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Abstract

Estimating microbial association networks from high-throughput
sequencing data is a common exploratory data analysis
approach aiming at understanding the complex interplay of
microbial communities in their natural habitat. Statistical network
estimation workflows comprise several analysis steps, including
methods for zero handling, data normalization, and computing
microbial associations. Since microbial interactions are likely
to change between conditions, e.g. between healthy individuals
and patients, identifying network differences between groups is
often an integral secondary analysis step. Thus far, however, no
unifying computational tool is available that facilitates the whole
analysis workflow of constructing, analyzing, and comparing
microbial association networks from high-throughput sequencing
data.

Here, we introduce NetCoMi (Network Construction and
comparison for Microbiome data), an R package that integrates
existing methods for each analysis step in a single reproducible
computational workflow. The package offers functionality for
constructing and analyzing single microbial association networks
as well as quantifying network differences. This enables
insights into whether single taxa, groups of taxa, or the
overall network structure change between groups. NetCoMi
also contains functionality for constructing differential networks,
thus allowing to assess whether single pairs of taxa are
differentially associated between two groups. Furthermore,
NetCoMi facilitates the construction and analysis of dissimilarity
networks of microbiome samples, enabling a high-level graphical
summary of the heterogeneity of an entire microbiome sample
collection. We illustrate NetCoMi’s wide applicability using
data sets from the GABRIELA study to compare microbial
associations in settled dust from children’s rooms between
samples from two study centers (Ulm and Munich).

Availability: A script with R code used for producing
the examples shown in this manuscript are provided as
Supplementary data. The NetCoMi package, together with a
tutorial, is available at https://github.com/stefpeschel/NetCoMi.

compositional data | microbial association estimation | network
analysis | sample similarity network | differential association |
network comparison
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1 Introduction

The rapid development of high-throughput amplicon
sequencing techniques [1] offers new possibilities for
investigating the microbiome across different habitats
and provides the opportunity to discover relationships
between the composition of microbial communities
and their environment. Amplicon sequencing data
are typically summarized in count tables where each
entry expresses how often a read (a certain DNA or
RNA sequence) associated with a specific taxon is
observed in the sequencing process. Due to a lack
of internal standards in common amplicon sequencing
protocols, a particular feature of the data is that they
carry relative or compositional information with each
component expressing the relative frequency of a taxon
in the sample [2]. Standard statistical analysis methods
ignoring the compositional data structure may lead to
spurious results (referred to as compositional effects
in the following) [2]. In the following, we refer to
approaches that take into account the compositional
structure as compositionally aware.
Furthermore, the observed reads represent only a
sample of the true microbial composition present in
the biological material [3]. Accordingly, it is likely
that not all taxa occurring in a sample are measured
due to technical limitations in library preparation and
the sequencing process [3]. Thus, the observed
number of reads is only a noisy measurement reflecting
the probability of the corresponding organisms to be
present [2]. Moreover, amplicon sequencing data
collections comprise a high amount of zero counts,
contain samples with varying sequencing depths (sum
of counts per sample), and are usually high dimensional,
i.e., the number of taxa p is much higher than the sample
size n.
A common exploratory analysis approach for
microbiome survey data is the estimation of
microbe-microbe association networks [4], allowing
for high-level insights into the global structure of
microbial communities. Existing approaches for
measuring and estimating microbial associations
include compositionally aware correlation estimators,
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Fig. 1. The proposed workflow for constructing, analyzing, and comparing microbial association networks, implemented in the R
package NetCoMi. The main framework (displayed as continuous lines) requires a n× p read count matrix as input. The data
preparation step includes sample and taxa filtering, zero replacement, and normalization (step 1). Associations are calculated and
stored in an adjacency matrix (step 2). Alternatively, an association matrix is accepted as input, from which the adjacency matrix
is determined. A more detailed chart describing step 2 is given in Fig. 2. In step 3, network metrics are calculated, which can be
visualized in the network plot (step 4). If two networks are constructed (by passing either a binary group vector or two user-defined
association matrices to the function), their properties can be compared (step 5). Besides the main workflow, a differential network can
be constructed from the association matrix.

such as SparCC [5], partial correlation estimators [6, 7],
and proportionality [8]. A wide range of existing
general-purpose tools is available for visualizing and
analyzing networks. Popular R packages are igraph [9],
statnet [10], and network [11]. Software packages such
as Gephi [12] and Cytoscape [13] provide functionalities
for large-scale network visualization, analysis, and
network generation. However, a naive application
of these tools on compositional data bears the risk
of resulting in a network that contains spurious
associations.

While the analysis of a single microbial association
network can provide insights into the general
organizational structure of a microbial community,
researchers are often more interested in how microbial
associations change across different conditions. For
instance, it is often desired to find relationships between
microbial compositions, their inherent connectivity,
and an underlying phenotype, e.g. the health status

of patients. This task thus requires the quantitative
comparison of networks across conditions.
Current approaches for comparing networks between two
conditions can be divided into two types: (i) differential
association analysis focusing on differences in the
strength of single associations, and (ii) differential
network analysis, analyzing differences between
network metrics and network structure between two
conditions [14]. Differential associations can further
be used as the basis for constructing differential
networks, where only differentially associated nodes
are connected (see [14] for a comparative study of
differential network analysis methods). Existing tools
for network comparison either require pre-computed
networks (adjacency matrix or edge list) as input (e.g.
CompNet [15]) or are tailored for protein interaction
(e.g. NetAlign [16] and Netdis [17]) or gene functions
[18], not for microbiome data.
In this paper, we introduce NetCoMi (Network
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Construction and comparison for Microbiome data),
a comprehensive R package, that integrates previously
disjoint microbial network inference and analysis tasks
into a single coherent computational workflow. NetCoMi
allows the user to construct, analyze, and compare
microbial association networks in a fast and reproducible
manner. The complete NetCoMi workflow is shown
in Fig. 1. NetCoMi provides a wide range of existing
methods for data normalization, zero handling, edge
filtering, and a selection of association measures, which
can be combined in a modular fashion to generate the
microbial networks. For network analysis, several local
and global network properties are provided, which can
be visualized in network plots to enable a descriptive
comparison. Quantitative comparison between two
different networks is available via the integration of
appropriate statistical tests. Furthermore, our package
enables (i) the generation of differential microbial
networks and (ii) the construction of sample similarity
networks (using, e.g. the Bray-Curtis measure), which
can serve as a high-level visual summary of the
heterogeneity of the microbiome sample collection.

2 Network construction and characterization

2.1. Data filtering, normalization, and zero handling.
The process of constructing microbial association
networks starts with a matrix containing absolute read
counts originating from a sequencing process. The total
read counts ω(k) = [ω(k)

1 , ...,ω
(k)
p ] of a sample k with p

taxa are a composition summing up to a constantm(k) =∑p
i=1ω

(k)
i , the sequencing depth. The sequencing depth

differs from sample to sample and is predefined by
technical factors leading to sparse data with many
zeros. Thus, preprocessing steps (step 1 in Fig. 1)
are recommended, or even mandatory depending on the
association measure (see Supplementary Table S1).
To simplify the graphical interpretation of an association
network and the computational processes, it is
reasonable to filter out a certain set of taxa as first data
preparation step (step 1a in Fig. 1). See Table S2 for
the options available in NetCoMi.
The excess number of zeros in the data is a
major challenge for analyzing microbiome data because
parametric as well as non-parametric models may
become invalid for data with a large amount of zeros [22].
Moreover, many compositionally aware measures are
based on so-called log-ratios. Log-ratios have been
proposed by Aitchison [28] as the basis for statistical
analyses of compositional data as they are independent
of the total sum of counts m. More precisely, for two
variables i and j the log-ratio of relative abundances
log( xi

xj
) = log(ωi/m

ωj/m
) is equal to the log-ratio of the

absolute abundances log(ωi
ωj

) [6]. However, log-ratios
cannot be computed if the count matrix contains any
zeros, making zero handling necessary (step 1b in Fig. 1).
Several zero replacement strategies have been proposed

[24, 23, 25, 29, 27]. Table 1 gives an overview of the
different types of zeros that have been suggested as well
as existing approaches for their treatment.
Normalization techniques are required to make read
counts comparable across different samples [30, 31] (step
1c in Fig. 1). The normalization approaches included in
NetCoMi are summarized in Table 2. A description of
these methods is available in [30] and [31]. Note that
forcing the read counts of each sample to a unique sum
(as done with Total sum scaling) does not change the
compositional structure. Rather, proportions are always
compositional, even if the original data are not [2].
Aitchison [28] suggested using the centered log-ratio (clr)
transformation to move compositional data from the
simplex to real space. Badri et al. [30] have shown
that variance-stabilizing transformations (VSTs) [32]
as well as the clr-transformation produce very similar
Pearson correlation estimates, which are more consistent
across different sample sizes than TSS, CSS, and COM
methods.

