHH, and this vector was deposited at the ASU Biodesign Institute
567 (<http://dnasu.org/DNASU/GetCloneDetail.do?cloneid=338479>). Cloning, purification, and
568 quality-control analysis methods were described previously (69). In brief, after growing cells to
569 logarithmic phase at 37 °C in chemically defined MJ9 medium with 0.4% (w/v) glucose, protein
570 expression was induced overnight at 18 °C with 1 mM IPTG. Soluble protein was purified by Ni-
571 NTA chromatography followed by Superdex 75 gel-filtration in 100 mM NaCl, 5 mM DTT, 20
572 mM Tris•HCl, pH 7.5. Pooled fractions were ultrafiltered in an Amicon device prior to flash-
573 freezing in liquid N₂ in single-use aliquots at crystallization concentration. Protein quality was
574 characterized using SDS-PAGE, MALDI-TOF mass spectrometry (12,574.8 daltons observed vs.
575 12,549.6 predicted for selenomethionine-labeled wild-type protein), and size-exclusion-
576 chromatography/multiangle-light-scattering (SEC-MALS) in the gel filtration buffer using a
577 Shodex KW802.5 column (Showa Denko, New York, NY) with a Wyatt Technology (Santa
578 Barbara, CA) detector system (**Fig. S5**).

579 **Protein crystallization, x-ray structure determination, and refinement**

580 Crystallization screening and optimization were performed using the microbatch method under
581 paraffin oil (70, 71). The structure was solved using single-wavelength anomalous diffraction
582 phasing (72) of a selenomethionine-labeled construct harboring I51M and L72M mutations, which
583 crystallized similarly to the wild-type construct. These mutations were introduced to increase
584 selenomethionine phasing power compared to the WT construct, which only has a single N-
585 terminal methionine that is disordered in the crystal structure. The mutations were introduced at

586 uniformly hydrophobic positions that show methionine in some orthologs in an YhcB sequence
587 alignment, based on the premise that such positions are likely to be at least partially buried and
588 therefore well-ordered and provide good phasing power. Diffraction data were collected at 100
589 °K on beamline 19-ID at the Advanced Photon Source using x-rays at the Se K-edge ($\lambda = 0.979$
590 Å) and processed using HKL2000 (73). The structure was solved and refined at 2.8 Å resolution
591 using PHENIX (74), built using interactive cycles in Coot (75), validated using PROCHECK
592 (76), and deposited in the RCSB Protein Data Bank under accession code 6UN9. Data collection
593 and refinement statistics are shown in **Table S3**.

594 The relatively high free R-factor for a structure at this resolution (38.4%) is attributable to the
595 low mean intensity of the diffraction dataset ($\langle I/\sigma_I \rangle = 4.1$) combined with the high degree of
596 disorder in the crystallized construct (**Table S3**). Over 30% of residues are disordered and could
597 not be modeled at all, while greater than 10% of the residues are only partially ordered,
598 preventing accurate modeling with a single coordinate model with individual atomic B-factors.
599 The disordered residues and the refined B-factors of the modeled residues (**Fig. 3C**) both
600 correlate very closely with the probability of backbone disorder calculated by the program
601 DISOPRED3 (23), which uses exclusively primary sequence data and is therefore completely
602 independent of the crystal structure. Furthermore, the accuracy of the structure solution and
603 refined coordinate model are supported by four additional factors, all of which are independent
604 of one another and the backbone disorder prediction. First, the interprotomer contacts in the
605 structure correlate strongly with pairwise evolutionary couplings in the YchB protein family
606 (**Fig. 3D**) as calculated by the program GREMLIN (80), which also uses exclusively primary
607 sequence data and is completely independent the crystal structure. Second, an anomalous
608 difference Fourier map calculated with the refined phases shows strong peaks at the positions of
609 the selenium atoms in the engineered selenomethionine residues in the protein construct and no
610 significant peaks anywhere else in the unit cell (**Fig. S6A**). Third, the $2f_0-f_c$ electron density map
611 calculated from the refined coordinate model shows excellent agreement with the model
612 consistent with the 2.8 Å overall resolution of the crystal structure (**Fig. S6B**). Finally, the
613 crystallographically related tetramers fill the unit cell and make appropriate packing interactions
614 to stabilize the modeled structure in the lattice, which has a 65% solvent content (**Fig. S6**).

615 Protein structure analysis

616 Coiled-coil sequence propensity was analyzed using the program Coils (77), which indicates
617 high probability of coiled-coil formation for residues 44-64, 37-75, and 30-82 for windows of 14,
618 21, and 28 residues, respectively. Coiled-coil packing interactions in the crystal structure were
619 analyzed using Socket (78) and Twister (79). Buried solvent-accessible surface area was
620 calculated using PISA (28). Backbone disorder probability was calculated using DISOPRED3
621 (23), and evolutionary couplings were calculated using Gremlin (80). Molecular graphics images
622 were generated using PyMOL (<https://pymol.org/2/>), which was also used to calculate *in vacuo*
623 surface electrostatics.

624

625 Acknowledgements

626 We are thankful to Dr. Scot Ouellette (University of Nebraska) and Dr. Catherine Paradis-Bleau
627 (Université de Montréal, Montreal, Quebec) for providing us the bacterial two-hybrid vectors
628 and the pCB112 plasmid for β-galactosidase assays. Dr. Michael VanNieuwenhze (Indiana

629 University) provided peptidoglycan labeling reagents (NADA and EDA-DA). This work was
630 supported by the Natural Sciences and Engineering Research Council of Canada, Grant DG-
631 20234 to M. B., National Institutes of Health grants 5U54GM094597 to G.T.M., and GM109895
632 to P.U. and a faculty start up award to G.L. The views expressed here are those of the authors
633 and should not be construed as official or representing the views of the Department of Defense or
634 the Uniformed Services University.

635 **Author contributions.** JM carried out the B2H interactions, site-directed mutagenesis, and
636 phenotypic, studies. GL and MB conducted the PG labelling and labelling study and wrote the
637 corresponding section of the manuscript, RM and TdB did the FtsZ localization studies, JHC and
638 JM did the phylogenetic analysis, AH, AG, SYK, SP and MB analyzed genetic and MS
639 interactions data, NS helped with B2H screens, SV, RX, GTM, and JFH designed and purified
640 YhcB protein constructs and solved the x-ray crystal structure, JM, JHC, JFH, and PU wrote the
641 manuscript; GL, RM, MB and TdB edited the manuscript. PU analyzed data, secured funding,
642 and wrote part of the manuscript.

643 **Conflict of interest statement**

644 GTM is the founder of Nexomics Biosciences Inc.

645

646 **References:**

- 647 1. The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. *Nucleic
648 Acids Res* D506-515.
- 649 2. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H.
650 2014. The highly conserved domain of unknown function 1792 has a distinct
651 glycosyltransferase fold. *Nat Commun* 5:4339.
- 652 3. Bastard K, Smith AAT, Vergne-Vaxelaire C, Perret A, Zaparucha A, De Melo-Minardi R,
653 Mariage A, Boutard M, Debard A, Lechaplain C, Pelle C, Pellouin V, Perchat N, Petit J-L,
654 Kreimeyer A, Medigue C, Weissenbach J, Artiguenave F, De Berardinis V, Vallenet D,
655 Salanoubat M. 2014. Revealing the hidden functional diversity of an enzyme family. *Nat
656 Chem Biol* 10:42–9.
- 657 4. Prakash A, Yogeeshwari S, Sircar S, Agrawal S. 2011. Protein domain of unknown
658 function 3233 is a translocation domain of autotransporter secretory mechanism in gamma
659 proteobacteria. *PLoS One* 6:e25570.
- 660 5. Mogi T, Mizuochi-Asai E, Endou S, Akimoto S, Nakamura H. 2006. Role of a putative
661 third subunit YhcB on the assembly and function of cytochrome bd-type ubiquinol
662 oxidase from *Escherichia coli*. *Biochim Biophys Acta* 1757:860–4.
- 663 6. Niba ETE, Naka Y, Nagase M, Mori H, Kitakawa M. 2007. A genome-wide approach to
664 identify the genes involved in biofilm formation in *E. coli*. *DNA Res* 14:237–46.
- 665 7. Paradis-Bleau C, Kritikos G, Orlova K, Typas A, Bernhardt TG. 2014. A Genome-Wide
666 Screen for Bacterial Envelope Biogenesis Mutants Identifies a Novel Factor Involved in
667 Cell Wall Precursor Metabolism. *PLoS Genet* 10:e1004056.

668 8. Stokes JM, Davis JH, Mangat CS, Williamson JR, Brown ED. 2014. Discovery of a small
669 molecule that inhibits bacterial ribosome biogenesis. *Elife* 3:e03574.

670 9. O'Reilly EK, Kreuzer KN. 2004. Isolation of SOS Constitutive Mutants of *Escherichia*
671 *coli*. *J Bacteriol* 186:7149–7160.

672 10. Sargentini NJ, Gultarte NP, Hudman DA. 2016. Screen for genes involved in radiation
673 survival of *Escherichia coli* and construction of a reference database. *Mutat Res* 793–
674 794:1–14.

675 11. Becket E, Chen F, Tamae C, Miller JH. 2010. Determination of hypersensitivity to
676 genotoxic agents among *Escherichia coli* single gene knockout mutants. *DNA Repair*
677 (Amst) 9:949–57.

678 12. Li G, Hamamoto K, Kitakawa M. 2012. Inner Membrane Protein YhcB Interacts with
679 RodZ Involved in Cell Shape Maintenance in *Escherichia coli*. *ISRN Mol Biol*
680 2012:304021.

681 13. Sung CG, Choi U, Lee CR. 2020. Phenotypic characterization of a conserved inner
682 membrane protein YhcB in *Escherichia coli*. *J Microbiol* 58:598–605.

683 14. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee
684 KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA. 2011.
685 Phenotypic landscape of a bacterial cell. *Cell* 144:143–156.

686 15. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun Y V,
687 VanNieuwenhze MS. 2012. In Situ probing of newly synthesized peptidoglycan in live
688 bacteria with fluorescent D-amino acids. *Angew Chem Int Ed Engl* 51:12519–23.

689 16. Liechti GW, Kuru E, Hall E, Kalinda A, Brun Y V., Vannieuwenhze M, Maurelli AT.
690 2014. A new metabolic cell-wall labelling method reveals peptidoglycan in *Chlamydia*
691 *trachomatis*. *Nature* 506:507–510.

692 17. Kuru E, Radkov A, Meng X, Egan A, Alvarez L, Dowson A, Booher G, Breukink E,
693 Roper DI, Cava F, Vollmer W, Brun Y, Vannieuwenhze MS. 2019. Mechanisms of
694 Incorporation for D -Amino Acid Probes That Target Peptidoglycan Biosynthesis. *ACS*
695 *Chem Biol* 14:2745–2756.