2.2. Measuring associations between taxa.
Association estimation is the next step in our workflow
(step 2a in Fig. 1) to obtain statistical relations
between the taxa. Common association measures
include correlation, proportionality, and conditional
dependence. For all three types of association,
compositionally aware approaches have been proposed,
which are summarized in Table 3. Further information
on these measures is available in Supplement 1. To
ensure wide applicability of NetCoMi, the package
comprises also traditional association measures, which
are not suitable for application on read count data in
their original form.

2.2.1. Correlations. Compositionality implies that if the
absolute abundance of a single taxon in the sample
increases, the perceived relative abundance of all
other taxa decreases. Applying traditional correlation
measures such as Pearson’s correlation coefficient to
compositions can lead to spurious negative correlations,
which do not reflect underlying biological relationships.
It has been shown that the resulting bias is stronger, the
lower the diversity of the data [5].
A possible approach to reduce compositional effects is
to normalize or transform the data in a compositionally
aware manner and apply standard correlation
coefficients to the transformed data. A common
method is the clr transformation (see Table 2),
which is a variation of the aforementioned log-ratio
approach. Traditional correlation measures provided in
NetCoMi are the Pearson correlation, Spearman’s rank
correlation, and the biweight midcorrelation (bicor).
Bicor as part of the R package WGCNA [35] is more robust
to outliers than Pearson’s correlation because it is based
on the median instead of the mean of observations.
Popular compositionally aware correlation estimators
include SparCC (Sparse Correlations for Compositional
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2 NETWORK CONSTRUCTION AND CHARACTERIZATION

Table 1. Different zero types defined for sequencing data with appropriate approaches for their treatment (suggested by
Martín-Fernández et al. [19]), which are available in NetCoMi. The three approaches are implemented in R via the zCompositions
package [20]. Shown are for each treatment method a few key facts as well as the argument for applying it in NetCoMi.

T
yp

e

essential/structural zeros rounded zeros count zeros

D
es
cr
ip
ti
on

“. . . component which is truly
zero, not something recorded as
zero simply because the
experimental design or the
measuring instrument has not
been sufficiently sensitive to
detect a trace of the part.” [21]

Assumed to be present in the sample but their
proportion is too low to be detected [19].

Sequencing data are seen as
categorical. For a zero count it is
assumed that, in this category, no
event occurred in this experimental
run but could occur in another run
(e.g. with a different sequencing
depth) [19].

Tr
ea
tm

en
t
m
et
ho

ds

• No general approach
available so far [22]

• The “structural zero issue
is by far the most
complicated problem”[22]

⇒ no approach included in
NetCoMi

Multiplicative imputation [23]:
• Non-parametric
• Small value δ imputed for all zeros
• Non-zero values adjusted regarding

unit-sum constraint to preserve their
covariance structure

• NetCoMi arg.: zeroMethod = “multRepl”

Modified EM alr-algorithm [24, 25, 26]:
• Parametric
• Covariance structure is taken into

account
• Zeros imputed via EM-algorithm for

alr transformed data
• NetCoMi arg.: zeroMethod = “alrEM”

Bayesian-multiplicative treatment
[27]:

• Parametric
• Observed counts c= (c1, ..., cp)

assumed to be categorial
• Random vector C multinomial

distributed with parameters
(n,π1, ...,πp)

• π corresponds to observed
microbial proportions
→ estimated via posterior
distribution

• NetCoMi arg.: zeroMethod =
“bayesMult”

Table 2. Data normalization techniques implemented in NetCoMi. More detailed descriptions of these methods can be found in Badri
et al. [30] and McMurdie and Holmes [31]. The corresponding NetCoMi argument is normMethod with the available options: “none”,
“TSS”, “CSS”, “COM”, “rarefy”, “clr”, and “VST”.

Method Approach Comments

Total sum scaling (TSS)
Traditional approach for building fractions. Counts are
divided by the total sum of counts in the corresponding
sample.

Strongly influenced by highly abundant
taxa [30].

Cumulative sum scaling
(CSS) [33]

Within each sample, the counts are summed up to a
predefined quantile. The counts are then divided by this
sum.

Aims at avoiding the influence of highly
abundant taxa [30].

Common sum scaling
(COM) [31]

Counts are scaled according to the minimum sum of
counts over all samples so that all samples have equal
library size (that of the sample with minimum overall
sum).

Originally suggested as alternative to
rarefying as common normalization
method [31].

Rarefying [34] Subsampling from the data to obtain samples with equal
library size (also called rarefaction level) [31].

Centered log-ratio (clr)
transformation [28]

For a composition x= (x1, ...,xp) the clr transformation is
defined as clr(x) = log( x1

g(x) , ...,
xp

g(x) ),

where g(x) =
(∏p

k=1 xk

) 1
p is the geometric mean.

Aims to avoid compositional effects.

Variance stabilizing
transformation (VST) [32]

The dispersion-mean relation is fitted based on the count
matrix. The data are then transformed to receive a
matrix that is approximately homoscedastic [32].

Aims at eliminating the dependence of
the variance on the mean.
VST and the clr transformation produce
very similar Pearson correlations [30].

data) [5], CCLasso (Correlation inference for
Compositional data through Lasso) [36], and CCREPE
(Compositionality Corrected by REnormalization and
PErmutation), also called ReBoot method [37]. SparCC
is one of the first approaches developed for inferring

correlations for compositional data and has become
a widely-used method [36]. However, SparCC has
some limitations, namely that the estimated correlation
matrix is not necessarily positive definite and may
have values outside [-1,1] [36]. Furthermore, the
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basic algorithm is repeated iteratively to reinforce the
sparsity assumption and to account for uncertainties
due to random sampling, leading to high computational
complexity. CCLasso is also based on log-ratios but aims
to avoid the disadvantages of SparCC by using a latent
variable model to infer a positive definite correlation
matrix directly [36]. The CCREPE approach operates
directly on relative read counts, which are permuted and
re-normalized in order to detect correlations induced by
compositionality alone.

2.2.2. Proportionality. Lovell et al. [38] argue that
correlations cannot be inferred from the relative
abundances in a compositionally aware manner without
any assumptions and propose proportionality as an
alternative association measure for compositional data.
If two relative abundances are proportional, then their
corresponding absolute abundances are proportional as
well: ωi

m ∝
ωj

m ⇒ ωi ∝ ωj . Thus, proportionality is
identical for the observed (relative) read counts and
the true unobserved counts. Lovell et al. [38] suggest
proportionality measures based on the log-ratio variance
var(log xi

xj
), which is zero when ωi and ωj are perfectly

proportional. This variance, however, lacks a scale that
would make the strength of association comparable. For
this reason, the proposed proportionality measures φ
and ρ [38, 8] are modifications of the log-ratio variance
based on clr transformed data that come with a scale.
Due to its analogy to correlations, we included ρ in
the NetCoMi package (see Table 3 for the formula). ρ
is a symmetric measure with values in [-1,1], where 1
corresponds to perfect proportionality.

2.2.3. Conditional dependence. Conditional dependence
expresses the relation between two variables conditioned
on all other variables in the data set [6]. Hence, this is a
measure of direct relations between each two taxa, while
(marginal) correlations cannot differentiate between
direct and indirect dependencies. Three estimators
of conditional dependence are included in NetCoMi:
SPRING (Semi-Parametric Rank-based approach for
INference in Graphical model) [39], SPIEC-EASI
(Sparse Inverse Covariance Estimation for Ecological
Association Inference) [6], and gCoda [40].
All three approaches use graphical models to infer the
conditional independence structure from the data. For
multivariate Gaussian data, the graph structure can
be inferred from the non-zero elements of the inverse
covariance matrix Ω = Σ−1 [41], where each entry is
related to scaled negative partial correlation. Loh and
Wainwright [41] relaxed the Gaussianity assumption and
established relationships between the inverse covariance
matrix and the edges of a graph for discrete data.
All three approaches for estimating a conditional
dependence graph presume that the assumptions of the
data generation process are fulfilled so that the graph
structure can be reliably inferred from the count matrix.
We also consider the assumptions on the data generation

process as satisfied and use conditional dependence and
partial correlation equivalently in the following.
gCoda uses a Majorization-Minimization algorithm
to infer Ω from the data based on maximizing
a penalized likelihood. In SPIEC-EASI, two
approaches are provided to obtain Ω from the observed
count data: neighborhood selection [42] and sparse
inverse covariance selection (also known as “graphical
lasso”) [43]. SPRING uses a semi-parametric rank-based
correlation estimator which can account for excess zeros
in the data and applies neighborhood selection to infer
conditional dependencies. All three measures assume a
sparsely connected underlying network.

2.3. Constructing the adjacency matrix. Using one of
the aforementioned association measures, an association
matrix with entries rij expressing the relation between
pairs of taxa i and j is computed. The next step
is sparsification and transformation into distances and
similarities (step 2b in Fig. 1) resulting in an adjacency
matrix Ap×p with entries aij as numerical representation
of the microbial network, where nodes (or vertices)
represent the taxa. The different options available in
NetCoMi are illustrated in Fig. 2 (see Supplementary
Figure S1 for a more detailed version of this chart).
Since the estimated associations are generally different
from zero, using them directly as adjacency matrix
results in a dense network, where all nodes are connected
to each other and consequently only weighted network
measures are meaningful. Instead, the association
matrix is usually sparsified to select edges of interest.
One possible sparsification strategy consists of defining
a cutoff value (or threshold) so that only taxa with
an absolute association value above this threshold are
connected [5, 51]. This filtering method is available for
all types of association. The conditional independence
measures SPRING, SPIEC-EASI, and gCoda already
include a model selection approach, making the filter
step unnecessary.
For correlations, statistical tests are available as
alternative sparsification method, allowing only
significant associations to be included in the network.
Student’s t-test [52] and a bootstrap approach
[5, 51] are implemented for identifying correlations
significantly different from zero. The resulting p-values
need to be adjusted to account for multiple testing.
NetCoMi includes all adjustment methods available
in the R function p.adjust() (stats [53]) and, in
addition, two methods for multiple testing under
dependence having higher power than the common
Benjamini-Yekutieli method [54]: (i) fdrtool() for
controlling the local false discovery rate [55, 56], and
(ii) the adaptive Benjamini-Hochberg method [57] where
the proportion of true null hypotheses is estimated
using convex decreasing density estimation as proposed
by Langaas et al. [58].
P-values arising from bootstrapping might be
problematic because they can be exactly zero if
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2 NETWORK CONSTRUCTION AND CHARACTERIZATION

Table 3. Overview of compositionally aware association measures that are available for network construction in NetCoMi. The
corresponding argument is named measure. The measures are grouped by the three types of association: correlation, proportionality
and conditional dependence. For each measure, the assumptions stated in the corresponding publication are listed, together with a
short summary of the approach.

Measure
Data transformation
R implementation Assumptions Approach

Correlation

SparCC [5]

• Log-ratios
• R code based on

package r-sparcc
[44]

• Large number of
taxa

• Sparse underlying
network (taxa
sparsely correlated)

• Idea: Estimating Pearson correlations from log-ratio variances
via an approximation based on the assumption that taxa are
uncorrelated on average

• Zero handling: Bayesian approach (observations replaced by
random samples)

• Nested iterations to reinforce sparsity assumption and account
for uncertainty due to random sampling

CCLasso [36]

• Log-ratios
• R code on GitHub

[45]

• Large number of
taxa

• Sparse underlying
network

• Idea: Inferring correlations from observed counts via latent
variable model

• Approach: minimizing a loss function (considers errors resulting
from estimating the covariance matrix from observed data
instead of true abundances) plus a penalty to incorporate the
sparsity assumption

CCREPE [37]

• Relative abundances
• R package ccrepe

[46]

–

• Idea: Testing for statistical significance of the estimated
correlations, whereby spurious correlations caused by
compositional effects are considered

• Approach: permuting and re-normalizing the data to assess
correlations due to compositionality alone

Proportionality
ρ [38]

• clr transformation
• R package propr [8]

– ρ(log x, log y) = 1−
var(log (x/y))

var(log x) +var(log y)

Conditional dependence

SPIEC-EASI [47]

• Log-ratios
• R package

SpiecEasi [47]

• Large number of
taxa

• Sparse underlying
network

• Idea: covariance matrix for clr-transformed data is
approximately equal to the “true” covariance matrix Σ for p� 0

• Zero entries in the inverse covariance matrix Σ−1 correspond to
conditional independent taxa

• Approach: a graphical model is used to infer the conditional
dependence structure between each two taxa

• Two methods for graphical model inference: sparse inverse
covariance selection and neighborhood selection

gCoda [40]

• Relative abundances
• R code on GitHub

[48]

• True absolute
abundances y follow
a multivariate
normal distribution

• Sparse underlying
network

• log(y)∼N(µ,Σ) with Ω = Σ−1 representing conditional
dependence relationships between taxa

• Ω is determined by minimizing the negative log-Likelihood for
(µ,Ω) plus l1 penalty (to satisfy sparsity assumption)

• Optimization problem solved via Majorization- Minimization
algorithm

SPRING [39]

• mclr
transformation1

• R package SPRING
[49]

• Sparse underlying
network

• Σ is estimated using a semi-parametric rank based approach
relying on a truncated Gaussian copula model [50], which can
deal with zeros in the data

• Conditional independence relationships are inferred from Σ using
neighborhood selection [42]

• Graphical model selection via stability-based approach

1 clr transformation where only non-zero elements are included in the geometric mean [39].
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Correlation
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Association measure Sparsification Dissimilarity 
calculation

Dissimilarity based 
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(from WGCNA package)
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Sparse weighted

Sparse unweighted

Dense weighted

Similarity

Conditional dependence

Proportionality

Statistical test
• Student’s t-test
• Bootstrapping

Distance
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For calculating 
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Fig. 2. Approaches for network construction that are available in NetCoMi, depending on the association measure. For correlations,
in addition to a threshold and statistical testing, the soft-thresholding approach from WGCNA package [35] is implemented (marked
by blue arrows). Dissimilarity based on topological overlap (also adopted from WGCNA package) is available as a further dissimilarity
transformation approach in addition to metric distances and thus used for all network properties based on shortest paths. Whether a
network measure is based on similarity or dissimilarity is stated in Table 4. Network construction without a sparsification step leads to
dense networks where all nodes are connected.

none of the bootstrap-correlations is more extreme than
the observed one. Since p-values of exactly zero cannot
be corrected for multiple testing, NetCoMi’s bootstrap
p-values are corrected by adding pseudo counts:

p= b+ 1
m+ 1 ,

where b is the number of generated samples with a test
statistic at least as extreme as the observed one, and m
is the number of repetitions [59].
As illustrated in Figure S1, the sparsified associations
r∗
ij are then transformed to dissimilarities/distances dij ,
which are needed for computing network measures based
on shortest paths (see Section 2.4). Following van
Dongen and Enright [60], we included different distance
metrics depending on how negative associations should
be handled (see Figure S1). Available are the options: (i)
“unsigned”: dij =