696 18. Babu M, Bundalovic-Torma C, Calmettes C, Phanse S, Zhang Q, Jiang Y, Minic Z, Kim
697 S, Mehla J, Gagarinova A, Rodionova I, Kumar A, Guo H, Kagan O, Pogoutse O, Aoki H,
698 Deineko V, Caufield JH, Holtzapple E, Zhang Z, Vastermark A, Pandya Y, Lai CC-L, El
699 Bakkouri M, Hooda Y, Shah M, Burnside D, Hooshyar M, Vlasblom J, Rajagopala S V,
700 Golshani A, Wuchty S, F Greenblatt J, Saier M, Uetz P, F Moraes T, Parkinson J, Emili
701 A. 2018. Global landscape of cell envelope protein complexes in *Escherichia coli*. *Nat*
702 *Biotechnol* 36:103–112.

703 19. Carlson ML, Stacey RG, Young JW, Wason IS, Zhao Z, Rattray DG, Scott N, Kerr CH,
704 Babu M, Foster LJ, Van Hoa FD. 2019. Profiling the *Escherichia coli* membrane protein
705 interactome captured in peptidisc libraries. *Elife* 8:e46615.

706 20. Battesti A, Bouveret E. 2012. The bacterial two-hybrid system based on adenylate cyclase
707 reconstitution in *Escherichia coli*. *Methods* 58:325–334.

708 21. Rajagopala S V., Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J,
709 Pakala SB, Phanse S, Ceol A, Häuser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P,
710 Pieper R, Uetz P. 2014. The binary protein-protein interaction landscape of escherichia
711 coli. *Nat Biotechnol* 32:285–290.

712 22. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane
713 protein topology with a hidden Markov model: Application to complete genomes. *J Mol
714 Biol* 305:567–580.

715 23. Jones DT, Cozzetto D. 2015. DISOPRED3: precise disordered region predictions with
716 annotated protein-binding activity. *Bioinformatics* 31:857–863.

717 24. Hartmann MD, Dunin-Horkawicz S, Hulko M, Martin J, Coles M, Lupas AN. 2014. A
718 soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-
719 coil periodicity. *J Struct Biol* 186:357–366.

720 25. Holm L, Sander C. 1993. Protein structure comparison by alignment of distance matrices.
721 *J Mol Biol* 233:123–138.

722 26. Kamisetty H, Ovchinnikov S, Baker D. 2013. Assessing the utility of coevolution-based
723 residue-residue contact predictions in a sequence- and structure-rich era. *Proc Natl Acad
724 Sci U S A* 110:15674–15679.

725 27. Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, Sander C, Bonvin
726 AMJJ, Marks DS. 2014. Sequence co-evolution gives 3D contacts and structures of
727 protein complexes. *Elife* 3:e03430.

728 28. Krissinel E, Henrick K. 2007. Inference of Macromolecular Assemblies from Crystalline
729 State. *J Mol Biol* 372:774–797.

730 29. Babu M, Díaz-Mejía JJ, Vlasblom J, Gagarinova A, Phanse S, Graham C, Yousif F, Ding
731 H, Xiong X, Nazarians-Armavil A, Alamgir M, Ali M, Pogoutse O, Pe'er A, Arnold R,
732 Michaut M, Parkinson J, Golshani A, Whitfield C, Wodak SJ, Moreno-Hagelsieb G,
733 Greenblatt JF, Emili A. 2011. Genetic interaction maps in Escherichia coli reveal
734 functional crosstalk among cell envelope biogenesis pathways. *PLoS Genet* 7:e1002377.

735 30. Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T,
736 Oshima T, Ogasawara N, Yamada M. 2011. Molecular strategy for survival at a critical
737 high temperature in Escherichia coli. *PLoS One* 6:e20063.

738 31. Ezemaduka AN, Yu J, Shi X, Zhang K, Yin C-C, Fu X, Chang Z. 2014. A small heat
739 shock protein enables Escherichia coli to grow at a lethal temperature of 50°C conceivably
740 by maintaining cell envelope integrity. *J Bacteriol* 196:2004–11.

741 32. Klein G, Kobylak N, Lindner B, Stupak A, Raina S. 2014. Assembly of
742 lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. *J
743 Biol Chem* 289:14829–53.

744 33. Hu P, Janga SC, Babu M, Díaz-Mejía JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse
745 S, Wong P, Chandran S, Christopoulos C, Nazarians-Armavil A, Nasseri NK, Musso G,
746 Ali M, Nazemof N, Eroukova V, Golshani A, Paccanaro A, Greenblatt JF, Moreno-
747 Hagelsieb G, Emili A. 2009. Global functional atlas of Escherichia coli encompassing

748 previously uncharacterized proteins. *PLoS Biol* 7:0929–0947.

749 34. Fröhlich KS, Haneke K, Papenfort K, Vogel J. 2016. The target spectrum of SdsR small
750 RNA in *Salmonella*. *Nucleic Acids Res* 44:10406–10422.

751 35. Choi JS, Kim W, Suk S, Park H, Bak G, Yoon J, Lee Y. 2018. The small RNA, SdsR, acts
752 as a novel type of toxin in *Escherichia coli*. *RNA Biol* 15:1319–1335.

753 36. Brooks JF, Gyllborg MC, Cronin DC, Quillin SJ, Mallama CA, Foxall R, Whistler C,
754 Goodman AL, Mandel MJ. 2014. Global discovery of colonization determinants in the
755 squid symbiont *Vibrio fischeri*. *Proc Natl Acad Sci U S A* 111:17284–9.

756 37. Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. 2011. Protein Quality
757 Control in the Bacterial Periplasm. *Annu Rev Microbiol* 65:149–168.

758 38. Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. 2016. The MazF-
759 regulon: a toolbox for the post-transcriptional stress response in *Escherichia coli*. *Nucleic
760 Acids Res* 44:6660–6675.

761 39. Poirel L, Jayol A, Nordmanna P. 2017. Polymyxins: Antibacterial activity, susceptibility
762 testing, and resistance mechanisms encoded by plasmids or chromosomes. *Clin Microbiol
763 Rev* 30:557–596.

764 40. Loo CY, Corliss DA, Ganeshkumar N. 2000. *Streptococcus gordonii* Biofilm Formation:
765 Identification of Genes that Code for Biofilm Phenotypes. *J Bacteriol* 182:1374–1382.

766 41. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K,
767 Bauer M, Aebersold R, Heinemann M. 2016. The quantitative and condition-dependent
768 *Escherichia coli* proteome. *Nat Biotechnol* 34:104–110.

769 42. Stocks CJ, Phan MD, Achard MES, Nhu NTK, Condon ND, Gawthorne JA, Lo AW,
770 Peters KM, McEwan AG, Kapetanovic R, Schembri MA, Sweet MJ. 2019. Uropathogenic
771 *Escherichia coli* employs both evasion and resistance to subvert innate immune-mediated
772 zinc toxicity for dissemination. *Proc Natl Acad Sci U S A* 116:6341–6350.

773 43. Baars L, Wagner S, Wickstrom D, Klepsch M, Ytterberg AJ, van Wijk KJ, de Gier J-W.
774 2008. Effects of SecE Depletion on the Inner and Outer Membrane Proteomes of
775 *Escherichia coli*. *J Bacteriol* 190:3505–3525.

776 44. Hugonnet JE, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E, Veckerlé
777 C, Yves VB, van Nieuwenhze M, Bouchier C, Tu K, Rice LB, Arthur M. 2016. Factors
778 essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β -lactam
779 resistance in *Escherichia coli*. *Elife* 5:e19469.

780 45. Yoshii Y, Niki H, Shiomi D. 2019. Division-site localization of RodZ is required for
781 efficient Z ring formation in *Escherichia coli*. *Mol Microbiol* 111:1229–1244.

782 46. van der Ploeg R, Goudelis ST, den Blaauwen T. 2015. Validation of FRET assay for the
783 screening of growth inhibitors of *escherichia coli* reveals elongosome assembly dynamics.
784 *Int J Mol Sci* 16:17637–17654.

785 47. Van der Ploeg R, Verheul J, Vischer NOE, Alexeeva S, Hoogendoorn E, Postma M,

786 Banzhaf M, Vollmer W, Den Blaauwen T. 2013. Colocalization and interaction between
787 elongasome and divisome during a preparative cell division phase in *Escherichia coli*. *Mol*
788 *Microbiol* 87:1074–1087.

789 48. Roseboom W, Nazir MG, Meiresonne NY, Mohammadi T, Verheul J, Buncherd H,
790 Bonvin AMJJ, de Koning LJ, de Koster CG, De Jong L, Den Blaauwen T. 2018. Mapping
791 the contact sites of the *Escherichia coli* division-initiating proteins FtsZ and ZapA by
792 BAMG cross-linking and site-directed mutagenesis. *Int J Mol Sci* 19:2928.

793 49. Hale CA, Shiomi D, Liu B, Bernhardt TG, Margolin W, Niki H, De Boer PAJ. 2011.
794 Identification of *Escherichia coli* ZapC (YcbW) as a component of the division apparatus
795 that binds and bundles FtsZ polymers. *J Bacteriol* 193:1393–1404.

796 50. Pazos M, Peters K, Casanova M, Palacios P, VanNieuwenhze M, Breukink E, Vicente M,
797 Vollmer W. 2018. Z-ring membrane anchors associate with cell wall synthases to initiate
798 bacterial cell division. *Nat Commun* 9:5090.

799 51. Potluri LP, Kannan S, Young KD. 2012. ZipA is required for FtsZ-dependent preseptal
800 peptidoglycan synthesis prior to invagination during cell division. *J Bacteriol* 194:5334–
801 5342.

802 52. Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J. 2015. A Multi-layered Protein
803 Network Stabilizes the *Escherichia coli* FtsZ-ring and Modulates Constriction Dynamics.
804 *PLoS Genet* 11:e1005128.

805 53. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M,
806 Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene
807 knockout mutants: the Keio collection. *Mol Syst Biol* 2:2006.0008.

808 54. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H,
809 Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a
810 hierarchical, functionally and phylogenetically annotated orthology resource based on
811 5090 organisms and 2502 viruses. *Nucleic Acids Res* 47:D309–D314.

812 55. Federhen S. 2012. The NCBI Taxonomy database. *Nucleic Acids Res* 40:D136–D143.

813 56. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
814 developments. *Nucleic Acids Res* 47:W256–W259.

815 57. Overbeek R, Begley T, Butler RM, Choudhuri J V., Chuang HY, Cohoon M, de Crécy-
816 Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM,
817 Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M,
818 Larsen N, Linke B, McHardy AC, Meyer F, Neuweiger H, Olsen G, Olson R, Osterman A,
819 Portnoy V, Pusch GD, Rodionov DA, Rül;ckert C, Steiner J, Stevens R, Thiele I, Vassieva
820 O, Ye Y, Zagnitko O, Vonstein V. 2005. The subsystems approach to genome annotation
821 and its use in the project to annotate 1000 genomes. *Nucleic Acids Res* 33:5691–5702.