√
1− r∗

ij
2, leading to a low distance

between strongly associated taxa (positively as well as
negatively), (ii) “signed”: dij =

√
0.5 (1− r∗

ij) , where
the distance is highest for strongly negative associated
taxa, and (iii) “signedPos”: “signed” distance with
setting negative associations to zero. A dissimilarity
measure based on the topological overlap matrix (TOM)
[61] is also available in NetCoMi.
The adjacency matrix contains similarities of the form
sij = 1 − dij . These similarity values are used for
network plot and network metrics based on connection
strength (see Section 2.4). NetCoMi also offers two
options for constructing an unweighted network via
generating a binary adjacency matrix from the sparse
association matrix where the user can decide whether

or not negative associations should be included in the
unweighted network (Figure S1).
Furthermore, we included adjacency matrix
constructions via the soft-thresholding approach from
the WGCNA package [35, 29], which is only available for
correlations (see blue path in Fig. 2). Rather than using
hard thresholding (e.g. via cutoff value or statistical
tests), Zhang and Horvath [29] suggested raising the
estimated correlations to the power of a predefined
value greater than 1 to determine the adjacencies (see
Supplement 2.2 for more details). Small correlation
values are thus pushed toward zero becoming less
important in the network. The resulting similarities are
used as edge weights for network plotting and network
metrics based on connection strength. Note that this
approach leads to a fully connected network. Following
Zhang and Horvath [29], only TOM dissimilarities are
available in NetCoMi for computing shortest paths and
clusters when soft-thresholding is used.

2.4. Network analysis. We analyze a constructed
network by calculating network summary metrics (step 3
in Fig. 1), which are amenable to group comparisons.
Alternatively, NetCoMi offers the possibility to analyze
and visualize single networks.
Several network statistics require shortest path
calculations. A path between two vertices v0 and vk
is a sequence of edges connecting these vertices such
that v0 and vk are each at one end of the sequence
and no vertices are repeated [62]. The length of a
path is the sum of edge weights, where the weight of
an edge is a real non-negative number associated with
this edge [62]. The shortest path between two nodes
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3 NETWORK COMPARISON

is the path with minimum length. In NetCoMi, edge
weights are defined in two ways: (i) For properties
based on shortest paths, dissimilarity values are used
implying that the path length between two taxa is
shorter the higher the association between the taxa is.
(ii) For properties based on connection strength, the
corresponding similarities are used as edge weights (see
Section 2.3 and Figure S1 for details on distance and
similarity calculation).
Network centrality measures offer insights into the role
of individual taxa within the microbial community. We
consider degree, betweenness, closeness, and eigenvector
centrality (see Table 4). Using these measures, so-called
hubs (or keystone taxa) can be determined. This
analysis step is of high interest to researchers since
hub nodes may correspond to taxa with a particularly
important role in the microbial community. What is
deemed “important”, depends on the scientific context.
A selection of definitions for hub nodes is given in Table
4.
Clustering methods are appropriate to identify
functional groups within a microbial community. A
cluster (or module) is a group of nodes that are highly
connected to one another but have a small number
of connections to nodes outside their module [51].
The user of NetCoMi can choose between one of the
clustering methods provided by the igraph package [9]
and hierarchical clustering (R package hclust() from
stats package). Both similarities and dissimilarities
can be used for clustering (see Table 4).
Global network properties are defined for the whole
network and offer an insight into the overall network
structure. Typical measures are the average path
length, edge and vertex connectivity, modularity, and
the clustering coefficient (see Table 4).

2.5. Sample similarity networks. Using dissimilarity
between samples rather than association measures
among taxa leads to networks where nodes represent
subjects or samples rather than taxa. Analogous to
microbiome ordination plots, these sample networks
express how similar microbial compositions between
subjects are and thus provide insights into the global
heterogeneity of the microbiome sample collection.
The following dissimilarity measures are available
in NetCoMi: Euclidean distance, Bray-Curtis
dissimilarity [74], Kullback-Leibler divergence
(KLD) [75], Jeffrey’s divergence [76], Jensen-Shannon
divergence [77], compositional KLD [78, 79], and
Aitchison distance [80]. Details are available in Table S3.
Only Aitchison’s distance and the compositional KLD
are suitable for application on amplicon sequencing
data while the others may induce compositional effects
when applied to raw count data without appropriate
transformation (see Table 2).
The workflow for constructing, analyzing, and
comparing sample similarity networks is described
in Supplement 2.5. For these networks, the same

network properties as for microbial networks are
available in NetCoMi (Table 4). While the estimated
dissimilarity values dkl between two samples k and l are
used for network properties based on shortest paths,
the corresponding similarities, calculated by

skl = 1−dkl,

are used for properties based on connection strength
and edge weights in the network plot. Accordingly,
highly connected nodes are subjects with a microbial
composition similar to many other subjects.
Furthermore, as in usual cluster analysis, clusters
represent subjects with similar bacterial composition
but with the advantage, that the solution is visualized
in the network plot.

3 Network comparison
NetCoMi’s network comparison module (step 5 in Fig. 1)
focuses on investigating the following questions in a
quantitative fashion: (i) Is the overall network structure
different between two groups? (ii) Are hub taxa different
between the two microbial communities? (iii) Do the
microorganisms build different “functional” groups? (iv)
Are single pairs of taxa differentially associated among
the groups? To meet these objectives, NetCoMi offers
several network property comparison modes as well as
the estimated associations itself between two groups.
These approaches are commonly used in other fields of
application and have been adapted to the microbiome
context. Each method includes statistical tests for
significance.
To perform network comparison, the count matrix is
split into two groups according to the user-defined group
indicator vector. All steps of network construction and
analysis described in Section 2 are performed for both
subsets separately. The estimated associations, as well
as network characteristics, are then compared using the
methods described below.

3.1. Differential network analysis. We next detail
NetCoMi’s differential network analysis capabilities. All
approaches are applicable for microbial association
networks and sample similarity networks, respectively.

3.1.1. Permutation tests. NetCoMi uses permutation tests
to assess for each centrality measure and taxon whether
the calculated centrality value is significantly different
between the two groups. The null hypothesis of these
tests is defined as H0 : c(i)

1 − c
(i)
2 = 0, where c

(i)
1 and

c
(i)
2 denote the centrality value of taxon i in group
1 and 2, respectively. A standard non-parametric
permutation procedure [81] is used to generate a
sampling distribution of the differences under the null
hypothesis (see Supplement 3.1). The same approach is
used to test for significant group differences in the global
network characteristics listed in Table 4.
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Table 4. Local and global network properties implemented in NetCoMi. The table shows for each measure a short explanation and
whether it is based on connection strength (similarity) or dissimilarity/distance (e.g. two taxa with a high correlation have a high
connection strength, but their distance is low).

Measure Definition Based on
Shortest Path Sequence of edges connecting two nodes with minimum sum of edge weights [62]. Dissimilarity

Local measures (refer to single nodes)
Degree centrality Number of adjacent nodes [63]. Options: weighted/unweighted. Similarity

Betweenness centrality Fraction of times a node lies on the shortest path1 between all other nodes [63].
⇒ A central node has the ability to connect sub-networks [51]. Dissimilarity

Closeness centrality
Reciprocal of the sum of shortest paths between this node and all other nodes [63].
⇒ The node with highest closeness centrality has the minimum shortest path to
all other nodes.

Dissimilarity

Eigenvector centrality

Calculated via eigenvalue decomposition: Ac= λc, where λ denotes the eigenvalues
and c the eigenvectors of the adjacency matrix A. Eigenvector centrality is then
defined as the i-th entry of the eigenvector belonging to the largest eigenvalue
[64, 65].
⇒ A node is central if it is connected to other nodes having themselves a central
position in the network.

Similarity

Normalized centralities3

For each centrality measure, a normalized version leading to values in [0,1] is
implemented in NetCoMi. We use the following definitions of normalized centrality
for a vertex vi:
Degree: C∗

Deg(vi) = 1
n−1CDeg(vi) [63],

Betweenness centrality: C∗
Betw(vi) = 2

n2−3n+2CBetw(vi) [63],
Closeness centrality: C∗

Close(vi) = 1
n−1CClose(vi) [63],

Eigenvector centrality: C∗
Eigen(vi) = CEigen(vi)

max(CEigen(v)) [66],

where n is the number of nodes in the network, respectively.

Hubs

Particularly important nodes, which are most central regarding:
1) highest degree centrality [67],
2) highest degree, betweenness and closeness centrality at the same time [68],
3) or highest eigenvector centrality [9].
For each centrality measure, the most central nodes are those with a centrality
value either above a certain quantile of the fitted log-normal distribution [68] or
above a certain empirical quantile.

Depends on the
centrality
measure.

Global network metrics (refer to the whole network)
Average path length Arithmetic mean of all shortest paths between vertices in a network [67]. Dissimilarity

Global clustering
coefficient

Proportion of triangles with respect to the total number of connected triples2 [67].
⇒ Expresses how likely the nodes are to form clusters [67].
For weighted networks, the definition according to Barrat et al. [69] is used in
NetCoMi.

Similarity

Modularity Expresses how well the network is divided into communities (many edges within
the identified clusters and only a few between them) [70].

Depends on the
clustering
algorithm

Edge / vertex
connectivity

Minimum number of edges, or vertices (nodes) that need to be removed to
disconnect the network, respectively [71]. Not meaningful for a fully connected
network.

Presence/
absence of an
edge

Density Ratio of the actual number of edges in the network and the possible number of
edges [71]. Not meaningful for a fully connected network.

Presence/
absence of an
edge

Clustering

Hierarchical clustering
Hierarchical clustering using the R function hclust() from stats package [53].
Different methods are provided (e.g. single, complete, and average linkage, Ward’s
method). The cutree() function (stats) is used for cutting the resulting tree.

Dissimilarity

Modularity clustering
[72] The modularity measure is maximized over all possible clusterings. Similarity

Fast greedy modularity
optimization [70]

Modularity clustering via a fast greedy algorithm, which is suitable for very large
networks. Similarity

Clustering based on
edge betweenness [73]

Idea: Edges with high edge betweenness (number of shortest paths leading
through an edge) tend to divide the network into clusters. Approach: Hierarchical
clustering, where edges with high edge betweenness are removed gradually from
the network.

Dissimilarity

1 The shortest path is given as the path between two nodes that minimizes the sum of distances between included nodes.
2 A connected triple is a group of three nodes with two or three edges. A triangle is a triple where all three nodes are connected.
3 Not to be confused with “centralization” [63], which is a global network measure expressing the degree to which the centrality
of the most central node exceeds the centrality of all other nodes in the network .
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4 APPLICATION OF NETCOMI ON A REAL DATA SET

3.1.2. Similarity of most central nodes. A set of most
central nodes can be defined in two ways: In the first
approach, under the assumption that the centrality
values are log-normal distributed [68], the set of most
central nodes contains nodes with a centrality value
greater than a certain quantile of the fitted log-normal
distribution. In the second approach, the empirical
quantile can be used directly without any distributional
assumption. Both approaches are included in NetCoMi,
where the quantile can be freely chosen in each case.
The Jaccard index [82] (see Supplement 3.2 for a
definition) can then be used for assessing how different
the two sets of most central nodes (regarding a certain
centrality measure) are between the groups. This index
ranges from zero to one, where a value of one corresponds
to two equal sets and zero means that the sets have no
members in common. Following Real and Vargas [83],
we included an approach to test whether the observed
value of Jaccard’s index is significantly different from
that expected at random (see Supplement 3.2). Note
that this approach cannot make a statement on whether
the two sets of most central nodes are significantly
different.

3.1.3. Similarity of clustering solutions. NetCoMi offers
several network partitioning and clustering algorithms
(see Table 4). One way to assess the agreement of two
partitions is via the Rand index [84] (see Supplement 3.3
for a definition). Like Jaccard’s index, the Rand index
ranges from zero to one, where one indicates that the
clusters are exactly equal in both groups. The original
Rand index is dependent on the number of clusters
making it difficult to interpret. Instead, NetCoMi uses
the adjusted Rand index [85]. The adjusted values take
values in the interval [−1,1], where one corresponds to
identical clusterings and zero to the expected value for
two random clusterings. Consequently, positive index
values imply that two clusterings are more similar and
negative values less similar than expected at random.
Following [86], NetCoMi uses a permutation procedure
to test whether a calculated value is significantly
different from zero. However, this test does not
signify whether the clusterings are significantly different
between the groups. Details about this approach and its
implementation in R are given in Supplement 3.3.

3.2. Differential association analysis. NetCoMi also
allows to test differences between the estimated
associations themselves rather than network properties.
This analysis is referred to as differential association
analysis. Table 5 shows the three approaches available
in NetCoMi (see Supplement 4 for details).
Fisher’s z-test [87] is a common method for comparing
two correlation coefficients, assuming normally
distributed z values (the transformed estimated
correlations) and thus a correct specification of
their variance. Novel approaches without normality
assumption have been proposed [88], but are restricted

to Pearson correlations. Therefore, we implemented
a resampling-based procedure [89] as non-parametric
alternative, which is applicable to association measures
other than correlation. The Discordant method [90] as
the third available method is also based on Fisher’s z
values, but groups correlations with a similar magnitude
and direction based on mixture models.
These approaches enable the construction of a
differential network, where only differentially associated
taxa are connected. More precisely, two taxa are
connected if their association is either significantly
different between the two groups (to a user-defined
significance level) or identified as being different by the
Discordant method.

Table 5. Test procedures for identifying differential associations
available in NetCoMi. Fisher’s z-test and the Discordant method
are based on correlations that are Fisher-transformed into
z-values. These two methods are thus not suitable for the other
association measures included in NetCoMi.

Test method Originally
designed for ...

In NetCoMi
used for ...

Fisher’s z-test
[87] Correlation Correlation

Non-parametric
test [89]

“connectivity
scores”[89]:
• Correlation
• Partial correlation
• Partial least

squares based
scores

• Correlation
• Proportionality

(due to its
similarity to
correlations)

• Conditional
dependence /
Partial
correlations

Discordant
method [90] Correlation Correlation

4 Application of NetCoMi on a real data set
We use data from the GABRIEL Advanced Surveys
(GABRIELA) [91] to illustrate the application of
NetCoMi version 1.0.1 [92]. GABRIELA is a
multi-center study, carried out in rural areas of southern
Germany, Switzerland, Austria, and Poland, which
provides new insights into the causes of the protective
effect of exposure to farming environments for the
development of asthma, hay fever, and atopy [91].
The study comprises the collection of biomaterial and
environmental samples including mattress dust from
children’s rooms and nasal swabs, for which 16S rRNA
amplicon sequencing data are available. After some
preprocessing steps (see Table S4), a total of p = 707
bacterial genera remain for mattress dust for a subset
of N = 1022 subjects. The nasal data set consists of
p= 467 genera for N = 1033 subjects.
The NetCoMi functions corresponding to the main steps
of our proposed workflow (Fig. 1) are netConstruct()
for network construction (Section 2.3), netAnalyze()
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data, data2

Count matrix,
phyloseq object, or
association/dissimilarity matrix

dataType

Type of data/data2 (counts, 
correlation, cond. dependence, 
proportionality, dissimilarity)

measure Association/dissimilarity measure

groupVec Group vector (optional)

filtTax, 
filtSamp

Filter method for taxa and samples

zeroMethod Zero handling

normMethod Normalization method

sparsMethod Sparsification method

dissFunc
Metric used for transforming 
associations to dissimilarities

netConstruct()

Function for network construction

clustMethod Clustering algorithm

hubPar Hub measure

hubQuant Quantile used for hub detection

lnormFit
Fit a log-normal distribution to 
centralities? (for hub detection)

netAnalyze()

Function that computes network metrics

diffMethod
Method for identifying 
differential associations

diffnet()

Function for constructing differential 
networks Arguments for layout, labels, 

node color, edge color, 
transparency, edge filtering, 
legend, …

plot.diffnet()

Plotting differential networks

Layout 
arguments

Algorithm/matrix
Same layout in both groups?