822 58. Rajagopala S V, Yamamoto N, Zweifel AE, Nakamichi T, Huang H-K, Mendez-Rios JD,
823 Franca-Koh J, Boorgula MP, Fujita K, Suzuki K, Hu JC, Wanner BL, Mori H, Uetz P.
824 2010. The *Escherichia coli* K-12 ORFeome: a resource for comparative molecular
825 microbiology. *BMC Genomics* 11:470.

826 59. Ouellette SP, Gauliard E, Antosová Z, Ladant D. 2014. A Gateway®-compatible bacterial
827 adenylate cyclase-based two-hybrid system. *Environ Microbiol Rep* 6:259–267.

828 60. Mehla J, Caufield JH, Sakhawalkar N, Uetz P. 2017. A Comparison of Two-Hybrid
829 Approaches for Detecting Protein-Protein Interactions. *Methods Enzymol* 586:333–358.

830 61. Green M, Sambrook J. 2012. Molecular Cloning: A Laboratory Manual, 4th edition.

831 62. Jeffrey H Miller. 1993. A Short Course in Bacterial Genetics – A Laboratory Manual and
832 Handbook for *Escherichia coli* and Related Bacteria. *J Basic Microbiol* 33:278.

833 63. Gagarinova A, Babu M, Greenblatt J, Emili A. 2012. Mapping bacterial functional
834 networks and pathways in *Escherichia Coli* using synthetic genetic arrays. *J Vis Exp*
835 e4056.

836 64. Mehla J, Sood SK. 2011. Substantiation in *enterococcus faecalis* of dose-dependent
837 resistance and cross-resistance to pore-forming antimicrobial peptides by use of a
838 polydiacetylene-based colorimetric assay. *Appl Environ Microbiol* 77:786–793.

839 65. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. 2011. Bacterial persistence by
840 RNA endonucleases. *Proc Natl Acad Sci U S A* 108:13206–11.

841 66. Buddelmeijer N, Aarsman M, den Blaauwen T. 2013. Immunolabeling of Proteins *in situ*
842 in *Escherichia coli* K12 Strains. *BIO-PROTOCOL* 3:e852.

843 67. Vischer NOE, Verheul J, Postma M, van den Berg van Saparoea B, Galli E, Natale P,
844 Gerdes K, Luijink J, Vollmer W, Vicente M, den Blaauwen T. 2015. Cell age dependent
845 concentration of *Escherichia coli* divisome proteins analyzed with ImageJ and ObjectJ.
846 *Front Microbiol* 6:586.

847 68. Schneider C a, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
848 analysis. *Nat Methods* 9:671–675.

849 69. Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K,
850 Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY,
851 Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R,
852 Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB. 2010.
853 The high-throughput protein sample production platform of the Northeast Structural
854 Genomics Consortium. *J Struct Biol* 172:21–33.

855 70. Chayen NE, Shaw Stewart PD, Maeder DL, Blow DM. 1990. An automated system for
856 micro-batch protein crystallization and screening. *J Appl Crystallogr* 23:297–302.

857 71. Luft JR, Snell EH, Detitta GT. 2011. Lessons from high-throughput protein crystallization
858 screening: 10 years of practical experience. *Expert Opin Drug Discov* 6:465–480.

859 72. Rice LM, Earnest TN, Brunger AT. 2000. Single-wavelength anomalous diffraction
860 phasing revisited. *Acta Crystallogr Sect D Biol Crystallogr* 56:1413–1420.

861 73. Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in
862 oscillation mode. *Methods Enzymol* 276:307–326.

863 74. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW,

864 Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. 2002. PHENIX: Building new
865 software for automated crystallographic structure determination, p. 1948–1954. *In Acta*
866 *Crystallographica Section D: Biological Crystallography. Acta Crystallogr D Biol*
867 *Crystallogr.*

868 75. Emsley P, Cowtan K. 2004. Coot: Model-building tools for molecular graphics. *Acta*
869 *Crystallogr Sect D Biol Crystallogr* 60:2126–2132.

870 76. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program
871 to check the stereochemical quality of protein structures. *J Appl Crystallogr* 26:283–291.

872 77. Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences.
873 *Science (80-)* 252:1162–1164.

874 78. Walshaw J, Woolfson DN. 2001. SOCKET: A program for identifying and analysing
875 coiled-coil motifs within protein structures. *J Mol Biol* 307:1427–1450.

876 79. Strelkov S V., Burkhard P. 2002. Analysis of α -helical coiled coils with the program
877 TWISTER reveals a structural mechanism for stutter compensation, p. 54–64. *In Journal*
878 *of Structural Biology. Academic Press Inc.*

879 80. Ovchinnikov S, Kamisetty H, Baker D. 2014. Robust and accurate prediction of residue-
880 residue interactions across protein interfaces using evolutionary information. *Elife*
881 e02030.

882

883

884 **Figure legends:**

885 **Figure 1. Phylogenomics of *yhcB* gene.**

886 Phylogenetic profile of YhcB and its interacting proteins. Proteobacteria are highlighted in red.
887 *E. coli* is indicated by a white arrow.

888 **Figure 2. $\Delta yhcB$ lacks proper stationary state growth regulation.** The $\Delta yhcB$ and its parental
889 strain BW25113 (WT) were grown in LB at 37°C for 24 h (ON), then dilute 1:1000 and grown to
890 an OD650 nm of 0.3 (EXP) or to an OD650 nm of 1.2 (STAT), fixed and the nucleoids were
891 stained with DAPI. **(A)** length and, diameter and DAPI fluorescence of each culture with the
892 mean and standard deviation indicated. BW EXP, STAT and ON number of analyzed cells were
893 434, 1225 and 2133 respectively, $\Delta yhcB$ EXP, STAT, and ON number of analyzed cells were
894 555, 776, and 811, respectively. **(B)** Representative images from all 6 cultures with BW25113
895 on the left and $\Delta yhcB$ on the right. The images are merged phase contrast (gray) and DAPI
896 (green) images with a blue background for optimal contrast. Brightness and contrast are the same
897 for all images. The scale bar equals 5 μ m.

898 **Figure 3 $\Delta yhcB$ mutant result in filamentation and susceptibility to antibiotics.**

899 **(A)** Temperature sensitivity of $\Delta yhcB$ cells. $\Delta yhcB$ cells are sensitive to high (45°C) temperature.
900 **(B)** Micrographs of $\Delta yhcB$ cells in LB. The $\Delta yhcB$ cells with and without clear formation of
901 septa were observed. **(C)** The $\Delta yhcB$ cells showed hypersensitivity of $\Delta yhcB$ cells to cell-wall
902 acting antibiotics. Top: A22, bottom: Mecillinam.

903 **Figure 4. Hypersensitivity of $\Delta yhcB$ cells.**

904 **(A)** Fraction of surviving cells expressed as log% CFUs (**left**) and **(B)** % survival (**right**) of
905 exponentially growing (“expo” or “ex”) and stationary phase cells (“st”) in LB media (2St = 2
906 days old stationary cells). Top: A22, bottom: Mecillinam.

907 **Figure 5. $\Delta yhcB$ cells display an increase in abnormal FtsZ localization.**

908 The Z-ring in $\Delta yhcB$ cells is not assembled properly as visualized by immunolabelling of FtsZ.
909 **(A)** Map of FtsZ fluorescence profiles sorted according to cell length. The white line indicates
910 where the cell poles are. Brightness and contrast are the same for all profiles.

911 **(B)** The FtsZ concentration expressed in arbitrary units of all the cells of each culture with the
912 mean and standard deviation indicated. The cells in EXP, STAT and ON phase (n=1735, 1606
913 and 1321, respectively) were analyzed for BW and $\Delta yhcB$ cells (n=1154, 964, and 721
914 respectively). **(C)** Representative fluorescence images from all 6 cultures with BW25113 (top)
915 and $\Delta yhcB$ (bottom). The brightness and contrast of the images of the EXP and STAT cell is
916 0/13000 whereas it is 0/1300 for the images from the ON cells. The scale bar equals 5 μ m.

917 **(D)** WT cells expressing FtsZ-GFP^{sw}.

918 **(E)** Representative image of $\Delta yhcB$ cells expressing FtsZ-GFP^{sw}. Different classes of FtsZ
919 localization are indicated as follows: arrow-head- Z-ring, double arrowhead- helix, star-diffuse,
920 bar= bright foci.

921 **Figure 6. YhcB affects peptidoglycan localization and septum formation.**

922 (A) Wild type *E. coli* and $\Delta yhcB$ mutant cells subjected to a short (45 second) labeling pulse with
923 the fluorescent D-alanine analog, NADA. Septa are observable within the smaller, more ‘wild-
924 type’-looking $\Delta yhcB$ cells, while few visible septa are visible in elongated cells.

925 (B) Structured Illumination microscopy (SIM) of the $\Delta yhcB$ mutant strain labeled with the D-
926 alanine dipeptide analog, EDA-DA. Long, filamentous morphotypes are shown that appear to
927 lack probe incorporation (indicative of an absence of newly forming septa, top panel) or exhibit
928 abnormal, ‘punctate’ labeling, similar to FtsZ labeling shown in **Fig. A**, (bottom panels). Green
929 panels show images as they appear in the FITC channel and blue panels show corresponding
930 fluorescence intensity maps that range pixel intensities between 0 (blue) to 255. Scale bars; ~ 1
931 μm .

932 **Figure 7. Interactions of *yhcB*.**

933 (A) Double mutants (iii) generated in rich medium by conjugating the Hfr Cavalli (HfrC) *yhCB*
934 with chloramphenicol (Cm^R) resistance (i) and the indicated F- recipient non-essential single
935 gene deletion or essential hypomorphic (asterisk) mutant strains (ii) marked with kanamycin
936 resistance (Kan^R) marker.

937 (B) A representative B2H screen of YhcB of *E. coli*, *Y. pestis* and *V. cholerae* against *E. coli*
938 prey proteins. The colored colonies showed positive interactions. The percentage shows the
939 identity between *E. coli* YhcB vs *Yersinia* and *Vibrio* YhcB. See text and methods for details.

940 **Figure 8. Crystal structure of the YhcB ortholog from *Haemophilus ducreyi*.**

941 (A) Ribbon diagrams (left), B-factor-encoded backbone traces (center), and surface electrostatic
942 representations of two views related by a 90° rotation around the long axis of the coiled-coil
943 homotetramer in the asymmetric unit of the crystal structure. The green and blue/orange colors in
944 the ribbon diagrams show, respectively, the segments participating in parallel and antiparallel
945 coiled-coil interactions in the tetramer. The rectangles with black borders at bottom left
946 schematize the approximate geometry of the predicted N-terminal transmembrane \square -helix
947 deleted from the crystallized construct. The blue/narrow to red/wide gradient in the B-factor-
948 encoded backbone traces span $74\text{--}174 \text{ \AA}^2$. The fully saturated blue/red colors on the molecular
949 surfaces encode vacuum electrostatic potentials of $\pm 93 \text{ kT}$ calculated using the default
950 parameters in PyMOL. (B) Ribbon diagrams showing least-square superposition of the four
951 individual subunits in the asymmetric unit of the crystal structure, which are colored according to
952 parallel *vs.* antiparallel coiled-coil interaction as in the leftmost images in panel A.

953 (C) The backbone B-factors in the four subunits in the crystal structure (gray traces) plotted
954 along with the probability of backbone disorder (red trace) calculated by the program
955 DISOPRED3 (23) from the YhcB sequence profile. The 2° structure and parallel/antiparallel
956 coiled-coil interactions observed in the crystal structure are schematized above the plot using the
957 same color-coding as in the leftmost images in panel A.

958 (D) Plot of pairwise evolutionary couplings (80) or probability of correlated evolutionary
959 variations in the sequences of YhcB orthologs. The strength and statistical significance of each
960 pairwise coupling is proportional to the diameter and darkness of the blue color of the circles,
961 which represent *p*-values from 0.6-1.0 (scaled scores from 1.0-2.7) calculated using ~ 2.4
962 sequences per residue.

963 **Figure 9. Interaction sites on YhcB.**

964 (A) Multiple sequence alignment of YhcB homologs across proteobacteria. The conserved
965 residues are shown as a motif logo and histogram under the alignment, while a schematic of the
966 2° structure of *H. ducreyi* YhcB matching the depiction (Fig. 8) is shown above the alignment.
967 The sequence is divided in to 6 different regions starting from v1 (N-terminus) to v6 (C-
968 terminus), as indicated above the alignment. The highly conserved residues were mutated as
969 shown beneath the sequence.

970 (B) Bacterial two hybrid screens with YhcB mutants show the loss of specific interactions. The
971 YhcB variant v5 showed the maximum loss in interactions with prey partners FtsI, RodZ and
972 YidC. The v5 region possess several conserved residues predicted important for coiled-coil
973 interactions as shown by arrow underneath the sequence in A. No interactions were detected in
974 absence of the TM region (v7).

975 (C) Protein models show mutated and thus potentially interacting residues in both YhcB
976 monomer and tetramer.

977 **Figure 10. Model for YhcB function in cell division and Z-ring width maintenance.** YhcB
978 interacts as a dimer with RodZ that is part of the elongasome (sphere on green filament in cell
979 schematic below). During peptidoglycan synthesis MreB (green filament) moves perpendicular
980 to the length axes underneath the cytoplasmic membrane. Some of these filaments close to mid
981 cell will be stalled by the Z-ring in the nascent state (orange). While some of the elongasome
982 proteins will be involved in preseptal peptidoglycan synthesis on the periplasmic side of the
983 cytoplasmic membrane, RodZ and YhcB interact with FtsZ filaments. As YhcB is likely present
984 on both sides of the Z-ring the two dimers can associate into the tetrameric complex as observed
985 by crystallography. This produces a bridge of ± 12 nm that can have multiple interactions with
986 divisome proteins (here combined in one grey structure, “FtsEXKBLQIWN”) as observed by
987 BTH. The Z-ring is formed by many filaments (with about 20 subunits each) that are connected
988 by various FtsZ binding protein (ZBP, ZapA and ZapE) and linked to the cytoplasmic membrane
989 by FtsA and ZipA (and possibly YhcB). With an average width of about 10 nm the Z-ring is of
990 similar size as the RodZ-YhcB complex.

991

992

993

994

995

996

997

998

999

1000

1001

1002 **Tables and their legends**

1003 **Table 1.** FtsZ localization in WT or $\Delta yhcB$ cells. WT pattern contains cells that showed a central
1004 Z-ring or helix. Diffuse indicates that cells did not show any discernable pattern of FtsZ
1005 localization. Abnormal indicates cells with bright foci, multiple Z-rings, or off center Z-rings.
1006 Error is 90% confidence interval.

Strain	Total Cells	WT pattern	Diffuse	Abnormal
RM586 (WT)	675	88% \pm 4.6	10% \pm 0.41	2% \pm 0.10
RM588 ($\Delta yhcB$)	793	72.4 % \pm 3.4	15.4% \pm 0.60	12.2% \pm 0.50

1007

1008 **Table 2.** $yhcB$ synthetic lethal genetic interaction pairs in cell division, cell shape, and cell wall
1009 biogenesis. E-RM = E-ScoreRM (rich media) and E-MM (minimal media) indicate synthetic
1010 lethal GIs, with “S” indicating strong synthetic lethal effects. See text and methods for details.

Gene	E-RM	E-MM	Function
BcsB		S	Cell Shape, Glycan metabolism
CsrA		S	Cell Shape
DacA		S	Cell Wall Biogenesis
DacB		S	Cell Wall Biogenesis
DacC		S	Cell Wall Biogenesis
DdpC		S	Cell Wall Biogenesis
DdpF		S	Cell Wall Biogenesis
FtsA		S	Cell Division, Cell Shape
FtsE	S	S	Cell Division
FtsK		S	Cell Division
FtsZ		S	Cell Division, Cell Shape
GlmU		S	Cell Wall Biogenesis
ManY	S		Cell Wall Biogenesis
MepA		S	Cell Wall Biogenesis
MipA		S	Cell Wall Biogenesis
MraY		S	Cell Wall Biogenesis
OppC	S		Peptide transport
OppD		S	Peptide transport
PgpB		S	Cell Wall Biogenesis
Prc	S		Cell Division, Cell Wall Biogenesis
PtsH	S		Sugar transport
PtsI	S		Sugar transport
RodZ	S	S	Cell Shape, Cell Wall Biogenesis
RsmG		S	rRNA processing
Slt		S	Cell Division, Cell Wall Biogenesis
YehU		S	Cell Wall Biogenesis

YfeW	S		Cell Wall Biogenesis
YgeR		S	Cell Division
ZapB		S	Cell Division
ZipA		S	Cell Division, Cell Shape

1011

1012 **Table 3.** Protein-protein interactions of YhcB in *E. coli*, *Y. pestis*, and *V. cholera*, based on
1013 Bacterial Two Hybrid screening (see Methods for details). Green boxes (Y) indicate positive
1014 interactions. The interaction with HemX (yellow) is conserved in all three species. GI = genetic
1015 interaction (see text for details). For cross-species interactions see **Table S2**.

Baits:	E-YhcB	Y-YhcB	V-YhcB	GI	MS detection (18)
Preys	<i>E. coli</i>	<i>Yersinia</i>	<i>Vibrio</i>	<i>E. coli</i>	<i>E. coli</i>
degQ		Y			
degS			Y		
FtsA		Y		X	
FtsB		Y	Y		
FtsI	Y				Y
FtsQ	Y	Y			Y
FtsZ		Y		X	Y
HemX	Y	Y	Y		
LptF		Y			
MreB		Y			
MurF			Y		
MurG	Y				
RodA	Y		Y		
RodZ	Y	Y		X	Y
YciB	Y	Y			
YciS	Y	Y			Y
YidC	Y	Y			Y
ZapB		Y		X	
ZapE	Y				

1016

1017

1018

1019

1020

1021

1022

1023

1024 **Supplementary Figures**

1025 **Fig. S1.** Gene synteny of *yhcB* and neighboring genes in selected proteobacterial genomes. Tree
1026 from iTol (56).

1027 **Fig. S2.** Imaging of $\Delta yhcB$ cells. $\Delta yhcB$ is longer and thinner than its parental strain BW25113,
1028 but nucleoid topography seem to be normal. **(A)**. Phase contrast images of the cells and DAPI
1029 fluorescence images of the nucleoids of BW25113 WT cells and $\Delta yhcB$ cells grown in minimal
1030 glucose medium (GB4) at 28°C. The scale bar equals 5 μ m. **(B)**. Length and diameter of both
1031 strains grown in rich medium (LB with 5 g NaCl/L) at 37°C and Gb4 28°C. **(C)** Demographs of
1032 DAPI stained nucleoid distribution in BW25113 (n = 750) (first panel) and $\Delta yhcB$ (n = 650) cells
1033 grown in TY at 37°C (second panel), BW25113 (n = 1521, third panel) and $\Delta yhcB$ (n = 1095,
1034 fourth panel) cells grown Gb4 at 28°C, respectively. The cells are sorted according to cell length
1035 and the white outline based on the phase contrast images represents the length of the cells.

1036 **Fig. S3.** Phenotypes associated with *yhcB* deletion.

1037 **(a)** Growth curve/profile of $\Delta yhcB$ strain in LB and on LB agar. *yhcB* is required for optimal
1038 growth of *E. coli*. The $\Delta yhcB$ strain never reached an OD₅₆₂ comparable to WT strain both in LB
1039 and LB-glucose. Data represents at least three independent experiments. **(b)** Serial dilution of
1040 $\Delta yhcB$ in LB and LB-glucose on hard agar plates shows similar growth patterns after 24 hours.
1041 **(c)** β -galactosidase (CPRG) assay. Cell envelope integrity of $\Delta yhcB$ strain was tested using a β -
1042 galactosidase assay. Both deletion of *yhcB* and an interactor $\Delta yciS$ showed pinkish colored cells
1043 showing defective or permeable cell envelope. **(d)** The $\Delta yhcB$ cells were found deficient in
1044 biofilm formation in LB media. The relative or fold difference in biofilm formation in $\Delta yhcB$
1045 cells vs WT cells is shown here.

1046 **Fig. S4.** Hypersensitivity of $\Delta yhcB$ strain

1047 **(a)**. The susceptibility of an $\Delta yhcB$ strain to antibiotics targeting the cell wall biogenesis reported
1048 in a phenomic profiling of *E. coli* screen.