Node 
arguments

Filter, remove singles, label, 
size, color, shape, transparency, 
border

Hub arguments
Highlight hubs? Transparency, 
border

Edge arguments Filter, width, color, transparency

plot.microNetProps()

Plotting the constructed network(s) 
with optional properties

permTest
Perform permutation tests? 
(computationally intensive) 

lnormFit
Fit a normal distribution to 
centralities? (for Jaccard’s index)

jaccQuant

Quantile for determining most 
central nodes (for Jaccard’s
index)

netCompare()

Quantifying group differences via Jaccard
index, Rand index and permutation tests

Network metrics
Class: microNetProps

Adjacency matrix 
(with significant 

differences)
Class: diffnet

Differential network1 + 2

3

4

5

summary.netPropComp()

Summarizes the results of network comparison

Results of the network comparison
Class: netPropComp

summary.microNetprops()

Summarizes the computed network properties

Adjacency matrix/matrices
Class: microNet

Fig. 3. Main NetCoMi functions. For each function, its purpose together with its main arguments is shown. The objects returned from
the respective functions are colored in orange. The steps (colored in red) correspond to the steps of the overall workflow shown in
Fig. 1.

for network characterization (Section 2.4), and
netCompare() for network comparison (Section 3).
An overview of the exported (and thus usable)
NetCoMi functions together with their main arguments
is given in Fig. 3. In the following, we use the
SPRING method as a measure of partial correlation for
constructing exemplary microbial association networks
and Aitchison’s distance as a dissimilarity measure
for constructing sample similarity networks. The
construction of a differential network is described in
Supplement 5.5.

4.1. Constructing a single microbial network. In
principle, the netConstruct() function allows the
specification of any combination of methods for
association measure, zero treatment, and normalization.
However, since NetCoMi is mainly designed to handle
compositional data, a warning is returned if a chosen
combination is not compositionally aware.
To generate the network shown in Fig. 4A, we pass the
combined count matrix containing dust samples from
Ulm and Munich to netConstruct(). Filter parameters
are set in such a way that only the 100 most frequent
taxa are included in the analyses leading to a 1022×
100 read count matrix for our data. Depending on
the association measure, a method for zero handling,

normalization and sparsification could be chosen (see
Figure S1 and Table S1). Since these steps are
already included in SPRING, they are skipped in our
example. If associations have already been estimated in
advance, the external association matrix can be passed
to netConstruct() instead of a count matrix. In this
mode, the user only needs to define a sparsification
method and a dissimilarity function.
Besides the available options for transforming the
associations to dissimilarities (see Supplementary
Figure S1), the function also accepts a user-defined
dissimilarity function. The choice of dissimilarity
function also influences the handling of negative
associations. In Fig. 4, we use the “signed” distance
metric, where strong negative correlations lead to a
high dissimilarity (and thus to a low edge weight in
the adjacency matrix). Figure S4 shows a network plot
where the “unsigned” metric is used.
netConstruct() returns an object of class microNet,
which can be directly passed to netAnalyze() to
compute network properties (see Table S5). Applying
the plot function to the output of netAnalyze() leads
to a network visualization, as shown in Fig. 4A. In this
plot, network characteristics are emphasized in different
ways: Hubs are highlighted, clusters are marked by
different node colors, and node sizes are scaled according
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4 APPLICATION OF NETCOMI ON A REAL DATA SET
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Prevotella 9
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Lactobacillus
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Neisseria

Ezakiella

Enhydrobacter

Moraxella

GemellaRothia

Actinobacillus

Lactococcus

Micrococcus

Alloprevotella

Veillonella

Kocuria

Methylobacterium

Agathobacter

Massilia

Finegoldia

Pedobacter

Actinomyces

Hymenobacter

Pantoea

Subdoligranulum

Bifidobacterium
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Chryseobacterium
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Jeotgalicoccus
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Psychromonas

Clostridium sensu stricto 1

Ruminococcaceae UCG−005

Pseudoalteromonas

Prevotella 6

GranulicatellaChroococcidiopsaceae(F)

Alistipes

Varibaculum

Bergeyella

Acidiphilium

Romboutsia

Campylobacter

1174−901−12

Aerococcus

Dolosigranulum

Rhizobiaceae(F)

Leuconostoc

Vibrio

Lautropia

Dialister

[Eubacterium] coprostanoligenes group

Stenotrophomonas

Roseburia

Aggregatibacter

Bacillus

Christensenellaceae R−7 group

Parabacteroides

Ruminococcaceae UCG−014

Rubellimicrobium
Curtobacterium

Atopostipes
Glutamicibacter

Akkermansia

Abiotrophia

Buchnera

Ruminococcaceae UCG−002

Aliterella CENA595

Rikenellaceae RC9 gut group
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Tychonema CCAP 1459−11B

Capnocytophaga

Dyadobacter

Aeromonas

Salinicoccus

Fusicatenibacter
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Staphylococcus

Corynebacterium 1

Sphingomonas

Bacteroides

Pseudomonas

Porphyromonas

Faecalibacterium

Prevotella 9

Lactobacillus
Prevotella

Neisseria

Enhydrobacter

Gemella

Rothia
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Kocuria

Methylobacterium
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Subdoligranulum
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Blautia

Fusobacterium
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Brevibacterium

Clostridium sensu stricto 1

Ruminococcaceae UCG−005

Prevotella 6

Granulicatella

Acidiphilium

Romboutsia

Campylobacter

Aerococcus

Leuconostoc

Dialister

[Eubacterium] coprostanoligenes group

Atopostipes
Glutamicibacter

Ruminococcaceae UCG−002

Rikenellaceae RC9 gut group

Fig. 4. Bacterial associations for the combined data set with samples from Ulm and Munich. The SPRING method [39] is used as
association measure. The estimated partial correlations are transformed to dissimilarities via the “signed” distance metric and the
corresponding (non-negative) similarities are used as edge weights. Green edges correspond to positive estimated associations and
red edges to negative ones. Eigenvector centrality is used for defining hubs (nodes with a centrality value above the empirical 95%
quantile) and scaling node sizes. Hubs are highlighted by bold text and borders. Node colors represent clusters, which are determined
using greedy modularity optimization. A: Complete network for the data set with 100 taxa and 1022 samples. Unconnected nodes are
removed. B: Reduced network, where only the 50 nodes with the highest degree are shown. Centrality measures and clusters are
adopted from the complete network.

to eigenvector centrality. Alternatively, node colors
and shapes can represent features such as taxonomic
rank. Node sizes can be scaled according to other
centrality measures or absolute/relative abundances of
the corresponding taxa. Node positions are defined
using the Fruchterman-Reingold algorithm [93]. This
algorithm provides a force-directed layout aimed at high
readability of the network by placing pairs of nodes with
a high absolute edge weight close together and those
with low edge weight further apart.
The plot() method implemented in NetCoMi includes
several options for selecting nodes or edges of interest
to facilitate the readability of the network plot without
influencing the calculated network measures. In Fig. 4B,
for instance, we display the 50 bacteria with highest
degree, facilitating network interpretability.
NetCoMi identified four clusters and the following five
hub nodes: Aerococcus, Atopostipes, Brachybacterium,
Rikenellaceae RC9 gut group, and [Eubacterium]
coprostanoligenes group. The strongest positive
association is between Ezakiella and Peptoniphilus with
a partial correlation of 0.55 (in the green cluster in
Fig. 4A). The strongest negative correlation is -0.09
between Alistipes (in the blue cluster) and Lactobacillus
(in the red cluster).

4.2. Comparing networks between two study centers.
For network comparison, the combined count matrix is

again passed to netConstruct(), but this time with
an additional binary vector assigning the samples to
one of the two centers. This leads to the network
plots shown in Fig. 5 (see Table S7 for the summary
of network properties). The layout computed for the
Munich network is used for both networks to facilitate
the graphical comparison and making differences clearly
visible. We observe only slight differences in the
estimated associations. Furthermore, both networks
show similar clustering and agree on three (out of
five) hub nodes: Atopostipes, Brachybacterium, and
[Eubacterium] coprostanoligenes group.
The quantitative comparison is done by passing the R
object returned from netAnalyze() to netCompare().
Comparisons of all global measures included in
NetCoMi and the five genera with the highest absolute
group difference for degree and eigenvector centrality,
respectively, are given in Table 6. Supplementary
Table S8 extends the output to the ten genera with
the highest absolute group difference, and also includes
betweenness and closeness centrality. For none of
the four centrality measures, any significant differences
are observed, confirming the descriptive analyses.
Pseudomonas, Pedobacter, and Rikenellaceae RC9 gut
group as hub taxa in only one of the networks show
high differences in eigenvector centrality. However, the
differences are not deemed significant (Table 6). Global
network properties (upper part of Table 6) are also not
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Fig. 5. Comparison of bacterial associations in the mattress dust between the study centers Munich and Ulm. The SPRING method [39]
is used as association measure. The estimated partial correlations are transformed to dissimilarities via the “signed” distance metric
and the corresponding similarities are used as edge weights. Eigenvector centrality is used for defining hubs and scaling node sizes.
Node colors represent clusters, which are determined using greedy modularity optimization. Clusters have the same color in both
networks if they share at least 2 taxa. Green edges correspond to positive estimated associations and red edges to negative ones.
The layout computed for the Munich network is used in both networks. Nodes that are unconnected in both groups are removed. Taxa
names are abbreviated (see Table S9 for the original names).

Table 6. Results from testing global network metrics and centrality measures of the networks in Fig. 5 for group differences (via
permutation tests using 1000 permutations). Shown are respectively the computed measure for Munich and Ulm, the absolute
difference, and the p-value for testing the null hypothesis H0 : |diff|= 0. For the centrality measures, p-values are adjusted for multiple
testing using the adaptive Benjamini-Hochberg method [57], where the proportion of true H0 is determined according to Langaas et
al. [58]. For degree and eigenvector centrality, the five genera with the highest absolute group difference are shown. The centralities
are normalized to [0,1] as described in Table 4. Highly different eigenvector centralities (even if not significant) describe bacteria with
highly different node sizes in the network plots in Fig. 5 such as Neisseria, which is a hub in Munich and much less important in Ulm.

Munich Ulm abs. diff. p-value
Global network measures:
Average path length 1.576 1.555 0.022 0.60440
Clustering coefficient 0.279 0.249 0.029 0.11189
Modularity 0.458 0.407 0.051 0.08192 .
Vertex connectivity 3 4 1 0.68232
Edge connectivity 3 4 1 0.68132
Density 0.103 0.100 0.003 0.55045
Degree (weighted):
Corynebacterium 1 0.162 0.071 0.091 0.19905
Rikenellaceae RC9 gut group 0.101 0.192 0.091 0.82936
Lactobacillus 0.121 0.051 0.071 0.82936
Pedobacter 0.101 0.172 0.071 0.82936
Pseudomonas 0.202 0.131 0.071 0.99622
Eigenvector centrality:
Pseudomonas 0.852 0.417 0.435 0.57458
Rikenellaceae RC9 gut group 0.595 1.000 0.405 0.57458
Ruminococcaceae UCG-002 0.767 0.379 0.389 0.57458
Corynebacterium 1 0.670 0.290 0.379 0.57458
Pedobacter 0.526 0.873 0.346 0.83396

Significance codes: ∗∗∗: 0.001, ∗∗: 0.01, ∗: 0.05, .: 0.1
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significantly different for α= 5%.
Table 7 summarizes Jaccard indices expressing the
similarity of sets of most central nodes and the hub
nodes among the two centers. They do not imply any
group differences, which would be indicated by a small
probability P(J ≤ j). Similarly, the adjusted Rand index
(0.752,p-value = 0) indicates a high similarity of the two
clusterings, which is also highlighted in Fig. 5.

Table 7. Jaccard index values corresponding to the networks
shown in Fig. 5. Index values j express the similarity of the sets
of most central nodes and also of the sets of hub taxa between
the two networks. “Most central” nodes are those with a centrality
value above the empirical 75% quantile. Jaccard’s index is 0 if
the sets are completely different and 1 for exactly equal sets.
P (J ≤ j) is the probability that Jaccard’s index takes a value
less than or equal to the calculated index j for the present total
number of taxa in both sets (P (J ≥ j) is defined analogously).

j P(J ≤ j) P(J ≥ j)
degree 0.323 0.53375 0.61683
betweenness centr. 0.389 0.81277 0.29332
closeness centr. 0.471 0.96735 0.06729 .
eigenvec. centr. 0.429 0.91326 0.15482
hub taxa 0.429 0.82670 0.42936
Significance codes: ∗∗∗: 0.001, ∗∗: 0.01, ∗: 0.05, .: 0.1

4.3. Sample similarity networks. We next consider
sample similarity networks from mattress dust and nasal
swabs of the same subjects (N = 980). The process of
constructing and comparing sample similarity networks
is analogous to the one for association networks.
Figure 6 shows the two networks using Aitchison’s
distance.
NetCoMi’s quantitative network analysis (Table S10 to
S13) reveals strong differences between these networks.
The sets of most central nodes are significantly different
for all four centrality measures (shown by Jaccard’s
index). Hub nodes are also completely different (Jaccard
index of zero). We also observe several significantly
different global network properties (see Table S12).
Furthermore, the node’s degree, betweenness, and
closeness centrality values differ significantly between
the groups for several subjects (Table S13), implying
that a single subject plays a different role dependent on
the investigated microbial habitat.
Clustering analysis broadly identifies three sample
groups for mattress dust and nasal swab samples,
respectively. In Fig. 6, we highlight the partial overlap
between the two clustering solutions via color coding.
Clusters that have at least 100 nodes in common are
plotted by matching colors. This reveals that the red
cluster, seen in both networks, shares similar samples
across the two habitats.
NetCoMi’s plotting functionality also allows to draw
nodes in different shapes, corresponding to additional
categorical covariate information about the samples. For

instance, in Fig. 6, the two node shapes correspond to
the two different study centers (Ulm and Munich). This
feature could potentially highlight confounding of groups
of samples and available covariates. For our example
here, however, we observe no noticeable pattern in the
clusters with respect to study center.

5 Discussion

5.1. Why use NetCoMi?. With NetCoMi we offer
an easy-to-use and versatile, integrative R package
for the construction, analysis, and comparison of
microbial networks derived from amplicon sequencing
data. Our package provides a wide variety of
compositionally aware association measures, including
SparCC [5], proportionality [38], SPIEC-EASI [47], and
SPRING [39, 7]. The latter method also enables
the analysis of recent quantitative microbiome data
sets when both amplicon and quantitative cell count
or spike-in control data are available. NetCoMi
also incorporates standard association measures, thus
widening the scope of the package beyond applications
to compositional data, and it connects to the popular
WGCNA package [35], enabling principled soft-thresholding
of correlations and dissimilarity transformations based
on topological overlap. The package includes a
dedicated list of methods for handling excess zeros in
the count matrix and for data normalization in order to
account for the special characteristics of the underlying
sequencing data prior to association estimation.
A unique feature of the NetCoMi framework is its
ability to perform differential network and differential
association analysis in a statistically principled fashion.
Differential network analysis allows not only to uncover
the global role of a taxon in the overall network structure
but also its changing influence under varying conditions.
Differential association analysis [14], on the other
hand, can directly assess which associations significantly
change across conditions, providing concrete hypotheses
for follow-up biological perturbation experiments.
Similar to phyloseq’s [94] plot_net function, NetCoMi
also enables network representation and comparison of
the amplicon data samples themselves, using popular
sample dissimilarity or distance measures, such as the
Bray-Curtis dissimilarity and the Aitchison distance.
Network analysis of the resulting sample-to-sample or
subject-to-subject networks can give insights into the
heterogeneity of the collected data. For instance,
identified hub subjects are subjects with “representative”
bacterial compositions that may comprise archetypical
microbial patterns in the studied population. Sample
similarity network analysis thus extends standard
sample ordination or cluster analysis, making fine-grain
structures of the available microbial sample collection
visible.
While methods and tools for the individual analysis
steps, such as biological network estimation (see, e.g.
[95, 96] for recent contributions) and (differential)
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Mattress Nose
Munich
Ulm