1049 **(b)**. Hypersensitivity of 2 days old stationary phase $\Delta yhcB$ cells against cell-wall acting
1050 antibiotics. The $\Delta yhcB$ cells were found hypersensitive to A22 and Mecillinam. The 2-day old
1051 stationary phase cells were not able to grow in presence of A22 and Mecillinam. Top=A22,
1052 Bottom=Mecillinam

1053 **Fig. S5.** Size exclusion chromatography and multi-angle light-scattering (SEC-MALS) analysis
1054 of the cytosolic segment from *H. ducreyi* YhcB. The analysis was performed on a Shodex
1055 KW802.5 column equilibrated in 100 mM NaCl, 5 mM DTT, 20 mM Tris•Cl, pH 7.5. The dotted
1056 horizontal lines indicate the predicted molecular weights for a monomer (12,550 daltons),
1057 tetramer, and hexadecamer. Quantitative analyses including integration of the refractive index
1058 trace (blue) indicate a total recovery of 386 μ g of protein distributed between species with
1059 average molecular weights of 15.5 kDa (96.3%), 50.2 kDa (2.5%), 199 kDa (0.9%), and 3,520
1060 kDa (0.2%). The molecular weight of the smallest species is 24% higher than the predicted
1061 molecular weight for a monomer of this protein construct (12.5 kDa), which could reflect a
1062 reversible tendency to oligomerize or, alternative, inaccuracy in the light-scattering-based
1063 molecular weight determination in this size range. Reversible oligomerization is concentration-

1064 dependent, which generally produces a characteristic parabolic trend in the estimated molecular
1065 weight across a SEC peak, with larger values at the center of the peak where the protein
1066 concentration is higher compared to its tails. Therefore, the consistency of the calculated
1067 molecular weight across the major elution peak suggests the discrepancy in measured vs.
1068 predicted molecular weight is more likely to be attributable to inaccurate calibration in this
1069 molecular weight range rather than reversible oligomerization. This analysis was performed on
1070 the selenomethionine-labeled wild-type protein construct comprising residues 31-128 with an N-
1071 terminal methionine and C-terminal affinity tag with sequence LEHHHHHH but without the
1072 L51M or L72M mutations used for selenomethionine phasing of the crystal structure.

1073 **Fig. S6.** Electron density maps and lattice packing in the x-ray crystal structure of *Haemophilus*
1074 *ducreyi* YhcB. (A) Anomalous difference Fourier map calculated using phases from the final
1075 refined model of selenomethionine-labeled *H. ducreyi* I51M-L72M-YhcB. The map contoured at
1076 5 σ is shown in red, the refined atomic model of the tetramer in the asymmetric unit of the
1077 crystal structure is shown in blue line representation, its symmetry mates in the crystal lattice are
1078 shown in pale green line representation, and the boundaries of the unit cell are shown as yellow
1079 lines. The strong peaks in the anomalous difference Fourier map all correspond to selenium
1080 atoms in the side chains of the engineered residues Met-51 and Met-72. The latter residue adopts
1081 multiple conformations in some subunits in the physiological tetramer. (B) The same image in
1082 panel A but with the addition of the $2f_0-f_C$ electron density map calculated from the final refined
1083 coordinate model shown in light blue contoured at 1.5 σ .

1084

1085 **Supplementary Tables**

1086 **Table S1.**

1087 YhcB PPIs detected by B2H and mass-spectrometry based proteomic screens.

1088 **Table S2.**

1089 **Cross-species protein-protein interactions of YhcB.** The cross-species interactions of YhcB
1090 were measured in proteobacteria *E. coli*, *Yersinia pestis* and *Vibrio cholerae*. We found several
1091 inter and intra-species conserved interactions of YhcB.

1092 **Table S3.**

1093 Crystallographic data from *Haemophilus ducrey* YhcB¹.

1094 **Table S4.**

1095 Information, including sequence coverage and identity between homologs of the *E. coli*, *Yersinia*
1096 *pestis* and *Vibrio cholerae* proteins tested in B2H screens.

1097

Fig 1

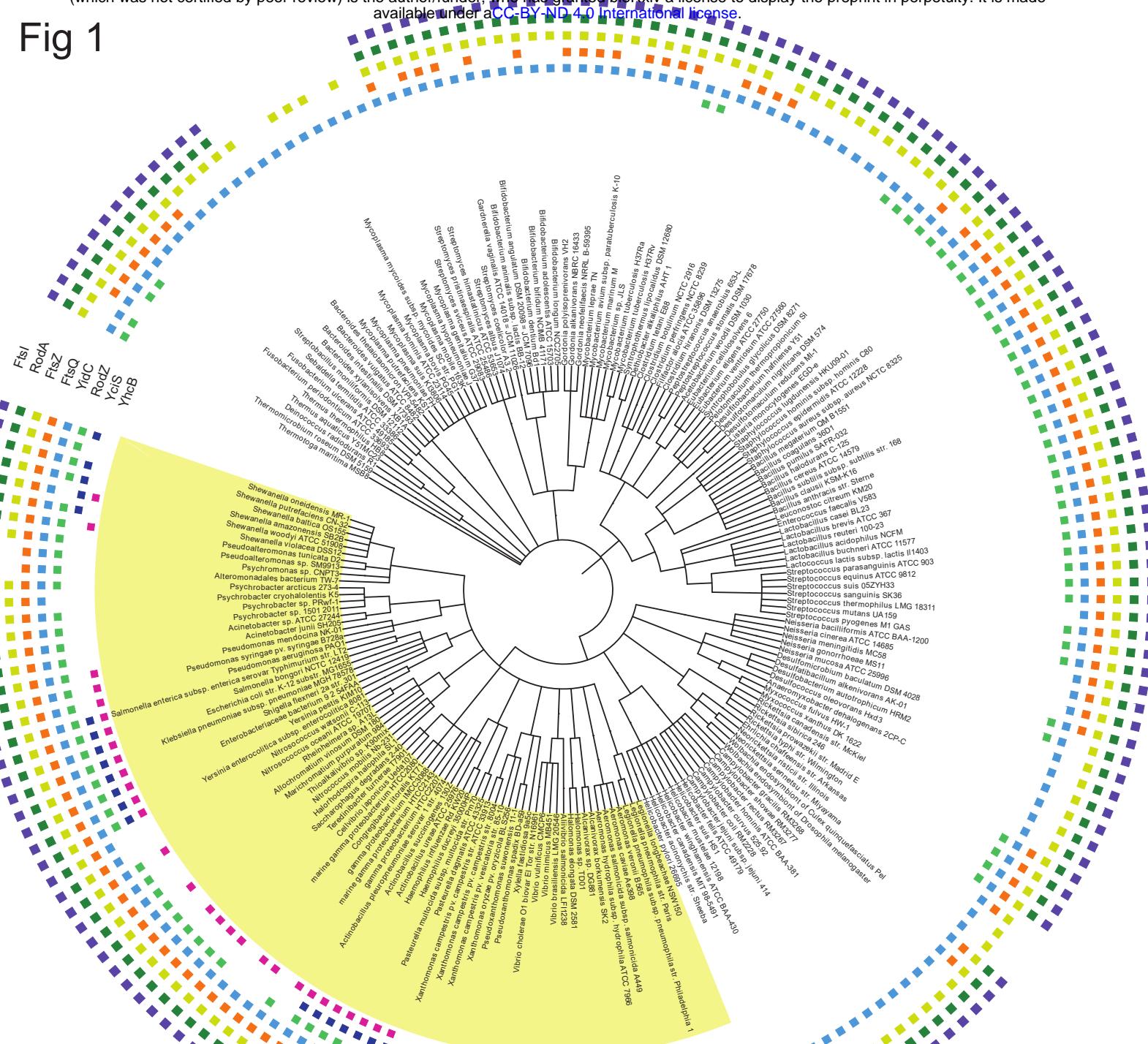


Fig 2

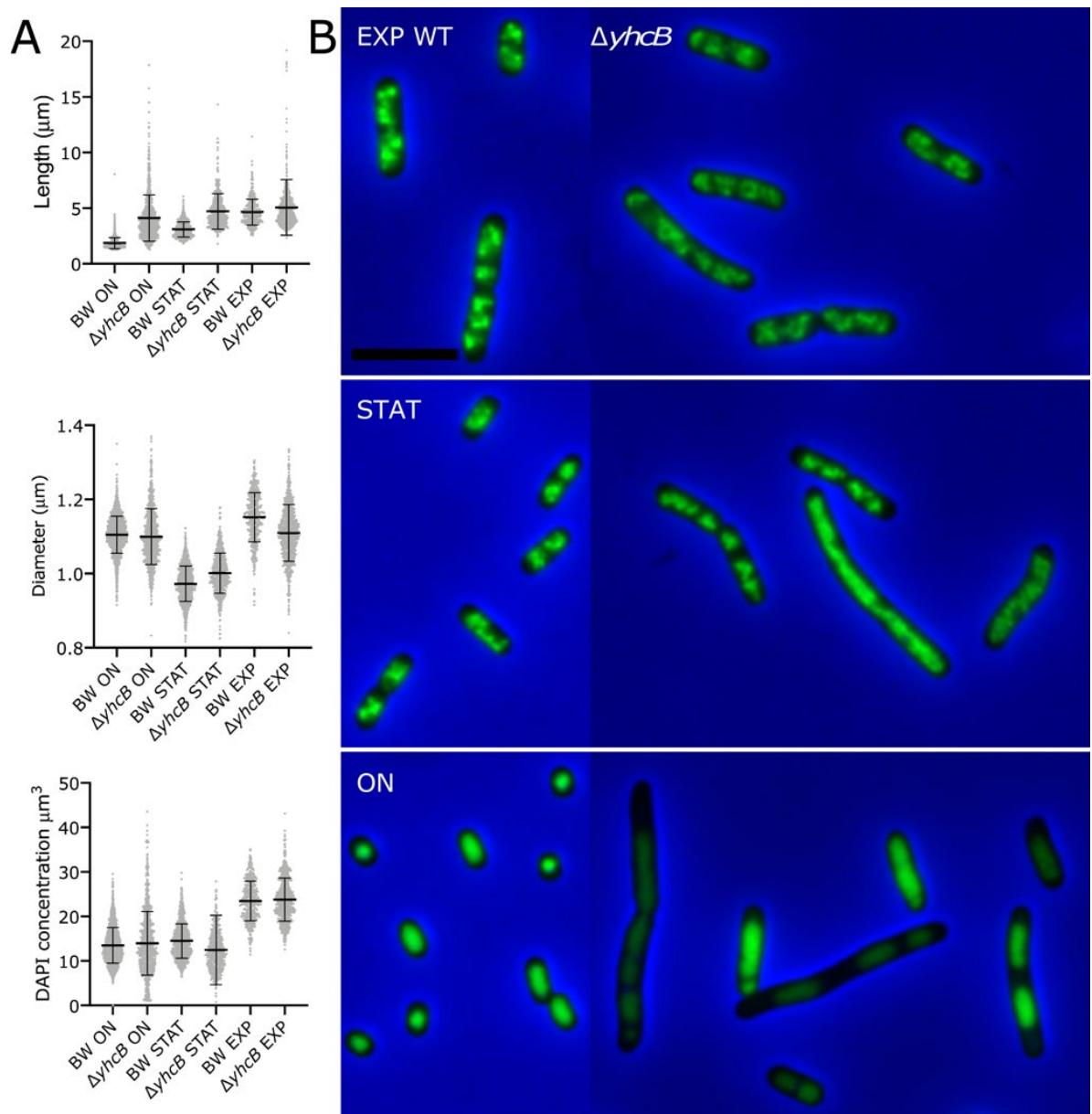
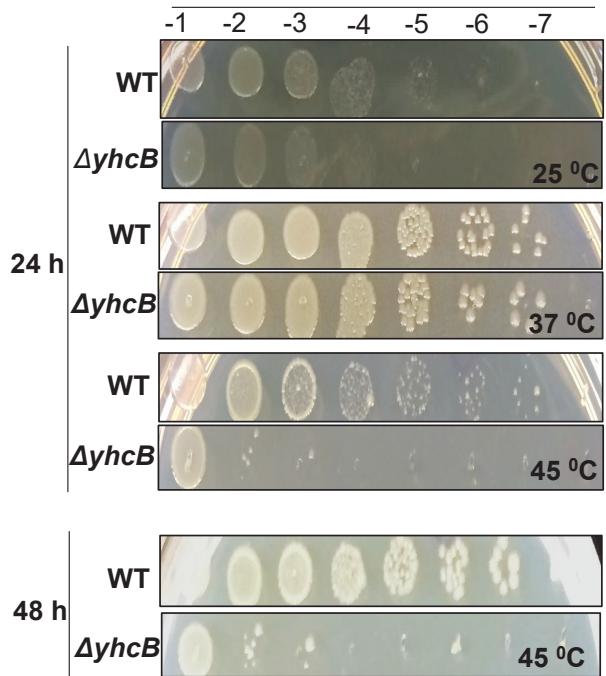
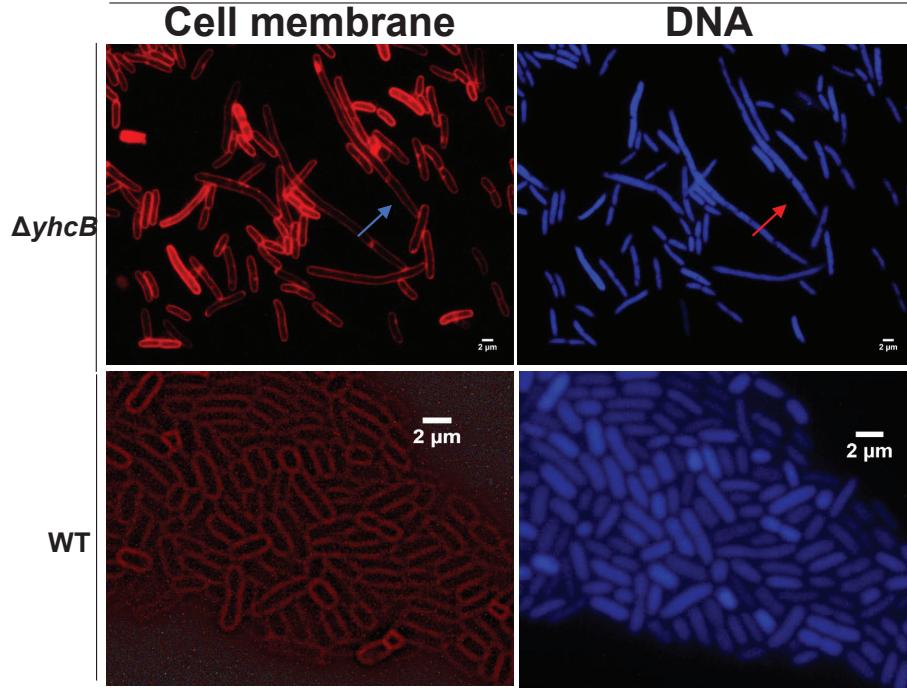




Fig 3 (A)

(B)

(C)

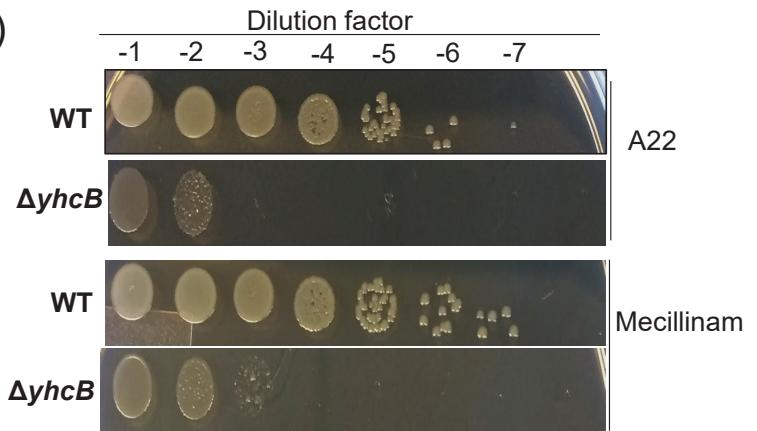


Fig 4

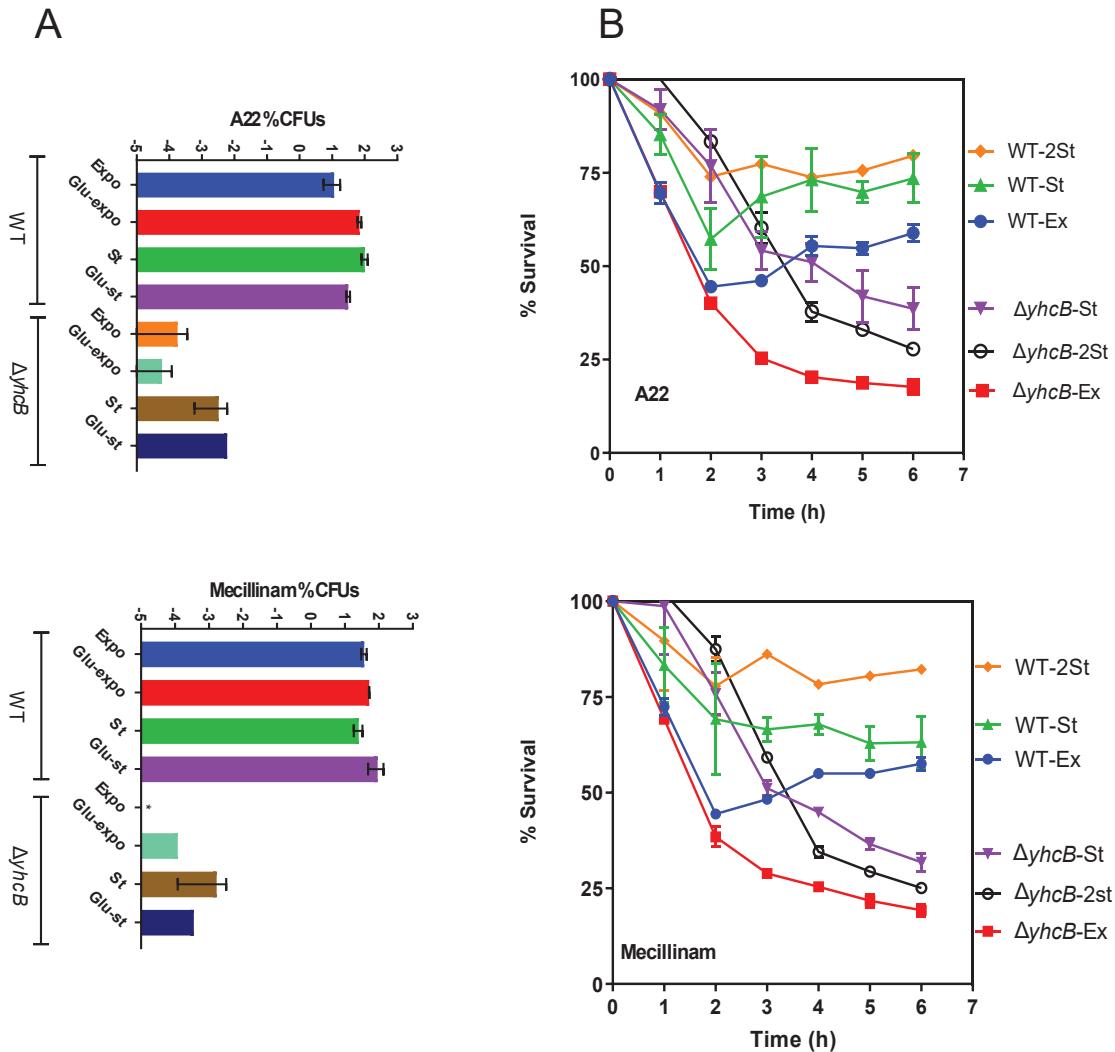


Fig 5

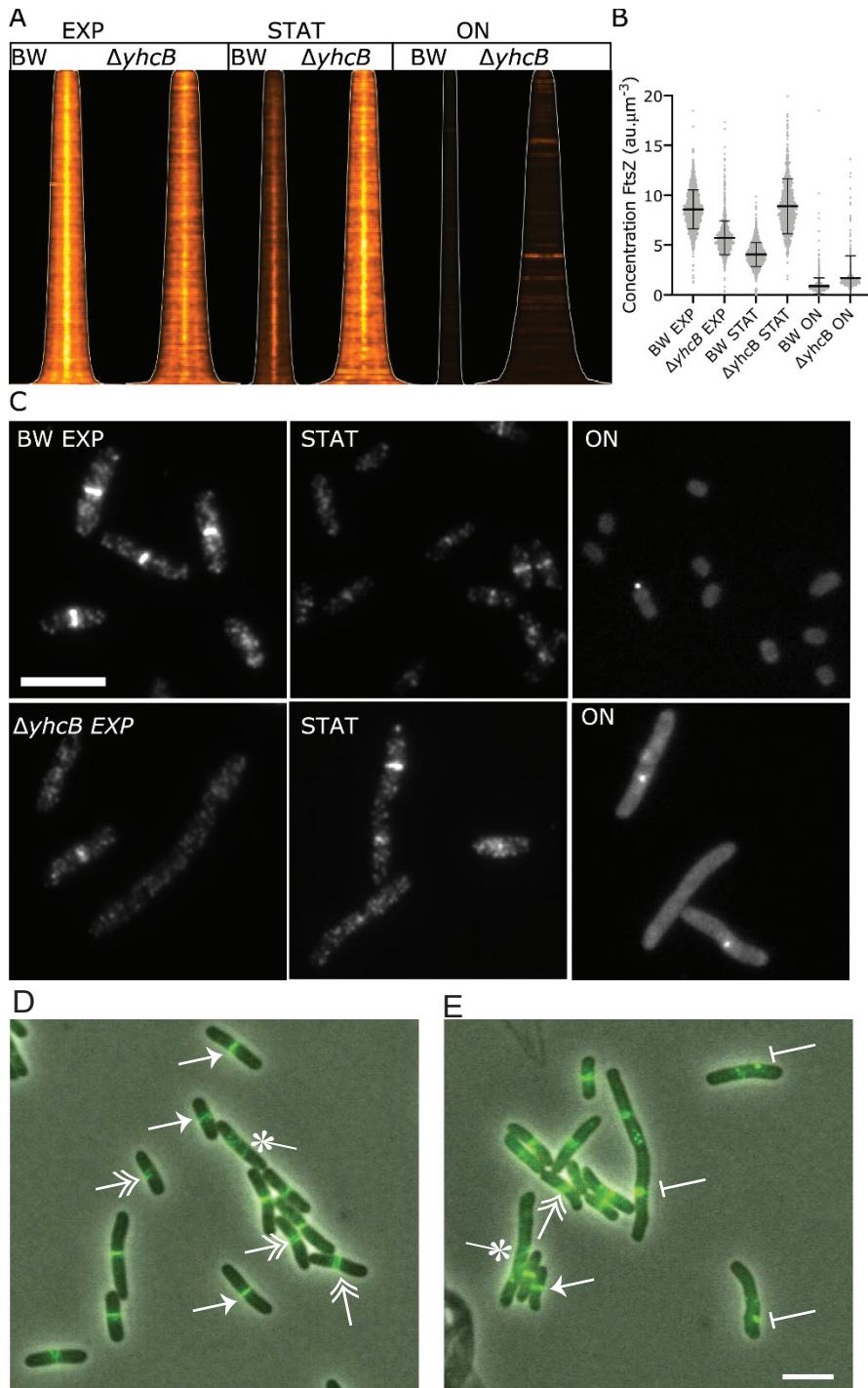
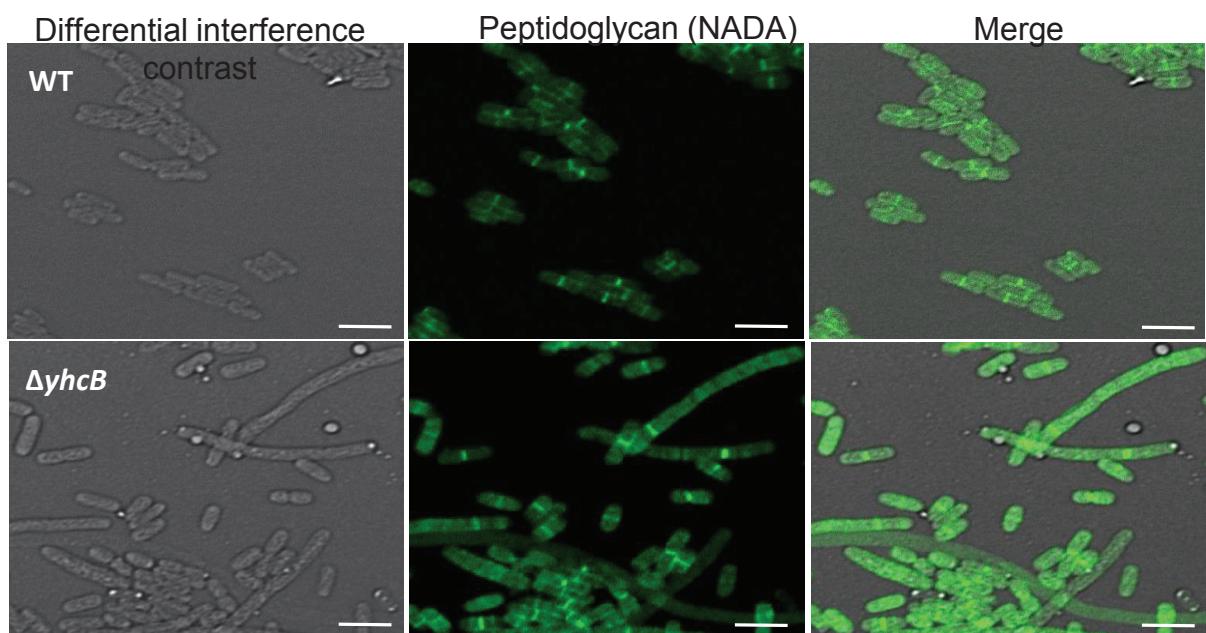
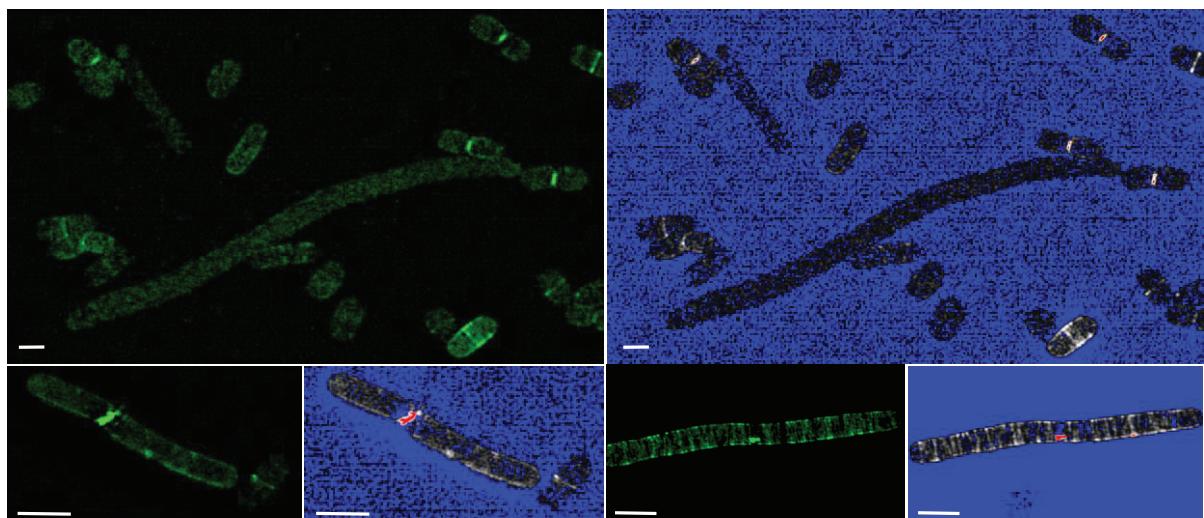