Fig. 6. Comparing dissimilarity networks based on Aitchison’s distance [80] (see Supplementary Table S3) between mattress dust and
nasal swabs for the same set of subjects (nodes). Only samples and taxa with at least 1000 reads, respectively, are included leading to
p1=707 genera in the Mattress group, p2=184 genera in the Nose group, and n=980 samples in both groups. Counts are normalized
to fractions and – since zeros must be replaced for the clr transformation – “multiplicative imputation” (see Table 3 in the main text)
is used for zero handling. The dissimilarity matrix is scaled to [0,1] and sparsified using the k-nearest neighbor method (k=3 for both
networks). Node colors represent clusters, identified using hierarchical clustering with average linkage. A cluster has the same color in
both networks if they have at least 100 nodes in common (the minimum cluster size among both groups is 560). Hubs (highlighted by
bold borders) are nodes with an eigenvector centrality larger than the 99% quantile of the empirical quantile of eigenvector centralities.
Edge thickness corresponds to similarity values (calculated by 1−distance). Nodes are placed further together, the more similar their
bacterial composition is. Whether a sample has been collected in Munich or Ulm is marked by node shapes. Unconnected nodes are
removed.

biological network analysis [17, 16, 35, 97, 94, 15]
are available, NetCoMi offers a unique and modular R
software framework that integrates the complete process
of estimating, analyzing, and comparing microbial
networks. From an end user’s perspective with a specific
microbiome dataset and scientific question in mind,
NetCoMi will thus facilitate both faster development
and reproducibility of the microbial network analysis
workflow.

5.2. Which method to choose?. Even though the
modular design of NetCoMi allows the user to perform
a wide variety of computational workflows, going from
the primary data all the way to potentially significant
network features, every step of the analysis still warrants
careful scientific consideration. For instance, the
choice of an association or dissimilarity measure will
likely affect all further steps of network analysis and
comparison. However, there is no general consensus
in the community about the “right" way to estimate
and analyze microbial networks. This is reflected in the
heterogeneity of recent simulation studies to assess and
compare the performance of compositionally aware as

well as traditional association measures. To put some
of these studies into context, we give a selection of
simulation studies examining the association methods
used in NetCoMi in Supplementary Table S14.
Common shortcomings in current simulation studies
include the lack of a universal standard (i) to generate
realistic synthetic microbial data with a prescribed
ground truth, (ii) to perform comparable model
selection, and (iii) to report generalizable performance
metrics. Comparative studies often concentrate on
the performance in edge recovery, for instance, via
precision-recall curves [39, 98, 6, 99] or distances between
true and estimated associations [5, 36, 39, 6]. However,
networks derived from penalized marginal correlations
(such as SparCC) and partial correlation (such as
SPRING) are statistically difficult to compare, thus
requiring special modifications which, in turn, limits
cross-study comparisons (see, e.g. Yoon et al. [39]
where SparCC correlations are transformed to SparCC
partial correlations). Moreover, the sole focus on edge
recovery may obfuscate other aspects of correct model
recovery, including the shape of degree distributions [6]
or detecting hub nodes. For instance, methods with a
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similar edge recovery precision greatly vary regarding
their ability to determine hub nodes [100]. Thus, if the
correct detection of hub nodes is of major interest to the
user, present comparative microbial network studies will
give little guidance.
Finally, we posit that simulation studies accompanying
articles that introduce new methods might also be
inherently biased [101, 102]. Neutral comparison
studies, i.e., studies that are independent of any new
method development [101, 102] are rare in our context
or do not include recently published methods [98]. The
main impediment regarding neutral comparison studies
is, however, the fact that, to date, no large-scale ground
truth network of real biological microbial interactions
is available. Such biological gold-standard networks,
as available in other contexts (e.g. gene-gene or
transcription-factor-gene interactions), would greatly
facilitate future comparative studies.
In the absence of a “best method” for microbial network
inference and analysis, NetCoMi is intended to give
researchers the possibility to apply a consistent and
reproducible analysis workflow on their data. Ideally,
the selection of the workflow building blocks should be
set up once and, independent of any hypothesis about
the data, thus avoiding the fallacy of starting “fishing”
for results that best suit a previously formulated
hypothesis. NetCoMi can, however, serve as an
ideal tool for principled sensitivity analysis of the
inferred results, for instance, by assessing how different
normalization and zero handling methods affect the
estimated networks, their structural properties, and
their comparison. Finally, we envision NetCoMi to
provide a useful framework for future simulation studies
that evaluate and compare the performance of different
association measures and network inference tools in a
reproducible fashion.

5.3. Current limitations and future developments. The
current version of NetCoMi is designed to model
networks from a single domain of life, e.g. bacteria,
fungi, or viruses. However, microbes from different
domains of life often share the same habitat and likely
influence each other [103]. Joint cross-domain network
inference already revealed considerable alterations of
the overall network structure and network features,
compared to their single-domain counterparts [104].
Extending NetCoMi to cross-domain network analysis is
thus an important future development goal. Likewise,
environmental factors, such as chemical gradients and
temperature, as well as batch effects are known to
influence microbial abundances and composition and
thus bias network estimation [100, 105, 106]. In
the current NetCoMi version, we assume that the user
has already corrected the microbiome data for these
latent influences. However, several inference methods
can directly incorporate known [107, 108] or unknown
latent factors [105] into network learning. Including or
connecting these approaches with NetCoMi will likely

increase the robustness and generalizability of future
workflows.
A core feature of NetCoMi is the use of statistical tests
at various stages of the computational workflow. For
instance, statistical tests can be employed for edge
selection in network sparsification. Since statistical
power depends on sample size, the sparsified structure of
a network will likely depend on the number of available
samples. A comprehensive understanding between
number of samples, sparsification, and network structure
is currently elusive. NetCoMi relies on permutation tests
for several statistical tests. The lower limit of p-values
arising from permutation tests is directly related to the
number of available permutations (Section 4). This
already required proper adjustment of the calculation
for small numbers [109, 110]. For extended simulation
studies, NetCoMi’s dependence on permutation tests
may prove to be computer intensive. Thus, integration
of less demanding alternatives to permutation tests
would represent a welcome feature in NetCoMi.
Finally, despite incorporating a comprehensive list of
methods in our R package, we do not claim completeness.
This can hardly be achieved in the vibrant field of
microbiome research where new methods are constantly
developed. We alleviated this shortcoming via
NetCoMi’s modular structure which allows certain parts
of our workflow to be combined with external methods.
For instance, users can input a user-defined association
or dissimilarity matrix rather than a data matrix,
and then proceed with NetCoMi’s standardized network
analysis modules.
In summary, we believe that NetCoMi is a useful
addition to the modern microbiome data analysis
toolbox, enabling rapid and reproducible microbial
network estimation and comparison and ideally leading
to robust hypotheses about the role of microbes in health
and disease [111].

Key Points
• Current high-throughput amplicon sequencing

count data carry only relative or compositional
information, thus requiring dedicated statistical
analysis methods.

• NetCoMi is a comprehensive R package
that implements the complete workflow of
constructing, analyzing, and comparing microbial
association networks.

• NetCoMi integrates an extensive list of methods
that take into account the special characteristics
of amplicon data, including methods for zero
count handling, normalization, and association
estimation.

• The package also offers functionality for
constructing sample similarity networks as
well as differential networks including appropriate
methods for identifying differentially associated
taxa.
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