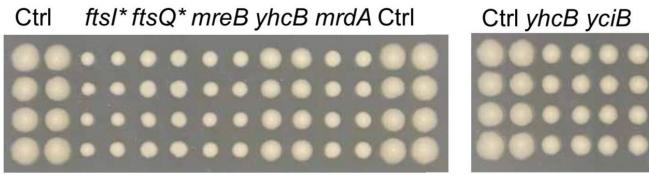



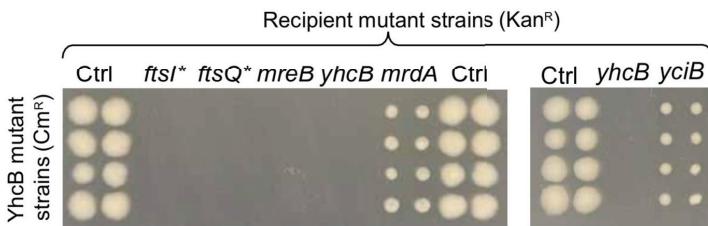
Fig 6 A

B

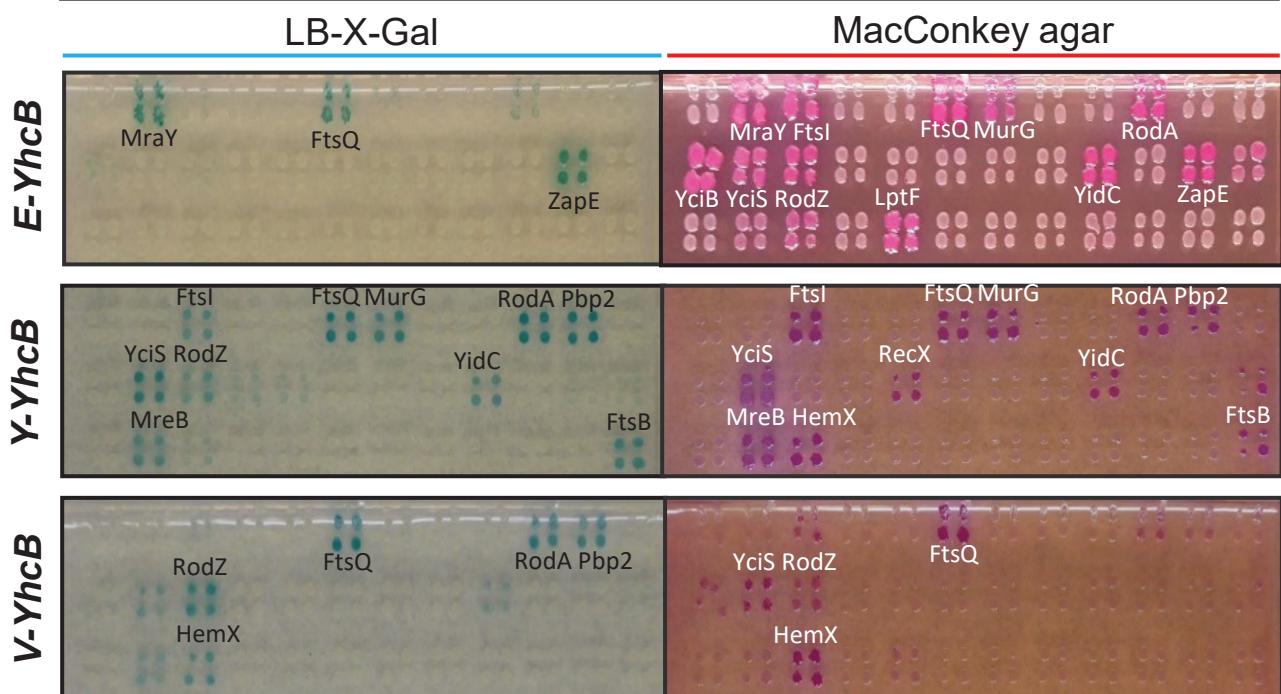



Fig 7

A


(i) *YhcB* mutant strains (Cm^R)

(ii) Recipient mutant strains (Kan^R)



(iii) Double mutant strains (Kan^R Cm^R)

B

E. coli prey proteins

each top row: LptD MraY FtsI MurF FtsW FtsQ MurG RseP YajC RodA Pbp2 LptE

each middle row: YciB YciS RodZ RecA RecX YgeR NuoA NuoK YidC Rep ZapE MreC

each bottom row: YhcB MreB HemX YihP LptF MreD SspB FimA YibN SecE YhcB FtsB

Fig 8

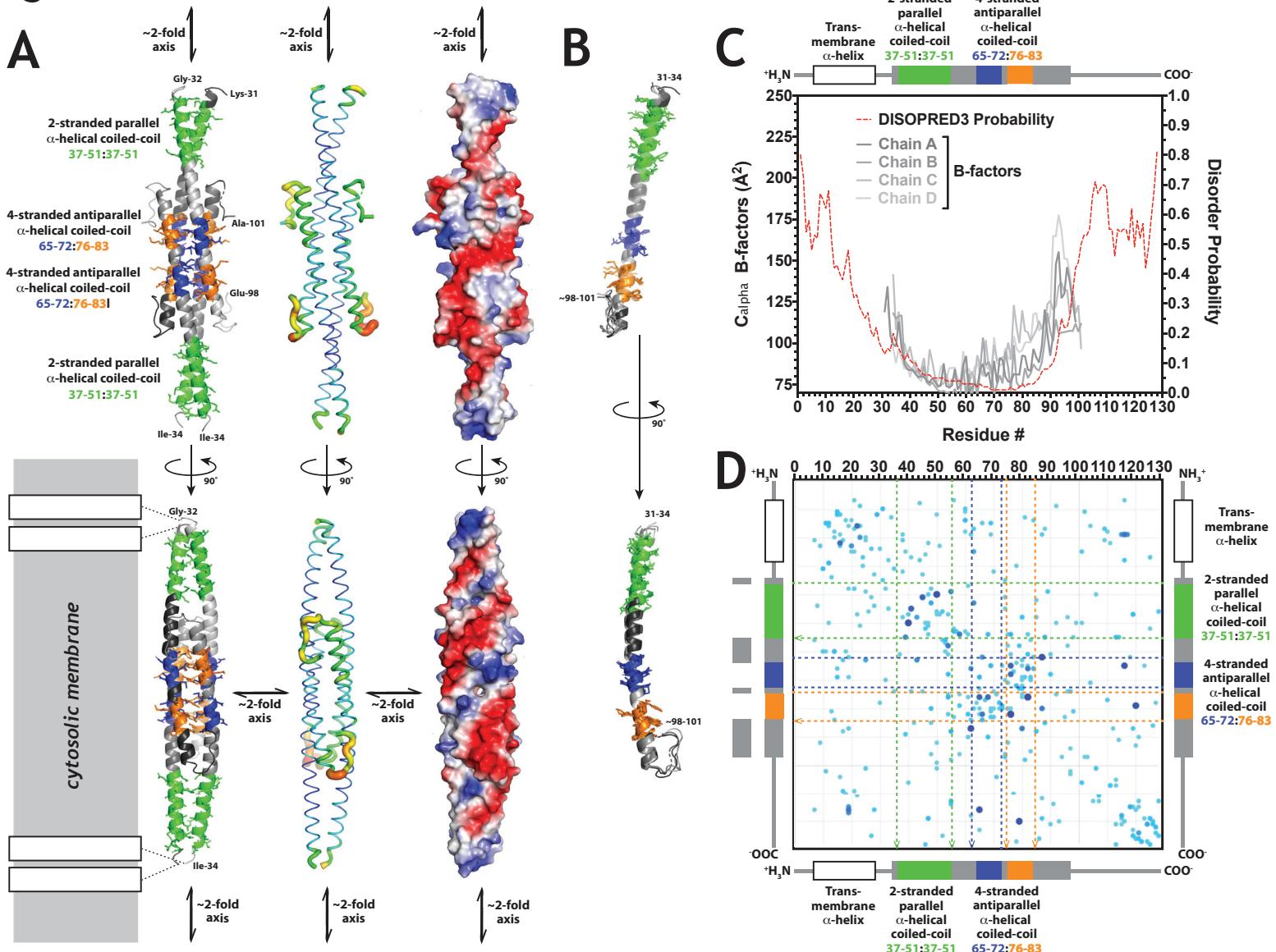


Fig 9

A

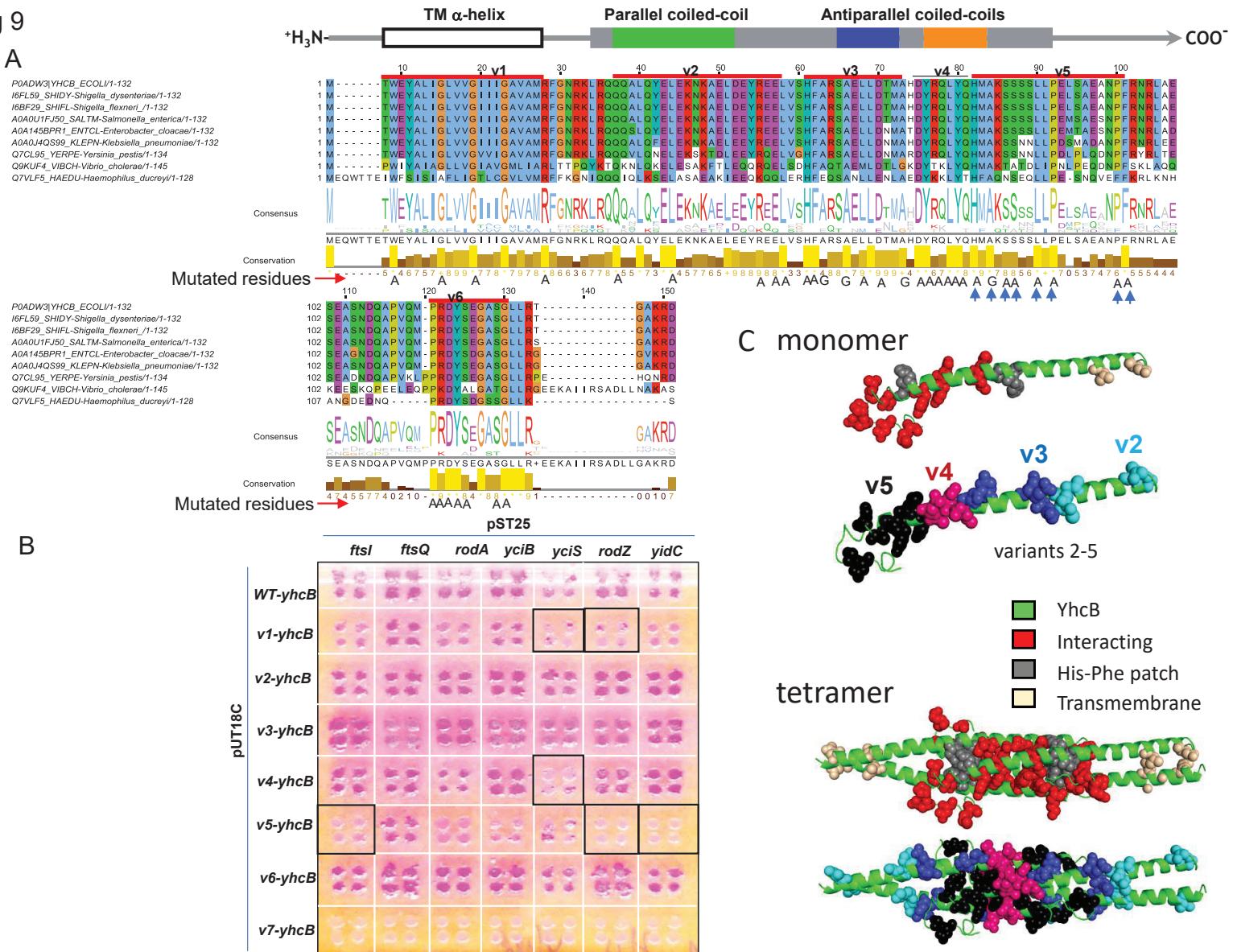
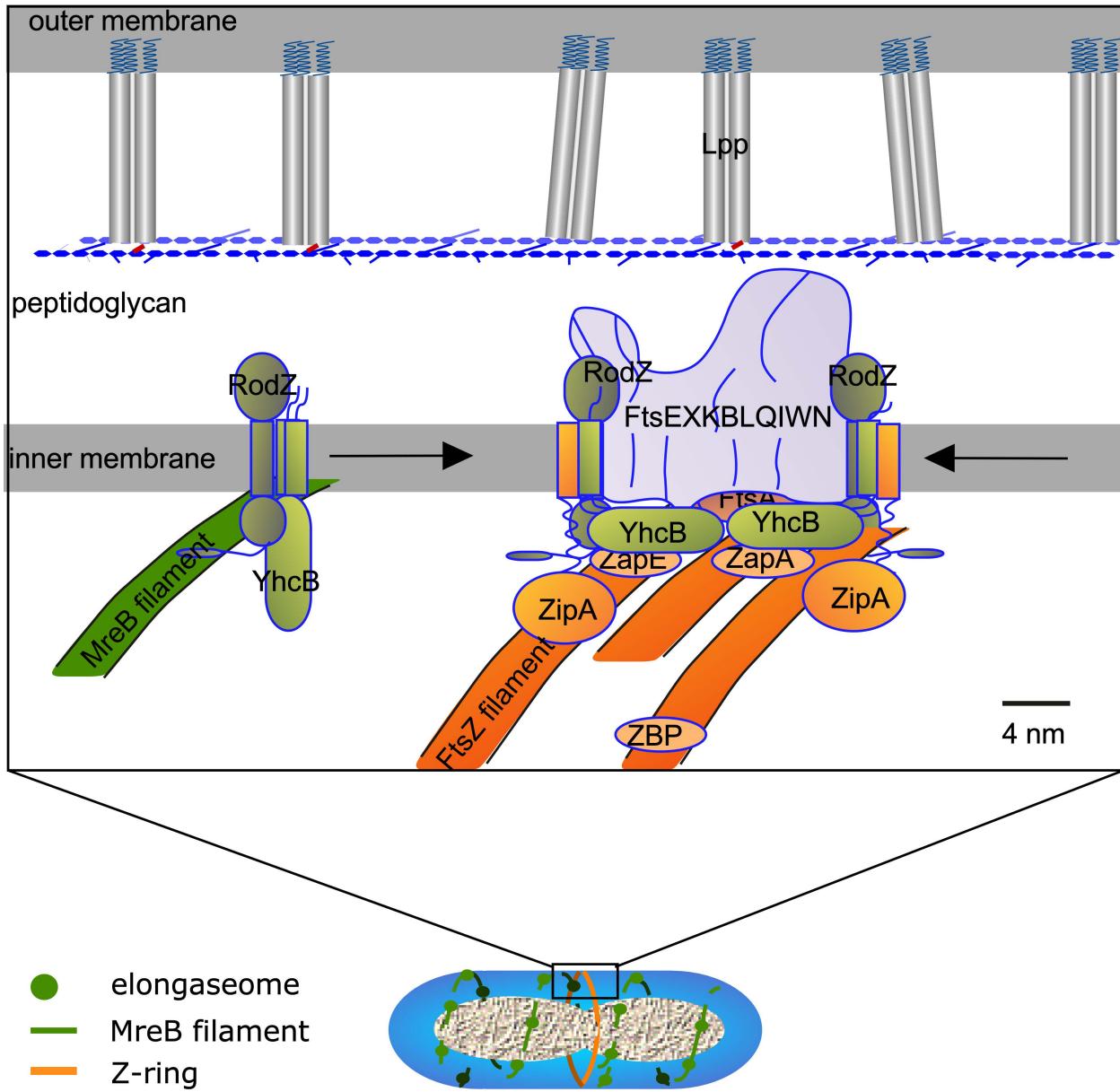



Fig 10

